
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-040 August 27, 2009

Information Flow for Secure Distributed Applications
Winnie Wing-Yee Cheng

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4411179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Information Flow for Secure Distributed

Applications

by

Winnie Wing-Yee Cheng

M.S., Stanford University (2004)
B. A. Sc., University of British Columbia (2000)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2009

c© Massachusetts Institute of Technology 2009. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 3, 2009

Certified by. .
Barbara H. Liskov
Institute Professor
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Theses

2

Information Flow for Secure Distributed Applications

by

Winnie Wing-Yee Cheng

Submitted to the Department of Electrical Engineering and Computer Science
on August 3, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Private and confidential information is increasingly stored online and increasingly
being exposed due to human errors as well as malicious attacks. Information leaks
threaten confidentiality, lead to lawsuits, damage enterprise reputations, and cost
billion of dollars. While distributed computing architectures provide data and service
integration, they also create information flow control problems due to the interaction
complexity among service providers. A main problem is the lack of an appropriate
programming model to capture expected information flow behaviors in these large
distributed software infrastructures. This research tackles this problem by proposing
a programming methodology and enforcement platform for application developers to
protect and share their sensitive data.

We introduce Aeolus, a new platform intended to make it easier to build distributed
applications that avoid the unauthorized release of information. The Aeolus security
model is based on information flow control but differs from previous work in ways
that we believe make it easier to use and understand. In addition, Aeolus provides a
number of new mechanisms (anonymous closures, compound tags, boxes, and shared
volatile state) to ease the job of writing applications. This thesis provides examples
to show how Aeolus features support secure distributed applications. It describes
the system design issues and solutions in designing a prototype implementation and
presents performance results that show our platform has low overhead.

Thesis Supervisor: Barbara H. Liskov
Title: Institute Professor

3

4

Acknowledgments

To me, this is the most important section of my thesis. Thinking back to all the

years that I have been in graduate school, I am very fortunate to have had the

opportunity to interact with great minds and truly inspirational figures. My advisor,

Prof. Barbara Liskov, is a brilliant computer scientist and I admire her dedication

to excellence in her work. She is also an influential mentor teaching me how to

approach complex problems and distill them into important fundamental questions

and to present ideas in simple and concise form. My co-advisor, Prof. Liuba Shrira,

has also guided me in much of my thesis work and has been a constant source of

encouragement. I am amazed at the breadth of her knowledge of related work and

appreciated her insightful questions during our discussions that allowed me to step

back and think about how this work fits into the greater scheme of system security. I

would also like to thank my thesis committee, Prof. Sam Madden and Prof. Robert

Morris, for their feedback on my work and the many good questions they raised to

make this a better thesis.

I would like to acknowledge the wonderful present and past members of the Pro-

gramming Methodology Group who have helped with my papers and presentations

and created an environment conducive to learning: James Cowling, David Schultz,

Dan Ports, Evan Jones, Dan Myers, Ben Vandiver, Ben Leong and Dorothy Curtis.

There are also researchers that have taught me a lot during my internships at HP

Labs. Dr. Jun Li has been a great mentor and taught me many things about .NET

and web services. Dr. Alan H. Karp introduced me to capabilities systems and I have

enjoyed learning from his distributed systems drop-in sessions. I would also like to

thank the Digital Printing and Imaging Lab for making me a better researcher.

On a more personal note, family and friends have been instrumental in making

graduate studies an enjoyable experience. First, I sincerely thank my parents for their

financial and emotional support since I came into this world. I would also like to thank

Lykomidis Mastroleon for encouraging me to apply for the PhD program. Daniel R.

Johnson has helped me tremendously in staying focused on my thesis research and

5

has taught me many life skills outside the laboratories for which I am very grateful.

I thank my sisters Annie and Linda for their ‘care’ packages before deadlines and

prior to my defense. Friends from CSAIL, GW6/Leaaders-in-Life, Project ORCA

and Ashdown House have made my years at MIT memorable. I had lots of fun

cooking for Graduate Student Lunch (GSL) with Angelina Lee, Yuan K. Shen and

Albert Huang. It was a blast building an autonomous submarine with Joshua Apgar,

Ara Knaian, Sam Kenyon and several others. Jim Sukha and Grace Chau helped me

with my RQE preparations. Ying Zhang and Shuodan Chen were always there to

lend a listening ear. Manas Mittal and Manu Gupta were friendly floormates that

wandered the halls of Ashdown House after sunset. Thanks to many others that I

have not mentioned here but whose support and friendship will not be forgotten.

6

Contents

1 Introduction 17

1.1 Contributions . 19

1.1.1 The Model . 20

1.1.2 Support for Modular Program Construction 20

1.1.3 New Mechanisms . 21

1.1.4 Proof-of-Concept Platform . 23

1.1.5 Application Use Cases . 23

1.2 Outline . 23

2 Aeolus Architecture 25

2.1 Aeolus Configurations . 25

2.2 Threat Model . 27

2.3 Application Model . 28

3 Programming Model 31

3.1 Motivating Examples . 31

3.2 Principals, Tags and Labels . 32

3.3 Information Flow Control Rules . 34

3.4 Label Manipulations . 35

3.5 Authority . 37

3.5.1 Principals . 37

3.5.2 Tags and Grants . 38

3.5.3 Compound Tags and Static Grouping 39

7

3.5.4 Revocation . 41

3.5.5 Principal Hierarchy . 42

3.6 Authority Closures . 43

3.7 Execution . 45

3.7.1 Local Calls . 46

3.7.2 Local Forks . 47

3.7.3 Example of Calls and Forks 47

3.7.4 Authority Closures . 48

3.7.5 Remote Procedure Calls . 50

3.7.6 Launching app-objects . 50

3.7.7 Logging in . 51

3.8 Data . 52

3.8.1 Files . 52

3.8.2 Boxes . 56

3.8.3 Shared State . 58

3.9 External Communication . 61

3.10 Authority State . 61

3.10.1 Covert Channels . 62

3.10.2 Other Operations on the Principal Hierarchy 62

4 Programming with Aeolus 65

4.1 Bob and the Tax Preparer . 65

4.2 The Medical Clinic . 66

4.3 The Sales Analyzer . 67

4.4 Job Posting Service . 68

4.5 Online Store . 70

5 Distributed Computing Platform 73

5.1 Approach . 73

5.1.1 Isolation . 74

5.1.2 Proxy Object . 75

8

5.2 Access and Use of Authority State 77

5.3 Boxes . 77

5.4 Shared State . 78

5.5 Files . 79

5.5.1 Aeolus File System . 79

5.5.2 File-streams . 81

5.6 Other I/O . 82

5.7 Local Forks . 83

5.8 Local Calls . 84

5.9 Authority Closures . 85

5.10 Remote Procedure Calls . 86

5.11 Authority Management . 89

5.11.1 Structure of the Authority State 91

5.11.2 Caching . 93

5.11.3 Synchronization and Update 98

6 Performance Evaluation and Optimizations 107

6.1 Experimental Setup . 108

6.2 Local Platform Overhead . 108

6.2.1 Isolation Mechanism . 108

6.2.2 Inter-AppDomain Communication 109

6.3 Forks and Calls . 110

6.3.1 Forks . 110

6.3.2 Calls . 111

6.4 Authority Closures . 111

6.5 Remote Procedure Calls . 112

6.6 File System . 114

6.7 Boxes . 117

6.8 Shared State . 118

6.8.1 Shared Objects . 118

9

6.8.2 Shared Queues . 119

6.8.3 Shared Locks . 120

6.9 Authority Management . 121

6.9.1 Cache Component Latency . 121

6.9.2 Eviction . 123

6.9.3 Processing of Update Messages 124

6.9.4 Miss Penalty . 125

6.9.5 Cache Sizes . 126

6.10 End-to-End Evaluations . 127

6.10.1 Online Store . 127

6.10.2 Secure Wiki . 129

7 Application Case Studies 131

7.1 Retail Kiosk . 132

7.1.1 Application Scenario Description 132

7.1.2 Data Security Concerns and IFC Program Structure 133

7.1.3 Programming Experience . 136

7.2 Clinical Medical Research System . 137

7.2.1 Application Scenario Description 138

7.2.2 Data Security Concerns and IFC Program Structure 138

7.2.3 Programming Experience . 142

7.3 Secure Wiki . 143

7.3.1 Application Scenario Description 143

7.3.2 Data Security Concerns and IFC Program Structure 143

7.3.3 Programming Experience . 145

8 Related Work 147

8.1 Programming Languages . 148

8.2 Operating Systems . 150

10

9 Conclusions 155

9.1 Methodology . 155

9.2 Infrastructure . 156

9.3 Future Work . 156

A Aeolus Programming API 159

A.1 Aeolus Basic Model . 159

A.2 Aeolus Extensions . 162

A.3 Aeolus Execution . 167

A.4 Aeolus File System . 169

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

List of Figures

2-1 Aeolus Distributed Computing Environment 26

2-2 Aeolus Application Model . 29

3-1 Process, Object, Tags and Labels . 33

3-2 Examples of Information Flow Checks 35

3-3 Act-for Relationships in Principal Hierarchy 38

3-4 Comparing Implicit and Explicit Delegation 40

3-5 Special Principals . 42

3-6 Example Usage of Fork and Call . 49

3-7 Labels on Files and Directories . 52

3-8 Labels on a Box . 57

4-1 Tax Preparer Software Example . 65

4-2 Principal Hierarchy for the Medical Clinic Example 67

4-3 Authority Closure in the Sales Analyzer Example 68

4-4 Job Posting Service Example . 69

4-5 Online Store Example . 70

5-1 High-Level Architecture of Aeolus Distributed Computing Platform . 74

5-2 Inside a Compute Node . 75

5-3 Aeolus Platform Instance . 76

5-4 Aeolus File System . 80

5-5 User AppDomains . 84

5-6 Using Strong Name to Verify Authority Closure Code 86

13

5-7 Web Method Invocation on Aeolus Platform 88

5-8 Structure of Core for Medical Clinic Example 95

5-9 Traversal across Different Cores during an Authority Lookup 96

5-10 Authority Server . 100

5-11 Updates and Snapshots Timeline . 101

5-12 Problem with Invalidating the Content Cache 103

6-1 Shared Object Access Time as Object Size Varied 119

6-2 Latency of Cache Components . 122

6-3 Cost of Processing Authority Updates 125

6-4 Effect of Miss Rate on Request Time 126

7-1 Retail Kiosk Scenario . 133

7-2 Retail Kiosk implemented using Aeolus 134

7-3 Principal Hierarchy in Clinical Application Scenario 140

7-4 Modifications to ScrewTurnWiki . 146

14

List of Tables

3.1 Information Flow Checks for Basic File Operations 54

5.1 Conditions for Setting Check bit of a File-stream 82

5.2 Authority State Data Tables . 91

5.3 Partitioning Authority State Data Tables by Cores 95

6.1 Execution Overhead of OS Processes and AppDomains 109

6.2 Overhead of Cross Boundary Communication 110

6.3 Fork Overhead . 111

6.4 Call Overhead . 112

6.5 Cost of Executing Authority Closure 112

6.6 Interposition Overhead of Web Service Invocations 113

6.7 Request Servicing Time for File System Administrative Operations . 115

6.8 ReadFile Request Time for Files of Different Sizes 116

6.9 WriteFile Request Time for Files of Different Sizes 116

6.10 File-stream Open, Read and Write 117

6.11 Cost of Basic Operations on Boxes 118

6.12 Cost of Basic Operations on Shared Object 118

6.13 Cost of Basic Operations on Shared Queue 119

6.14 IPC using Shared Queue . 120

6.15 Basic Operations on Shared Lock . 120

6.16 Speedup using Authority Caches over Remote AS 122

6.17 Content Cache Eviction Cost . 123

6.18 Core Cache Eviction Cost . 124

15

6.19 Cache Sizes . 127

6.20 Average Request Service Time of Online Store Web Service 128

6.21 ScrewTurnWiki Login Server Processing Time 129

6.22 ScrewTurnWiki Page Fetch Latency with Statistics Plugin enabled . . 130

16

Chapter 1

Introduction

Private and confidential information, e.g., credit card numbers and medical records,

is increasingly being stored online. Also increasingly this information is exposed due

to human errors as well as malicious attacks.

There are many examples of information leaks. Rudder was touted as a convenient

web-based financial planning tool where users can link their bank and credit card ac-

counts all in one place [32]. However, an announcement in May 2009 [19] reported that

their software had inadvertently shown users each other’s bank account information.

Ryerson University in Canada violated the Freedom of Information and Protection of

Privacy Act with a software glitch that listed student names, ID numbers and grades

on its web site and has been publicly criticized for their negligence [49]. WellPoint,

a health insurer, exposed 130,000 of its customers’ protected health information and

personal records online [21]. There are numerous other documented cases [48] where

software errors have jeopardized users’ identity (e.g., Virginia Bureau of Insurance,

Comcast, Automatic Data Processing, University of Virginia), personal financial data

(e.g., Citigroup/ABN Amro Mortgage, CompuCredit, City of Riverside California),

and patient health records (e.g., Ohio State University Medical Center, Georgetown

University Hospital). These online systems are useful but for users to have confidence

in using them, the security of online information must be addressed.

This thesis describes Aeolus, a new platform intended to make it easier to build

applications that avoid the unauthorized release of information. The Aeolus secu-

17

rity model is based on information flow control. Traditionally, online information

has been secured through access control [15], which constrains who can read infor-

mation, but not what can be done with the information. Information flow control

is a complementary technique that instead restricts what can be done with infor-

mation. For example, an administrative assistant in a medical clinic needs to know

who the patients are in order to schedule appointments. If security is provided by

access control, nothing prevents the administrator from then leaking the information.

Information flow control allows the access while preventing the administrator from

using the system to leak the information, e.g., sending all patient files in email.

Information flow control has been of interest in military systems [58], where there

is a rigid classification of information, e.g., “secret” or “top-secret”. Recently more

flexible forms of information flow control have been proposed in which individuals

are able to use discretionary control over their own information in a fine-grained way.

As discussed further in Chapter 8, this recent work provides information flow control

either through the use of special programming languages (e.g., [44, 51]), or at the

operating system level (e.g., [18, 69, 35, 70]).

Although this recent work is valuable, we believe it does not provide the support

that programmers need to build large-scale distributed systems that support infor-

mation flow control. The operating systems work helps facilitate retrofitting legacy

systems with support for information flow control, but it is lower level than what

programmers want when building new systems. The work on security-typed lan-

guages can provide strong assurances and provable security properties; however, this

approach requires new languages and complex type systems.

In contrast, Aeolus is defined at an intermediate level higher than the operating

system, but not requiring the use of a new programming language. Our goal is to

provide a tool that is easy to use and understand, yet provides the needed expressive

power so that programmers can implement applications in a convenient way. To

this end, we have focused on developing a model that is both simple and expressive:

the model provides the primitives that we believe will make it easier to write secure

applications with information flow control. Our approach allows implementations to

18

be distributed and to make use of components developed by third parties.

An important way in which Aeolus simplifies application implementation is by

embedding its security model within a distributed model of computation. This model

is object-oriented: a distributed program is composed of objects residing at one or

more machines. These objects are only able to communicate via a secure file system,

or by making remote procedure calls to one another’s methods. Internally objects run

multiple processes; each time a call arrives it runs in its own process. These processes

are isolated: they do not share memory directly. However, Aeolus provides a limited

way for them to communicate, through secure shared state.

A secure distributed model of computation has not been provided by any of the

other approaches.

Aeolus is implemented as a platform that runs on a collection of machines within

an Aeolus configuration. All user code running on those machines runs on top of the

platform. The platform supports the Aeolus programming model. It tracks informa-

tion as it flows within and between the machines that make up the configuration, and

it controls the movement of that information, both among members of the configu-

ration, and to the outside (to machines that are not in the configuration and to I/O

devices).

Similar to the earlier work, Aeolus focuses on controlling information that is com-

municated directly, for example, written in an email message. Aeolus is aimed at pre-

venting errors from undermining information security, rather than malicious attacks.

It does not address leaks through covert channels, although we have been careful to

avoid introducing additional opportunities for covert channels via our mechanisms.

1.1 Contributions

This thesis makes a number of contributions.

19

1.1.1 The Model

We provide a new programming model in which application developers can specify

how sensitive data can flow through a distributed application composed of modules

from a diverse set of providers. Aeolus allows a developer to put together an ap-

plication with components that run on many different machines and that may have

been produced by different organizations; nevertheless the programmer can ensure

that sensitive data is treated properly, i.e., according to the desires of the owners of

the data.

The Aeolus model is based on concepts defined by others, in particular principals,

tags (categories), and labels, and uses information flow rules to enforce both confi-

dentiality and integrity, in particular, requiring authority or privilege to declassify or

endorse. However, it combines these concepts in a new way that we believe makes

the security model easier to use and understand.

Fundamental to flow control is the use of authority. In Aeolus, authority resides

with principals and processes always run on behalf of a principal. Aeolus only allows

a process with the proper authority to release confidential information or to vouch for

information having a certain integrity. Aeolus provides support for both information

flow control and access control, but using separate mechanism. In particular, it

supports access control in the usual way, using principals and access control lists.

1.1.2 Support for Modular Program Construction

A distributed computation is made up of software modules from different developers

and sometimes from third parties. It is crucial to effectively control the dynamic

behavior of different modules in these large-scale applications. Most important is the

support for a programming methodology where most code of an application runs with

minimum privileges to prevent programming errors from causing a costly information

leak. If only small portions of code perform privileged operations, they can be easily

isolated and verified. Then security of the application can be guaranteed by analyzing

only these critical modules rather than by examining the entire code base.

20

Aeolus provides mechanisms that explicitly address modularity. It provides this

support through three complementary mechanisms.

First, Aeolus provides explicit support for the principle-of-least-privilege [52]. It

is well understood that this principle is the basis for writing secure systems. Aeolus

provides mechanisms that can be used to cause code to run with minimal or no

authority. The latter way of doing things is particularly useful, because in this case

the code will be unable to compromise security even if it has errors.

The second mechanism is the ability to bind authority to code, through the use

of anonymous authority closures. For example, a module that checks passwords can

be granted authority to produce the one bit isValid result. Before granting the

authority, a user can inspect this code and verify that it deserves the authority, the

amount of information being leaked in its results is small enough to be acceptable.

Aeolus ensures that the authority cannot be usurped: it is granted to just the closure

and cannot be used to do something different, for example, to print the password

on the printer. Additionally, Aeolus allows dynamic delegation and revocation of

authority to the closure, and it provides support for software upgrades.

Third, Aeolus makes the use of authority explicit and applies a just-in-time

methodology. Modules that are able to run with authority have to indicate exactly

when they want to use it. For example, the password checker contains code to do

the checking, but it can be written so that the release of the answer, which requires

authority, happens only at the end. This provides a proof point: a point at which

one can reason about whether it is safe to release the information. Any inadvertent

release of the password data prior to this point is not possible.

1.1.3 New Mechanisms

Aeolus provides a number of new mechanisms that make it easy for applications to

accomplish their tasks securely:

• Distributed Object Model. Distributed programs running on the Aeolus

platform are composed of a collection of objects that we refer to as app-objects.

21

App-objects can communicate only through remote procedure calls to one an-

other’s methods, or through the secure file system. App-objects run as a collec-

tion of processes, and these processes are isolated, except that they can com-

municate via shared state as discussed below.

• Anonymous Authority Closures. Anonymous authority closures were al-

ready discussed above; we expect them to be heavily used in applications. Au-

thority closures tie authority to code so that it cannot be misappropriated. At

the same time, they support software upgrades and dynamic delegation and

revocation of authority.

• Boxes. All information flow mechanisms track contamination and processes

become contaminated when they read contaminated information. Furthermore,

once a process is contaminated, it requires authority to remove that taint. Boxes

allow contaminated information to be exchanged safely while providing senders

and receivers the means to control when they become contaminated. For ex-

ample, a box can be used as an argument in a remote procedure call, and the

recipient can protect itself from becoming contaminated by the box’s content

if all it is doing is passing the box on to a third party, without looking at the

information inside the box.

• Shared State. We support fine-grained sharing of volatile information between

concurrent processes while tracking information flow using a special shared state

mechanism. Processes can share objects in the shared state; additionally, shared

state provides a means for processes to synchronize. However, the use of shared

state is limited to processes within the same app-object: each app-object has

its own shared state.

• Compound Tags. In many systems, the tags used to compartmentalize data

are related. For example, in a medical clinic, each patient’s data has its own

tag, but all of these tags are related in that they represent information about

patients at the clinic. Compound tags allow relationships among tags to be

22

captured and permit efficient delegation of authority for groups of related tags.

1.1.4 Proof-of-Concept Platform

Application developers can construct secure programs using the Aeolus model. We

demonstrate that our model is implementable by developing a distributed computing

platform to deploy these programs. In particular, we provide a platform for running

local and remote software supporting local processes as well as remote ones (e.g.,

web services). Our working prototype demonstrates that our proposed programming

model can be implemented efficiently, in ∼20,000 lines of code, while supporting the

functionality needed to run real applications.

1.1.5 Application Use Cases

We also have application case studies that show that our model is sufficiently expres-

sive to support complex program interactions. Although the main goal for Aeolus is

to support new applications, we also looked at its use to prevent security errors in an

existing application. These studies provide a proof of concept for Aeolus, allowing us

to argue that our model is complete.

1.2 Outline

The remainder of this thesis is structured as follows. The next chapter provides an

overview of Aeolus defining our threat model and our high-level application model.

Chapter 3 describes the Aeolus programming model and it is followed by examples

that use our programming mechanisms in Chapter 4. Chapter 5 presents the design

of our distributed computing platform. The evaluation of Aeolus is broken into two

chapters: Chapter 6 examines the performance of the Aeolus platform and Chapter 7

applies the Aeolus model to several application scenarios to evaluate its expressive

power. Chapter 8 compares our research with other related work. Finally, Chapter 9

23

concludes and discusses extensions to this work.

24

Chapter 2

Aeolus Architecture

This chapter describes the system environment we assume for Aeolus, and the appli-

cation model it presents to users. We also discuss our threat model.

2.1 Aeolus Configurations

Aeolus provides information flow control for a distributed computing environment.

Our system consists of one or more nodes. We assume nodes are allowed to enter the

system through some kind of admission control, e.g., a node that wants to join must

present a certificate from a trusted party. We assume this party uses some mechanism,

beyond the scope of our system, to determine whether it is appropriate to allow a

node to join. Every system member has some associated registration information

known to all other members, including an IP address and a public key.

Our platform runs on all nodes in the system. We assume all in-system nodes

are trusted to run our platform and to ensure that user code is running on top of

our platform. User code runs on behalf of a principal. Aeolus vests authority in

principals, which it represents as principal IDs. However, we do not require that the

way we represent principals needs to match how this is done on a node in our system.

Instead, system nodes merely need to map from their representation to ours.

Aeolus tracks information flow within each node in the system and between sys-

tem nodes. It allows sensitive information to flow in messages, but the messages are

25

encrypted so that secrecy and integrity are protected. Aeolus also controls the flow of

information between the inside and the outside of our system. This flow can take the

form of communication with outside nodes. It can also involve the use of I/O devices:

all I/O devices are considered to be outside the system. If information is flowing to

the outside, the flow is allowed only if the application trying to send information has

the authority to declassify it (i.e., remove its contamination). Similarly, information

coming in from the outside has no integrity, which implies that the application re-

ceiving the information must have authority to endorse it if needed (e.g., verify the

input prior to storing it in a file).

Similar to other systems that provide information flow control, Aeolus tracks

information as it flows through programs, and determines whether programs have

the authority to perform certain security-sensitive operations, such as releasing secret

data. The latter operations require some way to track who has authority for what.

In Aeolus, this is done through authority state, which is maintained by our platform.

The authority state is logically centralized (although the implementation could be

distributed).

...

Internet

API

User
Code

Aeolus

API

User
Code

Aeolus

API

User
Code

Aeolus

Compute Nodes Storage Nodes
User
Data

Aeolus

...

User
Data

Aeolus

Authority State

Aeolus

Auth
Info

Figure 2-1: Aeolus Distributed Computing Environment

This architecture is illustrated in Figure 2-1. This figure shows an Aeolus system

configuration with some nodes inside the system and others outside; additionally

the devices are outside. The figure also shows that each node inside the system

runs the Aeolus platform, which determines whether security-sensitive operations

can be performed by consulting the authority state. As mentioned earlier, all user

26

code running on an inside node runs on top of the Aeolus platform. The authority

state is shown as being stored at a single node, which is how we handle it in our

implementation.

This figure shows that some nodes are intended to run programs, while others

are used only to store sensitive data; of course some nodes might be used both to

compute and to store data.

2.2 Threat Model

Aeolus is aimed at preventing programming errors from undermining information

security. The complexity of software and distributed nature of today’s software make

it difficult to ensure that the million lines of code in an implementation will not

leak sensitive application information. Software often has bugs and systems can be

configured incorrectly. We focus on software design methodologies and a programming

model that can minimize the occurrence of such errors. We do not assume perfect

confinement, e.g., a person can copy down displayed data; however, we assume that

information leak happens inadvertently rather than through malicious attacks.

We trust that nodes within our system run our platform and system adminis-

trators responsible for these nodes will take actions to protect them from malicious

attacks (e.g., network firewall, software patches, virus scans). We assume secure user

password management and un-compromised authentication services.

A closure binds code to authority. However, to support software upgrades for

closures, we accept new versions of this code, provided they are accompanied by

a certificate that covers the code; we verify this certificate by using a public key

associated with the closure. We assume that versions of closure code are supplied by

a trusted code repository that manages the secret keys securely.

In addition, in our prototype, we implement the platform code on top of the

language runtime, so this is also included in our secure base.

We focus on two types of data security issues: confidentiality and integrity. Con-

fidentiality ensures that secrets cannot leak. Integrity ensures that information is

27

vouched for properly. We do not address security issues related to the availability of

data (e.g., denial-of-service attacks) and resource allocation of system nodes.

Aeolus does not address leaks through covert channels, although we have been

careful to avoid introducing additional opportunities for covert channels via our mech-

anisms.

An Aeolus configuration might be used for a single distributed application, e.g.,

a medical information system running on many machines. It might also be used

to run several disjoint applications; each of these might be itself running on several

in-system nodes. All applications running on Aeolus must trust our secure base.

However, disjoint applications do not need to trust the user code running on the

nodes that support other applications; Aeolus will ensure that those applications

cannot interfere with one another. Instead applications need only trust the user code

that they make use of and even then, only if they give it some of their authority.

2.3 Application Model

This section provides an overview of how applications that run on Aeolus are struc-

tured.

We provide an object-oriented architecture in which an application is implemented

by a number of app-objects. For example, a developer can divide a server applica-

tion into app-objects for different tasks (e.g., one for handling incoming customer

requests, one for retrieving product catalog data, and another for periodically com-

puting statistics over usage logs).

Each app-object resides at a single node. An application may consist of app-

objects residing all on the same node or on different nodes within our system. App-

objects are isolated from one another: there is no direct sharing of data between

them.

Each app-object provides methods that can be called by other app-objects to

communicate with them. App-objects communicate via remote procedure calls. They

may also receive calls from nodes outside of Aeolus, and can make calls to such nodes.

28

Aeolus Node B

AppObject #2
(e.g., Catalog Service)

User
Code

Aeolus
Process

User
Code

Aeolus
Process

Aeolus Shared State

AppObject #3
(e.g., Statistics Service)

User
Code

Aeolus
Process

Aeolus Node A

AppObject #1
(e.g., Customer Service)

User
Code

Aeolus
Process

User
Code

Aeolus
Process

Aeolus Shared State

RPC

Aeolus Shared State

RPC

Figure 2-2: Aeolus Application Model

Within an app-object, there can be multiple processes. Some of these processes

handle remote calls: each call runs in its own process. Others can carry out back-

ground activities. All of these processes are isolated: each runs in its own separate

address space. However, Aeolus provides a limited way for processes within an app-

object to communicate and synchronize via a shared state mechanism. Each app-

object has its own shared state, which can be used only by the processes in that

app-object.

This architecture is illustrated in Figure 2-2. This figure shows an example of an

online store application running on Aeolus. The application is implemented using

three app-objects: customer service, catalog service, and statistics service. The cus-

tomer service app-object is deployed on a different node to offload the processing of

incoming web requests. Our platform tracks information flow between Aeolus pro-

cesses, across app-objects on the same node, and over remote calls to app-objects on

other nodes.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

Chapter 3

Programming Model

The Aeolus model enforces information security by allowing application developers

to label critical data and permits information to flow from one system entity to

another only under certain conditions. Authority is needed to perform security-

sensitive operations.

In this chapter, we describe the programming model and how applications execute

under the constraints of our model.

3.1 Motivating Examples

First, we present some examples where information flow control is an important con-

sideration in the design of applications.

Bob and the Tax Preparer. In this example, which is borrowed from [45],

a vendor provides a service that, given a user’s tax information (e.g., Bob’s infor-

mation), produces a tax form. The tax information and the resulting tax form are

both confidential and should be visible only to Bob. To produce the tax form the

service makes use of a proprietary database that should only be visible to it, and the

resulting tax form is contaminated by this information. The system needs to provide

a way for the tax preparer program to decontaminate the result so that Bob can see

it, but also prevent the tax preparer program from making Bob’s private information

visible to third parties.

31

Sales Analysis. This example concerns the commercial sector where it is com-

mon to use outsourced services; a discussion of control of information in this en-

vironment is discussed in [27]. A third party produces a tool that analyzes sales

information from many companies and produces results about customer preferences.

Companies that use the tool have determined through some mechanism that the final

result is acceptable to them (e.g., it doesn’t expose details of their organizations).

The tool needs a way to produce the final result so that each company using the tool

can see the result. But additionally, the companies need a guarantee that the third

party won’t be able to expose their private sales information.

The Medical Clinic. Clearly confidentiality in medical information systems is

a matter of great concern, e.g., see [41]. Here, we mention a couple of examples (in

addition to the one discussed earlier concerning the administrative assistant). First,

billing must be done based on the treatments and appointments that individuals had

during the billing period. The bills need to be sent to the appropriate parties (the

patient or his insurance company) but neither the raw data nor the bills should be

otherwise exposed. Second, a statistics package requires access to all patient records;

it is trusted to produce a result that obfuscates the data but it needs a way make

this public.

3.2 Principals, Tags and Labels

The Aeolus model is based on three key concepts: principals, tags, and labels. Prin-

cipals represent users or roles (e.g., user Alice or the company contractor role). Ap-

plication code runs within processes. Every process in Aeolus is associated with a

principal and runs with the authority of this principal. This allows it to perform

certain privileged label manipulations and delegations as discussed below.

Tags provide a way for principals to categorize their information. For example,

Bob might define three categories, one for public information, one for family infor-

mation, and one for private information.

Both principals and tags are represented by opaque randomly-generated and

32

globally-unique identifiers, referred to as principal identifiers (PIDs) and tag iden-

tifiers (TIDs), respectively.

Labels are sets of tags and are used to control information flow. Aeolus allows

certain objects to be labeled. All data objects (such as files and also objects in the

shared state) and all processes have two labels: a secrecy label, LS, which reflects

confidentiality of information, and an integrity label, LI , which reflects the integrity

or validity, of information.

A tag can be used in a secrecy label or an integrity label or both, as shown in

Figure 3-1. For example, an application developer may use our model to create a

tag to represent the AliceShopping sensitivity category and include it in the secrecy

label to restrict where data derived from Alice’s transaction history can go. The same

AliceShopping tag is used in the integrity labels of files containing online purchases

confirmed by Alice.

Secrecy Label:
{AliceShopping}

Integrity Label:
{AliceShopping,
CheckoutLogger}

PID: Alice
S: {AliceShopping}
I: {}

PurchaseItem()

AlicePurchases.dat

Process Object

Figure 3-1: Process, Object, Tags and Labels

When a labeled object is created, it is assigned a secrecy label and an integrity

label. These labels are immutable throughout the lifetime of the object. As a process

executes, it may access sensitive information from different sources and as it does

so its labels change. For example, an application developer might create two files:

FileA.txt and FileB.txt. FileA.txt is used to store Alice’s personal data and is

assigned the tag AlicePersonal in its labels while FileB.txt is used for Bob’s data

and is assigned the tag BobPersonal. The label of a process that reads FileA.txt

will contain the AlicePersonal tag to reflect the contamination by Alice’s personal

33

data. Next, we discuss the precise rules that govern such information flows.

3.3 Information Flow Control Rules

The information flow rules are defined as the conditions that must be satisfied for

information to flow from a source A to a target B. For example, this can happen when

process A writes to object B or when process B reads from object A. There are two

conditions and both of them must be satisfied. These rules are similar in concept to

the conventional lattice-based rules defined in [14].

Information Flow Constraints on Source A and Target B:

• Secrecy Condition: A.LS ⊆ B.LS

• Integrity Condition: A.LI ⊇ B.LI

When these conditions are satisfied, we say that A’s labels are no more restrictive

than B’s.

A label LA is a subset of another label LB if and only if LB contains all the tags in

LA. The secrecy condition says that the secrecy label of the source of the information,

A, must be a subset of the secrecy label of the target, B. The integrity condition

says that the integrity label of the target of the information, B, must be a subset of

the integrity label of the source, A (or equivalently, the integrity label of A must be

a superset of the integrity label of B).

The secrecy condition ensures that confidentiality is maintained as data propa-

gates. For example, if a process has knowledge of Company A’s sales information, that

is, its secrecy label contains the corresponding tag, then the process can only write to a

file with secrecy label containing at least this tag. Thus, the secrecy condition allows a

process with secrecy label {CompanyASales} to write to a file with {CompanyASales,

CompanyBSales} but not to one with {CompanyBSales}. The integrity condition pre-

vents influences from low-integrity entities. For example, a file containing a set of

34

verified account numbers may have the integrity label {AccountingVerified} and

the integrity condition will not allow a process without this tag in its integrity label,

for example, a process with an empty integrity label, to modify this file.

LS

LI

{CompanyASales, CompanyBSales}=
=

LS

LI

{CompanyASales, CompanyBSales}=
={AccountingVerified} {}

VIOLATION

OK

LS

LI

{CompanyASales}=
=

LS

LI

{CompanyBSales}=
={AccountingVerified} {}(Secrecy)

VIOLATIONLS

LI

{CompanyASales}=
=

LS

LI

{CompanyASales, CompanyBSales}=
={AccountingVerified} {AuditorVerified}(Integrity)

SOURCE A TARGET B

Figure 3-2: Examples of Information Flow Checks

Figure 3-2 illustrates these examples in greater detail. A violation in either the

secrecy condition or the integrity condition will trigger an exception in our model.

3.4 Label Manipulations

To satisfy the information flow rules, processes sometimes need to manipulate their

labels. Some manipulations are safe, while others are not.

Any process can perform safe label manipulations.

Safe Label Manipulations:

• AddSecrecy(in T): Adds a tag T to the process’ secrecy label.

• RemoveIntegrity(in T): Removes a tag T from the process’ integrity label.

These two manipulations are safe since they can only further constrain the use of

data. For example, a process with the added tag in its secrecy label {T} can no longer

write to a file marked with an empty secrecy label. These safe label manipulations

35

preserve secrecy (i.e., sensitive information doesn’t become unmarked) and do not

jeopardize integrity (i.e., integrity can only be lowered).

On the other hand, the following two label manipulations are security-sensitive

operations.

Privileged Label Manipulations:

• Declassify(in T): Removes a tag T from the process’ secrecy label.

• Endorse(in T): Adds a tag T to the process’ integrity label.

Removing tags from a secrecy label potentially allows confidential data to leave

the system; since this can cause sensitive information to leak, this is considered a

privileged operation. Tags in integrity labels indicate the degree of confidence, so

adding tags to an integrity label must also be verified by the Aeolus Platform.

Aeolus ensures that the process has sufficient privilege before performing the op-

eration. Our system allows a privileged label manipulation only if the principal of

the process executing the operation has authority for the tag in question, i.e., the

tag being removed in a declassification operation, or being added in an endorsement

operation. Authority is discussed in Section 3.5.

Our model requires that all label manipulations be done explicitly. This is espe-

cially important for privileged label manipulations to be made explicitly because it

prevents accidental and unintended flows and encourages a just-in-time methodology

in which authority is used just at the moment that an intended flow happens. For

example, the sales analyzer would remove the company tags at the last minute as it

returns the result of its analysis; this reduces the chance that errors will cause release

of sensitive information.

36

3.5 Authority

A principal that is authoritative for a tag can perform privileged label manipulations

involving that tag. Authority starts with tag creation; when a process creates a tag,

its principal is granted authority for that tag. Authority is extended both implicitly

and explicitly. Implicit authority is obtained through the principal hierarchy and

explicit authority is given through authority grants. We give examples in Chapter 4

of how implicit and explicit authority are useful in a medical clinic.

3.5.1 Principals

Principals are arranged in a principal hierarchy, allowing one principal to act-for an-

other [20]. If a principal P1 is recorded as acting-for another principal P2, then P1 has

all the authority of P2. The act-for relationship is transitive. The principal hierarchy

is useful to capture organization structure (groups) and also it allows individuals to

use different principals for different purposes (roles).

A process running as principal P can create a new principal. This is done with

a CreatePrincipal request that returns a new principal ID, P1. In doing so, the

creator principal P automatically acts-for the created principal P1.

Creating a new principal:

• CreatePrincipal(out P1): Creates a new principal P1; the creator principal

acts-for P1.

A principal P1 can allow another principal P2 to act for it by issuing an ActFor(in

P1, in P2) request. This call is legal provided it does not cause a cycle in the

principal hierarchy and the process’ principal is authoritative for the actee principal

P1.

Delegating ActFor authority:

37

• ActFor(in P1, in P2): Allows principal P2 to act-for P1.

3.5.2 Tags and Grants

Any principal can create a tag by issuing a CreateTag request on our platform.

Creating a new tag:

• CreateTag(out T): Creates a new tag T; the creator principal has authority for

tag T.

A new tag T is returned and the principal that issued the request is automatically

given authority for the new tag T.

Acts-For

P1

P3

P2

P4 P5

P6

T1

T4

T3 T2

Figure 3-3: Act-for Relationships in Principal Hierarchy

Figure 3-3 shows an example of a principal hierarchy. The principal hierarchy is

a directed acyclic graph with nodes representing principals and with edges pointed

from an actor principal to an actee principal. This figure shows the principals that

created the various tags; for example, principal P4 created the tag T3. The act-for

relationships in the principal hierarchy allow P1 and P3 to derive authority for tag T3

38

even though they did not create the tag. (Note that the act-for relationships should

not cause loops as a loop will imply that all principals along the path should have the

same derived authority and hence are better represented as a single principal. This

single principal will represent a group role where all members have equal authority.)

With ActFor, the actor principal P2 implicitly inherits all the authority of the

actee. Additionally we allow explicit delegation of authority for tags. Explicit del-

egation of authority is much more controlled and therefore safer since the grantor

doesn’t provide all the privilege. This method of delegation provides fine-grained

control. Just as tags allow applications to categorize information and provide sep-

arate controls for different categories, grants allow applications to control authority

over those categories in a constrained way.

When principal P1 uses Delegate(in T, in P1, in P2) to explicitly grant the

authority for a particular tag T to principal P2, this operation is permitted if the

process’ principal acts-for principal P1 and principal P1 has authority for tag T.

Explicitly granting authority:

• Delegate(in T, in P1, in P2): Grants authority for tag T from principal P1

to P2

Figure 3-4 compares implicit and explicit delegation; in both cases, P1 has au-

thority for tag T1. On the left, P1 has been allowed to act-for P3; P1 thus has derived

authority for tags T1 and T2 through principal P3. If principal P3 wants to limit the

delegation to only tag T1, it can do this by issuing Delegate(T1, P3, P1) instead

as seen in the right subfigure. An authority chain is maintained for each explicit

delegation to keep track of the origin of the authority.

3.5.3 Compound Tags and Static Grouping

Explicit delegations can be cumbersome to use. For example, a clinic administra-

tor has to delegate the tags of each patient to the principal generating the billing

39

P1

P3

P5

T2

Implicit Authority
ActFor

P1

P3

P5

T2

Explicit Authority
Delegate

P1's authority for T1

T1 T1

T1

Figure 3-4: Comparing Implicit and Explicit Delegation

information.

To support this common usage pattern, we provide compound tags. This mech-

anism allows tags to be grouped statically, as they are created, e.g., all patient tags

are created in the same group. The compound tag can be delegated to a principal

and this gives this principal authority for all tags in the group.

A compound tag (or top-level tag) is created with the tag creation operations men-

tioned previously, namely, CreateTag(out T). To create a sub-tag, a process issues

CreateSubTag(in T1, out T2), where T1 is the top-level tag that the newly created

sub-tag T2 is associated with. When a principal is given authority for a compound

tag, it has authority for all its sub-tags. T1 must be a top-level tag; otherwise an

exception is raised.

• CreateSubTag(in T1, out T2): Creates a sub-tag T2 of top-level tag T1; the

principal that makes this call has authority for tag T2.

We chose to group tags statically (i.e. at creation) because this approach has

significant implementation advantages over grouping them dynamically: as discussed

40

in Chapter 5, we need not store static groups using explicit data structures. Further-

more the examples where large numbers of delegations were needed allowed a static

solution: it was natural to think of patient tags as being related, or to think of all

users of a web service as being related.

Static grouping doesn’t work for every situation. For example, compound tags

don’t work for the sales analyzer, since in this case we cannot expect that the sales

tags for the different companies are put into same group a priori.

We also chose a simple 2-level hierarchy for tags rather than a general hierarchy.

We did this because there appeared to be no need for a general hierarchy in our

examples. If we discover a need for a general hierarchy, the model can easily be

extended to provide it.

3.5.4 Revocation

Aeolus allows authority to be revoked. Implicit authority can be revoked by remov-

ing a link in the principal hierarchy using RevokeActFor(in P1, in P2) where P1

is the actee principal and P2 is the actor principal. The removal has a transitive

effect: not only is P2 no longer able to act-for P1, but all principals that act-for P2

no longer act-for P1. Explicit authority can be revoked by removing a delegation

using RevokeDelegate(in T, in P1, in P2) where T is the tag (compound tag or

subtag) for which authority was granted, P1 is the grantor principal and P2 is the

grantee principal. This also has a transitive effect: if P1 delegated authority for tag T

to P2, and later P1 revokes this delegation, this removes authority for tag T from P2

and also from any principal P2 granted that authority to using this authority. Our

use of delegation chains allows revocation to match intuition: any delegations that

happened as a result of the first delegation are also undone. For example, if Alice

delegates tag T to Bob and Bob delegates to Tom, and then later Alice revokes Bob’s

authority for tag T, this takes away Tom’s authority for tag T as well.

Revoking authority:

41

• RevokeActFor(in P1, in P2): Revokes principal P2’s ability to act-for P1.

• RevokeDelegate(in T, in P1, in P2): Revokes the delegation of tag T from

principal P1 to P2.

Similar to delegations, requests for revocations are checked to ensure that they are

issued by a principal with sufficient authority. The principal of the process issuing

the request must be authoritative for the actee principal P1 in RevokeActFor(in P1,

in P2) and for the grantor principal P1 in RevokeDelegate(in T, in P1, in P2).

3.5.5 Principal Hierarchy

The principal hierarchy is a directed acyclic graph that expresses act-for relationships

between principals. It has the principal Proot at the top of the hierarchy and the Ppublic

principal at the bottom. The Proot principal acts-for all principals but no principal

acts-for it whereas the Ppublic principal does not act-for any principal and has no

authority but all principals act-for it.

Proot

Ppublic

Figure 3-5: Special Principals

We provide a way to talk about the Ppublic principal explicitly. Any process can

switch to running with the Ppublic principal. When a process is running with this

42

principal, it doesn’t have any authority and therefore cannot perform privileged op-

erations such as declassifications and endorsements. Also, the system will not allow

another principal to assign authority to Ppublic via explicit or implicit delegations.

Furthermore, this principal cannot create tags and subprincipals. Running with the

Ppublic principal is ideal for sections of code where we simply want to track the prop-

agation of sensitive data with no need to perform privileged operations.

Our system also has a Proot principal. It is up to the application using the system

to carefully control login so that this principal is used only when absolutely necessary.

Aeolus prevents a process running as Proot to allow another user-created principal to

act-for this principal.

3.6 Authority Closures

When a principal is given authority via delegations, there is no guarantee as to what

code will use the authority. There are situations in which a user is willing to allow a

service to declassify some of its data only after some transformations have sufficiently

obfuscated the data. Authority closures allow programmers to obtain such a guarantee

by granting authority directly to code. We expect authority closures to be widely

used. For example, statistics over a medical database can be published provided

details about individuals are not exposed. Similarly, a principal might be willing

to endorse some data after a computation has checked that the data meets certain

constraints. For example, an input verifier can check that a parameter is in the proper

format and will not subject the program to an injection attack.

When an authority closure is created, it is associated with a new principal but that

principal is anonymous and unrelated to any other principal. Since the anonymous

principal is unrelated to any other, when the closure is first created it has no privileges.

However, we allow authority for specific tags to be delegated to it, and also it can be

made to act-for some (non-anonymous) principal. Importantly, though, there is no

way to make some principal act-for the closure or for the closure to delegate authority

for tags to another principal. We check and prevent an anonymous principal from

43

issuing Delegate and ActFor requests. That way, we can guarantee that only the

closure can use the authority granted to it. Limiting the closure to the authority

prevents security leaks due to errors that happen later. For example, suppose the

programmer who created the closure was able to act-for it; then later, he could

accidentally misuse the closure’s authority.

Conceptually, an authority closure binds an anonymous principal to some code

provided when the closure is created. Binding directly to code provides very strong

guarantees, but doing so is undesirable, for two reasons. First, we don’t want Aeolus

to be a repository for code, nor to be bound to code repositories, e.g., certain file

systems where code is stored. This problem could be solved by storing a hash of the

code rather than the code itself, but this doesn’t solve the second problem: providing

support for software upgrades.

To allow software upgrades, we instead bind a closure to a key that is provided

when the closure is created. We assume here a trusted version management system

used by the application; the key provides confidence that the version came from the

trusted source. CreateClosure(in key, out CL1) takes in a key as an argument

and returns a new closure ID CL1. During its creation, the key and a new anony-

mous principal are associated with this closure ID CL1. When an authority closure is

invoked, the requester supplies the closure ID CL1, the code to run, and a certificate

cert. This certificate must cover the code and must be signed by the closure’s key;

if this check fails, the call isn’t allowed.

Here are some operations related to creating closures and delegating authority to

them:

• CreateClosure(in key, out CL1): Creates a new closure with the key, asso-

ciates an anonymous principal PA with the closure, and returns the closure ID

CL1.

• ClosureActFor(in P1, in CL1): Adds an act-for link from the anonymous

principal of closure CL1 to actee principal P1, provided that the process’ prin-

44

cipal acts-for principal P1.

• ClosureDelegate(in T, in P1, in CL1): Gives authority for tag T from

grantor principal P1 to grantee anonymous principal PA of closure CL1, provided

that the process’ principal acts-for principal P1 and principal P1 is authoritative

for tag T.

An example of an authority closure is the method IsPasswordValid(in username,

in password, out isValid) which checks against a file containing user and pass-

word information. The method returns a boolean value isValid on whether the

input password is correct. The file is tagged by a tag TPassword in its secrecy label

to protect passwords from leaking. In this case, a developer trusts that the out-

put boolean value can be declassified since it reveals very little information about

the actual passwords.1 The IsPasswordValid method performs the privileged label

manipulation, Declassify(TPassword) just before returning the boolean value. The

authority to remove this tag from the process’ secrecy label is granted to just to this

authority closure, which ensures that the authority can only be used when running

this code.

We chose our solution of using a key because it gives maximum flexibility. Not

only does it allow for software upgrades, it also allows for running different code

on different machines (e.g., on .NET and on JVM). But still the system is secure,

assuming a trusted code repository.

3.7 Execution

Once a process starts running, it can switch to run code as different principals via

calls and forks. In addition, the developer can specify the declassifications and en-

dorsements that are applied to the process’ labels before running this code. Switching

1Note that this 1-bit output still reveals some relationships between users and passwords. Iterative
invocations of this method can potentially be used in dictionary attacks. However, our goal is not
to achieve perfect secrecy but merely to allow developers to identify code segments that are highly
critical to system security.

45

to different principals allows code to run with only the privilege it needs for its task,

following the principle-of-least-privilege. Applying declassifications and endorsements

to specific code is an example of our just-in-time methodology.

3.7.1 Local Calls

Most local calls execute as-is and without the intervention of Aeolus. However, when

the application wants to make a local call with a change in principal (e.g., to Ppublic),

such requests must go through our system.

• Call(in C, in P, in listS, in listI): Runs code C of type

AeolusCallable in the same process with principal P. The process’ labels are

adjusted using the lists of tags listS and listI to apply declassification and

endorsement, respectively, to the process’ labels prior to invoking code C.

Code objects of type AeolusCallable have an Invoke method that our system

can call. This method has neither arguments nor results; instead the object can hold

arguments and return values in its internal state.

When a process issues a Call, it can specify the principal P that it wants to run

code C with. It can also optionally specify the lists of tags listS and listI for

applying declassification and endorsement to the process’ labels, respectively. Aeolus

checks that the process’ principal acts-for principal P and that the caller principal

has authority for all tags in listS and listI. The Call then runs with the adjusted

process’ labels (i.e., the tags in listS are removed from the secrecy label and those in

listI are added to the integrity label). After the Call finishes, the caller’s principal

is restored and the caller process’ labels are updated to reflect any contamination

picked up as a result of the call (i.e., its secrecy label is union-ed with the caller’s

and its integrity label is intersected). The ability to change the labels at the same

time that the principal is changed is important because the callee may not have

the authority to do this itself. For example, a printer controller is run without any

46

authority; it is passed the data to be printed as an argument and it must have a null

secrecy label since otherwise it won’t be able to use the printer.

3.7.2 Local Forks

A process can run as multiple threads, all in the same address space; in this case, all

the threads have the same principal and labels. A fork can be used to create a new

process that has its own address space and information flow state:

• Fork(in C, in P, in listS, in listI): Runs code C of type

AeolusCallable in a new process with principal P. The process’ labels are ad-

justed using the lists of tags listS and listI to apply declassification and

endorsement, respectively, to the process’ labels prior to invoking code C.

Again code C is an object of type AeolusCallable with an Invoke method. When

a process issues a Fork, it can run with the same principal as the caller’s or it can

optionally specify the principal P that it wants to run the code with. Aeolus performs

the same information flow and authority checks as for a Call. If these checks pass,

a new process is started with the appropriate principal and process’ labels. Code

object C is copied (i.e., serialized) to the new process. This code object may contain

arguments and the copy of these arguments is the only data that the code can access.

A fork is not expected to return to the caller so the caller’s labels are unaffected by

those of the forked process.

3.7.3 Example of Calls and Forks

The ability to limit the authority of code segments is an important property in con-

structing secure distributed applications. An application is a conglomeration of func-

tions with different responsibilities. To minimize programming errors, we want to

give functions only as much authority as they need to get the job done. Application

47

developers are strongly recommended to identify critical functions and assign different

principals to run various portions of their code and to carefully consider how author-

ity changes can impact the overall information security of their programs. Forks and

Calls allow different parts of code to run with different authority.

In Figure 3-6, we show an example of a Clinic Administrator application that

uses Fork and Call to restrict the privilege when performing different tasks. An

administrator may run this application on his/her desktop machine and use it to

print out patient visit summary information at the end of a consultation, to look up

phone numbers of a medical lab, or to send e-mails to hospital staff. The Main code

presents a menu of tasks for the administrator to select from. In this example, the

administrator wants to print patient Bob’s visit summary and the application invokes

the PrintVisitSummary code with Bob’s patient ID. To avoid errors in mixing up

patient records, the application forks off a new process to run this code and reduces the

authority of the new process by running it with PBobPatient rather than the PClinicAdmin

principal that has authority for all patients’ tags.

The PrintVisitSummary code uses the subroutine GetConsultationSummary to

examine Bob’s records and generate a summary. This subroutine is invoked using

Call and is made to run with the Ppublic principal as this code does not require any

authority. By running this code with Ppublic rather than PBobPatient, the developer can

be assured that programming errors within GetConsultationSummary cannot leak

Bob’s sensitive medical data. When this method accesses Bob’s patient record, it adds

the tag TBobMedical to the process’ secrecy label and returns the visit summary. The

PrintVisitSummary method can then exercise its authority to issue a Declassify

prior to printing the patient summary on the local printer.

3.7.4 Authority Closures

Any process can invoke an authority closure.

48

Clinic Administration Application

Main code:
P=PClinicAdmin

1. Select a task (e.g., Print Visit Summary, Lookup Phone Directory, Send
E-mails)
2. Choose to run PrintVisitSummary for patient Bob
2a. PrintVisitSummary.PatientID = Bob’s ID
2b. Fork(PrintVisitSummary, PBobPatient, {}, {})

PrintVisitSummary.Invoke() code :
P=PBobPatient

1. Generate Consultation Summary
1a. GetConsultationSummary.PatientID = this.PatientID

1b. Call(GetConsultationSummary, Ppublic, {}, {})
1c. summary = GetConsultationSummary.summary

2. Declassify(TBobMedical)

3. Print summary to local printer

GetConsultationSummary.Invoke() code:
P=Ppublic

1. Retrieve patient data and produce visit summary
1a. AddSecrecy(TBobMedical)

1b. Read data with this.PatientID

2. Generates and returns this.summary

Figure 3-6: Example Usage of Fork and Call

• CallClosure(in C, in listS, in listI): Forks a process to run code C of

type AeolusClosureCallable, with the anonymous principal PA associated

with the closure. The process’ labels are adjusted using the lists of tags listS

and listI to apply declassification and endorsement, respectively, to the pro-

cess’ labels prior to invoking code C.

When invoking an authority closure, code C is an object of type

AeolusClosureCallable, which is a sub-type of AeolusCallable and hence, has an

Invoke method that our system can call. In addition, the AeolusClosureCallable

also includes a closure ID in its internal state and a method GetCertificate that

49

can be used to obtain the certificate that proves the code is that of the closure.

When a CallClosure request is made, Aeolus uses the closure ID in Code C to

retrieve the key and anonymous principal associated with the closure. It checks to

ensure this code is certified by the key (by examining the certificate associated with C)

before executing it with the anonymous principal. The requester can include lists of

tags listS and listI to apply declassification and endorsement, respectively, to the

process’ labels prior to invoking code C. Aeolus checks that the caller’s principal has

authority for these tags. While the closure is running, the calling process is blocked

waiting for it to complete. When the closure returns, the AeolusClosureCallable

object is copied back to the caller’s process, and the caller’s labels are adjusted to

reflect any contamination picked up as a result of the closure call.

While the closure is running, the system prevents the process from delegating

its authority or allowing another principal to act-for it. Furthermore, the closure

is executed in a new process and hence its authority cannot be usurped by threads

running concurrently in the caller’s process.

3.7.5 Remote Procedure Calls

Remote procedure calls are carried out as method invocations on remote objects. To

a developer, a remote method is indistinguishable from a local method invocation.

Our platform ensures that the method runs with the caller’s principal and process

labels on the remote machine and when the result is returned, the local process’ labels

are updated with the remote process’ labels. Additionally, at the called object, the

call runs in its own process, with its own address space and authority state. If the

developer wants to run the remote call with a different principal or process labels,

it can do so using Call and invoking the remote object within the AeolusCallable

code object.

3.7.6 Launching app-objects

Any process can launch an app-object by calling:

50

• Launch(in C, in P, in S, in I): Starts up a new app-object with configu-

ration C. This app-object contains a single process, running with principal P,

and with labels S and I.

A caller process launching an app-object must satisfy certain information flow

constraints before the launcher will create this app-object. It supplies configuration C

which contains all the necessary information (e.g., path to code libraries, input argu-

ments, information about what code the app-objects process will run) for the launcher

code to bootstrap the app-object. Since information can be leaked through this data

directly or covertly, Aeolus requires the caller to have a null secrecy label. Similar to

Calls and Forks, the caller process’ principal must also act-for P. Furthermore, the I

label must be no less restrictive than the caller process’ since information flows from

the caller process to the new process in the created app-object. Once the new process

starts, it runs completely independently from the caller process; for example, the new

app-object has its own shared state that the caller process cannot access.

3.7.7 Logging in

An app-object can also start running through a log-in procedure. We assume servers

have an authentication mechanism that determines what principal is assigned when

a user logs-in. Since servers within our system are trusted, different servers can use

their own log-in techniques. We do not require uniformity in the way servers represent

their principals; instead they only need to map their principals to ours.

These trusted log-in procedures present Aeolus with the principal ID of the logged-

in user and the code to start running with. Aeolus creates an app-object to run the

code in a process within this app-object. The log-in procedure can also specify the

initial secrecy and integrity labels to run this process with.

51

3.8 Data

3.8.1 Files

Many applications require support for persistent data so that computation results and

user data can be stored on disks and retrieved at a later time. Networked file systems

and databases are typically used for these tasks. In addition to data persistence, they

can also act as repositories for data that is shared by users on different machines. For

example, an organization may have various application servers accessing a common

set of files. A healthcare organization may have patient health records and person-

nel information stored over several storage servers. This thesis provides for secure

persistent storage via a file system.

File systems represent data in a hierarchical manner. Directories are like con-

tainers and files are like objects inside containers. Containers may have on them

descriptions about the objects they store. A container can also store other contain-

ers. As one opens a container, the objects revealed may be more sensitive than the

outside. This is analogous to a sealed envelope with the address of the intended

recipient written on it and within it, a confidential letter. Our model for persistent

storage interfaces is based on this concept.

Root
Directory

/

Directory
/D1

Directory
/D2

File
/F1

File
/D2/F2

File
/D2/F3

Directory
/D1/D3

File System
Less

Restrictive

More
Restrictive

LS

LI

={}

={Admin}

Lower Secrecy
Higher Integrity

Higher Secrecy
Lower Integrity

LS

LI

={AliceInfo}

={}

LS

LI

={AliceInfo, AliceFamily}

={}

LS

LI

={AliceInfo, AliceMedical}

={}

Figure 3-7: Labels on Files and Directories

52

Figure 3-7 shows how file systems are modeled using this container-object con-

cept. The containers and objects higher up in the hierarchy are less restrictive. For

confidentiality, this translates to more sensitive data being stored further down in

the hierarchy, making them less accessible for reads and disclosures (e.g., putting Al-

ice’s patient records inside the “Alice” directory). For integrity, this means that it is

harder for a process to have the authority to write to a container or to object higher

up such as the root directory.

Directories are arranged in a hierarchical manner and directories and files exist

logically within directories. Directories are special files with information about the

files they contain. The labels on directories reflect the information flow concerns of

the metadata (e.g., the existence of particular files). Files have immutable labels and

a file’s labels must be no less constraining than those of the directory that contains it.

File reads and writes are allowed only if the information flow constraints are satisfied.

To create a file, the parent directory is updated (read and written) and the new

file is created inside this directory. The parent directory contains the list of files

and the new file is added to this list. This directory is also read because if the

file already exists, this can trigger an exception and a process can learn about the

existence of a file in this way. Therefore, the caller must have secrecy and integrity

labels equal to the directory’s to permit the update. However, the file to be created is

often intended to be more restrictive than the parent directory and more restrictive

labels can be specified for it. For example, the directory \user\alice\ may have the

secrecy label {AliceInfo}; Alice can create a file inside this directory with a process

that is currently running with secrecy label {AliceInfo} and specify that the new

file \user\Alice\letters.txt has the secrecy label {AliceInfo, AliceFamily}.

Creating a sub-directory is handled in the same way as creating a file under a parent

directory. All files and directories are uniquely identified by their file path and the

labels on them do not change after creation.

Deleting a file is also treated as an update to the parent directory and hence the

caller must have labels that are the same as the parent directory’s. When application

requests a directory to be removed, all subdirectories and files will also be removed.

53

When a file is read, the directories along the file path are also (implicitly) read.

However, since labels of files within a directory are at least as restrictive as the

directory, Aeolus only needs to check that the process’ labels allow the read of the

file based on the file’s labels. This will imply that the process can also read all the

directories along the path. To write a file, a process must have labels that allow the

write based on the file’s labels. We assume that any exception raised during the write

(e.g., exceeding disk quota) does not reveal any sensitive information about the file

itself and hence the write does not require the process to also be able to read the file.

Table 3.1 summarizes the above label checks and restrictions for basic file operations.

Table 3.1: Information Flow Checks for Basic File Operations

File Operations Information Flow Constraints
CREATE Read(Dir)+Write(Dir)
READ Read(File)
WRITE Write(File)
DELETE Read(Dir)+Write(Dir)

Aeolus supports selective declassification and endorsement when writing files, ap-

plying authority on the written file rather than the entire process.

• ReadFile(in F, out buffer): Reads file F into buffer.

• WriteFile(in F, in buffer, in listS, in listI): Writes content of buffer

to file F.

The WriteFile request has two optional lists of tags, listS and listI, to specify

the tags that are automatically declassified and endorsed as data are written. The

file write request is allowed only if the process has authority for the indicated de-

classification or endorsement. Such selective declassification captures our notion of

just-in-time use of privilege.

Another common interface that file systems provide is the file-stream. The file-

stream provides a pipe abstraction to the file content. The life cycle of a file-stream

54

starts with the opening of the file-stream, at which time the file is internally bound

to the file-stream and the access mode (read-only, write-only, read-write) is defined.

Then, depending on the access mode, the user can read (or write) the next group of

bytes from the file, pause to process the data, and then continue. When the user is

done with the file, the file-stream is closed.

Besides operating with entire files, the Aeolus API also supports file-streams.

• CreateFilestream(in F, in M, in listS, in listI, out fs): Opens a

file-stream fs for file F with access mode M.

• fs.CloseFilestream(): Closes the file-stream fs.

• fs.Read(in N, out buffer): Reads N bytes from the file-stream into buffer.

• fs.Write(in buffer): Writes the content of buffer to the file-stream.

File-streams are created using CreateFilestream(in F, in M, in listS, in

listI) and the access mode M is specified as one of READ-ONLY, WRITE-ONLY or

READWRITE. For writable file-streams, similar to WriteFile, the application can also

optionally supply listS and listI, which are lists of tags that are use for declassi-

fication and endorsement of the data being written. Aeolus checks that the process’

principal has authority for these tags when the write is performed.

When a file-stream operation is requested, Aeolus checks that the process has the

appropriate labels to satisfy the information flow. For a file-stream read operation,

the process labels must permit the read based on the file’s labels. For a file-stream

write operation, the process labels and the file’s labels must permit the write (taking

into account any selective declassification and endorsement).

Every file-stream read and write is checked to ensure that the process’ principal

and labels still permit the file operation. While checking at every read and write

operations appears to be expensive, we describe techniques in Chapter 5 that are

inexpensive.

55

The rules for file system operations in this section prevent unintended information

flow to and from the file system. We ensure that a process cannot leak data to files and

process’ labels reflect the contamination of files a process reads. In addition to these

constraints, we assume standard access control to specify who is authorized to read

and write a file using principals in access control lists. Principals are more natural

than tags in constraining access. For example, with information flow, a process that

can write to a top-level directory can also write to all sub-directories and therefore,

using tags in integrity labels alone does not always provide us with the intended

constraints (e.g., when files inside a directory should be write-protected from the

creator of the directory).

3.8.2 Boxes

Sometimes when an application sends tainted information as a parameter or return

value of a call there is a need to control when the callee (or caller, respectively)

becomes tainted by that information. For example, the tax-preparer might need to

record that it is working for Bob (so that it can send a bill later on) before it looks at

Bob’s tax information and becomes contaminated with Bob’s tag, which it is unable

to remove.

One way to solve this problem is to use the file system. By placing the contami-

nated information in a file and sending the pathname of the file, the caller allows the

callee to control when it becomes contaminated. Boxes provide this control without

requiring the use of persistent storage. A box has outer labels and inner labels, with

the constraint that the outer labels must be no more constraining than the inner ones.

The contaminated information is inside the box, and the receiver of the box becomes

contaminated by it only when it opens the box to obtain its contents. Figure 3-8

shows how the outer and inner labels are used to protect data they contain.

Box labels are immutable. Furthermore, there must be no sharing between the

box content and any other objects; otherwise, we could not ensure that the box’s in-

ner labels accurately reflect the contamination of its content. Therefore when content

is moved into or out of a box, this requires a complete copy.

56

Content
(Bob’s Tax Info)

Outersecrecy = {tax-preparer}
Outerintegrity = {}

Innersecrecy = {Bob}
Innerintegrity = {}

Figure 3-8: Labels on a Box

Box operations:

• CreateBox(in outerS, in outerI, in innerS, in innerI, out b): Cre-

ates a new box b with the specified labels. The box has an initial value of

NULL.

• b.GetInnerS(): Retrieves the inner secrecy label of box b.

• b.GetInnerI(): Retrieves the inner integrity label of box b.

• b.GetContents(out content): Retrieves the content of box b.

• b.PutContents(in content): Copies content into box b.

Any process can create a box using CreateBox(in outerS, in outerI,

in innerS, in innerI), which returns a new AeolusBox object. The outer labels

must be no less restrictive than the process’ labels. This ensures that the existence

of the box cannot be used to convey sensitive information. Aeolus also checks that

the outer labels are no more restrictive than the inner ones. With this constraint, our

platform can simply check that the process labels allow the read of the box content

based only on the inner labels. The callee can use GetInnerS() and GetInnerI() to

find out what labels it needs in order to permit the read or write of the box content.

The callee can issue these calls if the process’ labels permit the read based on the

outer labels. The outer labels are analogous to the labels on a directory and the inner

57

labels are like the labels on a file inside this directory. A process can read the content

of a box using GetContents(out content). This is permitted if the process’ labels

allow the read based on the inner labels of the box. Similarly, a process can write to

a box using PutContents(in content) but the process labels’ must allow the write

based on the inner labels of the box.

3.8.3 Shared State

The system as described runs each process in its own private address space and allows

no sharing of volatile state; this constraint is necessary in general since otherwise it

would not be possible to ensure that process labels accurately reflect the information

they use. However, the inability for processes within an app-object to share state

is a serious limitation. We address this limitation with shared state. Shared state

provides a place where shared objects can reside. Additionally, it provides a way for

processes to synchronize and exchange messages. Each app-object has its own shared

state, and only processes in that app-object can use this shared state.

There are three forms of sharing through the shared state: shared objects, shared

queues, and shared locks. Shared objects allow the storing and retrieval of objects

(e.g., an integer value or an AeolusBox) from shared state by different processes.

Shared queues provide messaging capabilities. Shared locks enable synchroniza-

tion between processes. Like other objects in Aeolus, shared objects, shared queues

and shared locks have immutable secrecy and integrity labels.

Shared Objects

Each object in the shared state is identified by a (local) unique ID, refer to as a

SharedObjectID. SharedObjectIDs are opaque and are known only to applications

that created them. Since processes are isolated, the shared state has a well-known

root object, named rootID, that processes can use to bootstrap communication (e.g.,

it might store a list of the IDs of other objects in the shared state). The root object

has a null secrecy and a null integrity label (i.e., only an uncontaminated process can

58

write to it); its initial value is null.

Processes can create new shared objects, and retrieve and update ones stored pre-

viously. In each case, the object is copied completely between the process’ heap and

the shared state.

Here are the operations on shared objects.

• CreateObject(in o, out s): Creates a new shared object that is a copy of o

in shared state and returns a new unique SharedObjectID s.

• GetObject(in s, out o): Retrieves a copy of shared state object o identified

by SharedObjectID s.

• ReplaceObject(in s, in o): Replaces the current object associated with

SharedObjectID s with a copy of object o.

• DeleteObject(in s): Removes the shared state object associated with

SharedObjectID s.

Any process can create a new shared object using CreateObject. Aeolus returns

a new SharedObjectID to the application and copies the object into the shared state.

The new shared object has the same secrecy and integrity labels as the process. A

process can retrieve a shared object provided the specified SharedObjectID exists and

the process’ labels allow the read based on the object’s labels. Similarly, a process

can overwrite an object using ReplaceObject but the process’ labels must allow the

write. Only processes with null secrecy label can delete a shared object and the

process’ integrity labels must match the object’s; additionally the root object cannot

be deleted.

Shared Queues

Shared queues allow users to enqueue objects and to wait for the queue to be non-

empty.

59

Here are the operations on shared queues.

• CreateQueue(out q): Creates a new, empty shared queue object with the

process’ labels as its secrecy and integrity labels and assigns it a new unique

SharedQueueID q.

• Enqueue(in q, in o): Appends object o to the end of the shared queue q.

• GetQueue(in q, out o): Retrieves the first object in shared queue q and re-

moves it from the queue. If the queue is empty, returns null.

• WaitAndDequeue(in q, out o): Blocks until the shared queue q is non-empty,

returns and removes the first object in shared queue q.

• DeleteQueue(in q): Deletes shared queue q.

Any process can create a new shared queue using CreateQueue. The new shared

queue is given the process’ labels. Similar to DeleteObject, only a process with a

null secrecy label can delete a shared queue and the process’ integrity label must

match the queue’s.

When a process appends an object to the queue, the process’ labels must allow

the write based on the shared queue’s labels. All remaining operations (GetQueue,

WaitAndDequeue) read and write the shared queue and hence, the process’ labels

must be the same as the queue’s. If several processes are waiting for a shared queue

to become non-empty, the one that has been waiting the longest is awakened when

this occurs.

Shared Locks

Although shared queues can be used to implement locks, Aeolus provides a more

direct mechanism via shared locks.

Here are the operations on shared locks.

• CreateLock(out k): Creates a new shared lock with the process’ labels as its

secrecy and integrity labels and assigns it a new unique SharedLockID k.

60

• Lock(in k): Attempts to obtain lock on the shared object k. If the shared lock

is locked, blocks until it is unlocked.

• Unlock(in k): Unlocks the shared lock k.

• DeleteLock(in k): Deletes shared lock k.

When a process issues a Lock operation, the process’ labels must permit the read

and write based on the shared lock’s labels since the process can both observe and

influence this shared state. When a process issues an Unlock, no acknowledgement

of the success or failure of the operation is returned and hence, the process’ labels

must permit the write based on the shared lock’s labels. Similar to DeleteObject

and DeleteQueue, a process must have null secrecy label to delete a shared lock.

3.9 External Communication

Files that the Aeolus Platform has control over are treated as components within our

system boundary since we can control the labels that go on these data and prevent

the tampering of their labels. Communication to external devices (e.g., I/O devices

such as printers) and to nodes outside the system are handled differently. Since we

cannot vouch for confidentiality of communication that passes outside the system

boundary, the communication is allowed only if the sender’s secrecy label is null.

Communication from outside the boundary is given a null integrity since we cannot

vouch for its validity.

3.10 Authority State

Aeolus maintains authority state, which includes information about principals and

tags, the principal hierarchy and explicit grants, and authority closures.

61

3.10.1 Covert Channels

The authority state introduces opportunities for covert channels. This state is mod-

ified when privilege is granted or revoked and these modifications can be observed

through the use of privilege: a process can determine in this way whether it has been

granted privilege for some tag or not. One example is as follows. One process run-

ning as principal P1 creates a set of tags (TleakSet) and passes these tag IDs to another

process running as principal P2. These tag IDs are used for encoding a secret pro-

tected by tag T . When process with principal P1 learns about the secret, it becomes

tainted by tag T but does not have the authority to declassify. However, it could

still communicate this secret to process running with P2 if it were able to selectively

delegate authority for tags in TleakSet to P2. The process running with principal P2

can test which of these tags it is authoritative for and leak the secret by writing the

result to a file that does not have tag T in its secrecy label.

We avoid these channels by associating a null secrecy label with the authority

state and using information flow control. This means that modifications can be done

only by processes that have null secrecy labels. Thus, the process P1 cannot perform

the delegations after reading the secret. We believe this is a reasonable restriction

because modifications to the principal hierarchy are rare and don’t typically occur

during normal computation. For instance, modifications to the authority state for a

medical clinic happen when a new patient joins the system but these changes happen

though special administrative actions, not as part of processing the patient records.

There is no integrity label on the authority state since the integrity of this in-

formation is guaranteed not by applications but by Aeolus. For example, we allow

explicit delegation or revocation only if the requesting process has authority for the

tag.

3.10.2 Other Operations on the Principal Hierarchy

There has been a lot of research (e.g., [33, 10]) on the structure of the principal

hierarchy and how modifications of the principal hierarchy should be controlled. For

62

example, the notion of ownership is a way to control who can set act-for links. While

ideas like these are valuable, they are orthogonal to our work and therefore, we don’t

go into them. Additionally, we are compatible with richer structures, e.g., ownership

and tag and principal deletion. These operations affect modification of the authority

state; Aeolus is concerned with using that authority based on the current authority

state.

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

Chapter 4

Programming with Aeolus

In this chapter, we present several examples of how the Aeolus programming mech-

anisms can be used to construct applications. We revisit some of our motivating

examples and see how information flow control can be applied using Aeolus.

4.1 Bob and the Tax Preparer

BillingInfo.dat

PrepareTaxForm(in cBox, out cForms) {
 1. Update billing Info
 WriteFile(BilingInfo.dat,...)
 2. Read client’s financial data in box
 // Adjust secrecy label
 AddSecrecy(cBox.GetInnerS())
 // Read financial data in box
 cTaxInfo = cBox.GetContent()
 3. Call tax form generator with Ppublic
 Call(Ppublic,
 Compute(cTaxInfo, out cForms))
 4. Declassify tax preparer’s taint
 Declassify(TaxProprietary)
} RETURN cForms

Authority of Panon: TaxPreparer

Authority Closure “Tax Preparer”

Compute(in taxInfo, out cForms) {
 1. Read proprietary tax info
 // Adjust secrecy label
 AddSecrecy(TaxProprietary)
 // Read file with tax tables
 fs.Read(TaxTables.dat)
 2. Compute and prepare client tax forms
 cForms = ...
} RETURN cForms

PID: Ppublic

 TaxFormGenerator

LS = {TaxProprietary}

TaxTables.dat

Figure 4-1: Tax Preparer Software Example

Figure 4-1 illustrates the implementation of the tax preparer example; this is

implemented as an authority closure, granted authority for the TaxProprietary tag.

65

Bob’s confidential financial information is sent in a box cBox, so that the tax preparer

can record the billing information (in Step 1) before it becomes contaminated. Then,

the process secrecy label is augmented so that the process can read Bob’s financial

data. In Step 3, which performs a complex computation to produce the tax form,

can be done with a principal that has no authority and is invoked via a Call to run

the Compute method with Ppublic. Therefore, errors in this code can release neither

Bob’s nor the tax preparer’s confidential information. The Compute method raises its

secrecy label to read the proprietary tax info and returns the generated tax forms.

The caller process becomes contaminated with the TaxProprietary tag. In Step 4,

the authority closure uses its authority to declassify this tag explicitly; being explicit

forces the tax preparer to think carefully about whether it is safe to expose the

information. Finally, the code returns the resulting tax forms still contaminated by

Bob’s tag so that only Bob can use it.

4.2 The Medical Clinic

Figure 4-2 shows a portion of the authority state in a medical clinic. The figure shows

the information for an individual patient, pat. Patient pat has a doctor role pat-dr

that his doctors act-for; using a role makes it convenient to have more than one doctor

and to change doctors over time. The clinic-admin also acts-for this role; this link

makes it convenient to change doctors, since we can’t expect the patient to do this,

and a doctor might leave the clinic without making the necessary changes.

Patient pat-p has a personal tag, Tall−patients.pat, which is contained in the label

of all his medical records; the doctor role pat-dr is granted authority for this tag.

This tag is a sub-tag of the Tall−patients.∗ compound tag. Tall−patients.∗ is created by

the clinic-admin and authority for this tag is delegated to the billing closure.

In addition, the billing closure is also authoritative for the Tbilling.∗ tag, which it

places in the secrecy and integrity labels of all bills it produces. Placing the tag in

the secrecy label prevent unauthorized leaks of the bill, while the tag in the integrity

label ensures that the bill was produced by the closure.

66

pat

clinic
admin

pat-p pat-dr

bob

dr-bob

Other
Docs

billingprincipal
tag

closure

act-for

Tall-patients.pat-tag

Tbilling.*

Tall-patients.*

Tbilling.*

Tall-patients.*

Tall-patients.pat-tag

grant

Figure 4-2: Principal Hierarchy for the Medical Clinic Example

4.3 The Sales Analyzer

The sales analyzer is an authority closure that is directly authorized by companies

wishing to use its services. Each company maintains a tag (e.g., SalesA that appears

in the secrecy label of its sales information (e.g., SalesInfoA.dat); the sales analyzer

is given authority for this tag so that it can produce an unclassified result that the

companies can see.

Each time a new company signs up to use the sales analyzer, it needs to supply

information about where its sales information resides. When the sales analyzer runs,

it needs to find this information as well as the names of the tags delegated to it.

This can be accomplished by storing the needed information in a well-known place,

e.g., a Enrollment.dat file. To ensure that all needed information is supplied when

a company signs up, and is removed when it leaves, it is convenient to support the

sales analyzer with an Enrollment Manager object that provides methods to add and

remove companies and to manage what is stored in the file. This file is protected by

the Enroll tag in its integrity label and only a process running with PStatProvider has

authority for this tag. Figure 4-3 shows the tags involved in this example and how

they are used to protect the various files. Company A and Company B delegate au-

thority for their sales tag specifically to the anonymous principal of the sales analyzer

67

LS = {SalesA}

SalesInfoA.dat

LS = {SalesB}

SalesInfoB.dat Enrollment.dat

ComputeSalesTrend(out statSale) {
 1. Read client enrollment info
 ReadFile(Enrollment.dat,...)
 2. For each enrolled client, read sales info
 // Adjust secrecy label
 AddSecrecy(SalesA)
 // Read sales data
 ReadFile(SalesInfoA.dat)
 3. Compute statistics on all clients’ sales data
 statSale = ...
 4. Declassify clients’ sales taints
 Declassify(SalesA)
 Declassify(SalesB)
} RETURN statSale

Authority of Panon: SalesA, SalesB

Authority Closure “Sales Analyzer”

AddClient(in cName, in cTag, in cFilePath) {
 1. Add client’s info to enrollment info
 // Adjust integrity label
 Endorse(Enroll}
 // Update enrollment
 WriteFile(Enrollment.dat,...)
} RETURN

RemoveClient(in cName) {
 1. Remove client’s info from enrollment info
 // Adjust integrity label
 Endorse(Enroll}
 // Update enrollment
 WriteFile(Enrollment.dat,...)
} RETURN

PID: PStatProvider

EnrollmentManager

LI = {Enroll}

Figure 4-3: Authority Closure in the Sales Analyzer Example

authority closure.

4.4 Job Posting Service

The job posting service is similar to Monster.com. Companies post their jobs but

want to prevent certain job seekers, e.g., current employees, from knowing about the

posting; meanwhile job seekers submit résumés, but want to prevent their identities

from being leaked to certain companies. In this example, we show how a job-seeker

can get a list of jobs that exclude the company he/she is working for. The guarantees

go both ways, the job-seeker does not know about job postings by his/her employer

and the employer does not know that the job-seeker is using this job search service.

It is easy to provide these guarantees using our platform. Each job-seeker has

a personal tag (e.g., alice-seeker) that tags his or her résumé and this is a sub-

tag of the all-job-seekers compound tag. Also each company has a tag (e.g.,

CompanyAJobs) that marks its job descriptions. A company provides an authority

closure Match that is authorized for its tag. This authority closure compares a résumé

68

MatchJobseeker(in jobSeeker, out jobList) {
 1. Read job-seeker’s resume
 // Adjust secrecy label
 AddSecrecy(alice-seeker)
 // Read job-seeker’s resume file
 ReadFile(AliceResume.dat, …)
 2. For each company not jobSeeker.employer
 Check whether job-seeker qualifies for jobs
 // Invoke company X’s closure
 CallClosure(X,
 Match(resume, out jobPosts))
 // Add list of qualified jobs
 jobList.Add(jobPosts)
 3. Declassify top-level job seeker tag
 Declassify(all-job-seekers)
} RETURN jobList

Authority of Panon: all-job-seekers

Authority Closure “MatchJobSeeker” Authority Closure “Match”

Authority of PanonB: CompanyBJobs

LS = {CompanyBJobs}

JobB.dat

LS = {CompanyAJobs}

JobA.dat

LS = {alice-seeker}

AliceResume.dat

LS = {bob-seeker}

BobResume.dat

Resumes of Job Seekers Job Descriptions from Companies

Match(in resume, out qualifed) {
 1. Read job descriptions
 // Adjust secrecy label
 AddSecrecy(CompanyAJobs)
 // Read job file
 ReadFile(JobA.dat, …)
2. For each job description,
 check match on requirements
 qualified = …
3. Declassify company’s taint
 Declassify(CompanyAJobs)
} RETURN qualified

Authority of PanonA: CompanyAJobs

Authority Closure “Match”

Match(in resume, out jobPosts) {
 1. Read job descriptions
 // Adjust secrecy label
 AddSecrecy(CompanyAJobs)
 // Read job file
 ReadFile(JobA.dat, …)
 2. For each job description,
 Check requirements and return the
 ones that match
 jobPosts = …
 3. Declassify company’s tag
 Declassify(CompanyAJobs)
} RETURN jobPosts

Figure 4-4: Job Posting Service Example

to its job descriptions and returns the descriptions that the seeker qualifies for.

The job posting service provides an authority closure MatchJobSeeker that is

authorized for the compound all-job-seekers tag as shown in Figure 4-4. A job

seeker invokes this authority closure to get a list of jobs that he/she qualifies for. This

authority closure calls company Match closures if the job-seeker does not work for the

company and passes them the job-seeker’s résumé as an argument. Each company

closure uses its authority for the company tag to declassify the matching descriptions,

however, the company cannot leak the résumé since the process is tagged with the

job-seeker’s tag. On the other hand, the MatchJobSeeker closure can remove this

tag and send the result over the network to the poster of the résumé.

69

4.5 Online Store

The final example concerns a web service that supports online purchases; the example

in Figure 4-5 illustrates the use of shared volatile state. A customer engages in a

session consisting of a series of interactions during which he examines available items

and adds them to his shopping cart; at the end, he either loses interest or proceeds

to buy the items. The service has many millions of customers with many thousands

of simultaneously active sessions. To handle the load, it uses multiple servers. A call

made during a session will return to the same server as the previous call, but if the

server is unavailable, some other server can be used.

UpdateShoppingCart(in cookie, in newItem) {
1. Update access time for this session
 state.ReplaceObject(cookie.metaId,
 Time.Now())
2. Retrieve user session state
 AddSecrecy(cookie.userTag)
 cart = state.GetObject(cookie.dataId)
3. Add item to shopping cart in box

state.ReplaceObject(cookie.dataId,
 cart.Add(newItem))
} RETURN

Shared Boxes

Alice’s cart

LS = AliceShopping

Bob’s cart

LS = BobShopping

ID = 8126473

ID = 4127293

Session Creation
PID: Run as caller’s principal (e.g., PAlice)

CleanupSessionState() {
List<cookies> activeSessions

 1. Read shared state IDs of allocated sessions’ metadata
 // Read and add newly allocated cookies
 state.GetQueue(sessionQueueId,…}
 // Retrieve access time of session
 foreach(cookie in activeSessions)
 state.GetObject(..cookie.metaId..}
 2. For sessions that have timed out,
 Delete session user data and metadata
 state.DeleteBox(4127293)
 state.DeleteBox(4852532)
} RETURN access time

for
ID 4127293

LS = {}

ID = 4852532

access time
for

ID 8126473

LS = {}

ID = 3373729

CreateSession(in userTag, out cookie) {
 1. Create user session metadata shared state
 cookie.metaId =
 state.CreateObject()
 cookie.userTag = userTag
 2. Increase the secrecy to protect cookie
 AddSecrecy(userTag)
 3. Create user session data shared state (S=userTag)
 cookie.dataId =
 state.CreateObject()
 4. Update allocated sessions
 state.Enqueue(sessionQueueId, cookie)
 } RETURN cookie

Online Store Web Service
PID: Run as caller’s principal (e.g., PAlice)

Garbage Collector
PID: PStoreA

Shared Queues

Cookies of
New Sessions

LS = {}

ID = 1127116 (Session Queue ID)

Session
Queue

ID

LS = {}

rootID = 2817622

Figure 4-5: Online Store Example

70

Information about a customer is marked by a unique customer tag (e.g.,

AliceShopping) and a customer’s session state is stored at a file server that is part

of the system in a file whose secrecy label contains the customer tag. Additionally,

the state is stored in the shared state at the server where the request is handled. The

server will obtain the customer’s session information from its shared state if possible;

otherwise it reads the file.

The online store application has a process for each customer request currently

being processed, and another process that performs garbage collection on session

state. When this application is started at the server, it creates a shared queue and

stores its ID in the root object. This queue is used to communicate the creation and

termination of sessions to the Garbage Collector.

This application requires a way to remove information about abandoned sessions

from the volatile state at the servers. This is accomplished by the Garbage Collector

process; it periodically examines the allocated sessions and deletes information about

those that have been inactive for too long. The garbage collector process is notified

about new sessions and session termination through the queue.

When a session starts up, the process handling the request creates two objects in

shared state. The first contains the session information and has a secrecy label that

contains the customer tag. The second is a metadata object; it contains the ID of the

session object, and also records the time of the most recent request processed for this

session. The metadata object has a null secrecy label. The request handling process

then notifies the garbage collector process about the new session by enqueuing an

entry containing the ID of the metadata object on the queue. When the request

processing is complete, the request handling process stores the ID of the metadata

object for the session in the cookie that it returns to the user.

Subsequent requests from the customer such as UpdateShoppingCart will include

the cookie and the cookie is used to retrieve the customer’s session state from our

shared state. Processing this request will cause the process to become contaminated

by the user tag, but before this happens the request handler process updates the

metadata object for the session to reflect the current time.

71

The garbage collector process maintains a list in which it stores the IDs of the

metadata objects for active sessions. It removes sessions from this list when informed

about their termination: when it does this, it deletes both the metadata and session

objects for that session. In addition, it cycles through the list periodically to identify

idle sessions and discards the information for them. The garbage collector is able

to do this work without becoming contaminated by the user tags because it never

examines the session objects; instead it only looks at the metadata objects.

An alternative structure is to give the garbage collector authority for the user

tags; a compound tag could be used for this. With this structure there would be

only one shared state object per session, since there is no need to protect the garbage

collector from being contaminated. However, the structure described above is safer

because the garbage collector process can run without any authority and therefore

there is no danger that it will leak information even if it contains an error.

72

Chapter 5

Distributed Computing Platform

The Aeolus Platform is a distributed computing platform that implements our pro-

gramming model. Developers can deploy applications on this platform and it guaran-

tees that their computations and data are protected by our information flow control.

The platform is designed to support the abstraction and level of control our program-

ming model requires.

5.1 Approach

The Aeolus Platform refers to the collection of platform components that run lo-

cally and remotely. Figure 5-1 shows the high-level architecture of the platform.

Applications run on compute nodes and sensitive data are stored on storage nodes.

Compute nodes enforce information flow guarantees as user applications execute.

Storage nodes provide access to file systems that support the Aeolus interface. Com-

pute nodes within our platform consult the shared authority state managed by the

authority server to determine whether privileged operations should be allowed. A

compute node and a storage node may co-exist on the same machine or they may be

on different machines.

Each compute node runs a set of platform instances (PIs). A platform instance is

associated with each app-object running on Aeolus. In addition, there is an Authority

State Client running on each compute node that manages all interactions with the

73

AppCode AppCode AppCode

Call Call

Call Call

COMPUTE NODES

HealthData

Aeolus Platform

SalesData

Aeolus Platform

TaxData

Aeolus Platform

Aeolus Platform Aeolus Platform Aeolus Platform

Aeolus PlatformAeolus Platform Aeolus Platform

STORAGE NODES

AppCode AppCode AppCode

Aeolus
Authority

Server

Authority
State

Figure 5-1: High-Level Architecture of Aeolus Distributed Computing Platform

authority server. A platform instance provides a way to sandbox the user application

so that the application has no direct accesses to resources (e.g., files, remote calls,

I/Os). Instead access to resources must go through our platform, which allows us to

ensure that the Aeolus rules are followed.

5.1.1 Isolation

Our platform targets applications that are written in languages such as Java and

C#. Programs written in these languages run within a virtual machine such as

the Java Virtual Machine (JVM) [61] or the Microsoft .NET Common Language

Runtime (CLR) [3]. Our prototype is implemented on top of the .NET Framework

but similar design concepts can be applied to Java. We use the isolation properties of

these language runtimes to provide sandboxing capabilities in a platform instance. In

particular, we use .NET application domains (appDomains) to limit the permissions

of user code. Furthermore, each application domain has its own address space with

no sharing between application domains.

Within each platform instance, as shown in Figure 5-2, there is one Aeolus System

appDomain (SYS-d) and many user appDomains (USER-d). User code is executed

in a USER-d, which has restricted access, while the SYS-d has full permissions to

resources. User applications must use the SYS-d to obtain access to various resources.

74

The Aeolus SYS-d appDomain provides:

• a launcher that starts up user appDomains

• Aeolus internal state for each user appDomain

• access to shared state

• access to resources such as the file system

PI

SYS-d

Authority
State Client

AppObj 1

USER-d

App
Code

USER-d

App
Code

PI

SYS-d

AppObj N

USER-d

App
Code

USER-d

App
Code...

COMPUTE NODE

Figure 5-2: Inside a Compute Node

An application domain is an abstraction provided by the language runtime. The

language runtime takes advantage of type-safety and memory-safety to allow multiple

appDomains to exist within a single OS process. Type-safety ensures, for example,

that a program cannot construct an integer value that corresponds to a target address

and use it as a pointer to refer to an arbitrary location in memory. Memory-safety

guarantees that programs cannot access memory outside of properly allocated objects.

Our platform relies on application domains for isolation and therefore, it supports only

code that adheres to these language safety properties.

5.1.2 Proxy Object

User appDomains have no access to system resources. Instead each USER-d is pro-

vided (when it is launched) with a proxy object (PO), which provides methods it can

75

call to interact with Aeolus. The proxy object exposes the Aeolus API (details in

Appendix A). It has methods for all Aeolus functions and all external accesses: mod-

ifications of the authority state, manipulations of labels, accesses to shared state, file

use, I/O devices. In the case of files and I/O devices, the PO provides wrapper code

that ensures the information flow rules are obeyed, while using lower level services

(e.g., a printer driver to access the real device).

Some calls to the PO involve an inter-appDomain call to the SYS-d, for example,

to write to I/O devices since a USER-d has no such permission. Communication

from a USER-d to the SYS-d is relatively lightweight. AppDomains communicate

with each other via message passing in much the same way as other IPC mechanisms

(i.e., marshaling and un-marshaling of values); however, they do not cross OS process

boundaries and hence are much cheaper than OS process communication.

Restricted User AppDomains

GetCoupons()
Aeolus

Proxy Obj

PrintCoupons()
Aeolus

Proxy Obj

USER-d

UpdateLog()

USER-d

Aeolus
Proxy Obj

Fork
Fork

Unrestricted System AppDomain
(SYS-d)

USER-d

Aeolus FS

Resources within
Aeolus Boundary

Resources outside
Aeolus Boundary

I/O Devices

Aeolus Platform Instance (PI)

Authority State
Client

Shared
State

Manager

Figure 5-3: Aeolus Platform Instance

Figure 5-3 shows an Aeolus Platform Instance with three user appDomains. Each

76

proxy object stores the process’ information flow state (principal ID, process labels)

in the USER-d and relies on type-checking and encapsulation to ensure that this state

is not misused. The proxy objects can communicate with the SYS-d. The SYS-d can

interact with the shared state and the authority state client on the compute node and

can access resources both within and outside the Aeolus system boundary.

5.2 Access and Use of Authority State

The proxy object provides methods to accomplish label manipulations and also dele-

gations and revocations. Delegations and revocations require updating the authority

state at the authority server. Privileged label manipulations require lookup opera-

tions to check whether the process’ principal has authority for the tag in question.

The SYS-d consults the authority state client for both authority updates and lookups

on behalf of the proxy object.

In the case of authority updates, the proxy object checks the information flow

state of the process and ensures that the process has a null secrecy label. Then it

relays the update request to the SYS-d, which passes it on to the authority state

client. The authority state client communicates with the remote authority server

to perform the update. Authority lookups may be served locally using information

cached by the authority state client and if the needed authority information is not

cached, the authority state client retrieves it from the authority server. The authority

state client is discussed in Section 5.11.

5.3 Boxes

Boxes allow sensitive data to pass around different parts of an application without

increasing the restriction on a process’ information flow state unless the content of

the box is accessed.

To provide such a functionality, Aeolus needs to control accesses to box content.

Our approach is to rely on type-safety by treating boxes as an abstract data type

77

(AeolusBox) with access methods that enforce our information flow rules described

previously in Section 3.8.2. Hence, boxes can reside in the user appDomain. Appli-

cation developers use the proxy object to create a new box, specifying the outer and

inner labels of this box. Our platform code generates a new AeolusBox object in

the user appDomain. Content can be put into a box using the object’s PutContent

method, which checks the process’ labels and the box labels before permitting the

operation. Similarly, the content can be retrieved using the object’s GetContent

method. These methods do a complete copy by serializing the box contents. This

way, we ensure no sharing and therefore, no modifications can be made to box con-

tent without going through our checks in these methods. A process can also use

GetInnerS and GetInnerI to retrieve the inner labels of the box and Aeolus checks

the process’ labels against the outer labels before returning the values.

5.4 Shared State

Shared State is implemented by a Shared State Manager that resides within each

SYS-d (see Figure 5-3). The shared state manager allocates memory for the shared

state and manages accesses to it.

A user application uses the proxy object to create a shared object, queue or lock.

This causes an inter-appDomain call to be made from the USER-d of the PO to the

shared state manager in the SYS-d. The shared state manager manages the ID space

of these objects and returns a new randomly generated ID to the application.

For requests that involve the read and write of a shared object or shared queue

entry, a copy of the object to be stored or retrieved is passed across an application

domain boundary.

Shared queues are implemented using separate monitors and locks for each queue.

Enqueue requests are non-blocking and a copy of the input object is appended to the

queue. When the queue is empty, dequeue requests are queued internally. An enqueue

request notifies the first requester on this internal wait queue. Dequeue requests are

blocking and returns only when notified. Each dequeue request waits in a different

78

thread to avoid blocking the shared state manager.

Similarly, shared locks are implemented using separate monitors for each lock.

The shared state manager blocks a caller’s request if the shared lock is locked. When

it becomes unlocked, the first caller waiting acquires the lock.

5.5 Files

An Aeolus file system runs a layer of Aeolus platform code (Aeolus FS) that manages

metadata such as file labels to keep track of and protect the storage of sensitive user

data.

5.5.1 Aeolus File System

Some previous research projects (e.g., [50, 35]) have tied their design to particular op-

erating system and file system implementations, for example, by using the extended

attribute fields of files in Linux-based file systems to encode additional security infor-

mation. One of our design goals is to be able to support a wide range of file system

implementations. Furthermore, we want to focus on understanding how application

developers make use of common file system interfaces after the introduction of tags

and labels. To that end, our design does not make assumptions about the support

available in existing file systems to allow us to annotate files/directories and specify

access checks. Instead, we provide a proxy solution that allows us to manage our own

metadata while interfacing to different file system implementations.

The Aeolus FS is a TCP server that handles file system operations such as

CreateFile and WriteFile. For each file and directory, the Aeolus FS needs to

keep track of its secrecy and integrity labels. These labels are kept as Aeolus meta-

data and are stored in a relation in a database while the actual file content is stored

in the file system. For each directory and file, an entry of the form 〈file path,

secrecy label, integrity label〉 is entered into the database. The file path is

the full file path from the application user’s perspective. Files and directories have

immutable labels and these are kept in the secrecy label and integrity label

79

fields.

Proxy Object
(API: WriteFile)

Persistent Store
(File Content)

FILESYSTEM X

NFS Server

FS Proxy

AEOLUS FS

FS Client

Aeolus MetaData

COMPUTE NODE

USER CODE

SYS-d

Persistent Store
(File Content)

FILESYSTEM Y

Proprietary FS Server

FS Proxy

AEOLUS FS

FS Client

Aeolus MetaData

USER
DATA

USER
DATA

Figure 5-4: Aeolus File System

Figure 5-4 shows how a file operation such as WriteFile is handled in Aeolus.

The Aeolus proxy object relays the file access request locally to the SYS-d. The SYS-

d connects with the appropriate Aeolus FS TCP server responsible for the specified

file system (e.g., /data.csail.mit.edu/ is handled by Aeolus TCP server at port

8400 on the machine with IP address data.csail.mit.edu). This request from the

SYS-d is annotated with the information flow state (process’ labels) of the executing

user code. The Aeolus FS TCP server retrieves the relevant label metadata from the

database and uses this information flow state to determine whether the file operation

should be permitted. If the request passes the label checks, the Aeolus FS updates

the actual file content as a client of the underlying file system. Notice that the imple-

mentation of the Aeolus FS TCP server is decoupled from the underlying file system

storing the user data. The underlying file system is oblivious to the information flow

concerns. This allows our system to support file systems ranging from block-based

NFS to proprietary file systems.

In our research prototype, we implemented an Aeolus FS for Windows NTFS.

80

The Aeolus FS TCP server is co-located with the underlying OS file system. This

TCP server acts as a FS client to NTFS. It uses the IO.File library to perform file

system administrative operations and for reading and writing entire files, and uses

the IO.Filestream library for creating and operating with file-streams.

With the way the information flow checks are set up, most of these file operations

that read and write an entire file require only a single check of the process’ labels

against the file’s. Similarly, file maintenance operations such as Create and Delete

require a comparison of the process’ labels with those of the parent directory. File

labels are cheap to retrieve in our design. The full file path is stored in our metadata

database. An index is generated on this attribute, which allows O(1) retrieval of label

information based on file path. A traversal of the directory tree is not necessary.

5.5.2 File-streams

Aeolus also provides file-streams, in which the file is read or written in multiple

chunks. Application developers use the proxy object to open a file-stream and Ae-

olus returns an AeolusFilestream object. During this operation, the proxy object

contacts the SYS-d, which opens the file-stream to the remote file server with the

specified access mode and maintains the file handle for this file-stream. The returned

AeolusFilestream object contains a specific ID in its private fields that the SYS-d

can use to refer to this file handle. The application can then issue read and write

methods associated with this object.

As discussed in Section 3.8.1, a change to the process state can render an opened

file-stream unusable. The straightforward implementation of a file-stream involves

checking at each use of the file-stream. This checking involves: the comparison of

the process’ labels with the file labels, plus in the case of a writeable file-stream,

checking against any automatic declassifications and endorsements indicated when

the file-stream was opened. However, like Flume [35], we avoid these checks most of

the time.

Once a file-stream is opened, Flume performs checks during process label changes

and forbids changes that will make the file-stream unusable. We take a different

81

approach and perform checking of file-stream operations. In this way, we associate

any such information flow violations with the file-stream operations rather than the

process label changes. Thus, the process can change its labels freely provided that

at the next file-stream operation, the process labels pass the required check. Such

deferred checks can improve performance if the file-stream is no longer used after this

state change.

To minimize the label checking required for file-stream reads and writes, we asso-

ciate a check bit with file-streams. When a file-stream is opened, the label checks are

done and the check bit is set to false. As long as this bit is false, no label checks are

needed for subsequent reads and writes. However, if there is a change in either the

process labels or the process authority, the bit is turned on, thus ensuring that the

check happens at the next file-stream access so that the appropriate exception can

be raised if necessary. If in fact the access is allowed at that point, we turn the bit

off. Table 5.1 shows the conditions for setting this bit.

Table 5.1: Conditions for Setting Check bit of a File-stream

Readable File-stream Writeable File-stream
Declassify AddSecrecy
Endorse RemoveIntegrity
Change process’ principal Change process’ principal

5.6 Other I/O

A typical I/O device is outside our system boundary. An example of one such device

is the native local file system (not running Aeolus FS) that stores files on disks at

the compute node. User applications do not have direct access to these file systems;

otherwise, sensitive data would be stored to these files and made accessible by any

program. A user application runs within a USER-d and is prevented from making

these I/O requests.

Access to input devices can be allowed if the process’ integrity label is null and

82

access to an output device can be allowed if the process’ secrecy is null. This ensures

that secrets cannot be leaked and high-integrity process cannot be influenced by low

integrity input data.

To support the local file system, we expose the common file system interfaces such

as IO.File and IO.Filestream to the user application in the Aeolus proxy object,

which relays the request to the SYS-d. The SYS-d will check that these file operations

are performed only when the process has a null secrecy label for writes and a null

integrity for reads.

Similarly, support for other devices can be done by exposing the device user in-

terface in the Aeolus proxy object and using the SYS-d to perform label checks prior

to issuing the I/O request on the real device.

5.7 Local Forks

Applications running in a USER-d can request a Fork on the proxy object. The user

application specifies the method to invoke and optionally the PID of the principal,

the secrecy and integrity tags that it wants to apply declassification and endorsement

to. This method is specified by passing an object (derived from the AeolusCallable

abstract class) that has a special Invoke method (e.g., o.Invoke(), returns nothing).

The Fork request is handled in SYS-d. Our platform checks that the current

process’ labels and PID allow the Fork to be made without any information flow

violation.

If there are no violations, a new USER-d is set up to run the specified method.

Since such setup can be costly, SYS-d maintains a pool of inactive user appDomains,

as shown in Figure 5-5. It selects an inactive user appDomain from this pool and sets

the information flow state of this USER-d to the specified PID and process’ labels.

The object with the Invoke method is then serialized and copied to this USER-d.

(Any arguments for the method invocation are included as part of the object.) Finally,

the Invoke method starts running in a separate USER-d.

Since user appDomains are reused, our platform must ensure that there is no

83

USER-d

App Objects

App Assemblies

USER-d

App Assemblies

AppDomain Pool (Inactive USER-d)

USER-d

App Assemblies

Active USER-d

Code Instance
Proxy Object

Platform code
SYS-d

User Code User Code

Figure 5-5: User AppDomains

sharing with previous invocations of code in the same USER-d. Hence, in our current

prototype, user applications cannot have static variables and our platform checks

against this using .NET reflection prior to loading user code into an appDomain.

5.8 Local Calls

Application developers can also run code with different authority by issuing a Call

on the proxy object. Similar to a Fork, the user application passes the method via an

AeolusCallable object and specifies the PID that it wants to run the method with.

A call runs in the same address space and our platform checks for the same

information flow violations as a Fork. If there are no violations, the proxy object

saves the PID of the caller and issues the Invoke method on the object. At the end

of the execution, the proxy object restores the PID to that of the caller. Since a

call returns to the caller, our system updates the caller process’ labels to reflect any

additional contamination picked up during the call (i.e., the process label is union-ed

with the secrecy label of the caller’s and the process label is intersected with the

integrity of the caller’s).

84

5.9 Authority Closures

Authority closures are similar to local forks in that they start executing a new method

in a different USER-d. However, they run with the anonymous principal ID associated

with the closure. The proxy object ensures that the proper code and principal are

used.

Recall that an authority closure is identified by a closure ID. When the application

makes a closure call, it supplies the closure ID and the method to be invoked via an

AeolusClosureCallable object. The closure identified by the ID is bound to a key

and an anonymous principal and the ID is used for looking up these values. The

anonymous principal is used by the platform to identify the authority that has been

given to the closure. The key is used to verify the authenticity of the code.

Within each platform instance, the SYS-d has a mapping of closure IDs to 〈pid,

key〉 pairs. The pid and key values are obtained from the authority state client. After

this lookup, our platform must check that the specified code is signed by this key.

All closure code is protected and signed by private-public key pairs. Our platform

must verify that the method the application wants to invoke is signed by the proper

key. This checking can be computationally expensive if done at the time of the closure

call. We minimize this cost by taking advantage of the strong name property and

reflection in .NET to implement this.

One or more class libraries can be compiled into a .NET assembly. This assembly

can be signed with a private key at compile time and in doing so, a strong name

is associated with it. A strong name consists of the assembly’s text name, a public

key, a version number and optional build information. To get a valid strong name,

an assembly is strong-name signed during the build process; this is done by using

RSA to encrypt the SHA1 hash of the assembly [17] with the public-private key pair

of the code publisher. We use this public key in the strong name as the key for

Aeolus authority closures. Therefore, all authority closure code must be packaged

into assemblies with strong names.

When a strong-name assembly is loaded, .NET computes the hash of the assembly

85

and checks it against the certificate signed by the code publisher. Therefore, our

platform can safely refer to the public key of the strong name to confirm that the

code is authenticated by the expected key. Figure 5-6 shows the structure of a strong-

name signed assembly that contains the authority closure code for the code object

and how its strong name and certificate are used for the checking.

Class HelloWorld :
AeolusClosureCallable

Version = 1.0.0.0

HelloWorldLib Code:

Assembly Info:

PublicKey = ffa52ed9739048b4

AssemblyHash signed by public key

Name = HelloWorldLib

Certificate

Strong Name

Authority Closure Code

Strong-Named Assembly
(HelloWorldLib.dll)

CallClosure(HelloWorld,...)

cid pid, key

Closure ID Mappings

HelloWorld Instance
GetCertificate(out PublicKey)

Compare

.NET
Reflection:

Type,
Assembly

Info

Key from
Code CertExpected

Key for
cid

GetClosureID()

Figure 5-6: Using Strong Name to Verify Authority Closure Code

The proxy object looks up the strong name of the supplied AeolusClosureCallable

code object using .NET reflection. It checks that the public key in the strong name

is the same as the key from the closure ID mapping. After this check, it starts the

Invoke method in a new USER-d but with process’ principal set to the anonymous

principal from the closure ID mapping. Similar to fork and call, the caller can also

specify the list of tags to apply declassification and endorsement to the labels for

the closure. The proxy object checks that the caller principal has authority for these

tags. At the end of the closure call, the result object is returned and caller’s labels

are updated to reflect any additional contamination as a result of the closure call.

5.10 Remote Procedure Calls

Aeolus supports one form of remote procedure calls called web methods. Like other

remote procedure call mechanisms, web methods allow a client to call a method

86

that is on another node. In our prototype, we allow user applications to invoke web

methods only on compute nodes that are within our system. Our platform ensures

that the web method is executed with the appropriate principal and process labels

to preserve information flow properties. Hence, we need to communicate information

flow state and mediate the web method call between the client and server compute

nodes. Our approach is to tap into the messaging framework and web method runtime

environment and take advantage of their programming hooks and callbacks.

Web methods are exposed by application servers using a common description lan-

guage called the Web Service Description Language (WSDL) [42], established by the

World Wide Web Consortium. Web methods are invoked over HTTP and are hosted

by an HTTP server such as the Microsoft Internet Information Services (IIS). They

use the Simple Object Access Protocol (SOAP) to encode call arguments and return

values. SOAP is a XML-based protocol that lets applications exchange information

over the Internet. At the remote machine, the HTTP server passes the SOAP message

to the language runtime, which de-serializes the message and invokes the web method.

Aeolus taps into the programming hooks in the serialization and de-serialization of

SOAP messages at the client and server to inject and retrieve information flow state

for the call and return. Our platform code also taps into the dispatching logic for web

method invocations on the server-side to control their invocations. Next, we present

a step-by-step walk-through of a web method invocation on our platform.

Applications include references to the web service (set of web methods) they want

to invoke. This reference is a URL pointing to the web service interface. From the

application’s perspective, a web service is a remote object that contains a set of web

methods. (However, these web methods are often independent, stateless, and atomic.)

Figure 5-7 shows how a web method invocation is handled in our system. On the

client side, to a user application, invoking an Aeolus web method seems no different

from invoking a normal web method.

In Step 1, a remote call is routed to the .NET web service runtime. The .NET web

service runtime handles the serialization and de-serialization of messages to/from the

web service and Aeolus registers several callback functions on these message events.

87

Platform code

Unrestricted AppDomain (SYS-d)

Restricted AppDomains

Echo(“hi”)
Aeolus

API

1

Compute Node A (Web Service Client)

.NET Web Service Runtime

SOAP Interceptor

2 GetInfoFlowState()

URLs of Web Services
within Aeolus System

3

SOAP Interceptor

IIS
(HTTP Server)

.NET Web Service Runtime

Echo Web Service

Aeolus PI

AppDomain
Pool

Dispatcher

Compute Node B (Web Service Server)

Echo
(“hi”)

Service Call Proxy

User Echo Web
Service Lib

4

SetInfoFlowState()

5

6

7

HTTP

Figure 5-7: Web Method Invocation on Aeolus Platform

When Aeolus receives an outgoing message, it checks that the message is destined

for a node within our system. Aeolus does this by consulting a list in SYS-d that

includes the IP address and public key associated with each trusted node within our

system. This information is part of the authority state and the public key is the basis

for creating an SSL connection between nodes within our system. Then, the remote

method call is serialized into a SOAP message and Aeolus attaches an Information

Flow State Header containing the principal ID, and secrecy and integrity labels of

the caller to the message in Step 2. This extended message is sent over HTTP to the

remote web service server in Step 3.

The HTTP server at the remote machine processes the incoming network request

and directs it to the server-side .NET web service runtime in Step 4. This runtime is

responsible for dispatching requests to the web service implementation. A web service

88

implementation that runs on the Aeolus platform must wrap the user implementation

with our platform code to control how the user web method is executed. In our

current prototype, this is done manually by taking in the user implementation as

a class library and creating a Service Call Proxy that has call stubs for the user

methods. Each call stub wraps the user method with platform setup and teardown

code. The Service Call Proxy is deployed as a web service on the server. When

this web service runtime receives the SOAP message at the server in Step 5, the SOAP

interceptor first checks that the message comes from a node within our system. Then

it extracts the Information Flow State Header attached to the message. In Step

6, the web service dispatcher relays the call to the Aeolus Service Call Proxy with

the needed information flow state to execute the web method. Our platform code

selects an unused USER-d from a pool of user appDomains and initializes it with the

caller’s information flow state. The user web method is invoked and when it finishes

execution, the process’ information flow state is extracted and sent back to the client

in an Information Flow State Header along with the message containing the call

return value. The SOAP interceptor on the client retrieves this header and updates

the caller process’ information flow state accordingly.

In our prototype, we limited remote calls to nodes within our system. However,

this can be extended to handle calls from nodes outside by running the remote method

with Ppublic. If the caller is outside our system, the code must run with null integrity

label and can only return to the caller if it has a null secrecy label. If the callee is

outside our system, Aeolus will only allow the call to be made if the caller process

has a null secrecy label and upon its return, the callee will have a null integrity label.

5.11 Authority Management

So far, we have discussed how our platform can monitor data channels and track

information flow. Platform instances use authority state to determine whether privi-

leged operations should be allowed. Management of authority state is an important

part of the system.

89

We expect lookups of authority information to be frequent whereas updates occur

relatively rarely. Lookups are part of the normal execution of an application and

happen as data are declassified or endorsed. Updates occur primarily as new princi-

pals are added or removed, for example, when a doctor leaves the clinic, and during

re-assignment of responsibility, for example, when a patient is assigned a different

doctor.

The Aeolus platform is intended to support many compute nodes from differ-

ent organizations/institutions, hosted on different and geographically dispersed data

centers. With roughly 10,000 nodes per data center and many applications running

simultaneously on each node, this can result in millions of authority lookup requests

per second. A design in which authority is checked by a centralized authority server

is infeasible with this high aggregate number of authority lookups. Not only does

this central authority server need to serve many compute nodes, but the computa-

tion needed to check authority can be time-consuming, requiring the traversal of the

principal hierarchy and per-principal authority state to determine whether principal

P indeed has authority for tag T .

Also, authority lookups can be in the critical path of application execution. For

example, prior to writing data to a file, the application may need to make its secrecy

label less restrictive by calling Declassify. The application cannot proceed until the

process’ secrecy label has been updated. To do so, the Aeolus PI needs to check that

the running principal has authority for the specified tag.

Our approach is to handle authority updates and lookups separately. Our archi-

tecture consists of authority server(s) that handle updates and authority state clients

on compute nodes that maintain cached state to serve lookups. Most lookups are

handled locally. This approach reduces latency in looking up authority information

and reduces load on the AS.

Authority state is stored persistently at the AS. In our prototype, we use one

server, however, we can replicate the authority state on a group of servers to provide

high reliability and availability. Furthermore, we can partition the authority state

among many ASes. Each authority server could be responsible for one independent

90

part of the authority state to reduce the chance of conflicting updates. An authority

server could also be kept close to where it might be likely used. We plan to explore

these approaches as future work.

5.11.1 Structure of the Authority State

This section describes how we store authority state at the authority server (AS).

In Aeolus, authority state includes information about tags and principals, the prin-

cipal hierarchy, delegations that have been granted to different principals, authority

closures, and system membership. This authority state is needed to determine not

only whether a principal has authority for a tag but also to find actors and actees

of principals. The authority state must have sufficient information to capture these

decisions.

The authority state is stored in several tables. Table 5.2 shows the attributes

maintained by each of these data tables.

Table 5.2: Authority State Data Tables

Principal Table
Pid: Principal ID

Tag Table
Tid: Tag ID

ActFor Table
PidFrom: Principal ID of Actor
PidTo: Principal ID of Actee

Grant Table
PidFrom: Principal ID of Grantor
PidTo: Principal ID of Grantee
Tag: Tag granted

Closure Table
Cid: Closure ID
Key: Public key used to verify closure code
Pid: Anonymous Principal ID

Membership Table
Node: Node identifier
IP address: Assigned static IP address of node
Public Key: Public key

91

The Principal Table and Tag Table are used to identify valid tags and princi-

pals in the system and the principals that created them. The ActFor Table encodes

the principal hierarchy by listing all the edges of this directed acyclic graph connect-

ing actor principal (PidFrom) to actee principal (PidTo). The Grant Table encodes

delegations by listing all edges in the delegation chain for specific tags.

The ActFor Table represents implicit authority whereas the Grant Table rep-

resents explicit authority. To determine whether a principal P has authority for a

tag T , one uses the ActFor Table to traverse the links, starting with P in PidFrom

and retrieving all actees of principal P . For each of these actees, one can then use

the Grant Table to compute the tags that this actee is directly authoritative for and

check whether T is in this set. The set of explicit authority for a principal consists

of all the tags in which the principal is the grantee in the Grant Table.

When a principal creates another principal, the new principal ID is recorded in

the Principal Table and since the creator principal automatically acts-for the new

principal, a link is added in the ActFor Table. When a principal creates a tag, the

new tag ID is recorded in the Tag Table and the creator principal is automatically

granted authority for the tag. This is done by creating a new entry granting the

creator principal the authority for this tag (with the system principal Proot as the

grantor principal) in the Grant Table.

Revocation causes entries to be removed from these tables. When a delegation is

revoked, this will affect delegations made transitively. For example, if principal P1

granted tag T to principal P2 and then P2 grants this to principal P3, there will be

two entries in the Grant Table: {P1, P2, T} and {P2, P3, T}. When P1 decides to

revoke the delegation of tag T to P2, the first entry is removed. We also remove the

second entry if P2 has no other delegations for tag T . In this way, the Grant Table

is kept up-to-date; we can retrieve a principal’s explicit authority by simply reading

this table and do not have to check whether the delegation is still valid.

When an act-for link is revoked, we remove the corresponding entry in the ActFor

Table. Since implicit authority is computed dynamically, other links in this table are

not affected.

92

Our system provides random IDs for principals, tags and authority closures. Tags

are encoded as a pair of IDs: 〈ID1, ID2〉. Top-level tags have a unique ID for ID1 and

a 0 for ID2. Sub-tags have ID1 of the compound tag they belong to and a non-zero

unique ID2. This way, we are able to represent groups of tags without having to

maintain explicit data structures for them.

The Membership Table maintains the list of machines that are trusted to be

running Aeolus. The Node attribute represents the globally unique identifier of the

machine. The entry also includes the static IP address assigned to this node and its

public key.

5.11.2 Caching

We maintain cached authority state at authority state clients on compute nodes. Use

of cached state offloads the AS and speeds up the processing of operations. However,

we need to partition the authority state effectively for reasonable cache performance.

Partitioning Authority State

At one extreme, authority state clients can obtain and cache the entire authority

state. In this way, they have a complete copy. However, authority state of the entire

system can be large since it includes information on all principals and tags in the

system, across many organizational departments and institutions. We want Aeolus to

be able to run on compute nodes with a wide range of hardware resources including

mobile devices, which are becoming popular entry points for invoking distributed

computations [25]. The authority state of the system may not fit on devices with small

memory capacity. Moreover, transferring the entire state can be time-consuming.

We need to partition the state effectively to get a reasonable tradeoff between

minimizing the number of fetches required over time and the size of each fetch. The

partitioning requirement is the usual one: a fetch should bring over related informa-

tion that is likely to be useful in the future.

Our solution is to divide the authority state into cores. Each time a client requests

93

some information from the AS, it receives a core. Additionally, we give the application

a way to control which core information goes into. When a principal is created, the

caller can indicate whether it should go into a new core or an existing one. In the

latter case, the caller can specify the core by providing a PID as an extra argument;

the new principal will be placed in that principal’s core, or in the core of the caller’s

principal if the argument is missing. Tags and closures always go into some principal’s

core; again there is an optional argument to specify the principal and if the argument

is omitted, the tag or closure goes into the core of the creator’s principal.

A core stores not only all principals, tags, and closures that have been placed in

it, but also all the acts-for and delegations for these principals. In addition, it stores

sufficient information to follow acts-for links to principals that reside in other cores.

Figure 5-8 shows the clinic example discussed before and how the principals and tags

are grouped into cores. The figure shows a patient core and a doctor core for the

doctor dr-bob who acts-for the patient’s doctor role pat-dr. The figure also shows

the clinic core. This core would have been created when the clinic system started

running and contains various entities related to managing the clinic, including (for this

example) the clinic-admin principal, the billing closure, and the all-patients

compound tag. The figure omits a link between the all-patients tag and its sub-

tag, pat-tag) since this information is not stored explicitly but instead is captured

through tag names.

This partitioned authority state is implemented using the same tables as Table 5.2

but each entry has an additional attribute that identifies the core that a table entry

belongs to. A core consists of all entries from all data tables that have the same

CoreId and is used as the unit for a fetch. The ActFor Table and Grant Table

contain additional attributes (shown in bold font in Table 5.3) on how to find the

cores of the principal that they are linked or chained to. The Membership Table is

not partitioned since its information is made available to all authority state clients.

An authority state client fetches an entire core from the AS each time. When a

core is fetched, the authority state client receives all table entries with the requested

core ID in CoreId and stores them locally in in-memory tables structured like the

94

pat

clinic
admin

pat-p

all-patients: pat-tag

all-patients

pat-dr

bob

dr-bob

Other
Docs

billing-tag

billingprincipal

tag

sub-tag

closure

act-for

all-patientsclinic-admin

billing-tagclinic-admin

pat-p all-patients: pat-tag

grants

Figure 5-8: Structure of Core for Medical Clinic Example

Table 5.3: Partitioning Authority State Data Tables by Cores

Principal Table
CoreId: Core ID
Pid: Principal ID

Tag Table
CoreId: Core ID
Tid: Tag ID

ActFor Table
CoreId: Core ID (core of Actor)
CoreTo: Core ID (core of Actee)
PidFrom: Principal ID of Actor
PidTo: Principal ID of Actee

Grant Table
CoreId: Core ID (core of Grantee)
CoreFrom: Core ID (core of Grantor)
PidFrom: Principal ID of Grantor
PidTo: Principal ID of Grantee
Tag: Tag granted

Closure Table
CoreId: Core ID
Cid: Closure ID
Key: Public key used to verify closure code
Pid: Anonymous Principal ID

95

ones at the AS.

When an user application performs a privileged operation that asks whether prin-

cipal P has authority for tag T , this may require fetching multiple cores. Figure 5-9

shows a sample traversal that spans two cores. Assuming that the authority state

client at the compute node has neither core cached, when it is asked the question

HasAuthority(P, T), it first checks whether it has information on principal P by

consulting its cached Principal Table. If P is not found and since it doesn’t have

any information about this principal (i.e., it doesn’t know which core P belongs to),

it issues a special request to the authority server to FetchCoreForPrincipal(P).

The authority server has the complete authority state and can look up the core of

principal P and in this example, it will return Core C1. Then, the authority lookup

continues exploring the principals that P acts-for by using the local ActFor Table.

When it finds an actee principal, it checks the CoreTo attribute to see if the required

core is cached, if not, it issues a request to FetchCore(c), which will return Core

C2 in this example. With this information, it can check whether its actees have the

authority for T by looking at the local Grant Table.

Notice that FetchCore is preferred over FetchCoreForPrincipal whenever pos-

sible, as it alleviates the extra computation at the AS to find the core that a principal

belongs to.

Core C1 Core C2

Principal
Grant

Act-for Link

P

T

HasAuthority(P, T) ?

Figure 5-9: Traversal across Different Cores during an Authority Lookup

96

Structure of the Client Cache

Aeolus platform instances use the local authority state client to reduce the latency

of authority lookups. When cores are fetched from the AS, they are stored in a core

cache. The core cache is a set of in-memory tables storing a partial authority state

of the system.

Even when the needed cores are in the core cache, however, questions about

whether a principal has authority for a tag can be costly to answer because they

require finding one path among many. For example, a doctor acts-for many patients,

and only one of these paths provides authority for a particular patient-tag. The

local authority state client has a two-tier caching structure. When an authority

lookup is requested, it first checks in a fast content cache and if the request cannot

be answered, it consults a larger and slower core cache.

The content cache allows frequently asked questions, which may involve longer

paths, to be answered quickly. It is likely that if a particular question about author-

ity is answered now, it will be asked again in the near future. The content cache

stores recently computed answers. This cache stores pairs 〈principal, tag〉; each en-

try indicates that the principal has authority for the tag. It is implemented as a

hashtable; the hash of the pair serves as the key. The content cache is consulted first

in an authority lookup. In this way, we can take advantage of temporal locality of

lookups within the same application and within user sessions. Upon a miss in the

content cache, the core cache is queried and the answer is added to the content cache.

Cache Management

The content cache and core cache are not unbounded in size and are limited by the

physical memory constraints on compute nodes. When these caches fill up, an eviction

scheme is invoked to select victims. Ideally, victims should be selected such that they

are not likely to be used again. For both the content cache and the core cache, we

use the least-recently-used (LRU) scheme [16] as it is likely that entries used in the

recent past will be used again in the near future.

97

Both caches use a doubly-linked list to maintain access order of cache entries.

The head of the list refers to the least recently used entry where an eviction victim

is extracted from. When an entry is accessed, it is moved to the end of the list. For

the content cache, an entry is moved to the back of the list when an authority lookup

uses the entry, which provides the desired recently used behavior. However, for the

core cache, the list is updated only in the case of a miss in the content cache and

hence a core that has been used recently via the content cache might be discarded

from the core cache.

5.11.3 Synchronization and Update

Authority updates run at the authority server, while authority lookups are served

locally by an authority state client with occasional communication to the AS to fetch

specific cores.

We store the authority state in a database at the authority server. This is conve-

nient since it allows us to take advantage of database transactions to ensure serializ-

ability and atomicity for performing updates that can affect several tables and many

cores and for handling concurrent client requests. Additionally, the database allows

us to run queries to determine the current system state; since queries are serialized

relative to updates, we can be sure the results are consistent.

An authority update can modify a number of cores while an authority lookup

fetches specific cores. If we are not careful, this can lead to an inconsistent state in

the local caches. For example, suppose authority update U modifies both core C1

and core C2, and suppose also that an authority state client has a copy of C1 in its

cache. If the authority state client makes a fetch request for core C2, its cache might

end up in a state where its C1 does not reflect the effects of U , while its C2 does.

It is important to present a consistent view of authority state to applications. For

example, the authority state may contain a portion of a principal hierarchy that has

a conflict-of-interest constraint. Bob can work on behalf of Company A or Company

B but not both. Bob used to work for Company A and this allowed Bob to act-for

CompanyAEmployee, which is recorded in core C1. Later, he leaves to join Company

98

B. Company A revokes Bob’s ability to act-for CompanyAEmployee and Company B

recognizes Bob as its new employee and allows Bob to act-for CompanyBEmployee,

which is recorded in core C2. The conflict-of-interest constraint will be breached if

an application sees core C1 prior to the updates and core C2 after the updates.

Our platform avoids this problem while still allowing fetches of individual cores.

Our solution is to take periodic snapshots of the authority state and have servers

fetch requests from them. Each snapshot provides a consistent view of the database.

Additionally, we ensure that each authority state client’s cache is consistent with the

most recent snapshot. This way, we can avoid having fetches cause inconsistencies.

For the example above: if the snapshot was taken after the update U , then it reflects

changes to both C1 and C2; otherwise it reflects neither change. And so long as all

cores in the authority state client’s cache are from the same snapshot, they will be

consistent. For example, the authority state client will either see a state before U or

after U .

Clearly, this scheme allows authority decisions to be made based on old informa-

tion. We assume applications can tolerate using a slightly out-of-date version of the

authority state. For example, changes to a hospital’s employee list only need to be

propagated daily. However, the system guarantees that this information isn’t very

old: snapshots are taken frequently, based on system parameter, ∆. For example, ∆

might be set to 30 seconds, which ensures that all authority decisions are based on

information no more than 30 seconds old.

To make this scheme work, we need an efficient way to produce snapshots and an

efficient way to keep server caches up to date with the most recent snapshot.

Producing Snapshots

In our system, the authority server maintains the most recent version of the author-

ity state as shown in Figure 5-10. The authority server serializes authority update

requests from different clients and manages a single write-copy of the authority state.

Examples of authority updates include CreatePrincipal, ActFor, and Delegate. As

discussed earlier, this server uses a database to store the authority state over several

99

relations. In addition, it maintains an operation log (Op Log) that contains ordered

information about successful authority updates. The operation log allows our system

to keep track of the order of updates with respect to when various snapshots are

taken.

Snapshot

Aeolus
Authority Server

Current
AuthState

Persistent Store

Op Log

CreateTag()..
CreatePrincipal()..
ActFor()..
RevokeActFor()..

User Code

Aeolus PI

Compute Node 1

Authority
Updates

Authority
Lookups

User Code

Aeolus PI

Compute Node 2

User Code

Aeolus PI

Compute Node 3

Send update
messages

Periodic Updates

Figure 5-10: Authority Server

An update request may change several relations and cores and it is executed

as a database transaction. If the transaction commits successfully, the authority

server assigns the update operation a sequence number and appends an entry to the

operation log. The entry includes the type and input parameters of the authority

update operation as well as the results of applying this operation on the current

authority state (e.g., the newly generated tag ID for CreateTag operation). In this

way, one can parse the operation log as a redo log to construct mirror versions of the

authority state.

The authority server is also responsible for creating snapshots of the authority

state periodically. It does this by making a request to the database to create a low-

overhead copy-on-write snapshot of the authority state. A new database snapshot is

100

generated and an unique snapshot name is returned to identify this snapshot. The

authority server adds an entry to the operation log to record this snapshot creation.

Fetches are directed at the most recent snapshot broadcast in update messages,

as shown in Figure 5-11. The authority state client must be informed of the name of

this snapshot so that it can fetch cores from it.

time
Fixed Interval ∆

Snapshot
Sm Uk Uk+1 Uk+2 Uk+3 Uk+4

Snapshot
Sm+1

Last Update
Interval Next Update Batch

Authority Lookups Authority Updates
(Most Recent Snapshot

in Update Message)
(Current Authority State)

Figure 5-11: Updates and Snapshots Timeline

Updates

The authority state clients cannot be allowed to lag significantly behind, because this

could permit the use of authority that has been revoked.

Our solution is to have the authority server send out periodic updates: each time

it produces a snapshot, it also sends out an update message that contains the name

of the new snapshot and describes all the changes from the previous snapshot to the

one it just produced. Authority state clients then use this information to bring their

caches up to date, so that they reflect the most recent snapshot.

Authority state clients do not process authority lookups if their state is “too old”.

They expect to receive an update message from the authority server every ∆ seconds.

If an update message doesn’t arrive quickly enough, the authority state client stops

processing authority lookups until it can communicate with the authority server.

Each update message contains a batch of entries from the operation log. As

mentioned, for each operation, the authority server includes the type of the operation

101

(e.g., CreateTag), the input and output values that are important for processing the

update (e.g., the new TID generated), and plus the cores that are affected by this

operation. The last entry of the update batch has the name of the database snapshot

that the authority state client can fetch from after processing these updates locally.

When an authority state client receives an update message, it processes the mes-

sage to reflect these changes locally.

The first thing the authority state client does is to discard all updates that do

not affect any of the cores in its caches. We expect that what remains is a very

small list, usually containing no updates. We expect updates to be rare (so that most

update messages contain very few entries). Clearly the larger the deployment, the

more updates in an update message, but in this case, we expect that many of the

updates are for cores not cached locally at this authority state client.

For updates that affect cores in the core cache, the processing is simple. The core

cache has in-memory tables that are similar in structure to the database relations at

the authority server. For each update, the authority state client checks against the

hashtable to see whether the affected core is cached; if so, it uses the information in

the message to apply updates to the in-memory tables. The procedure is similar to

what was done when the authority update was committed at the authority server. For

example, if the update message specified that a CreateTag operation was committed,

the entry from the update message will include the new TID, the core that it belongs

to, and the principal that created it; the authority state client will add an entry to its

in-memory Tag Table and also add an explicit delegation of this tag to the creator

principal in the Grant Table.

For the content cache, processing of updates is more difficult. The problem is how

to know whether a 〈P, T〉 pair in this cache is affected by an update. For example, in

Figure 5-12, P1 has authority for tag T because P1 acts-for P2, P2 for P3, P3 for P4,

P4 for P5, and it is P5 that has been directly granted authority for T . If the acts-for

from P4 to P5 is revoked, and 〈P1, T 〉 is in the content cache, it must be removed

since P1 no longer has authority for T . Note that it is crucial to remove a pair if the

principal is no longer authoritative for the tag. However, it would be safe to remove

102

pairs that are still valid, since this cannot cause privilege to be granted erroneously.

Core C1 Core C2

T1

P1

P2

P3 P4

P5

HasAuthority(P1, T1) after RevokeActFor(P4 to P5)?

P6

T2

Figure 5-12: Problem with Invalidating the Content Cache

One possible solution is to simply clear the content cache. This is clearly correct

but inefficient since the computation needed to place items in the content cache can

be expensive. Our approach is to keep some information about the path used to place

an item in the content cache. An entry 〈P, T〉 is placed in the content cache because

a path exists from P to T and this path is determined by traversing the principal

hierarchy in the core cache. Our system records the list of cores of the path that

was found to provide this authority. For the example in Figure 5-12, the traversal

of HasAuthority(P1, T1) uses cores C1 and C2 in the list of dependent cores. This

path information is stored together with the 〈P , T 〉 entry. With this information, the

authority state client has sufficient information to know which entries to invalidate

when it looks at the update message: if a content cache entry depends on a core C

that has been modified, it is removed.

This approach will sometimes remove cache entries unnecessarily, for two reasons.

First, even though one of the cores an entry depends on has changed, this change

might not affect the entry in the content cache; for example, our approach will remove

〈P1, T〉 due to an unrelated update such as a revocation of T2 from P6. Second, the

principal may have authority for the tag via a different path. For example, P1 may

act-for a principal in core C3 that has authority for T .

To avoid discarding valid entries from the content cache, we could keep more

103

detailed path information, at the level of principals rather than cores. We chose to

use cores because we expect this to reduce the amount of needed metadata; each core

along a path stands for a sub-path involving a number of principals local to that core.

Also, even with detailed path information, we might still discard entries unnecessarily

due to the second problem.

Inter-Node Consistency

In the preceding sections we discussed how compute nodes coordinate with the AS

to assure that there are no inconsistencies. However, there are also issues involving

communication between compute nodes. For example, suppose that node x already

has received the version of the authority state that reflects Bob’s move to company A.

If code running at node x makes a call to node y, and y is using an earlier version in

which Bob still works for company A, there can be a breach of the conflict of interest

constraint.

We avoid this problem by including the current authority state version number of

the sender in every message. When a node receives a message, it checks this number

and if it is later than the authority state version being used locally, it communicates

with the AS to bring itself up to date and it delays all requests to check authority

until it is up to date.

Checking Validity of Principals

A problem raised by revocation of an act-for link is how to remove authority from

processes running on the basis of the now-revoked link. For example, suppose Alice

lets Bob act-for her, and Bob uses this authority in a long-lived process that is now

running as Alice. Then Alice revokes the act-for link; the question is how to stop the

long-lived process from proceeding based on authority that no longer exists.

Our solution is to maintain the “basis” of each USER-d’s authority. Thus when

Bob exercises the act-for link to start acting as Alice, this information is noted. Ad-

ditionally, whenever a USER-d requests authority, e.g., to declassify, the USER-d

passes the basis to the authority state client, and the authority state client checks the

104

validity of every link in the basis; if any of these links has been revoked, it informs

the USER-d that the process’s authority is invalid and the USER-d is terminated.

Additionally, the basis is sent in every message, so that we can recognize the revoca-

tion problem even when the revoked link was followed at a different node than where

the process with that authority is now running.

105

THIS PAGE INTENTIONALLY LEFT BLANK

106

Chapter 6

Performance Evaluation and

Optimizations

The Aeolus distributed computing platform is designed as a reference monitor that

confines the execution of user applications. By interposing I/O and network requests,

it ensures that information flow properties are preserved. However, this comes at

a performance cost, as it adds overhead in serving these requests. We evaluate the

overhead from various components of our platform, examining local operations as well

as remote ones.

As an application executes, Aeolus platform instances require access to sufficient

authority state to determine whether certain privileged operations should be allowed.

For example, when an application running as principal P issues Declassify(T), does

principal P have authority for tag T? Our authority management architecture is

designed to answer this question in a timely manner while presenting a consistent

view of the authority state. We evaluate its effectiveness.

At the end of this chapter, we also include macro-benchmarks that examine the

end-to-end impact of our platform on application performance.

107

6.1 Experimental Setup

The experiments described in this chapter are performed on a set of identical machines

running the 32-bit edition of Windows XP Service Pack 3 with .NET Framework 2.0.

Each system had 2.5 Ghz Intel Q9300 quad core processors, 4GB of RAM, and a 250

GB Western Digital 1601ABYS SATA/300 disk drives. The systems were connected

via a 100Mbps switch, and the network roundtrip time is less than 1 millisecond. For

most experiments, average values are computed over 1000 runs, at steady state of the

system.

6.2 Local Platform Overhead

Aeolus loads user code into appDomains to restrict their access permissions and isolate

their address spaces. Each platform instance consists of user appDomains that are

used to run a user application, provide the necessary user code isolation, and a proxy

object that interposes various requests in order to enforce the system’s information

flow properties. In this section, we look at the overhead introduced by our design

choice and selected implementation techniques. First, we examine the cost of our

isolation mechanism, comparing the cost of using application domains versus OS

processes. Second, we look at the proxy overhead for communicating between user

application domains (USER-d) and the system application domain (SYS-d).

6.2.1 Isolation Mechanism

The application domain is the unit of isolation in the Aeolus platform. Each USER-

d runs with a principal. Computations may run with different principals and user

code can be loaded and executed in different application domains, ensuring complete

separation of program data between code running with different authority. In this

section, we carried out an experiment to evaluate the basic cost of using an application

domain versus an OS process.

This experiment measures the costs of loading an application, starting its exe-

108

cution and successfully terminating it, for two cases, one using an OS process and

another using an application domain. Table 6.1 compares the time it takes to execute

a dummy (no-op) application. The values presented are averages over 1000 runs.

Table 6.1: Execution Overhead of OS Processes and AppDomains

Isolation Type Average Execution Time (s)
OS Process 0.117 370
AppDomain 0.012 510

Application domains experience roughly an order of magnitude less overhead in

loading and unloading the code compared to OS processes (0.012s versus 0.117s).

This is expected as application domains are language runtime abstractions where

many application domains can exist in a single OS process. This substantially lowers

the context switching overhead. Hence, application domains experience a much lower

setup, tear-down, and inter-communication overhead.

This experiment provides an estimation of the performance difference one can

expect between the two isolation mechanisms. Next, we evaluate how the use of

appDomains impact the performance of Aeolus.

6.2.2 Inter-AppDomain Communication

Inter-AppDomain communication occurs frequently during the operation of the Aeo-

lus platform. For each privileged call (e.g., access to I/O), the user application code

cannot perform the operation directly since it runs in a restricted appDomain and

must issue an inter-appDomain call from the proxy object to the SYS-d. This requires

marshaling and un-marshaling the call from the restricted user application domain to

the unrestricted SYS-d. In addition, when the call arrives at the unrestricted appli-

cation domain, the .NET security model keeps the permissions of the executing code

at the caller’s (restricted) level and therefore, the SYS-d must explicitly raise the se-

curity permissions to handle the call and restore it to the restricted level after the call

finishes. Table 6.2 compares the average roundtrip latencies of such cross-appDomain

109

communication with an OS inter-process communication call. An OS IPC is roughly

8 times more expensive.

Table 6.2: Overhead of Cross Boundary Communication

Operation Average Latency (s)
Inter-AppDomain Communication 0.000 025
Inter-Process Communication 0.000 200

6.3 Forks and Calls

6.3.1 Forks

As the application executes, programmers can use the Aeolus API to fork off pieces

of code to run in a different appDomain with the same or a different principal. This

is done by issuing Fork requests. Aeolus sets up a different appDomain for running

the specified code with process labels reflecting the contamination of the caller.

Table 6.3 shows the average request time for executing Fork requests. When

the same principal is used (i.e. Fork), the average request time is 0.458 ms. This

time includes allocating an un-used appDomain from the appDomain pool in SYS-d

and initializing it, running a simple Echo and returning the appDomain to the pool.

Notice that this execution is substantially lower than the cost of using appDomain

in Table 6.1 due to the use of the pool. A common case will be to switch to running

code as Ppublic. The measurements show that this increases the cost slightly requiring

0.461 ms since the process state is updated.

In the case that a different principal is used, Aeolus must check that the requesting

process is running with a principal that is authoritative for the principal that it is

trying to switch to. The SYS-d consults the authority state client for this check,

which requires an OS IPC call and some additional processing. Fork to pid requires

roughly an additional 0.53 ms over Fork to Ppublic as a result of these additional

checks. The measurements are taken against a hot authority client cache and with

110

null process labels.

Table 6.3: Fork Overhead

Operation Average Request Time (s)
Fork 0.000 458
Fork to Ppublic 0.000 461
Fork to pid 0.000 997

6.3.2 Calls

Application developers can also use Call to run methods with different principals.

These methods are invoked in the same appDomain as the caller’s. Aeolus checks that

the operation is allowed and sets the process’ labels appropriately, at the beginning

and at the end of the call.

Table 6.4 compares a normal method call with one that switches to a different

principal. The results show the average request times over 1000 runs of invoking a

simple Echo method. Aeolus does not require special processing for normal method

calls and these methods finish executing in less than 1 µs. For method calls that

require a switch of principal, Aeolus does not require any authority checks when it

is switching to Ppublic and the call suffers negligible overhead in this case. However,

when it switches to other principals, Aeolus contacts the authority state client to

check that the switch is allowed. In this experiment, we measure over hot authority

state caches and so this check requires only local computation at the authority state

client. Unlike a Fork, Aeolus must also update the process’ labels at the end of the

call. The average request time for Call to pid is 0.591 ms, roughly equivalent to the

additional time between Fork to Ppublic and Fork to pid for the authority check.

6.4 Authority Closures

Authority closures are used to run code with an anonymous principal. We believe

that they will be used frequently by applications to tightly control how authority for

111

Table 6.4: Call Overhead

Operation Average Request Time (s)
Normal Call 0.000 000 3
Call to Ppublic 0.000 000 8
Call to pid 0.000 591 6

certain tags are used.

When an authority closure is called, Aeolus must first determine if the call is legal;

it needs to check that the hash of the specified code is indeed signed by the expected

private key. In the previous chapter, we describe our use of GAC and strong name

to speed up this check. Recall that a closure ID is bound to a private-public key pair

and an anonymous principal. When the closure call is issued, Aeolus must use this

ID to lookup the key and anonymous principal. We have a mapping of this binding

in the SYS-d to reduce communication with the authority state client. Here, we use a

simple micro-benchmark that generates a set of application calls that invoke authority

closures on our platform. Table 6.5 presents the average execution time for running

a simple Echo method inside an authority closure. With all these optimizations, a

closure call takes 0.76 ms, longer than a Fork to Ppublic (as it still requires executing

in a new USER-d) but less than Fork to pid (due to these optimizations).

Table 6.5: Cost of Executing Authority Closure

Operation Average Execution Time (s)
Closure Call 0.000 760

6.5 Remote Procedure Calls

In this section, we evaluate the overhead of a remote procedure call issued within our

platform. Aeolus offers remote procedure call via web service calls.

Our benchmark issues the same type of web service call on both a normal .NET

web service implementation and one that has been wrapped by an Aeolus service call

112

proxy and deployed on our platform. The application benchmark is a simple Echo

web service call that causes an input string to be sent to the server and then sent

back to the client. This measures the round-trip latency of a web service invocation.

We took the average of 1000 runs and reported our measurements in Table 6.6.

Table 6.6: Interposition Overhead of Web Service Invocations

Web Service Type Average Latency (s)
Base Web Service 0.002 138
Aeolus Web Service 0.003 600

The Aeolus Web Service version measures the end-to-end time from the remote

call invocation in the user application to the time the result is returned to the appli-

cation. This includes the time for the request to cross the USER-d-SYS-d locally, the

packaging of the information flow state header in the SOAP message, and the dis-

patching and setting up of an appropriate appDomain for running the actual method

in the user web service library on the server. And of course, this also includes the

reverse path for the result to propagate back to the client. We have found that in

optimizing our web service performance, the appDomain pool played an important

role as this significantly cuts down the setup cost in executing the user web service

logic on the server. All the necessary libraries and objects were instantiated and made

ready-to-go in these pre-loaded appDomains. Only the information flow state needs

to be initialized at the time of the call.

In our experiment, the web service client and server are located on different ma-

chines. The network latency is negligible. For each measurement, 1000 web service

invocations are issued consecutively. From Table 6.6, Base Web Service took on

average 2.1 ms to service a request compared to 3.6 ms with Aeolus Web Service.

This is roughly a 1.7X slowdown. Further investigations show that about 1.2 ms of

this time is spent at the server, which shows that the SOAP message interposition

overhead is small.

This benchmark stresses the measured system as the network latency in real de-

ployments are often far greater than several milliseconds making the Aeolus overhead

113

much less significant in actual applications. Furthermore, web service latency can be

hidden by the common design practices (e.g., by making these calls non-blocking so

that the application can move on to other tasks before the results are ready). Given

these factors, the observed overhead is unlikely to impact application performance.

6.6 File System

Aeolus FS manages metadata to keep track of the sensitivity of files and directories

and checks incoming file requests against them. It does this by keeping a database

relation that has an entry for each file and directory recording the filepath, filename,

secrecy label and integrity label. In addition, there is a root entry that protects the

entire file system.

Aeolus FS imposes a level of indirection between the user application and the

actual file system implementation. Applications making use of an Aeolus FS will

experience overhead in label checking and in the management of related metadata.

In this section, we investigate this performance overhead, by comparing it to the

native commercial file system running below our platform.

Applications running on Aeolus are likely to execute and store only temporary

data on compute nodes, most of the persistent data will be stored in networked file

systems on storage nodes. Hence, in this experiment, we compare the case where

the client (i.e., benchmark application running on a compute node) and the storage

node are on separate machines. We contrast the implementation of a file system

storage service served by a native file system versus one that we have designed to

store sensitive data. In the latter, there is an Aeolus FS wrapper that manages its

own metadata in a database while storing file content in the native file system. The

former simply provides a remote interface to the native file system. In our experiment,

the native file system is Windows NTFS.

In the first experiment, we use a benchmark that generates a set of directories

and files at various depths and with varying number of files in each directory. The

maximum directory depth is set at 5 and there can be a maximum of 10 files in each

114

directory. The number of tags in secrecy label and integrity label vary from 0 to 6.

The benchmark is directed at the two implementations discussed, on the native file

system, Native FS, and on the Aeolus FS file system, Aeolus FS. Table 6.7 shows

the request execution time for different file system administrative operations. The

values in this table represent the average taken over 1000 requests. When files and

directories are created, not only does our system need to check whether the requester

has acceptable secrecy and integrity labels to permit the operation, the Aeolus FS

wrapper also has to update its internal tables to keep track of the labels of the new

files and directories. These contribute to the observed overhead. With the exception

of RemoveDir, most of the overhead is well below 2X. These administrative operations

do not occur too frequently over the lifetime of an application and hence the observed

overhead is quite acceptable. Our implementation of RemoveDir recursively removes

all sub-directories and files requiring removal of all related metadata, the native file

system may have optimizations to perform their recursive removal quickly or lazily.

Table 6.7: Request Servicing Time for File System Administrative Operations

FS Operation (in s) Native FS Aeolus FS Overhead Factor
CreateDir 0.001 230 0.001 573 1.28X
CreateFile 0.001 822 0.002 466 1.35X
ListDir 0.001 211 0.001 418 1.17X
RemoveFile 0.001 636 0.002 721 1.66X
RemoveDir 0.001 300 0.004 194 3.23X

Next, we run experiments to measure the time it takes to read and write files of

varying sizes. Through the Aeolus file system API, there are two ways in which user

applications can read and write files. In the first method, they can do this by reading

and writing the entire file, using ReadFile and WriteFile. In the second method,

they can use file-streams to read and write files in chunks at various points during

an application execution. The file-stream method is preferable especially for large

files where the application can work on one part of the file and later on another part.

Also, it is desirable for appending to a file, for example, when the application is using

a file as a type of status log. We measure the time for reading and writing a file at a

115

directory depth of 5 for 1000 runs.

Table 6.8 and Table 6.9 show the results for ReadFile and WriteFile, respectively.

Both the Native FS and Aeolus FS use the same function to store the file content,

namely, .NET’s IO.File.ReadAllBytes() and IO.File.WriteAllBytes(). These

methods are synchronous and automatically flush the file content at the end of the

function execution. For very small files, at 10KB file size, Aeolus FS experiences

the greatest overhead as the time taken for label checking operations is relatively

significant compared to the time taken for the file content I/O operations. Even in

this case, the Aeolus FS has only a less than 3% overhead for file reads and writes.

At 10MB, this overhead is almost negligible at 0.02% and 0.09% for reads and writes,

respectively.

Table 6.8: ReadFile Request Time for Files of Different Sizes

Average Request Time (s) Native FS Aeolus FS Overhead Factor
10KB 0.005 5 0.005 6 1.022 2
100KB 0.021 9 0.022 2 1.010 6
1MB 0.188 7 0.188 2 0.997 0
10MB 1.866 1 1.866 5 1.000 2

Table 6.9: WriteFile Request Time for Files of Different Sizes

Average Request Time (s) Native FS Aeolus FS Overhead Factor
10KB 0.004 6 0.004 7 1.026 2
100KB 0.020 8 0.021 0 1.012 2
1MB 0.194 4 0.193 7 0.996 8
10MB 1.989 8 1.991 7 1.000 9

We also measure file-streams. The last two tests measure the cost of sequentially

reading or writing a file using a file-stream. Most of the overhead is in the label check

that occurs when the file is first used. When data is read or written, we only need to

do the checks if the file-stream is marked as needing to be checked. The experiments

assume that the check isn’t needed, since this is the normal case. The check is needed

116

only if the process has changed its principal or labels since the last use of the file-

stream making it questionable as to whether the file-stream is still valid. The file is

read or written in 4KB chunks since this is the default size of the underlying system.

Table 6.10 shows that Aeolus introduces very little additional cost over the native file

system for reads and writes. Writes are relatively cheaper in both cases because they

are flushed asynchronously.

Table 6.10: File-stream Open, Read and Write

Average Request Time (s) Native FS Aeolus FS Overhead Factor
Open 0.001 4 0.001 6 1.20
Read
10KB 0.004 7 0.004 9 1.04
100KB 0.040 3 0.040 7 1.01
1024KB 0.415 9 0.416 0 1.00
Write
10KB 0.003 2 0.003 2 1.00
100KB 0.026 7 0.026 7 1.00
1024KB 0.272 4 0.272 7 1.00

6.7 Boxes

Boxes provide encapsulation of sensitive data, preventing unnecessary contamination

prior to the viewing of the box content. Table 6.11 shows the time it takes for basic

operations such as Put and Get on an AeolusBox. In this experiment, the process and

box labels are empty and the box content consists of a simple integer value measuring

the raw overhead of such calls. AeolusBox is implemented as an abstract data type

and hence, no cross-appDomain communication is required and these basic operations

are very fast, taking only 18 us.

117

Table 6.11: Cost of Basic Operations on Boxes

Box Operation Average Request Time (s)
Put 0.000 018
Get 0.000 018

6.8 Shared State

While Aeolus FS shows very low overhead over the native file system, sharing of local

data over network filesystem is not very efficient. Aeolus provides shared objects for

local data sharing and shared queues and shared locks for synchronization between

applications running on the same machine.

6.8.1 Shared Objects

In this experiment, we measure the cost of basic operations on a shared object

that contains an integer. The shared state manager is implemented in the SYS-d

and accesses to shared objects require inter-appDomain communication. Table 6.12

shows that accessing this shared object takes 0.05 ms. This includes the label

checks, serialization and de-serialization of the object across the appDomain bound-

ary. ReplaceObject is slightly faster than GetObject since it is a unidirectional

request.

Table 6.12: Cost of Basic Operations on Shared Object

Shared Object Operation Average Request Time (s)
GetObject 0.000 054
ReplaceObject 0.000 051

We also vary the object size and Figure 6-1 shows the average request times for

different object sizes. We observe a negligible increase in service time for this range

of object sizes.

118

0.065

0.07

m
e
(m

s)

Shared Object Access Time
GetObject ReplaceObject

0.04

0.045

0.05

0.055

0.06

0 2 4 6 8 10

A
ve
ra
ge

 R
eq

ue
st
 T
im

Object Size (KBytes)

Figure 6-1: Shared Object Access Time as Object Size Varied

6.8.2 Shared Queues

A process can also communicate with another process via shared queues. We describe

two experiments in this section. First, we show the costs of basic operations on a

shared queue. Then, we show the results of an experiment that mimics an IPC call

between a client process and a daemon process using shared queue as the underlying

mechanism.

We present the cost of enqueue and dequeue operations on a queue that stores

integer-size messages in Table 6.13. The experiment is setup such that these opera-

tions are served immediately (e.g., WaitAndDequeue is issued on a non-empty queue).

These operations take less than 0.1 ms. WaitAndDequeue takes slightly longer than

Enqueue due to the blocking nature of this call.

Table 6.13: Cost of Basic Operations on Shared Queue

Client Request Average Request Time (s)
Enqueue 0.000 053
WaitAndDequeue 0.000 061

In the second experiment, we have two processes. The daemon process has a

request queue and the client process has a reply queue. The daemon process is

a listener waiting for incoming messages in its request queue. The client starts by

119

enqueuing a message into the daemon’s request queue, then it issues WaitAndDequeue

to wait on a message from its reply queue. Upon receiving a message in the request

queue, the daemon sends back a reply by enqueuing a response message on the client’s

reply queue. Table 6.14 measures the costs of these operations from the client process.

The average Enqueue time is 0.053 ms. The WaitAndDequeue request time includes

issuing the request on the shared state manager, alerting the daemon process with the

incoming message, processing by the daemon to generate and enqueue the response

message on the client’s reply queue, and finally alerting the client process. Hence, we

see that the WaitAndDequeue time is longer requiring on average 0.319 ms to get a

reply from the daemon with this setup. The IPC roundtrip time is therefore 0.372

ms.

Table 6.14: IPC using Shared Queue

Average Request Time (s)
Enqueue 0.000 053
WaitAndDequeue 0.000 319
IPC roundtrip 0.000 372

6.8.3 Shared Locks

While shared queue can be used to implement locks, Aeolus provides a more direct

locking mechanism via shared locks. Table 6.15 shows the average request time for

the Lock and the Unlock operation on a shared lock when there is no contention. The

cost of these operations consists primarily of the inter-appDomain calls to shared state

manager in SYS-d and the label checks.

Table 6.15: Basic Operations on Shared Lock

Shared Lock Operation Average Request Time (s)
Lock 0.000 054
Unlock 0.000 051

120

6.9 Authority Management

In this section, we examine the performance of our authority management scheme by

studying its sub-components through a set of micro-benchmarks.

We quantify the costs of various micro-operations on our authority state client

caches. First, we compare the reduction in request latency resulting from the content

cache and core cache. Then, we measure the cost of eviction in both caches. Lastly, we

study the cost of processing authority update messages and the cost of invalidations.

6.9.1 Cache Component Latency

We evaluate our design choice of using a two-tier cache and quantify the benefits of

caching authority state. We compare the average authority lookup latencies of three

configurations: Content Cache only, Core Cache only and Remote AS. Remote AS

refers to the case where all requests go directly to the remote authority server and

the two-tier cache is not used at all. The AS determines the answer by running a

number of queries against the central authority state database and returns an answer

of either yes or no. For the other two cases, authority checks are done locally at

the authority state client. The experiment preloads the caches and hence there is

no communication to the remote AS at all. In the Content Cache only case, all

requests are served by a hot content cache. In the Core Cache only case, the fast

content cache is disabled and all requests are served by a hot core cache.

This experiment consists of generating authority requests that traverse a varying

number of principals and cores. It creates simple linear delegation chains in the

principal hierarchy without any branching. Exactly one principal is created in each

core and delegation chains are created by giving act-for privileges to principals in other

cores. For example, a chain of length 5 involves 5 principals over 5 cores connected

by 4 act-for links and 1 tag delegation link. The principal at the head of the chain

acts-for all principals later on in the chain. The last principal in the chain has explicit

authority for a tag and our experiment measures the request latency in asking about

whether the principal at a certain position on the chain has authority for the tag at

121

the end of the chain.

We run 1000 authority requests for each of these configurations. Both caches are

sized large enough such that there are no evictions. There are also no authority update

messages causing updates or invalidations in the measured time interval. Figure 6-2

and Table 6.16 show the results of this experiment.

Latency of Cache Components
Content Cache only Core Cache only Remote AS

0.05

0.06

en
cy
 (s
)

Latency of Cache Components
Content Cache only Core Cache only Remote AS

0.03

0.04

0.05

0.06

qu
es
t L
at
en

cy
 (s
)

Latency of Cache Components
Content Cache only Core Cache only Remote AS

0.01

0.02

0.03

0.04

0.05

0.06

ve
ra
ge

 R
eq

ue
st
 L
at
en

cy
 (s
)

Latency of Cache Components
Content Cache only Core Cache only Remote AS

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10

A
ve
ra
ge

 R
eq

ue
st
 L
at
en

cy
 (s
)

Latency of Cache Components
Content Cache only Core Cache only Remote AS

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10

A
ve
ra
ge

 R
eq

ue
st
 L
at
en

cy
 (s
)

Latency of Cache Components
Content Cache only Core Cache only Remote AS

Figure 6-2: Latency of Cache Components

Table 6.16: Speedup using Authority Caches over Remote AS

Delegation Chain Length
1 2 5 8 10

Speedup
Content Cache only 46.76 79.52 143.00 206.90 205.36
Core Cache only 11.55 9.13 6.72 6.05 5.60

The results show that even having just a core cache provides a large speedup over

consulting the AS; note that costs presented here for using the AS are probably lower

than they would be in a real deployment since our AS is close to the node making

the request, and is unloaded. Furthermore the table shows that the content cache

provides another speedup over the core cache. The content cache takes roughly the

same length of time to answer the query regardless of the length of the chain. This

is expected since the authority check is answered by a simple hashtable lookup. For

the AS and the core cache, the time is linear in the length of the chain since their

122

request handling time is dependent on the amount of data they are computing (or

traversing) over.

The most interesting column in the table is actually the one for chains of length

1. This represents the best case for both direct use of the AS and for the core cache;

still the content cache does substantially better. Furthermore we expect this case to

be a common one because a good methodology for applications is to run a process

with the principal that has direct authority for the tag, since this is in accordance

with the principle of least privilege.

6.9.2 Eviction

To assess the costs of evictions, we first measure the additional latency that results

from eviction in the content cache by comparing two phases of an execution run.

We generate 20,000 independent authority requests, that is, different principals in

different cores asking about authority for different tags (with a delegation chain length

of 1). We set the core cache size to a very large value while limiting the content cache

size to 10,000 entries. We start the experiment with both caches enabled but empty.

In the first phase, 10,000 of these requests are issued with all of them missing in both

caches and causing new entries to be added. There are no evictions in the first phase.

In the second phase, another 10,000 requests are issued. This time, the content cache

is always at its maximum capacity and every request causes not only both caches

to be filled but also an entry to be selected and evicted from the content cache. As

shown in Table 6.17, the difference in request latency between the two phases gives

the cost of evicting an entry from the content cache, which is about 0.3 ms. This

eviction cost includes updates to LRU data structures and metadata that keep track

of the cores that each content cache entry is dependent on.

Table 6.17: Content Cache Eviction Cost

Phase Average Request Latency (s)
1. Fill-only 0.010 947
2. Evict-and-Fill 0.011 240

123

We also run a similar experiment to measure the core cache eviction cost. We

divide the execution into two phases and set the content cache size to a large enough

value such that there are no evictions in content cache. In the second phase, core

cache evictions occur for every request. This causes a core cache entry to be selected

and evicted. Table 6.18 shows the cost of evicting a core from the core cache is

roughly 0.4 ms based on the difference in request latency between the two phases.

This cost includes selecting the core to be evicted using the LRU data structures and

going through all the in-memory tables of the core cache and removing the entries

that belong to this core. The eviction costs for both content and core cache are well

below 1 ms. These costs are primarily due to the data structures used and we intend

to optimize this in the future.

Table 6.18: Core Cache Eviction Cost

Phase Average Request Latency (s)
1. Fill-only 0.010 846
2. Evict-and-Fill 0.011 248

6.9.3 Processing of Update Messages

In this experiment, we want to understand the combined cost of processing authority

update messages, updating the core cache and invalidating the content cache.

Authority update messages are processed as a batch once in each update interval.

We study this invalidation/update processing time as a function of the number of

cores that are invalidated in each batch of messages. This batch processing time

includes the time to parse the messages, perform updates on the core cache, and

invalidate appropriate content cache entries.

We use the above micro-benchmark with a delegation chain length of 1. That

is, each chain has exactly one principal and each principal has been explicitly dele-

gated one tag. Each principal is in a different core. We perform 1000 runs for each

experiment with different number of cores in each message batch. In each run, we

124

0.000080

0.000100

0.000120

ng
 T
im

e
(s
)

Processing Update Messages

0.000000

0.000020

0.000040

0.000060

0 2 4 6 8 10

A
ve
ra
ge

 B
at
ch
 P
ro
ce
ss
in

Num Cores updated per Batch

Figure 6-3: Cost of Processing Authority Updates

first generate a set of authority lookups that affect the desired number of distinct

cores. Then, we issue updates to the AS to remove the delegations that these lookups

depend on, causing the same number of cores to be affected. Stream broadcast is

triggered and the authority state client is informed of these changes. When the au-

thority state client receives these messages, it performs the necessary content cache

invalidations and core cache updates. Figure 6-3 shows this processing time as we

vary the number of cores affected in each experiment. As expected, the processing

time increases almost linearly with the number of cores affected since the number of

entries updated/invalidated increases proportionally.

6.9.4 Miss Penalty

The miss penalty an application experiences depends on a number of factors such as

the length of the delegation chain, the amount of authority state that needs to be

fetched in order to answer the lookup request and how the authority state is organized

by the application or organization. We do not present a comprehensive study in this

section but merely conduct a simple experiment that gives a sense of how request

latency changes with variation in miss rate.

In this experiment, we use the benchmark in Section 6.9.1 and set the delegation

chain length to 10. We use a content cache size and a core cache size of 10,000. The

average latency is measured over 10,000 authority requests. First, we fill these caches

125

0.200000

0.250000

t
Ti
m
e
(s
)

Effect of Miss Rate on Request Time

0.000000

0.050000

0.100000

0.150000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve
ra
ge
 R
eq

ue
st

Miss Rate

Figure 6-4: Effect of Miss Rate on Request Time

with entries according to the miss rate we want to measure. For example, to get

a miss rate of 25%, we issue 7500 authority lookup requests (each of these requests

causes one entry in the content cache and one entry in the core cache to be added).

Then, we issue 10,000 additional requests which includes repeats from the ones issued

previously (in the case of 25% miss rate, that translates to 7500 previous requests

and 2500 new requests). Figure 6-4 shows the results of the measurements. Since

all authority requests depend on the same number of principals, tags and cores, the

cost of a miss is constant and as the miss rate increase, the average request latency

increase linearly.1 The cost of a miss includes the time to retrieve core from the

remote AS, populate the core cache, compute the result of the authority lookup, and

populate the content cache.

6.9.5 Cache Sizes

The content and core cache sizes change depending on the entries that are stored

even though the maximum number of entries are fixed. For the content cache, the

lookup cache has the following fields in each entry: principal ID, tag ID, and a list

of core IDs that this entry depends on. The pair 〈principal ID, tag ID〉 are used

as keys for the cache lookup. The list of core IDs are used for managing evictions

1It is worth pointing out that at a 100% miss rate, the average latency in this figure is higher
than the Remote AS case in Section 6.9.1 since entire cores need to be transferred over the network
before the authority state client computes the result.

126

and invalidations. Table 6.19 shows the maximum content and core cache sizes for

the micro-benchmarks generated in this section. The maximum number of entries

in content cache and core cache are both set to 10,000. The maximum cache sizes

are shown for different chain lengths. In these sets of benchmarks, more principals

and more delegations are involved as the number of principals in a chain increases.

Looking at the content cache results, this leads to more cores that each cached entry is

dependent on and therefore, a larger cache size as the chain length increases. For the

core cache, each entry represents all the relevant authority information for one core,

that is, the subprincipals, tags created by these principals, acts-for delegations and

explicit grants given to these principals. For chain lengths of 10, the content cache is

less than 1MB while the core cache is less than 7MB. There are 100,000 principals and

100,000 cores in this case. This gives an estimate of the size of authority information

one may expect.

Table 6.19: Cache Sizes

Number of Principals in Chain
Cache Size (KB) 1 2 5 8 10
Max Content Cache Size 234.38 312.50 546.88 781.25 937.50
Max Core Cache Size 1015.75 1640.75 3515.75 5390.75 6640.75

6.10 End-to-End Evaluations

In this section, we evaluate the overall performance of Aeolus applications. We chose

two applications for our study: online store and secure wiki.

6.10.1 Online Store

This application mimics an online store and is illustrative of a very common appli-

cation pattern involving web services. Many web services are frequently invoked to

perform short client computations and exhibit session-like access pattern. In this

experiment, the online store web service serves many users. Users make calls on the

127

server, for example, to update their shopping cart or to finalize their purchase. Each

web service call is invoked on behalf of one user. Each user is represented by a unique

principal. We assume that the authority state of these principals is very compact, so

when principals perform multiple operations as part of a single session, the relevant

parts of the authority state will already be in the content cache.

In this experiment, we explore the performance of web service calls looking at

how the request time varies with the workload. The workload parameter reflects the

temporal locality of principals’ use of privilege. We vary the number of new principals

encountered in a measurement run to study different session access patterns. We

measure the latency of a simple web service call that receives a client request, performs

a computation (i.e., compute the total amount in a shopping cart), and then returns

a 4KB result (i.e., HTML page) to the client.

The results are presented in Table 6.20. For a normal web application implement-

ing this web service, the average request latency is 16.67 ms. The Aeolus-enabled

version calls a closure; the closure adds a tag to its secrecy label; does the compu-

tation; declassifies by removing the tag; and then returns the 4KB result. Thus, the

latency includes a remote method invocation, a closure call, a safe label manipula-

tion, and a privileged label manipulation. Each call is made with a different principal.

When all these principals belong to a session, the average request latency is 19.90 ms.

The data show that even if locality is relatively poor, forcing Aeolus to fetch cores

from the AS, the additional overhead imposed by Aeolus is small, requiring 22.31 ms

when all requests run on behalf of new principals.

Table 6.20: Average Request Service Time of Online Store Web Service

% New Principals 0 25 50 75 100
Normal Web Application (in s) 0.016 67
Aeolus Web Application (in s) 0.019 90 0.020 51 0.021 13 0.021 77 0.022 31

128

6.10.2 Secure Wiki

We also took an open-source web application, ScrewTurnWiki [65], and extended it

with security features using Aeolus. We protect against the unintended disclosure

of user passwords by storing them in a labeled file and allowing only an authority

closure invoked during user log-in to access and declassify this information. We also

confined the execution of a third party plugin, the Basic Statistics plugin, to prevent

it from arbitrarily disclosing page access logs. The next chapter discusses the details

of these modifications. In this section, we evaluate the performance overhead as a

result of these modifications. We do this by comparing the latency of the unmodified

ScrewTurnWiki implementation with our modified version.

In the first experiment, we measure the time it takes to process a user log-in

request at the server. The Aeolus version retrieves the labeled file containing the user

password and compares it to the one entered. The comparison is done in an authority

closure. Table 6.21 shows that the original ScrewTurnWiki took 8 ms to serve the

request whereas Aeolus required 12 ms. The additional overhead is primarily the cost

of running the checking code in an authority closure and the overhead of using Aeolus

FS on the server machine rather than using the local filesystem.

Table 6.21: ScrewTurnWiki Login Server Processing Time

Base Aeolus
Average Processing Time (s) 0.008 0.012

In the second experiment, we enable the Basic Statistics plugin and measure the

client request latencies. This plugin is invoked prior to returning a wiki page to the

client. In the Aeolus version, this plugin is executed on top of our platform, runs

with the Ppublic principal, and appends data to a labeled file. Table 6.22 presents

the average request times for the original ScrewTurnWiki and for the Aeolus version.

Using Aeolus resulted in a slowdown of 1.35X in this case.

129

Table 6.22: ScrewTurnWiki Page Fetch Latency with Statistics Plugin enabled

Base Aeolus
Average Request Time (s) 0.0101 0.0136

130

Chapter 7

Application Case Studies

In this chapter, we study the design and development of information-flow-aware ap-

plications using the Aeolus programming model. We designed two very different ap-

plications to put ourselves in the application developers’ perspective, exploring how

one would assign tags to data and organize authority with principals. We also tried

to see where it will be natural to use our programming mechanisms such as authority

closures, boxes and shared state.

The first example is the Retail Kiosk. This illustrates a distributed computation

that involves software providers from different organizations that need to protect their

proprietary data while still being able to provide software services and collaborate

with other vendors. The client logs on to a kiosk at a store and this triggers actions

at five different web servers. The second example is the Clinical Medical Research

System, which shows a very different scenario of how information flow can be used

within a large organization that has a broad range of personnel. Electronic medical

records are used by physicians as well as staff responsible for generating medical bills

and the disclosure of data derived from these records is carefully controlled.

In addition, we also explored the use of Aeolus to improve the security of an ex-

isting application. This application is a wiki server that is accessed by many users

and supports third-party plug-ins. We extended an existing application, ScrewTurn-

Wiki, using Aeolus to provide new security features. We found that we were able to

improve the security of this server by adding only a few lines of code and using a

131

simple methodology in which sensitive information was moved to our file system and

controlled through closures.

7.1 Retail Kiosk

This Retail Kiosk case is chosen as an illustration of some of the complex enterprise

processing and highly integrated backend computation that drive today’s businesses.

The Retail Kiosk is targeted at the store-of-the-future where kiosks are used to deliver

better customer services. The scenario we use is extracted from studying a real-world

platform being developed at HP [37, 38].

7.1.1 Application Scenario Description

The Retail Kiosk provides various appealing functionalities. In this section, we follow

a particular one: the retrieval of personalized coupons. As a customer approaches this

kiosk at a store, the system displays a set of in-store coupons tailored to this customer.

A single task like generating coupons can involve many software services to determine

what products should be on promotion, to manage customer relationships and pri-

vacy concerns, and to run statistical models to predict what products may appeal to

a specific customer. A lot of sensitive information can be collected and used from

different storage systems and by enterprise services belonging to different organiza-

tions. Third-party software vendors may provide businesses with management suites.

For example, the Promotion Service and the Sales Analyzer Service are aimed

at helping retailers decide what products make strategic sense to be promoted based

on the current inventory status of a retailer and industry-wide trends. These services

can be invoked by different retailers. In order to generate coupons tailored to a par-

ticular customer, the services need to retrieve some information about the customer.

The Customer Management Service maintains and manages collected customer in-

formation according to some privacy policies. A Behavior Modeling Service uses

the customer information and its data models to classify the customer’s shopping

behavior. All this information is then used to determine the final set of coupons to

132

offer. Figure 7-1 shows the interactions between these services. The arrows indicate

the direction of information flow.

Kiosk

Customer Data

Retail
Kiosk

Service

Promotion
Service

Coupons
Product

List

Customer
Mgmt

Service

Behavior
Modeling
Service

Sales
Analyzer
Service

Customer
Profile

Decision Sales Analysis

Modeling Dataset Industry Statistics

Inventory Info

Company A’s
Sales Figures

Company B’s
Sales Figures

Aeolus Distributed Computing Platform

Kiosk
Display Kiosk

Retail
Kiosk

Service

Promotion
Service

Customer
Mgmt

Service

Behavior
Modeling
Service

Sales
Analyzer
Service

Store Backend NodeStore Frontend Node

SA NodeBM NodeCM Node

Figure 7-1: Retail Kiosk Scenario

This application scenario demonstrates an application solution that results from

the interactions of five organizations providing software services on different servers.

The Kiosk runs as a local application on a display kiosk while the Retail Kiosk

Service runs on an in-store backend server. Consulting firms offer the Promotion

Service and the Sales Analyzer as subscriber-based software exposed as web ser-

vices. The Behavior Modeling Service and Customer Management Service are

provided by different software vendors.

7.1.2 Data Security Concerns and IFC Program Structure

The Kiosk application manages a user session at the retail store. A user logs on and

authenticates to the system. The Kiosk application ensures any data displayed to the

customer must belong to the customer or be properly declassified. For example, data

with a retailer’s sales performance sensitivity cannot be disclosed. This is achieved

by running the Kiosk application with the principal ID associated with the customer

(e.g., PAlice). In this way, it has the authority to declassify and endorse only tags

133

that are created by this principal. The Kiosk sits at the boundary of our system

and works together with an authentication mechanism to provide a secure channel

for displayed data (outside of our system).

Kiosk:
GetCoupons(in user)

P=PAlice
S={AliceInfo}, I={}

Retail Kiosk Service:
GetCoupons(in user)

P=PStoreA
S={AliceInfo, StoreAInfo}, I={}

1. l = GetPromoProducts(StoreA)
2. p = GetCustomerProfile(Alice)
3. c = CC(Decide(l, p))
4. Declassify(StoreAInfo)
5. RETURN c

Promotion Service:
GetPromoProducts(in store)

P=Ppublic
S={StoreAInfo}, I={}

1. AddSecrecy(StoreAInfo)
2. s = GetOverStock(StoreA)
3. t = CC(GetSalesTrend())
4. l = DetermineProdList(s, t)
5. RETURN l

Customer Mgmt Service:
GetCustomerProfile(in user)

P=Ppublic
S={AliceInfo, StoreAInfo}, I={}

1. AddSecrecy(AliceInfo)
2. p = GetProfile(Alice)
3. RETURN p

Behavior Modeling Service:
Decide(in products, in profile)

P=Pmodeler
S={AliceInfo, StoreAInfo, Model},
I={}

1. AddSecrecy(Model)
2. t = Classify(profile)
3. c = MatchPreference(t, products)
4. Declassify(Model)
5. RETURN c

Sales Analyzer Service:
GetSalesTrend()

P=Psanalyzer
S={StoreAInfo, StoreASales,
StoreBSales, IndustryStats}, I={}

1. AddSecrecy(StoreASales,
StoreBSales, IndustryStats)
2. Read sales and industry info
3. t = ComputeTrend(s)
4. Declassify(StoreASales,
StoreBSales, IndustryStats)
5. RETURN t

Customer Data Modeling Dataset Industry Statistics

Inventory Info

Company A’s
Sales Figures

Company B’s
Sales Figures

coupons

LS={StoreAInfo}

Product
List

Sales Analysis

Decision
Customer Profile

* process labels shown for time of call return
CC: CallClosure

LS={StoreASales}

LS={StoreBSales}

1 2
3

4 6

5

LS={IndustryStats}

7

8

9

LS={AliceInfo} LS={Model}

9 10

11

11

12

1. Alice logs on
2. r = CC(GetCoupons(Alice))
3. Declassify(AliceInfo)
4. Display coupons r

Figure 7-2: Retail Kiosk implemented using Aeolus

The Kiosk application is driven by backend logic such as the Retail Kiosk

Service. It calls the Retail Kiosk Service to do the actual retrieval of coupons.

The Retail Kiosk Service also belongs to the store and runs as part of the retailer’s

backend system. A customer can invoke these backend services but the store defi-

nitely does not want a customer to have the authority for the tags used to protect the

store’s inventory data. When a GetCoupons() call is made on the backend service,

it is called as an authority closure to decouple the authority. A new computation is

created to run this code under the anonymous principal PStoreA.

The Retail Kiosk Service makes several calls to remote services that assist in

coming up with the final list of coupons. First, the Retail Kiosk Service invokes

a Promotion Service to analyze the store’s inventory status and to figure out what

134

products should be advertised. The Promotion Service does not need any authority

and hence, it is run with the principal Ppublic. Prior to accessing the inventory for

StoreA, it needs to add the StoreAInfo tag to its secrecy label to permit the read.

This service is further decomposed into other services. A Sales Analyzer Service

is designed to come up with popular product categories based on different companies’

sales figures. Therefore, how it uses and discloses this information must be carefully

controlled. Sales data and industry trends are marked with tags in their secrecy labels.

For example, Store A uses the tag StoreASales to protect its sales figures. The Sales

Analyzer Service must be executed as an authority closure. Only the anonymous

principal Psanalyzer has sufficient authority to declassify individual companies’ sales

data and this principal can only be used with the code GetSalesTrend(). Different

stores trust this authority closure to declassify their sales figures. When a company

enrolls with the Sales Analyzer Service, it grants this closure authority for its

tag. Based on the sales trend and the inventory status, the Promotion Service

returns the promotional product list to the Retail Kiosk Service. The Retail

Kiosk Service becomes tagged with an additional StoreAInfo tag as a result of

this.

Next, the Retail Kiosk Service invokes a Customer Management Service to

retrieve the customer’s profile and in the process, gets marked with the customer’s tag

(i.e., AliceInfo in its secrecy label). Using the customer’s profile and the product

list, the Retail Kiosk Service consults the Behavior Modeling Service about

which products on the list should be offered based on this customer’s profile. The

Behavior Modeling Service is administered by a different organization and uses

a proprietary modeling dataset to make these decisions. This dataset is protected

by the tag Model created by this organization. The Behavior Modeling Service is

presented as an authority closure so that this organization can have full control on

how any dependent result is declassified. The authority for the Model tag is bound

to an anonymous principal Pmodeler which is associated with the Decide() code. This

code classifies the customer based on his/her profile and selects products from an

input list that will be appealing to the customer using its proprietary algorithms.

135

Now, the Retail Kiosk Service has a list of coupons tailored for the logged

on user. Its process has the two tags StoreA (from the Promotion Service) and

AliceInfo (from the Customer Management Service) in its secrecy label. Prior to

returning this list to the Kiosk application, it removes the StoreA tag. The Kiosk

application can then remove the customer’s tag and display the coupons to the user

standing at the kiosk.

7.1.3 Programming Experience

Using the Aeolus programming model, it was easy to think about the authority needed

for different code segments. The explicit safe label manipulations helped identify

code that consumes sensitive data and from there on, we can consider the different

outputs that are derived from it and under what circumstances might declassification

be acceptable. For example, the product list generated by the Promotion Service

is tagged with the StoreA tag after it has learned about the inventory status of the

store. We do not want to declassify this data immediately and by keeping it tagged,

we prevented the Behavior Modeling Service from leaking it. Instead, when the

Retail Kiosk Service has narrowed this down to a much shorter list of coupons

that will be generated, we declassify the StoreA tag.

We also found that authority closures were very useful especially in this case where

many different organizations are involved. They do not trust each other enough to

use delegations. Notice that the principal hierarchy is very bushy, with principals

(and anonymous principals) being directly authoritative for tags. Authority closures

are preferred in this scenario since they allow these organizations to better limit

how authority can be used. We saw that this was useful in two very different cases.

The Behavior Modeling Service uses an authority closure to run its own code and

protects most of the execution with the Model tag it has authority for. In this way,

it controls precisely how its sensitive data are used by an invoker from a different

organization. On the other hand, the Sales Analyzer Service is a piece of third-

party code that multiple companies entrust their sales data to. Each company can

examine the code and verify that no other company can learn too much about its

136

company’s sales data by running this authority closure. Another difference is that

the authority of the first closure is fixed while that of the second changes as new

companies enroll in the service.

The Ppublic principal turns out to be quite useful. At first, we were going to assign

different principals to each code segment but later realized that many sections can

run without any authority and they are better run in a fail-safe manner with the

Ppublic principal. For example, if the Customer Management Service had retrieved

the profile for Bob rather than Alice, this programming error will be caught as the

final coupon will not be able to display on the kiosk.

Although there are no file updates in this application scenario, performing updates

can be tricky as the developers have to be careful in considering the order for retrieving

sensitive data and calling different functions. For example, if the Sales Analyzer

Service needs to update a log at the end of its computation (e.g., to know how to

charge companies for usage of its service), it is prevented from doing so since it is

called after the process became tagged with the StoreAInfo tag that this service is

unable to declassify.

7.2 Clinical Medical Research System

Clinical information systems must comply with legal policies in protecting sensitive

patient health data. Electronic Health Records (EHRs) are accessible by various

physicians, medical specialists and hospital staff at primary care facilities. Standards

such as the Health Insurance Portability and Accountability Act (HIPAA) [8] are put

in place to address the security and privacy of health data. This application scenario

examines some of the design considerations for software that may run on physicians’

desktops and by medical researchers and hospital staff. Parts of this scenario have

been presented in earlier chapters to demonstrate Aeolus programming constructs.

Here, we elaborate with some additional examples.

137

7.2.1 Application Scenario Description

This scenario captures a set of applications that is commonly found in clinical settings.

We focus on four programs: Patient Registry, Physician’s Desktop, Insurance

Billing Generator, and Trend Analyzer. Front-desk staff uses the Patient Registry

to add new patients or update their mailing and billing addresses. The Physician’s

Desktop is intended to assist doctors during patient visits to record measurements and

notes on observed symptoms, diagnosis and prognosis. This desktop software is avail-

able at various physicians offices and terminals in the hospital. A physician is required

to log-in to the system with his/her username and password. Patient data are stored

in a central data repository in this system. The Insurance Billing Generator is

a background process that goes through information on patients’ visits to determine

the charges for the consultations and medical procedures preformed. This program

translates this information into standardized medical billing codes and submits them

to the patient’s insurance company. The Trend Analyzer can be used by researchers

to study disease progression and correlations that can improve decision-making for

diagnosis and treatment of diseases.

7.2.2 Data Security Concerns and IFC Program Structure

Patient data are collected, handled and stored by the healthcare facility. These health-

care providers are required to protect such sensitive data. The HIPAA Privacy Rule

categorizes many of the above (demographic information, medical record, payment

history) as Protected Health Information. It regulates their use and requires providers

to make a reasonable effort to disclose only the minimum necessary information re-

quired to achieve various clinical operations.

While physicians should have the right to read and update patient’s medical record

for patients that they are responsible for, the physician should not be able to view

demographic information (e.g., his/her patient’s home address). On the other hand,

front-desk workers needs to update this information but they should not be able to

disclose patient’s medical history. Billing information contains a summary of proce-

138

dures done at hospitals and clinics that is generated from the examination of physi-

cians’ and nurses’ notes. While the payment data are less sensitive than the original

medical history, this information should still be protected from staff outside of the

finance department. The aggregation of numerous patient records can reveal patterns

advancing the field of medicine. However, these research studies should only involve

patients that have given informed consent.

Data Categorization

To limit the amount of sensitive data used by different applications, we use different

tags to tag patient data. Demographic data should be handled with great care as

they contain personally identifying information. The hospital administration uses a

tag TDemographic to tag the file that stores such information for patients and staff. Logs

on generated payment requests are kept on persistent storage using the tag TPayment

to protect data secrecy. Research findings are important intellectual property and

are kept in data repositories marked with TProprietary sensitivity. For each patient,

there are two tags: TPatientSign and TPatientMedical. The first can be used to label the

integrity of signed consent forms while the second is used to tag the patient’s medical

record.

Management of Principals

Each registered patient has a principal ID (e.g., Alice) as shown in Figure 7-3.

Each hospital staff also has a principal ID. For example, there is a principal ID for

physician Carol, one for front-desk worker Dave, one for billing staff Eve, and one for

researcher Fred. There is an overall hospital administration principal Clinic-Admin.

As staff join and leave the hospital, the administrator assigns them different roles by

using act-for delegations. For example, Dave is set to act-for FrontDesk Worker and

Fred is set to act-for Researcher. By acting for these principals, Dave and Fred are

able to obtain the authority needed to get their job done. Through the FrontDesk

Worker, Dave can retrieve patient’s demographic data to schedule appointments.

The Researcher principal gives Fred the ability to study the hospital’s proprietary

139

research data.

TDemographic

TPayment

TProprietary

Tag Created

Tag Granted

Principal

Closure
Carol

Clinic
Admin

Alice

Alice
Doctor

Front
Desk

Worker

Research

TDemographic

Dave

Auditor Eve
TPayment

Fred
TProprietary

Billing
Closure

Scrub
Closure

Tall-patient TAliceMedical

TAliceSign

TAliceMedical

TAliceMedical

Bob

Bob
Doctor

TBobSign

TBobMedical

TBobMedical

Figure 7-3: Principal Hierarchy in Clinical Application Scenario

The hospital administrator creates the tags TDemographic, TPayment and TProprietary.

It delegates the TDemographic tag to the FrontDesk Worker role since it needs to handle

such information while the Researcher role is delegated the TProprietary tag.

When a new patient enters a hospital, a new principal ID is generated for the

patient along with the two patient-specific tags mentioned above. The TPatientMedical

tag is created as a sub-tag of the top-level Tall−patients tag. Hence, the authority for

the patient’s TPatientMedical tag is given to the Billing Closure which has authority

for the Tall−patients tag. The patient is asked whether he/she wants to participate in

research studies and consent forms are signed and kept on file. If the patient agrees

to be part of the study, the authority for the TPatientMedical sub-tag is given to the

Scrub Closure. The signed consent form is stored securely and protected with the

tag TPatientSign in its integrity label. Furthermore, the patient specifies the physicians

and specialists that he/she has been referred to allowing them to act on behalf of

him/her in handling medical data. In this example, Carol is Alice’s doctor and Carol

is made to act-for AliceDoctor.

140

Patient Registry

When a patient enters the hospital, Dave, the FrontDesk Worker, looks up the pa-

tient’s address information and checks that it is still up-to-date. If the patient has

moved, he enters the new information into the system. If the patient is new to the

clinic, a new entry is added to the patient registry. This registry is protected by the

TDemographic tag in both its secrecy and integrity labels. Dave is able to update the

registry since he runs his desktop software with the FrontDesk Worker role and this

role is authoritative for the TDemographic tag which proves that it has the required

authority to write to the registry.

Insurance Billing Generator

Billing is a background process that Eve the internal auditor runs every reporting

period to generate payment information. Eve uses the payment information generated

by Billing Closure. The Billing Closure contains code that leaves out patient

medical details and translates visit information into procedure billing codes. In this

way, the Billing Closure is trusted with declassifying patient records and is given

authority for the Tall−patient compound tag. This compound tag covers both the

TAliceMedical and TBobMedical sub-tags. To ensure that the disclosure of this payment

information is controlled, this code attaches the tag TPayment to the resulting data

before writing it to a log. Hence, Eve must run her generator software with the

Auditor principal authoritative for the TPayment tag.

Trend Analyzer

The Scrub Closure is able to read in selected patients’ data and de-sensitize them

by anonymizing patient data and obfuscating fields that are not needed for research

purposes. Researcher Fred uses this closure to examine scrubbed patient records

for ones that have proper patient consent. In this example, Alice has given consent

while Bob has not and so this authority closure has been delegated TAliceMedical and

not TBobMedical. Researcher Fred can study and analyze this data for example in

141

determining the correlation between patients with high blood pressure and heart

disease. Fred uses the TProprietary tag to protect his research findings.

Physician’s Desktop

Carol is a physician responsible for many patients. Carol has to keep records of

different patients separate and avoid mistakenly updating the wrong medical records.

When Alice the patient walks into Carol’s office, Carol switches the Physician’s

Desktop software to run with the AliceDoctor prinicipal. This allows Carol to

review Alice’s symptoms from previous visits and enter new consultation report into

the system. During this time, these computations and updates are executed within a

process that has the TAliceMedical tag in both its secrecy and integrity labels, ensuring

that it is reading Alice’s data and updating only her record.

7.2.3 Programming Experience

The usage of the principal hierarchy in this Clinic example is quite different from the

Retail Kiosk example. The Clinic example is a closed organization and the principal

hierarchy is dominated by a clinic-admin principal. The hierarchy is used to define

roles that different users are assigned to in this environment. As patients, doctors and

hospital staff logs on to run different software, they act-for these roles and inherit the

needed authority to get their work done. By defining roles, the principal hierarchy can

be used as a way to manage patients and employees joining and leaving the system;

it also nicely handles changing patient-doctor relationships.

The use of tags was important in representing different types of data that can

belong to a single user such as a patient. Tags provide fine-grained control where

authority can be limited to a very specific piece of data (e.g., TDemographic for demo-

graphic data and not patient records or payment information). Furthermore, com-

pound tags provide a very convenient short-hand to grant authority for all patients’

tags to the Billing Closure.

142

7.3 Secure Wiki

For our final study, we took an existing web application, ScrewTurnWiki [65], and

extended it with information flow security. ScrewTurnWiki is a relatively small single

server application. Here, we examine the Aeolus design from the viewpoint of mod-

ifying the wiki’s code base to use our mechanisms in protecting sensitive user and

system data.

7.3.1 Application Scenario Description

ScrewTurnWiki 2.0 is a popular open-source .NET wiki engine that provides features

common to most wikis such as page creation and editing, simple user management,

and support for third-party plug-ins. ScrewTurnWiki can be used to host private

blogs as well as collaboration web sites with many users. Users create wiki pages that

are either publicly visible or visible only to user account holders.

ScrewTurnWiki has a modular storage interface that can interact with file sys-

tems, databases and custom storage solutions. Moreover, it has well-defined APIs

that allow third-party developers to insert their code at various stages during the

processing of a page request. For example, there is a plug-in that provides support

for different languages and another that tracks visits to different wiki pages. How-

ever, ScrewTurnWiki provides little support for security. This is especially of concern

because of insertion of third-party code, since this means there is an expanding code

base that might leak sensitive information.

7.3.2 Data Security Concerns and IFC Program Structure

We show two examples of how Aeolus can be used to strengthen data security in

ScrewTurnWiki. The first example deals with sensitive user profile data such as pass-

words and e-mail addresses. The second example shows how to handle untrusted

plug-ins such as the Basic Statistics Plugin 1.3.3 module downloadable from Screw-

TurnWiki’s website.

Like many web applications, ScrewTurnWiki is deployed as a server application

143

where all modules within the application have the same authority. For example, the

login code as well as the page formatter code can access files containing user pass-

words. Any method can wipe out or corrupt server data kept on logs and application

caches. In the first example, we isolate sensitive user profile information and make

use of Aeolus FS to store them persistently. The file containing sensitive user profile

data is protected by the tag Tadmin in its secrecy label and we allow only certain code

such as the login module to use such data. The login module runs within an authority

closure and the anonymous principal of this closure is given authority for Tadmin.

When a new user account is created, the non-sensitive part of the profile data is

stored as-is and only a small set of sensitive data (password and e-mail) is redirected

to the Aeolus FS. Most of the user registration code is unmodified. When a user

logs in to the wiki, an authority closure takes in the username and password and

returns a boolean value on the result of the password check. This closure fetches

the sensitive profile data from the Aeolus FS and declassifies the Tadmin tag before

the boolean value is returned. The checking code that runs in the authority closure

consists of less than 10 lines of code. A programming error in these few lines can

inadvertently disclose the password, however, a bug in the remaining 18K lines of the

ScrewTurnWiki code cannot.

The second example concerns the use of the Basic Statistics plugin. Plug-in mod-

ules like these are written by open-source and commercial developers with varying

levels of programming skills. They are valuable in enriching the core wiki engine but

care must be taken that they do not reduce the overall security of the application.

The Basic Statistics plugin is triggered whenever the server application is about to

return a wiki page to the user. It tracks all visits to wiki pages and maintains a log of

such information. For each page access, it records the IP address, user browser/OS,

URL, language, username (if any) and access time. From the log, various statistics

such as access pattern and frequency can be derived. In most cases, the complete

log is used only for administrative and auditing purposes. But nothing prevents its

release and there are clear privacy issues if this should happen. Furthermore, an error

in this logging code can place copies of wiki pages in the log and disclose them to

144

users that are not intended to see them. We use the Aeolus FS to maintain the log

in a file with the tag Tstats in its secrecy label. Most of the plug-in code runs with

the Ppublic principal and only small sections of code where summarized information

such as total number of accesses on a page is revealed run with more authority via

an authority closure.

7.3.3 Programming Experience

We were surprised to find that with these small modifications, we were already able

to strengthen ScrewTurnWiki against potential security vulnerabilities in different

parts of its code base. The approach we found useful in this exercise was to isolate

sensitive data, identify small code sections that require authority to disclose sensitive

data, and execute all remaining code with no authority (using Ppublic).

In terms of the amount of retrofitting needed, this depended on the data structures

used in the existing code. For the password protection, we simply left the data

structures as-is but scrubbed out the sensitive portions. We introduced new data

structures for storing the sensitive portions of a user profile and redirected code

that accessed them. These changes were needed only in a handful of places and by

scrubbing, we ensure that if we missed a reference (probably this would be an error

in the wiki code), no security leak is possible.

The reason it was necessary to scrub the data is because a large portion of the

code in the application was implemented in ASP.NET pages or web forms that are

invoked by Microsoft IIS which did not run on top of Aeolus. Therefore, we could not

control how information flowed in that code. By scrubbing the sensitive data, we were

able to ensure that if any code in the application accessed the data structures where

it used to be stored, still no leaks could occur. Figure 7-4 shows how we modified

ScrewTurnWiki to redirect the execution to code that runs on Aeolus.

ScrewTurnWiki has the potential to support many plug-ins. We found that

application-level tags and the ability to delegate and revoke authority to be im-

portant. New plug-ins may require a different collection of authority and obsolete

plug-ins should have their authority revoked. The authority state provides a central

145

Microsoft
IIS

HTTP
Server

ScrewTurnWiki
ASP.NET pages ScrewTurnWiki

C# Core Libaries

Aeolus Platform Instance
Client
Web

Browser

Register
Page

Login
Page

Browse/
Edit wiki
pages ScrewTurnWiki

C# Plug-in Libaries

Selected ScrewTurnWiki
Class Methods

Aeolus
FS

Register()

Login()

InvokePlugin()

Redirected selected calls
to run on Aeolus

Sensitive data in
labeled files

Scrubbed
Data

Figure 7-4: Modifications to ScrewTurnWiki

management point for these decisions.

146

Chapter 8

Related Work

Information flow control is not a new concept and it was first studied in the 1960s.

Lampson’s paper on the confinement problem [36] pointed out the insufficiency of

using only access control to protect sensitive data. Information leakage can happen

when a subject authorized to access an object discloses it to another subject not au-

thorized to access it. Information flow control is a set of techniques that alleviates this

problem by enforcing how data is disseminated and propagated. The Bell-LaPadula

model [1] and the Biba model [2] are some of the earliest formal models that addressed

the confidentiality and integrity issues in information flow. These models were de-

signed to protect classified and secret information for government and military use

and focused on a specific form known as Multi-Level Security (MLS) [58].

Operating systems dating back to the 1960s have provided some information flow

isolation based on these models. At the operating system level, end-to-end informa-

tion flow control can be tracked and enforced since the OS has access to all resources.

ADEPT-50 [64] applied the high-watermark model to keep track of the highest secu-

rity level of objects that have been opened. IX [40] and LOMAC [23] impose similar

kinds of security models in the kernel based on a lattice of sensitivity labels. These

systems require a centralized unit to assign users to different classification or privilege

levels.

In the 1990s, Myers and Liskov [45] introduced the concept of decentralized in-

formation flow control. This approach makes it possible to use discretionary controls

147

with policy decisions delegated to individual users and does not rely on one adminis-

trator configuring all policies correctly.

Aeolus and more recent systems support decentralized information flow control

where different data categories can be owned by modules. Though many systems have

provided some information monitoring (via processor micro-architectures [59, 53, 13],

emulators [46, 4, 11], virtualization techniques [12, 67, 24, 56], security extensions [54,

22, 47], and web-browser support [62, 63, 9, 66, 5, 39]), we focus our discussion on

the two lines of research that are most closely related to Aeolus: the programming

language work and the operating system work.

8.1 Programming Languages

Myers and Liskov introduced decentralized information flow in JFlow [45, 43], a Java-

based programming language. JFlow and its successor Jif [44] allow program to define

a security policy for data, by annotating program constructs with data security labels,

and uses the compiler to track and enforce information flow within a single program.

They rely on a type system and static analysis, which have the advantage that they

can conservatively identify information flow, providing stronger security assurances

(e.g., non-interference property). Their labels are expressed in terms of principals

(owners) and the security policies an owner wishes to impose on other principals. For

example, each variable has a label and one can only write (i.e. declassify) it to the

printer if the code is running with a principal that is allowed by all owners.

The initial language work did not provide mechanisms for interacting with OS

resources such as files and sockets. Static analysis relies on closed-world assumptions

with guarantees being made on a single program, and dynamic extensions can easily

invalidate these guarantees [26]. The approach assumed a centralized principal hierar-

chy where programs can perform dynamic checks on act-for relationships. However,

the work did not address updates to the principal hierarchy. A class method can

be associated with a principal and in this way, they provide similar guarantees as

our authority closures. These languages were intended to support a single sequential

148

program and had no support for concurrency and for running a long-lived dynamic

system.

There has been a large body of follow-on work ([30, 28, 31, 55, 7, 72, 57, 29, 6]).

Here, we review the work that attempts to bridge the gap between this static way

of handling information flow and real-world applications and operating environments

since this is most relevant to Aeolus.

Jif guarantees non-interference within a single application but does not provide

support for files and sockets, which are needed in real-world applications. SIESTA

(Service for Inspecting and Executing Security-Typed Applications) [30] is an operat-

ing system service that combines Jif and SELinux [47] to allow labeling to extend from

files and sockets to applications. It allows the operating system to use its mandatory

access control (MAC) module to pass labeled data into an application (via an API

for Jif) and it ensures that the application complies with the OS MAC policy (via

compliance analysis). It does this by using SELinux to provide the MAC functionality.

Hicks et al [28] showed via the development of the JPmail e-mail application

how Jif can be extended for designing real-world applications. They showed how to

build a “principal store” that uses public-key infrastructure to provide uniqueness

and persistence.

When the principal hierarchy changes, this can violate information flow assump-

tions of running programs. In particular, revocations can invalidate the authority of

a process if it has used authority derived from its actee. Hicks et al [31] permitted

dynamic updates to the principal hierarchy by placing restrictions on updates, dis-

allowing ones that will violate properties of already executing programs. Swamy et

al [55] introduced transactional semantics on principal hierarchy updates and allowed

them to be made by contaminated programs by adding labels to the PH.

SIF [7] is a framework for building web applications using Jif. It addresses the

limitations of security typed languages for reasoning about security in a dynamic

external environment. In particular, it addresses authentication and session-based

behavior of web applications through authorization closures and session principals.

Authorization closures are used to obtain the authority of application users after they

149

have authenticated themselves (e.g., with a password). They provide a translation

of “user principals” to Jif’s principals. A session principal is then assigned to act

on behalf of the now logged-in user. This work shows how a Jif web application can

interact with an untrusted client browser to provide end-to-end guarantees.

There has also been a lot of work in extending the type system to provide provable

guarantees for dynamic mechanisms such as dynamic security labels [72] and dynamic

principals [57] to support labels and principals that are not known at compile time

while still preserving the non-interference property. Dynamic security labels allow

the type-system to potentially support dynamic checks at the reading and writing of

files and database records. Dynamic principals integrate static checks with external

notions of principals (e.g., users authenticated through a public key infrastructure).

An extension to Jif has been proposed in [29] to support declassifier functions using

a relaxed model called non-interference modulo trusted methods. Robust declassifica-

tion, defined in [6], ensures that an entity that can influence the behavior of a system

(for example, by providing or modifying data or code) is unable to observe more in-

formation than an entity that cannot influence system behavior. The key observation

for enforcing robustness is to ensure that if a declassification reveals information to

attacker A, then A is unable to influence either the decision to declassify or the data

to be declassified. Jif was extended with a simple dependency check at Declassify

to provide this property.

8.2 Operating Systems

The operating systems work ([18, 60, 69, 71, 68, 35, 34, 50]) differs from the program-

ming language work in a number of important ways.

First, rather than expressing policies using principals, these systems use tags.

Tags identify compartments and provide a way of grouping related items, i.e., ones

that are all managed using the same security policy.

Second, they use dynamic rather than static checking. As a process runs the

system checks its information flow status. Dynamic checking is completely accurate:

150

a process’s labels exactly reflect what it did. This differs from the static approach,

which must sometimes err in a safe direction, so that the labels are more restrictive

than necessary. Additionally, with static checking, a fine-grained analysis is possible

so that different variables can have different labels. This isn’t possible with a dynamic

approach although our boxes provide support for doing this in a limited way.

Third, the operating system work is based on capabilities, which are passed among

processes and can be stored for later use. They have capabilities for tags and in this

way, they are able to avoid having principals in the model, although they do have

to allow for a way for users to log on and obtain the capabilities they used in the

past. By contrast, the programming language work and Aeolus assume the existence

of authority state, which is consulted to determine whether security sensitive actions

can be allowed.

A final point is that the operating systems work uses labels both for access control

and information flow control. Aeolus and most of the programming language work

keep them separate.

Asbestos

Asbestos [18, 60] is the first operating system with decentralized information flow

control. All the operating systems work has followed this model.

Asbestos attaches labels to operating system processes and provides a UNIX-based

operating system. Labels are used both to reflect a process’ contamination and to

express the process’ authority as a set of capabilities. Their labels are expressed in

terms of tags and levels, without any use of principals. Asbestos provides a way to

grant capabilities to another process. Revocation is difficult in a capability-based

system and is not addressed in Asbestos.

Asbestos uses standard capability-based mechanisms to provide system-wide per-

sistence of authority. A pickle is a special file that stores privilege for a single tag. A

process can create a pickle file that can later be un-pickled to retrieve the authority.

151

HiStar

HiStar [69, 68] provides information flow at the level of an operating system kernel;

this way it is able to have a much smaller secure base than Asbestos. The kernel is

intended to be used to build an operating system and the utility of the kernel was

demonstrated by implementing an untrusted user-level UNIX emulation layer. HiStar

is not intended to support user code directly.

HiStar labels are similar to those of Asbestos. The work improved on Asbestos

(as described in the original paper [18]) by requiring threads to explicitly request safe

label changes; this is important because it avoids covert channels possible in Asbestos

via IPC.

HiStar uses capabilities and has a single-level store to maintain system-wide per-

sistence. This single-level store is used to maintain capabilities given to threads and

gates as well as to implement a user-level file system out of containers and segments.

Operations are performed on memory-mapped files in the thread’s address space.

HiStar supports IPCs via gates. Gates provide a protected control transfer and

make resource allocations explicit to avoid covert channels when invoking methods.

They bind privileges with a well-defined entry point for the callee’ process to execute

the method (e.g., this gate is for running callee.Foo() with authority for TAlice). In

this way, gates are similar to authority closures, however, they are too low-level for

writing user applications. HiStar maintains labels for threads and threads can access

shared address spaces. Address spaces are page-aligned and hence, HiStar provides

for page-level data sharing.

DStar

DStar [71] extends HiStar over the network, carefully controls the covert channels

that may exist in resource allocation, and delegates trust using delegation certificates.

One of DStar’s design goals is decentralized trust: there is no trusted authority like

Verisign to provide reliable naming of machines; instead each machine is identified by

a public-private key pair. Category names are self-certifying and identify the machine

152

that the category belongs to. DStar maintains the private-public key information in

local exporters and uses address certificates to distribute this 〈IP address, key〉 bind-

ing. Delegation certificates are signed by the owner machine to delegate a category

to a receiving node. DStar relies on renewable leases for revocation.

Flume

Flume [35] is a reworking of Asbestos, with several important differences. First,

Flume is implemented by a user-level reference monitor rather than a DIFC operating

system. This approach avoids the need to modify the operating system; additionally,

it means that Flume is unaffected by new release of operating system code. However,

compared to Asbestos, Flume has a larger trusted base (the reference monitor plus

the operating system).

A second difference is that Flume provides much simpler labels than Asbestos and

HiStar because it breaks the single label of these systems into their three components

(a secrecy label, an integrity label, and an ownership label that keeps track of read

and write capabilities).

Flume keeps track of capabilities using a central tag registry that maps login tokens

to capabilities. Flume’s setlabel binds a login token (and hence capabilities) with a

program. In this way, setlabels are similar to authority closures; however, they are

implemented as special files that hide the login tokens with secrecy and integrity

labels that limit who can invoke it, whereas authority closures can be invoked by

anyone since their security is guaranteed by analyzing the code.

A final point is that Flume provides endpoints as a way to reduce the cost of

label checking as messages are received or files are used. These endpoints were an

inspiration for the way we implement file-streams in Aeolus.

Laminar

Laminar [50] is based on Flume. Like Flume, it is implemented on top of the OS, but

because Laminar includes some programming language as well as kernel extensions,

its trusted base includes in addition to the operating system, a modified Java virtual

153

machine. Laminar introduces support for processes to shared objects, an ability that

is missing in all of the OS work except for HiStar, where sharing happened at the level

of pages. Sharing happens through a linguistic mechanism called a security region;

programs using Laminar must use the extended language that supports regions. A

security region is a lexical scope within a process that can have its own labels. Laminar

attaches Flume labels to each region and checks when data access crosses two regions.

However, these checks can be costly.

154

Chapter 9

Conclusions

9.1 Methodology

This thesis has presented Aeolus, a new distributed platform intended to support the

development and deployment of applications that can be trusted to avoid accidental

release of information. Aeolus supports applications through a new, simple security

model based on information flow control. In addition, Aeolus provides a number

of new features: anonymous authority closures, compound tags, boxes, and shared

volatile state. These mechanisms provide needed expressive power to application de-

velopers and make it easier to develop safe applications.

Aeolus advocates a principled approach to secure software design.

• Understandable and Easy to Use. The programming model introduces

a set of programming constructs. These constructs are intuitive and easy to

understand.

• Sufficiently Expressive. The programming model is sufficiently expressive

that a developer can specify common data flow patterns.

• Debuggable and Auditable. The programming model allows developers to

reason about their IFC constraints and can provide interfaces for extending au-

155

diting and debugging features. The use of principals and a logically centralized

AS make it possible to build audit trails.

• Implementable. The programming model is enforceable and we have shown

an implementation of the model that does not have significant performance and

scalability penalties.

9.2 Infrastructure

A prototype implementation based on C# and .NET showed that an Aeolus platform

can be designed to implement our programming model. The results show that the

performance is reasonable, and that the approach we take to caching authority state

is effective. We have provided persistent storage, shared volatile state and process

isolation that demonstrate the different components of our model.

9.3 Future Work

This thesis has demonstrated one design of the distributed computing platform. We

plan to look at changing how we store the authority state. At present, this is stored

in a database, which may be too heavy-weight and inefficient. We would like to

investigate alternative structures, such as direct use of disk storage. Also, in our

prototype, cores are variable size and hence, optimizations of core storage allocation

and access are difficult, and we are looking for approaches to managing cores that

better match the physical constraints of server hardware.

Auditing is an important feature that can strengthen the security of systems by

deterring misuse and holding users accountable for their actions. We want to log every

event with security implications, along with information about who did it, when and

how. Such information can be valuable and we intend to study what types of auditing

information are useful in a system like Aeolus and how our platform must be extended

to capture and store this data. In addition, since principal IDs are opaque to Aeolus,

auditing requires us to allow application developers to store information about real

156

people who are associated with a particular principal ID. Such data will pose privacy

issues and we may want to store them in an encrypted form. There are also questions

about what types of queries on the audit trail our system can support and what

restrictions must be in place to protect the privacy concerns of such data.

Another future direction is to integrate databases into the model in a flexible way

that allows “multi-labeled’ relations. The problem here is that we need fine-grained

labels and having a single set of labels per relation is not sufficient. Consider a

database table that contains patient records where tuple contains information about

a particular patient; at the very least, we want a patient-specific label on each record.

How can we design database systems that support this efficiently? Furthermore, what

should the semantics be for queries on such relations?

Our prototype platform relies on type-safety to isolate processes and hence is

limited to applications written in languages such as C# and Java. How do we go about

supporting unsafe languages like C? Perhaps this will bring our platform architecture

closer to systems like Flume and HiStar, which have a smaller secure base. A big

issue will be how processes in app-objects and how shared state can be implemented

efficiently.

157

THIS PAGE INTENTIONALLY LEFT BLANK

158

Appendix A

Aeolus Programming API

A.1 Aeolus Basic Model

PRINCIPALS

CreatePrincipal(out P1)

Creates a new principal in the process’ principal’s core and returns the new principal ID P1.
Constraint(s): None.
Effect(s): Process principal P acts for the new principal P1.

CreatePrincipalInNewCore(out P1)

Creates a new principal in a new core and returns the new principal ID P1.
Constraint(s): None.
Effect(s): Process principal P acts for the new principal P1.

CreatePrincipal(in P2, out P1)

Creates a new principal in the same core as principal P2 and returns the new principal ID P1.
Constraint(s): None.
Effect(s): Process principal P acts for the new principal P1.

159

TAGS

CreateSubTag(in T1, out T2)

Creates a sub-tag of T1 and returns the new sub-tag ID T2.
Constraint(s): T1 must be a top-level tag.
Effect(s): Process’ principal P has authority for tag T2.

CreateSubTag(in T1, in P1, out T2)

Creates a sub-tag of T1, stores the tag info in the same core as principal P1 and returns the new sub-
tag ID T2.
Constraint(s): T1 must be a top-level tag.
Effect(s): Process’ principal P has authority for tag T2.

CreateTag(out T)

Creates a new top-level tag T.
Constraint(s): None.
Effect(s): Process’ principal P has authority for tag T.

DELEGATIONS AND REVOCATIONS

ActFor(in P1, in P2)

Adds an act-for link from actor principal P2 to actee principal P1.
Constraint(s): Process’ principal must act for principal P1.
Effect(s): Principal P2 has authority for all tags that principal P1 has authority for.

RevokeActFor(in P1, in P2)

Removes the act-for link from principal P2 to principal P1.
Constraint(s): Process’ principal must act for principal P1.
Effect(s): Principal P2 no longer has any derived authority from principal P1.

Delegate(in T, in P1, in P2)

Gives authority for tag T from grantor principal P1 to grantee principal P2.
Constraint(s): Process’ principal must act for the grantor principal P1. The grantor principal P1
must have authority for tag T.
Effect(s): Principal P2 has authority for tag T.

RevokeDelegate(in T, in P1, in P2)

Revokes authority for tag T from grantor principal P1 to grantee principal P2.
Constraint(s): Process’ principal must act for the grantor principal P1 and the tag T must have been
previously delegated from P1 to P2.
Effect(s): Principal P2 no longer has authority for tag T via principal P1. All transitive delegations
are also revoked.

160

LABEL MANIPULATIONS

AddSecrecy(in T)

Adds tag T to the process’ secrecy label.
Constraint(s): None.
Effect(s): Process’ secrecy label includes tag T.

RemoveIntegrity(in T)

Removes tag T from the process’ integrity label.
Constraint(s): None.
Effect(s): Process’ integrity label does not include tag T.

Declassify(in T)

Removes tag T from the process’ secrecy label.
Constraint(s): Process’ principal must have authority for T.
Effect(s): Process’ secrecy label does not include tag T.

Endorse(in T)

Adds tag T to the process’ integrity label.
Constraint(s): Process’ principal must have authority for T.
Effect(s): Process’ integrity label includes tag T.

161

A.2 Aeolus Extensions

AUTHORITY CLOSURE

CreateClosure(in key, out CL1)

Creates a new closure with the key and returns the closure ID CL1.
Constraint(s): None.
Effect(s): A new anonymous principal PA is generated and bound to this key and closure ID. This
principal has no authority.

CreateClosure(in key, in P1, out CL1)

Creates a new closure with the key , stores the closure info in the same core as principal P1 and
returns the closure ID CL1.
Constraint(s): None.
Effect(s): A new anonymous principal PA is generated and bound to this key and closure ID. This
principal has no authority.

ClosureActFor(in P1, in CL1)

Adds an act-for link from the anonymous principal PA of closure CL1 to principal P1.
Constraint(s): Closure CL1 must exist. Process’ principal must act for principal P1.
Effect(s): Anonymous Principal PA is authoritative for all tags that principal P1 has authority for.

ClosureDelegate(in T, in P1, in CL1)

Gives authority for tag T from grantor principal P1 to grantee anonymous principal PA of closure
CL1.
Constraint(s): Closure CL1 must exist. Process’ principal must act for the grantor principal P1. The
grantor principal P1 must have authority for tag T.
Effect(s): Anonymous Principal PA has authority for tag T.

162

BOXES

CreateBox(in outerS, in outerI, in innerS, in innerI, out AeolusBox b)

Creates a new empty box b with the specified labels.
Constraint(s): The innerS and innerI labels must be at least as restrictive as the outerS and outerI
labels. The process labels must allow the write based on the outer labels.
Effect(s): Box b exists in the process’ heap.

b.GetInnerS()

Retrieves the inner secrecy label of box b.
Constraint(s): Box b must exists. The process labels must allow the read using b’s outer labels.
Effect(s): None.

b.GetInnerI()

Retrieves the inner integrity label of box b.
Constraint(s): Box b must exists. The process labels must allow the read using b’s outer labels.
Effect(s): None.

b.GetContents(out content)

Retrieves the content of box b.
Constraint(s): Box b must exists. The process labels must allow the read using b’s inner labels.
Effect(s): None.

b.PutContents(in content)

Copies content into box b.
Constraint(s): Box b must exists. The process labels must allow the write using b’s inner labels.
Effect(s): None.

163

SHARED STATE

CreateObject(in o, out s)

Creates a new shared state object that is a copy of object o in shared state and returns a new
SharedObjectID s.
Constraint(s): None.
Effect(s): Object o exists in shared state with the same labels as the process’.

GetObject(in s, out o)

Retrieves a copy of shared object o identified by SharedObjectID s.
Constraint(s): Shared object must exist at ID s and the process labels must allow the read using o’s
labels.
Effect(s): Object o exists in the requestor process’ heap.

ReplaceObject(in s, in o)

Replaces the current object associated with SharedStateObjectID s with a copy of object o.
Constraint(s): Shared object must exist at ID s and the process labels must allow the write using o’s
labels.
Effect(s): Shared object associated with ID s contains object o.

DeleteObject(in s)

Removes the shared object associated with SharedObjectID s.
Constraint(s): Shared object must exist at ID s and the process must have a null secrecy label and
the same integrity label as the object’s.
Effect(s): Shared object associated with s is removed.

SHARED OBJECTS

CreateObject(in o, in S, in I, out s)

Creates a new shared state object that is a copy of object o in shared state with secrecy label S and
integrity label I and returns a new SharedObjectID s.
Constraint(s): Process labels must be no more restrictive these labels.
Effect(s): Object o exists in shared state.

ReplaceObject(in s, in o, in listS, in listI)

Replaces the current object associated with SharedStateObjectID s with a copy of object o.
Constraint(s): Shared object must exist at ID s and the process labels adjusted with declassification
of tags in listS and endorsement of tags in listI must allow the write using o’s labels. Process
principal P must have authority for all tags in listS and listI.
Effect(s): Shared object associated with ID s contains object o.

164

SHARED STATE

CreateQueue(out q)

Creates a new and empty shared queue in shared state and returns its SharedQueueID q.
Constraint(s): None.
Effect(s): Shared queue q exists in shared state with the same labels as the process’.

Enqueue(in q, in o)

Appends object o at the end of the shared queue with SharedQueueID q.
Constraint(s): Shared queue must exist at ID q and the process labels must allow the write using q’s
labels.
Effect(s): Object o is appended to the shared queue.

GetQueue(in q, out List[o])

Retrieves the list of objects List[o] in shared queue identified by SharedQueueID q and clears the
queue.
Constraint(s): Shared object must exist at ID s and the process labels must be the same as q’s labels.
Effect(s): Shared queue is empty.

WaitAndDequeue(in q, out o)

Blocks until the shared queue associated with SharedQueueID q is non-empty, returns and removes
the first object o in this queue.
Constraint(s): Shared object must exist at ID s and the process must be the same as q’s.
Effect(s): Removes the first entry of the queue.

SHARED QUEUES

DeleteQueue(in q)

Removes the shared queue associated with SharedQueueID s.
Constraint(s): Shared queue must exist at ID s and the process must have a null secrecy label and
the same integrity label as the queue’s.
Effect(s): Shared queue associated with q is removed.

Enqueue(in q, in o, in listS, in listI)

Appends object o at the end of the shared queue with SharedQueueID q.
Constraint(s): Shared queue must exist at ID q and the process labels adjusted with declassification
of tags in listS and endorsement of tags in listI must allow the write using q’s labels. Process
principal P must have authority for tags in listS and listI.
Effect(s): Object o is appended to the shared queue.

CreateQueue(in S, in I, out q)

Creates a new and empty shared queue in shared state with secrecy label S and integrity label I and
returns its SharedQueueID q.
Constraint(s): Process labels must be no more restrictive than these labels.
Effect(s): Shared queue q exists in shared state.

165

SHARED STATE

CreateLock(out k)

Creates a new shared state lock and returns a new SharedLockID k.
Constraint(s): None.
Effect(s): Lock k exists in shared state with the same labels as the process’.

Lock(in k)

Attempts to acquire lock on k. If locked, blocks until unlocked and acquires lock.
Constraint(s): Shared lock must exist at ID k and the process labels must allow the read and write
using k’s labels.
Effect(s): Upon return, lock is acquired on shared lock k.

Unlock(in k)

Unlocks the shared lock k.
Constraint(s): Process labels must allow the write using k’s labels.
Effect(s): Shared lock k is unlocked.

DeleteLock(in k)

Removes the shared lock associated with SharedLockID k.
Constraint(s): Shared lock must exist at ID k and the process must have a null secrecy label and the
same integrity label as the lock’s.
Effect(s): Shared lock associated with k is removed.

SHARED LOCKS

CreateLock(in o, in S, in I, out s)

Creates a new shared state lock in shared state with secrecy label S and integrity label I and returns
a new SharedLockID k.
Constraint(s): Process labels must be no more restrictive these labels.
Effect(s): Lock k exists in shared state.

166

A.3 Aeolus Execution

EXECUTION

Fork(in C, in P1, in listS, in listI)

Invokes AeolusCallable code C in a new process with principal P1 and requestor process’ labels
adjusted with declassification of tags in listS and endorsement of tags in listI.
Constraint(s): Requestor process’ principal P must act for principal P1 and P must have authority
for tags in listS and listI.
Effect(s): Code object C is copied to and invoked in the new process.

Call(in C, in P1)

Invokes AeolusCallable code C with principal P1.
Constraint(s): Requestor process’ principal P must act for principal P1.
Effect(s): Code object C is invoked in the same process. At the end of the call, the process’
principal is restored to P and the process’ labels reflect contamination from executing call.

Fork(in C)

Invokes AeolusCallable code object C in a new process with requestor process’ principal and labels.
Constraint(s): None.
Effect(s): Code object C is copied to and invoked in the new process.

Fork(in C, in P1)

Invokes AeolusCallable code object C in a new process with principal P1 and requestor process’
labels
Constraint(s): Requestor process’ principal must act for principal P1.
Effect(s): Code object C is copied to and invoked in the new process.

Call(in C, in P1, in listS, in listI)

Invokes AeolusCallable code C with principal P1 and requestor process’ labels adjusted with
declassification of tags in listS and endorsement of tags in listI.
Constraint(s): Requestor process’ principal P must act for principal P1 and P must have authority
for tags in listS and listI.
Effect(s): Code object C is invoked in the same process. At the end of the call, the process’
principal is restored to P and the process’ labels reflect contamination from executing call.

abstract AeolusCallable

{
 void Invoke();
}

167

abstract AeolusClosureCallable

{
 GetClosureID(out ClosureID CL1);
 GetCertificate(out string certifier);
 void Invoke();
}

AUTHORITY CLOSURE

CallClosure(in CL)

Invokes AeolusClosureCallable code object C with anonymous principal PA associated with closure
ID CL1.
Constraint(s): Code object C must be verified using closure key associated with closure ID CL1.
Effect(s): Code object C is invoked in a new process. At the end of the call, the process’ principal is
restored to the requestor’s and the process’ labels reflect contamination from executing call.

CallClosure(in CL, in listS, in listI)

Invokes AeolusClosureCallable code object C with anonymous principal PA associated with closure
ID CL1 and requestor process’ labels adjusted with declassification of tags in listS and endorsement
of tags in listI.
Constraint(s): Code object C must be verified using closure key associated with closure ID CL1 and
requestor process’ principal P must have authority for tags in listS and listI.
Effect(s): Code object C is invoked in a new process. At the end of the call, the process’ principal is
restored to the requestor’s and the process’ labels reflect contamination from executing call.

168

A.4 Aeolus File System

SETUP

CreateFilesystem(in S, in I)

Creates a new filesystem with root entry protected by secrecy label S and integrity label I.
Constraint(s): The process labels must be no more restrictive than these labels.

RemoveFilesystem()

Removes the filesystem.
Constraint(s): The process labels must allow the write of the root entry.

ADMINISTRATIVE OPERATIONS

CreateDir(in F, in S, in I)

Creates a directory with filepath F, secrecy label S and integrity label I.
Constraint(s): The process labels must allow the read and write of the parent directory. The process
labels must be no more restrictive than the S and I labels.

CreateFile(in F, in S, in I)

Creates a file with full filename F, secrecy label S and integrity label I.
Constraint(s): The process labels must allow the read and write of the parent directory.

RemoveFile(in F)

Deletes the file with full filename F.
Constraint(s): The process labels must allow the read and write of the parent directory.

RemoveDir(in F)

Deletes the directory with filepath F and any sub-directories or files.
Constraint(s): The process labels must allow the read and write of the parent directory.

ListDir(in F, out listF)

Lists the files and directories in directory with filepath F.
Constraint(s): The process labels must allow the read of the parent directory.

CreateFilesystem()

Creates a new filesystem.
Constraint(s): None.
Effect(s): The root entry of the filesystem will have the same labels as the process’.

CreateDir(in F)

Creates a directory with filepath F.
Constraint(s): The process labels must allow the read and write of the parent directory.
Effect(s): The directory will have the same labels as the process’.

CreateFile(in F)

Creates a file with full filename F.
Constraint(s): The process labels must allow the read and write of the parent directory.
Effect(s): The file will have the same labels as the process’.

169

READ AND WRITE ENTIRE FILE

ReadFile(in F, out buffer)

Reads file with full filename F into buffer.
Constraint(s): The process labels must allow the read of the file.
Effect(s): Buffer contains content of file F.

WriteFile(in F, in buffer, in listS, in listI)

Writes the content of buffer to file with full filename F
Constraint(s): The process labels must allow the write of the file. In addition, the process’ principal
must be authoritative for the tags in listS and listI.
Effect(s): File F overwritten with content of buffer.

FILESTREAMS

OpenFilestream(in F, in M, in listS, in listI, out fs)

Creates a filestream for file with full filename F and specifies the access mode M. There are three
access modes: READ-ONLY, WRITE-ONLY and READWRITE.
Constraint(s): Process’ principal must have authority for the tags in listS and listI.
Effect(s): For READWRITE and WRITE-ONLY, selectively declassify tags in listS and endorse
tags in listI during the write.

fs.Read(in N, out buffer)

Reads N bytes from the filestream into buffer.
Constraint(s): The filestream must be opened in a readable mode. The file and process labels must
allow the read of the file.

MODE: READ-ONLY, READWRITE

fs.CloseFilestream()

Closes filestream fs.
Constraint(s): Filestream fs must exist.
Effect(s): Filestream fs is closed if opened.

fs.Write(in buffer)

Writes the content of buffer to the filestream.
Constraint(s): The filestream must be opened in a writable mode. The file and process labels must
allow the write of the file.

MODE: READ-WRITE, WRITE-ONLY

170

Bibliography

[1] D. Elliott Bell and Leonard J. LaPadula. Secure Computer Systems: Mathemat-
ical Foundations. MITRE Technical Report 2547, Volume I, 1973.

[2] K. J. Biba. Integrity Considerations for Secure Computer Systems. MITRE
Technical Report 3153, 1977.

[3] Don Box and Ted Pattison. Essential .NET: The Common Language Runtime.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[4] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. TaintTrace: Efficient
Flow Tracing with Dynamic Binary Rewriting. In ISCC ’06: Proceedings of
the 11th IEEE Symposium on Computers and Communications, pages 749–754,
Washington, DC, USA, 2006. IEEE Computer Society.

[5] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng,
and Xin Zheng. Secure web application via automatic partitioning. In SOSP
’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, pages 31–44, New York, NY, USA, 2007. ACM.

[6] Stephen Chong and Andrew C. Myers. Decentralized Robustness. In CSFW
’06: Proceedings of the 19th IEEE workshop on Computer Security Foundations,
pages 242–256, Washington, DC, USA, 2006. IEEE Computer Society.

[7] Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: Enforcing Confiden-
tiality and Integrity in Web Applications. In Proceedings of USENIX Security
Symposium 2007, 2007.

[8] U.S. Congress. The Health Insurance Portability and Accountability Act of 1996
(HIPAA) Privacy Rule. http://www.hhs.gov/ocr/privacy/index.html, 1996.

[9] Richard S. Cox, Steven D. Gribble, Henry M. Levy, and Jacob Gorm Hansen. A
Safety-Oriented Platform for Web Applications. In SP ’06: Proceedings of the
2006 IEEE Symposium on Security and Privacy, pages 350–364, Washington,
DC, USA, 2006. IEEE Computer Society.

[10] J. Crampton and H. Khambhammettu. Delegation in role-based access control.
In Proceedings of 11th European Symposium on Research in Computer Security,
pages 174–191, 2006.

171

[11] Jedidiah R. Crandall, S. Felix Wu, and Frederic T. Chong. Minos: Architectural
support for protecting control data. ACM Trans. Archit. Code Optim., 3(4):359–
389, 2006.

[12] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. Secure
virtual architecture: a safe execution environment for commodity operating sys-
tems. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, pages 351–366, New York, NY, USA, 2007. ACM.

[13] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a flexible infor-
mation flow architecture for software security. In ISCA ’07: Proceedings of the
34th annual international symposium on Computer architecture, pages 482–493,
New York, NY, USA, 2007. ACM.

[14] Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, 1976.

[15] Dorothy Elizabeth Robling Denning. Cryptography and data security. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1982.

[16] P. J. Denning. The Working Set Model for Program Behavior. In Communica-
tions of the ACM, 1968.

[17] Mike Downen. CLR Inside Out: Using Strong Name Signatures. MSDN Maga-
zine, July 2006.

[18] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.
Labels and event processes in the asbestos operating system. In SOSP ’05:
Proceedings of the twentieth ACM symposium on Operating systems principles,
pages 17–30, New York, NY, USA, 2005. ACM.

[19] Erick Schonfeld. Financial Exposure: Rudder inadvertently
shows users each other’s bank account info. TechCrunch:
http://www.techcrunch.com/2009/05/19/financial-exposure-rudder-
inadvertently-shows-users-each-others-bank-account-info/, May 2009.

[20] D.F. Ferraiolo and D.R. Kuhn. Role Based Access Control. In 15th National
Computer Security Conference, 1992.

[21] Financial Week. Data breech at WellPoint puts 130,000 cus-
tomers at risk. http://www.financialweek.com/apps/pbcs.dll/article?
AID=/20080410/REG/756233065/1036, April 2008.

[22] FreeBSD Foundation. SEBSD: Port of SELinux FLASK and type enforcement
to TrustedBSD. http://www.trustedbsd.org/sebsd.html, 2004.

172

[23] Timothy Fraser. LOMAC: Low Water-Mark Integrity Protection for COTS En-
vironments. In SP ’00: Proceedings of the 2000 IEEE Symposium on Security
and Privacy, page 230, Washington, DC, USA, 2000. IEEE Computer Society.

[24] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A Delegating Architec-
ture for Secure System Call Interposition. In NDSS, 2004.

[25] Ian Grant. Cloud-based document storage added to iPhone. ComputerWeekly,
December 2008.

[26] Vivek Haldar, Deepak Chandra, and Michael Franz. Practical, Dynamic Informa-
tion Flow for Virtual Machines. In 2nd International Workshop on Programming
Language Interference and Dependence, 2005.

[27] James A. Hall and Stephen L. Liedtka. The Sarbanes-Oxley Act: implications
for large-scale IT outsourcing. Commun. ACM, 50(3):95–100, 2007.

[28] Boniface Hicks, Kiyan Ahmadizadeh, and Patrick McDaniel. From Languages to
Systems: Understanding Practical Application Development in Security-typed
Languages. In Computer Security Applications Conference, 2006. ACSAC ’06.
22nd Annual, pages 153–164, Dec. 2006.

[29] Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. Trusted de-
classification: high-level policy for a security-typed language. In PLAS ’06:
Proceedings of the 2006 workshop on Programming languages and analysis for
security, pages 65–74, New York, NY, USA, 2006. ACM.

[30] Boniface Hicks, Sandra Rueda, Trent Jaeger, and Patrick Drew McDaniel. From
Trusted to Secure: Building and Executing Applications That Enforce System
Security. In USENIX Annual Technical Conference, pages 205–218, 2007.

[31] Michael Hicks, Stephen Tse, Boniface Hicks, and Steve Zdancewic. Dynamic Up-
dating of Information-Flow Policies. In Proceedings of the International Work-
shop on Foundations of Computer Security (FCS), June 2005.

[32] Josh Lowensohn. Rudder steers personal finance to your in-box. CNET News:
http://news.cnet.com/8301-17939 109-10040526-2.html, September 2008.

[33] James B. D. Joshi and Elisa Bertino. Fine-grained role-based delegation in pres-
ence of the hybrid role hierarchy. In SACMAT ’06: Proceedings of the eleventh
ACM symposium on Access control models and technologies, pages 81–90, New
York, NY, USA, 2006. ACM.

[34] Maxwell Krohn. Information Flow Control for Secure Web Sites. PhD Thesis,
Massachusetts Institute of Technology, 2008.

[35] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for stan-
dard OS abstractions. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS

173

symposium on Operating systems principles, pages 321–334, New York, NY, USA,
2007. ACM.

[36] Butler W. Lampson. A note on the confinement problem. Commun. ACM,
16(10):613–615, 1973.

[37] Jun Li. HP Retail Kiosk Platform. http://opra.hpl.hp.com/RSA/start.html,
2008.

[38] Jun Li, Ismail Ari, Jhilmil Jain, Alan Karp, and Mohamed Dekhil. Mobile In-
Store Personalized Services. In Proceedings of 7th IEEE International Conference
on Web Services (ICWS 2009), July 2009.

[39] Benjamin Livshits and Úlfar Erlingsson. Using web application construction
frameworks to protect against code injection attacks. In PLAS ’07: Proceedings
of the 2007 workshop on Programming languages and analysis for security, pages
95–104, New York, NY, USA, 2007. ACM.

[40] M. D. McIlroy and J. A. Reeds. Multilevel security in the UNIX tradition. Softw.
Pract. Exper., 22(8):673–694, 1992.

[41] Rebecca T. Mercuri. The HIPAA-potamus in health care data security. Commun.
ACM, 47(7):25–28, 2004.

[42] Jean Moreau, Roberto Chinnici, Arthur Ryman, and Sanjiva Weerawarana. Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Language.
Technical report, W3C, March 2006.

[43] Andrew C. Myers. JFlow: practical mostly-static information flow control. In
POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 228–241, New York, NY, USA, 1999.
ACM.

[44] Andrew C. Myers, Stephen Chong, Nathaniel Nystrom, Lantian Zheng, and Steve
Zdancewic. Jif: Java information flow. http://www.cs.cornell.edu/jif, 2001.

[45] Andrew C. Myers and Barbara Liskov. A decentralized model for information
flow control. In SOSP ’97: Proceedings of the sixteenth ACM symposium on
Operating systems principles, pages 129–142, New York, NY, USA, 1997. ACM.

[46] James Newsome and Dawn Xiaodong Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and SignatureGeneration of Exploits on Commodity
Software. In NDSS, 2005.

[47] NSA. Security-enhanced Linux. http://www.nsa.gov/selinux, 2000.

[48] Privacy Rights Clearinghouse. A Chronology of Data Breeches.
http://www.privacyrights.org/ar/ChronDataBreaches.htm.

174

[49] Rafael Ruffolo. Ryerson privacy breach highlights immature IT, analyst says. IT
World Canada: http://www.itworldcanada.com/a/Leadership/cbee770a-74c7-
44b4-aa95-9dccf1bc037b.html, February 2009.

[50] Indrajit Roy, Donald E Porter, Michael D. Bond, Kathryn S. McKinley, and
Emmett Witchel. Laminar: Practical Fine-Grained Decentralized Information
Flow Control. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, June 2009.

[51] Andrei Sabelfeld and Andrew C. Myers. Language-based Information-Flow Se-
curity. In IEEE Journal on Selected Areas in Communications, 2003.

[52] Jerry Saltzer and Mike Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, September 1975.

[53] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS-XI: Proceedings
of the 11th international conference on Architectural support for programming
languages and operating systems, pages 85–96, New York, NY, USA, 2004. ACM.

[54] SunMicrosystems. Trusted Solaris Operating System: A Technical Overview.
http://www.sun.com/software/whitepapers/wp-ts8/ts8-wp.pdf, 2000.

[55] Nikhil Swamy, Michael Hicks, Stephen Tse, and Steve Zdancewic. Managing
Policy Updates in Security-Typed Languages. In CSFW ’06: Proceedings of the
19th IEEE workshop on Computer Security Foundations, pages 202–216. IEEE
Computer Society, 2006.

[56] Richard Ta-Min, Lionel Litty, and David Lie. Splitting interfaces: making trust
between applications and operating systems configurable. In USENIX’06: Pro-
ceedings of the 7th conference on USENIX Symposium on Operating Systems
Design and Implementation, pages 20–20, Berkeley, CA, USA, 2006. USENIX
Association.

[57] S. Tse and S. Zdancewic. Run-time principals in information-type systems. In
IEEE Symposium on Security and Privacy, May 2004.

[58] U.S. Department of Defense Computer Security Center. Trusted Computer Sys-
tem Evaluation Criteria (The Orange Book). DoD 5200.28-STD, December 1985.

[59] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan, Guil-
herme Ottoni, Jason A. Blome, George A. Reis, Manish Vachharajani, and
David I. August. RIFLE: An Architectural Framework for User-Centric
Information-Flow Security. In MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture, pages 243–254,
Washington, DC, USA, 2004. IEEE Computer Society.

175

[60] Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler, Maxwell Krohn, Cliff
Frey, David Ziegler, Frans Kaashoek, Robert Morris, and David Mazières. Labels
and event processes in the Asbestos operating system. ACM Trans. Comput.
Syst., 25(4):11, 2007.

[61] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, Inc., New York,
NY, USA, 1996.

[62] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. Protection and
communication abstractions for web browsers in MashupOS. In SOSP ’07: Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operating systems princi-
ples, pages 1–16, New York, NY, USA, 2007. ACM.

[63] Helen J. Wang, Chris Grier, Alexander Moshchuk, Samuel T. King, Piali Choud-
hury, and Herman Venter. The Multi-Principal OS Construction of the Gazelle
Web Browser. Msr-tr-2009-16, Microsoft Research, 2009.

[64] C Weissman. Security controls in the ADEPT-50 time-sharing system. Proc.
AFIPS 1969 FJCC, 23:119–133, 1969.

[65] ScrewTurn Wiki. ScrewTurn Wiki 2.0. http://www.screwturn.eu/, June 2009.

[66] Alexander Yip, Neha Narula, Maxwell Krohn, and Robert Morris. Privacy-
preserving browser-side scripting with BFlow. In EuroSys ’09: Proceedings of
the fourth ACM european conference on Computer systems, pages 233–246, New
York, NY, USA, 2009. ACM.

[67] Yang Yu, Fanglu Guo, Susanta Nanda, Lap chung Lam, and Tzi cker Chiueh.
A feather-weight virtual machine for windows applications. In VEE ’06: Pro-
ceedings of the 2nd international conference on Virtual execution environments,
pages 24–34, New York, NY, USA, 2006. ACM.

[68] Nickolai Zeldovich. Securing Untrustworthy Software Using Information Flow
Control. PhD Thesis, Stanford University, 2007.

[69] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
Making information flow explicit in HiStar. In USENIX’06: Proceedings of the
7th conference on USENIX Symposium on Operating Systems Design and Im-
plementation, pages 19–19, Berkeley, CA, USA, 2006. USENIX Association.

[70] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing Dis-
tributed Systems with Information Flow Control. In NSDI 2008, 2008.

[71] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing dis-
tributed systems with information flow control. In NSDI’08: Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Implementation,
pages 293–308, Berkeley, CA, USA, 2008. USENIX Association.

176

[72] L. Zheng and A.C. Myers. Dynamic security labels and non-interference. In
Proceedings of the 2nd Workshop on Formal Aspects in Security Trust, August
2004.

177

