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Abstract

The first results of identification of jets from b quarks with soft-lepton tagging algorithms are pre-
sented in this note. Jets are built from the energy deposits in the electromagnetic and hadron calorime-
ters, with an iterative cone algorithm. Electrons and muons are searched for among the reconstructed
charged particle tracks associated to these jets with an angular distance criterion. The muon identifi-
cation is based on standard muon reconstruction algorithms, exploiting the dedicated muon detectors,
while electron identification is based on the extrapolation of charged particle tracks into the calorime-
ter and a detailed analysis of the calorimeter clusters in the region around the track. Jets from b quarks
are identified from the kinematic properties of the leptons relative to the jet and the significance of the
three dimensional impact parameter of the lepton with respect to the event vertex. The effect of not
incorporating the impact parameter significance, as would be necessary for data collected prior to the
installation of the silicon pixel tracking detector, is also studied.
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1 Introduction
Studies of direct b hadron production and other processes that include the production of bottom quarks are in
the Physics programme of the CMS experiment. The decays of top quarks, Higgs boson(s) and supersymmetric
particles often involve b quarks in the final state. An efficient technique to select events with b hadrons is therefore
desirable, so as to reject the large backgrounds originating from lighter quark and gluon production expected at
LHC.

In attempting to identify jets originating from a b quark, several b hadron properties can be exploited:

• The b hadron lifetimes are on the order of 1.6 ps (cτ ≈ 0.48 mm). At LHC production energies, typically
of the order of a few tens ofGeV, they travel a significant distance (some millimetres) inside the detector
before decaying. Moreover, in most cases b hadrons decay into c hadrons which also have a measurable
lifetime, further increasing the travel distance.

• The masses of b hadrons are larger than those of other hadrons, and consequently their decay products have
a larger average transverse momentum relative to the initial hadron flight direction than those from lighter
hadrons.

• The branching ratio for the direct and cascade decays of b hadrons into electrons and muons is large,(19.3±
0.5)% for each lepton family [1].

The requirements and performance of a b-tagging algorithm for CMS that relies on identification of leptons within
the hadron decay products are presented in this note. In the following,leptonswill mean either electrons or muons.

A b hadron can decay with the production of a lepton via 3 channels:

• the directb → ` decay,
b → W−∗X, W−∗ → `−ν`; (1)

• the cascadeb → c → ` decay,
b → W−∗c, c → `+ν`X; (2)

• and the “wrong sign” cascadeb → c̄ → ` decay,

b → W−∗X, W−∗ → q′c̄, c̄ → `−ν`X. (3)

The branching ratio measurements [1] for these decays areBr(b → `−) = (10.70± 0.22)%, Br(b → c → `+) =
(8.02±0.19)% andBr(b → c̄ → `−) = (1.62+0.44

−0.36)%. Assuming the cascade decay to be statistically independent
from the other two, which are themselves mutually exclusive, the inclusive branching ratio for the decay into at
least one lepton is(19.3 ± 0.5)%. In 1% of the cases both a direct and a cascade decays take place, producing 2
leptons.

In the rest of this work, both cascade and “wrong sign” cascade decays will be referred to simply ascascade
decays.

The ability of this algorithm to tag b jets is fundamentally limited by this combined branching fraction and further
limited by the experimental efficiency for identifying the leptons within these jets. Electron and muon candidates,
primarily selected as clusters in the electromagnetic calorimeter and tracks reconstructed in the muon detectors,
respectively, are associated to reconstructed tracks in the silicon central tracker to ensure an accurate determination
of the lepton momentum and direction. The purity of the b-tagging algorithm, defined by how often lighter quark
and gluon jets are tagged as b jets, is limited by light meson (π, K) decays to muons, by photon conversions toe+e−

pairs, and by the presence of many other charged particles, some of which may satisfy the lepton identification
criteria.

This note is organised as follows. In Section 2, a brief description of the detector, the reconstruction algorithms
and the simulated event samples used in the analysis is given. The electron and muon identification algorithms are
presented in Sections 3 and 4. The performance of tagging b quark jets with these identified leptons is shown in
Section 5.
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2 Experimental setup and reconstruction algorithms
A detailed description of the CMS detector can be found elsewhere [2]. Existing, standard, reconstruction algo-
rithms for high-level physics objects (jets, charged particle tracks, muons, clusters) are used throughout this note
to perform the identification of soft, non-isolated leptons within jets.

Charged particles are detected in the central tracker, equipped with silicon pixel detectors for the innermost layers
and silicon strip detectors for the outer part. Charged particle tracks, reconstructed with a Kalman Filter, are
required to have at least two hits in the pixel detector, at least five hits in total, and to originate from within a
cylinder of length 30 cm and radius 1 mm coaxial with the beam and centred at the nominal interaction point [3].

The energy of electrons and photons is collected in a PbW04 crystal calorimeter (ECAL), composed of a barrel
section (|η| < 1.479) and two endcaps (1.479 < |η| < 3.0), with fine granularity (∆η×∆φ = 0.0175×0.0175 rad
in the barrel) and excellent energy resolution. The clustering algorithm used in the present analysis to reconstruct
electron and photon candidates is described in Ref. [4].

The energy of charged and neutral hadrons is further collected in the towers of a brass-scintillator hadron sampling
calorimeter (HCAL), with a coarser granularity (∆η × ∆φ = 0.0875 × 0.0875 rad in the barrel) and a relative
energy resolution of130%/

√
(E) (E in GeV) [5].

Jets are reconstructed from the energy deposits in these towers and in the corresponding5 × 5 crystal matrices,
with the Iterative Cone Algorithm and a cone in the (η, φ) plane with size∆R =

√
(∆η)2 + (∆φ)2 = 0.5 (φ in

radians). Jet energy calibration is performed, based on comparison with the Monte Carlo parton energy [6].

Charged particle tracks are associated to a jet if their direction is within an angular distance∆R = 0.3 from
the calorimetric jet axis direction. By definition, the flavour of a reconstructed jet is that of the highest energy
generated parton within an angular distance∆R = 0.3 from the calorimetric jet axis direction. The performance
of the b-tagging algorithm presented in this note is improved if a charged jet axis is used, determined from thepT-
weighted average of the directions of all charged particle tracks associated to the calorimetric jet, with (electrons)
or without (muons) the track associated to the lepton.

The central tracker, the ECAL and the HCAL are immersed in a 4 T axial magnetic field provided by a supercon-
ducting solenoid coil. Muons are detected in a muon system hosted in the magnet return yoke of CMS, composed
of a barrel part (|η| < 1.2) and two endcaps (1.2 < |η| < 2.4). Details of the different components of this system
can be found in Ref. [7] and of the standalone muon reconstruction in Ref. [8].

Three data samples were simulated and used throughout the work presented in this note, thereinafter indicated as
the signal, background, and flavour enriched samples:

• a sample rich in b jets coming from the leptonic and semi-leptonic decays oftt pairs; a total of 140 000
leptonic and 380 000 semi-leptonic events were used. In both cases the leptonic vertext → b¯̀ is allowed to
decay only intò = e or ` = τ .

• a sample of QCD proton-proton interactions, simulated with a hard scatteringp̂T in the range from 30 to 300
GeV/c.

• three samples of QCD di-jet events, with ap̂T ranging from30 GeV/c to over230 GeV/c. One sample
follows a physical distribution of jet flavours and is thus rich in light quark jets, while the other two are
artificially enriched in c or b quarks, requiring two jets of the respective flavour to be present in each event.
Samples of about 500k b-enriched, 500k c-enriched, and 1.2 million plain QCD events were used.

The detector response was fully simulated with the OSCAR simulation program [9], based on GEANT4 [10],
including the pile-up effects expected at low luminosity. The simulated events were subsequently reconstructed
with the ORCA program [11]. The electron and muon identification criteria, presented in Sections 3 and 4, were
optimised on thett sample, while potential backgrounds were studied with the QCD sample.

3 Electron identification
3.1 Signal track selection

The algorithm performance was studied on generated electrons withpT > 2 GeV/c and|η| < 1.2, with respect to
which efficiency and purity numbers are determined.
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Figure 1: Distribution of the generatedpT for direct (shaded) and cascade (solid) electrons.

(gen. e, rec. trk)
min

η∆

-0.003 -0.002 -0.001 0 0.001 0.002 0.003
0

100

200

300

400

500

600

 between electron at gen. level and rec. track
min

η∆

-4 10× = 3.1 η∆σ1: 

-4 10× = 8.6 η∆σ2: 

 between electron at gen. level and rec. track
min

η∆

(gen. e, rec. trk)
min

ϕ∆

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
0

200

400

600

800

1000

 between electron at gen. level and rec. track
min

ϕ∆

-3 10× = 1.0 ϕ∆σ1: 

-3 10× = 5.2 ϕ∆σ2: 

 between electron at gen. level and rec. track
min

ϕ∆

(gen. e, rec. trk)minr∆

0 5 10 15 20 25 30 35 40 45 50

10

210

310

 between electron at gen. level and rec. trackminr∆  between electron at gen. level and rec. trackminr∆

Figure 2: Differences inη (top left) andφ (top right) and normalised pseudo-angular distance∆r (bottom) between
generated signal electrons and reconstructed tracks. The∆η and∆φ distributions were individually fitted with two
Gaussian functions.
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Figure 3: Comparison between the transverse momentum at vertex of the reconstructed track and that of the
generated electron.

The generator levelpT distributions for electrons in thett signal samples are shown in Fig. 1 for both direct and
cascade produced electrons. Similarly, the reconstructed tracks used for electron identification are required to have
a transverse momentumptrk

T in excess of 2GeV/c and a pseudo-rapidity|ηtrk| smaller than 1.2. In addition, a
minimum of eight hits in the central tracker are required.

To select tracks associated with electrons, a loose matching between reconstructed tracks and generated signal
electrons is performed. The distributions of theη andφ differences at vertex are shown in Fig. 2. The Gaussian
widths of the cores of the distributions are used to calculate a normalised pseudo-angular distance∆r(e-trk) =√

(∆η/σ∆η)2 + (∆φ/σ∆φ)2, with σ∆η = 3.1 × 10−4 andσ∆φ = 1.0 × 10−3. The distribution of∆r is also
shown in Fig. 2. A loose cut∆r < 30, indicated by the vertical arrow, is chosen to accommodate the bulk of
the non-Gaussian tail. For the matched tracks, a comparison between the transverse momentum at vertex of the
reconstructed track and that of the generated electron is shown in Fig. 3.

3.2 Electron identification

Electrons are identified by matching an electromagnetic shower in the calorimeter with an associated track in the
tracking system. The shower pattern of an electron within the calorimeters depends on its energy and impact
position which complicates electron identification. Another difficulty comes from electromagnetic showers of
other particles which can mimic the electron shower profile.

The three most common background processes for producing electron-like showers in the calorimeters are the
following:

• Charged hadrons with significant energy loss in the electromagnetic section of the calorimeter.

• Neutral pions matched to an unassociated charged particle track in the central tracking detector.

• Photons that convert into an electron-positron pair within the tracking detector material.

In the offline reconstruction, showers in the electromagnetic calorimeters (ECAL) are constructed from energy
deposits in groups of neighbouring crystals using standard bump finding algorithms [12].
In order to be matched with reconstructed clusters, tracks are required to satisfy the criteria described in Sec-
tion 3.1. The tracks are extrapolated to the ECAL using GEANE [13]. The extrapolated track positions are
matched to the location of reconstructed clusters. The closest extrapolated track found within∆s(track-cluster) =√

(∆x)2 + (∆y)2 + (∆z)2 < 12 cm is defined to be the matching track for that cluster.
Because the development of electromagnetic and hadronic showers is different for electrons and hadrons, shape

information can be used to discriminate between showers originating from these particles. Electrons deposit al-
most all their energy in the electromagnetic section of the calorimeter, while hadrons are typically much more
penetrating. In addition, electromagnetic showers follow a well known teardrop pattern [14], and differences in
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Figure 4: Distribution ofEECAL/(EECAL +EHCAL) (left) and(EECAL−ptrk)/(EECAL +ptrk) (right) for signal
electrons (shaded) and for other charged particle tracks (dashed).
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Figure 5: Covariance of the cluster energy distributionσηη (top left), σφφ (top right), σηφ (bottom) for signal
electrons (shaded) and for other charged particle tracks (dashed).
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expected and observed energy deposits for individual crystals within the cluster are expected to be correlated with
one other. Therefore, to obtain the best possible discrimination between electrons and hadrons, the electron iden-
tification algorithm incorporates variables that describe the cluster transverse shower shape, correlation between
energy deposits in crystals within the cluster, and the quality of the match between the cluster and its reconstructed
track. An artificial neural network is used to combine these variables, listed in Table 1 and described in more detail
below, into a single discriminating variable.

Measurement variables
covariance of the cluster energy distributionσηη, σηφ, σφφ.
distribution of cluster energy Eseed

E2×2
, Eseed

E3×3
, E3×3−Eseed

E5×5−Eseed
, E2×2

E5×5
, EECAL

EHCAL+EECAL

cluster energy and track momentum ratio EECAL−ptrk
EECAL+ptrk

Table 1: List of variables used to identify electrons, whereEseed, EN×N andEECAL are, respectively, the energy
deposit in the cluster seed, the maximal sum of energies within all ECAL crystals in a square ofN × N around
the seed and the total energy of the cluster;ptrk is the extrapolated track momentum at the ECAL front surface;
EHCAL is the sum of energy deposits in HCAL towers next to the ECAL cluster.

The electromagnetic energy fraction of an electron candidate is defined asEECAL/(EHCAL + EECAL), where
EHCAL is the sum of energy deposits in the hadronic calorimeter (HCAL) towers directly behind the crystals con-
tributing to the ECAL cluster andEECAL is the electromagnetic cluster energy. Figure 4 shows the distribution of
EECAL/(EHCAL +EECAL) for both signal electrons and other charged particle tracks within the simulatedtt and
QCD di-jet events not found to be associated with electrons.
To describe the correlation between observed energy deposits in crystals within the cluster, the following covari-
ance variables are used:σηη, σηφ, σφφ. These variables describe the correlation between energy deposits in the
ECAL crystals. Distributions of these variables for both signal electrons and other charged particle tracks within
the simulatedtt and QCD di-jet events are shown in Fig. 5.
To characterise the transverse development of the shower four variables describing cluster energy distribution are
used:Eseed/E2×2, Eseed/E3×3, (E3×3 − Eseed)/(E5×5 − Eseed), E2×2/E5×5, whereEseed andEN×N are
respectively the energy deposit in the cluster seed and the maximal sum of energies within all ECAL crystals in
a square ofN × N around the seed. Distributions of the variables describing cluster energy distribution for both
signal electrons and other charged particle tracks within the simulatedtt and QCD di-jet events are shown in Fig. 6.
The variables described above are used as inputs to the neural network used to distinguish electrons from hadrons.
A cut on the single variable output of the neural network is used to select showers associated with each particle
type. The distributions of the neural network output for signal electrons and other tracks are shown in Fig. 7. Based
on the same samples of signal electrons and other charged particle tracks from the simulatedtt and QCD samples,
both the selection efficiency and misidentification rate of the electron identification algorithm are measured as a
function of trackpT as shown in Fig. 8.
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Figure 8: Performance of the soft non-isolated electron identification: efficiency (circles) and misidentification
rate (triangles).
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pT ( GeV/c) vs. |η| 0.0 . . . 0.9 0.9 . . . 1.3 1.3 . . . 1.8 1.8 . . . 2.4
2.5. . . 3 0 0 ( 15.6± 2.1 )% ( 74.2± 2.5 )%

3. . . 3.5 ( 1.3± 0.5 )% ( 1.8± 0.9 )% ( 40.3± 2.9 )% ( 83.4± 2.1 )%
3.5. . . 4 ( 18.9± 1.8 )% ( 9.7± 2.0 )% ( 61.8± 3.0 )% ( 89.3± 1.7 )%

4. . . 4.5 ( 31.0± 2.1 )% ( 35.0± 3.3 )% ( 74.7± 2.7 )% ( 94.3± 1.3 )%
4.5. . . 5 ( 53.9± 2.2 )% ( 50.0± 3.5 )% ( 80.7± 2.5 )% ( 95.1± 1.2 )%

5. . . 6 ( 74.7± 1.4 )% ( 75.5± 2.1 )% ( 84.0± 1.7 )% ( 96.7± 0.7 )%
6. . . 7 ( 89.6± 1.0 )% ( 91.3± 1.4 )% ( 90.3± 1.3 )% ( 98.0± 0.5 )%
7. . . 8 ( 95.4± 0.7 )% ( 94.1± 1.1 )% ( 94.5± 1.0 )% ( 98.4± 0.5 )%
8. . . 9 ( 97.3± 0.5 )% ( 94.4± 1.1 )% ( 98.2± 0.6 )% ( 98.9± 0.4 )%
9. . . 10 ( 97.0± 0.6 )% ( 95.9± 1.0 )% ( 98.0± 0.6 )% ( 98.9± 0.4 )%

10. . . 20 ( 98.3± 0.1 )% ( 96.5± 0.3 )% ( 98.3± 0.2 )% ( 98.9± 0.1 )%

Table 2: Muon reconstruction efficiency for a sample of single muons with flat distributions of transverse momen-
tum1 GeV < pT < 20 GeV and pseudorapidity|η| < 2.4.

pT ( GeV/c) vs. |η| 0.0 . . . 0.9 0.9 . . . 1.3 1.3 . . . 1.8 1.8 . . . 2.4
2.5. . . 3 ( 3.2± 0.8 )% ( 2.5± 1.1 )% ( 15.0± 2.5 )% ( 67.1± 3.6 )%

3. . . 3.5 ( 3.3± 0.8 )% ( 2.4± 1.1 )% ( 39.9± 4.0 )% ( 80.7± 3.4 )%
3.5. . . 4 ( 17.2± 1.9 )% ( 14.2± 2.5 )% ( 54.8± 4.0 )% ( 84.0± 3.3 )%

4. . . 4.5 ( 30.7± 2.2 )% ( 28.6± 3.5 )% ( 73.2± 3.5 )% ( 89.2± 2.7 )%
4.5. . . 5 ( 46.3± 2.5 )% ( 50.4± 4.4 )% ( 73.1± 3.5 )% ( 90.4± 2.6 )%

5. . . 6 ( 57.7± 1.9 )% ( 70.2± 2.9 )% ( 79.6± 2.5 )% ( 91.5± 2.0 )%
6. . . 7 ( 72.5± 1.8 )% ( 74.3± 2.7 )% ( 78.6± 2.9 )% ( 96.0± 1.4 )%
7. . . 8 ( 74.8± 1.9 )% ( 80.3± 2.8 )% ( 91.2± 2.2 )% ( 93.2± 2.1 )%
8. . . 9 ( 80.9± 1.9 )% ( 81.0± 2.8 )% ( 90.2± 2.5 )% ( 98.5± 1.0 )%
9. . . 10 ( 81.9± 2.0 )% ( 85.6± 2.9 )% ( 91.2± 2.2 )% ( 96.9± 1.5 )%

10. . . 20 ( 83.5± 0.8 )% ( 85.6± 1.2 )% ( 92.5± 0.9 )% ( 97.5± 0.6 )%

Table 3: Muon reconstruction efficiency for muons inside jets in the signal sample.

4 Muon identification
As mentioned in Section 2, the standard muon reconstruction algorithm is used to select muon candidates. The
efficiency of this algorithm for single muons is given in Table 2 as a function ofpT andη. The main limitation of
this approach is the low efficiency achieved for lowpT muons, because of the large bending magnetic field. The
efficiency of the algorithm for muons within jets (Table 3) is further reduced due to difficulties in matching tracks
in the muon detectors with central tracks contained within the crowded environment of the jets.

In order to calculate the kinematic variables used in the b-tagging algorithm, the globally reconstructed muon track
must be matched to a specific reconstructed track within the central tracking detector. This association is made by
searching for common hits in the central tracking detector that are attached to both the globally reconstructed muon
and one of the reconstructed tracks found within a given jet. To increase the speed of the association algorithm
while keeping it as simple as possible, each reconstructed track is only checked against muon tracks sufficiently
close in the(η, φ) plane, i.e. within 0.1 inη and 0.1 rad inφ. To allow different algorithms to be used for global
muon and central track reconstruction, hence some flexibility in the track-hit association, the required fraction of
common hits between matched tracks is as low as 70%.

Jets originating from light flavour quarks and gluons can be misidentified as b jets in cases where muon candidates
are reconstructed within these jets. The most important sources are real muons produced in the decays of light
particles, mainlyπ± and K± mesons, but also undecayed charged hadrons not fully contained within the calorime-
ters, which therefore produce hits in the muon detectors. The fraction of muons, electrons, charged pions, charged
kaons, and other charged hadrons identified as muons in jets are given in Table 4, for the signal and background
samples, as well as for the enrichedbb andcc samples.
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Generated particle type µ e π K other
Enrichedbb 84.6% 0.2% 10.9% 2.8% 1.4%
Enrichedcc 78.7% 0.2% 14.6% 4.5% 1.9%
Signal 77.6% 0.3% 16.4% 3.9% 1.8%
Background 44.3% 0.2% 39.0% 11.5% 5.0%

Table 4: Fraction of muons, electrons, and different charged hadrons identified as muons within jets, for different
event samples.

5 Tagging algorithm
Once a lepton has been identified in a jet, which already rejects an important fraction of non-b jets, the separation
between b and light quark jets can be further improved with the use of lepton and jet kinematic variables as inputs
to a feed-forward neural network [15].

5.1 Training samples

Two groups of neural networks were trained for soft muon b-tagging: the first on the signal and background
samples, and the second on jets from the flavour-enriched di-jet samples (Section 2). The latter group of networks
was found to be less sensitive to the event topology, and was chosen as the primary network for use in the studies
reported in this note.

In each case, 10% of the data were used to train the network (training sample) and another 10% for monitoring the
training process (test sample). In order to maximise the performance of the network, training was halted when the
network performance, as measured on the test sample, started to degrade, as it is a typical symptom of over-training
with the original sample. The studies of network performance concerning the same samples as the training one are
based on the remaining 80% of the jet sample not used in conjunction with network training.

5.2 Tagging variables

The kinematic parameters of the lepton and jet used as inputs to the neural network are as follow.

• The lepton transverse momentumprel
T relative to the charged jet axis.

• The significanceS3D
IP of the distance of closest approach of the lepton track to the event reconstructed

primary vertex (impact parameter).

• The pseudo angular distance∆R in the(η, φ) plane between the lepton and the charged jet axis.

• The ratio of the lepton momentum, as measured from the reconstructed track, to the calorimetric jet energy.

To account for differences in detector response at different jet energies and in different regions of the calorimeter,
the neural network for soft muon b-tagging also uses the the calibrated calorimetric jet energy and the calorimetric
jet pseudorapidity.

Figures 9 and 10 show the distributions of the four common discriminating variables for b, c, light and gluon jets
(signal and background samples) for electrons and muons, respectively.

5.3 Performance

The distributions in Fig. 11 show the output of the soft electron b-tagging neural network for different flavours of
jets contained within the signal and background samples. Figure 12 shows the efficiency for tagging b jets versus
the mistagging efficiencies for each of the lighter jet flavours determined by making a series of progressively tighter
cuts on the neural network output variable.

The distributions in Fig. 13 show the output of the soft muon b-tagging neural network for the different jet flavours,
from the flavour-enriched samples (left) and the signal and background samples (right).

The distributions obtained from the two samples are similar but have noticeable differences. The resulting b jet
tagging efficiencies for the two data samples are plotted as a function of the mistagging efficiencies for each non-b
jet flavour in the top half of Fig. 14. The bottom half of Fig. 14 shows resulting soft muon b-tagging purity versus
efficiency distributions for the two samples.
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Figure 9: Distribution of the four discriminating variables used for tagging b jets with electrons: electron transverse
momentum relative to the charged jet axis (top left),S3D

IP of the electron track (top right), ratio of the electron
momentum to the calorimetric jet energy (bottom left),∆R between the electron track and the charged jet axis
(bottom right). The distributions are shown separately for b jets (shaded), c jets (dashed), light jets (dash-dotted)
and gluon jets (solid) and are obtained for jets found in the signal and background samples in the barrel region of
the detector (|η| < 1.4).
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Figure 10: Distribution of the four discriminating variables used for tagging b jets with muons: muon transverse
momentum relative to the charged jet axis (top left),S3D

IP of the muon track (top right), ratio of the muon momentum
to the calorimetric jet energy (bottom left),∆R between the muon track and the charged jet axis (bottom right).
The distributions are shown separately for b jets (shaded), c jets (dashed), light jets (dash-dotted) and gluon jets
(solid) and are obtained for jets found in the signal and background samples in in the whole detector acceptance
(|η| < 2.4).
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Figure 11: Distribution of the neural network output for the electron based b jet identification algorithm, shown
separately for b jets (shaded), c jets (dashed), light jets (dash-dotted) and gluon jets (solid) as obtained for jets
found in the signal and background samples in the barrel region of the detector (|η| < 1.4).
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Figure 12: Performance of the electron based b jet identification algorithm. Non-b jet mistagging efficiency versus
b jet tagging efficiency is shown separately for c jets (triangles), light jets (circles) and gluon jets (stars) and is
obtained for jets found in the signal and background samples in the barrel region of the detector (|η| < 1.4) .
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Figure 13: Distribution of the neural network output for the muon based b jet identification algorithm, shown
separately for b jets (shaded), c jets (dashed), light jets (dash-dotted) and gluon jets (solid) as obtained for jets
found in the flavour-enriched samples (left) and signal and background samples (right) in the whole detector
acceptance (|η| < 2.4).

5.4 Tagging without vertex information

Preliminary studies on the application of the soft muon b-tagging in the case where no track impact parameter
information is available have also been performed. This information would not be available for the first data
collected with the CMS detector in the scenario where the installation of the silicon pixel detector is staged beyond
first LHC collisions. Therefore, a neural network has been trained that doesn’t make use of such variable. The
output of this network for the signal and background samples is shown in Fig. 15, and its overall performance over
the same samples is shown in Fig. 16. A comparison with Fig. 14 shows that at a given b tagging efficiency, the
mistagging rate increase is of roughly a factor 1.5 for charm quark jets, 3 for light quarks jets and 2 for gluon jets.

6 Conclusions
This note describes an algorithm for tagging b jets based on the identification of electrons and muons within the
jet. While the reconstruction of jets, muons and charged particle tracks uses standard tools, a dedicated electron
identification has been developed and tuned specifically for this purpose.

Different tagging variables related to the lepton and jet parameters have been studied, as well as possible combina-
tions thereof. The results achieved with non-linear neural network techniques are presented in this note, and show
that a clear separation of jets from b quark from jets from lighter quarks is possible.

A separate study has also been performed for tagging b jets based on the muon identification within the data
collected prior to the installation of the silicon pixel tracking detector, and thus with a limited spatial resolution for
the reconstruction of the interaction primary vertex. The b-tagging performance in this scenario is slightly worse,
yet still provides a useful tool for jet flavour discrimination.

Further improvements are possible both to the soft lepton b tagging algorithm itself, requiring a more detailed
study of the distribution of the tagging variables for the signal and background events, and to the reconstruction
algorithms that this work relies on, such as better tracking for the electrons and muons, the use of calorimetric
deposits for muon identification, the reconstruction of jets using more advanced algorithms.
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Figure 14: Performance of the muon based b jet identification algorithm, for jets found in the flavour-enriched
samples (left) and the signal and background samples (right) in the whole detector acceptance (|η| < 2.4). Top:
mistagging of charm (top), light quark (middle) and gluon (bottom) jets as a function of the tagging efficiency;
bottom: b jets identification purity vs. efficiency.
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Figure 15: Distribution of the neural network output for b jets (solid, grey), c jets (dashed), light jets (dash-dotted)
and gluon jets (solid) as obtained from a neural network that doesn’t use the lepton impact parameter, for jets found
in the signal and background samples in the whole detector acceptance (|η| < 2.4).
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Figure 16: Mistagging rate for soft muon b-tagging without impact parameter significance, for jets found in the
signal and background samples in the whole detector acceptance (|η| < 2.4).
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