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ABSTRACT 

 

Recent studies have shown that with appropriate operator decision support and with enough automation aboard 

unmanned vehicles, inverting the multiple operators to single-vehicle control paradigm is possible. These studies, 

however, have generally focused on homogeneous teams of vehicles, and have not completely addressed either the 

manifestation of heterogeneity in vehicle teams, or the effects of heterogeneity on operator capacity. An important 

implication of heterogeneity in unmanned vehicle teams is an increase in the diversity of possible team 

configurations available for each operator, as well as an increase in the diversity of possible attention allocation 

schemes that can be utilized by operators. To this end, this paper introduces a resource allocation framework that 

defines the strategies and processes that lead to alternate team configurations. The framework also highlights the 

sub-components of operator attention allocation schemes that can impact overall performance when supervising 

heterogeneous unmanned vehicle teams. A subsequent discrete event simulation model of a single operator 

supervising multiple heterogeneous vehicles and tasks explores operator performance under different heterogeneous 

team compositions and varying attention allocation strategies. Results from the discrete event simulation model 

show that the change in performance when switching from a homogeneous team to a heterogeneous one is highly 

dependent on the change in operator utilization. Heterogeneous teams that result in lower operator utilization can 

lead to improved performance under certain operator strategies. 

 

 

INTRODUCTION 

ncreasing use of automation in unmanned vehicle systems 

has shifted the human operator’s responsibility from 

manually controlling vehicles to managing vehicles at the 

supervisory control level. At the supervisory control level, 

implementation details of higher-level tasking initiated by the 

human is delegated to the automation onboard these vehicles 

(Sheridan, 1992). The reduced workload afforded by 

supervisory control has several implications. One such 

ramification is an increase in operator idle time, which can be 

used as a force multiplier that allows operators to supervise 

multiple vehicles simultaneously, hence inverting the current 

many-to-one ratio of operators to vehicles. Inverting the 

operator to vehicle ratio can also be used to reduce manning in 

situations where the number of vehicles needed to accomplish 

missions exceeds that of available operators, which is 

currently a significant problem in the Predator community.  

An increasing body of literature has examined the capacity 

of single operators to supervise multiple unmanned vehicles 

(Cummings et al., 2007; Olsen & Wood, 2003). This research 

has mainly focused on the supervision of a homogeneous set 

of unmanned vehicles. However, as unmanned vehicle system 

mission goals become increasingly demanding, the 

composition of unmanned vehicle (UV) teams is likely to 

involve vehicles of varying capabilities. For example, the 

military has proposed future operational concepts such as 

Network Centric Warfare (Alberts et al., 1999) and the Future 

Combat System (FCS) (Feickert, 2005) that require 

interoperability among unmanned vehicles of varying 

attributes.  

In addition to heterogeneity across vehicle types, even a 

single unmanned vehicle can have multiple payloads. Thus 

multiple mission objectives can drive heterogeneity in a 

system, which will ultimately lead to heterogeneity for 

operator tasks. 

These multiple dimensions of heterogeneity introduce a 

number of problems in applying previous models of 

homogeneous UVs to the heterogeneous case. The different 

vehicle types that the team could be composed of, and the 

different tasks that those vehicles could be assigned present a 

complex and mathematically intractable problem. Moreover, 

the method by which operators allocate their attention to the 

heterogeneous vehicles and/or tasks is likely to affect system 

performance. Capturing the various operator management 

strategies and their effect on system performance is another 

important variable that must be considered. 

This paper will address these problems by introducing a 

framework that utilizes resource allocation to describe the 

process of heterogeneous unmanned vehicle team creation, as 

well as the operator’s attention allocation strategies that define 

the operator’s interaction with the UV team. Using a discrete 

event simulation model that incorporates the framework 

considerations as well as a performance model, an experiment 

that addressed the impact of different heterogeneous vehicle 

team compositions and the choice of operator strategies on 

system performance will be discussed. 

 

BACKGROUND 

Previous research that examined the capacity of operators 

supervising multiple homogeneous robots by Olsen and 

Goodrich (2003) introduced several temporal-based metrics 

for describing operator interaction with unmanned vehicles. 

Neglect time (NT) was defined as the expected amount of time 

that a robot (which is representative of any unmanned vehicle) 

can be ignored before its performance drops below some 

acceptable threshold. Interaction time (IT) was defined as the 

average time it takes for a human to interact with the robot to 

ensure it is still working towards mission accomplishment. 

Olsen and Wood (2003) went on to propose that the number of 

I
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homogeneous robots or vehicles a single human can 

effectively control, termed “fan-out”, can be given by: 
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By the fan-out estimation, the total number of robots a 

single human operator can control makes use of the neglect 

time of the one robot and converts it into ITs for additional 

robots. The timeline presented in Figure 1a can be seen as 

composed of segments, each of length NT+IT. In the single 

robot example, the operator interacts with the robot for length 

of time IT and then ignores it for length of time NT during 

each segment. In order to maximize the number of robots 

controlled, the NT time partition is replaced by ITs for 

additional robots (Figure 1b). 

While the fan-out estimate of Equation 1 represents a 

theoretically perfect system, in terms of human-automation 

interaction, the original fan-out approach makes several 

assumptions that need to be addressed:  

- Requests for human interaction from vehicles are serial and 

instantaneously met, so that no queues develop while robots 

are waiting on the operator. 

- The operator is perfectly efficient and does not lie idle while 

vehicles need attention. 

- The operator appropriately allocates his/her attention to the 

vehicle in need. 

Because these assumptions cannot hold, an additional 

critical variable is needed when modeling human control of 

multiple vehicles, which is the concept of Wait Time (WT). 

Although it is possible for human beings to multi-task, 

humans act as serial processors in that they can only solve a 

single complex task at a time (Broadbent, 1958; Welford, 

1952). While operators can rapidly switch between cognitive 

tasks, any sequence of tasks requiring complex cognition will 

form a queue and consequently, wait times will build 

(Cummings et al., 2007). Wait time can occur when 1) a 

vehicle is neglected while the operator is busy interacting with 

another vehicle, or 2) when an operator requires re-orientation 

time while switching between vehicles, or 3) when a vehicle is 

neglected due to lack of operator situation awareness.  Since 

wait times can negatively affect the actual number of vehicles 

that can be effectively controlled, Cummings et al. (2007) 

proposed a modification to Equation 1 to include the concept 

of wait times as shown in Equations 2 and 3. 
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Equation 2 categorizes total system wait time as the sum 

of: 

- The interaction wait times, which are the portions of IT that 

occur while a vehicle is operating in a degraded state (WTI) 

while the operator is attempting to service it. 

- Wait times that result from queues due to near-simultaneous 

arrival of problems (WTQ) and the inability of an operator to 

instantaneously solve a problem.  

- Wait times due to operator loss of situation awareness 

(WTSA), which occurs when an operator does not realize a 

vehicle needs servicing. 

An example of WTI is the time that an unmanned vehicle 

idly waits while a human re-plans a new route. WTQ occurs 

when a second vehicle sits idle, also waiting for operator 

interaction, and WTSA accumulates when the operator doesn’t 

even realize a vehicle is waiting for service.  

Although Equation 3 is more conservative than Equation 

1 because it captures wait times, both these equations do not 

link fan-out to measurable effective performance. In both of 

these equations, performance of each individual vehicle is 

guaranteed through the thresholds set for NT/IT as well as by 

ensuring that each vehicle is neglected for a period no greater 

than NT and serviced for a period no less than IT. There is, 

however, no system performance metric that the equations 

utilize to ensure that the vehicle capacity level predicted 

ensures optimal system level performance. 
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Figure 1. The relationship of NT and IT for (a) a single 

vehicle, and (b) multiple vehicles  
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Further work by Cummings et al. (2007) proposed a cost 

performance model that, instead of achieving maximum limit 

prediction, is designed to find a satisficing interval of vehicle 

team sizes such that mission performance is maximized. As a 

performance metric, Cumming et al. (2007) suggested the use 

of a system performance metric that evaluates overall mission 

performance based on the mission objectives. By linking a 

cost equation to the number of vehicles that the operator 

would be supervising, an optimized performance metric was 

utilized to derive a robust interval of vehicle team sizes that 

best achieves the mission objectives, as represented in Figure 

2. The cost equation included the cost of missed targets as 

well as the operational cost of UAVs.   

In order to model wait times, Cumming et al. (2007) 

proposed a queuing model of the human operator servicing 

multiple homogeneous UVs. In the single-server queuing 

network, the events that arrive are vehicles that require 

intervention to bring them above some performance threshold 

(Figure 3). Although this model is effective in providing a 

cost-performance trade space for evaluating the effectiveness 

of vehicle team sizes, the model does not address the 

heterogeneity dimensions as previously discussed. 

 

HETEREOGENEITY FRAMEWORK 

In order to develop better estimates of both human 

capacity for heterogeneous UV teams as well as the impact of 

varying mission tasks and vehicles on operator performance, 

we first created a framework that captures the processes by 

which unmanned vehicle teams are created and assigned to 

human operators. It was also important to define any human 

interaction with unmanned vehicle teams that might be 

affected by heterogeneous vehicles/tasks. 

Based on the idea of resource allocation, this framework 

is presented in Figure 4. The framework incorporates the 

allocation of three hierarchical resources: vehicles, human 

operators, and human attention. The first two resources, 

vehicles and human operators, are tangible physical assets that 

are allocated during mission planning, and it is through the 

allocation of these assets that vehicle teams are defined and 

assigned to operators. The third resource, operator attention, is 

an intangible asset whose allocation strategy defines the 

interaction of the operator with the team of unmanned 

vehicles. This framework is not meant to be a detailed 

description of every aspect of unmanned vehicle assignment, 

but is instead meant to highlight the role of resource allocation 

strategies in influencing the effectiveness of human-

vehicle/task interaction. 

Starting from the top left of Figure 4, a vehicle allocation 

strategy is depicted as the method by which vehicles, based on 

their capabilities (which includes payloads, vehicle 

specifications, operational domain, and levels of automation), 

are assigned mission-based tasks that collectively satisfy the 

mission objectives. The objective of the vehicle allocation 

strategy is to break down the mission objectives into tasks that 

can be allocated to the different vehicles. The choice of 

vehicle allocation strategies depends on the vehicle 

capabilities, the mission objectives, and the timing/control 

constraints imposed by the mission specification. 

Next, a personnel allocation strategy is utilized in order to 

allocate an operator unit (at the organizational and individual 

level) to one or more mission task(s). The choice of personnel 

allocation strategies depends on the capabilities of the 

operators, as well as the interfaces available to them. 

Together, a vehicle allocation strategy and a personnel 

allocation strategy identify the particular vehicles and mission 

tasks that will be the responsibility of each operator unit. 

These initial two steps in the framework proposed in the 

preceding discussion are not the only possible format. It is 

possible for example to assign vehicles to personnel instead of 

assigning them to mission tasks. The main theme, however, 

across any allocation strategy combination is that, vehicles, 

tasks, and personnel need to be assigned to each other in order 

to define the vehicle/task team that each operator unit will be 

supervising.  

The third and final strategy in the framework, the human-

attention allocation strategy, is a function of the level at which 

the operator interacts with each vehicle/task, as well as the 

order by which the different vehicles/tasks are serviced. 

Operator resource allocation strategies are depicted in Figure 4 

as dependent on the operator-task assignment, the importance 

of the mission tasks, and the urgency of the mission tasks.  
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Figure 2. Cost vs. Number of Vehicles 
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The significance of the overarching mission description 

block on the left hand side of Figure 4 represents the 

constraints imposed on the different strategies throughout the 

mission planning and re-planning phases. An example of this 

is a time on target (TOT) constraint that requires that an ISR 

task be assigned to a UAV over a UUV due to the latter 

vehicle being unable to reach the area of interest in time.  

The right hand side of Figure 4 represents the possible 

effects of the allocation strategies for all three resources on 

overall mission performance. For example, in a two-operator 

mission that requires the completion of two surface imagery 

tasks as well as two other target designation tasks, alternate 

personnel allocation strategies are possible. Assigning each 

operator two of the same tasks will result in mission 

performance that likely differs from that resulting from 

assigning each operator to one of each task type. The extent of 

the effect of alternate human-attention allocation strategies on 

overall mission performance is the subject of interest in this 

paper, and will be discussed further in the experiment section. 

First, a more detailed analysis of human-attention allocation is 

presented.  

Human Attention Allocation  

This part of the framework represents the attention 

allocation strategies that are available to the operator for 

attending to the different vehicles/tasks. Whereas vehicle and 

personnel allocation is normally the result of careful advanced 

planning, human-attention is allocated in real-time once the 

mission is underway. Human-attention allocation strategies are 

also likely to be dependent on operator training and 

experience, which could provide greater consistency in 

attention allocation. 

  In supervising an unmanned vehicle mission, the 

operator’s role is that of a mission manager whose task is to 

increase the performance of the unmanned vehicle mission. 

The operator can interact with an unmanned vehicle when 

either a) the automation is acting sub-par and the operator 

believes that interaction can increase performance, or b) when 

an event occurs that requires human judgment and reasoning, 

something the automation is incapable of handling. For 

example, in the case of an unmanned aerial vehicle that is 

assigned a laser designation task, the operator could re-plan 

the vehicle path generated by automation in order to better 

meet a time-on-target restriction. The operator’s judgment is 

also critical in deciding whether a specific target is the one 

that should be designated. When supervising multiple 

unmanned vehicles, the operator attention allocation strategy 

will dictate the method by which the operator will supervise 

the different vehicles. 

An overall attention allocation strategy can be dissected 

into four main components, which will be discussed in greater 

detail below: a) a neglect strategy, b) an interaction strategy, 

c) a switching order strategy, and d) a complexity mitigation 

strategy.  

 

Neglect Strategy. The first component of human-

attention allocation is the operator neglect strategy. The 

neglect strategy affects the duration of time for which the 

operator neglects the unmanned vehicles; i.e., the frequency 

by which the operator attends to the vehicles. The neglect 

strategy can vary per vehicle, and can be thought of as the 

scheme by which the operator distributes his/her attention 

across the different vehicles. A strategy where the operator 

services the vehicle only when necessary, and otherwise 

allows the vehicle’s automation to undertake tasks can be 

referred to as a neglect-macro-management strategy. On the 

other hand, a strategy where the operator constantly interferes 

with the vehicle’s automation can be referred to as a neglect-

micro-management strategy. Other neglect strategies can exist 

between these two extremes. 

 

Interaction Strategy. The second component of human-

attention allocation is the operator interaction strategy. The 

interaction strategy affects the duration of time the operator 

services the unmanned vehicle. A strategy where the operator 

uses any provided automated decision support to achieve 

increased vehicle performance can be referred to as an 

interaction-macro-management strategy. On the other hand, a 

strategy where the operator services the vehicle for a period 

longer than that needed by the vehicle can be referred to as an 

interaction-micro-management strategy. An example of an 

interaction-micro-management strategy is one where an 

operator insists on manually planning a vehicle path when an 

automated path planner is available. Other interaction 

strategies can exist between these two extremes.  

 

Complexity Mitigation. The third component of human 

behavior that influences attention allocation is the mitigation 

of system complexity through the use of cognitive 

abstractions. For example, operators can use mental 

abstractions to form vehicle groupings based on one or more 

criteria in order to reduce the complexity of supervising all the 

vehicles (Goodrich et al., 2007; Histon et al., 2002). Examples 

of criteria for grouping vehicles include the similarity of 

vehicle capabilities or task types. The result of such grouping 

abstractions is to organize the vehicles into relevant groups in 

order to simplify the task of managing them. For example, an 

operator that is supervising multiple unmanned vehicles in a 

mission that includes coastal and inland surveillance might 

elect to divide the vehicles into two groups depending on their 

region of operation. 

 

Switching Order. Finally, the fourth component of 

human-attention allocation is the order by which the different 

vehicles are serviced. When multiple vehicles require operator 

attention simultaneously, the operator must select the next 

vehicle to be serviced. Whereas this selection process is 

relatively simple in the homogeneous case, it is much more 

involved in the heterogeneous case. In the heterogeneous case, 

the difference in vehicles capabilities and their assigned tasks 

allows for more diverse selection strategies. For example, an 

operator that is supervising two UAVs with heterogeneous 

tasks can service the vehicles on a first come, first serve basis 

(FIFO) or allocate attention to the UAVs based on the priority 

of their tasks (the latter scheme is formally known as 

preemptive priority queuing). The order by which the vehicles 
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are serviced affects the total time that vehicles spend in the 

system, including the time they spend waiting for service as 

well as their processing time. In addition to having an effect 

on wait times, when a human operator switches between two 

different tasks, this is accompanied by a mental model switch 

that comes at a time cost, i.e.,  a switch cost (Goodrich et al., 

2005; Squire et al., 2006). Thus switching between different 

combinations of heterogeneous vehicles can lead to different 

switch costs. 

 

OPERATOR MODEL 

To examine the impact of attention allocation strategies 

on overall system performance, a discrete event simulation 

(DES) model of a heterogeneous unmanned vehicle system 

was developed. The DES model, notionally shown in Figure 5, 

includes a) a queuing model of the human operator 

supervising multiple UVs, and b) a component for the ability 

to measure overall system performance, which will be 

discussed in the next section. In order for the queuing model 

to represent the ideas developed in the framework in Figure 4, 

two ideas needed to be incorporated. First, due to the different 

team configurations possible through the vehicle and 

personnel allocation strategies, the queuing model needed to 

support teams with heterogeneous vehicle capabilities, 

heterogeneous vehicles tasks, and variable team sizes. Second, 

in order to study the effect of alternate attention allocation 

strategies on mission performance, the ability to modify the 

strategies was included in the model. Finally, the model 

captured all three wait time components, WTQ, WTSA, and 

WTI in order to provide realistic data to the performance 

model. For equations and a more detailed description of the 

calculations, see the Appendix. 

Overview 

The operator model is based on the single server queue 

with multiple input streams (Figure 6). Each input stream is 

associated with one of the unmanned vehicles in the team. A 

team of size n is therefore modeled with n input streams. In 

the model, each vehicle is represented by an NT/IT pair. NT 

represents the expected value of the distribution of the 

duration of time for which the vehicle can be neglected before 

its performance drops below some acceptable threshold. IT 

represents the expected value of the distribution of the 

duration of time needed for a single interaction between the 

operator and that vehicle in order to raise performance to some 

acceptable threshold level. 

Since the vehicles belonging to the n input streams have 

different neglect and interaction distributions, the rates at 

which the operator will actually neglect and attend to the 

vehicles could vary from vehicle to vehicle. This is captured 

by the separate arrival streams which allow distinct arrival and 

service rates for each stream. These arrival rates include both 

exogenous events (event arrivals from the external 

environment) and endogenous events (those events the 

operator chooses to attend to). Both the arrival rates and 

service rates of events depend on a) the operator’s attention 

allocation strategies, and (b) wait times. 

Event Arrival Rate 

The arrival rate of events from stream i, which represents 

the rate at which the operator intends to service the vehicle 

associated with stream i, is a random process. The expected 

value of this random process is NTi’, which is the average 

duration of time for which vehicle i is neglected following an 

interaction. Note that the operator’s decision to service a 

vehicle does not necessarily signify the beginning of an 

interaction. The period between the end of a neglect period 

and the beginning of an interaction depends on queuing wait 

times which are captured separately as a dependent variable. 

NT’ is a function of two main components; a) the operator’s 

neglect strategy and, b) loss of situational awareness (Equation 

4). 

 

iii NTNTLONNT **'
χ+=                                  (4) 

 

where LON (level of neglect) represents the operator’s 

neglect strategy taking on values between 0 and ∞, and χ 

represents the operator’s loss of situational awareness taking 

on values between 0 and 0.25. 

 

Neglect Strategy. The first term in Equation 4 represents 

the period for which the operator neglects vehicle i, excluding 

any effect due to loss of situational awareness (SA). This term 

is a product of two variables, LON and NTi. NTi is the neglect 

time associated with the vehicle represented by stream i. By 

definition, this is the average length of time that the operator 

should interact with vehicle i for in order to bring performance 

up to some acceptable threshold. The product of LON and 
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NTi, however, represents the average rate at which the 

operator actually neglects the vehicle, which is not necessarily 

equivalent to NTi. 

 The LON variable, which can take on any positive real 

number, represents the operator’s neglect strategy. For 

example, an LON of 1 would result in a neglect macro-

management strategy where the operator attempts to service 

vehicle i at a frequency equivalent to NTi, the rate at which 

vehicle i needs attention. A neglect micro-management 

strategy on the other hand, is represented by an LON less than 

1 which means the operator services the vehicle more often 

than the vehicle needs attention. 

 

Wait Times due to Loss of Situational Awareness. The 

second term in Equation 4 represents the effects due to loss of 

situational awareness (SA). SA is defined as the combination 

of perception of elements in the environment, the 

comprehension of their meaning, and the projection of the 

their status in the future (Endlsey, 1995). The effect of low SA 

is to create additional vehicle wait time (WTSA) which 

increases NT’, due to the operator taking longer to notice the 

vehicle (Cummings et al., 2007).  

In order to capture SA, this model builds on an 

assumption that SA is related to operator utilization  (Endsley, 

1993). When operators are under high levels of utilization, it is 

assumed that they are too busy to accumulate the information 

that is required to build SA. At the same time, when operators 

are under-utilized, it is presumed that due to a low level of 

arousal, they could overlook information from the 

environment, which would also lead to low SA.  

The χ variable in Equation 4 is related to operator 

utilization through a parabolic function that is concave 

upwards (see Appendix for the specific formulation). This 

implies that at both high and low operator utilization, χ 

increases according to a quadratic law and therefore increases 

NT’ correspondingly. The parabolic relationship is inspired by 

the Yerkes Dodson Law (Yerkes & Dodson, 1908), which 

relates operator utilization to performance. The χ variables is 

multiplied by NT in order to capture the fact that the effect on 

NT’ due to loss of SA is a function of the vehicle’s neglect 

time. The reasoning behind this is that vehicles with larger 

neglect times are serviced less often, and are therefore more 

likely to be overlooked than vehicles that are serviced more 

frequently. 

Event Service Rate 

Also associated with each input stream is a service rate 

which is based on the length of time it takes the operator to 

interact with a particular vehicle, corresponding to the arriving 

event. The expected value of this random process is ITi’, 

which is the average length of time for which vehicle i is 

serviced. ITi’ is a function of two main components; a) the 

operator’s interaction strategy, and b) wait times due to 

context switching (Equation 5). 

 

iii ITITLOIIT *)(*'
τϕ ++=                                 (5) 

 

LOI (level of interaction) represents the operator’s 

interaction strategy, taking on values between 0 - ∞. φ is a 

coefficient for calculating the time penalty due to switching 

between vehicles with heterogeneous capabilities, and τ is a 

coefficient for calculating the time penalty due to switching 

between vehicles with heterogeneous tasks. 

 

Interaction Strategy. The first term in Equation 5 

represents the length of time for which an operator interacts 

with a vehicle excluding any wait times due to context 

switching. This term is a product of two variables, LOI and 

ITi. ITi is the interaction time associated with the vehicle 

represented by stream i. By definition, this is the expected 

amount of time for which the operator needs to interact with 

vehicle i in order to raise performance above some acceptable 

threshold. 

The LOI variable, which can take on any positive real 

number, represents the operator’s level of interaction. For 

example, an LOI of 1 would result in an interaction macro-

management strategy where the operator services vehicle i for 

lengths of time equivalent to ITi, the expected length of 

interaction time required by vehicle i. The interaction strategy 

can vary from the operator interacting with vehicle i for a 

length of time much larger than that a priori designed vehicle 

ITi (such as is the case when the operator spends a lot time 

interacting with a vehicle each time that vehicle is serviced) to 

a strategy where the operator services vehicle i for a length of 

time equivalent to a fraction of ITi (such as is the case when 

the operator underestimates vehicle i’s need for operator 

attention and therefore services vehicle i for shorter periods 

than required).  

 

Wait Times due to Context Switching. The second term 

in Equation 5 is a function of the context switching times that 

arise when servicing a specific vehicle. When a human 

operator switches between two different tasks, this is 

accompanied by a mental model switch that comes at a time 

cost, also known as a switch cost. The switch cost is not 

limited to switching between cognitively complex tasks, but 

exists even when humans switch between cognitively simple 

ones (Rogers & Monsell, 1995). For example, Goodrich et al. 

(2005) demonstrated that the existence of context switching 

costs in multi-vehicle control is unavoidable, and that the 

amount of time required to switch between vehicles can be 

substantial. As a consequence, longer switching times can 

dramatically decrease the upper bound on the number of 

manageable robots (Goodrich et al., 2005). For this DES 

model, context switching was accounted for whenever the 

current vehicle’s capability or its task type differed from that 

of the last vehicle serviced (these effects are captured by the φ 

and τ variables respectively). The effect of switching times 

creates additional interaction wait times (WTI) which 

increases ITi’, due to the operator taking longer to interact 

with the vehicle. The (φ + τ) factor is multiplied by IT in order 

to capture the fact that the context switching time effect on IT’ 

is a function of the vehicle’s interaction time. 
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Switching  Between Events 

In order to model the switching strategy of the operator, 

the type of queue can be varied to represent different strategies 

Examples of switching strategies that can be modeled include 

the first-in-first-out (FIFO) queuing scheme as well as the 

highest attribute first (HAF) strategy. The HAF strategy is 

similar to a preemptive priority scheme in that high priority 

events are serviced first except that there is no pre-emption. 

Therefore if an event is generated with a priority higher than 

any of the events already in the system, it will be moved to the 

front of the queue but will not preempt a lower priority vehicle 

that is already being serviced. 

 

PERFORMANCE METRIC 

The model just described allows for the manipulation of 

team heterogeneity as well as the strategies utilized by 

operators in allocating their attention. In order to evaluate the 

effectiveness of alternate strategies while supervising teams 

with different levels of heterogeneity, a system performance 

metric was developed. 

Initial research on operator capacity in supervising 

homogeneous vehicle teams focused on individual vehicle 

performance metrics. In some cases, acceptable levels of 

performance were defined as occurring when vehicles were 

not neglected beyond their predefined neglect time. 

Later work (Cummings et al., 2007) proposed using a 

mission performance metric that is focused more towards 

system performance than individual vehicle performance. In 

this case, metrics focused on cost equations that measured 

completion of mission objectives. The benefit of utilizing a 

system performance metric is that it measures the combined 

performance of all the vehicles towards the mission goal 

which is a better indicator to mission commanders of overall 

mission progress. However, evaluating systems based on such 

performance metrics tends to focus on just the reward for 

objectives completed, and hence overlooks any unacceptable 

individual vehicle performance. 

For this research effort, we have developed a cost 

performance model that captures system performance, but also 

ensures a heavy penalty when individual vehicle performance 

falls below a certain threshold. This performance metric 

measures different variables from the operator model in order 

to evaluate system performance (Equation 6). 

                            

                  (6) 

 

 

Each vehicle’s contribution to the performance metric is 

captured through one term in Equation 6. The Pi factor in each 

term represents the quality of the operator’s interaction with 

that vehicle. The MIN(1, ∆i) factor represents the timeliness of 

the operator’s interaction, and therefore ensures that the value 

added due to the operator’s interaction is weighted by the 

punctuality of that interaction. The metric therefore reflects 

both the timeliness of interaction as well as the quality of 

interaction. Finally, each term in the equation is weighted by 

the priority of that vehicle, which is dependent on the value of 

that vehicle’s task as a proportion of the overall mission 

objective. These priorities can also be predefined during 

mission planning and might be dictated by rules of 

engagement. Mission performance is therefore most sensitive 

to operator performance in supervising vehicles whose 

assigned tasks have significant value to the mission objective. 

A vehicle that underperforms on an individual basis will 

negatively impact the performance metric, and at the same 

time, the metric measures the total contribution of all vehicles 

which serves as an overall mission performance indicator. 

   

One important factor that influences both operator and 

mission performance is the quality of the human-computer 

interface and associated decision support. By comparing 

performance resulting from alternate strategies, a conclusion 

can be made as to what strategies promote the best 

performance trends. This can encourage system designers to 

design interfaces that amplify these strategies and mute those 

that result in less effective performance. A study was therefore 

conducted to provide as a preliminary investigation of the 

effects of alternate resource allocation strategies on system 

performance. 

  

EXPERIMENTAL STUDY 

The focus of this experiment was to determine the effects 

of a subset of operator resource allocation strategies on 

mission performance, as the level of heterogeneity in the 

unmanned vehicle team is varied. Three independent variables 

were of interest in this experiment: team-heterogeneity, level 

of neglect (LON) strategy, and the operator switching strategy. 

Team-Heterogeneity Factor 

For the team-heterogeneity factor, four levels were 

utilized. One of those levels was a homogeneous team, and the 

other three each represented different heterogeneous team 

configurations. 

The first level, team1, was representative of a 

homogeneous team which consisted of three UAVs each doing 

a surface imagery task. The NT for each vehicle was drawn 

from a normal probability distribution with a mean of 60 

seconds and a standard deviation of 6 seconds, or 10% of the 

mean. 

 The second level, team2, was a heterogeneous team that 

was created by replacing a single UAV from the homogeneous 

team with an unmanned surface vehicle (USV). This 

heterogeneous team therefore consisted of two UAVs and a 

USV all assigned surface imagery tasks. The mean of the NT 

distributions for the UAVs was 60 seconds, whereas the mean 

of the distribution for the USV was 30 seconds which 

represented the fact that a surface vehicle might be more 

susceptible to detection than a UAV, and therefore needed 

extra attention from the human operator. The NT standard 
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deviation for the two UAVs was 60 seconds and 30 seconds 

for the USV (the standard deviations were chosen to be 10% 

of the corresponding NTs). 

The third team, team3, was a heterogeneous team that was 

created by replacing the task of a single UAV in the 

homogeneous team with a communications task. This 

heterogeneous team therefore consisted of three UAVs, two of 

which were each doing a surface imagery task, with the third 

vehicle served as a communications relay. The means of the 

NT distributions for the UAVs doing the surface imagery task 

were 60 seconds, whereas the mean of the distribution for the 

UAV doing the communications task was 120 seconds, which 

represented the fact that a vehicle performing a 

communications task would require modest operator 

intervention. The NT standard deviation for the first two 

UAVs was 60 seconds and 120 seconds for the 

communications UAV. 

Finally, team4 was a heterogeneous team that was created 

by having three different vehicle/task pairs, each having a 

different mean for their NT distributions. Team4 consisted of 

a USV and a UAV each assigned a surface imagery task, as 

well as a UAV assigned a communications task. 

For all four factor levels, all vehicles had a mean IT of 10 

seconds and an IT standard deviation of 3 seconds. The above 

data is summarized in Table 1. 

The general team assignments represent increasing 

heterogeneity. In team2, heterogeneity was induced by 

introducing a low NT vehicle that is likely to increase overall 

operator task load. In team3 on the other hand, heterogeneity 

was induced by introducing a high NT vehicle that is likely to 

be less demanding than the low NT vehicle added in team2. In 

team4, just like the homogeneous team, the mean NT across 

all three vehicles was 60 seconds. Unlike the homogeneous 

team however, there was a spread in NTs for team4. 

LON Factor 

For the experiment, the operator level of neglect factor 

consisted of three levels; Macro, Macro/Micro, and Micro. 

The three factor levels represented alternate operator neglect 

strategies. The neglect strategy was represented by the LON 

variable in the operator discrete event simulation model. The 

Macro neglect strategy was that corresponding to an LON of 

1. This, in essence, represented a situation where NT’ was 

equivalent to NT, excluding any effects due to loss of 

situational awareness. In the Macro case therefore, the 

operator decided to service vehicles exactly at the NT mark 

(whether the operator does so depends on any wait times that 

could precede the interaction). The Macro/Micro strategy was 

represented by setting NT’ to be equivalent to ¾ NT. This 

strategy represented an operator that is partly attempting to 

micromanage the vehicles, but doing so at a moderate level. 

Finally, the Micro strategy represented an extreme case of 

micromanaging and was quantified by an NT’ equivalent to ½ 

NT. 

Switching Factor 

The switching factor consisted of two factors: The FIFO 

and HAF queuing strategies discussed previously. The two 

factor levels represented alternate switching strategies by 

which the human operator can service vehicles when there is 

more than one request at the same time, and the operator is 

faced with the choice of selecting which vehicle to service. 

Under the FIFO strategy, operators service vehicles on a first-

come basis. The HAF strategy relies on events having a 

specific criterion and the operator selects the vehicle with the 

highest criteria value. The priorities for this experiment were 

as follows: The USV performing an ISR task was assigned the 

highest priority, followed by the UAV performing the ISR 

task, and the UAV assigned the communications task having 

the lowest priority. Alternate priority-assignment schemes 

were not investigated in this experiment. 

The Simulation 

There were 21 treatments in total with three missing 

treatments due to the incompatibility of the HAF queuing 

scheme and the homogeneous team factor levels (Table 2).The 

discrete event simulation modeling language used was 

Arena
®
, and the simulations were run on a Fujitsu T4000 

series tablet with a 1.80 GHz Intel Pentium processor. 

Thirty simulation replications were conducted for each 

treatment condition. In each replication, data on two 

Table 1. Team Configurations 

 Vehicle1 Vehicle2 Vehicle3 

 NT IT NT IT NT IT 

Team1 60 10 60 10 60 10 

Team2 30 10 60 10 60 10 

Team3 60 10 60 10 120 10 

Team4 30 10 60 10 120 10 

  

Table 2a. Test matrix for sub-experiment #1 

FIFO 

 Macro Macro/Micro Micro 

Team1 o o o 

Team2 o o o 

Team3 o o o 

Team4 o o o 

 

Table 2b. Test matrix for sub-experiment #2 

FIFO 

 Macro Macro/Micro Micro 

Team2 o o o 

Team3 o o o 

Team4 o o o 

HAF 

 Macro Macro/Micro Micro 

Team2 o o o 

Team3 o o o 

Team4 o o o 
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dependent variables was collected. The first dependent 

variable ζ, the performance metric introduced in the previous 

section, measured average vehicle performance for the whole 

mission. The second dependent variable measured was 

operator utilization.  

 

RESULTS 

In this section, the results from the experimental study 

described in the previous section are presented. Due to the fact 

that a discrete event simulation was used and is therefore 

lacking the variance that real subject data would have, a 

family-wise significance level of 0.001 was used wherever 

needed. 

Sub-Experiment 1 

The first of these studies was a two factor study with the 

switching factor fixed at the FIFO level. Data from the 12 

treatments that included the FIFO factor level were utilized. 

Using the Pearson correlation test, the dependent variables 

were found to be highly correlated to each other (utilization-

performance -.901). Plotting performance as a function of 

utilization, Figure 7, it is evident that a curvilinear relationship 

exists between these two variables and that the linear 

correlation calculated is likely to be the result of a lack of 

points at lower utilization levels. The curvilinear relationship 

seen here can be associated with the parabolic dependence of 

NT’ on utilization described previously in Equation 4. NT’ 

was described as being dependent on operator utilization, with 

higher utilization levels causing loss of SA and an ensuing rise 

in NT’. 

At a significance level of 0.001, a 4x3 MANOVA (team-

heterogeneity x LON) revealed through the Wilk’s Lambda 

test significant main effects for both factors, as well as a 

significant two-factor interaction (p < 0.001). It was also 

determined through a univariate analysis that the two-way 

interaction was significant for both DVs. The next step was 

therefore to compare simple effects for each of the DVs. 

The box plots for the performance DV are presented in 

Figure 8. For the treatment means that had the smallest 

differences between them, nine simple contrasts using the 

Bonferroni procedure were conducted in order to check for 

significance. All mean contrasts were significant (highest p-

value < 0.0001) except for the contrasts between the Team3 

treatment means for Macro and Macro/Micro (p-value = 

0.0003), as well as the Macro treatment means for Team1 and 

Team3 (p-value = 0.0006). 

The box plots for the utilization dependent variable are 

presented in Figure 9. For the treatment means that had the 

smallest difference between them, three simple contrasts using 

the Bonferroni procedure were conducted in order to check for 

significance. All contrasts resulted in significant differences 

(highest p-value < 0.0001). 

Sub-Experiment 2 

In the second sub-experiment, the switching factor was 

varied and so the team1 level for the team-heterogeneity factor 

was dropped since it was incompatible with the HAF queuing 

scheme (3x3x2 study). At a significance level of 0.001, a 

3x3x2 MANOVA (team-heterogeneity x LON x switching) 

revealed through the Wilk’s Lambda test significant main 

effects for all three factors (p < 0.001). The test did not reveal 

significance for the three way interaction (p = 0.418), the LON 

x switching 2-way interaction (p = 0.033), or the team-

heterogeneity x switching 2-way interaction (p = 0.011). There 

was, however, a significant team-heterogeneity x LON 2-way 

interaction (p < 0.001). A univariate analysis revealed that the 

team-heterogeneity x LON two-way interaction was 

significant for both DVs (p < 0.001), and that the switching 

main effect was significant only for the utilization DV 

(utilization: p < 0.001; performance: p = 0.0031). Since the 

effect of the team-heterogeneity x LON interaction on the DVs 

was investigated in the first sub-experiment, the focus for this 

sub-experiment was on the switching factor main effect on the 
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Figure. 7. Performance vs. average Operator Utilization   
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utilization DV. It was found that under the HAF strategy, 

average operator utilization was significantly higher than 

under the FIFO strategy (p-value < 0.001). The estimated 

marginal means plot for the utilization DV is shown in Figure 

10. 

 

DISCUSSION 

Using the results from the sub-experiment 1, the effects of 

two different elements on system performance and operator 

utilization will be addressed, including the effects of team 

heterogeneity, and the effects of alternate LON strategies. 

Then, using the results from the second experiment, the effect 

of switching strategies on operator utilization will be 

addressed. 

Team Heterogeneity and Level of Neglect 

 The first sub-experiment showed that the effect of 

heterogeneity in UV teams on system performance and 

operator utilization depends on the type of heterogeneity 

present. When heterogeneity was created by replacing one of 

the vehicles in a homogeneous team with another vehicle/task 

pair that had a smaller NT (team2), performance decreased 

and operator utilization increased. This can be attributed to the 

fact that the lower overall NT in team2 created an increase in 

operator utilization, which likely led to increased wait times 

and degraded performance. Team2 also experienced context 

switching times, which did not exist for the homogeneous 

team, and this further exacerbated the performance reduction. 

However, when heterogeneity was created by replacing 

one of the vehicles in the homogeneous team with another 

vehicle/task pair that had a larger NT (team3), the results were 

different. When operators had a Macro level of neglect 

strategy, there was no statistically significant difference in 

performance between the two teams. Although, the 

introduction of the high NT vehicle/task pair significantly 

reduced operator utilization for team3, the drop in utilization 

was not enough to counteract the context switching times 

experienced when supervising team 3. However, under more 

Micro LON strategies, the utilization drop was even larger 

when supervising the heterogeneous team which created 

significantly better performance. This suggests that by 

introducing certain forms of heterogeneity that decrease the 

average NT of the team, it is possible to reduce utilization and 

even increase performance at certain levels of LON. 

Finally, team4, which had the greatest heterogeneity 

across NTs, yielded both significantly higher utilization and 

lower system performance. One explanation for this result is 

that although the average NT across vehicles was the same for 

both teams 1 and 4 (60 s), heterogeneity was only present in 

team4 which made it underperform due to the existence of 

context switching times. Deeper analysis however should be 

conducted in order to realize whether or not the size of the 

spread in NTs across vehicles has any effect on the increased 

utilization and reduced performance. 

It is also important to note that for all four teams, when 

going from a Macro to a Macro/Micro strategy or from a 

Macro/Micro to a Micro strategy, average operator utilization 

increased significantly, as expected.  

It was also the case that the increase in utilization was 

accompanied by a significant drop in system performance with 

the exception that in team3, when going from Macro to 

Macro/Micro LON, there was no significant performance 

change. For the cases where there was a significant 

performance drop, there are two likely explanations. First, 

increased operator utilization likely led to reduced situation 

awareness (or increased wait time due to loss of situational 

awareness). Second, the increased rate of interaction with 

vehicles in the more Micro levels resulted in saturated 

operators. This, in effect, created a large increase in queuing 

wait times which were measured in this study but not analyzed 

as a DV. Both, increased WTQ and WTSA, are detrimental to 

performance due to the fact that vehicles were likely to be 

serviced at periods greater than their assigned NT. 

In the case of team 3, although utilization increased 

significantly when going from Macro to Macro/Micro, 
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Figure. 9.  Box plot for Utilization DV 
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utilization was not likely to increase too greatly since 

utilization was already low in the Macro case. Therefore the 

increase in utilization was unlikely to cause a reduction in 

situational awareness, which according to the χ variable occurs 

as utilization increases much higher than 50% (see Appendix). 

In addition, any increase in queuing wait times was likely to 

impact the vehicle with the longer neglect time which was a 

lower priority vehicle (the assumption that high NT vehicles 

are lower priority was just an assumption for this study and 

will change in future studies). Since lower priority vehicles 

have a lower impact on performance (according to the model 

described earlier), any wait times experienced by the high NT 

vehicle/task did not cause a significant decrease in 

performance. 

Switching Strategy 

In sub-experiment 2, utilization increased significantly 

when going from a FIFO to an HAF switching strategy. This 

can be attributed to the fact that by moving high priority (low 

NT) vehicles to the top of the queue, average queuing wait 

times for the low priority vehicles increased (since they would 

always have to wait behind the high priority vehicles). Since 

the length of time it takes an operator to interact with a vehicle 

(IT’) is proportional to the size of queuing wait times 

(according to the current model, see Appendix), this resulted 

in longer interaction times and hence higher average operator 

utilization. 

Although there was a significant increase in utilization, 

the results showed no significant change in performance under 

the two switching strategies. Although it was hypothesized 

that the HAF strategy would increase performance by 

reducing the queuing wait times for the highest priority 

vehicles that have the largest contribution on performance, this 

was not realized. A possible explanation for this is that since 

the size of the vehicle teams in this experiment was small, the 

reduction in queuing wait times was not likely to be 

substantial. For example, in the FIFO, strategy, the highest 

priority vehicle would, in the worst case, be waiting in a queue 

with 2 other vehicles ahead of it.   

The important message from this analysis is that when 

considering the effects of alternate switching strategies, the 

number of vehicles is an important consideration. When the 

team size is too small, it is unlikely that an HAF strategy will 

likely result in significant performance gains and could instead 

lead to a significant increase in average operator utilization. 

 

CONCLUSIONS AND FUTURE WORK 

A framework was presented that identified the resource 

allocation strategies that are fundamental in defining the type 

of heterogeneity that will be present in vehicle teams, as well 

as the different attention-allocation strategies that are available 

to the human operator in supervising such teams. A discrete-

event simulation model that was developed to investigate the 

effect of alternate operator strategies in supervising the 

different forms of team heterogeneities was also presented.  

Finally the results of an experimental study conducted using 

the discrete-event simulation model were analyzed. It was 

shown that when comparing heterogeneous teams to their 

homogeneous counterparts, the average NT across vehicles is 

decisive in predicting significant performance and utilization 

changes. Heterogeneous teams with an average NT across 

vehicles lower than that of homogeneous teams were likely to 

result in a significant increase in operator utilization. On the 

other hand, a heterogeneous team with a larger average NT 

across vehicles could cause a reduction in utilization and an 

increase in performance under certain LON strategies. It was 

also noted that further investigation needs to address the effect 

of the size of the spread of NTs across vehicles on average 

operator utilization and performance. Finally, the effect of 

varying the switching strategy was shown to be absent in the 

case of small-sized vehicle teams. 

Future work will involve using the lessons learned 

through this study to improve the model and make predictions 

which will be validated against results from human-subject 

experiments. The arrival process of events to the queue will be 

modified in order to separate out operator-induced events from 

vehicle-enerated events. In addition, an arrival stream will be 

added to model the arrival of events that are exogenous to the 

system and therefore represent the unpredictable environment. 

Varying the arrival rate of exogenous events in future 

experiments will help test for the robustness of the queuing 

model. Other changes involve comparing the current 

dependence of NT’ on utilization to existing experimental data 

and improving the model accordingly. A simulation game that 

allows participants to supervise multiple simulated 

heterogeneous unmanned vehicles is under development, and 

once completed, will then be used to validate the predictions 

from the updated model. 

 

ACKNOWLEDGEMENTS 

The research was supported by Charles River Analytics, 

and the Office of Naval Research (ONR).  

 

APPENDIX 

This appendix describes the main elements in the DES 

model introduced in the body of this paper.  

Calculation of NT’ 

NTi’ represents the length of time before which the 

operator will next decide to service vehicle i. In the DES 

model, the operator waits for a length of time equivalent to 

NTi’ before deciding to service the vehicle again. NTi’ is 

updated each time vehicle i completes an interaction with the 

operator. After an event belonging to a vehicle i is serviced, 

the neglect time, NTi, for the next time period is generated. 

NTi’ is based on NTi which is itself calculated by drawing 

from a normal distribution with a predefined mean and a 

standard deviation specific to vehicle i. NTi is then the length 
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of time before which vehicle i will next require interaction 

from the operator. 

 

After NTi is calculated for vehicle i, NTi’ is calculated, 

which is the length of time that the operator ignores vehicle i 

before he/she decides to service it again. 

 

NTi’ = LOI*NTi + χ *NTi
 
                                              (1) 

 

where    0<= LOI <= ∞ 

 

The first term in (1) is a product of an LOI term and NTi 

where LOI varies between 0 and ∞. When LOI is equal to 1, 

the operator is essentially neglecting vehicle i for a length of 

time equal to NTi, such as when the operator intends to service 

a vehicle only when an alarm for that vehicle appears. An LOI 

less than 1 implies that the operator is servicing the vehicle 

prior to vehicle i requiring service which would be the case 

when the operator is micro managing the vehicle. 

 

The second term in (1) is a product of χ and NTi where χ 

represents the amount of over-utilization or under-utilization 

that the operator is experiencing from the 50% utilization 

point. The profile for χ is presented in Figure 11 and the 

corresponding equation is, 

 

χ = (Operator_Util - 0.5)
2
                                             (2) 

 

The combined effect of the two terms on NTi’ is that NTi’ 

decreases with decreasing LOI (more micro-management), 

and increases with increasing  χ (Figure 12). 

Calculation of Performance Weighting Factor 

Before the event corresponding to vehicle i is disposed, a 

weighting factor is utilized to calculate the performance of 

vehicle i from the moment it is neglected until it is next 

serviced. The weighting factor is utilized in the Performance 

Analysis model. The weighting factor is calculated according 

to 

Pi = 1/(1+EXPO(0.1)) – χ                                              (3) 

 

The first term in (3) is a number between 0 and 1 that is 

drawn from an exponential distribution. The randomness in 

this term is due to the fact that the operator’s interaction with 

vehicle i will have a random effect in terms of performance for 

the ensuing neglect period. The second term represents a 

penalty in performance that is due to operator over or under 

utilization. 

Calculation of IT’ 

ITi is the interaction time associated with the vehicle 

represented by stream i. By definition, this is the expected 

amount of time for which the operator needs to interact with 

vehicle i in order to raise performance above some acceptable 

threshold. For each event, ITi is drawn from a normal 

distribution. The length of time it takes the operator to interact 

with vehicle i is ITi’, where 

 

ITi’ = ITi + a* MX(0, 1- ∆i)*ITi + b*(φi – φ’) *ITi +       (4) 

c*(τi – τ’)*ITi 

where, 

∆i is the ratio of NTi to time elapsed since last service, 

φi is vehicle i’s type, 

φ
’
 is the type of the vehicle that was last serviced, 

τi  is the type of task vehicle i is completing, 

τ
’
  is the type of task that the last vehicle serviced was 

completing 

a is the late service penalty weight, 

b is the vehicle type penalty weight, 

c is vehicle task penalty weight. 

 

The second term in (4), involves ∆i which is the ratio of 

NTi to the amount of time elapsed since vehicle i was last 

serviced. As the time elapsed since last service increases, ∆i 

decreases. The profile for curve for ∆i is shown in Figure 13 

and the equation is, 

 

 ∆i = NTi / (TNOW – Li)                                           (5) 

  

 where Li is the time since last service and TNOW is 

the current simulation time, where t = 0 represents the start 

time of the simulation.  
  

The profile curve for the MX(0, 1- ∆i) term is shown in Figure 

14 and the equation is, 

   

                 0 when time since Li <= NTi 
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 MX(0, 1- ∆i) =                                                         (6) 

                 1- ∆i when time since Li > NTi 

 

The second term is, therefore, the penalty in interaction 

time that is incurred due to an operator commencing 

interaction with a vehicle which is past its NT. 

The third term in (4) represents the penalty in time that is 

incurred due to the vehicle i’s type being different than the 

type of the last vehicle that was serviced. 

The fourth term in (4) represents the penalty in time that 

is incurred due to the vehicle i’s task type being different than 

the task type of the last vehicle that was serviced. 

These last two terms represent the context switching time 

that is incurred when an operator has to reorient him/herself 

when switching between disparate tasks (a “task” here being 

the action of an operator which involves working with a 

specific vehicle type and a specific vehicle task type). 

Calculation of System Performance Metric 

The Performance Analysis model will now be explained. 

In this model, events are generated every half a second, with 

the purpose of collecting performance measures for each of 

the vehicles. The instantaneous performance averaged over all 

the vehicles is  

 

 

Performance = (1/(Priority_Vehicle1+                           (7) 

Priority_Vehicle2+….))* 

(Priority_Vehicle1 * Pi * MN(1, ∆i) +  

Priority_Vehicle2 * Pi * MN(1, ∆i) +  ....) 

 

Priority_Vehiclei is the priority that is assigned to vehicle 

i and represents the fact that certain vehicles and the tasks they 

are completing will be of higher priority than others. This 

priority can represent the operator’s priority scheme when the 

operator decides to prioritize the vehicles due to his/her 

perception of vehicle/task importance. These priorities can 

also be predefined during mission planning and might be 

handed down to the operator, in which case the priority 

variables would represent those priorities assuming the 

operator follows directions. 

 

The Pi term was described earlier as being a performance 

indicator that describes the quality of an interaction and is 

based on operator utilization.  If that interaction resulted in a 

low value for Pi, then the performance measure for that vehicle 

will be affected accordingly. 

 

The MN(1, ∆i) term is utilized in order to discount the 

contribution of a vehicle to the performance variable as 

vehicle i’s time since last service exceeds the vehicle’s NTi 

(this term is represented in Figure 16). 

 

At the end of the mission, the instantaneous performance 

measures are then averaged over all the measures collected 

resulting in a mission performance metric, ζ. 
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