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Abstract

The current final focus systems of linear colliders have been designed based on the local
compensation scheme proposed by P. Raimondi and A. Seryi [1]. However, there exist
remaining aberrations that deteriorate the performance of the system. This paper develops
a general algorithm for the optimization of beam lines based on the computation of the high
orders of the transfer map using MAD-X [2] and PTC [3]. The algorithm is applied to the
CLIC [4] Beam Delivery System (BDS).
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1 Introduction
The minimization of aberrations in beam lines has always been a concern. Already in 1973 [5]
an analytical approach was derived up to the second order but particle tracking had to be used
for higher orders. More recently with the advent of the local compensation scheme [1] the
demand for design and optimization algorithms that take into account higher orders has largely
increased [6, 7, 8, 9]. This paper describes a general optimization algorithm that takes as figure
of merit the rms beam sizes at the end of the beam line. These are analytically computed from
the coefficients of the transfer map to an arbitrary order. A particular application to the CLIC
BDS is shown as a proof of principle.

2 Mathematical ground
The transfer map between two locations of a beam line is expressed in the form������ ��	��

��� �� �	��
���� � � ��� �� ��� 
� � �� ��� �� (1)

where
���� represents the final coordinates ( ��� , � � � , � � , � � � ), the initial coordinates are repre-

sented with the zero subindex and
�� ����
�� are the map coefficients of the corresponding final

coordinate. The MAD-X version including PTC can provide
�� �	��
�� up to the desired order.

The quadratic standard deviation of the final density distribution, � �� �"! , is given by the
following integral, � �  � ! �"#$�  �&% �('*)+� (2)

where '*)+� represents the differential volume of the final phase space. Assuming that the transfer
map is symplectic % �('*)+�,� % � '*) � and using eq. (1),� �  � ! � ��	��

����.-/��-0
�-0��-/�1- � �	��
���� � � - � - 
 - � - � -#2� ��3*��-� � �435��-� �6� 
035
�-� � ��37��-� � � �837�9-� % � '*) � (3)

To perform this integral a Gaussian bunch is assumed in the transverse planes (with no orbit off-
set) and a rectangular distribution is considered in relative energy deviation (for the application
to CLIC), given by the following expression,

% � �;:=< �?>A@  AB >C : <ED >C @  AB >F C : < � >A@  AB >G : <ED >G @  AB >F G=HJILKM�N(OPRQ(S�T  �U � U D C U � U D G?V K (4)

where H PXW*T is the rectangular function which vanishes when Y W Y ![Z7\/] and takes the unit value
elsewhere. This distribution is representative for the beam expected at the end of the CLIC
linac. Note that assuming this particle density imposes constraints in the Twiss functions at the
initial location. The horizontal and vertical alpha functions and the closed orbit must be zero.
This assumption is fundamental to gain speed in the numerical computation of � �^ � ! as it
will be shown below. Moreover this constraint is not critical since even in the case that the
initial location has a non zero _ function it is possible to add a matching section meeting our
constraints in the new initial point but leaving the initial beam line unchanged.
To compute the integral above the following results are used,`a QES U # W � : <cb > @  AB > ' W �ed;fhgEi 37� kj U �ml  Ano prqtsvu?wxu9sZ prqtsvycz5z (5)
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`U # W � HJI WU O ' W ��� i�83 i g B  +j � p q�s u1w+u9sZ p q�s y z7z (6)

where f P W*T is the Gamma function. From these equations the gain in computational speed
thanks to the chosen symmetry is patent. Using the above equations the standard quadratic
deviation of the particle distribution at the end of the beam line is given by

� �  � ! � �����

��� �  ����

��� f�� `�� Q��Q � f�� `	� Q�
Q � f�� `
� Q��Q � f�� `
� Q��Q �
� Q ��35��35
/37� <  �PXQ�� �[` TAS  U  �� U  �D C U  
� U  �D G V  �K� ��	��
������=� - � - 
 - � - � -Q � �	��
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 - � - � -� f�� `�� � � ���Q � f�� `�� 
 � 
��Q � f�� `
� � � ���Q � f�� `
� � � ���Q �
� Q��������! "��#$�%� - ��� - �� - ��# -> < � < � -P&� � � � � ` T.S  U ��3*�.-� U �435��-D C U 
/35
�-� U ��37��-D G V �837�9-K (7)

The following sections describe means to extract the information concerning the nature of the
aberrations.

2.1 The order-by-order approach
By truncating the map at order ' we only consider the coefficients

� �	��
���� such that
� � 
 �� � � � �)( ' . The resulting standard deviation is represented by � �  � !+* . Thus defined,l � �  � ! i corresponds to rms size given by the linear Twiss functions,

l � �  � !  takes into

account the effect of chromatic aberrations and sextupoles,
l � �  � !-, incorporates octupolar

fields, etc. The final finite size of the bunch is given by � �� � !+* when ' tends to infinite.
However there must be a finite order

�
that gives a satisfactory approximation. The evaluation

of � �  � !+*+. � �  � !+* < i gives the contribution of the order ' to the final rms beam size. From
this contribution the order of the most relevant aberrations is inferred and subsequently the
appropriate multipolar correctors are chosen. However the optimum location of the correctors
still needs to be identified.

2.2 Chromatic versus achromatic correctors
This section gives the recipe to decide if the correctors should be placed in locations with or
without dispersion. � �� � !-*0/ M N21 � is defined as the rms size of an monochromatic beam, it is
given by � �  � !-*0/ M N31 � � ��	��
��� - � - 
 - � - � �	��

� � � � - � - 
 - � - � # � �	3*��-� � ��35��-� � � 
035

-� � ��37��-� � % � '*) � (8)

with
� � 
 � � � �4( ' and

� � � 
 � � � � � � � ( ' . If the contribution from the most relevant
order ' , � �m � !+*+. � �m � !+* < i , is much larger than its corresponding achromatic contribution,� �m � !+*5/ M N21 � . � �m � !+* < i / M N�1 � , the correctors should be placed in dispersive locations
possibly together with achromatic correctors to cancel the arising geometric aberrations. In the
opposite case only achromatic correctors should be placed.
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Figure 1: Twiss functions of the CLIC Beam Delivery System.

3 Optimization of the CLIC Beam Delivery System
The CLIC BDS consists of a collimation section and a Final Focus System (FFS). The Twiss
functions of the BDS are plotted in Fig 1. The collimation section has a length of about 2 km.
The first 70 m serve as a matching section between the main linac and the BDS. After these
70 m the _ functions are zero and therefore this location is taken as the initial location for the
computation of the transfer map. The horizontal and vertical normalized beam emittances are
� � ����� � ` Z < � m and �

� � ` � ` Z < � m, with a relativistic gamma of � ��� � ` Z�� . The
full energy width of the beam is V K � Z \/Z ` . The rms beam sizes at the IP are computed using
eq. (7) and plotted up to the 9 	�
 order in Fig. 2. The nominal beam as well as the achromatic
beam ( V K � Z ) are shown leading to the conclusion that most of the aberrations are chromatic.
Only sextupolar and octupolar geometric aberrations appear in the vertical plane. It is striking
that the vertical aberrations are relevant up to the highest orders. The most relevant horizontal
aberrations are the first order dispersion and the chromaticity (of sextupolar order). The total
number of non-zero coefficients of the � 	�
 order transverse map is 4002, of which 2070 are
horizontal and 1932 are vertical. These large numbers make the evaluation of the rms beam size
very slow. A better approach for an optimization of the beam sizes is to consider the collimation
section and the final focus separately.
Fig. 3 shows the rms beam sizes at the end of the collimation system versus the maximum order
considered in the map, again for the nominal and the achromatic beams. It is obvious that the
collimation section only needs a better adjustment of the chromaticity sextupoles. In this context
this is efficiently achieved by matching the rms beam sigmas of order 2 to those of order 1 by
varying the strengths of the chromaticity sextupoles. In principle, any optimization algorithm
can be used to carry out this task. The code MAPCLASS [10] was written for this purpose with
an implementation of the Simplex method [11]. The resulting beam sizes at the IP are shown in
Fig. 4 versus order. A reduction of the second order sigmas is observed. More interestingly the
contributions from orders above six have been significantly reduced both in the horizontal and
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Figure 2: Horizontal and vertical rms beam sizes at CLIC Interaction Point as function of the
maximum order considered in the transfer map. Both the nominal and achromatic beams are
considered. The horizontal aberrations are purely chromatic and only a small part of the vertical
aberrations are geometric.
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Figure 3: Horizontal and vertical rms beam sizes at the end of the CLIC collimation section as
function of the maximum order considered in the transfer map. Both the nominal and achromatic
beams are considered. The horizontal aberrations are purely chromatic.
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Figure 4: Horizontal and vertical rms beam sizes at the CLIC IP for the nominal collimation
system and the one with optimized chromaticity.

vertical planes.
The remaining aberrations originate entirely in the FFS. The CLIC FFS has been designed based
on the local chromaticity correction scheme proposed in [1]. This scheme basically consists of
two pairs of sextupoles, one pair for the horizontal plane and the other for the vertical. The
sextupoles of each pair are separated by 180 � phase advance to compensate chromaticities and
the subsequent geometrical aberrations. The compensation of the higher order aberrations can
be achieved by correctors of the appropriate order arranged like the sextupoles. We assume
that the pairs of sextupoles are combined magnets including octupolar and decapolar magnetic
components. Using all these non-linear elements (sextupoles, octupoles and decapoles) in the
FFS the rms beam sizes at the IP are minimized with the Simplex method. Initially the opti-
mization works efficiently by truncating the map at 4 	�
 order, however after a few iterations it
is mandatory to increase the order up to 6

���
. The required computing time largely increases for

this higher order. The result of the optimization of the FFS is shown in Fig. 5 together with the
initial configuration. This confirms the compensation of the aberrations up to the higher orders.

Exactly the same algorithm can be used to optimize the linear parameters. Now that the non-
linear aberrations have been compensated it is possible to focus more (decrease the beta func-
tions at the IP) in order to reduce the beam size and gain luminosity. The rms beam sizes up
to order 5 are minimized again using the Simplex method as before. The difference now is that
only the strengths of the quadrupoles are used in the minimization. The result is shown in Fig. 6
together with the initial configuration. Both the horizontal and vertical beta functions have been
reduced at the IP as can be seen at the first order of the plot. The horizontal beta-function at
the IP has been reduced by 19%. The horizontal non-linear aberrations stay well compensated
while in the vertical plane small aberrations have arisen as a consequence of the focusing. This
implies that for further reduction of the beam sizes more iterations correcting non-linear and

5



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  2  3  4  5  6  7  8  9

σ y
 [n

m
] a

nd
  σ

x 
[1

00
nm

]

Maximum order considered

σy at IP
σx  at IP

σy at IP, fully optimized
σx  at IP, fully optimized

Figure 5: Horizontal and vertical rms beam sizes at the CLIC IP for the nominal BDS and the
one fully optimized.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  2  3  4  5  6  7  8  9

σ y
 [n

m
] a

nd
  σ

x 
[1

00
nm

]

Maximum order considered

σy at IP
σx  at IP

σy at IP, fully optimized
σx  at IP, fully optimized

Figure 6: Horizontal and vertical rms beam sizes at the CLIC IP for the nominal BDS and the
one linearly and non-linearly optimized.
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����� : U�� ���� 	 � ��
 U�� ���� 	 � ��
 U�� �
�� 	 � ��
 U�� �
�� 	 � ��
 ������� 	�� � <  �� � 
 � i�� 	�� � <  �� � 

(no rad) (rad) (no rad) (rad)

Nominal 55 88 0.87 5.3 � \ ` ] ` Z ,�� Q \ � ] ` Z ,��
Table 1: CLIC nominal rms beam sizes and luminosities.

����� : . M B CB�� #��C . M B CB�� # �C . M B GB�� #��G . M B GB�� # �G M"!$#&%�#!$#&%�# M"!('*)! '*) !+'*)!$#,%-#
(no rad) (rad) (no rad) (rad)

Nominal 0 0 0 0 0 0 43
Corrected collimation section 12 30 14 58 9 6 42
Corrected FFS non-linearities 20 35 35 69 31 19 39
Lower . � and . � at IP 27 37 34 64 45 29 38

Table 2: CLIC relative differences of beam sizes and luminosities for the different optimizations
stages. All numbers are in percent units.

linear orders are required.
The real benefit of reducing the rms size at the IP is luminosity and therefore it has been
computed for all the former stages of the optimization. Bunches of 10000 electrons have been
tracked trough the CLIC BDS using PLACET [12]. The same beam parameters as mentioned
above have been used and the effect of synchrotron radiation has been included, which is not
taken into account by the described optimization procedure. The luminosity has been computed
using the code GUINEA-PIG [13], see table 1 for the nominal values. The relative reduction
of the beam sizes with and without radiation together with the relative luminosity increase is
shown in table 2. The total luminosity (

�/�����
), the luminosity coming from the collisions with

energy larger than 99% of the maximum energy (
� i�� ) and their ratio (

� i�� � �0����� ) are shown in
the table. Both the total luminosity and the luminosity in the energy peak increase as the hor-
izontal rms beam size gets smaller. It is interesting to see that after the first step the variation
of the rms sizes with radiation is smaller than the variation of the rms sizes without radiation.
Indeed the relative changes of the luminosities seem to be more related to the rms sizes with-
out radiation, which are the ones used in the described optimization algorithm. The ratio of the
luminosities slightly decreases but not in a significant manner.

4 Optimizing dispersion in the FFS
The presented optimization algorithm does not vary any variable having a direct impact on ra-
diation, such as bending angles. In order to use these variables in the minimization procedure it
would be mandatory to introduce analytical penalty functions that account for the effect of ra-
diation in the final beam sizes. However, these penalty functions would be approximations that
might not reflect the real impact of radiation in all possible configurations. Therefore another
approach for the optimization of bending angles in the FFS has been used. The starting point
is the above FFS configuration with the best performance. It is well known that the lower the
dispersion is the less radiation is produced and the stronger the sextupoles need to be powered.
There must be an optimum dispersion for which the combined effects radiation and sextupoles
are minimum. The FFS is optimized using MAPCLASS for different levels of dispersion reduc-
tion and the luminosities are computed for the different cases as done above. Fig. 7 shows the
resulting total and peak luminosities together with the required increase of sextupolar strength
for the different levels of dispersion reduction. Table 3 contains the numerical values of the
relative variation of the rms beam sizes and luminosities. The plot shows a peak in the lumi-
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��� � � : � � ��� � . M B CB � #��C . M B CB � #��C . M B GB � #��G . M B GB � #��G M�! #,%-#!$#,%-# M"! '*)! '*) ! '*)! #,%-#
� : '�� �	� ��� ��
 (no rad) (rad) (no rad) (rad)

4.3 27 39 34 65 54 37 38
17.4 30 40 29 69 72 43 36
21.8 30 40 27 67 72 42 35
34.9 32 26 18 68 62 35 36

Table 3: CLIC relative differences of beam sizes and luminosities for the different dispersion
reduction levels. All numbers are in percent units.

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0  5  10  15  20  25  30  35
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

∆L
/L

0 
[%

]

S
ex

tu
po

le
 s

tr
en

gt
h 

in
cr

ea
se

 (
sd

0,
 s

f1
, s

d4
) 

[%
] 

Dispersion reduction [%]

Ltot
L1%

Sext. strength

Figure 7: Relative luminosity versus dispersion reduction through the FFS.
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nosities at about a 20% of dispersion reduction. The sextupole strength is not linear with the
dispersion reduction, as could be predicted in a first approximation. The ratio of peak luminos-
ity and total luminosity is reduced to 0.36 at the luminosity peak. The maximum gain of 72%
in total luminosity confirms the usefulness of the presented algorithm for the optimization of
beam lines.
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