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Abstract—
We describe the Lightweight Communications and Mar-

shalling (LCM) library for message passing and data mar-
shalling. The primary goal of LCM is to simplify the development
of low-latency message passing systems, targeted at real-time
robotics applications. LCM is comprised of several components:
a data type specification language, a message passing system,
logging/playback tools, and real-time analysis tools.

LCM provides a platform- and language-independent type
specification language. These specifications can be compiled
into platform and language specific implementations, eliminating
the need for users to implement marshalling code while guaran-
teeing run-time type safety.

Messages can be transmitted between different processes
using LCM’s message-passing system, which implements a
publish/subscribe model. LCM’s implementation is notable in
providing low-latency messaging and eliminating the need for
a central communications “hub”. This architecture makes it easy
to mix simulated, recorded, and live data sources. A number of
logging, playback, and traffic inspection tools simplify common
development and debugging tasks.

LCM is targeted at robotics and other real-time systems
where low latency is critical; its messaging model permits
dropping messages in order to minimize the latency of new
messages. In this paper, we explain LCM’s design, evaluate
its performance, and describe its application to a number of
autonomous land, underwater, and aerial robots.

Index Terms—interprocess communication, message passing,
robotics middleware, real-time systems
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1 INTRODUCTION

A fundamental software design principle is that of
modularity, which promotes maintainability, code re-
use, and fault isolation [1], [2]. A large robotic system,
for example, can be decomposed into specific tasks
such as data acquisition, state estimation, task planning,
etc. To accomplish their tasks, modules must exchange
information with other modules. With modern operating
systems, it is convenient to map individual modules onto
software processes that can be on the same or physically
separate computational devices. This then transforms
the task of information exchange into the well studied
problem of interprocess communication.

In this paper, we describe a new message passing sys-
tem for interprocess communication that is specifically
targeted for the development of real-time systems. Our
approach is motivated by lessons from modern software
practices, and places great emphasis on simplicity and
usability from the perspective of a system designer.
We call our system Lightweight Communications and
Marshalling (LCM) to signify its functionality and its
simplicity in both usage and implementation.

The single most notable attribute of mapping modules
onto separate processes is that every module receives a
separate memory address space. The introduction of this
barrier provides a number of benefits; modules can be
run on the same or different host devices, started and
stopped independently, written in different programming
languages and for different operating systems, and catas-

trophic failure of one module (e.g. a segmentation fault)
does not necessarily impact another.

With this independence also comes isolation – sharing
information between modules is no longer a trivial task.
Module designers must carefully consider what informa-
tion to share across modules, how to marshal (encode)
that information into a message, how to communicate
a marshalled message from one module to another, and
how to un-marshal (decode) the message once received.

Although a message passing system introduces com-
plexities that must be carefully managed, it also provides
opportunities for analysis and introspection that may be
invaluable to a developer. In particular, messages may be
captured and analyzed by modules specifically designed
to aid system development. Such modules might log
messages to disk, provide statistics on bandwidth, mes-
sage rate, etc. If the messages are marshalled according
to a formal type system, then a traffic inspection module
could automatically decode messages in much the same
way a program debugger can automatically decode stack
variables of a running application.

LCM provide tools for marshalling, communication,
and analysis that are both simple to use and highly
efficient. Its overarching design philosophy is to make it
easy to accomplish the most common message passing
tasks, and possible to accomplish most others. LCM also
detects many run-time errors, such as invalidly formatted
data and type mismatches.



2 RELATED WORK

The idea of dividing large systems into modules is
commonplace in robotics. A variety of message passing
systems are currently in use, each with an interesting set
of trade-offs. Central design decisions include whether
to use a reliable or unreliable data transport and whether
to provide an automatic data marshalling system.

Perhaps the best known system is the Player
project [3], which provides a client/server model of robot
control. A server runs a user-configurable set of drivers in
a single process, with each driver in its own thread. Many
drivers are included in the Player distribution, each of
which has a designated task such as reading camera data
or executing wheel speed commands. Users write client
programs to interact with drivers via the server, typically
by operating on driver “proxy” objects in the client’s
address space. A proxy object handles communication
and data marshalling with the server.

Player provides a programming model familiar to soft-
ware developers accustomed to traditional application
development, and attempts to simplify many aspects of
robot development. These efforts, and its diverse set
of drivers, factor into its wide ranging success. This
architecture has its drawbacks, however. Creating new
drivers can be a complex process, and the failure of
one driver may impact others, possibly even causing the
failure of the entire robot. The monolithic process nature
complicates debugging individual components. Player
was originally designed for client-driver communication;
mechanisms for driver-driver and client-client communi-
cation have been added to player, but users looking for
a more freely composable system might prefer another
framework.

Player uses TCP by default. While TCP itself is reli-
able and ordered, Player adds a set of “add-replace” rules
that cause messages to be dropped if a subscriber cannot
keep up with the publisher. Without such a provision,
TCP buffers would eventually fill and would cause a
slow-down for the publisher.

Internally, Player uses External Data Representation
(XDR) [4] for data marshalling. Player’s built-in types
make use of this facility, and users are encouraged to use
XDR themselves. XDR, while serving as the model for
our own marshalling system, has a number of drawbacks
that we will discuss in Section 3.1.

The Mission Oriented Operating Suite (MOOS) [5] is
a message passing system that is particularly popular
in the underwater robotics community. It provides a
publish/subscribe model in which all communications

are routed through a central server, and clients “pull”
messages at a fixed rate (typically 10 Hz). MOOS
messages are free-form ASCII strings, which has the ad-
vantage of making messages easily readable by humans,
and the disadvantage of consuming more bandwidth than
a binary-encoded message.

The CARMEN robotics package [6] includes the IPC
message passing system [7]. IPC uses TCP and a central
hub to coordinate communications between modules. By
default, the central server routes all communications,
though it can also be configured as a “match mak-
ing” service that is used to facilitate direct client-to-
client communications. In both modes, IPC implements
a “push” publish/subscribe model. In contrast to a “pull”
model, a “push” system sends subscribers messages as
soon as possible. IPC provides a facility that partially
automates marshalling and un-marshalling of messages,
though it requires users to manually keep an ASCII
description of the types in sync with a C struct declara-
tion. Users must be sure that the packing and alignment
of their structs matches the ASCII description; this is
increasingly error prone with machines of varying word
sizes.

The Joint Architecture for Unmanned Systems (JAUS)
implements a routed message model, in which individual
messages are addressed for particular destinations [8].
The primary advantage of JAUS is not the message-
passing system itself, but rather that the JAUS specifica-
tion includes over 200 standardized data types. Modules
that implement these standard formats can, in principle,
be freely composed together in order to build large
systems.

JAUS is designed around a routed message passing
system in which each message has a specific destination.
An RPC-like mechanism is supported based on “query”
and “inform” messages, though components can unilat-
erally transmit messages (including broadcasts) without
a corresponding query. As part of this message-passing
framework, JAUS allows a tree of communication nodes.
The JAUS specification itself does not specify a trans-
port, but UDP is typically employed. As a result, JAUS
does not guarantee message delivery. In comparison to
Player and MOOS, the mechanism for message loss is
different, but the effects are very similar.

JAUS includes no provision for automatic generation
of marshalling code: each data type must be hand coded.
Further, the type of a message (a “command code”) is
encoded in a small 16 bit integer, and the assignment
of these values is specified by the JAUS specification.
Only a subspace of this set is available for user-defined



types, and developers must ensure that these values are
assigned in a conflict-free manner.

While JAUS previously supported Java, this support
was dropped in OpenJAUS v3.3. Other limitations of
the JAUS specification include a message limit of 4096
bytes, and the fact that each node must be manually
assigned a globally unique identifier by the system
builder.

Robotics Operating System (ROS) is a relatively new
framework that aims to provide an entire environment
for robotics development. For example, it provides a
package management system that automatically handles
dependencies. Its messaging subsystem provides a pub-
lish/subscribe model and a service-oriented model. A
“match maker” process is employed to facilitate client-
to-client connections. The message passing interface
is generic enough that different transports, including
including shared memory, TCP, UDP, and Spread [9],
could be used. Initial versions use TCP as the sole
message transport.

ROS also provides a data marshalling service based on
a type specification language similar to C. As of version
0.6.1, ROS assumes that clients are little-endian. This
allows for fast and simple data marshalling on little-
endian systems, with the tradeoff that big-endian systems
are not supported.

Microsoft’s Robotics Development Studio (RDS) [10]
differs from most other systems in that instead of pro-
viding a publish/subscribe model, it employs a service
model. This model can be viewed as a stateful remote
procedure call idiom, and is based on the Simple Ob-
ject Access Protocol (SOAP). Several transport layers
are available, ranging from simple memory copies (for
services in the same memory space) to XML/RPC for
services connected via the Internet.

There are several recurring themes in existing systems.
Publish/subscribe models are the most commonly used,
with TCP being the most common transport. Most of
these systems employ a centralized hub, whether it is
used for message routing or merely for “match making”.
Virtually all of these systems provide a reliable and
ordered transport system, though some of the systems
provide a UDP transport as a non-standard option. Fig. 1
summarizes some of the key differences.

Service models provide a familiar programming
model, but this has its drawbacks. For example, it is
typically more difficult to inject previously recorded
data into a service-based system. An ability like this
is particularly useful when developing perceptual and
other data processing algorithms, as the same code can

be used to operate on logged data and live data. In
a publish/subscribe system, this can be accomplished
by simply retransmitting previous messages to clients.
Since communications are stateful in a service-oriented
system, event injection would require the cooperation of
the services themselves.

The systems are widely varied in terms of the sup-
port for data marshalling they provide. Binary-formatted
messages have the significant advantage of conciseness
and are used by most of the systems. Several systems
use an XDR-based marshalling system, though some
implementations provide only partially automatic code
generation. For example, language support is typically
limited, and with some systems, the users must manually
keep a formatting string in sync with the struct’s layout.

Our system, Lightweight Communications and Mar-
shalling (LCM), provides a “push”-based publish/sub-
scribe model. It uses UDP multicast as a low-latency
but unreliable transport, thus avoiding the need for
a centralized hub. LCM provides tools for generating
marshalling code based on a formal type declaration
language; this code can be generated for a large number
of platforms and operating systems and provides run-
time type safety.

Several of the other systems provide an operating “en-
vironment”, consisting of pre-defined data types, ready-
to-use modules, event loops, message-passing systems,
visualization and simulation tools, package management,
and more. LCM is different in that it is intended to be
an “a la carte” message passing system, capable of being
integrated into a wide variety of systems.

Finally, the way in which LCM is perhaps most
distinctive from other systems is in its emphasis on
debugging and analysis. For example, while all systems
provide some mechanism for delivering a message from
one module to another, few provide a way to easily
debug and inspect the actual messages transmitted. Those
that do typically do so at the expense of efficiency and
performance. LCM provides a tool for deep inspection of
all messages passed on the network, requiring minimal
developer effort and incurring no performance penalty.
This is made possible by design, and allows a system
developer to quickly and efficiently identify many bugs
and potential sources of failure that are otherwise diffi-
cult to detect.

3 APPROACH

We divide our description of LCM into several sections:
type specification, marshalling, communications, and



Package Communications Transport Marshalling Messages Type Platforms
model duplicated safe

LCM Pub./Sub. (push) UDP Multicast Automatic No Yes C, Java, Python, MATLAB
Carmen (IPC) Pub./Sub. (push) TCP Partial Yes No C, Java
JAUS Routed messages UDP Manual Yes No C
MOOS Pub./Sub. (pull) TCP Manual (strings) Yes No C++
Player/Stage Pub./Sub. (pull) TCP Automatic for C Yes No C, C++, Java, Tcl, Python
ROS Pub./Sub. + Service TCP Automatic (C++,Py) Yes No C++, Python
Robotics Studio Service Multiple Automatic Yes Yes .NET

Fig. 1. Comparison of commonly used communication packages. The table represents default configura-
tions. Message duplication refers to whether the number of subscribers affects network utilization. LCM and
JAUS use UDP-based transports, which provide low-latency messaging at the cost of guaranteed delivery.

tools. Type specification refers to the method and syntax
for defining compound data types, the sole means of data
interchange between processes using LCM. Marshalling
is the process of encoding and decoding such a message
into binary data for the communications system which
is responsible for actually transmitting it.

3.1 Type Specification

Processes that wish to communicate using LCM must
agree in advance on the compound data types that will
be used to exchange data. LCM defines a formal type
specification language that describes the structure of
these types. LCM does not support defining Remote
Procedure Calls (RPC), but instead requires applications
to communicate by exchanging state in the form of
these compound data types. This restriction makes the
LCM messages stateless, simplifying other aspects of
the system (particularly logging and playback).

The marshalling system, described in Section 3.2 is
responsible for encoding this data after being defined
by the programmer. It includes a novel scheme for
guaranteeing that the applications agree exactly on the
type specification used for encoding and decoding. This
type-checking system can detect many common types of
errors. Like other message passing systems, LCM does
not perform any semantic checking on message con-
tents. We note that JAUS provides some trivial semantic
checks, in the form of range bounds on numeric values.

LCM defines a type specification language that can
be used to create type definitions that are indepen-
dent of platform and programming language. Each type
declaration defines the structure of a message, thus
implicitly defining how that message is represented as
a byte stream. A code generation tool is then used to
automatically generate language-specific bindings that
provide representations of the message in a data structure

native to the programming language, as well as the
marshalling routines. Fig. 2 shows an example of two
LCM message type definitions, and excerpts from the C
bindings for these types are given in Fig. 3.

struct waypoint_t {
string id ;
float position [ 2 ] ;

}

struct path_t {
int64_t timestamp ;
int32_t num_waypoints ;
waypoint_t waypoints [num_waypoints ] ;

}

Fig. 2. Two example LCM type definitions. The first
contains two fields, one of which is a fixed-length
array. The second is a compound type, and contains
a variable length array of the former in addition to
two core data types.

Automatic generation of language-specific source
code from a single type definition yields some useful
benefits. The most tangible is that a software developer
is freed from writing the repetitive and tedious code
that allows a module to send and receive messages. The
effort required to define a new message and have it
immediately ready to use in an application is reduced
to be no more than that required to define a native data
type or class definition for a programming language.

The LCM type specification was strongly influenced
by the External Data Representation (XDR) [4], which
is used by Sun Remote Procedure Calls (Sun/RPC)
and perhaps most notably, the Network File System
(NFS) [11]. Some XDR features are not supported by
LCM due to the fact that they are rarely used and are
either difficult to implement or invite user error, such
as optional data (i.e., support for pointer chasing) and



typedef struct _waypoint_t waypoint_t ;
struct _waypoint_t {

char∗ id ;
float position [ 2 ] ;

} ;

int waypoint_t_encode (void ∗buf , int offset ,
int buflen , const waypoint_t ∗p ) ;

int waypoint_t_decode (const void ∗buf , int offset ,
int buflen , waypoint_t ∗p ) ;

typedef struct _path_t path_t ;
struct _path_t {

int64_t timestamp ;
int32_t num_waypoints ;
waypoint_t ∗waypoints ;

} ;

int path_t_encode (void ∗buf , int offset ,
int buflen , const path_t ∗p ) ;

int path_t_decode (const void ∗buf , int offset ,
int buflen , path_t ∗p ) ;

Fig. 3. Excerpts from automatically generated C-
language bindings for the types defined in Fig. 2.
LCM also supports message type bindings for
Python, Java, and MATLAB.

unions. For example, XDR can chase pointers in a linked
list in order to send the entire list, but a circular reference
leads to disaster. We note that unions, part of the XDR
specification, are also unsupported by xdrgen, the tool
employed by IPC.

Other features of XDR create portability issues. For
example, LCM only supports signed integer types, since
the Java language cannot losslessly represent unsigned
types1. This least-common denominator approach has
ensured first-class support for a variety of languages,
including C, Java, MATLAB, and Python. Variants of
these languages (such as C++ and Objective C) are also
fully compatible. LCM retains XDR’s minimal compu-
tational requirements, allowing automatically-generated
code to run on resource-constrained devices like micro-
controllers.

LCM also provides features and other usability im-

1. Early versions of LCM automatically promoted unsigned types
to the next largest signed type in Java, but this can create prob-
lems. First, programmers may rely on known wrap-around behavior,
which this silent type promotion defeats. Second, if the user’s Java
implementation (perhaps unintentionally) makes use of the additional
dynamic range, there is no correct way to encode those values back
into the LCM type. Consequently, LCM no longer supports unsigned
types. Ultimately, this portability-derived limitation has been a non-
issue.

provements over XDR. For example, LCM provides a
simple method for declaring the length of a variable-
length array; in contrast, the XDR specification does not
specify how the length of arrays should be specified,
which has led to a variety of incompatible approaches. A
second example is LCM’s support for namespaces, which
make it easier to avoid naming conflicts when sharing
code with others. Third, while the XDR specification
supports 64 bit integers, this support is omitted from
IPC’s implementation. IPC also represents booleans as 4
byte quantities, instead of the more efficient single byte
quantity used by LCM.

In the following sections, we present more details of
the LCM type-specification language. This description
is intended to convey the basic structure and feature set
of LCM, but is not meant to be comprehensive. The
LCM documentation contains a detailed and rigorous
treatment.

3.1.1 Data structure syntax

Each LCM data type is placed in a text file by
itself and named to match the type. For example,
struct waypoint_t would be defined in a file
waypoint_t.lcm. Each struct contains a sequence of
fields, where a field has a name and a type. The syntax,
shown in Fig. 2, is similar to a C struct.

Primitive data types are supported for each field with
the following syntax:
• Signed integers: int8_t, int16_t, int32_t,
int64_t

• Floating-point values: float, double
• Strings: string
• Boolean: boolean
LCM has adopted the C99 “stdint” naming convention

for integer types, which explicitly names the size of the
data type in bits [12]. Making these sizes explicit (rather
than defining an integer in terms of the host’s word size,
for example), is obviously necessary for cross-platform
compatibility. But more importantly, the sizes of data
types are a critical aspect of data type design; this explicit
notation encourages a deliberate choice.

A member variable of an LCM type can also be
another LCM type. In this case, the data from the
second type is embedded in the first using the appropriate
language-specific idiom. For example, in C, the member
is a pointer; in Java, an object reference is used.

Strings also take on the native representation for
each language binding. In C, for example, strings are
represented by a null-terminated array of char; in Java,



the native java.lang.String class is used. Floating
point numbers are encoded using the bit format specified
by the IEEE 754 standard.

Like XDR, LCM encodes multi-byte values in net-
work (big-endian) byte order. This ensures that messages
transmitted between clients running on different architec-
tures can be correctly decoded.

3.1.2 Arrays

LCM supports both fixed and variable length arrays.
Fixed length arrays are specified with a numerical value
in square brackets after the field name, as in int
array[10]. In this case, 10 elements will always be
encoded.

Variable length arrays are specified by giving the
name of another field in square brackets after the field
name as in int array[num_elements]. The same
struct must then contain an integer field with that name
(num_elements in our example). While LCM and
XDR are similar in many respects, they differ in this re-
gard. In fact, the XDR specification [4] does not specify
how the length of a variable-length array should be rep-
resented, with the result that different implementations
have chosen different ways. IPC’s implementation is
fairly flexible, for example, whereas the utility “xdrgen”
imposes several onerous restrictions. In comparison,
LCM’s method is both intuitive and flexible.

There is also an additional primitive type byte, which
is useful for specifying arrays of opaque binary data. It is
encoded the same as int8_t, but will appear in each
language binding in a format suitable for representing
opaque binary data.

3.1.3 Packages

Some languages such as Java and Python support the
concept of namespaces in order to prevent type names
from clashing globally. LCM supports this concept via
package names, which can be specified at the beginning
of an LCM file. For example:

package robot ;

struct waypoint_t {
string id ;
float position [ 2 ] ;

}

In this case, the type waypoint_t now exists in
namespace robot. In Java, Python, and MATLAB, it
would be referenced as robot.waypoint_t while in
C it would be accessed as robot_waypoint_t.

3.1.4 Constants
LCM provides a simple way of declaring constants that
can subsequently be used to populate other data fields.
Users are free to use these constants in any way they
choose, e.g. magic numbers, enumerations, or bitfields.

Constants are strongly typed, and are declared using
the const keyword:

const int32_t YELLOW=1 , GOLDENROD=2 , CANARY=3;

Constants can be specified for all integer and floating
point types. String constants are not supported, since
strings are not simple value types on many platforms.

3.2 Marshalling

Marshalling refers to the encoding and decoding of
structured data into an opaque binary stream that can
be transmitted over a network. LCM automatically gen-
erates functions for marshalling and unmarshalling of
each user-defined data type in each supported language.

The marshalling code generated by LCM automati-
cally ensures that the sender and receiver agree on the
format of the message. This mechanism, described in the
next section, not only guarantees that the types have the
same name (e.g. waypoint_t), but also that the type
declarations were identical when the sender and receiver
were compiled. When a system is in active development,
the data types themselves can be in flux: this run-time
check detects these sorts of issues.

3.2.1 Type Safety
In order for two modules to successfully communicate,
they must agree exactly on how the binary contents of a
message are to be interpreted. If the interpretations are
different, then the resulting system behavior is typically
undefined, and usually unwanted. In some cases, these
problems can be obvious and catastrophic: a disagree-
ment in the signedness of a motor control message, for
example, could cause the robot to suddenly jump to
maximum reverse power when the value transitions from
0x7f to 0x80. In other cases, problems can be more subtle
and difficult to diagnose; if two implementations do not
agree on the alignment of data fields, the problem may
be masked until the value of the data field (or that of an
unrelated variable) becomes sufficiently large.

Additionally, as a system evolves, the messages may
also change as new information is required and obsolete
information is removed. Thus, message interpretation
must be synchronized across modules as messages are
updated.



3.2.2 Fingerprint
The type checking of LCM types is accomplished by
prepending each LCM message with a fingerprint derived
from the type definition. The fingerprint is a hash of the
member variable names and types. If the LCM type con-
tains member variables that are themselves LCM types,
the hash recursively considers those member variables.
For example, the fingerprint for path_t (see Fig. 2) is
a function of the fingerprint of waypoint_t.

The fingerprints are prepended to each LCM message,
and consume 8 bytes during transmission for each mes-
sage. Importantly, member variables contained within an
LCM declaration do not increase the number of bytes
of fingerprint data. This is an important refinement:
otherwise, the overhead for a path_t would be 8 bytes
for each waypoint_t in the list.

The details of computing a hash function are straight-
forward and thoroughly documented within the LCM
source code distribution, so we omit a detailed descrip-
tion. However, we note that the hash function is not
a cryptographic function. The reason is that the hash
function for a particular LCM type must be computed
at run time: LCM types can be dynamically loaded at
run-time (e.g., a dynamically linked library) and it is
critical that the hash reflect the type actually being used
at run time, and not merely the type that was available
at compile time. While these hash values only need to
be computed once for each LCM type (and thus do
not present a computational burden), requiring an LCM
implementation to have access to a cryptographic library
is an onerous burden for small embedded platforms.

In the common case, an LCM client knows what
type of message is expected on a particular messaging
channel. When a message is received by an LCM client,
it first reads the fingerprint of the message. If the
fingerprint does not match the LCM client’s expected
fingerprint, a type error is reported.

LCM clients can also build a fingerprint database,
allowing them to identify the type of message. This
database is particularly easy to construct in Java; using
the Java reflection facility, all LCM types in the classpath
can be automatically discovered in order to populate this
database. This is the technique used by our tool lcm-spy,
which allows real-time inspection of LCM traffic.

3.3 Communications

The communications aspect of LCM can be summarized
as a publish-subscribe based messaging system that uses
UDP multicast as its underlying transport layer. Under

the publish-subscribe model, each message is transmitted
on a named channel, and modules subscribe to the
channels required to complete their designated tasks. It
is typically the case (though not enforced by LCM) that
all the messages on a particular channel are of a single
pre-specified type.

3.3.1 UDP Multicast
In typical publish-subscribe systems, a mediator process
is used to maintain a central registry of all publishers,
channels, and subscribers. Messages are then either
routed through the mediator directly, or the mediator
is used to broker point-to-point connections between
a publisher and each of its subscribers. In both cases,
the number of a message is actually transmitted scales
linearly with the number of subscribers. Since many
messages will have multiple subscribers2, this overhead
can become substantial.

The approach taken by LCM, in contrast, is simply
to broadcast all messages to all clients. A clients simply
discard those messages to which it is not subscribed.
While at first glance this might appear a wasteful and
burdensome requirement, most communication networks
make this an efficient operation. Ethernet and the 802.11
wireless standards can be thought of as shared commu-
nications media, where a single transmitted packet is
received by all devices regardless of destination.

UDP multicast provides a standardized way to lever-
age this feature, with standardized protocols and pro-
gramming interfaces implemented on every major op-
erating system. Additionally, implementations are gen-
erally highly optimized and efficient as a direct result
of being tightly coupled with the operating system’s
IP network stack. For these reasons, LCM bases its
communications directly on UDP multicast.

LCM is conceptually divided into networks, where
every client on an LCM network receives every message
transmitted from other members of that network. An
LCM network is directly mapped to a UDP multicast
group and port, and so all LCM clients operating on
a given network transmit packets to the same multicast
group address and port number. A maximum LCM mes-
sage size of 4 GB is achieved via a simple fragmentation
and reassembly protocol.

The time-to-live (TTL) parameter of multicast packets
is used to control the scope of a network, and is most

2. An example of a widely-subscribed message is the message
containing the robot’s position. Other examples include logging
or data visualization applications, which subscribe to most or all
messages.



commonly set to 0 or 1. In the case where every software
module is hosted on the same computational device, then
the TTL is set to 0. The result is that messages are
transmitted to every module on the device, but are not
transmitted onto the physical network. When devices are
connected via Ethernet, the TTL is set to 1.

Since LCM uses a multicast mechanism, it does not
require a centralized hub for either relaying messages or
for “match making”. There is also no need for a publisher
to keep track of its subscribers, which can be error-prone
if subscribers periodically start and stop (either by design
or due to application errors).

While UDP Multicast was designed to be able to dis-
tribute traffic over more complicated networks (including
the Internet), LCM is intended for tightly-coupled sys-
tems connected via a private ethernet.

3.3.2 Delivery Semantics
LCM provides a best-effort packet delivery mechanism;
as a result, LCM messages can be lost or arrive out of
order. The use of an “unreliable” transport makes LCM
comparable not only to JAUS (which uses UDP), but
also MOOS and Player. While MOOS and Player both
use a reliable transport (TCP), they allow messages to be
lost in order to manage situations in which the subscriber
cannot keep up with a publisher.

However, systems that build upon reliable transports
(like TCP) can encounter additional latency due to the
transport. These transports must include mechanisms for
loss detection and packet retransmission. This introduces
latency and may also delay future messages. A system
that relies on low-latency communications and has sig-
nificant real-time constraints, such as a robot, may in
some cases prefer that a lost packet simply be dropped
so that it does not delay future messages. For example,
if a wheel encoder reading or a vehicle pose estimate is
lost in transmission, it may be more desirable to simply
wait for the next update.

A second reason to forgo reliable delivery semantics
is that on a distributed system, the loss of a message may
not simply be the result of a transient network failure.
Instead, it may be symptomatic of a module failure or
even the failure of the network itself. These failures are
still possible on a system that provides reliable delivery
semantics, and a well designed system must be able to
handle them robustly.

Transient network failures leading to dropped packets
are often used as a reason to include packet retransmis-
sion features. However, we note that a properly cabled
1000Base-T Ethernet can typically expect a bit-error rate

of at most 10−12 [13]. In general, UDP packet loss
over wired networks is much more commonly a result
of overflowing packet buffers rather than physically
corrupted packets.

In short, LCM gives strong preference to the ex-
pedient delivery of recent messages, with the notion
that the additional latency and complexity introduced by
retransmission of lost packets does not justify delaying
newly transmitted messages. To this end, it also does
not attempt to globally or causally order messages.
These semantics may still be implemented on top of
the LCM message passing service, but in practice we
have found the default semantics to be sufficient for the
vast majority of messages passed between our robotic
software modules.

3.4 Tools
To assist development of modular software systems,
LCM provides several tools useful for logging, replaying,
and inspecting traffic. The logging tools are similar
to those found in many interprocess communications
systems, and allow LCM traffic to be recorded to a file
for playback or analysis at a later point in time. The
inspection tools allow real-time decoding and display of
LCM traffic with no system overhead (such as additional
network bandwidth) or developer effort. Together, these
tools allow a developer to rapidly and efficiently analyze
the behavior and performance of an LCM system.

For maximum portability, all tools with a graphical
user interface are written in Java.

3.4.1 Logging and Playback
The logging tool provided by LCM is simple while
providing intuitive access to more complex options. It
subscribes to all channels, and writes every message
received to disk together with the time of receipt and
the channel on which it was received.

A log playback tool allows a user to load a log file
from disk, and then retransmit the logged data as live
traffic. This is often useful for reviewing data collected
on a previous mission, or for post-processing data. Play-
back can be sped up or slowed down for brief review or
careful analysis of a rapid sequence of messages, and a
slider is provided for rapidly finding an area of interest
in the log file. We note that, unlike some other systems,
a log player is not special in any way: it is simply
another LCM client that transmits messages. LCM is
very flexible in mixing data sources: it is possible, for
example, to run a logger and a log player simultaneously,
or to even play back two logs simultaneously.



Fig. 4. LCM log player screenshot. The user can
adjust playback speed and log position, in addition to
adjusting which logged data is played back (chang-
ing the channel name if desired). In this image, the
user has added “repeats” around an early portion of
the log.

Individual channels can be selectively disabled during
playback. This feature is often useful when developing
estimation and inference algorithms. For example, the
logged results of an obstacle detector can be disabled
during playback while the original sensor data is re-
played. Then a new obstacle detector can operate on the
logged data as though it were live traffic.

The log player tool also supports bookmarks and
looping functionality. The user can add “repeat signs”,
similar to those used in musical notation, which will
cause the log player to endlessly repeat that subsection
of the log. This is useful when trying to understand an
anomalous sensor reading, for example. The positions of
bookmarks and repeats are automatically saved to disk
and can be shared between different users. A screenshot
of the logplayer is shown in Fig. 5.

Console versions of the logger and logplayer are also
available, when the features of the graphical versions are
not needed.

3.4.2 Spy

Although the primary purpose of an LCM type finger-
print is to detect runtime type mismatches, it also serves
another useful purpose. If a database of every LCM
type used on a system is assembled, then an arbitrary
fingerprint also serves as a type identifier with very high

probability3 The lcm-spy tool is designed to leverage this
attribute, and is able to analyze, decode, and display live
traffic automatically with virtually no programmer effort.
Fig. 5 shows a screenshot of lcm-spy inspecting traffic.

lcm-spy is implemented in Java, and requires only that
the classpath contain the automatically generated Java
versions of each type. Using the reflection features of
Java, it searches the classpath for classes representing
LCM types, building a mapping of fingerprints to LCM
types. Because each field of an LCM message is strongly
typed, lcm-spy is able to automatically determine a
suitable way to decode and display each field of a
message as it is received.

User-provided data rendering “plugins” are also sup-
ported for custom display of individual message types.
Commonly used plugins include a graphical display for
laser data and an image renderer for camera data.

In addition to its message decoding capabilities, lcm-
spy also provides a summary of messages transmitted
on all channels along with basic statistics such as mes-
sage rate, number of messages counted, and bandwidth
utilized. Together, these features provide a unique and
critically useful view into the state of messages on an
LCM network.

When used in practice, lcm-spy allows developers to
quickly identify many of the most common failures.
During module development, it can help verify that a
module is producing messages on the correct channels
at the expected rate and bandwidth. It can also be used
to inspect arbitrary messages to check the values of any
field, useful for tracking down bugs and validating the
correct operation of a module.

In our experience, lcm-spy is a critically important
tool, on par with program debuggers and profilers.
Whereas a debugger is useful for inspecting the internal
state of a module, lcm-spy has become invaluable for
inspecting the state of the messages passed between
modules. Because it passively observes and analyzes
traffic, lcm-spy can provide this insight with absolutely
no impact on the system performance.

4 PERFORMANCE

One way to measure the interprocess communication
performance of LCM is by examining its bandwidth,
latency, and message loss rate under various conditions.

3. The fingerprints of each LCM type are represented as 64 bit
integers, providing theoretical collision resistance for 232 different
types. While LCM’s non-cryptographic hash function degrades this
figure, the probability of collisions is vanishingly small for the few
hundred message types that a large system might employ.



Fig. 5. LCM-spy screenshot. lcm-spy is a traffic inspection tool that is able to automatically decode and
display LCM messages in real-time. It requires only that the automatically generated Java code for the LCM
types be accessible in the class path; no additional developer effort is required.

Figures 6 and 7 show the results of a messaging test
comparing the C and Java implementations of LCM with
IPC and Player.

In this test, a source node transmits fixed-size mes-
sages at various rates. One, two, or four client nodes
subscribe to these messages and immediately retransmit
(echo) them once received. The source node measures
how many messages are successfully echoed, the round-
trip time for each echoed message, and the bandwidth
consumed by the original transmission and the echoes.
For this test, IPC is run in two modes, one in which
the central dispatching server relays all data (the IPC
default), and another in which the central server acts
merely as a “match maker” facilitating peer-to-peer con-
nections (central -c). To improve performance, op-
erating system send and receive windows were increased
to 2MB, and TCP buffers were increased to 4MB. These
settings also affect the performance of Player and LCM.

The Player test is implemented by using the “relay”
driver to transmit messages between multiple processes
connected to the player server. This is not a typical
configuration, as Player is more conducive to monolithic
process design. However, we believe it to be a reasonable

choice if one were to use the Player framework for
message passing between arbitrary client processes.

To collect each data point, the sender transmits 100MB
of data split into 800 byte messages at a fixed rate de-
termined by a target transmission bandwidth. We chose
800 byte messages because they are roughly the size
of a lidar scan produced by a SICK sensor, and are
one of the most commonly used data types. Figures 6
and 7 show the results for tests conducted on a quad-
core workstation running Ubuntu 8.04. Hosting each
process on separate identical workstations connected via
1000Base-T Ethernet yielded similar results. In some
cases, the actual message transmission rate does not
match the target transmission rate due to transport and
software limitations. In a real system, these limitations
could result in degraded performance.

From these figures, we can see that LCM scales
with both the amount of traffic to be sent and the
number of subscribers. As ideal network capacities are
reached, such as in Fig. 6c, LCM minimizes latency and
maintains high bandwidth by dropping messages. The
LCM Java implementation performs comparably to the
C implementation, and responds to computational limits
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Fig. 6. Bandwidth results from an echo test with 1, 2, and 4 clients. Each client echoes messages
transmitted by a single sender, and the bandwidth of successful echoes as detected by the original sender
are shown. Message loss rates (messages with no received echo) are shown in parentheses when nonzero.
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Fig. 7. Mean message round-trip times for the echo test in Fig. 6 with 1, 2, and 4 clients. Average round-trip
times are shown on a log scale; these times do not reflect lost packets (which essentially have an infinite
round-trip time). Both LCM implementations offer low latency. While IPC (using central -c) also appears to
provide low latency, it is critical to notice that IPC’s achieved bandwidth fell short of the target bandwidth
(see Fig. 6).

of the virtual machine by dropping more messages.

IPC also performs well in the case of one subscriber.
However, it does not scale as well to multiple subscribers
due to its need to transmit multiple copies of a message.
Using the match-making service of IPC (central -c)
improves bandwidth and reduces latency, but ultimately
has the same difficulties. We note that although IPC
with peer-to-peer connections maintains low latency as
the attempted transmission rate is increased in Figs. 7b
and 7c, the actual bandwidth achieved does not increase
due to link saturation from duplicated messages. For

example, with four clients echoing messages, IPC is
unable to transmit faster than 11 MB/s, as the bandwidth
consumed by the quadruplicate transmission and the
echoes saturates the link capacity.

Our initial experiments with IPC, using the distribu-
tion in Carmen 0.7.4-beta, produced much worse results.
We determined that this was due to coarse-grained timing
functions that degraded performance when packet rates
exceed approximately 1 kHz. We were able to improve
this performance by exporting higher-resolution versions
of those functions; this improved data is used in this
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Fig. 8. Marshalling performance. Performance (in
microseconds per iteration) is shown for four differ-
ent marshalling implementations. The LCM imple-
mentation in C is more than four times faster than
the next fastest marshaller. Notably, the LCM Java
implementation, despite being written in pure Java,
is comparable to the Carmen and Player implemen-
tations.

paper.
Player does not perform as well, largely because it has

not been optimized for client-client communication. For
low transmission rates, it scales well, but its performance
drops off precipitously as bandwidth is increased.

4.1 Marshalling Performance
In addition to performance of the communications sys-
tem, we are also interested in the computational ef-
ficiency of the LCM marshalling and unmarshalling
implementations. Performance of a marshalling system is
a function of the complexity and nature of the message,
and the presence of arrays, nested types, strings, and
other fields are all factors. We have chosen to com-
pare the performance of LCM, IPC, and Player4 on a
commonly used message – one containing data from a
single scan of a planar laser range finder with 180 range
measurements and no intensity measurements. Fig. 9
shows the LCM type definition. Similar message types
were defined for IPC and Player.

In this test, we estimate the amount of time each
implementation spends encoding and decoding a single

4. Since Player uses XDR internally, this can also be treated as a
comparison against XDR.

struct laser_t
{
int64_t utime ;
int32_t nranges ;
float ranges [nranges ] ;
int32_t nintensitiese ;
float intensitiese [nintensitiese ] ;
float rad0 ;
float radstep ;

}

Fig. 9. The LCM type definition used in the mar-
shalling test. Messages were populated with 180
range measurements and no intensity measure-
ments.

message by measuring the time taken to encode and
decode 106 messages, and averaging the result. Estimates
were taken 10 times and then averaged (warm-up periods
for Java were excluded from this average). Timings are
shown in Figure 8. The LCM C implementation was
the fastest, averaging 0.38 µs per encode, and 0.40 µs
per decode. Player/XDR was the second fastest, with
the LCM Java implementation and Carmen/IPC close
behind.

5 CASE STUDIES

Since its development, LCM has been used as the
primary communications system for a number of robotics
research platforms operating in real environments. In this
section, we describe several of these platforms and how
LCM was applied to the development of each system.

5.1 Urban Challenge

The 2007 DARPA Urban Challenge was an autonomous
vehicle race designed to stimulate research and public
interest in autonomous land vehicle technology. Vehicles
were required to safely navigate a 90 km race course
through a simulated urban environment in the presence
of both robotic- and human-driven vehicles. LCM served
as the communications backbone for both the Ford/IVS
vehicle and the MIT vehicle. The MIT vehicle was one
of six to complete the race [14].

The MIT vehicle was equipped with a cluster of 10
quad-core workstations connected via a switched local
area network. At any given point in time, 70 separate
modules were in active operation. The average band-
width used by the entire LCM network was 16.6 MB/s,
with an average transmission rate of 6,775 messages/s.
Table 1 provides a detailed breakdown of messaging



Module Category Total msg/s Total kB/s
SICK LIDAR 887.1 668.0
Velodyne LIDAR 2.562.2 3,141.2
GPS/INS 774.5 123.5
Radar 443.9 310.7
Camera 163.3 10,082.3
State Estimation 288.0 1,372.8
Planning and Control 175.6 500.6
Debugging 1.146.7 358.2
Other 333.6 25.4
Total 6,774.9 16,582.7

TABLE 1
LCM traffic summary on MIT Urban Challenge

vehicle

rates and the bandwidth used by various modules on the
vehicle.

Messages transmitted on the network ranged from
very small updates such as time synchronization packets
to camera images and obstacle maps which were often
several hundred kilobytes or several megabytes in size.
Some messages, such as the pose estimates, were sub-
scribed to by virtually every module on the network,
while others had only one or two subscribers.

Throughout the development process, almost 100 dif-
ferent message types were used, many of which changed
frequently as the capabilities and requirements of each
module evolved. Software development was distributed
across many people working from different locations,
and the LCM type definitions became a convenient place
for developers to agree on how modules would interface.

Because language-specific bindings could be gener-
ated automatically from LCM type definitions, modify-
ing messages and the modules that used them to add or
remove fields could often be accomplished in the span
of minutes. Additionally, the runtime type checking of
LCM fingerprints provided a fast and reliable way to
detect modules that had not been recompiled to use the
newly modified form of a message.

5.2 Land and Underwater Vehicles
Since the Urban Challenge, LCM has been applied to
a number of other autonomous land vehicle research
platforms such as an autonomous forklift and small
indoor wheeled robots. In many cases, modules used in
one vehicle were easily transitioned to other vehicles by
ensuring that the LCM messages they needed for correct
operation were present on the target robot.

In addition to assisting development of robotic ground
vehicles, LCM has also been successfully applied to

a number of autonomous underwater vehicles (AUV)
at MIT, University of Michigan [15], and the Woods
Hole Oceanographic Institute. Development of these
vehicles is often characterized by the risk of failure; since
underwater robots are typically designed to operate in
environments not easily reached by humans, a failed field
operation sometimes results in an unrecoverable vehicle.

The University of Michigan Perceptual Robotics Lab
has developed a set of AUV platforms for researching
underwater robotic mapping, cooperative multi-vehicle
navigation, and perception-driven control [15]. Each
vehicle contains on-board sensors, thrusters, and a com-
puter for data processing and vehicle control. Despite
a vastly different application domain from the Urban
Challenge and a simpler network topology, the software
engineering principles remain identical, and LCM has
proved just as useful. New message types are easily
defined as needed, and software modules are adapted
to operate in different domains.

5.3 Autonomous Indoor Flight

Indoor environments are among the most difficult
regimes for aircraft operation. Recent advances in battery
power density, processor improvements, and lightweight
materials have opened the door for significant progress
in autonomous indoor aerial vehicles. LCM is deployed
on one such system actively being used for algorithmic
research in planning under uncertainty [16].

The vehicle is a custom-built quadrotor helicopter.
On-board sensing consists of an inertial measurement
system, three cameras, and a Hokuyo UTM planar laser
range scanner. Most processing is done on-board using
an Intel Atom processor. As before, modules are divided
into separate processes exchanging information via LCM
messages.

Unlike a passenger vehicle, the quadrotor is not large
enough to carry a human developer or a computer
display. A more powerful workstation is used for real-
time analysis and debugging. Communication between
the quadrotor and the workstation is maintained via an
802.11n wireless connection, although the LCM UDP
multicast protocol is not used to transmit messages over
this link due to the relatively high rate of packet loss.
Instead, inter-host communication is achieved by encap-
sulating LCM messages in a transport more suitable for
wireless transmission.

In this case, LCM messages on the quadrotor are
transmitted to a more powerful workstation by means
of a wireless UDP tunnel. Packets passing through the



tunnel are encoded with a low-density parity check
(LDPC) forward error correcting (FEC) codec to improve
the probability of successful transmission [17]. A TCP
tunnel was experimented with, but the FEC strategy
provides higher bandwidth and lower latency with ac-
ceptable packet loss. Additional LCM modules are run
on the workstation for data visualization, logging, and
computationally intensive tasks such as image processing
and laser mapping. The tunnel effectively serves as a
bridge linking two separate LCM networks.

6 CONCLUSION

In this paper, we have presented LCM and its design
principles. LCM is driven by an emphasis on simplicity
and a focus on the entire development process of a
robotic software system. In addition to achieving high
performance, LCM also provides tools for traffic inspec-
tion and analysis that give a developer powerful and
convenient insight into the state of the robotic system.

The LCM type specification language is designed to
allow flexible and intuitive descriptions of a wide class of
data structures. Type fingerprints allow for runtime type
checking and identification, and automatically generated
language bindings result in a simple and consistent API
for manipulating messages and the data they represent.
Native support for multiple programming languages al-
lows developers to choose the environment most suitable
for the task at hand.

The communications aspect of LCM is designed
around the needs of a robotic system and takes advantage
of commonly encountered configurations. Low latency
is favored over guaranteed delivery semantics, and UDP
multicast is used to provide high bandwidth and scala-
bility.

To date, LCM has been successfully deployed as
the core communications infrastructure on a number of
demanding robotic systems on land, water, and air. These
include the MIT Urban Challenge vehicle, a quadro-
tor helicopter, several autonomous underwater vehicles,
and a robotic forklift. In each of these scenarios, the
simplicity and versatility of LCM allowed for rapid
development of complex software systems. The modular
nature of these systems has allowed for significant code
re-usability and application of modules developed on one
system to another.

LCM is distributed at http://lcm.googlecode.com.
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