
Decomposition Algorithms for Global Solution of

Deterministic and Stochastic Pooling Problems in Natural

Gas Value Chains

by

Emre Armagan

Submitted to the Department of Mechanical Engineering

in partial fulfillment of the requirements for the degree oA
MASSACHUSETTS INSTITWE

OF TECHN!OLOGY

Master of Science in Mechanical Engineering [

at the

L BTRARIES
MASSACHUSETTS INSTITUTE OF TECHNOLOGYL-

January 2009

© Massachusetts Institute of Technology 2009. All rights reserved.

A uthor
Departm nt of Mchanical Engineering

January 28, 2009

Certified by

Certified by

Professor,

Paul I. Barton
Professor, Department of Chemical Engineering

Thesis Supervisor

Stephen C. Graves
Department of Mechanical Engineering and Management

S~ T Supervisor

Accepted by....................
David E. Hardt

Chairman, Department Committee on Graduate Students

Decomposition Algorithms for Global Solution of Deterministic and

Stochastic Pooling Problems in Natural Gas Value Chains

by

Emre Armagan

Submitted to the Department of Mechanical Engineering
on January 28, 2009, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

In this thesis, a Benders decomposition algorithm is designed and implemented to solve
both deterministic and stochastic pooling problems to global optimality. Convergence of
the algorithm to a global optimum is proved and then it is implemented both in GAMS and
C++ to get the best performance. A series of example problems are solved, both with the
proposed Benders decomposition algorithm and commercially available global optimiza-
tion software to determine the validity and the performance of the proposed algorithm.
Moreover, a two stage stochastic pooling problem is formulated to model the optimal ca-
pacity expansion problem in pooling networks and the proposed algorithm is applied to
this problem to obtain global optimum. A number of example stochastic pooling problems
are solved, both with the proposed Benders decomposition algorithm and commercially
available global optimization software to determine the validity and the performance of the
proposed algorithm applied to stochastic problems.

Thesis Supervisor: Paul I. Barton
Title: Professor, Department of Chemical Engineering

Thesis Supervisor: Stephen C. Graves
Title: Professor, Department of Mechanical Engineering and Management

Acknowledgments

First and foremost, I would like to thank my parents, Gulden and Kadri Armagan, for their

love and support. Without their help this degree would not have been possible.

I would like to thank my thesis supervisor Professor Paul I. Barton for his direction,

assistance, and guidance. His recommendations and suggestioris have been invaluable for

the project and for this thesis. I am grateful to Professor Stephen C. Graves for reading and

evaluating my thesis.

I also wish to thank Professor Asgeir Tomasgard and Lars Hellemo from Norwegian

University of Science and Technology (NTNU). Professor Tomasgard's assistance and sug-

gestions have been a tremendous help.

I am indebted to Ajay Selot who helped me whenever I need assistance and helped

me to learn necessary programming skills. In addition, I am also grateful to all of my

colleagues in the Process Systems Engineering Laboratory, especially Patricio Ramirez,

for their support and encouragement.

This research was supported by funding from StatoilHydro, SINTEF and NTNU. I

would like to thank them all for their financial support.

Contents

1 INTRODUCTION 17

1.1 POOLING PROBLEMS.. 17

1.2 IMPORTANCE OF POOLING PROBLEMS IN THE NATURAL GAS VALUE

CHAIN 19

1.3 BENDERS DECOMPOSITION FOR THE GLOBAL SOLUTION OF POOLING

PROBLEMS 21

2 PROBLEM DEFINITION 23

2.1 THE P-, Q- AND PQ-FORMULATIONS 29

3 LITERATURE REVIEW 33

3.1 DETERMINISTIC POOLING PROBLEM 33

3.2 INFRASTRUCTURE DEVELOPMENT AND THE STOCHASTIC POOLING PROB-

LEM 36

4 BD ALGORITHM FOR DETERMINISTIC POOLING PROBLEM 41

4.1 INTRODUCTION OF BENDERS DECOMPOSITION ALGORITHM 41

4.2 PROOF OF CONVERGENCE 46

4.3 IMPLEMENTATION 50

4.3.1 GAMS IMPLEMENTATION 50

4.3.2 C++ IMPLEMENTATION 56

4.3.3 RESULTS 58

5 APPLICATION TO THE STOCHASTIC POOLING PROBLEM 61

5.1 INFRASTRUCTURE DEVELOPMENT PROBLEMS IN NATURAL GAS VALUE

CHAIN 61

5.2 INTRODUCTION TO STOCHASTIC PROGRAMMING 63

5.3 IMPORTANCE OF STOCHASTIC POOLING PROBLEMS IN NATURAL GAS

INFRASTRUCTURE DEVELOPMENT 65

5.4 FORMULATION OF THE STOCHASTIC POOLING PROBLEM 67

5.5 IMPLEMENTATION OF THE BD ALGORITHM IN STOCHASTIC POOLING

PROBLEMS...... 73

5.6 RESULTS 78

6 CONCLUSION 83

A EXAMPLE POOLING PROBLEMS 87

A.1 ADHYA'S POOLING PROBLEM 87

A.2 FOULDS' POOLING PROBLEM 89

A.3 EXAMPLE 1 91

A.4 EXAMPLE2 91

A.5 EXAMPLE 3 91

A.6 EXAMPLE 4 92

B GAS NETWORK EXAMPLE 121

C THE STOCHASTIC POOLING PROBLEM 135

C.1 STOCHASTIC EXAMPLE I 136

C.2 STOCHASTIC EXAMPLE 2 138

C.3 STOCHASTIC EXAMPLE 3 140

C.4 STOCHASTIC EXAMPLE 4 142

8

List of Figures

2-1 Graphical representation of a general pooling problem 24

2-2 Haverly's pooling problem 27

2-3 The q-formulation of the Haverly's pooling problem 29

2-4 The pq-formulation of the Haverly's pooling problem 30

4-1 Flowchart of the proposed BD algorithm 48

4-2 The gas network example 55

5-1 Basic illustration of decomposition algorithms in stochastic programming . 66

B-1 Representation of a mixer (a) and splitter (b) 122

B-2 The gas network example 122

10

List of Tables

2.1 Parameters of the pooling problem and corresponding definitions 25

2.2 Solution times for the p-,q- and pq- formulations in example problems (in

seconds). 31

4.1 Optimal objective values in GAMS 52

4.2 Solution times in GAMS (in seconds) 53

4.3 Solution times for the gas network problem (in seconds) 55

4.4 Solution times in C++ with and without Range Reduction (in seconds) . . . 58

4.5 Solution times in C++ (in seconds) 58

5.1 Parameters and corresponding definitions for the first stage problem 70

5.2 Parameters and corresponding definitions for the second stage problem ... 71

5.3 Solution times of stochastic pooling problems with one quality variable (in

minutes) 80

5.4 Solution times of stochastic pooling problems with two quality variables

(in minutes) 80

5.5 Solution times of stochastic pooling problems with three quality variables

(in minutes) 80

A. 1 Quality parameters in source nodes for Adhya's problem 88

A.2 Cost parameters in source nodes for Adhya's problem 88

A.3 Quality requirements in demand nodes for Adhya's problem 88

A.4 Flow requirements in demand nodes for Adhya's problem .

A.5

A.6

A.7

A.8

A.9

A.10

A.11

A.12

A.13

A.14

A.l15

A.16

A.17

A.18

A.19

A.20

A.21

A.22

A.23

A.24

A.25

A.26

A.27

A.28

A.29

A.30

Prices in demand nodes for Adhya's problem 89

Quality parameters in source nodes for Foulds' problem 89

Cost parameters in source nodes for Foulds' problem 90

Quality requirements in demand nodes for Foulds' problem 90

Flow requirements in demand nodes for Foulds' problem 90

Prices in demand nodes for Foulds' problem 91

Quality parameters in source nodes for Example 1 92

Cost parameters in source nodes for Example 1 93

Quality requirements in demand nodes for Example 1 93

Flow requirements in demand nodes for Example 1 94

Prices in demand nodes for Example 1 94

Quality parameters in source nodes for Example 2 95

Cost parameters in source nodes for Example 2 96

Quality requirements in demand nodes for Example 2 96

Flow requirements in demand nodes for Example 2 97

Prices in demand nodes for Example 2 97

Quality parameters in source nodes for Example 3 98

Cost parameters in source nodes for Example 3 98

Quality requirements in demand nodes for Example 3 99

Flow requirements in demand nodes for Example 3 99

Prices in demand nodes for Example 3 99

Quality parameters in source nodes for Example 4 100

Cost parameters in source nodes for Example 4 100

Quality requirements in demand nodes for Example 4101

Flow requirements in demand nodes for Example 4 101

Prices in demand nodes for Example 4 101

B. 1 Quality parameters in source nodes for the gas network example 123

B.2 Cost parameters in source nodes for the gas network example 123

B.3 Quality requirements in demand nodes for the gas network example 123

B.4 Flow requirements in demand nodes for the gas network example 123

B.5 Prices in demand nodes for the gas network example 124

C. 1 Source quality parameters in scenarios and the respective probability values 136

C.2 First stage investment costs of pools for Stochastic Example I 136

C.3 First stage investment costs of pipelines (sources to pools) for Stochastic

Example 1 137

C.4 First stage investment costs of pipelines (pools to demands) for Stochastic

Example 1137

C.5 Second stage cost parameters in source nodes for Stochastic Example 1 . . 137

C.6 Second stage quality requirements in demand nodes for Stochastic Exam-

plel... 137

C.7 Second stage flow requirements in demand nodes for Stochastic Example 1 137

C.8 Second stage prices in demand nodes for Stochastic Example 1 137

C.9 First stage investment costs of pools for Stochastic Example 2 138

C.10 First stage investment costs of pipelines (sources to pools) for Stochastic

Example2 138

C. 11 First stage investment costs of pipelines (pools to demands) for Stochastic

Example 2.......... 138

C. 12 Second stage cost parameters in source nodes for Stochastic Example 2 . . 139

C.13 Second stage quality requirements in demand nodes for Stochastic Exam-

ple 2 139

C. 14 Second stage flow requirements in demand nodes for Stochastic Example 2 139

C. 15 Second stage prices in demand nodes for Stochastic Example 2 139

C.16 First stage investment costs of pools for Stochastic Example 3 140

C. 17 First stage investment costs of pipelines (sources to pools) for Stochastic

Example 3 140

C. 18 First stage investment costs of pipelines (pools to demands) for Stochastic

Example 3 140

C. 19 Second stage cost parameters in source nodes for Stochastic Example 3 . . 141

C.20 Second stage quality requirements in demand nodes for Stochastic Exam-

ple3............................. 141

C.21 Second stage flow requirements in demand nodes for Stochastic Example 3 141

C.22 Second stage prices in demand nodes for Stochastic Example 3 141

C.23 First stage investment costs of pools for Stochastic Example 4 142

C.24 First stage investment costs of pipelines (sources to pools) for Stochastic

Example 4.................... 143

C.25 First stage investment costs of pipelines (pools to demands) for Stochastic

Example 4........... 143

C.26 Second stage cost parameters in source nodes for Stochastic Example 4 . . 144

C.27 Second stage quality requirements in demand nodes for Stochastic Exam-

ple4 144

C.28 Second stage flow requirements in demand nodes for Stochastic Example 4 144

C.29 Second stage prices in demand nodes for Stochastic Example 4 145

Chapter 1

Introduction

1.1 Pooling Problems

The pooling problem is a planning problem that arises in blending materials to produce

products; an example might be the blending of petroleum or natural gas. Pooling occurs

whenever streams are mixed together, often in a storage tank, and the resulting mixture is

distributed to several locations. Pooling and blending of raw materials and stored products

is an important step in the synthesis of end products having different quality specifications.

Products possessing different attribute qualities are mixed in a series of pools in such a way

that the attribute qualities of the blended products of the end pools must satisfy given re-

quirements. Pooling also occurs in distillation and other separation processes. The mathe-

matics of the pooling problem applies to such processes and their applications. In a pooling

problem, each material has a set of attributes with associated qualities, such as percentage

of sulfur or carbon dioxide percentage. Pool qualities are defined by a flow-weighted aver-

age of the source qualities and product qualities are similarly defined by a flow-weighted

average of the pool qualities. Product qualities are constrained to lie in specified ranges.

The pooling problem is to maximize the total profit, subject to flow and quality constraints.

The pooling problem is a bilinear optimization problem because the output stream qual-

ities, which are unknown, depend on the flowrates, which is also unknown, and on the

quality of the input streams. Because of the bilinear terms, the process of pooling intro-

duces nonlinearities and nonconvexities into optimization models leading to the possibility

of several locally optimal solutions some of which may be suboptimal. Naturally, it takes

more effort to solve a problem to guaranteed global optimality than it takes to find a locally

optimal solution and one must often weigh the benefits against the costs. However, it is ap-

parent that global optimization of the pooling and blending process could lead to substantial

savings in cost, resulting in higher profits as in the case of the petroleum industry.

Numerical algorithms for solving pooling problems have included sensitivity and feasi-

bility analysis and local optimization techniques. However, because of the benefits of solv-

ing pooling problems to guaranteed global optimality as explained above, more recently

deterministic global optimization algorithms (which use Branch-and-Bound, Benders De-

composition (BD) or Generalized Benders Decomposition (GBD), etc.) have also been

proposed. However, the application of global optimization algorithms to the pooling prob-

lem continues to be a challenge because of the slow convergence speed of the proposed

algorithms. Since the nonconvexities and nonlinearities of a pooling problem come from

the bilinear terms, a BD or GBD based algorithm looks as a promising approach in order

to find the global optimal solution of the problem. Moreover, decomposition algorithms

are often regarded as better candidates to solve stochastic infrastructure development prob-

lems in the natural gas value chains, which is the ultimate objective of this project. How-

ever, as explained in the later sections of this thesis, until now in the literature, in order

to solve pooling problems to global optimality with GBD algorithms (in the literature, a

BD algorithm has not yet been proposed for the solution of pooling problems), only one

of the variables appearing in the bilinear terms was taken as the complicating variable (de-

tailed information about BD and GBD algorithms is provided in Chapter 4) and with this

approach even for relatively simple pooling problems, the proposed GBD algorithms con-

verge to suboptimal solutions, even non-KKT points, and therefore does not guarantee a

global optimum.

1.2 Importance of Pooling Problems in the Natural Gas

Value Chain

Natural gas is a vital component of the world's supply of energy and its importance has

been increasing as a fossil fuel in recent years because of different factors. First of all,

unlike other fossil fuels, natural gas is a relatively clean fuel since it emits low levels of

potentially harmful byproducts such as sulphur particulates, carbon dioxide and nitrogen

oxides, as it bums. In addition, from the geographical perspective, natural gas is more

uniformly distributed than oil. Moreover, since it is relatively easy, cheap and clean to

convert it into hydrogen, natural gas is considered to be one of the most important elements

in the transition to a hydrogen economy.

Raw natural gas typically consists primarily of methane (CH 4), the shortest and lightest

hydrocarbon molecule. It also contains varying amounts of heavier gaseous hydrocarbons

(ethane (C2 H6), propane (C3 H8), butane (C4H1 0), etc.), acid gases (carbon dioxide (CO 2),

hydrogen sulfide (H2S), etc.), nitrogen (N2), helium (He) and water vapor. All of those

gases except methane are called the impurities and the raw natural gas must be purified

to meet the quality standards specified by the contractual agreements between production

companies and major pipeline transmission and distribution companies. Those quality stan-

dards vary from pipeline to pipeline and are usually a function of a pipeline systems design

and the markets that it serves. In general, the standards specify that the natural gas be

within a specific range of heating value (For example, in the United States, it should be

about 1,035 + 5% Btu per cubic foot of gas at 1 atmosphere and 60 'F); be delivered at

or above a specified hydrocarbon dew point temperature; be free of particulate solids and

liquid water to prevent erosion, corrosion or other damage to the pipeline; be dehydrated

of water vapor sufficiently to prevent the formation of methane hydrates within the gas

processing plant or pipeline; contain no more than trace amounts of components such as

hydrogen sulfide, carbon dioxide, nitrogen, and water vapor [10].

If natural gas is transported in the form of liquefied natural gas (LNG), during LNG

production, the liquefaction process involves condensation of natural gas into liquid form

by cooling it to approximately -163 'C (-260 'F). The natural gas fed into the LNG plant

has to be treated to remove water, hydrogen sulfide, carbon dioxide and other components

that will freeze under the low temperatures needed for storage or be destructive to the

liquefaction facility.

Moreover, with the advent of sustained higher natural gas prices and declining reserves,

and as technology and geological knowledge advances, so-called "unconventional" natural

gas sources are coming to market. Although, there are many different sources of "uncon-

ventional" natural gas today, one common characteristic of all is the higher concentration

of acid gases compared to "conventional" natural gas sources. Therefore, as technology ad-

vances, large amounts of off-spec natural gas becomes available that does not meet pipeline

quality without some sort of adjustment. This off-spec gas has to be processed to meet the

requirements before being pumped into pipelines.

Hence, to transport natural gas from fields to consumers by any means or to make "un-

conventional" natural gas available to consumers, it is required to reduce the concentration

of undesired molecules. Two methods exist to achieve this goal: purification and blending.

The process of purification of natural gas to pipeline gas quality levels is quite complex,

highly capital-intensive and usually involves four main processes to remove the various

impurities: oil and condensate removal, water removal, separation of natural gas liquids,

sulfur and carbon dioxide removal. These processes become more complex and therefore

more expensive, as the concentration of the impurities increases in the natural gas being

purified and increases the cost of the natural gas for consumers while reducing the prof-

its of the production companies. Detailed information about purification processes can be

found in Guo and Ghambalor (2005) [17].

Blending of natural gas from different fields or wells with different different concentra-

tions of hydrocarbons, carbon dioxide, hydrogen sulfide and nitrogen is a cheaper method.

However, it does not always guarantee achievement of the desired concentration levels.

But, blending can be utilized to reduce the concentrations of undesired molecules before

purification processes in order to reduce the cost of the purification. The opportunity for

blending different sources of natural gas comes into the picture especially when the natural

gas production infrastructure is being developed. When new wells or fields are being de-

veloped, it is possible to construct the pipeline system such that the gas from different wells

are mixed together to satisfy the requirements for different qualities. However to develop

the pipeline system optimally, a stochastic version of the pooling problem where the qual-

ity parameters in the wells are not known exactly has to be solved. Although advancing

technology provides the necessary tools to predict the gas content of natural gas in different

fields during the exploration stage, the impurities in the natural gas are still uncertain before

drilling the well. Thus, stochastic programming principles have to be used to achieve an

optimum solution to the infrastructure development problem. As mentioned, in this study,

one of the important reasons to develop a BD algorithm to solve pooling problems is the

adaptability of decomposition algorithms to stochastic programming. More information

about the stochastic pooling problem is given in Chapter 5 of this thesis.

1.3 Benders Decomposition for the Global Solution of Pool-

ing Problems

As explained in Section 4.1, BD and GBD algorithms are proposed to solve multi-variable

nonlinear programs and take at least one of the variables appearing in bilinear terms as

fixed to solve the problem. In the literature, in order to solve pooling problems to global

optimality with GBD, only one of the variables appearing in the bilinear terms was taken as

the complicating variable. With this approach, even for relatively simple pooling problems,

the GBD algorithm tends to generate suboptimal points and does not guarantee to attain a

global optimum. For instance, Floudas & Aggarwal (1990) [11] use the GBD algorithm to

solve pooling problems by fixing the pool quality variables as the complicating variables

and decompose the original pooling problem into a primal problem and a relaxed master

problem. But, their strategy is only successful for Haverly's pooling problem (which is a

very simple problem) and in general, it offers no guarantee for global optimality. This GBD

algorithm may converge to a local minimum, a local maximum, or even a non-KKT point.

In this study, both of the variables appearing in bilinear terms are treated as the com-

plicating variables and by doing so the problem can be formulated such that the Benders

Decomposition algorithm can be used instead of Generalized Benders Decomposition and

hence satisfaction of the Property P becomes unnecessary and, unlike Floudas & Aggarwal

(1990) [11], convergence is guaranteed and can be proven directly from Benders (1962)

[5]. Fixing both variables in the bilinear terms provides a linear program in the first stage

of the algorithm and smaller (and hence easier to solve) bilinear second stage problems. For

comparison of the proposed algorithm with a well known and respected global solver, The

Branch And Reduce Optimization Navigator (BARON) is selected [42]. BARON is a com-

putational software developed by Nikolaos Sahinidis and Mohit Tawarmalani for solving

nonconvex optimization problems to global optimality. Purely continuous, purely integer,

and mixed-integer nonlinear problems can be solved with this software. BARON com-

bines constraint propagation, interval analysis, range (domain) reduction and duality with

enhanced Branch-and-Bound (B+B) concepts to solve optimization problems globally. In

general, BARON is a nonconvex optimization solver using range reduction methods in-

tegrated into the B+B algorithm with advanced relaxation techniques [39]. In this study,

in order to check global optimality and validity of the approach, various example pooling

problems are solved with both the proposed BD algorithm and BARON. In addition, the

solution times of the BD algorithm and BARON are compared to study the overall perfor-

mance of BD for pooling problems.

Chapter 2

Problem Definition

In general, the pooling problem can be stated in a general way as follows: given several

streams with different qualities, what quantities of each must be mixed in intermediate

pools in such a way that the quality and quantity requirements of all demands are satisfied.

A pooling network consists of several source nodes, pools and end-product nodes. Each

source node has a unique quantity of available supply and quality components. Sources are

linked to pools and each pool represents a blend from various source nodes and the quality

component of a pool is a function of the levels of in-flows from sources and their qualities.

Pools are linked to product nodes and each pool's total in-flow is equal to its total out-flow

(mass balance). The quality component of a product node is also a function of the levels of

in-flows from sources and pools and their qualities. Product nodes are subject to specific

demand and quality requirements. In practice, because of the presence of a large number of

supply nodes, pools, qualities and end-products, pooling problems are more complicated

than expected. Usually, each stream into a pool can have more than one quality compo-

nent. The pooling problem then becomes a problem with multiple component qualities and

every end product has to be in the range of expected quality specifications for each of the

quality components. The existence of multiple pools, products and qualities creates hun-

dreds of bilinear terms even for a relatively small problem and therefore a large number of

suboptimal local minima can also exist, hence the need for a global optimization approach

increases.

Figure 2-1 shows a general pooling problem with n sources, p pools, r end-products

and / quality parameters. In this representation, i is the index for sources, j is the index

for pools, k is the index for products and w is the index for qualities. In addition, fjj is

the variable for the total flow from the ith source into poolj; qjw is the variable for the wth

quality component of pool j and xjk is the variable for the total flow from the jth pool to

product k. Also parameters in this representation are listed in Table 2.1.

Ztl .. ' Zl1

fi .t

ZrI.. -.. Zrl

f Ap~.'qp

Sources Pool Products

Figure 2-1: Graphical representation of a general pooling problem.

Parameter Definition

C . cost of the flow from the ith source into poolj

dk unit price of product k

1 total number of component qualities

Nj set of sources entering poolj

p total number of pools

r total number of end-products

Sk demand requirement for product k

Zkw wthquality requirement for product k

kjjw Wt h quality component of the flow from the ith source into poolj

Table 2.1 : Parameters of the pooling problem and corresponding definitions

Then, a mathematical representation of the general pooling problem that is represented

in Figure 2-1 becomes:

(2.1)

s.t. I
iENj

p r p
min I cijfj - I dk Xjk
f ,x,q j=1 iN k= 1 j= 1

fij -- Xj k = 0,
k=

j = 1,...,p (2.2)

r

qjw _ xjk- ijwfj = 0,
k=1 iENi

(2.3)

(2.4)
p

xjk - Sk < 0,
j=1

P P

Sqjxjk - Zkw Xjk <_ O,
j=1 j=1

k - 1,...,r; w 1, ... , (2.5)

j = l, ... ,p; w = l,...,/

fli < fI < fi- , i= 1,...,nj; j = 1,...,p

<fqj, q , jl ,...,p; w= 1,..,l

k< xk < xk, j= 1,...,p; k= 1,...,r

In this formulation, the objective function represents the difference between the cost

of the flow from the source nodes and the returns from selling the end-products. (2.2)

represents the mass balances for each pool. (2.3) expresses the mass balance for each

quality component. (2.4) ensures that the flows to each end-product node do not exceed

the demands. (2.5) enforces that the quality requirements are satisfied at each end-product

node. More information about the formulation can be found in Audet et. al. (2004) [3].

In addition, in the literature there are some widely known and solved pooling problem

formulations which are just special cases of this general representation. These problems

are solved in numerous papers about the pooling problem and hence their global optimal

solutions are known and there are different global optimization algorithms, which have

already been proven to converge, available for them, which can be used for comparison with

the BD algorithm. Thus, these problems can be used as examples to check the validity and

performance of the proposed BD algorithm. The pooling problem was first investigated by

Haverly (1978-1979) [19, 20]. Therefore, Haverly's pooling problem is one of these widely

known pooling problems and it consists of only 3 source nodes, 1 pool and 2 demand nodes

as shown in Figure 2-2. Figure clearly represents that three feed streams are available (fi,

f2 and f3), with the costs of $6, $16 and $10 (per unit) respectively. There are also two

output streams with the prices of $9 and $15 (per unit) respectively.

In Haverly's pooling problem, there is a single pool which receives supplies from two

different sources which have different sulfur qualities. A third supply is not connected to

X1

X31

X2

I

<2.5% $9
5100

51.5% $15
:200

X3 2

Figure 2-2: Haverly's pooling problem

the pool but is directly feeding the two end-product nodes. The quality parameters for the

streams going into the pool are 3% for the first source node, 1% for the second and 2%

for the third node. The blending of flows from the pool and from the third supply node

produces products 1 and 2, which are subjected to sulfur quality requirements of 2.5%

and 1.5% respectively. The maximum demands for products 1 and 2 are 100 and 200

respectively. Then the mathematical formulation of Haverly's pooling problem is:

min 6ft1 + 16f 21
f,x,q

+ 10 f12- 9 (xll + X21) - 15 (X12 X22)

s.t. fI + f 2 1 - XI1 - X12 = 0

fl2 - X21 -X22 = 0

q(xtl +x 12) -3fi 1 -f21 = 0

qxll + X21 - 2.5 (xl I +x21) < 0

25

53% $6

52% $10

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

PN ln

qx12 +2X22 - 1.5 (X12 +X22) < 0

Xll +X2 1 < 100

x 1 2 +x 2 2 < 200

where q is the sulfur quality of the pool output, fj are the quantities of supplies, xl 1 and

x 12 are the magnitude of flows from pool to end-products and xz21 and X22 are the magnitude

of flows from the third source node to end-products. Similar to the general formulation, the

objective function represents the difference between the cost of the flow from the source

nodes and the returns from selling the end-products. (2.7) and (2.8) represent the mass

balance. (2.9) represents the sulfur mass balance. (2.10) and (2.11) expresses the quality

restrictions on the products; (2.12) and (2.13) ensure that the flows to each end-product

node do not exceed the demands. GAMS implementation of Haverly's pooling problem is

provided in Appendix A.

As it can be realized, although the objective function is linear, the bilinear terms in (2.9),

(2.10) and (2.11) introduce nonconvexities in the problem (which are enough to make this

problem nonconvex) causing multiple local optima. Therefore, local nonlinear program-

ming (NLP) solution algorithms (well known examples are SNOPT, MINOS, CONOPT,

etc.) may provide suboptimal solutions which are usually not useful in any practical sense

and hence it is necessary to explore global optimization techniques in pooling problems.

In this study, also Adhya's [1] and Foulds' [12] pooling problems are solved to test

the BD algorithm. Since they are just special versions of the general formulation, it is

not necessary to give explicit formulations for those problems, just the numbers of pools,

sources, qualities and end-products should be enough to produce an explicit formulation

by using the general problem formulation. For Adhya's problem, the number of pools

(2.11)

is 7; the number of sources is 8, the number of qualities is 4 and the number of end-

products is 4; in Foulds' problem, the number of pools is 8; the number of sources is 14,

the number of qualities is 1 and the number of end-products is 6. More information for both

of these example problems including quality specs, demand requirements, cost coefficients

and GAMS implementations are given in Appendix A.

2.1 The p-, q- and pq-Formulations

The formulation of the pooling problem given above was first proposed by Haverly (1978)

[19] and referred to as the p-formulation. A distinct, but equivalent formulation is proposed

by Ben-Tal et al. (1994) [6] which is called the q-formulation. Ben-Tal et al. (1994) [6]

derives the q-formulation of the pooling problem by introducing new variables tijsatisfying

the relationship: fj = tij l=l Xjk.

It can be easily shown that the p- and q-formulations are equivalent. However, the main

advantage of the q-formulation is that, in many applications, the number of extreme points

of the simplex containing the variables tij is much smaller than the number of extreme

points of the hypercube qjw. This advantage is exploited algorithmically by Ben-Tal et al.

(1994) [6]. Figure 2-3 shows the q-formulation of the Haverly's pooling problem.

13% $6 x,
tl Xl+ t1 X2

X31

X2
t2 1 xl+ t21 X2 ,

2% $106

£2% $10 x32

<2.5% $9
5100

S1.5% $15
5200

Figure 2-3: The q-formulation of the Haverly's pooling problem

B

Blend B

Tawarmalani & Sahinidis (2002) [45] constructs the pq-formulation by adding the fol-

lowing constraint to the q-formulation:

1

tijxjk= xjk, j= 1,...,p; k = 1,...,r (2.12)
i= 1

Figure 2-4 illustrates the pq-formulation of the Haverly's pooling problem. As can be

realized from this example, the newly added constraints are redundant and don't change the

feasible region. However, the main point of interest in the pq-formulation is the tightness

of the convex relaxations relative to the other two formulations. Tawarmalani&Sahinidis

(2002) [45] prove that the pq-formulation provides much tighter convex relaxations com-

pared to the p- and q-formulations.

<3% $6 x
til x1+ t x2 3

X31

X2

t2l Xl+ t2 x2 -
<1% $16

<2.5% $9
<100

51.5% $15
<200

SB
BlendB

f3 ._J Convexification Const.:
"2% $10 x32 x~ = t1l X1+ t21 X1

X2 = t11 X2+ t21 X2

Figure 2-4: The pq-formulation of the Haverly's pooling problem

Tawarmalani & Sahinidis (2002) [45] claim that for all example pooling problems, the

pq-formulation decreases solution times drastically and solution times of example pooling

problems (solved with BARON) presented in [45] to prove this statement. However, in

[45] the chart provided for comparison of three formulations in terms of solution times

does feature solutions from different references and therefore with different processors and

hence the validity of their claims can be questioned. Therefore, it is decided to model

three example pooling problems (Haverly's [18], Foulds' [12] and Adhya's [1]) with all

28

Table 2.2: Solution times for
onds).

Problem

Haverly
Foulds
Adhya

the p-,q-

p- q- pq-
0.02 0.016 0.01
1.89 1.46 1.25
9.27 7.71 6.12

and pq- formulations in example problems (in sec-

three different formulations, and these three example problems are solved in GAMS 22.5

[13] with BARON 7.8 [42] used as the global optimization solver. When comparisons are

done with a computer having Intel 3.20 GHz Xeon processor, results show that the solution

times do not differ immensely as presented in Table 2.2. But still the pq-formulation has

the lowest solution times, hence the pq-formulation is featured in this study to formulate

the pooling problems to be solved.

30

Chapter 3

Literature Review

3.1 Deterministic Pooling Problem

Various optimization procedures for the pooling problem have been proposed in the liter-

ature. These solution procedures can be classified based on their convergence to either a

local or a global optimum. The first algorithm for the pooling problem was suggested by

Haverly (1978-1979) [19, 20]. Haverly's approach was based on the idea of using recursion

to solve the pooling problem. A recursive approach guesses the value of the pool qualities.

These values for the pool qualities converts the pooling problem into a linear program in

the flow variables. The actual values of the pool qualities can then be calculated from the

values of the flow variables that are obtained by solving the linear program. The process

continues until the actual values of the qualities are within a range of tolerance from the

guessed values. The main drawback in using any form of recursive method for the pooling

problem is that often the algorithm does not converge to a solution, and when it converges,

it converges only to a local minimum, a local maximum, or even a non-KKT point. In addi-

tion, as the number of pools and end-products increases, recursive methods tend to become

more unstable, resulting in computational difficulties.

Successive Linear Programming (SLP) approaches which solve nonlinear problems as

31

a sequence of linear programs are also widely used. Lasdon (1979) [31] proposes an al-

gorithm based on SLP technique. These approaches also do not guarantee global optimal

solutions and may converge to even a non-KKT point.

As in the case of GBD, decomposition methods are based on the observation that a dif-

ficult problem can be converted to an easier problem by fixing values of certain variables.

In the case of the pooling problem, for example, fixing the pool quality variables converts

it into a linear program. By using this approach, Floudas & Aggarwal (1990) [11] sug-

gest an algorithm based on fixing the pool quality variables as the complicating variables

and decomposing the original pooling problem into a primal problem and a relaxed master

problem and iterating between these problems based on the GBD algorithm until the termi-

nation conditions are satisfied. Although their decomposition strategy is successful for the

problems suggested by Haverly, in general it offers no guarantee for global optimality. This

GBD algorithm may converge to a local minimum, a local maximum, or even a non-KKT

point. Visweswaran & Floudas (1996) [50] propose a GOP algorithm for solving the pool-

ing problem. The algorithm was proven to terminate finitely with a global optimum. Using

this algorithm, the authors were able to solve three cases of the Haverly problem. It is

also reported that a single pool, five-product problem, with each stream having two quality

components is solved to global optimality using this algorithm. Large-scale pooling prob-

lems, generated randomly, having up to 5 pools, 5 products, and 30 qualities, were solved

by Androulakis et al. (1996) [2] using a different implementation of the GOP algorithm.

Branch-and-bound (B+B) methods for pooling and blending problems have been sug-

gested by different authors. These methods usually differ in the relaxations used to provide

valid lower bounds to the global optimum. Foulds et al. (1992) [12] use a procedure which

involves replacing the bilinear terms in the pooling problem by their McCormick (1983)

[35] concave and convex envelopes. The nonlinear pooling problem can be relaxed to a

linear programming problem, the solution of which provides a lower bound on the global

optimal solution. The B+B procedure proceeds by partitioning the feasible set and relaxing

on each partition. It is quite obvious that by replacing each bilinear term by its concave

or convex envelope introduces a relaxation, but this relaxation also tends to zero as the

partitions get finer and the algorithm converges to the global optimal solution. Using this

approach, Foulds et al. (1992) [12] were able to solve single-quality problems, with the

largest problem having 8 pools and 14 products. The constraints which provide the convex

and concave envelopes of the problem at a specific node of the B+B tree are not in general

valid for other nodes of the tree. Thus, the convex and concave envelopes have to be gener-

ated at each node of the B+B tree. However, the McCormick relaxation requires four linear

constraints to provide the envelopes for each bilinear term in the problem. Hence, as the

number of pools, products, or component qualities increase, the size of the linear program

to be solved at each node of the B+B tree also increases.

Ben-Tal et al. (1994) [6] propose another lower-bounding procedure based on La-

grangian relaxation of another formulation of the pooling problem (explained in the pre-

vious chapter as the q-formulation). In this paper, a B+B algorithm which partitions the

feasible set of the pooling problem is provided and it is shown that this approach can reduce

the duality gap between a nonconvex problem and its dual. Later it is also proven that for

partially convex problems such as the pooling problem, under certain regularity conditions,

this approach can reduce the duality gap between the primal and the dual to zero.

Adhya et al. (1999) [1] use yet another formulation of the pooling problem (explained

in the previous chapter as the pq-formulation). The authors provide a new Lagrangian

relaxation approach for developing lower bounds for the B+B to solve the pooling problem

and it is proven that the Lagrangian relaxation approach provides tighter lower bounds than

the standard linear-programming relaxations used in global optimization algorithms and

hence guarantees faster convergence speeds.

3.2 Infrastructure Development and the Stochastic Pool-

ing Problem

For the infrastructure development problem, most of the literature is on oil production

planning and unfortunately there is only small amount of literature dealing specifically with

natural gas production planning, but usually modeling and solution strategies for oil and

gas infrastructure development problems are very similar. Hence, no distinction is made

between the oil and gas production planning literature, and the literature for oil production

planning is also included to this review.

Most of the available literature for planning of oil and gas field infrastructures uses a de-

terministic approach without considering how uncertainty affects the overall system (Iyer,

Grossmann, Vasantharajan & Cullick (1998) [22]; Van den Heever & Grossmann (2000)

[47]; Van den Heever & Grossmann (2001) [48]; Barnes, Linke & Kokossis (2002) [4]; Lin

& Floudas (2003) [32]; Ortiz-Gomez, Rico-Ramirez & Hernandez-Castro (2002) [37]). For

a recent review of the existing literature on deterministic approaches for these problems, re-

fer to Van den Heever & Grossmann (2001) [48]. Recently, there has been some work that

considers uncertainty in the infrastructure development problem. Jonsbraten (1998) [24]

presents an MILP model for optimizing the investment and operation decisions for an oil-

field under uncertainty in oil prices. The author uses the Progressive Hedging Algorithm

to solve the problem. Jonsbraten (1998ii) [25] presents an implicit enumeration algorithm

for the sequencing of oil wells under uncertainty in oil reserves. The decision models for

both these papers include investment and operational decisions for one field only. Jornsten

(1992) [27] uses Lagrangian relaxation of constraints to solve a stochastic program for the

sequencing of gas fields under uncertainty in future demands. The author assumes that

production profiles and capacities of platforms have already been fixed. Haugen (1996)

[18] proposes a single parameter representation for uncertainty in the size of reserves and

incorporates it into a Stochastic Dynamic Programming model for scheduling of petroleum

fields. This work also assumes that the only decisions that need to be made are regarding

the scheduling of fields. Meister, Clark, and Shah (1996) [36] present a model to derive

exploration and production strategies for one field under uncertainty in reserves and future

oil price. The model is analyzed using stochastic control techniques. Lund (2000) [33]

presents a stochastic dynamic programming model for evaluating the value of flexibility in

offshore development projects under uncertainty in future oil prices and in the reserves of

one field. Jonsbraten (1998iii) [26] discusses an interesting problem dealing with planning

of oil field development. A situation is considered where two surface lease owners with

access to the same oil reservoir bargain their shares of production. The author assumes

a mixed-integer optimization model and uses game theory. Recently, there has also been

some work using real options based approaches (Dias, 2001 [9]) for planning of oil and gas

field developments under uncertainty.

Based on the dependence of the stochastic process on the decisions, Jonsbraten (2001)

[27] and Goel & Grossmann (2004) [15] classify uncertainty in planning problems into

two categories: project exogenous uncertainty and project endogenous uncertainty. Prob-

lems where the stochastic process is independent of the project decisions are said to have

project exogenous uncertainty. For these problems, the scenario tree is fixed and does not

depend on the decisions. Hence the most relevant characteristic of this kind of stochastic

programming model is that its formulation assumes a given scenario tree. The uncertainty

in gas prices in a planning problem similar to the one described here is an example of

project exogenous uncertainty. For recent reviews on models and solution techniques for

stochastic programs with project exogenous uncertainty, please refer to Kall and Wallace

(1994) [29] and Birge and Louveaux (1997) [7]. Problems where the project decisions in-

fluence the stochastic process are said to possess project endogenous uncertainty. A gas

production planning problem with uncertainty in gas reserves is included in this category.

This is because the uncertainty in gas reserves of a field is resolved only if, and when,

exploration or investment is done at the field. If no action is taken, the uncertainty in the

field does not resolve at all. For problems with project endogenous uncertainty, the sce-

nario trees are decision-dependent. This leads to difficulties in defining the model because,

traditionally, the stochastic programming literature has relied on the assumption of given

scenario trees. Hence, there is very little literature dealing with problems having process

endogenous uncertainty. An intensive literature search provides only four papers (Pflug,

(1990) [38]; Jonsbraten, Wets & Woodruff, (1998) [24]; Jonsbraten, (1998ii) [25]; Goel &

Grossmann, (2004) [15]) which deal with project endogenous uncertainty.

A Literature review clearly shows that none of the literature about the infrastructure

development problem considers the concentrations of the impurities in the natural gas pro-

duced as a source of uncertainty, but as mentioned in the first chapter, because of the con-

tractual agreements, regulations and the pipeline requirements, the production company has

to adjust the composition of the gas within some limits to sell it, and the composition of

gas is unknown when infrastructure is being developed. To blend gas from different fields,

while the infrastructure is being developed, the pipeline system has to be constructed to

allow the gas from different wells to be mixed to satisfy the requirements. Therefore, to

develop the value chain optimally, a stochastic version of the pooling problem where the

quality parameters in the wells are unknown has to be solved. Therefore, gas quality un-

certainty in the infrastructure development problem is selected in this study as the first step

to construct and solve a realistic model of the whole infrastructure development problem

with more realistic or less assumptions than the literature until now.

Another important assumption in the literature is that the effect of the contractual frame-

work is not considered. However, in most fields natural gas cannot be produced unless a

contractual demand exists and in addition the rules given in contracts and also in govern-

mental regulations need to be taken into account to reach a realistic model of the system. In

addition, there are other important assumptions: no expansion in capacity of a platform is

considered; in most of the references production rate decreases linearly in time; flow mod-

els and reservoir models are assumed as linear and more importantly effects of contractual

framework are neglected.

38

Chapter 4

BD Algorithm for Deterministic Pooling

Problem

4.1 Introduction of Benders Decomposition Algorithm

The Benders Decomposition algorithm was originally proposed by Benders in 1962 [5] for

nonlinear, nonconvex mixed variables programming problems of the form:

max cTx + f(y) (4.1)

s.t. Ax+F(y) < 0 (4.2)

x EXC R nx,y EU C ny

where y is a vector of complicating variables, since the problem above can be solved

more easily when y is fixed constant. In other words, for fixed y, this problem separates

into a number of smaller problems each having only subsets of x as variable or the problem

assumes a special structure, such as a linear program as in the case of the pooling problem

39

or the problem is converted into a convex program. In these cases, by fixing y, a simpler

primal problem can be solved and a relaxed master problem is solved to generate valid

lower bounds and the algorithm converges to the global optimum by iterating between these

problems. In practice, the BD algorithm decomposes problem into two smaller problems:

primal problem (linear program) and relaxed master problem (nonlinear program in bilinear

problems). The primal problem is used to find the upper bound (UBD); the relaxed master

problem is used to find the lower bound (LBD). When LBD>UBD, algorithm terminates.

On the other hand, the Generalized Benders Decomposition algorithm is first proposed

by Geoffrion (1972) [14] and also based on Benders Decomposition, but it is proposed to

solve more general form of nonconvex nonlinear programs of the form:

max f(x,y) (4.3)
xy

s.t. g(x,y) < 0 (4.4)

x EX C R nx,y E U C R ny

where y is a vector of complicating variables, again, in the sense that it is much easier to

solve in x when y are held fixed. However, the problem to be solved has to satisfy a property

called "Property P", unlike Benders Decomposition. Basically, the problem to be solved

has to be formulated such that for every X > 0, (where Xs are the Lagrange multipliers),

the infimum of f (x,y) + , Tg(x,y)) over X can be taken essentially independently of y, so

that the constraints in the relaxed master problem can be obtained explicitly with little or

no more effort than is required to evaluate it at a single value of y.

As it is known, bilinear terms are formed by the multiplication of two variables of the

problem and these bilinear terms introduce nonconvexities to the problem. If the noncon-

vexities in the problem are only introduced by the bilinear terms, as in the case of pooling

problems, it is possible to treat the whole bilinear terms as a complicating variable in the

BD algorithm as opposed to fixing only one of the variables in bilinear terms as the com-

plicating variable. Fixing the bilinear terms yields constant parameters. Then, the general

formulation of the pooling problem can be written (consistently to the notation given in

Chapter 2) as:

max cTf + dTy (4.5)

s.t. Af + F(y) 0 (4.6)

f E F c Rf,y E U C IRny

where c is the cost vector, d is the price vector, f is the input flow vector and y is the

vector for the bilinear terms which is equal to qTx (q is the vector of quality variables and

x is the vector for flow from the pools to demands as explained in Chapter 2).

Therefore, the BD algorithm can be applied to pooling problems and is guaranteed to

converge to the global optimum (as proved in the next section) when both of the bilinear

terms are taken as the complicating variables. Obviously, in the BD implementation, the

primal problem becomes a linear program which is obviously convex and the relaxed mas-

ter problem is a nonconvex NLP where a global solver such as BARON can be used to

obtain global optimal solutions. Using these global optimal solutions to iterate, it is pos-

sible to generate valid cuts that converge. Hence, this approach is expected to converge to

the global optimum of the pooling problem with Benders Decomposition reliably.

Then, for instance, in Haverly's pooling problem, the primal problem can be formulated

as:

min 6fi +1 16f 2 + 10fl2 -9 x + 2 1 -15 x1 2 +x 22) (4.7)
f ,x

s.t. fii +f21 -XI1 -x2 = 0 (4.8)

f12 - X21 - X22 = 0 (4.9)

q' (Xl+XX2) -3fiI -f21 =0 (4.10)

qxll +x21 -2.5 xl I +X21) 0 (4.11)

qx2 + 2x 22 -1.5 x2 + 22) 0 (4.12)

where q, xl1 and xl2 are constant parameters which are assigned as the fixed compli-

cated variables. Therefore, bilinearities in the primal problem disappear and it becomes

a linear program and therefore, it is convex. However, the relaxed master problem is still

a bilinear program and it is obviously a nonconvex NLP. Hence, still the relaxed master

problem has to be solved with a global solver such as BARON. But, the potential benefit of

utilizing BD algorithm might be to solve number of smaller problems (the relaxed master

problems) with the B+B procedure (such as BARON) instead of solving one huge prob-

lem with the B+B. B+B based algorithms are exponential-time algorithms. In other words,

as the problem size increases, solution times of B+B algorithms increases exponentially.

Therefore, instead of solving a problem with large number of variables, solving number of

problems with small number of variables can be quicker in terms of the solution times.

As mentioned, the primal problem becomes a linear program and general formulation

of the primal problem becomes:

p r p
min cijfij- dk Xjk
f ,x j=1 iNj k=1 j=l

r
s.t. fij- xjk = 0 j= 1,.

ieNj k= 1

r

qw Xjk
k=l

(4.13)

(4.14)

(4.15)
I ,ijwfij = 0,

X jk - Sk < 0
j=1

(4.16)

(4.17)
P I P

qjwxjk - Zkw I Xjk < 0
j=l1 j=1

fiL < f j < i

where qi, Xjk are the fixed parameters. And as it is seen, also in a general pooling

problem formulation, the primal problem is a linear program and therefore, it is convex.

In addition, the relaxed master problem can be formulated as:

R:

min n1

s.t. 71 > inf(F + T gi)

W'gi < 0O

(4.18)

(4.19)

(4.20)

where 2X is the vector of Lagrange multipliers, y is the vector of multipliers for the

feasibility problem, F is the objective function and gi are the constraint functions, which

j= l ,...,p; w = ,...,

k= 1,...,r

k= 1,...,r; w = 1,...,

= 1,...,nj; j = 1,...,p

means:

p r p

F = cijfij- dk xjk (4.21)
j= 1 iENj k=l j=l

r

gl = fi- , xjk, j = 1, ...,p (4.22)
iENj k=1

r

g2 = qjw Xjk , ijwflj, j = 1,...,p; w = 1,...,l (4.23)
k=1 ieNi

g3 = Xjk - Sk < 0 k = 1,...,r (4.24)
j=1

P P

g4 = q jwxjk- Zkw xjk < 0, k = 1, ... , r; w = 1,..., l (4.25)
j=1 j=1

Then, the proposed BD algorithm for pooling problems is presented in Algorithm I

and also flowchart of the algorithm is provided in Figure 4-1. As Figure 4-1 represents,

basically, The primal problem provides the upper bound value (UBD) whereas the relaxed

master problem provides the lower bound value (LBD) and when LBD>UBD, algorithm

terminates.

By using this algorithm, different pooling problems from the literature are solved and

validity and speed of this approach is tested versus algorithms which guarantees global

optimal solution such as BARON. However, before testing the algorithm, the first step is to

prove its convergence to global optimum.

4.2 Proof of Convergence

To prove the convergence of the proposed algorithm, the first step is to show that the pooling

problem formulation satisfies the form given by Benders (1962) [5]:

Algorithm 1 Benders decomposition algorithm for global solution of pooling problems

{ INITIALIZATION }

i (iteration) := 1, UBD := INF, LBD := -INF, p := 0, r := 0;
Select an initial configuration for the variables: q (i) = q' (i) and x (i) = x' (i)

{STEP 1: LP PRIMAL PROBLEM}

Solve Problem (P) with q (i) = q' (i) and x (i) = x' (i),
{FEASIBLE PRIMAL}

if Problem (P) with q (i) = q (i) and x (i) = x' (i) is feasible then,

Let the solution be f* (i), let p = p+l and X = P. (, is the corresponding duality multi-

plier.)
if z* (i) < UBD then, (where z* (i) is obj. value of the LP Primal Problem at iteration i.)

{RECORD BETTER SOLUTION}

UBD := z* (i), x* := x' (i),f* := f* (i), q*:= q' (i). end if
{INFEASIBLE PRIMAL}

if Problem (P) with q (i) = q' (i) and x (i) = x' (i) is infeasible then, r = r+1 and f = r

end if
{STEP 2: NLP RELAXED MASTER PROBLEM}

ifp=O then, solve the feasibility version of the NLP Master Problem.

else, solve
min 1r
x,q,17

s.t > inf(h(f,x)+ (i gi(fx,q)), Vj = 1,...,p
x,q

(P)T gi(f,x, q) < 0, Vj = 1, ..., r

where h(fx) is the objective function and gi(f,x,q) are the constraints.
Let the solution be qmp (i) and xmp (i), then q' (i + 1) = qmp (i) and x' (i + 1) = x mp (i). end

if
if 7r* > LBD then,
{RECORD BETTER SOLUTION}
LBD := l* (i). end if
if LBD > UBD then, STOP.
else, i := i+l, Go to STEP 1. end if
{END OF ALGORITHM}

o, LBD = -o, x = x', q= q'

Figure 4-1: Flowchart of the proposed BD algorithm

max c x + f(y)

s.t. Ax+F(y)<O

(4.26)

(4.27)

x EX C Rn ,y E U C Rny

Then, the convergence can be directly proved from Benders (1962). The pooling prob-

lem in Chapter 2 can be reformulated as:

max
xf

cTf + dTx (4.28)

s.t. Af +F(x,q) < 0 (4.29)

f E FC nf , x EX C RTx,q E Q C RTq

The crucial point in satisfying Benders (1962) [5] formulation and hence proving con-

vergence is when the complicating variables are fixed, the resulting formulation has to be a

linear program. Since in the proposed algorithm both x and q (bilinear terms) are fixed as

complicating variables. The resulting formulation in the pooling problem is:

max cTf + B (4.30)
x,f

s.t. Af+C<O (4.31)

fe FC R n,

where B = dT, C = F(x, q-) and xand q-are fixed parameters. It is obvious that the re-

sulting formulation is a linear program and hence it can be concluded that proof of conver-

gence for the proposed BD algorithm can be derived directly from the proof of convergence

of Benders original algorithm.

Benders (1962) [5] states that the problem given in the form of (4.28) and (4.29) can be

written in the equivalent form by introducing a scalar variable fo:

max {fo fo-cTf - dTx<0 O, Af +F(x,q) < O0,x > 0} (4.32)

In other words, (fo,f,-,q) is an optimum solution of problem if and only if fo =

cTf+ dTy and (f x, q is an optimum solution of the problem.

Theorem 3.1 (Partitioning Theorem for mixed-variables) of Benders (1962) [5] proves

that (a) (f, , q) is an optimum solution of problem denoted by (4.29) and (4.30) if and only

if (fo,fx, q) is an optimum solution of (4.33). In addition, this theorem shows that (b) if

47

(fVx, q) is an optimum solution of (4.32), and fo = cTf + dTythen (fo,x, q) is an optimum

solution of (4.32) and f is an optimum solution of the linear programming problem:

max {cTf| Af < -F(x,q), x > 0} (4.33)

Also, the same theorem proves that (c) if (fo,xyq is an optimum solution of (4.32),

then (4.33) is feasible and the optimum value of the objective function in this problem is

equal to fo - F(x, q. If f is an optimum solution of (4.33), then (f,x,q) is an optimum

solution of the original problem.

(a), (b) and (c) of the Partitioning Theorem for mixed variables show that a two stage

algorithm fixing x and q as complicating variables converges to the global optimum the

mixed variable problem in the form of (4.28) and (4.29).

4.3 Implementation

After convergence is proved, the next step is to implement the algorithm. The GAMS lan-

guage is powerful enough for reasonably complex algorithms. Hence, at first GAMS is

chosen to implement the proposed BD algorithm. GAMS Version 22.5 [13] is used as the

implementation language and as mentioned before both BARON (Version 7.8) [42] and

the BD algorithm is implemented as the global solvers for the example pooling problems.

However, because of the reasons explained in the next section, the algorithm is reimple-

mented in C++ with first using a custom B+B solver to solve the relaxed master problem

in the BD implementation, then using a callable BARON C++ library and the results are

compared with BARON alone as the global solver of the pooling problem.

4.3.1 GAMS Implementation

In GAMS, both problem specific formulations and the general formulation are implemented

in order to check if there is a problem with the general formulation. Fortunately, the imple-

mentation of the general problem shown is not different from the problem specific imple-

mentations. In this project, Haverly's pooling problem and also Adhya's [1] and Foulds'

[12] pooling problems are solved to test the proposed BD algorithm.

The GAMS implementation of the BD algorithm is provided in Appendix A in addi-

tion to the GAMS implementations of the example problem formulations. It is quite well

known that the optimal objective value of Haverly's pooling problem -400. This value is

also confirmed by the BARON implementation and the proposed BD algorithm gives the

same objective value as the solution. In addition, the BD implementation is tested with

several different starting points and it is observed that for all tested starting points, it con-

verges to the global optimal solution (only the number of iterations changes, hence solution

times also change slightly). Hence, it can be stated that, the BD algorithm is working for

Haverly's pooling problem without any problem and converges to a global optimum.

The algorithm is also tested with Fould's [12] pooling problem with 8 pools, 14 sources,

1 quality and 6 end-products. BARON converges to -52 as the optimal objective value and

also the proposed BD algorithm gives the same optimal objective value. Again, the BD

implementation is tested with several different starting points for Fould et al.'s pooling

problem and it is observed that for all tested starting points, it converges to the global

optimal solution.

Another test problem is Adhya's [1] pooling problem with 7 pools, 8 sources, 4 qualities

and 4 end-products. BARON converges to -1185 as the optimal objective value and also the

proposed BD algorithm gives the same optimal objective value. Again, the BD implemen-

tation is tested with several different starting points for Adhya et al.'s pooling problem and

it is observed that for all tested starting points, it converges to the global optimal solution.

In addition, 4 example pooling problems (which were created by the author) are also

solved. More information for both of these example problems including quality specs,

demand requirements, cost coefficients and GAMS implementations are given in Appendix

A. Example I has 14 pools, 18 sources, 1 quality and 9 end-products. The BD solver

Problem BARON[BD

Haverly -400 -400
Foulds -52 -52
Adhya -1185 -1185

Example 1 -894 -894
Example 2 -1225 -1225
Example 3 -726 -726
Example 4 -2745 -2745

Table 4.1: Optimal objective values in GAMS

gives the optimal objective value as -894 which is the same as BARON. Example 2 has 14

pools, 18 sources, 6 qualities and 9 end-products. The BD solver converges to the same

optimal objective value as BARON. Example 3 and Example 4 is also solved with both BD

and BARON. Example 3 has 16 sources, 10 pools, 6 end-products and 1 qualities whereas

Example 4 has 16 sources, 10 pools, 6 end-products and 8 qualities and in all examples

the proposed BD algorithm and BARON converge to same optimal objective value for all

tested starting points regardless of the size of the problem.

The optimal objective values for all of the example problems are shown in Table 4.1.

It can be concluded that, the proposed BD algorithm works without any problem and

converges to the global optimal solution for all tested starting points regardless of the size

of the problem. An important point to mention is that when a local solver (e.g. SNOPT,

MINOS, CONOPT, etc.) is used to solve the relaxed master problem in the BD implemen-

tation; if the pooling problem to be solved has only one quality variable, the BD algorithm

with local solver for the relaxed master problem converges to the global optimum. How-

ever, if the problem has more than one quality variables, the proposed BD implementation

does not converge to global optimal solution when the local solver is used (converges to

suboptimal points) and also the solution value returned by the algorithm changes dramat-

ically with different starting point values. In other words, algorithm converges to local

optimal values. The possible reason is that when a local solver is used, invalid cuts are gen-

erated from a local solution and as a result the algorithm does not converge to the global

Problem BARON BD
Haverly 0.01 0.03
Foulds 1.25 3.61
Adhya 6.12 17.13

Example 1 4.27 21.46
Example 2 21.43 85.52
Example 3 2.08 8.41
Example 4 36.36 181.6

Table 4.2: Solution times in GAMS (in seconds)

optimal solution.

We can also compare the solution times of the proposed BD implementation and BARON

Version 7.8 as shown in Table 4.2. It is necessary to note that, in both the BARON and the

BD implementation, all example problems are solved with a computer having an Intel 3.20

GHz Xeon processor.

Table 4.2 shows that the solution times of the BARON implementation are lower than

the ones of the BD solver. In general, solution times in BARON are three to four times

lower than the solution times in the BD algorithm and for the problems having more than

one quality variables, the difference between solution times of BARON and the BD is

more than the problems having only one quality variable. It is obvious that, when the

number of quality variables increase, the number of bilinear terms also increases, and Table

4.2 clearly shows that as the number of bilinear terms increases solution times for both

implementations increase, but also the difference between solution times of the BARON

and the BD solvers also increases. The reason of this problem is the extra bilinear terms,

and therefore extra nonconvexities, introduced by the quality variables. As discussed in

Chapter 2, in pooling problems, the sole source of bilinearities is the mass balance equation

for each quality variable and therefore as the number of quality variables increase, the total

number of mass balance equations also increases and as a result the total number of bilinear

terms rises.

One may think that since the number of bilinear terms in the problem affects the solu-

tion times of the proposed BD solver drastically, this proposed BD algorithm can be useful

to solve problems with smaller number of bilinear terms such as the gas network problems.

The gas network problems are a special kind of pooling problems where pools can be mod-

eled as mixers and splitters. Modeling pools as mixers and splitters gives the opportunity

to write mass balances for each quality separately.

For mixers, mass balances can be written as the sum of each flow regardless of the qual-

ity variables, therefore mass balance equations for mixers do not include any bilinear terms.

In other words, for a selected quality, mass balance can be written as the output volume flow

rate equals to the sums of input volume flow rates and it is a linear equation. However, for

splitters, writing mass balances separately still introduces bilinear terms. However, now

since bilinear terms are only coming from the splitters instead of all of the pools, the num-

ber of bilinear terms reduces and therefore the complexity of the problem reduces greatly.

Thus, one can expect lower solution times from the BD solver in gas network problems. In

order to test the performance of the proposed BD algorithm in a gas network problem, an

example problem shown in Figure 4-2 is studied. As shown in the figure this problem has

10 pools, 8 sources, 3 qualities and 4 end-products. Detailed definition of this problem is

provided in Appendix B. The example gas network problem is formulated both as a network

with mixers and splitters and as a classical pooling problem for comparison purposes. Both

formulations are solved with both BARON and the BD solver. Results confirm that both of

the algorithms (BARON and the BD) converge to the global optimum.

The solution times of both the BD and BARON implementation is shown in Table

4.3 for the gas network example. This problem is also solved with a computer having an

Intel 3.20 GHz Xeon processor. As shown in Table 4.3, BARON has still lower solution

times than the BD algorithm even in a problem with less number of bilinear terms than a

comparable pooling problem. However, as expected the difference between solution times

of BARON and the BD decreases as the number of bilinear terms decrease in the problem

with the mixer-splitter formulation.

Figure 4-2: The gas network example

Formulation BARON BD

Gas Network 11.28 38.63
Pooling 13.72 42.91

Table 4.3: Solution times for the gas network problem (in seconds)

It can be seen from Table 4.3, solution times with BARON are lower than the ones

with the proposed BD solver in both formulations. However, an important point to mention

is the decrease in the solution times of the BD algorithm with two different formulations

which confirms the expectations. This example clearly shows that the performance of the

BD algorithm depends on the number of bilinear terms. In other words, as it is realized

in Table 4.2, as the number of bilinear terms increases in the problem, the solution time

difference between BARON and the BD algorithm increases, because as the problem com-

plexity increases the number of iterations required by the BD solver to converge to the

global optimal point increases.

However, when the output and log files of the problems solved in GAMS are inspected,

another important problem affecting the performance of the BD implementation is ob-

served. Since in the BD implementation, to iterate between the primal and master problem,

there is a loop and in every iteration for both primal and master problem GAMS executes

53

compilation and problem generation phases, in other words, in every iteration GAMS ex-

ecutes 2 compilations and 2 problem generations, and considering that the BD algorithm

iterates around 5-6 times to solve an average pooling problem, it incurs a total 10 to 12 com-

pilations and problem generations. In addition, in each iteration we should call BARON

to solve the relaxed master problem globally, these calls also cause executions of compi-

lations and problem generations in GAMS. Moreover, when the number of bilinear terms

increase, the number of iterations of the BD algoritm also increases and as a result the

number of compilations, problem generations and the number of BARON calls to solve the

relaxed master problem in each iteration increases. However, BARON does both compila-

tion and problem generation only once in GAMS. This fact can explain the huge differences

in terms of the solution times between BARON and the BD algorithm when the number of

quality variables increase. Therefore, it is obvious that the proposed BD algorithm which

uses BARON at each iteration cannot compete against BARON in the sense of solution

times. However, CPU times of the BD can still be considered close to BARON's solution

times and it is quite reasonable to assume that by preventing the executions of compilations

and problem generations in each iteration (i.e. changing the implementation such that the

problem generation and compilation occurs only once in the beginning of the execution)

plus with some tweak in the code, it is possible to get lower solution times from the BD

algorithm.

4.3.2 C++ Implementation

Since, GAMS executes compilation and problem generation in each iteration and there is no

way to prevent these executions in GAMS; it is decided to reimplement the BD algorithm

by using C++. The algorithm is implemented in Linux and G++ (version 4.2) is used as the

compiler. As LP solver for the primal problem a subroutine that calls CPLEX 10.2 [21] as

the LP solver is used. However, the main issue is to write a custom B+B solver that can

handle the relaxed master problems. In GAMS, BARON is used to solve bilinear relaxed

master problems, in C++ to solve them, there are two methods, one is to implement a B+B

code and the other one is to use the callable BARON library. The B+B solver implemented

is based on a B+B algorithm developed and implemented by Chaukun Lee in the Process

Systems Engineering Laboratory (PSEL) before.

However, BARON is a mature, commercially available and advanced software. There-

fore, a simple B+B code for the relaxed master problem cannot compete with it even if the

problem generation and compilation repetitions are omitted. There are two advantages of

BARON against a simple B+B algorithm. First one is the range (domain) reduction and

the second one is the tighter convex relaxations. Since range reduction has been presented

as the major feature of the branch and reduce algorithm, it is believed having more direct

effect in terms of solution times, therefore at first range reduction is applied.

Basically, range reduction is the process of eliminating regions from the feasible space

such that the removal does not affect the convergence of the algorithm to a global optimum.

Various techniques for range reduction have been proposed in the literature (Mangasar-

ian & McLiden (1985) [34], Thakur (1990) [46], Lamar (1993) [30], Savelsbergh (1994)

[43], Ryoo & Sahinidis (1996) [39], Shectman & Sahinidis (1998) [44] and Zamora &

Grossmann (1999) [51]), but in this study, in order to be as close to BARON's methods as

possible, a range reduction algorithm proposed in Tawarmalani & Sahinidis (2002) [45] is

used.

Table 4.4 shows the effect of the implementation of the range reduction. Although the

range reduction reduces the solution times almost half comparing to simple B+B algorithm,

it is still slower than BARON which shows that BARON has more weapons to reduce the

solution times and as mentioned one of them is the implementation of tighter convex relax-

ation techniques. The next step would be to implement the tighter relaxation techniques in

the literature to the BD algorithm but then it is decided to use BARON library instead for

convenience and to get quicker results.

In order to use all the advantages of BARON, a callable BARON library is obtained and

Problem BARON BD with B+B BD with B+B (+Ran. Red.)
Haverly 0.01 0.04 0.018
Foulds 1.25 4.12 2.38
Adhya 6.12 19.03 10.25

Example 1 4.27 9.67 5.81
Example 2 21.43 78.11 44.51
Example 3 2.08 5.29 3.13
Example 4 36.36 135.21 82.06

Table 4.4: Solution times in C++ with and without Range Reduction (in seconds)

Problem BARON BD with B+B (+Ran. Red.) BD with BARON lib.

Haverly 0.01 0.018 0.01
Foulds 1.25 2.38 1.42
Adhya 6.12 10.25 7.63

Example 1 4.27 5.81 4.96
Example 2 21.43 44.51 33.42
Example 3 2.08 3.13 2.37
Example 4 36.36 82.06 58.57

Table 4.5: Solution times in C++ (in seconds)

implemented to the C++ code. The main advantages of using the BARON library besides

having all weapons of BARON are convenience and quicker implementation and it still

does not have the problem generation and compilation problem in GAMS. The solution

times and the related discussion of the BD with BARON library to solve the relaxed master

problem are given in the next section.

4.3.3 Results

The GAMS implementation shows that convergence is achieved, hence in the C++ imple-

mentation, only the solution times are taken into discussion. Solution times of the example

problems in the C++ implementation with both the custom B+B code (with range reduc-

tion) and BARON library is given in Table 4.5 with solution times of BARON itself. Again

a computer with Intel 3.20 GHz Xeon processor is used.

Table 4.5 illustrates that BARON still gives better solution times than the BD with both

the custom B+B code (with range reduction) and BARON library. This proves that BARON

is a very powerful software to solve bilinear problems and even by using all the strategies

available, it is almost impossible to get better solution times with the BD algorithm. How-

ever, as mentioned in the first chapter, decomposition algorithms traditionally work more

efficiently than the B+B based algorithms in stochastic programming and the goal of this

study is to model the infrastructure development problem in terms of gas quality variables

and therefore the results in deterministic pooling problems are not that important at this

stage. The real objective of this stage is to develop and implement a working BD algorithm

in order to use it to solve stochastic pooling problems. The reasons behind the author's

expectations about the better efficiency of the BD in stochastic programming are explained

in the next chapter.

58

Chapter 5

Application to the Stochastic Pooling

Problem

5.1 Infrastructure Development Problems in Natural Gas

Value Chain

The prime objective is to solve long-term infrastructure development problems in the nat-

ural gas production industry considering all possible uncertainties and to develop new op-

timization methods, decision support tools for the infrastructure development problem.

Other research objectives are to develop methodology for analysis of robustness, flexi-

bility and risk in long-term infrastructure investments in gas production and to study how

operational flexibility should be incorporated in long term investments and infrastructure

analysis. In addition, it is necessary to demonstrate the methodology for analysis in impor-

tant industrial cases.

The complexity of the problem requires to develop new methodology and mathematical

models for the design, development and operation of infrastructure in natural gas produc-

tion under uncertainty and the main subsystems involved in the model will be the gas field,

the surface processing facilities, the transportation facilities and the markets.

The optimization model thus generated will be a large-scale optimization problem that

will involve a large number of nonconvex functions. Therefore, most probably this prob-

lem will be unsolvable by commercial solvers. Thus, better solution methods should be

explored to solve this problem to global optimality. Hence, it is possible that some theoret-

ical work will be required in optimization theory in the process of solving this problem.

Possible uncertainties in long-term infrastructure development problems in natural gas

production are production profiles and the amount of gas in natural gas fields; gas quality in

terms of heating value, NGL content, LPG content, CO 2content etc. and the demands and

prices for the products of the gas value chain. Some important operational characteristics

of natural gas production networks such as blending and pooling possibilities, contractual

constraints, multiple routing and pipeline options and pressure constraints should also be

considered and incorporated into the production planning problem.

Then, it can be stated that there are three major research challenges that should be

addressed in the long-term infrastructure development problem: uncertainty and decision

flexibility; reaching global optimality of the overall system and combining economical

modeling with the production planning problem.

Uncertainty and decision flexibility is probably the most difficult challenge in a long

term production planning problem. Strategic decision support models for investment anal-

ysis need to capture the long term uncertainty and in addition be able to value short term

operational flexibility since the operational characteristics of initial investments, capacity

expansion and new investments will affect the decisions about the future investments and

capacity expansions.

Another important challenge is to reach optimality for the overall system. The timing

of investments, the inherent flexibility in technology choices and capacity decisions as

well as the location of the infrastructure are examples of decisions that should be analyzed

in a framework considering the overall system rather than a local subproblem to avoid

suboptimization.

The third research challenge is to incorporate economical modeling into the production

planning problem. In order to be able to capture both market driven production and opera-

tion, it is necessary to include the operational decision space of the infrastructure including

using markets to resolve bottlenecks of the infrastructure and dynamic market driven oper-

ation of the infrastructure. In addition, to capture the operational flexibility and limitations

of the system, it may be necessary to include detailed models of the technology.

In order to construct a mathematical model having all the properties of the value chain;

it is necessary to incorporate nonlinear flow and reservoir models, gas quality in the fields,

the contractual framework and LNG/LPG production models into the infrastructure devel-

opment problem with all possible uncertainties. Then, this problem becomes a large-scale

global optimization problem with stochasticity in it.

The first step chosen to start modeling the real value chain is to formulate a simple

model for the production planning problem for a relatively small field and integrate the

gas quality problem to this infrastructure development problem, since there are well known

algorithms to solve large pooling problems and then the possible next step is to solve this

problem at a larger-scale. Then, additional operational rules and uncertainties can be added

to this model in each step.

5.2 Introduction to Stochastic Programming

Stochastic programming is a framework for modeling optimization problems that involve

uncertainty. Whereas deterministic optimization problems are formulated with known

parameters, real world problems almost invariably include some unknown parameters.

Stochastic programming models take advantage of the fact that probability distributions

governing the data are known or can be estimated. The goal is to find some policy that is

feasible for all the possible data instances and maximizes the expectation of some function

of the decisions and the random variables. More generally, such models are formulated,

solved analytically or numerically, and analyzed in order to provide useful information to

a decision-maker.

The most widely applied and studied stochastic programming models are two-stage

linear programs. Here the decision maker takes some action in the first stage, after which a

random event occurs affecting the outcome of the first-stage decision. A recourse decision

can then be made in the second stage that compensates for any bad effects that might have

been experienced as a result of the first-stage decision. The optimal policy from such a

model is a single first-stage policy and a collection of recourse decisions (a decision rule)

defining which second-stage action should be taken in response to each random outcome

[29].

Solution approaches to stochastic programming models are driven by the type of prob-

ability distributions governing the random parameters. A common approach to handling

uncertainty is to define a small number of scenarios to represent the future. In this case

it is possible to compute a solution to the stochastic programming problem by solving

a deterministic equivalent linear program. These problems are typically very large-scale

problems, and so, much research effort has been devoted to developing decomposition al-

gorithms that exploit the problem structure, which decompose large problems into smaller

more tractable components [7].

An alternative solution methodology replaces the random variables by a finite random

sample and solves the resulting deterministic mathematical programming problem. This is

often called an external sampling method. External sampling methods typically take one

sample before applying a mathematical programming method. A number of algorithmic

procedures have been developed to take repeated samples during the course of the algo-

rithm. This is often called the internal sampling method. However, both internal and ex-

ternal sampling methods are still immature, computationally expensive and can only solve

relatively smaller problems [7]. Therefore, decomposition algorithms are preferred to solve

large stochastic programs.

The basic idea behind decomposition algorithms is to decompose complex algorithms

into smaller parts and try to use the fact that solving many simpler programs may be quicker

than solving one large program. These algorithms are effective especially when the sub-

problems are easy to solve. Basically, decomposition algorithms works as shown in Figure

5-1. Each node in the figure represents a subproblem and the algorithm solves each sub-

problem separately and the solutions of parent nodes (represented as xt in the figure and

there is only one parent node in two-stage stochastic programs) are passed to child nodes

and the solutions of child nodes (represented as Qt+ in the figure and there is only one stage

of child nodes in two-stage stochastic programs) are passed to parent nodes and both solu-

tions are updated until they converge. One important point to mention is that the solution

of child nodes have to be functions of the solutions of parent nodes since decisions in the

previous stage always determine the outcome of the problem in the following stage. How-

ever, in most of the stochastic problem formulations, the solutions of parent nodes are also

functions of the solutions of child nodes (For instance, second-stage operational variables

effecting the planning problem in the first stage in infrastructure development problems.).

Detailed information about the formulation of two-stage stochastic programs and solution

techniques can be found in Birge & Louveaux (1994) [7] and Kall & Wallace (1994) [29].

5.3 Importance of Stochastic Pooling Problems in Natural

Gas Infrastructure Development

Natural gas exploration and production is a highly capital-intensive industry. Facilities re-

quired for offshore exploration and production often remain in operation over the entire

life-span of the project, typically 10-30 years and hence the operational use of infrastruc-

ture and the requirements for its design change over time. Therefore, decisions regarding

investment in these facilities affect the profitability of the entire project. Given the large

potential profits and high investments in each project, there is significant interest in de-

Q3(x2, X)

Figure 5-1: Basic illustration of decomposition algorithms in stochastic programming

veloping optimization models for planning in the natural gas exploration and production

industry. A major challenge lies in the fact that decision-makers in this industry have to

deal with a great deal of uncertainty. One of the most important sources of uncertainty is the

quality of reserves. The existence of oil or gas at a site is indicated by seismic surveys and

preliminary exploration tests. However, the actual amount of natural gas in these reserves,

and the efficacy of extracting these remain largely uncertain until after the investments have

been made. Both these factors directly affect the profitability of the project and hence it

is important to consider the impact of these uncertainties when formulating the decision

policy.

The opportunity for blending different sources of natural gas comes into the picture

especially when the natural gas upstream infrastructure is being developed. When new

wells or fields are being developed, it is possible to construct the pipeline system such that

the gas from different wells are mixed together to satisfy the requirements for different

qualities. However to construct the pipeline system optimally, a stochastic version of the

pooling problem where the quality parameters in the wells are not known exactly has to be

solved. Although advancing technology provides necessary tools to predict the content of

the natural gas in different fields during the exploration stage, the content of the natural gas

is still uncertain before drilling the well. Thus, stochastic programming principles has to

be used to achieve an optimum solution in the infrastructure development problem.

5.4 Formulation of the Stochastic Pooling Problem

The problem to be considered as the stochastic pooling problem is to determine a minimum

cost capacity expansion plan for the pooling network which meets demand and quality

requirements and maximizes the operational profits for the natural gas production. Cost in

this problem consists of two components: the initial capital cost of building the pools and

the pipeline network, and the operational costs of the overall system to meet the demands of

customers. Income comes from the sale of the natural gas, which meets the requirements,

to customers. Because of the uncertainty in the quality variables of sources (the actual

impurity levels of natural gas in the reserves are uncertain), the amount of gas in sources,

prices and costs; these variables must be defined in terms of probabilistic measures and

therefore this problem is a stochastic program.

The stochastic pooling problem naturally decomposes into two stages: determining the

optimal investments in pooling capacity and necessary pipeline network, and determin-

ing the operating conditions to meet the customer requirements. The first stage is called

the planning problem and the second stage is called the pooling problem. This natural

decomposition can be exploited by decomposition algorithms. Using decomposition, the

stochastic pooling problem can be divided into smaller problems, a master problem and a

set of recourse subproblems. The master problem, which in this case is a mixed-integer lin-

ear program (MILP), is used to generate trial solutions for the optimal capacity expansion

plan. The subproblems are used to determine the maximum profit operation and meeting

the requirements. Basically, subproblems are deterministic pooling problems (as formu-

lated in Chapter 2) which are solved to maximize the profit after the optimal pooling net-

work is decided by the first stage capacity expansion problem. The planning problem has

originated from the long-term analysis of the electricity transmission and distribution with

price uncertainty. Basically, the planning problem is to make decisions about what to con-

struct, where to construct and how many (much) to construct. The pooling problem forms

the second stage. After the planning problem is solved at the first stage and the number of

pools and connections to and from them (into the sources and end-product nodes) are de-

cided by the solution of the planning problem; the pooling problem is solved as the second

stage and profit is maximized.

The stochastic pooling problem can be solved iteratively, by decomposition algorithms,

by alternately solving the master problem and the subproblems until an optimum is found.

In this way, the complex nonlinear program for stochastic pooling problem is reduced to

iterative solution of a MILP and a set of bilinear programs which reminds exactly the

methodology of the proposed BD algorithm to find global optimum. Therefore, the BD

algorithm can directly be used to solve stochastic pooling problems.

One of the most important issues in the stochastic version of the pooling problem is that

in the literature, proof of convergence for two-stage stochastic programs is only provided

for problems with a convex second stage. Unfortunately, the pooling problem is a noncon-

vex problem and hence the proofs from the literature cannot be applied directly to prove

the convergence of the stochastic pooling problem. However, the BD algorithm guarantees

to converge to global optimum in deterministic pooling problem and therefore, it is applied

to the stochastic version without any proof of convergence, but as a future work global

convergence for the BD algorithm in stochastic pooling problem has to be proved.

As explained, the first stage planning problem, which is an MILP, is to solve the optimal

capacity expansion plan and can be represented mathematically as follows:

P n P p r ns
min Ub+ I X Xa j+ Yjk Sjk prhPPh(U,X,Y) (5.1)

j=1 i=lj=l1 j=lk=l h=l

s.t. Yk- Uj < , j= 1,...,p (5.2)

Xij - U < 0, j= 1,...,p (5.3)

Ui,Xij, Yjk E {o0, 1}

In this representation, the problem consists of n sources, p pools, r end-products and ns

stands for the number of possible scenarios, where i is the index for sources,j is the index

for pools, k is the index for products and h is the index for the scenarios. Moreover, Uj is

the binary variable to indicate if the poolj is included in the network or not (1 if the pool

is constructed and active, 0 if not constructed); Xij is the binary variable to indicate if the

pipeline from source i to poolj is included in the network or not (1 if the pipe is constructed

and active, 0 if not constructed); Yjk is the binary variable to indicate if the pipeline from

poolj to end-product k is included in the network or not (1 if the pipe is constructed and

active, 0 if not constructed). PPh represents the operational cost function of the pooling

network in scenario h (i.e. PPh is the objective function of the second stage problem for

the scenario number h.) and prh is the corresponding probability of the scenario h (i.e.

prh represents the probability of scenario h to happen.). In addition, parameters in this

representation are listed in Table 5.1.

Parameter Definition

bj the investment cost of the poolj

aij the investment cost of the pipeline from the source i to the poolj

Sjk the investment cost of the pipeline from the poolj to the end-product k

PPh operational cost function of the pooling network in scenario h

n total number of sources

p total number of pools

r total number of end-products

ns total number of possible scenarios

prh probability of the scenario h

Table 5.1: Parameters and corresponding definitions for the first stage problem

As mentioned, the first stage problem determines the optimal investments in a pooling

network that satisfies the given requirements and in the mathematical formulation of this

problem, the objective function represents the total cost of the investments including the

cost of constructing new pools and installing pipelines from sources to pools and from

pools to demands. (5.2) and (5.3) ensure that if the pool j is not active (i.e. Uj = 0),

the pipelines that connect the pool j to sources and demands cannot be active. As the

planning problem formulation clearly shows, operational costs, profits and flow constraints

are not included. In other words, the planning problem is only formulated to minimize

the investment costs by considering the operational costs of the pooling network. On the

other hand, the second stage problem determines the optimal operating conditions to meet

the customer requirements. Formulation of the pooling problem in the second stage is

basically same as the formulation in the deterministic case. The second stage problem is

a general pooling problem with n sources, p pools, r products and 1 quality parameters.

In this representation, i is the index for sources, j is the index for pools, k is the index

for products and w is the index for qualities. In addition, fij is the variable for the total

flow from the it h source into pool j; qjw is the variable for the wth quality component of

poolj and xjk is the variable for the total flow from thejth pool to product k. Again, Uj is

the binary variable to indicate if the pool j is included in the network or not (1 if the pool

is constructed and active, 0 if not constructed); Xij is the binary variable to indicate if the

pipeline from source i to poolj is included in the network or not (1 if the pipe is constructed

and active, 0 if not constructed); Yjk is the binary variable to indicate if the pipeline from

pool j to end-product k is included in the network or not (1 if the pipe is constructed and

active, 0 if not constructed). Xijw is the wth quality component of the flow from the ith

source into poolj. Also, necessary parameters in this representation are listed in Table 5.2.

Parameter Definition

Cij cost of the flow from the ith source into poolj

dk unit price of product k

/ total number of component qualities

n total number of sources

p total number of pools

r total number of end-products

Sk demand requirement for product k

Zkw wthquality requirement for product k

Shw wth quality component of the flow from the ith source into poolj in scenario h

Table 5.2: Parameters and corresponding definitions for the second stage problem

Then, for the scenario number h, the mathematical representation of the second stage

pooling problem becomes:

P n r p

PPh(U,X,Y)= minm ijch - dk kx'k
f,xh,qh j=1 i=1 k=1 j=1

nl r

s.t. XiJf - Ykxk = 0,

i=1 k= 1

r

h

k=l

n

Y kX k - X 2LXif/ - 0,
i=-

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

p

k Y, k- Sk < 0,
j=1

P P

qYjkxjk - Zkw h jkx
j=i j=1

Xfj ~ j < i _ ,

L 1 -qw < K

Y q <k q < Yqkx ,

In this formulation, the objective function represents the difference between the cost

of the flow from the source nodes and the returns from selling the end-products. (5.5)

represents the mass balances for each active pool. (5.6) expresses the mass balance for

each quality component. (5.7) ensures that the flows to each end-product node do not

exceed the demands. (5.8) enforces that the quality requirements are satisfied at each end-

product node. Moreover, binary variables indicating whether the pipelines are active or not

(namely, Xij and Yjk) are added as multipliers to the lower and upper bounds of the flow

variables (into the pools and from the pools respectively) in order to to set flow variables to

j = 1,...,p

j=l ,...,p; w=l,...,l

k = 1, ... , r; w = 1,...,l

i = 1, ... , n ; j = 1, ... , p

j= 1,...,p; w = 1,...,l

j = 1,..., p; k= 1,...,r

zero in pipelines that do not exist.

In the stochastic pooling problem formulation, it is possible to set any combination of

the network parameters as the uncertain parameters (e.g. demand requirements for prod-

ucts, quality requirement for product, prices, costs or quality parameters at sources) after

excluding the known parameters which are provided or measured before formulating the

problem. Actually, in reality, all of the parameters in the pooling problem are uncertain

and hence this problem is a very difficult stochastic program. However, for convenience

and better understanding of the performance of the proposed BD algorithm, in all example

problems of this study, only the quality parameters of the flow from the sources into the

pools are taken as uncertain parameters and the remaining parameters are held constant for

all possible scenarios as explained in the next section. It is also important to mention here

the fact that the second stage problem in the stochastic pooling problem formulation is a

bilinear and hence nonconvex problem which makes this problem harder to solve.

5.5 Implementation of the BD Algorithm in Stochastic Pool-

ing Problems

With a finite number of scenarios, two-stage stochastic programs can be modeled as large

linear or nonlinear programming problems. This formulation is called the deterministic

equivalent. Strictly speaking a deterministic equivalent is any mathematical program that

can be used to compute the optimal first-stage decision, so these will exist for continuous

probability distributions as well, when one can represent the second-stage in some closed

form [29]. After formulating both stages, the stochastic pooling problem is reformulated to

a single stage (i.e. deterministic equivalent) by using the basic conversion techniques which

are discussed in Birge & Louveaux (1994) [7] and Kall & Wallace (1994) [29] and the

resulting problem becomes a mixed-integer nonlinear program (MINLP). Since the second

stage optimization variables (namely, f, q and x) are not functions of uncertain parameters

(X in the example problems of this study) in the stochastic pooling program formulation,

it is not necessary to introduce new second stage variables during reformulation [7] and

therefore, the reformulation of the two stage stochastic pooling problem as a single stage

MINLP (deterministic equivalent) can be written simply as (definitions of the variables and

parameters in this formulation are given in the previous section):

P n p p r ns p n r p
min Ujbj + Xijaij ++ YjkSjk+ Iprh(Xi d kh Y kXk)

UX,Y,f,x,q j-iIj hI k jj= 1 i=lj=l j= k= h=l j=1 i=1 k=l j=
(5.9)

s.t. Yk-U 0, (5.10)

Xi - U < 0 o

n

XXij /- Yjkxk = 0,
i=1 k=l

r n
h

qjw kxk h = 0
k=l i=1

P

Y k - Sk < 0o
'j=1

P P

qw Yjkxjk - Zkw I Yjkx k < ,
j=1 j=1

(5.11)

(5.12)

(5.14)

j = 1, ... , p

j = 1,...,p; h - 1, ... , ns

j = 1, ... , p; w = 1, ... , 1; h = 1,...,ns (5.13)

k = 1, ... , r; h = 1, ... , ns

k= , ... ,r; w = , ... ,1; h = , ... , ns (5.15)

Uj,Xi, Yjk E {0, 1)

X ' j :. < f' X -n

Xijf ; jfj , i ,..., j ,..., p

q -< qw - q ,- j = l,...,p; w=

YjkXik kXjk <_ j = 1,..., p; k =1,...

It is necessary to note here that the equations (5.12), (5.13), (5.14) and (5.15) have to

be repeated for every scenario. In other words, for each scenario there are 4 constraints

from the second stage problem. Therefore, the number of bilinear terms increases with the

number of scenarios as well as the number of quality variables in each problem. Hence,

the number of scenarios directly affects the solution times of the problem and as the total

number of possible scenarios increase, the problem becomes harder to solve.

As the next step, the proposed BD algorithm is used to solve example stochastic pool-

ing problems to verify the convergence of the algorithm and to check its performance.

Although the essential methodology is same, the BD algorithm for stochastic pooling prob-

lems has to be slightly different than the one to solve deterministic pooling problems. In

deterministic pooling problems, the BD algorithm decomposes problem into two smaller

problems: primal problem (linear program) and relaxed master problem (nonlinear pro-

gram in bilinear problems) and as in the deterministic case, also in the stochastic pooling

problems the BD algorithm decomposes the problem into smaller problems for easy and

quick solution process. However, in stochastic case, there are two sets of decisions that

are made in consecutive stages and this structure naturally forms a mixed-integer first stage

problem and a set of smaller bilinear second stage problems and since this natural structure

of decomposition is different than the deterministic case, the proposed BD algorithm to

solve stochastic pooling problems has some changes from the deterministic version. The

main difference between the stochastic and the deterministic versions is the process of

the formation of cuts in each iteration. In the deterministic version of the BD algorithm,

the additional cuts are generated for the bilinear relaxed master problem in each iteration;

however, in the stochastic version, the additional cuts are generated not for the bilinear

subproblems but for the MILP first stage problem.

Before explaining the BD algorithm for stochastic pooling problems in detail, first of

all, in order to be consistent with the stochastic programming literature, the first stage

optimal planning problem is called the master problem and the second stage optimal op-

erational problems are called the subproblems. The BD algorithm to solve the stochastic

version of this problem can be formulated as follows: A typical iteration starts with the

master problem without the additional cost coming from the subproblems (last summation

in 5.1). In other words, in the intial master problem, only first stage decision variables are

considered and the effect of the second stage variables to the first stage is neglected. The

binary vectors from solution of the master problem (U*, X*, Y*) are fixed as the first stage

decision variables and subproblems for all scenarios are solved with these fixed decision

vectors. The objective function value of the master problem with U*, X* and Y* plus the

summation of the objective functions of each subproblem times its probability (as explained

in the problem formulation, a probability value is assigned to each scenario (subproblem).)

updates the upper bound (UBD) value, if it is lower than the previous UBD. Then additional

cuts are formed in the master problem by using the solutions of the subproblems and the

master problem are solved again with these additional cuts. The new solution of the master

problem provides new binary vectors (i.e. U*, X' and Y* are updated after master prob-

lem is solved with additional cuts.). The objective function value of this updated master

problem updates the lower bound (LBD) value, if it is higher than the previous LBD. Then

the algorithm iterates and all of the subproblems are solved again with these new first stage

decision values and a new UBD (if necessary), plus additional cuts for the master problem

are determined. The algorithm iterates until the lower bound value becomes higher than the

upper bound value. In other words, the solutions of the subproblems are used to find the

upper bound (UBD); the solution of the relaxed master problem is used to find the lower

bound (LBD). When LBD>UBD, algorithm terminates. A detailed description of the BD

algorithm for stochastic pooling problems is provided in Algorithm 2.

A crucial point to note is that the subproblems in stochastic pooling problems are sim-

ply deterministic pooling problems (which are bilinear problems) since all binary first stage

decision variables are already fixed. Therefore, it is necessary to use a global solver to solve

the subproblems and since the proposed BD algorithm for the solution of the deterministic

pooling problems is shown to converge to global optimum, it is used to solve the sub-

problems in the stochastic pooling problems. In other words, in the implementation, the

proposed BD algorithm calls itself to solve the subproblems for every scenario. The rea-

son behind using the BD algorithm is the size of the stochastic pooling problems. Even the

largest deterministic pooling problem example solved in this study can be accepted as small

compared to the stochastic pooling problems since the stochastic ones have large number

of scenarios and each scenario itself is a large pooling problem and the BD algorithm has

advantages over any B+B based global optimization algorithm in large problems since it

decomposes very large problems into a number of smaller, more manageable problems in-

stead of solving it as a whole. Hence, the BD algorithm proposed for the deterministic

pooling problems is used as the solver for subproblems and it provides both a background

for developing the BD algorithm for stochastic pooling problems and a tool to solve the

subproblems in the stochastic version of the BD algorithm.

Another important change in the implementation of the stochastic version of the algo-

rithm is the MILP solver since the LP solver (CPLEX [21]) in the BD implementation can

also be used as MILP solver with appropriate parameters. It is important to note that to

solve the subproblems, the BD implementation in C++ with the callable BARON library

for the relaxed master problem is used as the BD solver in the stochastic implementation

of the BD algorithm since it provides the best performance in the deterministic case.

To validate that the proposed algorithm works for stochastic pooling problems, 4 exam-

ple pooling problems (which were created by the author) are solved. Example I has 1 pool,

3 sources, 2 end-products; Example 2 has 2 pools, 5 sources, 3 end-products; Example 3

has 8 sources, 4 pools, 5 end-products whereas Example 4 has 12 sources, 10 pools and

8 end-products. In all examples, only the quality parameters at source nodes are assumed

as uncertain variables for convenience and all problems are solved with one, two and three

quality variables. More information for both of these example problems including qual-

ity specs, demand requirements and cost coefficients are given in Appendix C. Again, for

comparison purposes BARON Version 7.8 [42] is used as the other solver. To solve the ex-

ample problems with BARON, their deterministic equivalent formulations are used, since

BARON is not based on a decomposition algorithm. But, historically, B+B solvers are not

very successful in solving stochastic programs, hence it is expected that the proposed BD

algorithm may provide better results in stochastic pooling problem.

One of the principal practical difficulties with stochastic programming is that the num-

ber of possible scenarios is often large, leading to a large number of subproblems. A

number of remedies have been proposed, including the use of random sampling to gener-

ate only a representative set of scenarios. However, still the solution of large stochastic

problems is extremely difficult. Thus, easy examples with limited number of scenarios and

uncertain parameters are selected in this study, since the initial goal is to show the proposed

BD algorithm is suitable for stochastic pooling problems.

5.6 Results

All 4 examples are solved with 1, 2 and 3 uncertain quality variables. The solution times

are given in Table 5.3, 5.4 and 5.5 for 1, 2 and 3 uncertain quality variables respectively.

Algorithm 2 Benders decomposition algorithm for stochastic pooling problems
{ INITIALIZATION }
i (iteration) := 1, UBD := INF, LBD := -INF; C := Total Number of Scenarios;
{STEP 1: INITIAL MILP MASTER PROBLEM}

Solve Master Problem
min bTU + aTX + sTy
U,X,Y

s.t BU+AX+SY < O

Let the solution be U* (i), X* (i), Y* (i)

{STEP 2: NLP SUBPROBLEMS}

for h -= toC
Solve Subproblem h (obj. function is PPh(U* (i),X* (i), Y*) (i))
Let the solution be <f (i), qh (i) and x (i) Let the objective function be PPh (i)
end for
if bTU* (i) + aTX* (i) + sTy* (i) + C I prhPPh (i) < UBD then,
{RECORD BETTER SOLUTION}

UBD := bTU* (i) + aTX* (i) + sTY* (i) -C1 prhPPh (i). end if (pr(h) is the probability
of the scenario h)
{ STEP 3: MILP MASTER PROBLEM } Solve Master Problem

min bTU + aTX +sTY 0

s.t BU+AX+SY < O

C

0 > I prhPh
h=

Let the solution be 0 (i), i (i), Y (i), then U* (i) -= (i), X* (i) = k(i), Y* (i) = Y (i)
emphif bTU* (i) +aTX* (i) +sTy* (i) + 6* (i) > LBD then,
{RECORD BETTER SOLUTION}

LBD := bTU* (i) + aTX* (i) +sTy* (i) + 0* (i). end if
if LBD > UBD then, STOP.

else, i := i+1, Go to STEP 2. end if
{END OF ALGORITHM}

Problem BD BARON

Example 1 7 1
Example 2 17 4

Example 3 23 11
Example 4 36 20

Table 5.3: Solution times of stochastic pooling
minutes)

problems with one quality variable (in

Problem BD BARON
Example 1 20 4
Example 2 55 13
Example 3 66 30
Example 4 No. Sol. INF

Table 5.4: Solution times of stochastic pooling problems with two quality variables (in
minutes)

All solutions are done in a computer with Intel 3.20 GHz Xeon processor.

The results clearly show that BARON provides better solution times than the BD al-

gorithm. However, as the problems get complicated and number of variables increases the

difference between the BD and BARON in terms of solution times decreases. This looks

promising since the real planning problems that we are interested in are much larger than

these examples. But, another observation is as problems get complicated, the BD algorithm

gives no solution especially for more than one quality cases. Especially Example 4 with 12

sources, 10 pools and 8 end-products is a very complex problem and as shown in the Ta-

bles with more than one quality cases both algorithms struggle to solve Example 4. There

are tighter bounding techniques available for stochastic programs, two most important of

all are Edmundson-Madansky Bounds and Jensen Bounds. These techniques could help to

Table 5.5: Solution times
minutes)

Problem BD BARON
Example 1 58 10
Example 2 92 25
Example 3 152 78
Example 4 No. Sol. INF

of stochastic pooling problems with three quality variables (in

reduce the solution times and solve larger problems with the BD algorithm, but, both of

them proved to provide tighter relaxations only for convex stochastic programs. Therefore,

in the next phase of the project, development of tighter relaxations for nonconvex stochas-

tic programs will be the objective. Author believes that a decomposition algorithm with

tighter bounds and an optimized code has still a better chance to solve stochastic problems

than a B+B algorithm.

Moreover, since all of these examples are not real cases and created by the author as

examples, it becomes difficult to create feasible examples as the problems get complicated.

Complex examples such as Example 4 has many parameters to be adjusted in order to

get a feasible problem and no one can guarantee the correctness of these parameters and

the feasibility of the problem. Infeasibilities occur during the analysis process and one

cannot determine whether these infeasibilities are results of incorrect parameters given by

the author or the formulation itself. Therefore, it is crucial to look for the methods to

generate feasible problems before proceeding further into the bounding techniques. Hence,

as explained in the next chapter, the next step in this study will be to develop techniques to

generate feasible problems automatically.

80

Chapter 6

Conclusion

The prime objective of this project is to solve the long term infrastructure development

problem in the natural gas production industry with considering most of the possible un-

certainties and to develop new optimization methods, decision support tools for the infras-

tructure development problem. In addition, it is necessary to demonstrate the methodology

for analysis in important industrial cases. The complexity of the problem requires to de-

velop new methodology and mathematical model for the design, development and opera-

tion of infrastructure in natural gas production under uncertainty and the main subsystems

involved in the model will be the gas field, the surface processing facilities, the transporta-

tion facilities and the markets.

This is a very difficult goal to achieve when considering the requirement of huge math-

ematical models to be as close as possible to reality. Therefore, it is decided to start from

relatively smaller problems by assuming most of the variables are known parameters and

try to deal with only one aspect of the whole value chain. Because of the reasons explained

above, the first stage in this project is chosen to be the planning problem only considering

the pooling and blending of the natural gas from different fields with uncertain quality vari-

ables. To solve even this relatively small model a new BD algorithm has to be proposed

because of the nonconvexity of the pooling problem.

In conclusion, it can be stated that for the pooling problems, the proposed BD algo-

rithm which assumes the bilinear terms as complicating variables as a whole, is proven

to converge to global optimal solution for all tested starting points regardless of the size

of the problem. The BD algorithm is shown to be working for all example pooling prob-

lems without any problem and converges to a global optimum in all examples. But, the

results illustrate that BARON gives better solution times than the BD implemented both

in GAMS and in C++ with both custom B+B code (with range reduction) and BARON

library. However, decomposition algorithms work better than the B+B based algorithms

in stochastic programming and the goal of this study is to model the infrastructure devel-

opment problem in terms of gas quality variables and therefore the results in deterministic

pooling problems are not that important for this study.

The main goal of this study is to develop and implement a working BD algorithm in

order to use it to solve stochastic pooling problems. Therefore, the proposed BD algorithm

is used to solve simple planning problem examples in order to check the convergence and

compare the solution times with BARON. The results clearly show that both BARON and

the BD algorithm converges to same global optimum in most of the problems (in couple

of complicated problems the BD algorithm cannot converge). However, BARON provides

better solution times than the BD algorithm. However, as the problems get complicated

and number of variables increases the difference between the BD and BARON in terms of

solution times decreases. This looks promising since the real planning problems that we

are interested in are much larger than these examples.

This project is still in progress and will continue as a PhD project and as the future work,

the next step will be, as mentioned, to look for the possibility of tighter relaxations for non-

convex stochastic programs and methods to generate feasible problems before proceeding

further into the bounding techniques. After having an efficiently working BD algorithm

for stochastic pooling problem, the long term objective is to have a more realistic model

of the infrastructure development problem by adding more features to the basic stochastic

82

pooling problem step by step and develop the BD algorithm so it can handle these large

scale stochastic programs.

84

Appendix A

Example Pooling Problems

To validate the algorithm and check its performance, 7 example pooling problems are

solved with both the proposed BD algorithm and BARON [42]. 3 of these example prob-

lems are taken directly from the literature (Haverly's, Adhya's and Fould's pooling prob-

lems), the remaining 4 problems are created by the author to check the performance of the

algorithm in more complex pooling problems. In this chapter, detailed information is pre-

sented about these example problems including quality specs, demand requirements, cost

coefficients and GAMS implementations. Since Haverly's pooling problem is formulated

in detail in Chapter 2, this chapter excludes it and contains remaining 6 problems.

A.1 Adhya's Pooling Problem

One of the example problems used is taken from Adhya et. al. (1999) [1]. In this problem,

the number of pools is 7, the number of sources is 8, the number of qualities is 4 and the

number of end-products is 4. Necessary parameters (quality parameters, costs, prices and

demand requirements) to construct this problem is given in Tables A. 1, A.2, A.3, A.4 and

A.5. GAMS implementation of Adhya's problem is also provided at the end of this Chapter.

Source quality parameters
Sources Qualities

1 2 3 4
1 0.5 1.9 1.3 1
2 1.4 1.8 1.7 1.6
3 1.2 1.9 1.4 1.4
4 1.5 1.2 1.7 1.3
5 1.6 1.8 1.6 2
6 1.2 1.1 1.4 2
7 1.5 1.5 1.5 1.5
8 1.4 1.6 1.2 3

Table A. 1: Quality parameters in source nodes for Adhya's problem

Source costs
Sources Costs

1 15
2 7
3 4
4 5
5 6
6 3
7 5
8 7

Table A.2: Cost parameters in source nodes for Adhya's problem

Products Qualities
1 2 3 4

1 2 2.2 2.25 1.1
2 3 1.4 2.5 0.6
3 1.5 1 2.9 1.9
4 2 3 0.75 0.5

Table A.3: Quality requirements in demand nodes for Adhya's problem

Demand flow requirements
Products Max. flow

1 30
2 25
3 75
4 50

Table A.4: Flow requirements in demand nodes for Adhya's problem

Demand quality requirements

Table A.5: Prices in demand nodes for Adhya's problem

Source quality parameters
Sources Qualities

1 1
2 1.1
3 1.2
4 1.3
5 1.1
6 1.2
7 1.3
8 1.4
9 1.2
10 1.3
11 1.4
12 1.5
13 1.6
14 1.3

Table A.6: Quality parameters in source nodes for Foulds' problem

A.2 Foulds' Pooling Problem

Another example problem is taken from Foulds et. al. (1992) [12]. In Foulds' problem,

the number of pools is 8; the number of sources is 14, the number of qualities is 1 and the

number of end-products is 6. Necessary parameters (quality parameters, costs, prices and

demand requirements) to construct this problem is given in Tables A.6, A.7, A.8, A.9 and

A. 10. GAMS implementation of this problem is also provided at the end of this Chapter.

Source costs
Sources Costs

1 20
2 19
3 18
4 17
5 19
6 18
7 17
8 16
9 18
10 17
11 16
12 15
13 17
14 16

Table A.7: Cost parameters in source nodes for Foulds' problem

Demand quality requirements
Products Qualities

1 1.05
2 1.1
3 1.15
4 1.2
5 1.25
6 1.3

Table A.8: Quality requirements in demand nodes for Foulds' problem

Demand flow requirements
Products Max. flow

1 30
2 29
3 28
4 27
5 26
6 25

Table A.9: Flow requirements in demand nodes for Foulds' problem

Prices

Products Prices
1 20
2 19.5
3 19
4 18.5
5 18
6 17.5

Table A. 10: Prices in demand nodes for Foulds' problem

A.3 Example 1

The first example problem (Example 1) has 14 pools, 18 sources, I quality and 9 end-

products. Necessary parameters (quality parameters, costs, prices and demand require-

ments) to construct this problem is given in Tables A.11, A.12, A.13, A.14 and A.15.

GAMS implementation of this problem is also provided at the end of this Chapter.

A.4 Example 2

The second example problem (Example 2) has 14 pools, 18 sources, 6 qualities and 9 end-

products. Necessary parameters (quality parameters, costs, prices and demand require-

ments) to construct this problem is given in Tables A.16, A.17, A.18, A.19 and A.20.

GAMS implementation of this problem is also provided at the end of this Chapter.

A.5 Example 3

The third example problem (Example 3) has 16 sources, 10 pools, 6 end-products and

1 quality variable. Necessary parameters (quality parameters, costs, prices and demand

requirements) to construct this problem is given in Tables A.21, A.22, A.23, A.24 and

A.25. GAMS implementation of this problem is also provided at the end of this Chapter.

Source quality parameters
Sources Qualities

1 1.8
2 2
3 2.2
4 1.3
5 1.4
6 1
7 1.6
8 0.8
9 3
10 3.2
11 3.4
12 3.5
13 2.6
14 1.8
15 2.7
16 1.5
17 2.6
18 1.9

Table A. 11: Quality parameters in source nodes for Example 1

A.6 Example 4

The fourth example problem (Example 4) Example 4 has 16 sources, 10 pools, 6 end-

products and 8 qualities. Necessary parameters (quality parameters, costs, prices and de-

mand requirements) to.construct this problem is given in Tables A.26, A.27, A.28, A.29 and

A.30. GAMS implementation of this problem is also provided at the end of this Chapter.

Source costs
Sources Costs

1 10
2 5
3 6
4 8
5 13
6 25
7 16
8 18
9 35
10 5
11 20
12 15
13 11
14 24
15 20
16 25
17 10
18 14

Table A. 12: Cost parameters in source nodes for Example 1

Demand quality requirements
Products Qualities

1 3
2 2.1
3 1.5
4 1.2
5 2.6
6 2.5
7 1
8 1.75
9 3.2

Table A. 13: Quality requirements in demand nodes for Example 1

Demand flow requirements
Products Max. flow

1 75
2 85
3 80
4 50
5 130
6 120
7 100
8 90
9 95

Table A. 14: Flow requirements in demand nodes for Example 1

Prices
Products Prices

1 30
2 15
3 25
4 40
5 30
6 35
7 22
8 10
9 15

Table A. 15: Prices in demand nodes for Example 1

92

Source quality parameters
Sources Qualities

1 2 3 4 5 6
1 1.8 2.9 1.5 3 0.8 1.4
2 2.2 4.8 3.8 4.6 2.7 3.6
3 2 5 3 2.4 4 2
4 1.5 3.2 2.7 2.5 1.7 0.9
5 3.6 2.8 0.6 2 3.1 2
6 3.2 4.1 1.4 2.8 0.8 4.8
7 4 5 1.5 3.5 4.2 2.1
8 4.5 1.6 2.2 3.8 1.2 3
9 0.8 1.9 1.3 4 1.3 1.6
10 1.4 0.8 1.7 2.6 3.7 1.9
11 2.2 1.9 1.4 1 3.4 5
12 1.5 1 3.7 4.3 3.7 0.8
13 2.6 2.8 1.6 2.4 3.6 2
14 1.2 3.1 1.4 2.8 1 2.6
15 1.9 1.5 3.2 0.8 1.8 3.5
16 2.4 1.8 5 4 2.2 3
17 3.5 2.5 1.8 3.6 5 4.6
18 4.4 2.6 1.2 3 4.2 4

Table A. 16: Quality parameters in source nodes for Example 2

Source costs

Sources Costs
1 10
2 5
3 6
4 8
5 13
6 25
7 16
8 18
9 35
10 5
11 20
12 15
13 11
14 24
15 20
16 25
17 10
18 14

Table A. 17: Cost parameters in source nodes for Example 2

Demand quality requirements
Products Qualities

1 2 3 4 5 6
1 3.5 2.9 0.9 3.2 1.8 2.4
2 4.2 4 3.8 2.6 1.7 3
3 2.5 4.8 3.1 4.4 3.7 2.6
4 0.8 1.2 3.7 4.2 4.6 1.8
5 2.6 2 2.4 4 3 2.2
6 3.5 4 1 3.8 0.8 4
7 4 5 2.2 1.9 0.9 3
8 1.5 0.8 3.2 3.8 4.5 3.8
9 2.6 3.9 4.5 4.2 0.8 2.2

Table A. 18: Quality requirements in demand nodes for Example 2

Demand flow requirements
Products Max. flow

1 75
2 85
3 80
4 50
5 130
6 120
7 100
8 90
9 95

Table A. 19: Flow requirements in demand nodes for Example 2

Prices
Products Prices

1 30
2 15
3 25
4 40
5 30
6 35
7 22
8 10
9 15

Table A.20: Prices in demand nodes for Example 2

Source quality parameters
Sources Qualities

1 3
2 4
3 4.2
4 3.3
5 1
6 2.2
7 2.6
8 3.8
9 4
10 5
11 5.2
12 0.8
13 1.6
14 1
15 1.9
16 3.5

Table A.21: Quality parameters in source nodes for Example 3

Source costs
Sources Costs

1 30
2 40
3 45
4 38
5 18
6 30
7 32
8 45
9 55
10 50
11 20
12 19
13 20
14 28
15 30
16 45

Table A.22: Cost parameters in source nodes for Example 3

Demand quality requirements
Products Qualities

1 3
2 2.5
3 4.5
4 5
5 3.6
6 4

Table A.23: Quality requirements in demand nodes for Example 3

Demand flow requirements
Products Max. flow

1 50
2 20
3 25
4 40
5 30
6 60

Table A.24: Flow requirements in demand nodes for Example 3

Prices
Products Prices

1 80
2 90
3 25
4 30
5 40
6 75

Table A.25: Prices in demand nodes for Example 3

Source quality parameters
Sources Qualities

1 2 3 4 5 6 7 8
1 4 4.5 5 3.1 0.8 1.4 2.8 4.1
2 3.2 3.8 1 4 2.2 4.6 3 1.6
3 2.5 5.6 2.6 2.9 4 5 2 1
4 3.2 5.2 4.7 2 1.5 4 0.8 5
5 3 1.8 0.2 2 3.5 3 4.2 1.9
6 3.8 4 6 2.8 4.5 5.8 3.4 4.6
7 4 5.2 4.5 3.5 2 2 2.8 1
8 4.5 2.6 5.2 3.8 6.2 2.3 0.5 1.5
9 4.8 0.8 0.3 4 1.9 0.6 0.9 4
10 1 3.1 2 2.6 0.7 1 5 1.2
11 2.8 1 4.4 1 5.4 5.1 4 1
12 1.5 4.1 4.7 5.3 3.7 1 1.8 0.6
13 0.6 3 5.8 1.4 3.6 0.2 2 2.5
14 1.6 3.8 0.9 3.8 1 0.6 3 5
15 3.9 4.5 4.2 4 1.8 5.5 1.2 4.6
16 4.4 4.8 5.2 2.9 4.2 4.5 1.5 3.1

Table A.26: Quality parameters in source nodes for Example 4

Source costs
Sources Costs

1 30
2 40
3 45
4 38
5 18
6 30
7 32
8 45
9 55
10 50
11 20
12 19
13 20
14 28
15 30
16 45

Table A.27: Cost parameters in source nodes for Example 4

Demand quality requirements

Products Qualities
1 2 3 4 5 6 7 8

1 3.6 5 2.8 3.4 2.6 4.4 4 3
2 4 4.6 5.8 2.6 6 5 5 2.5
3 5.5 4.8 3.4 4.5 3.5 3.6 2.8 3.6
4 2.8 5.2 3.9 1.5 4 4.8 1.8 4.6
5 3.6 2.1 2.8 4 3 4.2 1 2
6 4 0.4 1 3 0.8 4.6 0.5 1.5

Table A.28: Quality requirements in demand nodes for Example 4

Demand flow requirements
Products Max. flow

1 50
2 20
3 25
4 40
5 30
6 60

Table A.29: Flow requirements in demand nodes for Example 4

Prices
Products Prices

1 80
2 90
3 25
4 30
5 40
6 75

Table A.30: Prices in demand nodes for Example 4

GAMS Implementation of Adhya's Pooling Problem

$ontext

Gams Model of Adhya's Pooling Problem

Author: Emre Armagan

Date: June, 2007

$offtext

$eolcom #

Set Declarations

set comp /1*8/;

set pro /1*4/;

set qual /1*4/;

set pool /1*7/;

components related parameters

table compparams(comp,*)
1 2 3

1 0 75 15

2 0 75 7

3 0 75 4

4 0 75 5

5 0 75 6

6 0 75 3

7 0 75 5

8 0 75 7 ;

parameters cl(comp), cu(comp), cprice(comp);

cl(comp) = compparams(comp, 1');

cu(comp) = compparams(comp,'2');

cprice(comp) = compparams(comp,'3');

table cqual(comp,qual)

1 2 3 4

1 0.5 1.9 1.3 1

2 1.4 1.8 1.7 1.6

3 1.2 1.9 1.4 1.4

4 1.5 1.2 1.7 1.3

5 1.6 1.8 1.6 2

6 1.2 1.1 1.4 2

7 1.5 1.5 1.5 1.5

8 1.4 1.6 1.2 3;

100

pool related parameters
parameters psize(pool);

psize(pool) = 75;

product related parameters
table prodparams(pro,*)

1 2 3
1 0 30 16

2 0 25 25
3 0 75 10

4 0 50 25 ;

parameters prl(pro), pru(pro), pprice(pro);
prl(pro) = prodparams(pro,'1');
pru(pro) = prodparams(pro,'2');
pprice(pro) = prodparams(pro, '3');

parameter pqlbd(pro, qual);
pqlbd(pro, qual) = 0;

table pqubd(pro, qual)
1 2 3 4

1 2 2.2 2.25 1.1

2 3 1.4 2.5 0.6

3 1.5 1 2.9 1.9

4 2 3 0.75 0.5;

network related parameters

table ubq(comp, pool)

1 2 3 4 5 6 7
1 1 0 0 1 0 1 0
2 1 0 0 1 1 0 1
3 0 1 0 0 0 0 1
4 0 1 0 0 1 1 0
5 0 1 0 0 1 0 1
6 0 0 1 0 0 0 1
7 0 0 1 0 0 1 0
8 0 0 1 1 0 1 0;

parameter ubz(comp, pro);

ubz(comp, pro) = 0;

$include pool.gms

101

GAMS Implementation of Foulds' Pooling Problem

$ontext
Gams Model of Foulds' Pooling Problem

Author: Emre Armagan

Date: June, 2007

$offtext

$eolcom #

Set Declarations

set comp /1*14/;

set pro /1*6/;

set qual /1*1/;

set pool /1*8/;

components related parameters

table compparams(comp,*)
1 2 3

1 0 50 20

2 0 50 19

3 0 50 18

4 0 50 17

5 0 50 19

6 0 50 18

7 0 50 17

8 0 50 16

9 0 50 18

10 0 50 17

11 0 50 16

12 0 50 15

13 0 50 17

14 0 50 16 ;

parameters cl(comp), cu(comp), cprice(comp);

cl(comp) = compparams(comp,'1');

cu(comp) = compparams(comp,'2');
cprice(comp) = compparams(comp,'3');

table cqual (comp,qual)

1
1 1
2 1.1

102

1.2

1.3

1.4

1.2

1.3

1.4

1.2

1.3

1.4

1.5

1.6

1.3

pool related parameters

parameters psize(pool);

psize(pool) = 75;

product related parameters

table prodparams(pro,*)
1 2 3

1 0 30 20

2 0 29 19.5

3 0 28 19

4 0 27 18.5

5 0 26 18

6 0 25 17.5

parameters prl(pro), pru(pro), pprice(pro);

prl(pro) = prodparams(pro, ' 1');
pru(pro) = prodparams(pro,'2');
pprice(pro) = prodparams(pro,'3');

parameter pqlbd(pro, qual);

pqlbd(pro, qual) = 0;

table pqubd(pro, qual)

1
1 1.05
2 1.1

3 1.15

4 1.2

5 1.25

6 1.3

103

network related parameters

table ubq(comp, pool)
1 2 3 4 5 6 7 8

1 0 0 1 0 0 0 1 0
2 0 1 0 1 0 1 0 1
3 0 0 0 1 0 0 1 1
4 0 0 1 0 1 1 0 1
5 0 1 0 1 1 0 0 1
6 1 0 1 0 0 1 1 0
7 1 0 0 0 1 0 0 0
8 1 0 1 1 0 0 1 0;

parameter ubz(comp, pro);

ubz(comp, pro) = 0;

$include pool.gms

104

GAMS Implementation of Example 1

$ontext

Gams Model of Example 1 Pooling Problem

Author: Emre Armagan

Date: July, 2007

$offtext

$eolcom #

Set Declarations

set comp /1*18/;

set pro /1*9/;

set qual /1*1/;

set pool /1*14/;

components related parameters

table compparams(comp,*)
1 2 3

1 0 200 10

2 0 200 5

3 0 200 6

4 0 200 8

5 0 200 13

6 0 200 25

7 0 200 16

8 0 200 18

9 0 200 35

10 0 200 5

11 0 200 20

12 0 200 15

13 0 200 11

14 0 200 24

15 0 200 20

16 0 200 25

17 0 200 10

18 0 200 14

parameters cl(comp), cu(comp), cprice(comp);

cl(comp) = compparams(comp,'1');

cu(comp) = compparams(comp,'2');

cprice(comp) = compparams(comp,'3');

105

table cqual(comp,qual)

1
1 1.8

2 2
3 2.2

4 1.3

5 1.4

6 1
7 1.6

8 0.8

9 3
10 3.2

11 3.4

12 3.5

13 2.6

14 1.8
15 2.7
16 1.5
17 2.6
18 1.9

pool related parameters

parameters psize(pool);
psize(pool) = 75;

product related parameters
table prodparams (pro, *)

1 2 3
1 0 75 30

2 0 85 15

3 0 80 25

4 0 50 40
5 0 130 30

6 0 120 35
7 0 100 22

8 0 90 10

9 0 95 15;

parameters prl(pro), pru(pro), pprice(pro);
prl(pro) = prodparams(pro,'1');
pru(pro) = prodparams(pro,'2');
pprice(pro) = prodparams(pro, '3');

parameter pqlbd(pro, qual);
pqlbd(pro, qual) = 0;

106

table pqubd(pro, qual)
1

1 3
2 2.1

3 1.5

4 1.2

5 2.6

6 2.5

7 1
8 1.75

9 3.2 ;

network related parameters

table ubq(comp, pool)

1 2 3 4 5 6 7 8 9 10

1 1 0 0 1 0 0 0 1 0 0
2 1 0 0 1 0 0 0 1 0 0
3 1 0 0 0 1 0 0 1 0 0
4 1 0 0 0 1 0 0 1 0 0
5 1 0 0 0 1 0 0 0 1 0
6 0 1 0 0 1 0 0 0 1 0
7 0 1 0 0 1 0 0 0 1 0
8 0 1 0 0 0 1 0 0 1 0
9 0 1 0 0 0 1 0 0 1 0

10 0 1 0 0 0 1 0 0 0 1

11 0 0 1 0 0 1 0 0 0 1

12 0 0 1 0 0 1 0 0 0 1

13 0 0 1 0 0 0 1 0 0 1

14 0 0 1 0 0 0 1 0 0 1

15 0 0 1 0 0 0 1 0 0 0

16 0 0 0 1 0 0 1 0 0 0

17 0 0 0 1 0 0 1 0 0 0

18 0 0 0 1 0 0 0 1 0 0

11 12 13 14

1 1 0 0 0
2 0 1 0 0
3 0 1 0 0
4 0 1 0 0
5 0 1 0 0
6 0 1 0 0
7 0 0 1 0
8 0 0 1 0

107

9 0 0 1 0

10 0 0 1 0

11 0 0 1 0

12 0 0 0 1

13 0 0 0 1

14 0 0 0 1

15 1 0 0 1

16 1 0 0 1

17 1 0 0 0

18 1 0 0 0

parameter ubz(comp, pro);

ubz(comp, pro) = 0;

$include pool.gms

108

GAMS Implementation of Example 2

$ontext

Gams Model of Example 2 Pooling Problem

Author: Emre Armagan

Date: July, 2007

$offtext

$eolcom #

Set Declarations

set comp /1*18/;

set pro /1*9/;

set qual /1*6/;

set pool /1*14/;

components related parameters
table compparams(comp,*)

1 2 3
1 0 200 10

2 0 200 5

3 0 200 6
4 0 200 8

5 0 200 13

6 0 200 25

7 0 200 16

8 0 200 18

9 0 200 35

10 0 200 5

11 0 200 20

12 0 200 15

13 0 200 11
14 0 200 24

15 0 200 20

16 0 200 25

17 0 200 10

18 0 200 14;

parameters cl(comp), cu(comp), cprice(comp);
cl(comp) = compparams(comp,'1');

cu(comp) = compparams(comp,'2');
cprice(comp) = compparams(comp,'3');

109

table cqual(comp,qual)

1 2 3 4 5 6

1 1.8 2.9 1.5 3 0.8 1.4
2 2.2 4.8 3.8 4.6 2.7 3.6

3 2 5 3 2.4 4 2

4 1.5 3.2 2.7 2.5 1.7 0.9

5 3.6 2.8 0.6 2 3.1 2

6 3.2 4.1 1.4 2.8 0.8 4.8

7 4 5 1.5 3.5 4.2 2.1

8 4.5 1.6 2.2 3.8 1.2 3

9 0.8 1.9 1.3 4 1.3 1.6

10 1.4 0.8 1.7 2.6 3.7 1.9

11 2.2 1.9 1.4 1 3.4 5

12 1.5 1 3.7 4.3 3.7 0.8

13 2.6 2.8 1.6 2.4 3.6 2

14 1.2 3.1 1.4 2.8 1 2.6

15 1.9 1.5 3.2 0.8 1.8 3.5

16 2.4 1.8 5 3.8 1.2 3

17 3.5 2.5 1.8 3.6 5 4.6

18 4.4 2.6 1.2 3 4.2 4

pool related parameters

parameters psize(pool);

psize(pool) = 75;

product related parameters

table prodparams(pro,*)
1 2 3

1 0 75 30

2 0 85 15

3 0 80 25

4 0 50 40

5 0 130 30

6 0 120 35

7 0 100 22

8 0 90 10

9 0 95 15;

parameters prl(pro), pru(pro), pprice(pro);

prl(pro) = prodparams(pro,'1');
pru(pro) = prodparams(pro,'2');
pprice(pro) = prodparams(pro,'3');

parameter pqlbd(pro, qual);
pqlbd(pro, qual) = 0;

110

table pqubd(pro, qual)
1 2 3 4 5 6

1 3.5 2.9 0.9 3.2 1.8 2.4

2 4.2 4 3.8 2.6 1.7 3

3 2.5 4.8 3.1 4.4 3.7 2.6

4 0.8 1.2 3.7 4.2 4.6 1.8

5 2.6 2 2.4 4 3 2.2

6 3.5 4 1 3.8 0.8 4

7 4 5 2.2 1.9 0.9 3

8 1.5 0.8 3.2 3.8 4.5 3.8

9 2.6 3.9 4.5 4.2 0.8 2.2

network related parameters

table ubq(comp, pool)

1 2 3 4 5 6 7 8 9 10

1 1 0 0 1 0 0 0 1 0 0
2 1 0 0 1 0 0 0 1 0 0

3 1 0 0 0 1 0 0 1 0 0

4 1 0 0 0 1 0 0 1 0 0
5 1 0 0 0 1 0 0 0 1 0

6 0 1 0 0 1 0 0 0 1 0
7 0 1 0 0 1 0 0 0 1 0
8 0 1 0 0 0 1 0 0 1 0

9 0 1 0 0 0 1 0 0 1 0
10 0 1 0 0 0 1 0 0 0 1

11 0 0 1 0 0 1 0 0 0 1

12 0 0 1 0 0 1 0 0 0 1

13 0 0 1 0 0 0 1 0 0 1

14 0 0 1 0 0 0 1 0 0 1

15 0 0 1 0 0 0 1 0 0 0

16 0 0 0 1 0 0 1 0 0 0

17 0 0 0 1 0 0 1 0 0 0

18 0 0 0 1 0 0 0 1 0 0

11 12 13 14

1 1 0 0 0
2 0 1 0 0
3 0 1 0 0
4 0 1 0 0
5 0 1 0 0
6 0 1 0 0
7 0 0 1 0
8 0 0 1 0

111

9 0 0 1 0

10 0 0 1 0

11 0 0 1 0

12 0 0 0 1

13 0 0 0 1

14 0 0 0 1

15 1 0 0 1

16 1 0 0 1

17 1 0 0 0

18 1 0 0 0

parameter ubz(comp, pro);

ubz(comp, pro) = 0;

$include pool.gms

112

GAMS Implementation of Example 3

$ontext

Gams Model of Example 3 Pooling Problem

Author: Emre Armagan

Date: July, 2007

$offtext

$eolcom #

Set Declarations

set comp /1*16/;

set pro /1*6/;

set qual /1*1/;

set pool /1*10/;

components related parameters

table compparams(comp,*)

1 2 3

1 0 100 30

2 0 100 40

3 0 100 45

4 0 100 38

5 0 100 18

6 0 100 30

7 0 100 32

8 0 100 45

9 0 100 55

10 0 100 50

11 0 100 20

12 0 100 19

13 0 100 20
14 0 100 28

15 0 100 30

16 0 100 45 ;

parameters cl(comp), cu(comp), cprice(comp);
cl(comp) = compparams(comp, '1');
cu(comp) = compparams(comp,'2');
cprice(comp) = compparams(comp,'3');

table cqual(comp,qual)

1

113

1 3
2 4
3 4.2
4 3.3

5 1
6 2.2

7 2.6

8 3.8
9 4

10 5

11 5.2
12 0.8
13 1.6
14 1

15 1.9
16 3.5 ;

pool related parameters

parameters psize(pool);

psize(pool) = 75;

product related parameters

table prodparams (pro, *)
1 2 3

1 0 50 80

2 0 20 90

3 0 25 25

4 0 40 30

5 0 30 40

6 0 60 75

parameters prl(pro), pru(pro), pprice(pro);

prl(pro) = prodparams(pro, '1');
pru(pro) = prodparams(pro,'2');
pprice(pro) = prodparams(pro,'3');

parameter pqlbd(pro, qual);

pqlbd(pro, qual) = 0;

table pqubd(pro, qual)
1

1 3
2 2.5
3 4.5

4 5

114

5 3.6

6 4;

network related parameters

table ubq(comp, pool)

1 2 3 4 5 6 7 8 9 10

1 0 0 1 0 0 1 1 0 0 1

2 0 0 1 0 0 1 0 0 1 1

3 0 0 1 0 0 1 0 0 1 0

4 0 0 1 0 0 0 0 1 0

5 0 1 1 0 0 1 0 0 1 0

6 0 1 0 0 1 1 0 0 1 0

7 0 1 0 0 1 0 0 1 1 0

8 0 1 0 0 1 0 0 1 0 0

9 0 1 0 0 1 0 0 1 0 0

10 1 1 0 0 1 0 0 1 0 0

11 1 0 0 1 1 0 0 1 0 0

12 1 0 0 1 0 0 1 1 0 0

13 1 0 0 1 0 0 1 0 0 1

14 1 0 0 1 0 0 1 0 0 1

15 1 0 0 1 0 0 1 0 0 1

16 1 0 1 1 0 0 1 0 0 1

parameter ubz(comp, pro);

ubz(comp, pro) = 0;

$include pool.gms

115

GAMS Implementation of Example 4

$ontext

Gams Model of Example 4 Pooling Problem

Author: Emre Armagan

Date: July, 2007

$offtext

$eolcom #

Set Declarations

set comp /1*16/;

set pro /1*6/;

set qual /1*8/;

set pool /1*10/;

components related parameters

table compparams(comp,*)
1 2 3

1 0 100 30

2 0 100 40

3 0 100 45

4 0 100 38

5 0 100 18

6 0 100 30

7 0 100 32

8 0 100 45

9 0 100 55

10 0 100 50

11 0 100 20

12 0 100 19

13 0 100 20

14 0 100 28

15 0 100 30

16 0 100 45

parameters cl(comp), cu(comp), cprice(comp);

cl(comp) = compparams(comp,'1');

cu(comp) = compparams(comp,'2');
cprice(comp) = compparams(comp, '3');

table cqual(comp,qual)
1 2 3 4 5 6 7 8

116

1 4 4.5 5 3.1 0.8 1.4 2.8 4.1

2 3.2 3.8 1 4 2.2 4.6 3 1.6

3 2.5 5.6 2.6 2.9 4 5 2 1

4 3.2 5.2 4.7 2 1.5 4 0.8 5

5 3 1.8 0.2 2 3.5 3 4.2 1.9

6 3.8 4 6 2.8 4.5 5.8 3.4 4.6

7 4 5.2 4.5 3.5 2 2 2.8 1

8 4.5 2.6 5.2 3.8 6.2 2.3 0.5 1.5
9 4.8 0.8 0.3 4 1.9 0.6 0.9 4

10 1 3.1 2 2.6 0.7 1 5 1.2

11 2.8 1 4.4 1 5.4 5.1 4 1

12 1.5 4.1 4.7 5.3 3.7 1 1.8 0.6

13 0.6 3 5.8 1.4 3.6 0.2 2 2.5

14 1.6 3.8 0.9 3.8 1 0.6 3 5

15 3.9 4.5 4.2 4 1.8 5.5 1.2 4.6

16 4.4 4.8 5.2 2.9 4.2 4.5 1.5 3.1

pool related parameters

parameters psize(pool);

psize(pool) = 75;

product related parameters

table prodparams(pro,*)
1 2 3

1 0 50 80

2 0 20 90

3 0 25 25

4 0 40 30

5 0 30 40

6 0 60 75;

parameters prl(pro), pru(pro), pprice(pro);

prl(pro) = prodparams(pro,'1');
pru(pro) = prodparams(pro,'2');
pprice(pro) = prodparams(pro,'3');

parameter pqlbd(pro, qual);
pqlbd(pro, qual) = 0;

table pqubd(pro, qual)
1 2 3 4 5 6 7 8

1 3.6 5 2.8 3.4 2.6 4.4 4 3
2 4 4.6 5.8 2.6 6 5 5 2.5
3 5.5 4.8 3.4 4.5 3.5 3.6 2.8 3.6

4 2.8 5.2 3.9 1.5 4 4.8 1.8 4.6

117

5 3.6 2.1 2.8 4 3 4.2 1 2

6 4 0.4 1 3 0.8 4.6 0.5 1.5

network related parameters

table ubq(comp, pool)

1 2 3 4 5 6 7 8 9 10

1 0 0 1 0 0 1 1 0 0 1
2 0 0 1 0 0 1 0 0 1 1
3 0 0 1 0 0 1 0 0 1 0
4 0 0 1 0 0 1 0 0 1 0
5 0 1 0 0 1 0 0 1 0
6 0 1 0 0 1 1 0 0 1 0
7 0 1 0 0 1 0 0 1 1 0
8 0 1 0 0 1 0 0 1 0 0
9 0 1 0 0 1 0 0 1 0 0

10 1 1 0 0 1 0 0 1 0 0

11 1 0 0 1 1 0 0 1 0 0

12 1 0 0 1 0 0 1 1 0 0

13 1 0 0 1 0 0 1 0 0 1

14 1 0 0 1 0 0 1 0 0 1

15 1 0 0 1 0 0 1 0 0 1

16 1 0 1 1 0 0 1 0 0 1

parameter ubz(comp, pro);

ubz(comp, pro) = 0;

$include pool.gms

118

Appendix B

Gas Network Example

Gas network problems are a special kind of pooling problems where pools can be modeled

as mixers and splitters. Modeling pools as mixers and splitters gives the opportunity to

write mass balances for each quality separately.

For mixers, for a selected quality, mass balance can be written as the output volume

flow rate equals to the sums of input volume flow rates and it is a linear equation. In other

words, for the mixer shown in Figure B-i (a), for a selected quality, mass balance can be

written as f3 = f 2l 2 where ft are flow variables and it is a linear equation. However, for

splitters, writing mass balances separately still introduces bilinear terms. In other words,

for the splitter shown in Figure B-1 (b), for a selected quality, mass balance can be written

as qlf3 = 2zf + (1 - 2)f2 where f are flow variables; qi are quality variables and and

obviously, this equation is a bilinear equation. But, now since bilinear terms are only

coming from the splitters instead of all of the pools, the number of bilinear terms reduces

and therefore the complexity of the problem reduces greatly.

In order to test the performance of the proposed BD algorithm in a gas network problem,

an example problem shown in Figure B-2 is studied. As shown in the figure this problem

has 10 pools, 8 sources, 3 qualities and 4 end-products. Necessary parameters (quality

parameters, costs, prices and demand requirements) to construct this problem is given in

119

Figure B-1: Representation of a mixer (a) and splitter (b)

Tables B. 1, B.2, B.3, B.4 and B.5. GAMS implementation of this problem is also provided

at the end of this Chapter.

Figure B-2: The gas network example

120

Source quality parameters
Sources Qualities

1 2 3
1 2.5 2.9 0.8
2 2.4 1.8 2
3 1 3 2.4
4 1.5 2 1.8
5 1.8 1.9 0.6
6 0.9 1.4 2.4
7 1.2 1.5 3.5
8 2.4 1.9 1

Table B. 1: Quality parameters in source nodes for the gas network example

Source costs
Sources Costs

1 15
2 10
3 20
4 5
5 10
6 15
7 25
8 20

Table B.2: Cost parameters in source nodes for the gas network example

Demand quality requirements
Products Qualities

1 2 3
1 2 2 3
2 3 1.5 2
3 1.5 3 1.5
4 2 2.5 0.75

Table B.3: Quality requirements in demand nodes for the gas network example

Demand flow requirements
Products Max. flow

1 50
2 100
3 75
4 80

Table B.4: Flow requirements in demand nodes for the gas network example

121

Table B.5: Prices in demand nodes for the gas network example

122

GAMS Implementation of Gas Network Example

$ontext

Gams Model of Gas network example
Author: Emre Armagan
Date: July, 2007

$offtext

$TITLE Natural Gas Network Optimization Model

SETS

NodeSet "Superset for Nodes"

ArcSet "Superset for Arcs"

Junctions(NodeSet) "Set of junctions where production should be set to zero"

Wells(NodeSet) "Set of Wells"

Splitters(NodeSet) "Set of Splitter"

SplitOut(Splitters, ArcSet)

Mixers(NodeSet) "Set of Mixer"

Demands "Set of demand"

dNodes(NodeSet) "Demand Nodes"

ddN(Demands, NodeSet) "correlation set between the demands and node"

Components "Set of all components"

Spec(components) "components on which specification is forced"
ArcOrigin(ArcSet, NodeSet) "Arc origin to Node mapping"
ArcEnd(ArcSet, NodeSet) "Arc end to Node mapping";

PARAMETERS

fA(ArcSet) "friction factor constant for arcs"

123

A(Wells) "Reservoir flow equation constants"
B(Wells) "Reservoir flow equation constants"
C(Wells) "Reservoir flow equation constants"
F(Wells) "Reservoir flow equation constants"
E(Wells) "sqrt(B)"

Pres(Wells) "Reservoir Pressure"
* IMPERIAL UNITS

fAi(ArcSet) "friction factor constant for arcs"
Ai(Wells) "Reservoir flow equation constants"
Bi(Wells) "Reservoir flow equation constants"
Ci(Wells) "Reservoir flow equation constants"
Fi(Wells) "Reservoir flow equation constants"

D(Demands) "Demands"

Pdemand(Demands) "Requested Pressure at a demand"

MW(Components) "Molecular Weight of components"
yspec(Demands, spec) "Specification compositions on a component set
(Mole fraction)";

SCALARS

Ti "Duration in days for a time interval"
rho "Density at standard temperature and pressure"
convfactorP "Pressure conversion factor"
convfactorV "Volumetric flow rate conversion factor"
convfactorl "Intermediate factors"
convfactor2 "Intermediate factors"

convfactor3 "Intermediate factors"

convfactor4 "Intermediate factors"
PdropScalefactorl "Scale factor for Arc pressure drop"
PdropScalefactor2 "Scale factor for Well pressure drop"
MoleScalefactor "Flow scale factor";

*P A R A M E T E R F I L E

$include gasplan-parameters

$ontext

Variable and Parameter Naming Conventions

fe = field exit (Gas collection Network exit, this is raw gas with liquids in)

124

ce = compressor exit

1 = liquids

g = gases

sr = sour field

sw = sweet field

b = blending

fp= final field production

i = component flows

ds = desulfurization facility in sour field
dh = dehydration by adsorption in the sweet field
c = compression

st = storage

in = in

out = out

cf = component flows
$offtext

VARIABLES

* Objective value
z

* Quantities at Each Node
Mpcf(NodeSet, Components) "Component flow at each node"

* Quantities at Arcs

PAin(ArcSet) "Pressure at the origin of an edge (equal to the node before it)
PAout(ArcSet) "Pressure at end of the arc (x1O bar)"

MA(ArcSet) "Cumulative Flow in Arc (10^6 kg)"
MAcf(ArcSet, Components) "Cumulative Component Flow in Arc (10^6 kg)"
QA(ArcSet) "Volumetric flow in Arc in cu.m/day"

* Quantities at Wells
Pfbhp(Wells) "Flowing Bottom Hole Pressure for well"
Pfthp(Wells) "Flowing Tubing Head Pressure for well"
Qp(Wells) "Volumetric flow rates at the wells"

* Spliting Ratio
alpha(Splitters) "Split Fraction"

* Demand variables
Fmolar(Demands, Components) "Component molar flow rate at demands"
FTmolar(Demands) "Total molar flow rate";

* x(Demands, Components) "Molar Composition at demands";

125

EQUATIONS

ArcPressureFlowRelation(ArcSet)
ArcMassVolumeRelation(ArcSet)

TotalArcFlow(ArcSet)

PositiveFlowConstraint(ArcSet)

NodeArcMassBalance(NodeSet, Components)

ArcPressureRelationsN9A

ArcPressureRelationsN9B

ArcPressureRelationsN9C

ArcPressureRelationsNlOA

ArcPressureRelationsNlOB

ArcPressureRelationsNlOC

ArcPressureRelationsN11A

ArcPressureRelationsNllB

ArcPressureRelationsNllC

ArcPressureRelationsN12A

ArcPressureRelationsNl2B

ArcPressureRelationsN12C

ArcPressureRelationsN13A

ArcPressureRelationsNl3B

ArcPressureRelationsN13C

ArcPressureRelationsN14A

ArcPressureRelationsN15A

ArcPressureRelationsNl5B

ArcPressureRelationsN15C

ArcPressureRelationsNl6A

ArcPressureRelationsNl6B

ArcPressureRelationsN16C
ArcPressureRelationsN16D

ArcPressureRelationsNl6E

126

ArcPressureRelationsN17A

ArcPressureRelationsN18A

ArcPressureRelationsNl8B

ArcPressureRelationsN18C

ArcPressureRelationsN19A

ArcPressureRelationsN19B

JunctionNodes(Junctions, Components)

SplitterConstraintN9(Components)

SplitterConstraintNlO(Components)

SplitterConstraintNll(Components)

SplitterConstraintNl5(Components)

SplitterConstraintNl6(Components)

BottomHolePressure(Wells)

TubingHeadPressure(Wells)

BHResRelation(Wells)

BHPTHPRelationl(Wells)

BHPTHPRelation2(Wells)

TubingHeadFlowConditionNl

TubingHeadFlowConditionN2

TubingHeadFlowConditionN3

TubingHeadFlowConditionN4

TubingHeadFlowConditionN5
TubingHeadFlowConditionN6

TubingHeadFlowConditionN7

TubingHeadFlowConditionN8

WellComponentFlows(Wells, Components)

DemandPressureConstraintN20

DemandPressureConstraintN21
DemandPressureConstraintN22

DemandPressureConstraintN23

127

DemandConstraint(Demands)

DemandMolarFlows(Demands, Components)

DemandMolarSpecification(Demands, Spec)

DemandMolarComposition(Demands, Components)

DemandTotalMoleFlow(Demands)

Objective;

ArcPressureFlowRelation(ArcSet).. fA(ArcSet)*QA(ArcSet)*QA(ArcSet)

- PAin(ArcSet)*PAin(ArcSet) + PAout(ArcSet)*PAout(ArcSet) =E= 0;

ArcMassVolumeRelation(ArcSet).. MA(ArcSet) - QA(ArcSet)*rho*Ti =E= 0;

TotalArcFlow(ArcSet).. MA(ArcSet) - SUM(Components, MAcf(Arcset, Components)) =E=

PositiveFlowConstraint(ArcSet).. PAout(ArcSet) - PAin(ArcSet) =L= 0;

* RELATIONSHIP BETWEEN NODE and ARC VARIABLES

NodeArcMassBalance(NodeSet, Components)..

SUM(ArcSet$ArcOrigin(ArcSet, NodeSet), MAcf(ArcSet, Components))

- SUM(ArcSet$ArcEnd(ArcSet, NodeSet), MAcf(ArcSet, Components))

- Mpcf(NodeSet, Components) =E= 0;

NodeArcMassBalance(NodeSet)..

SUM(ArcSet, IN(NodeSet, ArcSet)*MAcf(ArcSet))

=E= Mpcf(NodeSet, Components) ;

ArcPressureRelationsN9A..

ArcPressureRelationsN9B..

ArcPressureRelationsN9C..

ArcPressureRelationsNlOA.

ArcPressureRelationsNlOB.

ArcPressureRelationsNlOC.

PAin('A9') - PAout('Al') =L= 0;

PAin('A1O') - PAout('Al') =L= 0;

PAin('A9') - PAin('AlO') =E= 0;

PAin('All') - PAout('A5') =L= 0;

PAin('A12') - PAout('A5') =L= 0;

PAin('All') - PAin('A12') =E= 0;

ArcPressureRelationsNllA.. PAin('A13') - PAout('A6') =L= 0;

128

ArcPressureRelationsNllB.. PAin('A14') - PAout('A6') =L= 0;

ArcPressureRelationsNllC.. PAin('A13') - PAin('A14') =E= 0;

ArcPressureRelationsNl2A..

ArcPressureRelationsNl2B..

ArcPressureRelationsNl2C..

ArcPressureRelationsNl3A..

ArcPressureRelationsNl3B..

ArcPressureRelationsNl3C..

PAin('A15')

PAin('A15')

PAin('A15')

PAin('A16')

PAin('Ai6')

PAin('A16')

PAout('A1O') =L= 0;

PAout('A2') =L= 0;

PAout('A3') =L= 0;

PAout('A4') =L= 0;

PAout('All') =L= 0;

PAout('A13') =L= 0;

ArcPressureRelationsNl4A.. PAin('A17') - PAout('A14') =L= 0;

ArcPressureRelationsNl5A..

ArcPressureRelationsN15B..

ArcPressureRelationsNl5C..

ArcPressureRelationsNl6A..

ArcPressureRelationsNl6B..

ArcPressureRelationsNl6C..

ArcPressureRelationsNl6D..

ArcPressureRelationsNl6E..

PAin('A18')

PAin('A19')

PAin('A18')

PAin('A20')
PAin('A21')

PAin('A20')

PAin('A21')

PAin('A20')

ArcPressureRelationsNl7A.. PAin('A22')

ArcPressureRelationsNl8A..

ArcPressureRelationsNl8B..

ArcPressureRelationsNl8C..

PAin('A23')

PAin('A23')

PAin('A23')

PAout('A16') =L= 0;

PAout('A16') =L= 0;

PAin('A19') =E= 0;

PAout('Al5') =L= 0;

PAout('A15') =L= 0;

PAout('A18') =L= 0;

PAout('A18') =L= 0;

PAin('A21') =E= 0;

PAout('A20') =L= 0;

PAout('A21') =L= 0;

PAout('A17') =L= 0;

PAout('A7') =L= 0;

ArcPressureRelationsNl9A.. PAin('A24') - PAout('A19') =L= 0;

ArcPressureRelationsN19B.. PAin('A24') - PAout('A8') =L= 0;

* JUNCTION NODES
JunctionNodes(Junctions, Components).. Mpcf(Junctions, Components) =E= 0;

* SPLITTER CONSTRAINTS

SplitterConstraintN9(Components)..
MAcf('A9', Components - alpha('N9')*MAcf('A1',Components) =E= 0;

129

SplitterConstraintNlO(Components)..

MAcf('A11', Components) - alpha('N1O')*MAcf('A5',Components) =E= 0;

SplitterConstraintNll(Components)..

MAcf('A13', Components) - alpha('N11')*MAcf('A6',Components) =E= 0;

SplitterConstraintNl5(Components)..

MAcf('A18', Components) - alpha('N15')*MAcf('A16',Components) =E= 0;

SplitterConstraintNl6(Components)..

MAcf('A20', Components) - alpha('N16')*(MAcf('A15',Components)

+ MAcf('A18',Components)) =E= 0;

* Well Constraints

BottomHolePressure(Wells)..

Pres(Wells)*Pres(Wells) - Pfbhp(Wells)*Pfbhp(Wells)

- A(Wells)*Qp(Wells) - F(Wells)*Qp(Wells)*Qp(Wells) =E= 0;

TubingHeadPressure(Wells)..

B(Wells)*Pfthp(Wells)*Pfthp(Wells) - Pfbhp(Wells)*Pfbhp(Wells)

- C(Wells)*Qp(Wells)*Qp(Wells) =E= 0;

BHResRelation(Wells).. Pfbhp(Wells)-Pres(Wells) =L= 0;

BHPTHPRelationl(Wells).. Pfthp(Wells)-Pfbhp(Wells) =L= 0;

BHPTHPRelation2(Wells).. Pfbhp(Wells) - E(Wells)*Pfthp(Wells) =L= 0;

TubingHeadFlowConditionNl..

TubingHeadFlowConditionN2..

TubingHeadFlowConditionN3..

TubingHeadFlowConditionN4..

TubingHeadFlowConditionN5..

TubingHeadFlowConditionN6..

TubingHeadFlowConditionN7..

TubingHeadFlowConditionN8..

PAin('Al')

PAin('A2')

PAin('A3')

PAin('A4')

PAin('A5')

PAin('A6')

PAin('A7')

PAin('A8')

Pfthp('N1') =L= 0
Pfthp('N2')=L= 0

Pfthp('N3')=L= 0

Pfthp('N4') =L= 0
Pfthp('N5')=L= 0
Pfthp('N6')=L= 0
Pfthp('N7') =L= 0
Pfthp('N8')=L= 0

WellComponentFlows(Wells, Components)..

Mpcf(Wells, Components) - y(Wells,Components)*rho*Ti*Qp(Wells) =E= 0;

130

DemandConstraint(Demands)..

Ti*rho*D(Demands) + SUM(Components, SUM(dNodes$ddN(Demands, dNodes),
Mpcf(dNodes, Components))) =L= 0;

DemandPressureConstraintN20.. Pdemand('dl') - PAout('A9') =L= 0;
DemandPressureConstraintN21.. Pdemand('d2') - PAout('A22') =L= 0;
DemandPressureConstraintN22.. Pdemand('d3') - PAout('A23') =L= 0;
DemandPressureConstraintN23.. Pdemand('d4') - PAout('A24') =L= 0;

DemandMolarFlows(Demands, Components)..
Fmolar(Demands, Components) + (SUM(dNodes$ddN(Demands, dNodes),
Mpcf(dNodes, Components))*MoleScalefactor)/MW(Components) =E= 0;

DemandMolarComposition(Demands, Components)..

x(Demands, Components)*FTmolar(Demands) =E= Fmolar(Demands, Components);

DemandMolarSpecification(Demands, Spec)..
Fmolar(Demands, Spec) - yspec(Demands, Spec)*FTmolar(Demands) =L= 0;

DemandTotalMoleFlow(Demands)..

FTmolar(Demands) - SUM(Components, Fmolar(Demands, Components)) =E= 0;

Objective.. SUM((Components, dNodes), Mpcf(dNodes, Components)) - z =E= 0;

MODEL GasProductionPlanning /all/;

$include gasplan-bounds

*$include local-solution

OPTION NLP=BARON;

OPTION Limrow = 20;

OPTION Limcol = 20;

OPTION sysout=on;

GasProductionPlanning.optfile = 0;

SOLVE GasProductionPlanning USING NLP MINIMIZING z;

*file levels /local-solution.gms/;

*$include write-levels

131

132

Appendix C

The Stochastic Pooling Problem

To validate that the proposed algorithm works for stochastic pooling problems, 4 example

pooling problems (which were created by the author) are solved. In all examples, problems

are solved with 1,2 and 3 different quality variables and as an initial test of the algorithm,

only the quality parameters at source nodes are assumed as uncertain variables for conve-

nient analysis of the results. For convenience, only 7 possible scenarios are selected and in

all of the example problems same scenarios are used. Moreover, in every possible scenario,

all 3 source quality parameters are considered as having same values for simplicity. In other

words, possible scenarios in all of the examples are determined as the following: Scenario

1 has 1 as the value of all 3 quality parameters at sources with the probability of 0.1; in

Scenario 2, the value of the quality parameters at sources is 1.5 and the probability is 0.1;

Scenario 3 has 2 as the value of the quality parameters with the probability of 0.2; Scenario

4 has 2.5 as the value of the quality parameters and its probability is 0.2; in Scenario 5

the value of the quality parameters is 3 and its probability is 0.25; Scenario 6 has 4 as the

value of the quality parameters with the probability of 0.05, and Scenario 7 has 5 as the

value of all 3 quality parameters at sources and its probability is 0.1. Table C. 1 presents the

quality parameters in the sources in all scenarios and their respective probability values in

detail. This probability distribution is taken as same for all 3 qualities and parameters are

133

Probabilities of Scenarios
Scenarios Probabilities Source Qualities

1 2 3
1 0.1 1 1 1
2 0.1 1.5 1.5 1.5
3 0.2 2 2 2
4 0.2 2.5 2.5 2.5
5 0.25 3 3 3
6 0.05 4 4 4
7 0.1 5 5 5

Table C. 1: Source quality parameters in scenarios and the respective probability values

Investment costs of pools
Pools Costs

1 200

Table C.2: First stage investment costs of pools for Stochastic Example 1

used for all of them. When less than 3 quality variables is used, the remaining ones are ne-

glected (i.e. when 1 quality variable is considered, the parameters for the second and third

are neglected; when 2 quality variables are considered, the parameters for the third one

are neglected.). More information for both of these example problems including quality

specs, demand requirements, cost coefficients is given in following sections. In addition,

GAMS implementation of the BD algorithm for stochastic programs is given in the end of

this chapter.

C.1 Stochastic Example 1

Example 1 has I pool, 3 sources, 2 end-products. Necessary parameters to construct this

problem is given in Tables C.2, C.3, C.4, C.5, C.6, C.7 and C.8.

134

Investment costs of pipes
Sources Pools

1
1 100
2 50
3 100

Table C.3: First stage investment costs of pipelines (sources to pools) for Stochastic Exam-
ple 1

Investment costs of pipes
Pools End-products

1 2
1 150 100

Table C.4: First stage investment costs of pipelines (pools to
ample 1

demands) for Stochastic Ex-

Source costs
Sources Costs

1 15
2 10
3 20

Table C.5: Second stage cost parameters in source nodes for Stochastic Example 1

Demand quality requirements
Products Qualities

12 3
1 31 2
2 42 4

Table C.6: Second stage quality requirements in demand nodes for Stochastic Example 1

Demand flow requirements
Products Max. flow

1 100
2 100

Table C.7: Second stage flow requirements in demand nodes for Stochastic Example 1

Table C.8: Second stage prices in demand nodes for Stochastic Example 1

135

Investment costs of pools
Pools Costs
1 400
2 400

Table C.9: First stage investment costs of pools for Stochastic Example 2

Investment costs of pipes

Sources Pools
1 2

1 100 25
2 50 150
3 100 200
4 150 50

5 100 100

Table C. 10: First stage investment costs of pipelines (sources to pools) for Stochastic Ex-
ample 2

C.2 Stochastic Example 2

Example 2 has 2 pools, 5 sources, 3 end-products. Necessary parameters to construct this

problem is given in Tables C.9, C. 10, C. 11, C.12, C.13, C.14 and C. 15.

Investment costs of pipes
Pools End-products

1 2 3
1 100 100 200
2 50 30 75

Table C.11: First stage investment costs of pipelines (pools to demands) for Stochastic
Example 2

136

Source costs
Sources Costs

1 10
2 25
3 30
4 40
5 40

Table C. 12: Second stage cost parameters in source nodes for Stochastic Example 2

Demand quality requirements
Products Qualities

1 2 3
1 1.5 1 2.5
2 3 2.8 3.5
3 1.7 2.6 1.9

Table C. 13: Second stage quality requirements in demand nodes for Stochastic Example 2

Demand flow requirements
Products Max. flow

1 50
2 200
3 80

Table C. 14: Second stage flow requirements in demand nodes for Stochastic Example 2

Table C. 15: Second stage prices in demand nodes for Stochastic Example 2

137

Investment costs of pools

Pools Costs
1 100
2 200
3 300
4 400

Table C. 16: First stage investment costs of pools for Stochastic Example 3

Investment costs of pipes

Sources Pools
1 2 3 4

1 100 25 150 75
2 50 150 50 25
3 100 200 100 100
4 150 50 200 75
5 100 100 30 60
6 100 200 50 125
7 150 50 70 175
8 100 100 75 100

Table C. 17: First stage investment costs of pipelines (sources to
ample 3

pools) for Stochastic Ex-

C.3 Stochastic Example 3

Example 3 has 8 sources, 4 pools, 5 end-products. Necessary parameters to construct this

problem is given in Tables C.16, C.17, C.18, C.19, C.20, C.21 and C.22.

Investment costs of pipes

Pools End-products
1 2 3 4 5

1 100 100 200 50 75
2 50 30 75 100 200
3 100 100 200 50 80
4 50 30 75 200 150

Table C. 18: First stage investment costs of pipelines (pools to demands) for Stochastic
Example 3

138

Source costs
Sources Costs

1 30
2 10
3 10
4 35
5 50
6 25
7 30
8 20

Table C. 19: Second stage cost parameters in source nodes for Stochastic Example 3

Demand quality requirements
Products Qualities

1 2 3
1 2 1.2 2.5
2 3 2 2
3 1.5 2.4 1.9
4 3 3 3.5
5 1.8 4 3.8

Table C.20: Second stage quality requirements in demand nodes for Stochastic Example 3

Demand flow requirements
Products Max. flow

1 200
2 200
3 100
4 200
5 100

Table C.21: Second stage flow requirements in demand nodes for Stochastic Example 3

Prices
Products Prices

1 30
2 10
3 50
4 75
5 40

Table C.22: Second stage prices in demand nodes for Stochastic Example 3

139

Investment costs of pools
Pools Costs

1 500
2 400
3 300
4 200
5 300
6 400
7 400
8 100
9 100
10 50

Table C.23: First stage investment costs of pools for Stochastic Example 4

C.4 Stochastic Example 4

Example 4 has 12 sources, 10 pools and 8 end-products. Necessary parameters to construct

this problem is given in Tables C.23, C.24, C.25, C.26, C.27, C.28 and C.29.

140

Investment costs of pipes

Sources Pools
1 2 3 4 5 6 7 8 9 10

1 100 25 150 75 100 125 250 175 100 50
2 50 150 50 125 150 200 50 30 50 75
3 100 200 100 100 100 100 150 125 40 25
4 150 50 200 75 60 40 240 175 160 275
5 100 100 30 60 120 150 50 100 200 50
6 100 200 50 125 150 60 250 50 150 40
7 150 50 70 175 100 80 100 30 100 175
8 100 100 75 100 50 75 50 25 30 200
9 100 100 30 60 75 50 30 150 50 60
10 100 200 50 125 30 200 25 50 200 180
11 150 50 70 175 50 250 100 100 250 50
12 100 100 75 100 125 125 140 175 100 225

Table C.24: First stage investment costs of pipelines (sources to pools) for Stochastic Ex-
ample 4

Investment costs of pipes

Pools End-products
1 2 3 4 5 6 7 8

1 100 100 200 50 75 100 150 175
2 50 30 75 100 200 50 60 80
3 100 100 200 50 80 100 100 50
4 50 30 75 200 150 220 150 80
5 100 100 200 50 75 120 80 125
6 50 30 75 100 200 70 60 140
7 100 100 200 50 80 100 75 210
8 50 30 75 200 150 130 150 225
9 100 100 200 50 80 180 50 60
10 50 30 75 200 150 230 250 50

Table C.25: First stage investment costs of pipelines (pools to demands) for Stochastic
Example 4

141

Source costs
Sources Costs

1 10
2 15
3 20
4 30
5 25
6 10
7 40
8 20
9 20
10 25
11 10
12 20

Table C.26: Second stage cost parameters in source nodes for Stochastic Example 4

Demand quality requirements
Products Qualities

1 2 3
1 1 1.5 2
2 2 3 1
3 1.5 2.5 2
4 2 3 1.5
5 1.8 0.9 4
6 2 2.5 3
7 4 3 3
8 2 1.2 3

Table C.27: Second stage quality requirements in demand nodes for Stochastic Example 4

Demand flow requirements
Products Max. flow

1 100
2 90
3 80
4 100
5 110
6 120
7 140
8 150

Table C.28: Second stage flow requirements in demand nodes for Stochastic Example 4

142

Prices
Products Prices

1 30
2 40
3 50
4 60
5 20
6 30
7 15
8 20

Table C.29: Second stage prices in demand nodes for Stochastic Example 4

143

GAMS Implementation of the BD Algorithm for Stochastic Pooling

Problems

$ontext
BD Algorithm

Simple Seven
Author: Emre

Date: April,

$offtext

for Stochastic Pooling Problems

Scenario Problem (Example 1)

Armagan
2008

$TITLE Stochastic Pooling Problem Example

Set Declarations

set comp /1*3/;

set pro /1*2/;

set qual /1*1/;

set pool /1*1/;

set sce /1*7/;

investment related parameters

parameters investpool(pool)

investpool(pool) = 200 ;

table investpipel(comp, pool)

100

50

100

table investpipe2(pool, pro)

1 2

1 150 100 ;

source related parameters

table compparams(comp,*)
1 2 3

200
200

200

15
10

20

parameters cl(comp), cu(comp), cprice(comp);

144

cl(comp) = compparams(comp,'1');
cu(comp) = compparams(comp,'2');
cprice(comp) = compparams(comp,'3');

pool related parameters

parameters psize(pool);

psize(pool) = 200;

product related parameters

table prodparams(pro,*)
1 2 3

1 0 100 40

2 0 100 50 ;

parameters prl(pro), pru(pro), pprice(pro);

prl(pro) = prodparams(pro,'1');
pru(pro) = prodparams(pro,'2');
pprice(pro) = prodparams(pro,'3');

parameter pqlbd(pro, qual);

pqlbd(pro, qual) = 0;

table pqubd(pro, qual)
1

1 3
2 4;

scenario related parameters

table Scel(comp,qual)
1

1 1
2 1
3 1 ;

table Sce2(comp,qual)
1

1 1.5

2 1.5

3 1.5;

table Sce3(comp,qual)
1

1 2
2 2
3 2;

145

table Sce4(comp,qual)
1

1 2.5

2 2.5

3 2.5

table Sce5(comp,qual)
1

table Sce6(comp,qual)
1

1 4
2 4
3 4;

table Sce7
1
(comp,qual)

cquall(comp,qual)

cqual2 (comp, qual)

cqual3(comp,qual)

cqual4(comp,qual)

cqual5 (comp, qual)

cqual6(comp,qual)

cqual7(comp,qual)

= Scel(comp,qual)

= Sce2(comp,qual)

= Sce3(comp,qual)

= Sce4(comp,qual)

= Sce5(comp,qual)

= Sce6(comp,qual)

= Sce7(comp,qual)

probability distribution

parameters prob(sce);

prob('l') = 0.1 ;

prob('2') = 0.1 ;

prob('3') = 0.2 ;

prob('4') = 0.2 ;

prob('5') = 0.25 ;

prob('6') = 0.05 ;

prob('7') = 0.1 ;

network related parameters
table ubq(comp, pool)

146

1
1 1
2 1
3 1;

table uby(pool, pro)

1 2 3

1 100 100 100 ;

parameter ubz(comp, pro);

ubz(comp, pro) = 0;

* Form the Benders master problem

set

iter 'max Benders iterations' /iterl*iterl00/

dyniter(iter) 'dynamic subset' ;

free variables

zmaster

theta

equations

masterobj

constrl(pool)

constr2(pool)

optcut(dyniter)

parameter

cutconst(iter)

cutcoeff(iter,j)

'objective variable of master problem'

'extra term in master obj'

'master objective function'

'constraint 1'

'constraint 2'

'Benders optimality cuts'

'constants in optimality cuts'

'coefficients in optimality cuts';

masterobj..

zmaster =e= sum(pool, investpool(pool)*buildpool(pool))

+ sum((comp, pool),investpipel(comp, pool)*buildpipel(comp, pool))

+ sum((pool, pro),investpipe2(pool, pro)*buildpipe2(pool, pro))

+ theta ;

constrl(pool)..

constr2(pool)..

optcut(dyniter)..

buildpipel(comp, pool) - buildpool(pool) =e= 0 ;

buildpipe2(pool, pro) - buildpool(pool) =e= 0 ;

theta =g= cutconst(dyniter) +

sum(pool, cutcoeff(dyniter,pool)*();

147

model masterproblem /masterobj, constrl, constr2, optcut/;

* Form the Benders subproblem
*--

free variables
zsub 'objective variable of sub problem'

equations obj
clower(comp)

cupper(comp)

plower(pro)

pupper(pro)

pqlower(pro,qual)

pqupper(pro,qual)

fraction(pool)

'subproblem objective function'

'lower bound component availability'
'upper bound component availability'

'minimum product production'

'maximum product demand'
'minimum product quality requirement'

'maximum product quality'

'fractions sum to one' ;

obj.. zsub =e= sum(pro, sum(pool$(uby(pool,pro) > 0),
sum(comp$(ubq(comp, pool) > 0),
cprice(comp)*y(pool,pro)*q(comp,pool)))

- pprice(pro)*sum(pool$(uby(pool,pro) > 0),

y(pool, pro))

+ sum(comp$(ubz(comp,pro)>0),
(cprice(comp)-pprice(pro))*z(comp, pro)));

clower(comp)..

cupper(comp)..

sum(pool$(ubq(comp,pool)>0),
sum(pro$(uby(pool,pro)>0),

q(comp,pool)*y(pool, pro)))

+ sum(pro$(ubz(comp,pro)>O), z(comp, pro))
=g= cl(comp);

sum(pool$(ubq(comp,pool)>O),

sum(pro$(uby(pool,pro)>O),
q(comp,pool)*y(pool, pro)))

+ sum(pro$(ubz(comp,pro)>O), z(comp,
=1= cu(comp),

pro))

plower(pro).. sum(pool$(uby(pool,pro)>O), y(pool,pro))

+ sum(comp$(ubz(comp, pro)>0), z(comp, pro))

=g= prl(pro);

pupper(pro).. sum(pool$(uby(pool,pro)>O), y(pool,pro))

+ sum(comp$(ubz(comp, pro)>0), z(comp, pro))

=1= pru(pro);

148

pqlower(pro, qual)..

pqupper(pro, qual)..

sum(pool$(uby(pool,pro)>0),

sum(comp$(ubq(comp,pool)>0),

cqual(comp, qual)*q(comp,pool)*y(pool,pro)))

+ sum(comp$(ubz(comp, pro)>0),
cqual(comp, qual)*z(comp, pro)) =g=

sum(pool$(uby(pool,pro)>0),

pqlbd(pro, qual)*y(pool,pro))

+ sum(comp$(ubz(comp, pro)>0),

pqlbd(pro, qual)*z(comp, pro));

sum(pool$(uby(pool,pro)>0),

sum(comp$(ubq(comp,pool)>0),

cqual(comp, qual)*q(comp,pool)*y(pool,pro)))

+ sum(comp$(ubz(comp, pro)>0),
cqual(comp, qual)*z(comp, pro)) =1=

sum(pool$(uby(pool,pro)>0),

pqubd(pro, qual)*y(pool,pro))

+ sum(comp$(ubz(comp, pro)>0),
pqubd(pro, qual)*z(comp, pro));

fraction(pool).. sum(comp$(ubq(comp,pool)>O), q(comp, pool)) =e= 1;

model subproblem

/obj, clower, cupper, plower, pupper, pqlower, pqupper, fraction/;

--

* solver options

option milp=cplex;

option nlp=baron;

option limrow = 0;

option limcol = 0;

subproblem.solprint = 2;

masterproblem.solprint = 2;

subproblem.solvelink = 2;

masterproblem.solvelink = 2;

* Benders algorithm

* step 1: solve master without cuts

dyniter(iter) = NO;

cutconst(iter) = 0;

149

cutcoeff(iter,pool) = 0;

theta.fx = 0;

solve masterproblem minimizing zmaster using milp;

display zmaster.1;

* repair bounds

theta.lo = -INF;

theta.up = INF;

scalar lowerbound /-INF/;

scalar upperbound /INF/;

parameter objsub(sce);

scalar objmaster;

objmaster = zmaster.l;

scalar iteration;

scalar done /0/;

loop(iter$(not done),

iteration = ord(iter);

* solve subproblems

dyniter(iter) = yes;

loop(sce,

demnd(pool) = demand(pool,sce);
solve subproblem minimizing zsub using n1p;

objsub(sce) = zsub.l;

cutconst(iter) = cutconst(iter)-prob(sce)*(-plower.m(pro)-

clower.m(comp)-cupper.m(comp)-pupper.m(pro)-pqlower.m(pro, qual)

-pqupper.m(pro, qual));

cutcoeff(iter,pool) = cutcoeff(iter,pool)-prob(sce)*(-plower.m(pro)-

clower.m(comp)-cupper.m(comp)-pupper.m(pro)-pqlower.m(pro, qual)-

pqupper.m(pro, qual));

upperbound =

min(upperbound, objmaster + sum(sce, prob(sce)*objsub(sce)));

* convergence test

display lowerbound,upperbound;

if((upperbound-lowerbound) < 0.001*(l+abs(lowerbound)),

display "Converged";

done = 1;

else

150

* solve masterproblem

solve masterproblem minimizing zmaster using milp;

lowerbound = zmaster.l;
objmaster = zmaster.l-theta.l;

abort$(not done) "Too many iterations";

display bd.log;

display zmaster, zsub;

152

Bibliography

[1] Adhya, N., Tawarmalani, M., Sahinidis, N. V. (1999). A lagrangian approach to the

pooling problem. Industrial & Engineering Chemistry, 38: 1956-1972.

[2] Androulakis, I. P., Visweswaran, V., Floudas, C. Distributed decomposition-based

approaches. State of the Art in Global Optimization: Computational Methods and

Applications. Kluwer Academic Publishers, Dordrecht, 1996.

[3] Audet, C., Brimberg, J., Hansen, P., Digabel, S., Mladenovic N. (2004).. Pooling

problem: alternate formulations and solutions method. Management Science, 50(6):

761-776.

[4] Barnes, R. J., Linke, P., Kokossis, A. (2002). Optimization of oil-field development

production capacity. European Symposium on Computer Aided Process Engineering,

12: 631-638.

[5] Benders, J. F. (1962). Partitioning procedures for solving mixed-variables program-

ming problems. Numerische Mathematik, 4: 238-252.

[6] Ben-Tal, A., Eiger, G., Gershovitz, V. (1994). Global minimization by reducing the

duality gap. Math. Programming, 63: 193-212.

[7] Birge, J. R., Louveaux, F. Introduction to stochastic programming. Springer, New

York, 1994.

153

[8] Brooke, A., Kendrick, D., Meeraus, A., Raman, R. (2004). GAMS: A user's guide.

http://www.gams.com/docs/gams/GAMSUsersGuide.pdf

[9] Dias, M. A. G. Selection of alternatives of investment in information for oil-field

development using evolutionary real options approach. Proceedings of 5th Annual

International Conference on Real Options. UCLA, Los Angeles, 2001.

[10] Energy Information Administration. (1990). Natural gas processing. the crucial link

between natural gas production and its transportation to market. Office of Oil and

Gas, Washington DC.

[11] Floudas, C. A., Aggarwal, A. (1990). A decomposition strategy for optimum search

in the pooling problem. ORSA Journal of Computation, 2 (3): 225-235.

[12] Foulds, L. R., Haugland, D., Jornsten, K. (1992). A bilinear approach to the pooling

problem. Optimization, 24: 165-180.

[13] The General Algebraic Modeling System (GAMS) (Version 22.5) [computer software].

GAMS Development Corporation, Washington DC, 2007.

[14] Geoffrion, A. M. (1972). Generalized benders decomposition. JOTA, 10 (4): 237-260.

[15] Goel, V., Grossmann, I. E., (2004). A stochastic programming approach to planning of

offshore gas field developments under uncertainty in reserves. Computers & Chemical

Engineering, 28: 1409-1429.

[16] Greenberg, H. J. (1995). Analyzing the pooling problem. ORSA Journal of Computa-

tion, 7 (2): 205-217.

[17] Guo, B., Ghalambor, A. Natural gas engineering handbook. Gulf Publishing, Hous-

ton, 2005.

154

[18] Haugen, K. K. (1996). A stochastic dynamic programming model for scheduling of

offshore petroleum fields with resource uncertainty. European Journal of Operational

Research, 88: 88-95.

[19] Haverly, C. A. (1978). Studies of the behaviour of recursion for the pooling problem.

ACM SIGMAP Bull, 25: 29-32.

[20] Haverly, C. A. (1979). Behaviour of recursion model-more studies. ACM SIGMAP

Bull, 26: 22-28.

[21] ILOG CPLEX (Version 10.2) [computer software]. ILOG Inc., Sunnyvale, CA, 2007.

[22] Iyer, R. R., Grossmann, I. E., Vasantharajan, S., Cullick, A. S. (1998). Optimal plan-

ning and scheduling of offshore oil field infrastructure investment and operations.

Industrial and Engineering Chemistry Research, 37. :1380-1392.

[23] Jonsbraten, T. W. (1998i). Oil-field optimization under price uncertainty. Journal of

the Operational Research Society, 49: 811-819.

[24] Jonsbraten, T. W., Wets, R. J. B., Woodruff, D. L. (1998). A class of stochastic pro-

grams with decision dependent random elements. Annals of Operations Research, 82:

83-88.

[25] Jonsbraten, T. W. (1998ii). Optimal selection and sequencing of oil wells under reser-

voir uncertainty. Ph.D. Thesis. Department of Business Administration, Stavanger

College, Norway.

[26] Jonsbraten, T. W. (1998iii). Nash equilibrium and bargaining in an oil reservoir man-

agement game. Journal of the Operational Research Society, 47: 356-362.

[27] Jonsbraten, T. W. (2001). Optimization models for petroleum field exploitation. An-

nals of Operations Research, 108: 121-130.

155

[28] Jornsten, K. 0. (1992). Sequencing offshore oil and gas fields under uncertainty. Eu-

ropean Journal of Operational Research, 58: 191-199.

[29] Kall, P., Wallace, S.W. Stochastic programming. New York: Wiley, 1994.

[30] Lamar, B. W. (1993). An improved branch and bound algorithm for minimum concave

cost network flow problems. Journal of Global Optimization, 3: 261-287.

[31] Lasdon, L. S., Waren, A. D., Sarkar, S., Palacios-Gomez, F. (1979). Solving the pool-

ing problem using generalized reduced gradient and successive linear programming

algorithms. ACMSIGMAP Bull, 27: 9-15.

[32] Lin, X., Floudas, C. A. (2003). A novel continuous-time modeling and optimization

framework for well platform planning problems. Optimization and Engineering, 4:

65-93.

[33] Lund, M. W. (2000). Valuing flexibility in offshore petroleum projects. Annals of

Operations Research, 99: 325-332.

[34] Mangasarian, O. L., McLinden, L. (1985). Simple bounds for solutions of monotone

complementarity problems, Mathematical Programming, 32: 32-40.

[35] McCormick, G. P. Nonlinear programming. Theory, algorithms and applications. Wi-

ley Interscience: New York, 1983.

[36] Meister, B., Clark, J. M. C., Shah, N. (1996). Optimization of oil-field exploitation

under uncertainty. Computers and Chemical Engineering, 20(B): 1242-1251.

[37] Ortiz-Gomez, A., Rico-Ramirez, V., Hernandez-Castro, S. (2002). Mixed-integer

multi-period model for the planning of oil-field production. Computers and Chem-

ical Engineering, 26(4-5): 703.

[38] Pflug, G. Ch. (1990). Online optimization of simulated markovian processes. Mathe-

matics of Operations Research, 15(3): 381-395.

156

[39] Ryoo, H. S., Sahinidis N. V. (1996). A branch-and-reduce approach to global opti-

mization, Journal of Global Optimization, 8: 107-139.

[40] Sahinidis, N. V. (1996). BARON: a general purpose global optimization software

package. Journal of Global Optimization, 8: 201-205.

[41] Sahinidis, N. V., Grossmann, 1. E. (1991). Convergence properties of generalized Ben-

ders decomposition. Computers and Chemical Engineering, 15 (7): 481-491.

[42] Sahinidis, N. V., Tawarmalani, M. Branch And Reduce Optimization Navigator

(BARON) (Version 7.8) [computer software]. Sahinidis Optimization Group, Pitts-

burgh, 2007.

[43] Savelsbergh M. W. P. (1994). Preprocessing and probing for mixed integer program-

ming problems, ORSA Journal on Computing, 6: 445-454.

[44] Shectman, J. P., Sahinidis, N. V. (1998). A finite algorithm for global minimization of

separable concave programs, Journal of Global Optimization, 12: 1-36.

[45] Tawarmalani, M., Sahinidis, N. V. Convexification and global optimization in contin-

uous and mixed-integer nonlinear programming. Kluwer Academic Publishers, Dor-

drecht, 2002.

[46] Thakur, L. S. (1990). Domain contraction in nonlinear programming. Mathematics of

Operations Research, 16: 390-407.

[47] Van den Heever, S. A., Grossmann, 1. E. (2000). An iterative aggregation/ disaggre-

gation approach for the solution of a mixed integer nonlinear oil-field infrastructure

planning model. Industrial and Engineering Chemistry Research, 39(6): 1955-1968.

[48] Van den Heever, S. A., Grossmann, I. E. (2001). A Lagrangean decomposition heuris-

tic for the design and planning of offshore hydrocarbon field infrastructures with com-

157

plex economic objectives. Industrial and Engineering Chemistry Research, 40(13):

2843-2857.

[49] Visweswaran, V, Floudas, C. A. (1993). New properties and computational improve-

ment of the GOP algorithm for problems with quadratic objective functions and con-

straints. Journal of Global Optimization, 3: 439-462.

[50] Visweswaran, V., Floudas, C. A. New formulations and branching strategies for the

GOP algorithm. Global Optimization in Engineering Design. Kluwer Academic Pub-

lishers, Dordrecht, 1996.

[51] Zamora, J. M., Grossmann, I. E. (1999). A branch and contract algorithm for prob-

lems with cconcave univariate, bilinear, and linear fractional terms, Journal of Global

Optimization, 14: 217-249.

158

