
Appendix

A. Nernst’s Theorem (Third Law)

A.1 Preliminary Remarks on the Historical Development of
Nernst’s Theorem

Based on experimental results1, Nernst (1905) originally postulated that
changes in the entropy ∆S in isothermal processes (chemical reactions, phase
transitions, pressure changes or changes in external fields for T = const.) have
the property

∆S → 0

in the limit T → 0. This postulate was formulated in a more stringent way
by Planck, who made the statement S → 0, or, more precisely,

lim
T→0

S(T )
N

= 0 , (A.1)

where, depending on the physical situation, N is the number of particles or
of lattice sites. One refers to (A.1) as Nernst’s theorem or the Third Law of
thermodynamics2.

According to statistical mechanics, the value of the entropy at absolute
zero, T = 0, depends on the degeneracy of the ground state. We assume that
the ground state energy E0 is g0−fold degenerate. Let P0 be the projection
1 The determination of the entropy as a function of the temperature T is carried

out by measuring the specific heat CX(T ) in the interval [T0, T ] and integrating

according to the equation S(T ) = S0 +
R T

T0
dT CX (T )

T
, where the value S0 at the

initial temperature T0 is required. Nernst’s Theorem in the form (A.1) states
that this constant for all systems at T = 0 has the value zero.

2 Nernst’s theorem is understandable only in the framework of quantum mechanics.
The entropy of classical gases and solids does not obey it. Classically, the energy

levels would be continuous, e.g. for a harmonic oscillator, E = 1
2

“
p2

m
+mω2q2

”
instead of E = �ω

`
n+ 1

2

´
. The entropy of a classical crystal, effectively a system

of harmonic oscillators, would diverge at T = 0, since per vibrational degree
of freedom, S = k + k log T . In this sense, Nernst’s theorem can certainly be
regarded as visionary.
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operator onto states with E = E0. Then the density matrix of the canonical
ensemble can be cast in the form

ρ =
e−βH

Tr e−βH
=

∑
n e−βEn |n〉 〈n|∑

n e−βEn
=

P0 +
∑

En>E0
e−β(En−E0) |n〉 〈n|

g0 +
∑

En>E0
e−β(En−E0)

.

(A.2)

For T = 0, this leads to ρ(T = 0) = P0
g0

, and thus for the entropy to

S(T = 0) = −k〈log ρ〉 = k log g0 . (A.3)

The general opinion in mathematical physics is that the ground state of
interacting systems should not be degenerate, or that the degree of degeneracy
in any case should be considerably less than the number of particles. If g0 =
O(1) or even if g0 = O(N), we find

lim
N→∞

S(T = 0)
kN

= 0 , (A.4)

i.e. for such degrees of degeneracy, Nernst’s theorem follows from quantum
statistics.

In Sect. A.2, the Third Law is formulated generally taking into account
the possibility of a residual entropy. This is in practice necessary for the
following reasons: (i) there are model systems with greater ground-state de-
generacies (ice, non-interacting magnetic moments); (ii) a very weak lifting
of the degeneracy might make itself felt only at extremely low temperatures;
(iii) a disordered metastable state can be ‘frozen in’ by rapid cooling and
retains a finite residual entropy. We will discuss these situations in the third
section.

A.2 Nernst’s Theorem and its Thermodynamic Consequences

The General Formulation of Nernst’s Theorem:

S(T = 0)/N is a finite constant which is independent of parameters X such
as V and P (i.e. the degeneracy does not change with X) and S(T ) is finite
for finite T .

Results of Nernst’s theorem for the specific heat and other thermodynamic
derivatives:

Let A be the thermodynamic state which is attained on increasing the tem-
perature starting from T = 0 at constant X . From CX = T

(
∂S
∂T

)
X

, it follows
that

S(T ) − S(T = 0) =
∫ A

0

dT
CX(T )

T
. (A.5)
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From this, we find furthermore

CX(T ) −→ 0 for T −→ 0 ,

since otherwise S(T ) = S(T = 0) + ∞ = ∞. This means that the heat
capacity of every substance at absolute zero tends to zero; in particular, we
have CP → 0, CV → 0, as already found explicitly in Chap. 4 for ideal
quantum gases. Thus the specific heat at constant pressure takes on the form

CP = T x(a + bT + . . .) , (A.6)

where x is a positive exponent. For the entropy, (A.5), one obtains from this
expression

S(T ) = S(T = 0) + T x

(
a

x
+

bT

x + 1
+ . . .

)
. (A.7)

Other thermodynamic derivatives also vanish in the limit T → 0, as one can
see by combining (A.7) with various thermodynamic relations.

The thermal expansion coefficient α and its ratio to the isothermal compress-
ibility fulfill the relations

α ≡ 1
V

(
∂V

∂T

)
P

= − 1
V

(
∂S

∂P

)
T

→ 0 for T → 0 (A.8)

α

κT
=

(
∂P

∂T

)
V

=
(
∂S

∂V

)
T

→ 0 for T → 0 . (A.9)

The first relation can be seen by taking the derivative of (A.7) with respect
to pressure

V α =
(
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

= −T x

(
a′

x
+

b′T
x + 1

+ . . .

)
; (A.10)

the second relation is found by taking the derivative of (A.7) with respect
to V .

From the ratio of (A.10) and (A.6) we obtain

V α

CP
= − a′

ax
+ . . . ∝ T 0 .

In an adiabatic pressure change, the temperature changes as3 dT =
(

V α
CP

)
TdP .

A finite temperature change requires that dP increase as 1
T . Absolute zero

therefore cannot be reached by an adiabatic expansion .

3
`

∂P
∂T

´
S

= − ( ∂S
∂T )

P

( ∂S
∂P )

T

= T−1CP

( ∂V
∂T )

P

= CP
TV α
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To clarify the question of whether absolute zero can be reached at all,
we consider the fact that cooling processes always take place between two
curves with X = const., e.g. P = P1, P = P2 (P1 > P2) (see Fig. A.1).
Absolute zero could be reached only after infinitely many steps. An adiabatic
change in X leads to cooling. Thereafter, the entropy must be decreased by
removing heat; since no still colder heat bath is available, this can be done
at best for T = const. If a substance with a T − S diagram like that shown
in Fig. A.2 were to exist, i.e. if in contradiction to the Third Law, S(T = 0)
were to depend upon X , then one could reach absolute zero.

Fig. A.1. The approach to absolute
zero by repeated adiabatic changes
(e.g. adiabatic expansions)

Fig. A.2. Hypothetical adiabats
which would violate the Third Law

A.3 Residual Entropy, Metastability, etc.

In this section, we shall consider systems which exhibit a residual entropy even
at very low temperatures, or metastable frozen-in states and other particular
qualities which can occur in this connection.

(i) Systems which contain non-coupled spins and are not subject to an ex-
ternal magnetic field have the partition function Z = (2S + 1)NZ ′ and the
free energy F = −kTN log(2S+1)+F ′. The spins then have a finite residual
entropy even at T = 0:

S(T = 0) = Nk log(2S + 1) .

For example: paraffin, C20H42; owing to the proton spins of H, the partition
function is proportional to Z ∼ 242N , from which we find for the residual
entropy S = 42kN log 2.
(ii) Metastable states in molecular crystals: the ground state of crystalline
carbon monoxide, CO, has a uniformly oriented ordered structure of the linear
CO molecules. At higher temperatures, the CO molecules are not ordered. If
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Fig. A.3. The structure of ice4 Fig. A.4. Two-dimensional ice: ◦
oxygen, • hydrogen, • other possible
positions of H

a sample is cooled to below T = ∆ε
k , where ∆ε is the very small energy differ-

ence between the orientations CO–OC and CO–CO of neighboring molecules,
then the molecules undergo a transition into the ordered equilibrium state.
Their reorientation time is however very long. The system is in a metastable
state in which the residual entropy has the value

S(T = 0) = k log 2N = Nk log 2 ,

i.e. S = 5.76 J mol−1 K−1. The experimental value is somewhat smaller,
indicating partial orientation.
(iii) Binary alloys such as β-brass, (CuZn), can undergo a transition from a
completely disordered state to an ordered state when they are cooled slowly.
This phase transition can also be described by the Ising model, by the way.
On the other hand, if the cooling is rapid, i.e. if the alloy is quenched, then the
Cu and Zn atoms stay in their disordered positions. At low temperatures, the
rate of reordering is so negligibly small that this frozen-in metastable state
remains permanent. Such a system has a residual entropy.
(iv) Ice, solid H2O: ice crystallizes in the Wurtzite structure. Each hydrogen
atom has four oxygen atoms as neighbors (Fig. A.3). Neighboring oxygen
atoms are connected by hydrogen bonds. The hydrogen atom which forms
these bonds can assume two different positions between the two oxygen
atoms (Fig. A.4). Because of the Coulomb repulsion, it is unfavorable for an
oxygen atom to have more or fewer than two hydrogen atoms as neighbors.
Thus one restricts the possible configurations of the hydrogen atoms by the
ice rule: the protons are distributed in such a manner that two are close and
two are more distant from each oxygen atom5. For N lattice sites (N oxygen
4 The structure of common (hexagonal) H2O-ice crystals: S.N. Vinogrado,

R.H. Linnell, Hydrogen Bonding, p. 201, Van Nostrand Reinhold, New York,
1971.

5 L. Pauling: J. Am. Chem. Soc., 57, 2680 (1935)
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atoms), there are 2N hydrogen bonds. The approximate calculation of the
partition function5 at T = 0 yields

Z0 = 22N

(
6
16

)N

=
(

3
2

)N

.

(The number of unhindered positions of the protons in the hydrogen bonds)
times (reduction factor per lattice site, since of 16 vertices, only 6 are allowed).
Using W = limN→∞ Z

1/N
0 = 1.5, we find for the entropy per H2O:

S(T = 0)
kN

= logW = log 1.5 .

An exactly soluble two-dimensional model to describe the structure of ice has
been given6 (Fig. A.4). A square lattice of oxygen atoms is bound together
by hydrogen bonds. The near-neighbor structure is the same as in three-
dimensional ice. The statistical problem of calculating Z0 can be mapped onto
a vertex model (Fig. A.5). The arrows denote the position of the hydrogen
bonds. Here, H assumes the position which is closer to the oxygen towards
which the arrow points. Since each of the four arrows of a vertex can have
two orientations, there are all together 16 vertices. Because of the ice rule, of
these 16 vertices only the six shown in Fig. A.5 are allowed.

Fig. A.5. The vertices of the two-dimensional ice model which obey the ice rule
(two hydrogen atoms near and two more distant)

The statistical problem now consists in determining the number of possibil-
ities of ordering the 6 vertices in Fig. A.5 on the square lattice. The exact
solution6 of the two-dimensional problem is obtained using the transfer ma-
trix method (Appendix F.).

W = lim
N→∞

Z
1/N
0 =

(
4
3

)3/2

= 1.5396007 . . . .

The numerical result for three-dimensional ice is7:

W = 1.50685± 0.00015, S(T = 0) = 0.8154± 0.0002 cal/K mole
Experiment at 10 K: S(T = 0) = 0.82 ± 0.05 cal/K mole .

6 E. H. Lieb, Phys. Rev. Lett. 18, 692 (1967); Phys. Rev. 162, 162 (1967)
7 Review: E. H. Lieb and F.Y. Wu in: Domb and Green, Phase Transitions and

Critical Phenomena I, p. 331, Academic Press, New York, 1972.
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The approximate formula of Pauling gives a lower limit for the residual en-
tropy.

If the orientations of the hydrogen bonds were allowed to be completely
unhindered, the residual entropy per lattice site would be log 22 = log 4. Due
to the ice rule (as a result of the Coulomb repulsion), the residual entropy is
reduced to log 1.5. If other interactions of the protons were taken into account,
there would be still finer energy splittings among the various configurations of
the vertex arrangements. Then, on lowering the temperature, only a smaller
number would be allowed and presumably at T → 0 no residual entropy would
be present. The fact that ice has a residual entropy even at low temperatures
indicates that the reorientation becomes very slow under these conditions.
(v) The entropy of a system with low-lying energy levels typically shows the
dependence shown in Fig. A.6. Here, the value of the entropy between T1 and
T2 is not the entropy S0. In case energy levels of the order of kT1 are present,
these are practically degenerate with the ground state for T � T1, and only
for T < T1 is the residual entropy (possibly S0 = 0) attained. An example of
this is a weakly coupled spin system. The plateau in the temperature interval

Fig. A.6. The entropy of a system with
energy levels of the order of kT1 and kT2

[T1, T2] could appear as a residual entropy on cooling. In this interval, the
specific heat is zero. In the region of T1, the specific heat again increases with
decreasing temperature, then drops below T1 towards the value zero after
the degrees of freedom at the energy kT1 are frozen out; this could possibly
indicate a final decrease of the entropy to its value at T = 0.

For degrees of freedom with a discrete excitation spectrum (spins in a field,
harmonic oscillators), the excitation energy determines the temperature be-
low which the entropy of these degrees of freedom is practically zero. This is
different for translational degrees of freedom, where the energy levels become
continuous in the limit N → ∞ and for example the spacing of the first ex-
cited state from the ground state is of the order of �

2

mV 2/3 . The corresponding
excitation temperature of about 5× 10−15 K is however unimportant for the
region of application of the Third Law, which already applies at considerably
higher temperatures. The spacing of the energy levels tends towards zero in
the thermodynamic limit, and they are characterized by a density of states.
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The temperature dependence of the entropy and the specific heat does not
depend on the value of individual energy levels, but instead on the form of
the density of states. For crystals, the density of states of the phonons is
proportional to the square of the energy and therefore it gives S ∝ T 3 at low
temperatures. The density of states of the electrons at the Fermi energy is
constant, and thus one obtains S ∝ T .
(vi) It is also interesting to discuss chemical substances which exhibit al-
lotropy in connection with the Third Law. Two famous examples are carbon,
with its crystalline forms diamond and graphite, and tin, which crystallizes
as metallic white tin and as semiconducting grey tin. White tin is the high-
temperature form and grey tin the low-temperature form. At T0 = 292K,
grey tin transforms to white tin with a latent heat QL. Upon cooling, the
transformation takes place in the reverse direction, so long as the process oc-
curs slowly and crystallization seeds of grey tin are present. On rapid cooling,
white tin remains as a metastable structure. For the entropies of white and
grey tin, the following relations hold:

SW (T ) = SW (0) +
∫ T

0

dT

T
CW (T )

SG(T ) = SG(0) +
∫ T

0

dT

T
CG(T ) .

From the general formulation of Nernst’s theorem, it follows that

SW (0) = SG(0) ,

since the two forms are present under identical conditions. (Statistical me-
chanics predicts in addition for these two perfect crystal configurations
SW (0) = SG(0) = 0.) It thus follows that

SW (T ) − SG(T ) =
∫ T

0

dT

T

(
CW (T ) − CG(T )

)
.

From this we find in particular that the latent heat at the transition temper-
ature T0 is given by

QL(T0) ≡ T0

(
SW (T0)−SG(T0)

)
= T0

∫ T0

0

dT

T

(
CW (T )−CG(T )

)
. (A.11)

The temperature dependence of the specific heat at very low temperatures
thus has an influence on the values of the entropy at high temperatures.
(vii) Systems with continuous internal symmetry, such as the Heisenberg
model: for both the Heisenberg ferromagnet and the Heisenberg antiferro-
magnet, owing to the continuous rotational symmetry, the ground state is
continuously degenerate. Classically, the degree of degeneracy would not, to
be sure, depend on the number of lattice sites, but it would be infinitely
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large. For N spin-1/2 sites, in quantum mechanics the z-component of the
total spin has N + 1 possible orientations. The ground state is thus only
(N + 1)-fold degenerate (see Eq. (A.4)). This degeneracy thus does not lead
to a residual entropy at absolute zero.

Reference: J. Wilks, The Third Law of Thermodynamics, Oxford University Press,

1961.

B. The Classical Limit and Quantum Corrections

B.1 The Classical Limit

We will now discuss the transition from the quantum-mechanical density ma-
trix to the classical distribution function, beginning with the one-dimensional
case. At high temperatures and low densities, the results of quantum statis-
tics merge into those of classical physics (see e.g. Sect. 4.2). The general
derivation can be carried out by the following method8:

If we enclose the system in a box of linear dimension L, then the position
eigenstates |q〉 and the momentum eigenstates |p〉 are characterized9 by10

q̂ |q〉 = q |q〉 , 〈q|q′〉 = δ(q − q′) ,
∫

dq |q〉 〈q| = 11 , (B.1a)

p̂ |p〉 = p |p〉 , 〈p|p′〉 = δpp′ ,
∑

p

|p〉 〈p| = 11 ,

〈q|p〉 =
eipq/�

√
L

, with p =
2π�

L
n . (B.1b)

We associate with each operator Â a function9A(p, q),

A(p, q) ≡ 〈p| Â |q〉 〈q|p〉 L . (B.2a)

These matrix elements are related to the classical quantities which correspond
to the operators. For example, an operator of the form Â = f(p̂)g(q̂) is
associated with the function

A(p, q) = 〈p| f(p̂) g(q̂) |q〉 〈q|p〉 L = f(p)g(p) . (B.2b)

8 E. Wigner, Phys. Rev. 40, 749 (1932); G. E. Uhlenbeck, L. Gropper,
Phys. Rev. 41, 79 (1932); J.G. Kirkwood, Phys. Rev. 44, 31 (1933) and 45,
116 (1934).

9 For clarity, in this section operators are denoted exceptionally by a ‘hat’.
10 QM I, Chap. 8
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The Hamiltonian

Ĥ ≡ H(p̂, q̂) =
p̂2

2m
+ V (q̂) (B.3a)

is thus associated with the classical Hamilton function

H(p, q) =
p2

2m
+ V (q) . (B.3b)

The commutator of two operators is associated with the function

〈p| [Â, B̂] |q〉 〈q|p〉 L

= L

∫
dq′

∑
p′

{
〈p| Â |q′〉 〈q′|p′〉 〈p′| B̂ |q〉 − 〈p| B̂ |q′〉 〈q′|p′〉 〈p′| Â |q〉

}
× 〈q|p〉

= L

∫
dq′

∑
p′

(
A(p, q′)B(p′, q) − B(p, q′)A(p′, q)

)
× 〈p|q′〉 〈p′|q〉 〈q′|p′〉 〈q|p〉

(B.3c)

according to (B.2b), where 〈p|q′〉 〈q′|p〉 = 1
L was used. We note at this point

that for the limiting case of large L relevant to thermodynamics, the sum-
mation∑

p

↔ L

2π�

∫
dp (B.3d)

can be replaced by an integral and vice versa. The expression in round brack-
ets in (B.3c) can be expanded in (q′ − q) and (p′ − p):

A(p, q′)B(p′, q) −B(p, q)A(p′, q) =(
A(p, q) + (q′ − q)

∂A

∂q
+

1
2
(q′ − q)2

∂2A

∂q2
+ . . .

)
×
(
B(p, q) + (p′ − p)

∂B

∂p
+

1
2
(p′ − p)2

∂2B

∂p2
+ . . .

)
−
(
B(p, q) + (q′ − q)

∂B

∂q
+

1
2
(q′ − q)2

∂2B

∂q2
+ . . .

)
×
(
A(p, q) + (p′ − p)

∂A

∂p
+

1
2
(p′ − p)2

∂2A

∂p2
+ . . .

)
. (B.3e)

The zero-order terms cancel, and pure powers of (q′− q) or (p′−p) yield zero
on insertion into (B.3c), since the p′-summation and the q′-integration lead
to a δ-function. The remaining terms up to second order are
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〈p| [Â, B̂] |q〉 〈q|p〉L =

= L

∫
dq′

∑
p′

(q′ − q)(p′ − p)
∂(A,B)
∂(q, p)

〈p|q′〉 〈p′|q〉 〈q′|p′〉 〈q|p〉

= L 〈p| (q̂ − q)(p̂− p) |q〉 ∂(A,B)
∂(q, p)

〈q|p〉

= L i�
∂(A,B)
∂(q, p)

| 〈q|p〉 |2 =
�

i
∂(A,B)
∂(q, p)

,

(B.3f)

where the scalar product (B.1b) and Eq. (B.1a) have been inserted. For higher
powers of (q̂ − q) and (p̂ − p), double and multiple commutators of q̂ and p̂
occur, so that, expressed in terms of Poisson brackets (Footnote 4, Sect. 1.3),
we finally obtain

〈p| [Â, B̂] |q〉 〈q|p〉 L =
�

i
{A,B} + O(�2) . (B.4)

Application of the definition (B.2a) and Eq. (B.2b) to the partition func-
tion leads to

Z = Tr e−βĤ =
∑

p

〈p| e−βH(p̂,q̂) |p〉 =
∑

p

∫
dq 〈p| e−βH(p̂,q̂) |q〉 〈q|p〉

=
∑

p

∫
dq 〈p|

(
e−βK(p̂)e−βV (q̂) + O(�)

)
|q〉 〈q|p〉

=
1
L

∑
p

∫
dq e−βH(p,q) + O(�) =

∫
dp dq

2π�
e−βH(p,q) + O(�) .

(B.5)

Z is thus – apart from terms of the order of �, which result from commutators
between K(p̂) und V (q̂) – equal to the classical partition integral. In (B.5),
K̂ ≡ K(p̂) is the operator for the kinetic energy.

Starting from the density matrix ρ̂, we define the Wigner function:

ρ(p, q) =
L

2π�
〈p|q〉 〈q| ρ̂ |p〉 . (B.6)

Given the normalization of the momentum eigenfunctions, the factor L
2π�

is
introduced in order to guarantee that the Wigner function is independent of
L for large L.

The meaning of the Wigner function can be seen from its two important
properties:

(1) normalization :
∫

dq

∫
dp ρ(p, q) =

∫
dq

∑
p

〈p|q〉 〈q| ρ̂ |p〉

= Tr ρ̂ = 1 .

(B.7)

Here, the completeness relation for the position eigenstates, (B.1a), was used.
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(2) mean values :
∫

dq

∫
dp ρ(p, q)A(p, q)

=
∫

dq
∑

p

L

2π�
〈p|q〉 〈q| ρ̂ |p〉 〈p| Â |q〉 〈q|p〉

=
∫

dq
∑

p

〈q| ρ̂ |p〉 〈p| Â |q〉 = Tr (ρ̂Â) .

(B.8)

Following the second equals sign, 〈p|q〉 〈q|p〉 = 1
L

and Eq. (B.3d) were used.

For the canonical ensemble, we find using (B.5)

ρ(p, q) =
L

2π�
〈p|q〉 〈q| e−βĤ

Z
|p〉

=
L

2π�
〈p|q〉 〈q|

(
e−βK̂e−βV + O(�)

)
|p〉 1

Z

=
L

2π�
| 〈p|q〉 |2 e−βH(p,q)

Z
+ O(�) =

e−βH(p,q)

2π�Z
+ O(�)

(B.9)

and

〈Â〉 =
1
L

∑
p

∫
dq e−βH(p,q)A(p, q)

1
L

∑
p

∫
dq e−βH(p,q)

+ O(�)

=

∫
dp dq
2π�

e−βH(p,q)A(p, q)∫
dp dq
2π�

e−βH(p,q)
+ O(�) .

(B.10)

The generalization to N particles in three dimensions gives:

Ĥ =
N∑

i=1

p̂2
i

2m
+ V (q̂1, . . . , q̂N ) . (B.11)

We introduce the following abbreviations for many-body states:

|q〉 ≡ |q1〉 . . . |qN 〉 , |p〉 ≡ |p1〉 . . . |pN 〉 , (B.12a)

〈p|p′〉 = δpp′ , 〈q|p〉 =
eipq/�

L3N/2
,

∑
p

|p〉 〈p| = 11 . (B.12b)

Applying periodic boundary conditions, the pi take on the values

pi =
L

2π�
(n1, n2, n3)

with integer numbers ni.
The many-body states which occur in Nature are either symmetric

(bosons) or antisymmetric (fermions):
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|p〉s =
1√
N !

∑
P

(±1)PP |p〉 . (B.13)

The index s here stands in general for “symmetrization”, and includes sym-
metrical states (upper sign) and antisymmetrical states (lower sign). This
sum includes N ! terms. It runs over all the permutations P of N objects. For
fermions, (−1)P = 1 for even permutations and (−1)P = −1 for odd permu-
tations, while for bosons, (+1)P = 1 always holds. In the case of fermions,
all of the pi in (B.13) must therefore be different from one another in agree-
ment with the Pauli principle. In the case of bosons, the same pi can occur;
therefore, these states are in general not normalized: a normalized state is
given by

|p〉sn =
1√

n1!n2! . . .
|p〉s , (B.14)

where ni is the number of particles with momentum pi. We have

Tr Â =
∑

p1,...,pN

′
sn 〈p| Â |p〉 sn =

∑
p1,...,pN

n1!n2! . . .
N ! sn 〈p| Â |p〉 sn

=
∑

p1,...,pN

1
N ! s 〈p| Â |p〉 s .

(B.15)

The prime on the sum indicates that it is limited to different states. For
example, p1p2 . . . and p2p1 . . . would give the same state. Rewriting the
partition function in terms of the correspondence (B.2b) yields

Z = Tr e−βH =
1
N !

∑
{pi}

s 〈p| e−βĤ |p〉 s

=
1
N !

∫
d3N q

∑
{pi}

s 〈p| e−βĤ |q〉 〈q|p〉 s

=
1
N !

(
V

(2π�)3

)N ∫
d3Np

∫
d3Nq e−βH(p,q)| 〈q|p〉s |

2 + O(�) .

(B.16)

The last factor in the integrand has the form | 〈q|p〉s | = V −N (1 + f(p, q)),
where the first term leads to the partition integral

Z =
∫

d3Np d3Nq

N ! (2π�)3N
e−βH(p,q) + O(�) . (B.16′)

Remarks:

(i) In (B.16), the rearrangement s〈p| e−βĤ |p〉s =
∫
d3Nq s 〈p| e−βK̂e−βV |q〉

× 〈q|p〉s +O(�) =
∫
d3Nq e−βH(p,q)| 〈q|p〉s |2 +O(�) was employed, where

the symmetry of Ĥ under particle exchange enters.
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(ii) The quantity | 〈q|p〉s |2 = V −N (1 + f(p, q)) contains, in addition to the
leading term V −N in the classical limit, also p- and q-dependent terms.
The corrections due to symmetrization yield contributions of the order
of �

3. Cf. the ideal gas and Sect. B.2.
(iii) Analogously (to B.16), one can show that the distribution function is

ρ(p, q) =
e−βH(p,q)

Z(2π�)3NN !
. (B.17)

We have thus shown that, neglecting terms of the order of �, which result
from the non-commutativity of the kinetic and the potential energies and the
symmetrization of the wave functions, the classical partition integral (B.16′)
is obtained.

The classical partition integral (B.16′) shows some features which indicate
the underlying quantum nature: the factors 1/N ! and (2π�)−3N . The first of
these expresses the fact that states of identical particles which are converted
into one another by particle exchange must be counted only once. This fac-
tor makes the thermodynamic potentials extensive and eliminates the Gibbs
paradox which we discuss following Eq. (2.2.3). The factor (2π�)−3N renders
the partition integral dimensionless and has the intuitively clear interpreta-
tion that in phase space, each volume element (2π�)3N corresponds to one
state, in agreement with the uncertainty relation.

B.2 Calculation of the Quantum-Mechanical Corrections

We now come to the calculation of the quantum-mechanical corrections to
the classical thermodynamic quantities. These arise from two sources:
a) The symmetrization of the wave function
b) the noncommutativity of K̂ and V .
We will investigate these effects separately; their combination yields correc-
tions of higher order in �.
a) We first calculate the quantity | 〈q|ps〉 |2, which occurs in the second line
of (B.16), inserting Eq. (B.13):

| 〈q|p〉s |
2 =

1
N !

∑
P

∑
P ′

(−1)P (−1)P ′ 〈q|P ′ |p〉 〈q|P |p〉∗

=
1
N !

∑
P

∑
P ′

(−1)P (−1)P ′ 〈P ′q|p〉 〈Pq|p〉∗

=̂
1
N !

∑
P

∑
P ′

(−1)P (−1)P ′
〈q|p〉

〈
PP ′−1q|p

〉∗
=

∑
P

(−1)P 〈q|p〉 〈Pq|p〉∗

=
1

V N

∑
P

e
i
�
(p1·(q1−Pq1)+...+pN ·(qN−PqN )) .

(B.18)
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Here, in the second line, we have used the fact that the permutation of the
particles in configuration space is equivalent to the permutation of their spa-
tial coordinates. In the third line we have made use of the fact that we can
rename the coordinates within the integral

∫
d3Nq which occurs in (B.16),

replacing P ′q by q. In the next-to-last line, we have used the general prop-
erty of groups that for any fixed P ′, the elements PP ′−1 run through all
the elements of the group. Finally, in the last line, the explicit form of the
momentum eigenfunctions in their configuration-space representation was in-
serted.

Inserting the final result of Eq. (B.18) into (B.16), we can express each of
the momentum integrals in terms of∫

d3p e−
βp2

2m +ipx =
∫

d3p e−
βp2

2m f(x) , (B.19)

with

f(x) = e−
πx2

λ2 , (B.20)

where λ = 2π�√
2π�mkT

[Eq. (2.7.20)] is the thermal wavelength. Then we find
for the partition function, without quantum corrections which result from
non-commutatitivity,

Z =
∫

d3Nq d3Np

N !(2π�)3N
e−βH(p,q)

∑
P

(−1)P f(q1−Pq1) . . . f(qN−PqN ) . (B.21)

The sum over the N ! permutations contains the contribution f(0)N = 1 for
the unit element P = 1; for transpositions (in which only pairs of parti-
cles i and j are exchanged), it contains the contribution (f(qi − qj))2, etc.
Arranging the terms according to increasing number of exchanges, we have∑

P

(−1)P f(q1 − Pq1) · · · f(qN − PqN ) =

= 1 ±
∑
i<j

(
f(qi − qj)

)2 +
∑
ijk

f(qi − qj)f(qj − qk)f(qk − qi) ± . . . .

(B.22)

The upper sign refers to bosons, the lower to fermions. For sufficiently high
temperatures, so that the average spacing between the particles obeys the
inequality (v is the specific volume)

v1/3 � λ , (B.23)

we find that f(qi − qj) is vanishingly small for |qi − qj | � λ, and therefore
only the first term in (B.22) is significant; according to the preceding section,
it just yields the classical partition integral, (B.16).
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The more factors f that are present in (B.22), the stronger the constraints
on the spatial integration region in (B.16). The leading quantum correction
therefore comes from the second sum in (B.22), which we can rewrite in the
following approximate way:

1±
∑
i<j

(
f(qi −qj)

)2 ≈
∏
i<j

(
1±

(
f(qi −qj)

)2) = e−β
P

i<j ṽi(qi−qj) . (B.24)

Here, the effective potential

ṽi(qi − qj) = −kT log
(
1 ± e−2π|qi−qj|/λ2

)
(B.25)

is attractive for bosons and repulsive for fermions. This effective potential
arises from the symmetry properties of the wave function and not from any
microscopic mutual interaction of the particles. It permits us to take the
leading quantum correction into account within the classical partition inte-
gral. For the ideal gas, these quantum corrections lead to contributions of the
order of �

3 in the thermodynamic quantities, as we have seen in Sect. 4.2.

b) The exact quantum-mechanical expression for the partition function is
given by

Z =
1
N !

∑
{pi}

s 〈p| e−βĤ |p〉 s

=
1
N !

(
V

(2π�)3

)N ∫
d3Np

∫
d3Nq s 〈p| e−βĤ |q〉 〈q|p〉 s .

(B.26)

If we neglect exchange effects (symmetrization of the wave function), we
obtain

Z =
1
N !

(
V

(2π�)3

)N ∫
d3Np

∫
d3Nq 〈p| e−βĤ |q〉 〈q|p〉

=
1
N !

(
1

(2π�)3

)N ∫
d3Np

∫
d3Nq I .

(B.27)

To compute the integrands which occur in this expression, we introduce the
following relation, initially for a single particle,

I = 〈p| e−βĤ |q〉 〈q|p〉V = eipq/�e−βĤe−ipq/� . (B.28)

After the last equals sign and in the following, Ĥ denotes the Hamiltonian in
the coordinate representation. To calculate I, we derive a differential equation
for I using the Baker–Hausdorff formula:
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∂I

∂β
= −eipq/�Ĥe−βĤe−ipq/� = −eipq/�Ĥe−ipq/�I

= −
(
Ĥ − i

[
−pq

�
, Ĥ

]
− 1

2�2

[
pq, [pq, Ĥ]

]
+ . . .

)
I

= −
[
Ĥ − �

2

2m

(
−2i

�
p
∂

∂q
− p2

�2

)
I

]
.

(B.29)

The higher-order commutators (indicated by dots) vanish, so that

∂I

∂β
=
[
−H(p, q) +

�
2

2m

(
−2i

�
p
∂

∂q
+

∂2

∂q2

)]
I , (B.29′)

where H(p, q) is the classical Hamilton function. To solve this differential
equation, we use the ansatz:

χ = eβH(p,q)I . (B.30)

We find the following differential equation for χ from (B.29′):

∂χ

∂β
= H(p, q)χ + eβH(p,q) ∂I

∂β
= eβH(p,q) �

2

2m

(
2i
�
p
∂

∂q
+

∂2

∂q2

)
I

= eβH(p,q) �
2

2m

(
2i
�
p
∂

∂q
+

∂2

∂q2

)
eβH(p,q)χ

=
�

2β

2m

[
2ip
�

∂V

∂q
− 2ip

�β

∂

∂q
− ∂2V

∂q2
+ β

(
∂V

∂q

)2

− 2
∂V

∂q

∂

∂q
+ β−1 ∂2

∂q2

]
χ .

(B.31)

Transferring to a many-body system with the coordinates and momenta qi

and pi yields

∂χ

∂β
=

∑
i

�
2β

2mi

[
2ipi

�

∂V

∂qi
− 2ipi

�β

∂

∂qi
− ∂2V

∂qi
2

+ β

(
∂V

∂qi

)2

− 2
∂V

∂qi

∂

∂qi
+ β−1 ∂2

∂qi
2

]
χ . (B.31′)

The solution of this equation is obtained with the aid of a power series ex-
pansion in �:

χ = 1 + �χ1 + �
2χ2 + O(�3) . (B.32)

Because of (B.28) and (B.30), χ must obey the boundary condition χ = 1 for
β = 0. Inserting this ansatz into (B.31′), we obtain
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∂χ1

∂β
= ±iβ

∑
i

pi

mi

∂V

∂qi
(B.33a)

and

∂χ2

∂β
=
∑

i

1
2mi

[
−2iβpi

∂V

∂qi
χ1 + 2ipi

∂χ1

∂qi
− β

∂2V

∂qi
2

+ β2

(
∂V

∂qi

)2
]

. (B.33b)

From this, it follows that

χ1 = − iβ2

2

∑
i

pi

mi

∂V

∂qi
(B.34a)

χ2 = ±β4

8

(∑
i

pi

mi

∂V

∂qi

)2

+
β3

6

∑
i

∑
k

pi

mi

pk

mk

∂2V

∂qi∂qk

+
β3

6

∑
i

1
mi

(
∂V

∂qi

)2

− β2

4

∑
i

1
mi

∂2V

∂qi
2
. (B.34b)

Inserting (B.30) and (B.27), we finally obtain the partition function

Z =
∫

d3Nq d3Np

(2π�)3N N !
e−βH(p,q)(1 + �χ1 + �

2χ2) . (B.35)

The term of order O(�) vanishes, since χ1 is an odd function of p1, so that
the remaining expression is

Z =
(
1 + �

2〈χ2〉cl
)
Zcl . (B.36)

Here, 〈 〉cl refers to the average value with the classical distribution function,
and Zcl is the classical partition function. From it, we thus obtain for the
free energy

F = − 1
β

logZ = Fcl −
1
β

log
(
1 + �

2〈χ2〉cl
)
≈ Fcl −

�
2

β
〈χ2〉cl . (B.37)

With

〈pipk〉cl =
m

β
δik (B.38)

and〈
∂2V

∂qi
2

〉
cl

= β

〈(
∂V

∂qi

)2〉
(proof via partial integration), it follows that

F = Fcl +
�

2

24m(kT )2
∑

i

〈(
∂V

∂qi

)2〉
cl

. (B.39)
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The classical approximation is therefore best at high T and large m.

Remark: Using the thermal wavelength λ = 2π�/
√

2πmkT and the length l which
characterizes the spatial variation of the potential (range of the interaction poten-

tials), the correction in Eq. (B.39) becomes λ2

l2
V 2

kT
. This gives as a condition for the

validity of the classical approximation

λ 	 l (from the non-commutativity of K̂ and V̂ ) (B.39a)

and, according to Eq. (B.23)

λ 	
„
V

N

«1/3

(from symmetrization of the wave function) . (B.39b)

Rearranging Eq. (2.7.20), one gets

T [K] =
5 × 10−38

λ2[cm2]m[g]
=

5.56 × 105

λ2[Å
2
]m[me]

.

For electrons in solids, we have
`

V
N

´1/3 ≈ 1Å, so that even at a temperature of T =

5.5 × 105 K, their behavior remains nonclassical.

For a gas with the mass number A: m = A ·mp,
`

V
N

´1/3 ≈ 10−7cm, T ≈ 3
A

K

B.3 Quantum Corrections to the Second Virial Coefficient B(T )

B.31 Quantum Corrections Due to Exchange Effects

We neglect the interactions; however, the second virial coefficient from
Eq. (5.3.7)

B(T ) =
(
Z2 −

1
2
Z2

1

) V

Z2
1

(B.40)

is still nonzero due to exchange effects. A two-particle eigenstate has the form

|p1, p2〉 =
1√
2!

(
|p1〉 |p2〉 ± |p2〉 |p1〉

)
for p1 �= p2

(B.41)

|p1, p2〉 =

⎧⎪⎨⎪⎩
|p1〉 |p1〉 bosons

for p1 = p2

0 fermions .

The partition function for two non-interacting particles is

Z2 = Tr e−(p̂2
1+p̂2

2)/2mkT =
1
2

∑
p1,p2
p1 �=p2

e−(p2
1+p2

2)/2mkT +

⎧⎨⎩
∑

p

e−p2/mkT

0

=
1
2

∑
p1

∑
p2

e−(p2
1+p2

2)/2mkT ± 1
2

∑
p

e−p2/mkT

=
1
2
Z2

1 ± 1
2

∑
p

e−p2/mkT for

{
bosons
fermions

. (B.42)
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From this11, we find for the second virial coefficient (5.3.7):

B(T ) = ∓ λ6

2V

∑
p

e−p2/mkT = ∓ λ3

25/2

= ∓1
2

(
π�

2

mkT

)3/2

for

{
bosons
fermions

. (B.43)

B.32 Quantum-Mechanical Corrections to B(T ) Due to
Interactions

In the semiclassical limit (unsymmetrized wave functions), from Eq. (B.35)
we obtain for the partition function of two particles

Z2 =
1
2

(
1
λ3

)2 ∫
d3x1 d

3x2 e−v12(x1−x2)/kT
(
1 + �χ1︸︷︷︸

=0

+�
2χ2

)
. (B.44)

This leads to the following expression for the second virial coefficient ((5.3.7),
(B.40)):

B =
1
2

(
1
V

∫
d3x1 d

3x2

(
e−v12(x1−x2)/kT (1 + �

2χ2) − 1
))

. (B.45)

The quantum correction is therefore given by

Bqm =
∫

d3y e−v(y)/kT 1
kT

(
∂v

∂y

)2
�

2

24m(kT )2

=
�

2π

6m(kT )3

∞∫
0

dr r2e−v(r)/kT

(
∂v

∂r

)2

,

(B.46)

where in the second line we have assumed a central potential. This quantum
correction adds to the classical value of B; it is always positive. The exchange
corrections (B.43) are of the order O(�3). The lowest-order quantum correc-
tions, i.e. (B.46), are of order �

2. At low temperatures, these quantum effects
(due to non-commuting V̂ and K̂) become important. The contribution from
symmetrization is relatively small.

B.33 The Second Virial Coefficient and the Scattering Phase

One can also represent the second virial coefficient in terms of the phase shift
of the interaction potential. The starting point is the formula for the virial

11 Z1 ≡Pp e−p2/2mkT = V
λ3

We do not take the spin degeneracy factor g = 2S + 1 into account here.
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coefficient, Eq. (5.3.7)

B = −
(
Z2

Z2
1

− 1
2

)
V . (B.47)

The interaction does not appear in the partition function for a single particle

Z1 =
∑
p

e−
p2

2mkT =
V

(2π�)3

∫
d3p e−

p2

2mkT =
V

λ3
. (B.48)

The Hamiltonian for two particles is given by

Ĥ =
p2

1 + p2
2

2m
+ V (x1 − x2) (B.49)

and, introducing coordinates for the center of mass (CM) and the relative
position (r):

xCM =
1
2
(x1 + x2) , xr = x2 − x1 , (B.50)

it can be written as

Ĥ =
p2

CM

4m
+

p2
r

m
+ V (xr) . (B.51)

Then the partition function for two particles becomes

Z2 = TrCM e−
p2
CM

4mkT Trr e
−

„
p2
r

m +V (xr)

«
/kT

= 23/2 V

λ3

∑
n

e−
εn
kT . (B.52)

In this expression, εn denotes the energy levels of the two-particle system in
relative coordinates taking into account the different symmetries of bosons
and fermions. It leads to

B = −
(
23/2λ3

∑
n

e−εn/kT − V

2

)
. (B.53)

We now remind the reader that for non-interacting particles, (B.43) gives for
the second virial coefficient

B(0) = −
(

23/2λ3
∑

n

e−ε0
n/kT − V

2

)
= ∓2−5/2λ3

{
bosons
fermions

. (B.54)

The change in the second virial coefficient due to the interactions of the
particles is thus given by

B(T ) −B0(T ) = −23/2λ3
∑

n

(
e−βεn − e−βε(0)

n

)
. (B.55)
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The energy levels of the non-interacting system are

ε(0)
n =

�
2k2

m
, (B.56a)

while in the interacting system, along with the continuum states of energy

εn =
�

2k2

m
, (B.56b)

bonding states of energy εB can also occur. The values of k are found from
the boundary conditions and are different for the interacting system and for
the free system, so that also different densities of states are obtained. The
number of energy levels g(k)dk in the interval [k, k + dk] defines the density
of states, g(k). We thus find

B(T ) −B(0)(T )

= −23/2λ3

[∑
B

e−εB/kT +

∞∫
0

dk
(
g(k) − g(0)(k)

)
e−εk/kT

]
. (B.57)

The change in the density of states which occurs here can be related to the
derivative of the scattering phase. We assume that the potential V (r) has
rotational symmetry and consider the eigenstates of the relative part of the
Hamiltonian. Then we can represent the wave functions for the free and the
interacting problem in the form12

ψ
(0)
klm(x) = A

(0)
klmYlm(ϑ, ϕ)R(0)

kl (r)
ψklm(x) = AklmYlm(ϑ, ϕ)Rkl(r) .

(B.58)

The free radial functions are given in terms of spherical Bessel functions. The
asymptotic forms for r → ∞ are

R
(0)
kl (r) =

1
kr

sin
(
kr +

lπ

2

)
Rkl(r) =

1
kr

sin
(
kr +

lπ

2
+ δl(k)

) (B.59)

with the phase shifts known from scattering theory, δl(k). The allowed values
of k are found from the boundary conditions

R
(0)
kl (R) = Rkl(R) = 0 (B.60)

at a large radius R (which finally goes to infinity). From this it follows that

kR +
lπ

2
= πn and kR +

lπ

2
+ δl(k) = πn , (B.61)

12 QM I, Chap. 17
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where n = 0, 1, 2, . . . . The values of k therefore depend upon l. Neighboring
values of k for fixed l differ by

∆k(0) =
π

R
and ∆k =

π

R + ∂δl(k)
∂k

. (B.62)

We still must take into account the fact that every value of l occurs with a
multiplicity of (2l + 1). Since each interval ∆k or ∆k(0) contains a value of
k, the densities of states are

g
(0)
l (k) =

2l + 1
π

R and gl(k) =
2l + 1

π

[
R +

∂δl(k)
∂k

]
. (B.63)

From this the second virial coefficient follows:

B(T ) −B(0)(T )

= −23/2λ3

{∑
B

e−εB/kT +
1
π

∞∫
0

dk
∑

l

′
fl(2l + 1)

∂δl(k)
∂k

e−
�
2k2

mkT

}
.

(B.64)

Now we need to determine the values of l which are allowed by the symmetry
properties. For bosons, we have ψ(−x) = ψ(x), and for spin-1/2 fermions,
ψ(−x) = ±ψ(x), depending on whether a spin singlet or a triplet state is
considered. For spin-0 bosons, we thus have l = 0, 2, 4, . . . and fl = 1. For
spin-1/2 fermions,

l = 0, 2, 4, . . . fl = 1 (singlet)
l = 1, 3, 5, . . . fl = 3 (triplet) .

(B.65)

The change in the second virial coefficient is expressed in terms of the binding
energies and the phase shifts. An important contribution to the k-integral
comes from the resonances. Very sharp resonances have ∂δl(k)

∂k = πδ(k − k0),
and one obtains a similar contribution to that of the bonding states, however
with positive energy. More generally, one can interpret the quantity

1
�

∂δl(k)
∂k

=
∂E

∂�k

∂δl

∂E
= v

∂δl

∂E
,

as velocity times the dwell time13 in the potential. The shorter the dwell time
within the potential, the more nearly ideal is the interacting gas.

Literature:
S.K. Ma, Statistical Mechanics, Sect. 14.3, World Scientific, Singapore, 1985
E. Beth and G. E. Uhlenbeck, Physics 4, 915 (1937)
A. Pais and G.E. Uhlenbeck, Phys. Rev. 116, 250 (1959)

13 See e.g. QM I, Eq. (3.126)
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Problems for Appendix B.:

B.1 Carry out in detail the rearrangements which occur in Eq. (B.3f).
B.2 Carry out the rearrangement in Eq. (B.28).
B.3 Show that (B.29′) follows from (B.29).

B.4 Determine the behavior of the effective potentials ṽ(x) in Eq. (B.25) for small

and large distances. Plot ṽ(x) for bosons and fermions.

C. The Perturbation Expansion

For the calculation of susceptibilities and in other problems in which the
Hamiltonian H = H0 + V is composed of an “unperturbed” part and a
perturbation V , we require the relation

eH0+V = eH0 +
∫ 1

0

dt etH0V e(1−t)H0 + O(V 2) . (C.1)

To prove this relation, we introduce the definition

A(t) = eHte−H0t

and take its time derivative

Ȧ(t) = eHt(H −H0)e−H0t = eHtV e−H0t .

By integrating over time between 0 and 1,

A(1) −A(0) = eHe−H0 − 1 =
∫ 1

0

dt eHtV e−H0t ,

we obtain after multiplication by eH0 the exact identity

eH = eH0 +
∫ 1

0

dt eHtV e(1−t)H0 . (C.2)

Expanding eHt = e(H0+V )t in a power series, we obtain the assertion (C.1).

Iteration of the likewise exact identity which follows from (C.2),

eHt = eH0t +
∫ t

0

dt′ eHt′V e(t−t′)H0 , (C.2′)

yields

eH = eH0 +
∫ 1

0

dt eH0tV e(1−t)H0+

+
∫ 1

0

dt

∫ t

0

dt′ eH0t′V e(t−t′)H0V e(1−t)H0 + . . .+

+
∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

dtneH0tnV e(tn−1−tn)H0V e(tn−2−tn−1)H0 . . .

× V e(1−t1)H0 + . . . .

(C.3)
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With the substitution

1 − tn = un, 1 − tn−1 = un−1, . . . , 1 − t1 = u1

we obtain

eH = eH0 +
∞∑

n=1

∫ 1

0

du1

∫ 1

u1

du2 . . .

∫ 1

un−1

dun e(1−un)H0V e(un−un−1)H0 . . .

× V e(u2−u1)H0V eu1H0 .

(C.3′)

D. The Riemann ζ-Function and the Bernoulli Numbers

In dealing with fermions, the following integrals occur:

1
Γ (ν)

∞∫
0

dx
xν−1

ex + 1
=

∞∑
k=1

(−1)k+1 1
kν

=
∞∑

k=1

1
kν

− 2
∞∑
l=1

1
(2l)ν

=
(
1 − 21−ν

)
ζ(ν) . (D.1)

After the last equals sign, the Riemann ζ-function

ζ(ν) =
∑

k

1
kν

for Re ν > 1 (D.2)

was introduced. The integrals which occur for bosons can also be related
directly to it:

1
Γ (ν)

∞∫
0

dx
xν−1

ex − 1
=

∞∑
k=1

1
kν

= ζ(ν) . (D.3)

According to the theorem of residues, ζ(ν) can be written in the following
manner:

ζ(ν) =
1
4i

∫
C

dz
cotπz
zν

=
1
4i

∫
C′

dz
cotπz
zν

. (D.4)

Definition of the Bernoulli numbers:

1
2
z cot

1
2
z = 1 −

∞∑
n=1

Bn
z2n

(2n)!
, (D.5)
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Fig. D.1. The integration
path in (D.4)

B1 =
1
6
, B2 =

1
30

, B3 =
1
42

, . . .

ν = 2k :

ζ(2k) =
π−1

4i

∫
C′

dz
1 −

∑∞
n=1 Bn

(2zπ)2n

(2n)!

z2kπz
=

(2π)2kBk

2(2k)!
, (D.6)

since only the term n = k makes a nonzero contribution.

1
Γ (2k)

∫
dx

x2k−1

ex + 1
=

(
22k−1 − 1

)
π2kBk

(2k)!∫ ∞

0

dx
x2k−1

ex + 1
=

(
22k−1 − 1

)
π2kBk

2k
(D.7)∫ ∞

0

dx
x2k−1

ex − 1
= (2k − 1)!

(2π)2kBk

2(2k)!
=

(2π)2kBk

4k
. (D.8)

E. Derivation of the Ginzburg–Landau Functional

For clarity, to carry out the derivation we first consider a system of ferromag-
netic Ising spins (n = 1), which are described by the Hamiltonian

H = −1
2

∑
l,l′

J(l − l′)SlSl′ − h
∑

l

Sl , (E.1)

where Sl takes on the values Sl = ±1. We assume a d-dimensional, simple
cubic lattice; its lattice constant is taken to be a0 and the side length of the
crystal to be L. This d-dimensional lattice is then divided into cells of volume
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Fig. E.1. Division of the lattice into cells

v = ad
c , whereby the linear dimensions of the cells ac are assumed to fulfill

the inequality a0 � ac � L. The number of cells is Nc =
(

L
ac

)d
= N

Ñ
, and

the number of lattice points within a cell is Ñ =
(

ac

a0

)d
. Finally, we define

the cell spin of cell ν:

mν =
1
Ñ

∑
l∈ν

Sl , (E.2)

whose range of values lies in the interval −1 ≤ mν ≤ 1. We now define a new,
effective Hamiltonian F({mν}) for the cell spins by carrying out the exact
rearrangement

Z = Tr e−βH ≡
∑

{Sl=±1}
e−βH =

∑
{mν}

Tr
(
e−βH

∏
ν

δP
l∈ν Sl,Ñmν

)
≡

∑
{mν}

e−βF({mν}) ,
(E.3)

which corresponds to a partial evaluation of the trace, i.e.

F({mν}) = − 1
β

log
∑

{Sl=±1}
e−βH

∏
ν

δP
l∈ν Sl,Ñmν

. (E.4)

For sufficiently many spins per cell, mν becomes a continuous variable(
∆mν = 2

Ñ

)
∑
mν

. . . −→ Ñ

2

∫ 1

−1

dmν . . . (E.5)

F({mν}) = Ñf({mν}) for sufficiently large Ñ .
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The field term expressed in the new variables is

−h
∑

l

Sl = −h
∑

ν

∑
l∈ν

Sl = −hÑ
∑

ν

mν . (E.6)

Thus, the factor e−h
P

l Sl = e−hÑ
P

ν mν is not affected at all by the trace
operation after the third equals sign in (E.3), and is transferred unchanged
to F({mν}). This has the important effect that all the remaining terms in
F({mν}) are independent of h, and due to the invariance of the exchange
Hamiltonian (see Chap. 6) under the transformation {Sl} → {−Sl}, they are
also even functions of the mν .

We can decompose f({mν}) into terms which depend only on one, two,
. . . mν :

f({mν}) =
Nz∑
ν=1

f1(mν) +
1
2

∑
µ	=ν

fνµ
2 (mν ,mµ) + . . . . (E.7)

The Taylor expansion of the functions in (E.7) is given by

f1(mν) = f1(0) + c2m
2
ν + c4m

4
ν + . . .− hmν (E.8a)

and

f2(mν ,mµ) = −
∑
µ,ν

2Kµνmµmν + . . . . (E.8b)

It then follows from (E.3) and (E.5) that

Z =
∏
ν

Ñ

2

∫ 1

−1

dmνe
−βÑf({mν}) (E.8c)

with

f({mν}) = Ncf1(0) +
∑

ν

(
am2

ν +
b

2
m4

ν + . . .− hmν

)
+

1
2

∑
µ,ν

Kµν(mµ −mν)2 + . . . . (E.8d)

The coefficients f1(0), a, b and Kµν are functions of T and Jll′ . The cells, like
the original lattice, form a simple cubic lattice, which is the cell lattice with
lattice constants az and lattice vectors aν . Let Ni be the number of lattice
points (cells) in the direction i, whose product N1N2N3 must give Nc; we
then define the wavevectors with components

ki =
2πri

Niac
,where − Ni

2
< ri ≤

Ni

2
. (E.9)
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The reciprocal lattice vectors for the cell lattice are given by

g =
2π
az

(n1, n2, n3) . (E.10)

The Fourier transform of the cell spins is introduced via

mν =
1√
Nc

∑
k

eikaνmk (E.11a)

mk =
1√
Nc

∑
ν

e−ikaνmν . (E.11b)

The orthogonality and completeness relations of the Fourier coefficients
are ∑

k

eik(aν−aν′) = Ncδνν′ (E.12a)

∑
ν

ei(k−k′)aν = Nc∆(k − k′) ≡ Nc

{
1 for k − k′ = g
0 otherwise

, (E.12b)

where g is an arbitrary vector of the reciprocal lattice.

The transformation of the individual terms of the free energy is given by

a
∑

ν

m2
ν = a

∑
k

mkm−k ,

b
∑

ν

m4
ν =

b

N2
c

∑
ν

∑
k1,...,k4

ei(k1+...+k4)aνmk1 . . .mk4

=
b

Nc

∑
k1,...k4

∆(k1 + . . . + k4)mk1mk2mk3mk4 ,

(E.13a)

hÑ
∑

ν

mν = hÑ
√

Ncmk=0 .

Due to translational invariance, the interaction Kµν depends only on the
separation,

1
2

∑
ν,ν′

K(ν − ν′)(mν −mν′)2

=
1

2Nc

∑
ν

∑
δ

∑
kk′

K(δ)eikaν
(
1 − eikaδ

)
mke−ik′aν

(
1 − e−ik′aδ

)
m−k′

=
∑
k

v(k)mkm−k .
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Here, δ ≡ ν − ν′ was introduced, and

v(k) =
∑

δ

K(δ)(1 − coskaδ) =
∑

δ

K(δ) 2 sin2 kaδ

2
(E.13b)

was defined. Due to the short range of the interaction coefficients K(δ), we
can expand sin2 kaδ

2 for small k in a Taylor series, and terminate the series
after the first term. Taking the cubic symmetry into account, in d dimensions
we find

v(k) = k2 1
2d

∑
δ

K(δ)aδ
2 + O(k4) . (E.13c)

Then the partition function in Fourier space is

Z = Z0

(∏
k

∫
dmk

)
exp

{
− βÑ

[∑
k

(a + ck2)mkm−k

+
b

2
1
Nc

∑
k1...k4

∆(k1 + . . . + k4) mk1 . . .mk4 − h
√

Nc mk=0 + . . .

]}
,

(E.14)

where Z0 is the part of the partition function which is independent of mk, as
follows from (E.8c).

Definition of
∫
dmk :

Due to m∗
k = m−k, (E.11a) can be written in the form

mν =
1√
Nz

∑
k∈HS

(
eikaν (Remk + iImmk)

+ e−ikaν (Remk − i Immk)
)

=
1√
Nz

∑
k∈HS

(
eikaν + e−ikaν

√
2

(√
2 Re mk

)︸ ︷︷ ︸
yk

+ i
eikaν − e−ikaν

√
2

(√
2 Im mk

)︸ ︷︷ ︸
y−k

)
,

(E.15a)

where the sums over k extend only over half of the k-space (HS). This is an
orthogonal transformation∑

ν

(
eikaν + e−ikaν

) (
eik′aν + e−ik′aν

) 1
2Nc

= δk,k′ ; (E.15b)
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and correspondingly for sinkaν . The cross terms give zero. It follows that∫ ∏
ν

dmν . . . =
∫ ∏

k∈HS

(√
2dRe mk

)(√
2d Im mk

)
. . . =

∫ ∏
k

dyk . . . .

(E.15c)

Clearly, from (E.13b),

v(k) = v(−k) = v(k)∗ (E.15d)

and ∑
k

v(k)mkm−k =
∑

k∈HS

v(k)
((√

2 Remk

)2
+
(√

2 Immk

)2)
=

∑
k

v(k)y2
k . (E.15e)

In the harmonic approximation, it follows from (E.15d), as will be verified in
(7.4.47), that

〈mkmk′〉 =
∫ (∏

k

dmk

)
e−

P
k v(k)|mk|2

Z
mkmk′ =

δk′,−k

2v(k)
. (E.16)

Continuum limit v = ad
c → 0 .

If we consider wavelengths which are large compared to az, we take the
continuum limit:

m(xν) =
1√
v
mν (E.17)

m(x) =
1√
Ncad

c

∑
k∈B

eikxmk . (E.18)

In the strict continuum limit, the Brillouin zone goes to ∞. The terms in the
Ginzburg–Landau functional are∑

ν

m2
ν =

∫
ddx m(x)2 ,

∑
ν

m4
ν = v

∫
ddx m(x)4 ,

∑
ν

hmν =
h√
v

∫
ddx m(x) ,

∑
k

k2|mk|2 =
∫

ddx
(
∇m(x)

)2
,

(E.19)

∫ ∏
ν

dmν . . . →
∫

D[m(x)] . . . ≡
∫ ∏

ν

(√
vdm(xν)

)
.

The functional integrals are defined by discretization. Then as our result for
the Ginzburg–Landau functional, we can write
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F [m(x)] =
∫

ddx

[
am2(x) +

b

2
m4(x) + c(∇m)2 − hm(x) + . . .

]
(E.20)

which yields the partition function in terms of the following functional inte-
gral:

Z = Z0(T )
∫

D[m(x)]e−βF [m(x)] . (E.21)

(i) Here, we have redefined the coefficients once again; e.g. 1√
v

was combined
with h. The coefficient Z0(T ) is found from the prefactors defined earlier, but
it is not important in what follows.
(ii) Owing to the fact that the trace is only partially evaluated, the coeffi-
cients a, b, c and Z0(T ) are “uncritical”, i.e. they are not singular in T, J, . . .
etc.
(iii) In the following, we extend the integration range for

∫ 1

−1
dmν . . . =∫ 1/

√
v

−1/
√

v
dm(x) →

∫∞
−∞ dm(x), since m(x) is in any case limited by e−bm4

. Its

most probable value is m(x) ∼
√

−a
b , and thus mν ∼

√
v
√

a
b � 1.

(iv) General statements about the coefficients in the Ginzburg–Landau func-
tional:
α)F [m(x)] has the same symmetry as the microscopic spin Hamiltonian;
i.e. except for the term with h, F [m(x)] is an even function of m(x).
β) From the preceding rearrangement of the h term, it may be seen that
a, b, c are independent of h. In particular, the partial evaluation of the trace
produces no higher odd terms.
γ) Stability requires b > 0. Otherwise, one cannot terminate at m4. At the
tricritical point, b = 0 and one must take the term of order m6 into account,
also.
δ) The ferromagnetic interaction favors parallel spins, i.e. nonuniformity of
spin direction costs energy. Thus c∇m∇m with c > 0.
ε) Concerning the temperature dependence of the G.-L. coefficient a, we refer
to the main part of the text, Eq. (7.4.8).
(v) In the thermodynamic limit, the linear dimension L → ∞,

m(x) =
1

Ld/2

∑
k∈B

eikxmk =
1
Ld

∑
k

eikxm(k)

and m(x) L→∞−→
∫

B
ddk

(2π)d eikxm(k), where the integral is extended over the

whole Brillouin zone B : ki ∈
[
− π

ac
, π

ac

]
, and m(k) = Ld/2mk.

Later, the integral over the cubic Brillouin zone will be approximated by an
integral over a sphere:

m(x) =
∫
|k|<Λ

ddk

(2π)d
eikxm(k) .
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F. The Transfer Matrix Method

The transfer matrix method is an important tool for the exact solution of
statistical-mechanical models. It is particularly useful for two-dimensional
and one-dimensional models. We introduce the transfer matrix method by
solving the one-dimensional Ising model. The one-dimensional Ising model
for N spins with interactions between nearest neighbors is described by the
Hamiltonian

H = −J

N∑
j=1

σjσj+1 −H

N∑
j=1

σj , (F.1)

where periodic boundary conditions are assumed, σN+1 = σ1. The partition
function (K ≡ βJ, h ≡ βH) has the form

ZN =
∑

{σi=±1}

N∏
j=1

eKσjσj+1+ h
2 (σj+σj+1) = Tr (TN) . (F.2)

Following the second equals sign, the transfer matrix, defined by

Tσσ′ ≡ eKσσ′+ h
2 (σ+σ′) , (F.3)

was introduced. Its matrix representation is given by

T =
(

eK+h e−K

e−K eK−h

)
. (F.4)

One readily finds the two eigenvalues of this (2 × 2) matrix:

λ1,2 = eKcosh h±
(
e−2K + e2Ksinh2h

)1/2
. (F.5)

The trace in (F.2) is invariant under orthogonal transformations. By trans-
forming to the basis in which T is diagonal, one can verify that

ZN = λN
1 + λN

2 . (F.6)

The free energy per spin is given by the logarithm of the partition function

f(T,H) = −kT lim
N→∞

1
N

logZN . (F.7)

In the thermodynamic limit, N → ∞, the largest eigenvalue dominates:

f = −kT logλ1 (due to λ1 ≥ λ2 for all T ≥ 0) . (F.8)

There is no phase transition in one dimension, since



546 Appendix

f(T, 0) = −kT
[
log 2 + log(coshβJ)

]
(F.9)

is a smooth function for T > 0. Owing to the short range of the interactions,
disordered spin configurations (with high entropy S) are more probable than
ordered configurations (with low internal energy E) in equilibrium (where
F (T, 0) = E − TS is a minimum). The isothermal susceptibility χ =

(
∂m
∂H

)
T

for H = 0 is found from (F.8) to be χ = βe2βJ at low T . There is a pseudo-
phase transition at T = 0: m2

0 = 1, χ0 = ∞.

Magnetization: m = −∂f/∂B Specific Heat: CH = −T∂2f/∂T 2

Fig. F.1. The magnetization and specific heat in the one-dimensional Ising model

The spin correlation function can also be expressed using the transfer
matrix and computed:

〈σkσl〉N ≡ 1
ZN

∑
{σi=±1}

e−βHσkσl

=
1

ZN

∑
{σi=±1}

Tσ1σ2 . . . Tσk−1σk
σkTσkσk+1 . . . Tσl−1σl

× σlTσlσl+1 . . . TσN−1σ1

=
1

ZN

∑
±

〈χ±| T kτzT l−kτzT N−l |χ±〉

= Z−1
N Tr (τzT l−kτzT N−l+k) , τz ≡

(
1 0
0 −1

)
, l ≥ k .

(F.10)

To distinguish them from σi = ±1, the Pauli matrices are denoted here by
τx,y,z. The trace in the last line of (F.10) refers to the sum of the two diagonal
matrix elements in the Pauli spinor states χ±. Further evaluation is carried
out by diagonalizing T :

Γ T Γ−1 =
(
λ1 0
0 λ2

)
≡ Λ , where Γ =

1√
2

(
1 1
−1 1

)
.
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With

Γ τz Γ−1 = −
(

0 1
1 0

)
≡ −τx ,

it follows from (F.10) that

〈σkσl〉N = Z−1
N Tr(τxΛ

l−k τxΛ
N−l+k)

and thus for l − k � N in the thermodynamic limit N → ∞ we obtain the
final result

〈σkσl〉 =
(
λ2

λ1

)l−k

. (F.11)

For T > 0, λ2 < λ1, i.e. 〈σkσl〉 decreases with increasing distance l − k. For
T → 0, λ1 → λ2 (asymptotic degeneracy), so that the correlation length
ξ → ∞.

By means of the transfer matrix method, the one-dimensional Ising model
is mapped onto a zero-dimensional quantum system (one single spin). The
two-dimensional Ising model is mapped onto a one-dimensional quantum sys-
tem. Since it is possible to diagonalize the Hamiltonian of the latter, the
two-dimensional Ising model can in this way be solved exactly.

G. Integrals Containing the Maxwell Distribution

f0(v) = n
( m

2πkT

)3/2

e−
mv2
2kT (G.1a)∫

d3v f0(v) = n (G.1b)∫
d3v

(
mv2

2

)s

f0(v) = n
( m

2πkT

)3/2
(
− ∂

∂(1/kT )

)s ∫
d3v e−

mv2
2kT︸ ︷︷ ︸

( π
m/2kT )3/2

= n(kT )s 3
2

5
2
· · · 1 + 2s

2
s = 1, 2, . . .

(G.1c)

∫
d3v

mv2

2
f0(v) =

3
2
nkT (G.1d)

∫
d3v

(
mv2

2

)2

f0(v) =
15
4
n(kT )2 (G.1e)

∫
d3v

(
mv2

2

)3

f0(v) =
105
8

n(kT )3 (G.1f)
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d3v vkvivjvlf

0(v) = λ
(
δkiδjl + δkjδil + δklδij

)
, λ =

kT

m
(G.1g)

Eq. (G.1g) can be demonstrated by first noting that the result necessarily
has the form given and then taking the sum

∑
k=i

∑
j=l: comparison with

(G.1e) leads using
∫
d3v

(
v2

)2
f0(v) = 15λ to the result λ = kT

m .

H. Hydrodynamics

In the appendix, we consider the microscopic derivation of the linear hydro-
dynamic equations. The hydrodynamic equations determine the behavior of
a system at low frequencies or over long times. They are therefore the equa-
tions of motion of the conserved quantities and of variables which are related
to a broken continuous symmetry. Nonconserved quantities relax quickly to
their local equilibrium values determined by the conserved quantities. The
conserved quantities (energy, density, magnetization...) can exhibit a time
variation only by flowing from one spatial region to another. This means
that the equations of motion of conserved quantities E(x) typically have the
form Ė(x) = −∇jE(x). The gradient which occurs here already indicates
that the characteristic rate (frequency, decay rate) for the conserved quan-
tities is proportional to the wavenumber q. Since jE can be proportional to
conserved quantities or to gradients of conserved quantities, hydrodynamic
variables exhibit a characteristic rate ∼ qκ, i.e. a power of the wavenumber q,
where in general κ = 1, 2. In the case of a broken continuous symmetry there
are additional hydrodynamic variables. Thus, in an isotropic antiferromag-
net, the alternating (staggered) magnetization N is not conserved. In the
ordered phase, its average value is finite and may be oriented in an arbi-
trary direction in space. Therefore, it costs no energy to rotate the staggered
magnetization. This means that microscopic variables which represent fluc-
tuations transverse to the staggered magnetization likewise belong to the set
of hydrodynamic variables, Fig. H.1.

Fig. H.1. Conserved
quantities and broken-
symmetry variables: (a)
the energy density E(x)
and (b) the alternating
(staggered) magnetization
N(x) in an isotropic or
planar antiferromagnet
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H.1 Hydrodynamic Equations, Phenomenological Discussion

In order to gain some insight into the structure of the hydrodynamic equa-
tions, we first want to consider a simple example: the hydrodynamics of a
ferromagnet, for which only the magnetization density is conserved. The mag-
netization density M(x) obeys the equation of continuity

Ṁ(x) = −∇jM (x) . (H.1)

Here, jM is the magnetization current density. This becomes larger the greater
the difference between magnetic fields at different positions in the material.
From this fact, we obtain the phenomenological relation

jM (x) = −λ∇H(x) , (H.2)

where λ is the magnetization conductivity. The local magnetic field depends
on the magnetization density via the relation

H(x) =
1
χ
M(x) , (H.3)

in which the magnetic susceptibility χ enters. Inserting (H.3) into (H.2) and
the latter into (H.1), one finds the diffusion equation

Ṁ(x, t) = D∇2M(x, t) , (H.4)

where the magnetization diffusion constant is defined by

D =
λ

χ
.

To solve (H.4), it is expedient to apply a spatial Fourier transform; then the
diffusion equation (H.4) takes on the form

Ṁq = −Dq2Mq , (H.5)

with the obvious result

Mq(t) = e−Dq2tMq(0) . (H.6)

The diffusive relaxation rate Dq2 decreases as the wavenumber becomes
smaller. For several variables Xc

q, whose deviations from equilibrium are de-
noted by δ

〈
Xc

q

〉
, the hydrodynamic equations have the general form

∂

∂t
δ
〈
Xc

q

〉
+ M cc′(q) δ

〈
Xc′

q

〉
= 0 . (H.7)

Here, M cc′(q) is a matrix which vanishes as q → 0. For the hydrodynamics
of liquids, we recall Eq. (9.4.46a–c).
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H.2 The Kubo Relaxation Function

In linear response theory14, one investigates the effects of an external force
F (t) which couples to the operator B. The Hamiltonian then contains the
additional term

H ′(t) = −F (t)B . (H.8)

For the change of the expectation value of an operator A with respect to its
equilibrium value, one obtains to first order in F (t)

δ〈A(t)〉 =
∫ ∞

−∞
dt′χAB(t− t′)F (t′) (H.9)

with the dynamic susceptibility

χAB(t− t′) =
i
�
Θ(t− t′)〈[A(t), B(t′)]〉 . (H.10)

Its Fourier transform reads

χAB(ω) =
∫ ∞

−∞
dteiωtχAB(t) . (H.11)

We now consider a perturbation which is slowly switched on and then
again switched off at the time t = 0: F (t) = eεtΘ(−t)F . One then finds from
(H.9)

δ〈A(t)〉 =
∫ ∞

−∞
dt′χAB(t− t′)FΘ(−t′)eεt′

=
∫ ∞

t

duχAB(u)F eε(t−u) , (H.12)

where the substitution t − t′ = u has been employed. The decay of the
perturbation for t > 0 is thus described by

δ〈A(t)〉 = φAB(t)F eεt , (H.13)

where15 the Kubo relaxation function φAB(t) is defined by

φAB(t) ≡ i
�

∫ ∞

t

dt′〈[A(t′), B(0)]〉e−εt′ . (H.14)

Its half-range Fourier transform is given by

φAB(ω) ≡
∫ ∞

0

dt eiωtφAB(t) . (H.15)

14 QM II, Sect. 4.3
15 The factor eεt is of no importance in (H.13), since φAB(t) relaxes faster.
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The Kubo relaxation function has the following properties:

φAB(t = 0) = χAB(ω = 0) , (H.16)

φ̇AB(t) = −χAB(t) for t > 0 , (H.17)

φAB(ω) =
1
iω

(
χAB(ω) − χAB(ω = 0)

)
. (H.18)

Eq. (H.16) follows from the comparison with the Fourier transformed
dynamical susceptibility, Eq. (H.11). The second relation is obtained imme-
diately by taking the derivative of (H.14). The third relation can be obtained
by half-range Fourier transformation of (H.17)

−
∫ ∞

0

dt eiωtχAB(t) =
∫ ∞

0

dt eiωtφ̇AB(t)

= eiωtφAB(t)
∣∣∞
0

− iω
∫ ∞

0

dt eiωtφAB(t) = φAB(t = 0) − iωφAB(ω)

and application of φAB(t = ∞) = 0, (H.16) and∫ ∞

0

dt eiωtχAB(t) =
∫ ∞

−∞
dt eiωtχAB(t) = χAB(ω) .

Further, one can show for t ≥ 0 that

φȦB(t) =
∫ ∞

t

dt′
i
�

〈[
Ȧ(t′), B(0)

]〉
e−εt′ = − i

�

〈[
A(t), B(0)

]〉
= −χAB(t) ,

i.e.

φȦB(ω) = −χAB(ω) (H.19)

and, together with (H.18),

ωφAB(ω) = iφȦB(ω) + iχAB(ω = 0) . (H.20)

Later, we will also require the identity

χȦB†(ω = 0) =
i
�

∫ ∞

0

dt′
〈[
Ȧ(t′), B(0)†

]〉
= − i

�

〈[
A(0), B(0)†

]〉
, (H.21)

which follows from the Fourier transform of (H.10) and the fact that the
expectation value

〈
[A(∞), B(0)†]

〉
vanishes.
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H.3 The Microscopic Derivation of the Hydrodynamic
Equations

H.31 Hydrodynamic Equations and Relaxation

We introduce the following notation here:

X i(x, t) i = 1, 2, . . . densities (Hermitian)

X i
q(t) =

1√
V

∫
d3x e−iqxX i(x, t) Fourier transforms (H.22a)

X i(x, t) =
1√
V

∑
q

eiqxX i
q(t) , X i†

q = X i
−q (H.22b)

χij(q, t) ≡ χXi
q,Xj

−q
(t) etc.

Conserved densities are denoted by indices c, c′, ... etc. and nonconserved
densities by n, n′, ....

We now consider a perturbation which acts on the conserved densities.
At t = 0, it is switched off, so that the perturbation Hamiltonian takes on
the form

H ′ = −
∫

d3xXc(x, t)Kc(x)Θ(−t)eεt = −
∑
q

Xc
−q(t)Kc

qΘ(−t)eεt

and leads according to Eq. (H.13) to the following changes in the conserved
quantities for t > 0:

δ
〈
Xc

q(t)
〉

= φcc′(q, t)Kc′
q eεt . (H.23)

The decay of the perturbation is determined by the relaxation function.
The situation considered here is, on the other hand, also described by the

hydrodynamic equations (H.7){
δcc′ ∂

∂t
+ M cc′(q)

}
δ
〈
Xc′

q (t)
〉

= 0 . (H.24a)

If we insert Eq. (H.23) into (H.24a), we obtain{
δcc′ ∂

∂t
+ M cc′(q)

}
φc′c′′(q, t)Kc′′

q = 0 .

Since this equation is valid for arbitrary Kc′′
q , it follows that{

δcc′ ∂

∂t
+ M cc′(q)

}
φc′c′′(q, t) = 0 . (H.24b)

From this, we find φc′c′′(q, ω) by taking the half-range Fourier transform
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0

dt eiωt
{
δcc′ ∂

∂t
+ M cc′(q

}
φc′c′′(q, t) = 0

and carrying out an integration by parts, i.e.

−φcc′′(q, t = 0) +
{
− iωδcc′ + M cc′(q)

}
φc′c′′(q, ω) = 0 .

Using (H.16), we obtain finally{
− iωδcc′ + M cc′(q)

}
φc′c′′(q, ω) = χcc′′(q) . (H.24c)

Therefore, the relaxation functions φcc′(q, ω) and thus the dynamic response
functions are obtained from hydrodynamics for small q and ω.

If, conversely, we can determine φcc′(q, ω) for small q and ω from a micro-
scopic theory, we can then read off the hydrodynamic equations by comparing
with (H.24a) and (H.24c).

We consider an arbitrary many-body system (liquid, ferromagnet, antifer-
romagnet, etc.) and divide up the complete set of operators X i

q into conserved
quantities Xc

q and nonconserved quantities Xn
q . Our strategy is to find equa-

tions of motion for the Xc
q, where the forces are decomposed into a part which

is proportional to the Xc
q and a part which is proportional to the Xn

q . The
latter fluctuate rapidly and will lead after its elimination to damping terms
in the equations of motion, which then contain only the Xc

q.
In order to visualize this decomposition in a clear way, it is expedient to

choose the operators in such a manner that they are orthogonal. To do this,
we must first define the scalar product of two operators A and B:

〈A|B〉 = χA,B†(ω = 0) . (H.25)

Remark: one can readily convince oneself that this definition fulfills the properties
of a scalar product:

〈A|B〉∗ = 〈B|A〉
〈c1A1 + c2A2|B〉 = c1 〈A1|B〉 + c2 〈A2|B〉

〈A|A〉 is real and 〈A|A〉 ≥ 0 (0 only for A ≡ 0) .

We now choose our operators to be orthonormalized:〈
X i

q|Xj
q

〉
= χij(q, ω = 0) = δij . (H.26)

To construct these operators, one uses the Schmidt orthonormalization pro-
cedure.
The Heisenberg equations of motion Ẋc

q = i
�
[H,Xc

q] etc. can now be written
in the form

Ẋc
q = −iCcc′(q)Xc′

q − iCcn(q)Xn
q (H.27a)

Ẋn
q = −iCnc(q)Xc

q − iDnn′
(q)Xn′

q . (H.27b)



554 Appendix

Here, the derivatives Ẋc
q and Ẋn

q were projected onto Xc′
q and Xn′

q . If we
take e.g. the scalar product of Ẋc

q with Xc′
q , we find using Eq. (H.21)

〈
Ẋc

q

∣∣Xc′
q

〉
≡ −iCcc′(q) = − i

�

〈
[Xc

q, X
c′†
q ]

〉
.

That is:

Ccc′(q) =
1
�

〈
[Xc

q, X
c′†
q ]

〉
, (H.28a)

and analogously

Ccn(q) =
1
�

〈
[Xc

q, X
n†
q ]

〉
, Dnn′

(q) =
1
�

〈
[Xn

q , X
n′†
q ]

〉
. (H.28)

These coefficients obey the following symmetry relations:

Ccc′∗(q) = Cc′c(q) , Cnc∗(q) = Ccn(q) , Dnn′∗(q) = Dn′n(q) . (H.29)

It thus follows from (H.20) that

ωφcc′(q, ω) = Ccc′′(q)φc′′c′(q, ω) + Ccn(q)φnc′(q, ω) + iδcc′

ωφnc(q, ω) = Cnc′(q)φc′c(q, ω) + Dnn′
(q)φn′c(q, ω)

ωφnn′
(q, ω) = Cnc(q)φcn′

(q, ω) + Dnn′′
(q)φn′′n′

(q, ω) + iδnn′

ωφcn(q, ω) = Ccc′(q)φc′n(q, ω) + Ccn′
(q)φn′n(q, ω) .

(H.30)

From (H.30b) we read off the result

φnc(q, ω) = (ω11 −D(q))−1
nn′C

n′c′(q)φc′c(q, ω) ; (H.31)

then inserting (H.31) into (H.30a) leads to[
ωδcc′ − Ccc′(q) − Ccn(q)

(
1

ω11 −D(q)

)
nn′

Cn′c′(q)
]
φc′c′′(q, ω)

= iδcc′′ . (H.32)

For the conserved quantities, the coefficients Ccc′(q) and Ccn(q) vanish in
the limit q → 0. Therefore, in the limit of small q, we find

i
(
Ccc′(q)Xc′

q + Ccn(q)Xn
q

)
= iqαj

c
α(q) . (H.33)

We define also the nonconserved part of the current density

Ccn(q)Xn
q = qαj̃

c
α(q) . (H.34)

In contrast to (H.33) and (H.34), the Dnn′(q) remain finite in the limit q → 0.
For the behavior at long wavelengths (q → 0), we can therefore take 1

ω11−D
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in the limit ω,q → 0, whereby due to the finiteness of D(q), we can expect
that

lim
ω→0

lim
q→0

1
ω11 −D(q)

= lim
q→0

lim
ω→0

1
ω11 −D(q)

. (H.35)

In the limit q → 0, we can find a relation between 1
ω11−D

from Eq. (H.30c)
and a correlation function. Owing to limq→0 C

nc(q) = 0, it follows from
(H.30c), with the abbreviation D ≡ limq→0 D(q), that(

ω11 −D
)nn′′

lim
q→0

φn′′n′
(q, ω) = iδnn′

or (
1

ω11 −D

)
nn′

= −i lim
q→0

φnn′
(q, ω) . (H.36)

Inserting this into (H.32) and taking the the double limits, we obtain(
ωδcc′ − Ccc′(q) + iCcn(q)

(
lim
ω→0

lim
q→0

φnn′
(q, ω)

)
Cn′c′(q)

)
φc′c′′(q, ω)

= iδcc′′ ,

i.e. finally:(
ωδcc′ − Ccc′(q) + iqαqβΓ

cc′
αβ

)
φc′c′′(q, ω) = iδcc′′ , (H.37)

with the damping coefficients

Γ cc′
αβ ≡ lim

ω→0
lim
q→0

φj̃c
α j̃c′

β
(q, ω) . (H.38)

Here, the sums over n and n′ were combined into the nonconserved current
densities defined in Eq. (H.34).

When the system exhibits symmetry under reflection, rotation, etc., the
number of nonvanishing coefficients Γ cc′

αβ can be reduced. We assume that for
the remaining functions φj̃c

α j̃c′
β

, the operators jc and jc′ have the same sig-

nature16 under time reversal: εjc = εjc′ . Applying (H.18) and the dispersion
relations17, one obtains

φ(ω) = − i
ω

(
χ′(ω) − χ(0)

)
+

χ′′(ω)
ω

= − i
π

P
∫

dω′ χ′′(ω′)
(ω′ − ω)ω′ +

χ′′(ω)
ω︸ ︷︷ ︸

1−e−β�ω

2�ω G>(ω)

, (H.39)

16 QM II, Sect. 4.8.2.2
17 QM II, Sect. 4.4
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which, owing to the fluctuation-dissipation theorem18 and the antisymmetry
of χ′′(ω), finally leads to limω→0 φ(ω) = limω→0

β
2G

>(ω) and

Γ cc′
αβ =

1
2kT

lim
ω→0

lim
q→0

∫ ∞

−∞
dt eiωt

〈
j̃c
αq(t)j̃c′

β−q(0)
〉
. (H.40)

This is the Kubo formula for the transport coefficients, expressed in terms
of current-current correlation functions. Without taking up their straightfor-
ward proofs, we mention the following symmetry properties:

Γ cc′∗
αβ = Γ c′c

βα , Γ cc
αα > 0 , Γ cc′

αβ = Γ c′c
βα real. (H.41)

In summary, one can read off the following linear hydrodynamic equations by
comparison with Eqns. (H.24c) and (H.24a):[

∂

∂t
δcc′ + iCcc′(q) + qαqβΓ

cc′
αβ

]
δ
〈
Xc′

q (t)
〉

= 0 , (H.42a)

Ccc′(q) =
1
�

〈
[Xc

q, X
c′
−q]

〉
, (H.42b)

Γ cc′(q) =
1

4kT
lim
ω→0

lim
q→0

∫ ∞

−∞
dt eiωt

〈{
jc
q(t), jc′

−q(0)
}〉

. (H.42c)

The elements of the frequency matrix Ccc′(q) ∼ q (or q2) are functions of
expectation values of the conserved quantities and the order parameters and
susceptibilities of these quantities. They determine the periodic, reversible
behavior of the dynamics. For example, for a ferromagnet, the spinwave
frequency (H.42b)follows from ω(q) = M

χT
q

∝ q2, where M is the magneti-

zation and χT
q ∝ q−2 the transverse susceptibility. The damping terms re-

sult from the elimination of the nonconserved degrees of freedom. They can
be expressed via Kubo formulas for the current densities. For the deriva-
tion it was important that the nonconserved quantities have a much shorter
time scale than the conserved quantities, which also permits taking the limit
limω→0 limq→0. We note the similarity of this procedure to that used in the
case of the linearized Boltzmann equation (Sect. 9.4). The present deriva-
tion is more general, since no constraints were placed on the density or the
strength of the interactions of the many-body system.

Literature:
H. Mori, Prog. Theor. Phys. (Kyoto) 33, 423 (1965); 34, 399 (1965); 28, 763 (1962)
F. Schwabl and K.H. Michel, Phys. Rev. B2, 189 (1970)
K. Kawasaki, Ann. Phys. (N.Y.) 61, 1 (1970)

18 QM II, Sect. 4.6
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I. Units and Tables

In this Appendix we give the definitions of units and constants which are used in

connection with thermodynamics. We also refer to the Table on page 562.

Conversion Factors

1 eV = 1.60219 × 10−19 J
1 N = 105 dyn
1 J = 1 × 107 erg

1 C = 2.997925 × 109 esu = 2.997925 × 109
p

dyn cm2

1 K =
∧ 0.86171 × 10−4 eV

1 eV =
∧ 2.4180 × 1014 Hz =

∧ 1.2399 × 10−4 cm
1 T = 104 Gauss (G)
1 Å = 10−8 cm

1 sec ≡ 1 s

Pressure
1 bar = 106dyn/cm2 = 105N/m2 = 105Pa

1 Torr = 1 mm Hg

Physical Atmosphere:

1 atm = air pressure at 760 mm Hg ≡ 760 Torr = 1.01325 bar

This relation between Torr and bar follows from the mass density of mercury ρHg =
13.5951g cm−3 at 1◦C and the acceleration of gravity g = 9.80655 × 102cm s−2.
Technical Atmosphere:

1 at = 1 kp/cm2 = 0.980655 bar

Temperature

The absolute temperature scale was defined in Sect. 3.4 using Tt = 273.16 K, the
triple point of H2O.

The zero point of the Celsius scale 0◦C lies at 273.15 K. Thus in this scale,
absolute zero is at −273.15◦C. With this definition, the equilibrium temperature of
ice and water saturated with air under a pressure of 760 mm Hg ≡ 1 atm is equal
to 0◦C.

Table I.1. Fixed points of the international temperature scale:

0◦C ice point of water
100◦C equilibrium temperature of water and water vapor

−182.970◦C boiling point of oxygen
444.600◦C boiling point of sulfur

960.8◦C solidification point of silver
1063.0◦C solidification point of gold
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For a comparative characterization of materials, their properties are quoted at
standard temperatures and pressures. In the physics literature, these are 0◦C and
1 atm, and in the technical literature, they are 20◦C and 1 at.
Physical Standard State ≡ standard pressure (1 atm) and standard temperature
(0◦C).
Technical Standard State ≡ 1 at and 20◦C.
Density of H2 at Tt and P = 1 atm:

ρ = 8.989 × 10−2g/Liter = 8.989 × 10−5g cm−3 .

Molar volume under these conditions:

VM =
2.016 g

8.989 × 10−2 g Liter−1
= 22.414 Liter

„
=
∧ 22.414

Liter

mole

«
.

1 mole =
∧ atomic weight in g (e.g. one mole of H2 corresponds to a mass of 2.016 g).

k =
PV

NT
=

1atmVM
L× 273.16 K

= 1.38065 × 10−16erg/K .

Loschmidt’s number ≡ Avogadro’s number:

L ≡ NA = number of molecules per mole

=
2.016 g

mass H2
=

2.016

2 × 1.6734 × 10−24
= 6.02213 × 1023 .

Energy

The unit calorie (cal) is defined by

1 cal = 4.1840 × 107erg = 4.1840 Joule .

A kilocalorie is denoted by Cal (large calorie). With the previous definition, 1 Cal
up to the fourth place past the decimal point has the meaning

1 Cal ≡ 1 kcal ≡ 1000 cal

= the quantity of heat which is required to warm 1 kg H2O at 1 atm from 14.5 to
15.5◦C19.

1 J = 1 Nm = 107 dyn cm = 107 erg .

Power

1 W = 1 VA = 1 J s−1 = 107erg s−1

1 HP = 75 kp m s−1 = 75 × 9.80665 × 105dyn m s−1 = 735.498 W .

The universal gas constant R is defined via Loschmidt’s/Avogadro’s number by

R = NAk = 8.3145 × 107erg mol−1K−1 .

Using the gas constant R, one can write the equation of state of the ideal gas in
the form

PV = nRT , (I.1)

where n is the amount of matter in moles (mole number).

19 Note that the nutritional values of foods are quoted either in kJ or in kilocalories.



I. Units and Tables 559

We close this section with some numerical values of thermodynamic quantities.
Table I.2, below, gives values of specific heats (CP ).

As can be seen, the specific heat of water is particularly large. This fact plays
an important role in the thermal balance of Nature. Water must take up or release
a large quantity of heat in order to change its temperature noticeably. Therefore,
the water of the oceans remains cool for a relatively long time in Spring and warm
for a relatively long time in Autumn. It therefore acts in coastal regions to reduce
the annual temperature fluctuations. This is an essential reason for the typical
difference between a coastal climate and a continental climate.

Table I.2. The Specific Heat of Some Materials under Standard Conditions

Specific heat C Molecular Molar
weight heat capacity

[cal K−1 g−1] [cal K−1 mole−1]

Aluminum 0.214 27.1 5.80
Iron 0.111 55.84 6.29
Nickel 0.106 58.68 6.22
Copper 0.091 63.57 5.78
Silver 0.055 107.88 5.93
Antimony 0.050 120.2 6.00
Platinum 0.032 195.2 6.25
Gold 0.031 197.2 6.12
Lead 0.031 207.2 6.42
Glass 0.19 — —
Quartz Glass 0.174 — —
Diamond 0.12 — —
Water 1.00 — —
Ethanol 0.58 — —
Carbon Disulfide 0.24 — —

Table I.3. Expansion Coefficients of Some Solid and Liquid Materials in K−1

linear volume

Lead 0.0000292 Diamond 0.0000013 Ethanol 0.0011
Iron 120 Graphite 080 Ether 163
Copper 165 Glass 081 Mercury 018
Platinum 090 Quartz Crystal ⊥ axis 144 Water 018
Invar (64Fe+36Ni) 016 Quartz Crystal ‖ axis 080

Quartz Glass 005

The linear expansion coefficient αl is related to the volume or cubic expansion
coefficient in (3.2.4) via

α = 3αl .

This follows for a rectangular prism from V +∆V = (a+∆a)(b+∆b)(c+∆c) =
abc
`
1 + ∆a

a
+ ∆b

b
+ ∆c

c

´
+ O(∆2), thus ∆V

V
= 3∆a

a
under the assumption of
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isotropic thermal expansion as found in isotropic materials (liquids, amorphous
substances) and cubic crystals.

Table I.4. Some Data for Gases: Boiling Point (at 760 Torr), Critical Temperature,
Coefficients in the van der Waals Equation, Inversion Temperature

Gas
Boiling point

in K
Tc[K] a

h
atm cm6

mole2

i
b
h

cm3

mole

i
Tinv = 27

4
Tc[K]

He 4.22 5.19 0.0335×106 23.5 35
H2 20.4 33.2 0.246 ×106 26.7 224
N2 77.3 126.0 1.345 ×106 38.6 850
O2 90.1 154.3 1.36 ×106 31.9 1040
CO2 194.7 304.1 3.6 ×106 42.7 2050

Table I.5. Pressure Dependence
of the Boiling Point of Water

Pressure Boiling Point
in Torr in ◦C

720 98.49
730 98.89
740 99.26
750 99.63
760 100.00
770 100.37
780 100.73
790 101.09
800 101.44

Table I.6. Heats of Vaporiza-
tion of Some Materials in cal ·g−1

Ethyl Alcohol 202
Ammonia 321
Ether 80
Chlorine, Cl2 62
Mercury 68
Oxygen, O2 51
Nitrogen, N2 48
Carbon Disulfide 85
Water 539.2
Hydrogen, H2 110

Table I.7. Heats of Melting of Some Materials in cal · g−1

Aluminum 94 Silver 26.0
Lead 5.5 Table Salt 124
Gold 15.9 Water (Ice) 79.5
Copper 49
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Table I.8. Vapor Pressure of
Water (Ice) in Torr

−60◦C 0.007
−40◦C 0.093
−20◦C 0.77
+0◦C 4.6

+20◦C 17.5
+40◦C 55.3
+60◦C 149.4
+80◦C 355.1

+100◦C 760.0
+200◦C 11665,0

Table I.9. Vapor Pressure of Iodine in
Torr

−48.3◦C 0.00005
−32.3◦C 0.00052
−20.9◦C 0.0025

0◦C 0.029
15◦C 0.131
30◦C 0.469
80◦C 15.9

114.5◦C 90.0 (melting point)
185.3◦C 760.0 (boiling point)

Table I.10. Freezing Mixtures and Other Eutectics

Constituents Eutectic
with Melting Points Temperature in ◦C Concentration

NH4Cl Ice (0) -15.4
NaCl Ice (0) -21 29/71 NaCl
Alcohol Ice (0) -30
CaCl2·6H2O Ice (0) -55
Alcohol CO2(-56) -72
Ether CO2(-56) -77
Sn (232) Pb (327) 183 74/26
Au (1063) Si (1404) 370 69/31
Au (1063) Tl (850) 131 27/73
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Subject Index

absolute temperature, 91
absolute zero, 513
acoustic resonances, 466
activation energy, 425
adiabatic change, 515
adiabatic equation, 102
– of the ideal quantum gas, 174
allotropy, 520
ammonia synthesis, 155
amplitude ratios, 372
anharmonic effects, 211
antiferromagnet, 336, 337, 548
antiferromagnetism, 287–288
Arrhenius law, 425
atmosphere, 167
average value, 65
average-potential approximation, 244
Avogadro’s number, 92, 558

background radiation, 203, 508
barometric pressure formula, 53, 72,

414
barrier, see reaction rates
BBGKY hierarchy, 442
Bernoulli numbers, 228, 537
Bethe lattice, 393–398
– percolation threshold, 394
Bethe–Peierls approximation, 327
binary alloys, 517
black body, 203
black holes, 188, 508
black-body radiation, 198, 203
Bloch equations, 429
– in the ferromagnetic phase, 435
block-spin transformation, 359, 360
Bohr magneton, 269
Bohr–van Leeuwen theorem, 276
boiling boundary, 133
boiling point
– numerical values for some materials,

560

boiling-point elevation, 263, 265
Boltzmann constant, 36, 92
– experimental determination of, 92,

414
Boltzmann equation, 437–475
– and irreversibility, 443, 445, 505
– derivation of, 438–443
– linearized, 455–468
– symmetry properties of, 440, 444,

476
Boltzmann’s entropy, 480, 498–499
– in the urn model, 512
bond percolation, 389
Bose distribution function, 171
Bose–Einstein condensation, 190–197,

223
Bose–Einstein statistics, 170
bosons, 170
– second virial coefficient, 532
Bravais crystal, 208
Brillouin function, 281
Brownian motion, 409–410
– in a force field, 414
– in the limit of strong damping, 414
– microscopic model of, 484–490, 510
– of a sphere in a liquid, 414
bubble point line, 165
Buckingham potential, 240
bulk viscosity, 465, 477

canonical momentum, 269
canonical variables, 80
Carnot cycle, 126, 162
– efficiency of, 127
– inverse, 127
catalyst, 154
cavity radiation, 198, 203
Cayley tree, see Bethe lattice
central limit theorem, 7, 9
characteristic function, 5
chemical constants, 152, 235
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chemical potential, 45, 64
– of a photon gas, 205
– of an ideal Bose gas, 195
– of an ideal Fermi gas, 182
chemical reactions, 150–155, 422–425
– rates of , see reaction rates
circuit, electrical, 434
classical limit of quantum statistics,

521–526
Clausius principle, 105
Clausius’ equation of state, 247
Clausius–Clapeyron equation, 134–139,

163, 323
cluster, 388
cluster number, 391
cluster radius, 399
coefficient of expansion (thermal), 84,

213
coefficients
– stoichiometric, 150
coexistence curve
– in the van der Waals theory, 253,

256
coexistence region, 131, 298, 376
– in the van der Waals theory, 250
coexistence singularities, 376
collective degrees of freedom, 425
collective density excitations, 215
collision duration, 437
collision operator
– linear, 457
– – eigenfunctions of, 458, 468
collision term, 439, 468, 478
– linearized, 456
collision time, 410, 437, 462, 476
collisional invariants, 448–449, 457, 458
components, 130
compressibility, 83, 88
– adiabatic, 83, 454
– and particle-number fluctuations, 90
– in the van der Waals theory, 254
– isentropic, 83
– isothermal, 83, 88, 90, 467
– – at absolute zero, 515
compression
– adiabatic, 126
– isothermal, 126
compressional viscosity, see bulk

viscosity, 477
concentration, 257
condensation boundary, 133
conditions for equilibrium, 122

configuration-space transformations,
346

conservation
– of energy, 450
– of momentum, 450
– of particle number, 450
conserved quantities, 26, 553
– in the Boltzmann equation, 447–451
constraints, 97, 105, 494
continuous symmetry, 373
continuum percolation, 388
cooling efficiency, 128
correlation function, 300–301, 306–307,

367, 370
– longitudinal, 371, 375, 377, 407, 408
– Ornstein–Zernike, 303
– radial, 393
– transverse, 371–374
correlation length, 302, 307, 339, 367,

390, 399
– critical exponent of, 401
correlation time, 410
correlations, 6, 304
corresponding states, law of, 251
Coulomb interaction, 184
coupling coefficients, see coupling

constants
coupling constants, 345, 346, 348,

351
critical dimension, 373, 385
critical dynamics, 425–429, 468
critical exponent
– dynamic, see dynamic critical

exponent
critical exponents, 299, 334, 340, 354
– correlation length, 339
– dynamic exponents, 391
– for the specific heat, 334
– logarithmic divergence, 335
– of a ferromagnet, 336
– of a liquid, 336
– of the correlation function, 343
– of the van der Waals theory, 255
– scaling laws, 341, 344
– – hyperscaling relation, 344
– scaling relations, 343
– tables, 255, 336, 387
critical isotherm, 336
– in the van der Waals theory, 254
critical opalescence, 255, 304, 343, 468
critical phenomena, 331
critical point, 132, 332, 334, 426
– in the van der Waals theory, 251–257
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critical slowing down, 428
critical temperature
– numerical values for some materials,

560
crossover, 386, 405
cumulant, 8, 244, 377
Curie law, 282
Curie temperature, 287, 292
Curie–Weiss law, 294
current density, 444
cyclic process, 107, 125–130
– Carnot, 126, 161
– Diesel, 162
– general, 128
– Joule, 162
– Stirling, 163

damping, 414, 461, 489
– see also friction
– by a bath of harmonic oscillators,

484, 510
damping coefficient (hydrodynamic),

555
damping term, 464
de Haas–van Alphen oscillation, 287
Debye approximation, 210
Debye frequency, 211
Debye’s law, 210
decimation procedure, 349
decimation transformation, 346, 356,

359, 400
degree of dissociation, 153
degree of polymerization, 320
demagnetizing factor, 308
demagnetizing field, 308
demixing transition
– binary liquids, 337
density
– of normal fluid, 220
– of states, 37
– superfluid, 220
density matrix, 14, 35
– canonical, 51
– – magnetic, 271
– grand canonical, 64
– in the molecular field approximation,

291
– microcanonical, 29
density of states, 183, 209, 211, 285,

287
– of free electrons, 183
– of phonons, 209, 211
density operator, see density matrix

density-density correlation function,
467, 477

deviation
– of particle number, 90
deviation, relative, 9, 41, 42
dew formation, 160
dew point line, 165
diamagnetism, 278–279
Diesel cycle, 162
diffusion constant, 413
diffusion equation, 413, 421, 433, 549
– for temperature, 463
dilute solutions, 257–266
– chemical potential of, 258
– free enthalpy of, 260
– pressure, 257
dipole interaction, 278, 307–317
direction, 156
discrete symmetry, 338
dissipative systems, 387
distortive transition, 336, 337
distribution
– binomial, 17
– Poisson, 17
distribution function, 9, 11
– canonical, 51
– derivation from the density matrix,

521
– grand canonical, 65
– microcanonical, 27
domains, 298, 316–317, 404
dual lattice, 400
duality transformation, 400
Dulong–Petit law, 210
dynamic critical exponent, 428
dynamic susceptibility, 550

effective exponents, 386
effective mass, 186
efficiency, 129, 163
Ehrenfest’s classification, 332
Einstein relation, 411–412
elastic transition, 337
electron gas
– in solids, 185, 531
electronic energy, 227, 230
empirical temperature, 91
endothermic reaction, 156
energy
– canonical free, 271
– free, see free energy
– internal, 75, 275
– rotational, see rotational energy
– translational, see translational energy
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– units, 558
– vibrational, see vibrational energy
energy conservation, 441
energy density, 447
– equation of motion for, 461
– spectral, 201
energy levels, spacing of, 3, 37
energy shell, 26
– for a spin- 1

2
paramagnet, 34

– for classical ideal gas, 30
– of harmonic oscillators, 33
– surface areaΩ (E), 27
– volume, 27
– volume inside, 29
ensemble, 3, 9
– canonical, 50–63
– grand canonical, 63–68
– microcanonical, 26–30
– – magnets, 271
– mixed, 15
– pure, 14
– table of, 67
ensemble average, 497
enthalpy, 77
– free, see free enthalpy
entropy, 35, 59
– additivity of, 60
– and Nernst’s theorem, 513–521
– Boltzmann, see Boltzmann’s entropy
– canonical, 54
– extremal property of, 36
– Gibbs, see Gibbs’ entropy
– grand canonical, 65
– in sound propagation, 454, 455
– increase of, 105, 446, 493
– maximum, 36, 37, 70, 121
– microcanonical, 37
– of a paramagnet, 283, 320
– relation to H , 443, 476
– residual entropy, 516–521
entropy balance, 508
entropy death, 507
entropy flow, 444
entropy of mixing, 115
ε-expansion, 382
equation of continuity, 441, 449, 453,

476
– for the particle density, 413
equation of state
– in the molecular field approximation,

295
– magnetic, 293, 339, 340, 365
– Mie–Grüneisen, 212

– of a molecular gas, 226, 234
– of ideal gas, 47
– van der Waals, 112
equilibrium
– chemical, 150
– local, see local equilibrium
– thermodynamic, 120, 150
equilibrium conditions, 120–146
equilibrium distribution function
– local, 449
equilibrium state, 26
ergodic, 497
ergodic theorem, 25, 497
Euler’s equation, 453
Euler–MacLaurin summation formula,

228
eutectic, 149
– table, 561
eutectic point, 148
evaporation curve, 130, 132
Ewald method, 314
exact (perfect) differential, 85, 87
exact differential, 86, 160
exchange
– direct, 288
– indirect, 288
exchange corrections, 176
– to the second virial coefficient, 241,

531
exchange interaction, 287–289
exothermic reaction, 156
exp-6-potential, 240
expansion
– adiabatic, 99, 126
– – Third Law, 515
– isothermal, 98, 126
expansion coefficient (thermal), 88
– at absolute zero, 515
– linear, 559
– numerical values for various

materials, 559
expansion of a gas
– and irreversibility, 97, 500
expectation value, see mean value
exponents, critical, see critical

exponents
extremal properties, 120–122, 275

Fermi
– distribution function, 171, 179
– energy, 177, 184, 221
– gas, 176–185
– – nearly degenerate, 176
– liquid, 186
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– – Landau theory of, 188
– momentum, 177
– sphere, 177
– temperature, 181, 182, 184
Fermi–Dirac statistics, 170, 278
fermions, 170, 278
– interacting, 185
ferrimagnet, 336
ferroelectric, 336
ferromagnet, 287–307, 333, 336, 361
– isotropic, 337, 429
– planar, 338
– uniaxial, 337, 338
ferromagnetism, 287–307
fields
– irrelevant, 355
– relevant, 355
fixed point, 345, 347, 352, 356, 384, 401
flow diagram, 351
flow term, 439, 456, 476
fluctuation-dissipation theorem, 556
fluctuation-response theorem, 90, 300,

326
fluctuations, 6, 312, 366
– in Gaussian approximation, 406
– of energy, 89–90
– of particle numbers, 205, 494
– time interval of large fluctuations,

494–497
Fokker–Planck equation
– for a free particle, 416–418
– – solution of, 420
– for particles in a force field, 420
– for stock-market prices, 436
fractal dimension, 399, 402
free energy, 59, 77, 274–275, 310, 311
– canonical, 272
– convexity of, 139
– Helmholtz, 272
free enthalpy, 145
– concavity of, 139
free enthalpy (Gibbs’ free energy), 78
freezing mixture, 149
– table, 561
freezing-point curve, 148
freezing-point depression, 137, 263
frequency matrix, 556
fugacity, 68, 172, 191, 237
functional integration, 415

gain processes, rate
– in the collision term of the Boltzmann

equation, 439, 473

Galilei transformation, 217
Galton board, 22
Γ space, 9
gas
– adiabatic expansion of, 95, 99
– ideal, see ideal gas
– ideal molecular gas, see ideal

molecular gas
– isothermal expansion of, 98
– real, see real gas
– reversible expansion of, 98
gas constant, 558
Gaussian approximation, 366, 372
Gaussian distribution, 23
Gaussian integral, 32
Gay-Lussac experiment, 95, 494
– irreversible, 95, 119
– reversible, 98, 99
Gibbs distribution, 64
Gibbs free energy, 78
Gibbs’ entropy, 479, 498
– time independence of, 511
Gibbs’ paradox, 27, 117, 526
Gibbs’ phase rule, 146–150
Gibbs–Duhem relation, 81, 145
– differential, 81
Gibbs-Duhem relation, 166
Ginzburg–Landau approximation,

364
Ginzburg–Landau functionals, 361
Ginzburg–Landau model
– time-dependent, 427
Ginzburg–Landau theory, 361, 404,

538–544
Ginzburg–Levanyuk temperature, 373
Goldstone modes, 406
Grüneisen constant, 212
grand canonical density matrix
– in the second quantization, 69
grand canonical potential, 146
grand partition function, 64
– of an ideal quantum gas
– – in the second quantization, 172
– of the ideal quantum gas, 170
grand potential, 65, 78
– of the ideal quantum gas, 169, 171
gravitational instability, 508, 509
growth processes, 387
gyromagnetic ratio, 270

H-theorem, 443–446, 480
Hamiltonian, 11
– of the dipole interaction, 307, 314
– of the exchange interaction, 288
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Hamiltonian equations of motion, 11
Hamiltonian operator, 11
hard core potential, 239
harmonic oscillators, 9, 325, 433, 481,

484
– non-coupled quantum-mechanical,

33, 48
heat, 60, 61, 76
– latent, see latent heat
heat bath, 50
heat capacity, 82, 88
– see also specific heat
– at absolute zero, 515
heat conductivity, 433, 463, 477
heat current density, 450, 463
heat death, 507
heat diffusion, 463, 466, 467
heat input, 76
heat of melting, 265
– numerical values for some materials,

560
heat of reaction, 153, 156
heat of vaporization
– numerical values for some materials,

560
heat pump, 126
heat transfer, 62
heating
– of a room, 117
heating efficiency, 128
Heisenberg model, 288, 328
– anisotropic, ferromagnetic, 337
– at absolute zero, 520
– isotropic, 337, 338
helical phases, 336
3He, 137, 186, 187
– melting curve, 323, 324
– phase diagram of, 186
4He, 187, 196, 213–221
– phase diagram of, 196
He I–He II transition, 337
He II, 213–221
– excitation spectrum of, 214
– quasiparticles in, 213
Helmholtz free energy, 77, 272, 296
Hertzsprung–Russell diagram, 188
high-temperature fixed point, 352
Holstein–Primakoff transformation, 328
homogeneous function, 397, 404
Hubbard model, 224, 289
Hubbard–Stratonovich transformation,

407
Hund’s rules, 278

hydrodynamic equations, 460–468
– microscopic derivation of, 490,

552–556
– phenomenological discussion of, 549
– solution of, 466–468
hydrodynamic limit, 460–466
hydrodynamic variables, 460
hydrodynamics, 425, 451, 548–556
– of a ferromagnet, 549, 556
hydrogen bonds, 406, 518
hydrogen in metals, 262
hydrogen-oxygen reaction, 153
hyperscaling relation, 344
hypersphere, 32
hysteresis behavior
– in a first-order phase transition, 405

ice, 136, 517–519
– regelation of, 137
ideal gas, 39, 46–48, 558
– caloric equation of state of, 46, 558
– classical, 30, 67, 89, 437
– thermal equation of state of, 47
ideal gases
– reactions of, 152
ideal molecular gas, 225–236
– chemical potential of, 226
– free energy, 226
– influence of the nuclear spin, 232–233
– internal energy of, 226
– mixtures of, 234–236
ideal quantum gas, 169–221
– classial limit, 175
– of free particles, 173
integrability conditions, 84, 86
internal combustion engine, 125
internal degree of freedom, 225, 226
internal field, 314
inversion, 323
inversion curve, 111, 112, 266
irreversibility, 97, 443–446, 479–509
– and time reversal, 500–509
– and external perturbations, 503
– from microscopic equations of motion

in the limit of infinitely many degrees
of freedom, 484

– in quantum mechanics, 491–494
irreversible changes, see process
irreversible process, see process
Ising model, 289–304, 327
– Ginzburg–Landau functional, 538
– one-dimensional, 326, 346, 545–547
– two-dimensional, 349, 547
isobar, 47
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isochore, 47
isotherm, 47
isotropic ferromagnet, 429
isotropic Heisenberg model, 338

Jacobians, 87
Joule cycle, 162
Joule–Thomson coefficient, 111
Joule–Thomson process, 110

kinetic momentum, 269
kinetic theory, 437
Kubo formula, 490, 556
Kubo relaxation function, 490, 550–551

lambda point, 195
lambda transition, 337
Landau diamagnetism, 286
Landau quasiparticle interaction, 286
Landau–Ginzburg–Wilson functional,

380
Landau–Lifshitz equations, see Bloch

equations
Landau–Placzek peak, 467
Landau–Placzek ratio, 467
Landé g-factor, 270, 280
Langevin diamagnetism, 279
Langevin equation, 409–416
Langevin function, 72, 282, 319
lasers, 322
latent heat, 135, 520
– see also heat of melting, heat of

vaporization
– in the van der Waals theory, 255
lattice vibrations, 208
– see also phonons
lattice-gas model, 408
law of mass action, 150–155, 163
Law of Thermodynamics
– First, 1, 44, 60, 66, 76, 104, 106, 107,

145, 276
– – for magnetic systems, 272
– Second, 1, 76, 104, 106, 108
– Third, 109, 513–521
– Zeroth, 109
Legendre transformations, 79
Lennard–Jones potential, 238, 240
Le Chatelier’s principle, 124
limiting dimension, see critical

dimension
linear chain, 206, 481, 509
linear response, 550
Liouville equation, 11, 12, 511

liquid-gas transition, see liquid-vapor
transition, 250, 333

liquid-vapor transition, 130, 132
local equilibrium, 448, 451
local field, 311
local temperature
– equation of motion for, 462
log-normal distribution, 23
logarithmic corrections, 385
long time tails, 442
longitudinal susceptibility, see

susceptibility
Loschmidt’s number, 558
Loschmidt’s paradox, 479, 500, 503
loss processes, rate
– in the collision term of the Boltzmann

equation, 439, 472
low-temperature fixed point, 352
low-temperature physics, 138

macrostate, 3, 9, 25, 498
magnetic moment
– classical, 282
– of a body, 272
– of the electron, 270
– total, 270
magnetization, 272
– as a hydrodynamic quantity, 548
– in Pauli paramagnetism, 285
– in the one-dimensional Ising model,

546
– spontaneous, 287, 293, 364
magnetization fluctuations, 374
magnetomechanical ratio, see gyromag-

netic ratio
magnons, 213, 328
main sequence, 188
Markov process, 422
master equation and irreversibility

in quantum mechanics, see Pauli’s
master equation

Maxwell construction, 249
Maxwell distribution, 53, 438, 445, 456,

476
– integrals, 547
– local, 448, 452, 476, 478
Maxwell potential, 478
Maxwell relations, 84, 273, 275
mean field, 290, 298
mean free path, 443
mean square deviation, 5, 8, 41, 42
mean value, 4, 5, 27, 51
melting curve, 130
melting-point depression, 265
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metastable states, 516
microstate, 3, 9, 25, 498
Mie–Grüneisen equation of state, 212
mixing, 497
mixtures, 144, 152, 166, 234, 257–266
mobility, 413
molar heat capacity, 83
molar volume, 92, 154, 558
mole, 92, 558
molecular chaos, 442
molecular crystals (residual entropy),

516
molecular field approximation, 289–300
molecular gas, 152
moments, 4, 8
momentum conservation, 441
momentum current, 477
momentum density, 447
– equation of motion of, 465
momentum-shell renormalization

group, 380
monomers, 317
motion reversal, see time reversal
µ space, 438, 505

N-particle distribution function, 438
Néel temperature, 287
Natterer tube, 333
natural variables, 79
Navier–Stokes equations, 451
negative temperature, 320–322
Nernst’s theorem, 109, 513–521
neutron scattering, 304
neutron stars, 187, 188
noise
– electrical, 434
noise voltage, 434
non-equilibrium state, 121
non-integrability, 86
normal conductor–superconductor

transition, 337
nuclear matter, 187
nuclear spin
– in a magnetic field, 322
number of clusters, 396

occupation number, 170, 171, 200, 215
order, 507
– ferromagnetic, 333
order parameter, 193, 214, 293, 337,

390
order–disorder transition, 337
Ornstein–Zernike Correlation Function,

301, 303, 343, 371

ortho hydrogen, 232
osmotic pressure, 261

para hydrogen, 232
paraelectric–ferroelectric transition,

337
paramagnet, 34
– classical, 325
paramagnet–antiferromagnet transi-

tion, 337
paramagnet–ferromagnet transition,

337
paramagnetism, 280–283, 320
parameter flow, 345
partial pressure, 153, 155
particle number, 494
particle-number density, 447
– equation of motion for, 461
– local, 448
particle-number operator, 69
partition function, 51, 52, 59
– canonical, 52
– grand, 64
– in the magnetic field, 276
partition integral, 526
– derivation from the partition

function, 525
path integral, see functional integration
Pauli paramagnetism, 284–287
Pauli’s master equation, 491–494
percolation, 387–402
– bond percolation, 389
– cluster, 388
– continuum percolation, 388
– correlation length, 390
– critical exponents, see critical

exponents
– order parameter, 390
– percolation threshold, 387, 388, 391
– percolation transition, 390
– Potts model, 391
– radial correlation function, 392
– site percolation, 389
percolation behavior
– critical, 398
percolation threshold, 387, 388, 391,

401
percolation transition, 390
perfect differential, see exact differen-

tial, 86
perpetual motion machine
– of the first kind, 107
– of the second kind, 2, 108
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perturbation expansion, 536–537
perturbations
– irrelevant, 356
– relevant, 356
phase boundary curve, 334
phase space, 9
phase transition, 132, 140, 331, 332,

336, 337
– antiferromagnetic, 336
– continuous, 332
– correlation length, 339
– critical exponents, see critical

exponents
– critical point, 332, 334
– Ehrenfest’s classification, 332
– ferromagnetic, 333
– first order, 377
– helical phases, 336
– liquid-gas transition, 333
– n-th order, 332
– of a molecular zipper, 406
– of first order, 332, 373, 405
– of second order, 332
– order parameter of, 337
– phase boundary curve, 334
– power laws, 334
– separation, 336
– surface of equation of state, 334
– tricritical, 404
– vaporization, 333
– vaporization curve, 333
phase-boundary curves, 130–139
– slope of, 135
phases, 130, 331
– coexistence, 130
– in equilibrium, 130
phonon dispersion relation, 210
phonons, 206–221, 223
– acoustic, 208, 467
– damping, 434
– optical, 208
photon gas, 197–205
– chemical potential of, 205
Planck’s quantum of action, 445
Planck’s radiation law, see radiation

law
Poincaré
– recurrence time, see recurrence time
– recurrence-time theorem, 481
Poisson brackets, 12, 523
polyethylene, 317
polymers, 317–320, 329, 387
polystyrene, 317

Pomeranchuk effect, 137, 164, 324
potential
– Buckingham-, see Buckingham

potential
– exp-6-, see exp-6-potential
– grand, 65, 78, 276
– grand canonical, 146
– hard-core, see hard-core potential
– Lennard–Jones, see Lennard–Jones

potential
potentials, thermodynamic, see

thermodynamic potentials
Potts model, 391
pressure, 44, 45, 56, 64, 557
pressure tensor, 450, 465, 477
probability, 4
– conditional, 6, 421
probability density, 4
– characteristic function, 5
– moments of, 4, 5
probability density of F (X), 5
process
– adiabatic, 93, 99, 107
– cyclic, see cyclic process
– irreversible, 94–97, 104, 479
– isentropic, 93
– isobaric, 93
– isochoral, 93
– quasistatic, 93, 109, 110
– real and reversible, 100
– reversible, 94, 98–100
– thermally isolated, 93
pure system, 130

quantum corrections, 176, 241, 532–536
quantum liquid, 187
quasi-equilibrium states, 502, 504
quasi-ergodic theorem, 497
quasiparticles, 189, 190, 213, 215, 217
quasistatic process, see process

radial correlation function, 392
radiation law
– Planck, 201
– Rayleigh–Jeans, 202
– Wien, 202
radiation pressure, 200, 508
radius of gyration, 318
random motion, see random walk
random variable, 4–6
random walk, 7, 21
Raoult’s law, 266
Rayleigh–Jeans radiation law, see

radiation law
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reaction coordinate, 422
reaction equations, 150
reaction equilibrium, 154
reaction rates, 422, 425
real gas, 236–257
– see also van der Waals theory
– caloric equation of state for, 245
– free energy of, 244
– thermal equation of state for, 244,

245
real-space renormalization procedures,

see real-space transformations
real-space RG transformations, general,

346, 359
recurrence time, 479, 481–484, 488, 510
refrigerator, 126
relaxation-time approximation,

468–469, 477
– for the electrical conductivity, 478
relevant fields, 355
relevant perturbations, 356
renormalization group, 345–387
renormalization group theory, 345–387
– ε-expansion, 382
– block transformation, 360
– configuration-space RG transforma-

tions, 346
– coupling constants, 345, 346, 348,

351
– critical dimension, 373, see limiting

dimension, 383
– critical exponents, 354
– critical point, 351
– critical trajectory, 353
– crossover phenomena, 386
– cutoff length scale, 345
– decimation transformation, 346–354
– effective exponents, 386
– fields
– – irrelevant, 355
– – relevant, 355
– fixed point, 345, 347
– flow diagram, 351
– flux lines, 351
– high-temperature fixed point, 352
– Ising model
– – one-dimensional, 346, 545
– – two-dimensional, 349
– Landau–Ginzburg–Wilson functional,

380
– logarithmic corrections, 385
– low-temperature fixed point, 352

– momentum-shell renormalization
group, 380

– real-space RG transformations,
345–354, 359

– renormalization group transforma-
tion, 345

– renormalization group transforma-
tions, 346

– renormalization transformations, 400
– RG flow, 381
– scaling fields, 357
– two-point function, 383
– universality properties, 358
– Wick’s theorem, 383
– Wilson’s RG scheme, 380
residual entropy at absolute zero,

516–521
reversible changes, see process
reversible process, see process
RG flow, 381
Riemann ζ-function, see ζ-function
RKKY-interaction, 288
root mean square deviation, 5
rotational degrees of freedom, 117,

227
rotational energy, 227
rotational invariance, 338, 339
rotons, 214
rubber-like elasticity, 317–320

Sackur–Tetrode equation, 46
saturation curve, 132
saturation magnetization, 316
saturation region, 132
scalar product, 457, 476, 553
scale invariance, 305
scale transformations, 341
scaling fields, 357
scaling functions, 340
scaling hypothesis, 343
– for the correlation function, 343
– static, 339
scaling laws, 341, 344
– hyperscaling relation, 344
scaling relations, 343
scaling theory, percolation, 398–399
scattering
– and the collision term of the

Boltzmann equation, 469–475
– inelastic, 467
– of two hard spheres, 472, 475
scattering cross-section, 441, 469–475,

478
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– differential, 471
– elastic, 304
scattering phase
– and second virial coefficient, 532
Schottky anomaly, 283
Schrödinger equation, 15
– relation to the Smoluchowski

equation, 430
second viscosity, see bulk viscosity
self-avoiding random walk, 387
self-organized criticality, 387
separation of time scales, 426
separation transition, 336
shape dependence, 309
shear viscosity, 465, 477
Sievert’s law, 263
single-particle distribution function,

438
site percolation, 389
Smoluchowski equation, 418–419
– and supersymmetric quantum

mechanics, 429–432
– relation to the Schrödinger equation,

430
– solution for a harmonic potential,

421
solutions, see dilute solutions
Sommerfeld expansion, 179, 285
sound damping, 476
sound propagation
– in gases, 453–455
sound velocity, adiabatic, 454, 477
specific heat, 83, 90, 273, 310
– and fluctuations of internal energy,

90
– at absolute zero, 514
– at constant pressure, 83, 256, 466
– at constant volume, 83, 253, 463
– in the one-dimensional Ising model,

546
– in the van der Waals theory, 253
– negative, 508
– numerical values for various

materials, 559
– of a paramagnet, 322
– of a solid, 186, 211–213, 223
– of ideal molecular gas, 231
– rotational contribution to, 229, 233
– vibrational contribution to, 230
spectroscopic splitting factor, see

Landé-g-factor
spin waves, 328, 429
spin-orbit coupling, 280

spin-spin correlation function, 405
– see also Ornstein–Zernike correlation

function
– in the one-dimensional Ising model,

546
spinwaves, 556
spontaneous magnetization, 287, 293,

364
stability, 90, 124
– mechanical, 124
– thermal, 124
staggered magnetization, 336, 337, 548
standard deviation, 5
state functions, 85, 86
state of aggregation, 331
– see also phase
state variables, 1
– extensive, 81, 93
– intensive, 81, 93
static scaling hypothesis, 339
stationarity, 122, 123
statistical operator, see density matrix
steam engine, 125
Stefan–Boltzmann law, 200
Stirling formula, 21, 31
stochastic equation of motion, 410
stochastic force, 409
stochastic process, 410
stock-market prices
– as a stochastic process, 435
stoichiometric coefficients, 150
Stosszahlansatz, 440, 442
sublimation, 138
sublimation curve, 130, 138
Sun’s temperature, 205
superconductivity, 336, 364
supercooling, 379
superexchange, 289
superfluidity, 187, 217, 336
superheating, 379
supersymmetric quantum mechanics,

429, 435
surface of equation of state, 47, 132,

334
surface of states, 132
susceptibility, 84, 300–301
– adiabatic, 274
– diamagnetic, 283
– dielectric, 325
– dynamic, 550
– for Pauli paramagnetism, 285
– in the molecular field approximation,

302
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– in the one-dimensional Ising model,
546

– isothermal, 273, 293
– longitudinal, 375
– molar, 279
– of harmonic oscillators, 325
– paramagnetic, 283
– rel. to applied field, 309
– rel. to internal field, 309
– transverse, 372, 373
symmetry
– continuous, 373
– discrete, 338
symmetry properties, 331
system
– interacting, 42
– isolated, 26
– multicomponent, 144
– single-component, 130

temperature, 38, 39, 45, 64
– absolute, 91, 143
– absolute zero of, 513
– definition of, 39
– empirical, 91
– local, 448
– negative, 320–323
– scale, 557
– scale, absolute, 91
temperature equilibration, 113
– quasistatic, 109
temperature fixed point, 143
thermal efficiency, 127
thermal pressure coefficient, 84, 88
thermal wavelength, 67, 95, 204, 437,

527
thermalization, 71
thermodynamic inequalities, 123–124,

274
thermodynamic potentials, 75–80,

144–146, 271–276
– extremal properties of, 120–122
– table of, 80
thermodynamic processes, 92
thermodynamic quantities
– derivatives of, 82
thermodynamic inequalities, 89
time average, 497
time reversal
– and irreversibility, see irreversibility
– in the Boltzmann equation, 446–447
time-reversal invariance, 479
time-reversal transformation, 480, 501

time-scale separation, 461, 490
tin (allotropy of), 520
total (exact) differential, 84
trajectory, critical, 353
transfer matrix method, 349, 518,

545–547
transition
– thermally activated, 422
transition probability
– in the Boltzmann equation, 440, 469,

475
transition rate, see reaction rate, 425
translational degree of freedom, 225
translational energy, 225
transverse susceptibility, see suscepti-

bility
tricritical point, 405
triple line, 132
triple point, 132, 141–144
– center-of-gravity rule for, 143
triple-point cell, 144
two-fluid model, 217–221
two-level systems, 34, 48, 320–322, 326
two-phase region
– in the van der Waals theory, 250
two-point function, 383

uniaxial ferromagnet, 338
unit cell, 208
universality, 299, 338–339, 358
universality classes, 338
urn model, 511
– and the H theorem, 512
– and the Fokker–Planck equation, 512
– and the Langevin equation, 512
– and the paramagnet, 511

van der Waals
– coefficients, 246
– – numerical values for some materials,

560
– equation of state, 245, 256
– – dimensionless, 251
– isotherm, 246, 248
– S-shaped isotherm, 246
– theory, 242–257
van Hove singularities, 210, 211
Van Vleck paramagnetism, 284
van’t Hoff formula, 261, 267
vapor, 132
vapor pressure, 130, 138, 561
vapor pressure curve, 130–132
– see also evaporation curve
– in the van der Waals theory, 253, 256
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vapor pressure increase
– by surface tension, 159–160
vapor pressure increase by other gases,

156–159
vapor pressure reduction, 263, 266
vaporization curve, 333
vaporization transition, 333, 337
variables of state
– see also state functions
variance, 5
– see also mean square deviation
velocity
– equation of motion for, 461
– local, 448
vertex model, 518
vibrational degree of freedom, 230
vibrational energy, 227
virial, 55
virial coefficient, 237
– classical approximation for, 238–241
– for Lennard–Jones potential, 240
– quantum corrections to, 241, 531–536
virial expansion, 236–242
virial theorem
– classical, 54
– quantum statistical, 57

virtual process, 121
viscosity, 477
– see also shear viscosity
Von Neumann equation, 15

water, 134
– see also ice, vapor pressure of
– anomaly, 136
Weiss model, 328
white dwarfs, 188, 222
Wick’s theorem, 383
Wien’s displacement law, 201
Wien’s law, see radiation law
Wigner function, 523
Wilson’s RG scheme, 380, 422
work, 44, 60, 62, 76, 98, 100, 125
work engine, 126
work performance, see work

Yukawa potential, 307

Zeeman effect, 280
Zermelo’s paradox, 479, 481, 483
ζ-function, 199
– and Bernoulli numbers, 537
– generalized, 173




