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Abstract

Adaptive control is one of the technologies that improve both performance and safety
as controller parameters can be redesigned autonomously in the presence of uncer-
tainties. Considerable research has been accomplished in adaptive control theory for
several decades and a solid foundation has been laid out for stability and robustness
of adaptive systems. However, a large gap between theory and practice has been an
obstacle to transition theoretical results into applications and it still remains. In or-
der to reduce the gap, this thesis presents a unified framework for design and analysis
of adaptive control for general nonlinear plants.

An augmented adaptive control architecture is proposed where a nominal con-
troller is designed in the inner-loop with an adaptive controller in the outer-loop.
The architecture is completed by addressing three separate problems. The first prob-
lem is the design of adaptive control in the presence of input constraints. With a
rigorous stability analysis, an algorithm is developed to remove the adverse effects
of multi-input magnitude saturation. The second problem is the augmentation of
adaptive control with a nominal gain-scheduling controller. Though adaptive con-
trollers have been employed with gain-scheduling to various applications, no formal
stability analysis has been developed. In the proposed architecture, adaptive control
is combined with gain-scheduling in a specific manner while stability is guaranteed.
The third problem is the development of analytic stability margins of the closed-loop
plant with the proposed adaptive controller. A time-delay margin is derived using
standard Lyapunov stability analysis as an analytic stability margin.

The overall adaptive control architecture as well as the analytically derived mar-
gins are validated by a 6-DoF nonlinear flight dynamics based on the NASA X-15
hypersonic aircraft. Simulation results show that the augmented adaptive control
is able to stabilize the plant and tracks desired trajectories with uncertainties in
the plant while instability cannot be overcome only with the nominal controller.
The time-delay margins are validated based on a generic transport model and they
are compared with margins obtained from simulations studies. We utilize numerical
methods to find less conservative time-delay margins.
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Chapter 1

Introduction

1.1 Motivation

Control design and analysis for systems with static and dynamic uncertainties, while

operating in the presence of environmental disturbances and other unknown factors,

present significant challenges. A classical fixed-gain controller can handle plant pa-

rameter variations and disturbances to a certain degree. There exists an assortment

of fixed control design methodologies and analysis tools for a physical system whose

model is properly known. However, mathematical models of physical systems are

generically imprecise and quite often simplified. In order to accommodate a larger

class of uncertainties and to achieve higher performance, it is necessary to design ad-

vanced active control algorithms. This need becomes especially important for safety

critical applications whose performance requirements are steeper and more stringent.

Another instance which mandates advanced controllers is in the context of un-

manned autonomous flight systems, where the need for accurate performance is em-

phasized because the human operator is not directly in the control loop and action

through remote operators may not be sufficiently swift. Recent years have witnessed

a variety of autonomous systems in both civilian and military applications that need

to cope with unexpected situations without remote assistance. The application of

adaptive control to those systems has been sought after in order to obtain benefits

in safety, survivability, and performance as an enabling technology. However, one of



the early attempts at implementations of adaptive approaches in flight control led to

an accident [13] which is due to a lack of understanding of adaptive systems and an

implementation based on empirical rather than a theoretically validated design. This

triggered an extensive investigation of a fundamental adaptive control theory.

Aside from plant uncertainties and safety requirements, most of dynamic systems

are generically nonlinear. Unlike linear systems, nonlinear systems possess more com-

plexities, one of which is the possible existence of multiple equilibrium points. In a

high performance vehicle such as the X-43A (Figure 1-1), this characteristic becomes

more dominant with the vehicle exhibiting different dynamic characteristics over mul-

tiple equilibrium points. In addition, the equilibrium points are distributed over a

large operating envelope. It is safe to say that while a general method exists for the

control of linear plants, no universal method exists for the control of nonlinear plants.

Therefore, it is not surprising that the level of success of a given nonlinear control

method, which in turn is predicated on certain assumptions, depends on how reason-

able the assumptions made are in a given application. In this thesis, the nonlinear

control method used is based on gain-scheduling. An adaptive controller is augmented

with the gain-scheduling controller, which enables us to handle both uncertainty and

nonlinearity concurrently. The augmented adaptive control is, therefore, expected to

enhance the tracking performance.

In the application of adaptive control, important issues arise due to constraints on

the plant inputs, such as actuator magnitude saturation. While performing aggressive

and safety-required missions, input constraints can impair the overall performance of

adaptive control and potentially cause instability in the closed-loop system. Particu-

larly, in the presence of uncertainties, the adverse effects of input constraints tend to

grow such that instability can occur in closed-loop adaptive systems while adaptation

is actively performed on uncertain parameters. This necessitates a formal method to

compensate input saturation in adaptive control design and a stability analysis.

While improving the performance in the presence of uncertainties, the augmented

adaptive control should also maintain its robustness with respect to perturbations. It

is well known that an adaptive system is in the most vulnerable situation when the



Dryden Flight Research Center ED98-44824-1
X-43/Hyper -X aircraft. NASA/Dryden Illustration by Steve Lighthill

Figure 1-1: The illustration of the X-43A: A hypersonic and scramjet-powered re-
search aircraft [4].

adaptation is actively processed. For example, adaptation can cause divergence of

the adaptive parameters when disturbances are present. To prevent instability and

enhance the robustness of the adaptive control, significant efforts and, hence, principal

achievements in the robust adaptive control theory were made in 1980s [27], which

include modifications of the adaptive law and persistent excitation of the reference

input. Unfortunately, no formal link has been developed between the robust adaptive

control theory and its application to a specific problem such as aircraft control. In

order to utilize the adaptive control scheme to realistic applications, it is necessary to

develop analytical tools to measure and quantify its robustness. Furthermore, effects

of design parameters in the adaptive controller on its robustness should be investigated

extensively to transition the adaptive control theory to realistic applications. It is

therefore highly required to develop analytic margins for adaptive systems to be aware

of the level of perturbations that the adaptive systems are guaranteed to be stable.



1.2 Research Objectives

The research objective of this thesis is to provide a unified framework for the design

and analysis of adaptive control architectures for nonlinear plants which are suscep-

tible to parametric as well as non-parametric uncertainties, and deliver improved

performance. The proposed research will concentrate on control design, stability /

robustness analysis, as well as the development of Verification and Validation (V&V)

methods, while using high fidelity 6-DoF nonlinear aircraft models. Specific problems

that we shall address are:

o Adaptive control in the presence of multi-input saturation

Control of plants with constrained inputs is a theoretically challenging problem

and one of paramount practical importance since actuator subject to saturation

is ubiquitous in control applications. Constrained actuators can degrade per-

formance and potentially lead to instability if they are not taken into account

in control design. In particular, adaptive control technique can destabilize the

overall system especially when "adaptation" is carried out on saturation error.

As a remedy to prevent instability due to saturation, compensation methods

have been introduced and we extend this method to multi-input case where

the adaptive control is placed in an augmentation with the nominal controller

that includes integral action. The first problem in this thesis is to develop a

compensation method for multi-input saturation in adaptive control design.

* Adaptive control for nonlinear plants via integration of gain-scheduling

Significant characteristics of high performance nonlinear plants is that (i) they

have multiple equilibrium points over a large operating envelope and (ii) they are

generally multi-rate systems whose states have a broad spectrum of convergent

or divergent rates. Obviously, characteristics of a nonlinear plant can vary con-

siderably between equilibrium points. To achieve desired performance uniformly

across operational envelope, a gain-scheduling controller can be constructed on

nominal parameters by employing slow-rate states as gain-scheduling variables



[32, 26]. In order to maintain the performance in the presence of uncertain-

ties, we propose to augment the gain-scheduling controller with an adaptive

controller. The second specific problem is to arrive at a set of formal sufficient

conditions that guarantee closed-loop stability and uniform performance.

* Analytical stability margins equivalent to linear concepts

Even though adaptive systems have been extensively studied over the past 40

years, their transient performance and robustness properties remain an open

problem. What is needed here are theoretically verifiable techniques to ana-

lyze and predict sensitivity to various uncertainties for systems with adaptive

controllers. Currently, the chief obstacle to transitioning adaptive controllers

into safety-critical applications is a lack of formal methods to assess stability /

robustness margins with respect to static uncertainties, and unmodeled dynam-

ics, such as time-delays. The third problem dealt in this thesis is to develop

formal methods for calculation of stability / robustness margins for nonlinear

systems operating with adaptive controllers in the loop. This will contribute to

Verification and Validation (V&V) techniques for adaptive systems.

1.3 Research Approach

The approach adopted in this thesis to control a nonlinear plant in the presence of

uncertainties is composed of the following three major steps:

The first step is the characterization and modeling of plausible uncertainties in

nonlinear plants. Aside from numerous "unknown" uncertainties in reality, "known"

uncertainties in such plants include control failures, sensor failures, input saturation,

and unmodeled dynamic such as actuator dynamics, structural vibration, time-delay,

and so on. They should be modeled and incorporated to the plant in a physical sense

to replicate the real ones. In this step, we will form the overall plant model to be

controlled in this research.

The second step is the design of the proposed controller. In the design, an adaptive



controller is augmented with a nominal controller. The reason is that there is always

some prior information available, and this information can be used such that stability

and uniform performance are obtained in the absence of uncertainties. The next

component in the proposed architecture is the inclusion of gain-scheduling. In order

to accommodate a range of equilibrium points, the nominal controller is designed

using gain scheduling. This is accomplished by designing the fixed controller at each

equilibrium point, resulting in a family of fixed controllers for an entire operating

envelope. The gain scheduling is carried out using slow variables such as the velocity

and height of the aircraft. In the outer loop of the nominal controller, the adaptive

controller is included to accommodate uncertainties. The structure of the adaptive

controller is determined so as to accommodate both parametric and non-parametric

uncertainties.

In the third step, stability and robustness analysis of the complete closed-loop

controller that consists of the gain-scheduled nominal controller in the inner-loop

and the adaptive controller in the outer-loop is carried out. In the presence of both

parametric and nonparametric uncertainties, the stability of the closed-loop system is

analyzed. Computable measures of robustness margins where stability is guaranteed

are also provided in the thesis.

To demonstrate performance of the proposed controller in simulation studies, a

6-DoF nonlinear model of the hypersonic aircraft (NASA X-15) is utilized to demon-

strate performance of the proposed controller. To reconstruct the model fully, we

will collect aerodynamic design and data from the literature, which will be incor-

porated into nonlinear flight dynamic equations. For controller design purposes, we

will linearize the nonlinear flight dynamics and obtain a family of operating points

for which linearized dynamics are defined. Once the controller designed, it will be

tested with the nonlinear model. In order to examine performance of the proposed

controller extensively, a great deal of uncertainties and unmodeled dynamics will be

tested with a set of different free parameters of the adaptive controller. Through

simulation and suitable analytical studies, we will quantify the worst uncertainties

for a given controller and specified commands.



1.4 Organization

This thesis is divided into six chapters. The contents of chapters are summarized as

followed:

* Chapter 1, Introduction, motivates the research effort, and introduces the re-

search objectives as well as specific problems delivered. It also describes the

research approaches adopted in this thesis.

* Chapter 2, Background, discusses previous works dealing with adaptive control

theories and applications. In this chapter, the review of gain-scheduling methods

and its applications are also stated.

* Chapter 3, Adaptive Control in the Presence of Multi-input Magnitude Satura-

tion, discusses a stable method to compensate saturation of multiple inputs in

the adaptive control design.

* Chapter 4, Adaptive Gain-scheduled Controller, addresses the problem of con-

trolling a nonlinear system in the presence of parametric uncertainties. The

proposed adaptive controller includes a nominal controller which is based on

gain-scheduling to accommodate dynamic characteristic changes over multiple

equilibrium points.

* Chapter 5, Stability Margins for Adaptive Control in the Presence of Time-

delay, presents an analytical tool to quantify robustness margins of the adaptive

controller with guaranteed stability.

* Chapter 6, Conclusion, discusses the results and summarizes the thesis work.

The topics for future works are proposed based on these conclusions accordingly.
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Chapter 2

Background

This chapter presents the theoretical background on adaptive control and explains

its applications to dynamic systems. It then reviews the related previous works of

adaptive flight control when adaptive control inputs are constrained in magnitude.

Literatures on gain-scheduling are also reviewed.

2.1 Adaptive Control: Theory & Applications

One of the main characteristics than generally distinguishes adaptive control from

earlier control architectures is that the former monitors the performance of the over-

all plant and uses the information obtained to update the control law automatically

and on-line so as to improve performance. This fundamental idea underlying adaptive

control dates back to mid-1950s when flight control was a source of driving force. In

1960s, several adaptive control schemes were developed an they include self-oscillating

adaptive system (SOAS), model reference adaptive control (MRAC), and self-turning

regulator (STR). The SOAS designed by Honeywell has been tested on the NASA

X-15 hypersonic aircraft, resulting in a catastrophic result in November, 1967 [13].

Due to the crash of the test flight, interest in the adaptive control moved to stability

analysis and from late 1970s to early 1980s, a systematic theory with guaranteed sta-

bility and performance emerged, and this resulted in outgrowth of publications and

several books [28, 1, 15, 33, 23, 39] by the mid 1990s. Along with stability analyses,



the robustness of adaptive control was extensively studied in 1980s since nonparamet-

ric uncertainties could destabilize adaptive systems [6, 14]. Several robust adaptive

control methods were developed to improve the performance of adaptive controllers

in the presence of disturbances and unmodeled dynamics [28, 15]. Extensions to

nonlinear control methods have been addressed extensively in [36, 22].

Aligned with theoretical achievements, in various engineering applications such

as ships, automotive systems, robot manipulators, and power systems, process con-

trols, adaptive control architectures have been utilized and proved to be suited for

performance improvement. It is interesting to note that an adaptive controller was

designed for a tailless fighter research aircraft, the X-36, and a test flight was carried

out in 1998 [41], resulting in satisfactory performance and guaranteed stability.

2.1.1 Adaptive control in Magnitude Saturation

Adaptive control approaches for plants with constrained inputs in magnitude have

been developed and introduced in [19, 2, 5, 38, 17, 24]. In [19], Karason and An-

naswamy introduced a saturation compensation method for direct-adaptive control

and showed that for a single input plant with output feedback, bounded trajectories

can be guaranteed for a range of initial conditions whether the open-loop plant is

stable or not. Cheng and Wang in [5] reviewed the current methods to compensate

magnitude saturation in adaptive control. Most of those methods relied on the as-

sumption that the open-loop plant is stable. Strategies for input saturation in indirect

adaptive control were discussed in [38] for open-loop stable plants. In [17], Johnson

and Calise developed a method to compensate limitation on the plant inputs when

neural network adaptive control is designed. Recently, in [34], these results were

extended to the case of a multi-input plant where an elliptical multi-input satura-

tion function is employed. This results showed that boundedness of all signals in the

closed-loop system is bounded when initial conditions lie in a compact set. In [24].

Lavretsky presented a modification of [19] such that stable adaptation is achieved

without hard actuator saturation. Instead of the artificial saturation function where

inputs are constrained elliptically, a realistic multi-input saturation function was uti-



lized in [24].

2.1.2 Stability Margins in Adaptive control

Though adaptive systems have been extensively studied over the past three decades

as we mentioned above, it should be noted that theoretically justifiable Verification

and Validation (V&V) techniques for adaptive systems are absent. Current V&V

techniques are subject to the constraint that the underlying control design is linear

[10], which is inadequate for adaptive flight control systems. This may be a demanding

task because adaptive systems are generically nonlinear. For example, there is no

technique to quantify the level of time-delays that adaptive systems can withstand.

Similarly, there is no tool to determine how far or close adaptive systems are situated

from instability conditions. Absence of analytical technique for stability / robustness

margins has been an obstacle to applying adaptive control theory to safety critical

applications such as flight control.

2.2 Gain-scheduling

One of the promising methods for nonlinear control design is gain-scheduling [32, 26]

which extends design-via-linearization approach to a range of equilibrium points [20].

It has been used in a wide range of applications including flight control [29], chemical

process control [30], and wind-turbine control [25] since 1950s. Historically, gain

scheduling has been considered as a "practitioner's" technique. It is therefore not

surprising that most of the literature in this area, before 1990s, dealt with practical

applications. Theoretical approaches to gain scheduling in terms of design, analysis,

and implementation has commenced thereafter [35, 18, 31].

The main idea behind the gain-scheduling approach is to decompose the nonlinear

control design task into a family of linear control design methods and scheduling this

family of linear controllers based on the command signal so as to ensure that the

original nonlinear system is suitably controlled. One or more measurable variables,

called gain-scheduling variables, are utilized to determine what operating region the



system is currently in and to enable the appropriate linear controller designed for that

region. When gain-scheduling variables are slowly varying, stability results of almost

time-invariant systems can be called upon to establish the stability of the underlying

linear time-varying system and therefore the closed-loop system that involves the

original nonlinear system [32, 26]. The attractive feature of gain-scheduling is that it

simply uses linear design tools to nonlinear systems so that a diversity of linear design

methodologies can be employed. However, there are still several ad-hoc processes in

designs and problem formations which are acceptable in simple applications, but

troublesome in complicated ones.

The design of gain-scheduled controller can be broadly partitioned into four steps

[32]. In the first step, a linear model parametrized by gain-scheduling variables needs

to be obtained. The most common method is based on Jacobian linearization on a

family of equilibrium points, particularly called trim points in flight control. This

generates a family of linearized plants. The second step is to design linear controllers

for those linearized plants such that for each frozen value of gain-scheduling variable,

the closed-loop system with the corresponding linear controller shows satisfactory

performance. Then, the off-line table of controller gains is built based on the gain-

scheduling variables. In the third step, the gain-scheduling is executed so that the

controller gain is varied based on the current value of the gain-scheduling variables.

Historically, an interpolation process has been used to schedule the controller gains.

The fourth step is stability analysis and performance test which is subject to simula-

tion studies.

In an aircraft flight control system, the altitude (or dynamic pressure) and Mach

number (or velocity) have been used as scheduling variables conventionally, which are

slowly varying variables compared to aero-angles and rates [32, 26].



Chapter 3

Adaptive Control in the Presence

of Multi-input Magnitude

Saturation

This chapter investigates the design of an adaptive controller in the presence of mul-

tiple actuator saturation as well as uncertainties. An augmented control architecture

is proposed where the adaptive controller is designed in the outer-loop of a fixed PI

controller which serves as a baseline control. In order to avoid the adaptive controller

parameters to be misleadingly adjusted by the saturation error, we utilize the aug-

mented error method in the adaptive control design that Karason and Annaswamy

developed in [19] for SISO systems and provide the stability analysis rigorously. The

overall controller is proved to result in semi-global boundedness with respect to the

size of saturation limits in the sense that the region of attraction extends to the entire

space as the the saturation level decreases. To perform more realistic simulation stud-

ies, we reconstruct a nonlinear model of the NASA X-15 hypersonic aircraft based

upon aerodynamic data in [13]. Theoretical findings are validated with simulation

studies through this model with realistic actuator constraints and failures. Simulation

results show that adaptive control stabilizes the closed-loop system and tracks the

reference model properly while the nominal controller is unable to overcome insta-

bility. Compensation for magnitude saturation is proven to be useful to avoid high



oscillation in the adaptive control inputs due to saturation errors.

3.1 Problem Statement

3.1.1 Plant with Uncertainties

The problem is under consideration is the control of a linear plant of the form

S= Ax + Bu
(3.1)

y = Cx

where x E R' is the state, u E R m is the control input, and y E R1 is the output of the

plant with 1 < m. A E R x n , B E R]xm, and C E R"lx are a known system, input,

and output matrix respectively. When there exist uncertainties and disturbances in

the plant in (3.1), we consider a plant in the form of

, = Ax + BA(u + d) (3.2)

y = Cz

where A c IRx"n is an unknown system matrix. A Rmxm is an unknown diagonal

matrix which represents actuator anomalies such as uncertainties, loss of control ef-

fectiveness, and reversal in the control input. Ai denotes the ith element of A. For

the purpose of control design, we assume that the followings hold:

Assumption 3.1. (AA, BA) is controllable.

Assumption 3.2. The sign of Ai, denoted by sgn(Ai), for i = 1,... , m is known.

3.1.2 Augmentation with Integral Action

The goal of the control design is that the output tracks a given command signal

despite the the presence of uncertainties and disturbances. Toward this goal, we



design an inner-loop controller that integrates the output tracking error as

.c = B,(y - r) (3.3)

where x, E Rnc is the controller state and r E R' is the command signal such that

Ilrll < rmx without loss of generality. The plant combined with the inner-loop con-

troller is wriiten as

=[ + A(u + d) + r (3.4)
xc BcC Oncxnec ncxm -B

hp A xp Bp B2

or equivalently as

k, = A, x, + BplA(u + d) + BP2r (3.5)

where xp, RWn , Ap E Rn x np , Bpl E Rnpxm, and BP2 E R n x . Oixy denotes the i x j

zero matrix. The controllability of the pair (Ax, B) is not sufficient for that of the

pair (ABA, Bp1) so that the following assumption is required [7]:

Assumption 3.3.

A B

BcC Oncxm

has full rank n.

3.1.3 Multi-input Saturation

The inputs from actuators to the plant in (3.2) are constrained in magnitude. We,

therefore, introduce two multi-dimensional saturation functions: elliptical and rect-

angular saturation functions.

Definition 3.1. The function, E,(-), is an elliptical multi-dimensional saturation

function defined by

E.(u) = u1 if IuI < ge(U) (3.7)
t, if |u > ge(u)



where ge(u) is given by

Fm \i 2 -1/2

i \Ui,max /

e^ = u/lull denotes the unit vector in the direction of u, Ui,mx is the saturation limit

of the ith actuator, and ui is given by

U = 6g(u).

Definition 3.2. The function, Rs(.), is an rectangular multi-dimensional saturation

function defined by

Ul,maxsat (u )

R,(u) = (3.8)

Um,maxsat
Um,max

where sat(.) is given by

sat() x, if xI < 1
ssgn(x), if xI > 1.

for x C R.

Aspects of two saturation functions should be discussed for comparison. In Es(u), the

function ge(u) returns the magnitude of the projection of u onto the boundary surface

of the m-dimensional ellipsoid defined by I uI = ge(u). Hence, it is obvious from (3.1)

that E8 (u) preserves the direction of u as shown in Figure 3-1(a). However, E8 (u)

brings unnecessary dependency between control inputs which leads to conservative

saturation limits and increases computational workload. On the contrary, R,(u) is

simpler, more intuitive and realistic than E8 (u) as it is able to replicate the inde-

pendent saturation of each control input (Figure 3-1(b)). Despite the advantages in

R, (u), the direction of R,(u) is not necessarily consistent with that of u, which causes

additional complexities in the stability analysis.



As the first step, we study the case where Es(u) is present in the adaptive control

input. We extend the previous results in [34] to the closed-loop stability of a multi-

input system with the baseline PI controller. This step, in turn, naturally provides a

clue to the stability analysis in the case where R,(u) is present. As E8 (u) is combined

with the plant in (3.5), the overall plant to be controlled is obtained as

2, = Apxp + Bpl A (Es(u) + d) + BP2 r (3.9)

and the main goal is to design the adaptive control which ensures the best possible

tracking performance in the presence of uncertainties, disturbances, and actuator

anomalies such as multi-input saturation.

3.2 Adaptive Controller

3.2.1 Nominal Controller and Reference Model Design

In order to utilize all prior information for the best possible performance, the pro-

posed adaptive controller is designed in augmentation with a nominal controller. The

nominal controller input, uno, is chosen as

nom = KTxz (3.10)

where K E Rnpxm is the nominal feedback gain matrix. This is designed so as to

ensure that the controller optimizes the performance when uncertainties and actuator

constraints are absent. Thus, the reference model that is desired for the plant to track

is generated as

Xm = Amxm + Bmr (3.11)

where

Am= Ap+BpKT , Bm= BP2, Ap = BcC 0



U 1

(a) Elliptical Saturation

U1ul,max

(b) Rectangular Saturation

Figure 3-1: Elliptical and rectangular multi-input saturation functions when inputs
are two dimensional.

From the controllability of the pair (A,, B,,) and Assumption 3.3, K can be chosen

such that Am is Hurwitz.

3.2.2 Adaptive Controller design

Before we design the adaptive controller for the plant in (3.9), we introduce an addi-

tional saturation block for the command signal, r, so that the plant in (3.9) can be

written as

Lp = Apxp, + B,E(Es(V) + d,) (3.12)



where

Bp = [Bpl Bp2, A V= dp

Olxm Omxt r O1 d

where Ijxj is the 1-dimensional identity matrix. Then, ge(v) in (3.1) needs to be

written as
[n i 2 1 2 -1/2

ge (V) =x )+ rm+j (3.13)
i=1 Ui,max j=l jmax

where 6 = v/llvj| is the unit vector in the direction of v and rj,max is the saturation

limit of the jth command signal.

The overall control input in (3.9) consists of the nominal controller in (3.10) and

the adaptive controller as

U = Unom + Uad (3.14)

and Uad is designed as

Uad TW = [T dT[ p (3.15)

where 1 mxl is the m-dimensional column vector whose each element is one. The

ultimate goal is to achieve that the adaptive parameters, 0x E Rnpxm and Od E R]lxm

are determined such that all signals in the plant in (3.9) is guaranteed to be bounded,

and that y tracks r. The deficiency of v is defined as

AV = = V- E,(v) (3.16)
Ar

or Av = v - R,(v) when the rectangular saturation is considered. The plant in (3.12)

can be rewritten as

, = Apxp + BplA (u + d) + Bpr - Bp, AAu - Bp2Ar. (3.17)



The following assumption represents the matched uncertainty conditions which is

required only for the stability analysis, not for the design:

Assumption 3.4. There exists an ideal gain 0* that results in perfect matching be-

tween the reference model in (3.11) and the plant in (3.9) in the absence of input

constraints such that

Ap' + B, A(; + K)T = Am
(3.18)

=T -d.

The parameter error is defined to be = 0 - 0*. Subtracting the reference model

from the plant in (3.17), a closed-loop error dynamics equation is obtained as

e = Ame + Bp,A T w - Bp,,AAu - BAr (3.19)

where e = x, - Xm. The error occurs due to two reasons: the uncertainty, A, and

the input deficiency, Av, as shown in (3.19). To eliminate the adverse effect of the

disturbance Av, we generate a signal eA as

eA = AmeA - Bpdiag(A)Au - Bp2Ar (3.20)

where A ~E Rm is an estimation of diagonal terms of the unknown matrix A. The

undesirable effects due to control input saturation can be removed from the error

dynamics in (3.19) by defining an augmented error, eA = e - eu. Its dynamics can

be determined as

e = Ameu + BpAf~TW - Bpldiag(Au)A (3.21)

where diag(A) = A-diag(A). Derivation of (3.21) is based on the fact that diag(A)Au =

diag(Au)A. We now choose the adaptive laws for adjusting parameters, 0 and A, as

9 = -FweTPB, sgn(A), A = -rFdiag(Au)B Pe, (3.22)

where P = pT > 0 is the unique solution of ATP + PA T = -Q for a given positive



Q = QT > 0. The adaptation rates, F > 0 and F > 0, are designed to be diagonal

matrices. sgn(A) is defined to be

sgn(A) = diag(sgn(Al), sgn(A2),... , sgn(Am)). (3.23)

In order to prove boundedness of the closed-loop system with the proposed con-

troller, a Lyapunov candidate function V(e,, 6, A) is considered as

V = e Pe, + Trace(TrF-'OIAI) + ATr-i (3.24)

where AI = sgn(A)A. The time-derivative of the Lyapunov function candidate along

the error dynamics in (3.21) and the adaptive laws in (3.22) leads to

V = -e Qe 0, Vt > to. (3.25)

This implies that eu, 0, and A are uniformly bounded. This result, however, cannot

guarantee the boundedness of the tracking error, e.

Remark 3.1. In (3.12), we introduce the additional saturation block for the command

signal, r. It is worth noting that the adverse effects due to the command deficiency

Ar are completely removed from (3.21) by generating ea.

3.2.3 Proof of Bounded Tracking - Elliptical Saturation

This section and the next one describe the details of stability analysis in the presence

of elliptical and rectangular saturation functions respectively. In the stability analysis,

the same approach is taken for both cases but differences between two saturation

functions arises mainly because the direction of R,(u) is not consistent with that of

u. In this section, we start to analyze the stability of the closed-loop system in the

presence of the elliptical saturation.

In order to prove the boundedness of all signals in the closed-loop system, we can



rewrite the plant in (3.12) in the form of

,p = AApxp + Bp-

( ( + K)T
xP + OT +

OrX)

x = [Ox Onx], Od = [d Olx/], K = [K Olxn]

Correspondingly, ideal gains can be written as

EO= [0 OnE], 0 = [0o 01Xi].

In a similar manner, the parameter error of Ox and Od are redefined as

e) = O, - e, j eded - )d.

We also define ma,, as

max = max [sup I1K I , sup Gd ]

and Emax is finite because 0 is proved to be uniformly bounded in 3.25. For efficiency

of notation, we define the followings:

qmin = min(eig(Q))

Pmin = min(eig(P)),

P Pmax
P=-

Pmin

Vmin = min(vi,ma),

max = max [max(eig(

Pmax = max(eig(P))

Vmax = max(vi,max)

Fr)), max(eig(rF))]

Amin = min(eig(|A|)), dmax = max(lldpll)

where Vi,max is the limit of the ith element of v and PB E R is defined using the

where

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

- Av + dp )



induced norm by the vector 2-norm such that the property is described by

Ix PB I < PB|IXpI. (3.31)

We also defines following constatns for simplicity:( VminOmax
aO inOmax - 2dmax(ao PB + K)T  + Omax

PBmmax

bo 

P

I(E; + K)T IJ Emax

co= qmin- 2PBII(E + K) T 1

PB (2Vmax + 3rmax + 3emax + dmax) (3.32)
Xmin -

qmin - 3 PBOmx
a0

Xmax -
co

qmin - PBP c O (2Vmax + 3rmax + dmax)

Qmax = a0o

3PB Po + 1

Assumption 3.5. ]min is such that ao > 0.

Assumption 3.5 implies that there is a constraint imposed on the maximum magnitude

of the unknow disturbance, dp, with respect to the level of saturation. Particularly,

Assumption 3.5 implies that

dmax < 1minmax (3.33)
2(1 (0* + K) T  + Omax)

This, in turn, indicates that the amount of disturbance which can be tolerated by the

proposed adaptive controller can be reduce when the degree of saturation heightens.

Theorem 3.1. Under Assumptions 3.1, 3.2, 3.3, 3.4, and 3.5, for the system in

(3.12) with the controller in (3.14) and the adaptive law in (3.22), xp(t) has a semi-

globally bounded trajectory with respect to the level of saturation for all t > to if

(i) I (to)l < Xmx
P



(ii) V(tO) < Qmax AF m
'Ymax

Further,

Vt > to

and the error, e(t), is in the order of

IIe(t)ll = 0

% max

X1

* 1II 'I

A le
0/0

Figure 3-2: A schematic of the level set B and the region of attraction A.

Proof. We choose a positive definite function, W(xp), as

W(xp) = xpPxp (3.34)

and define a level set, B, of W(xp) as

B = { x I W(xp) = Pminxx } (3.35)

Ixp(t)II < Xmax,

sup IIAV( 0 ]



where xmax and pmin are defined in (3.29). We now define an annulus region A as

A = { Xp I Xmin < Ixpll| < Xmax }. (3.36)

The proof proceeds in two steps. In the first step, we show that Condition (ii)

in Theorem 3.1 implies that B C A. In the second step, we show that W(xp) <

0, Vxp E A. Condition (i) in Theorem 3.1 implies that

W(xp(to)) < W(B). (3.37)

Therefore, the results of these two steps show that

W(x,(t)) < W(xP(to)), Vt > to (3.38)

and Theorem 3.1 follows directly. Figure 3-2 shows a schematic of the level set B and

the region of attraction A in the two-dimensional space.

Step 1: In this step, we show that B C A. From Condition (ii) in Theorem 3.1, it

follows that Oma. < Qmax. Substituting the expression for Qmax yields

PB (2vmax + 3rmax + 30max + dmax) ao

qmin - 3 PBOmax CO
(3.39)

The inequality in (3.39) with (3.30) directly implies

(3.40)PXmin < Xmax.

In (3.34), W(xp) can be lower-bounded by pmin lXp112 < W(xp), which implies from

(3.35) that

I1Xl-j Xmax, Vxp E B. (3.41)



In a similar way, from (3.36), W(xp) can be upper-bounded by W(xp) < Pmaxj Xp l 2 .

This, in turn, implies from (3.35) and (3.40) that

Xmin < -Zmax < |xpl, Vt > to.
p

(3.42)

From the definition of A, we conclude that B C A.

Step 2: We now show that W < 0, Vxp E A. Two cases are considered which are

Av = 0 and Av # 0.

Case A: Av = 0

From (3.26)--(3.28), we obtain

xp = Amxp + Bp SP + +
0mxl ))

(3.43)

which leads to

W = - (-Q + 2PBp8 ) x, 2xp PBE - +

By taking bounds on the right-hand side of (3.44), we have

Omx ))
(3.44)

W < (2PBOmax - qmin) |xp 12 + 211XplIPB (rmax + Omax) . (3.45)

From Condition (ii) in Theorem 3.1 and the definition of emax, it leads to that

Omax < Qmax < q m in

3PB' (3.46)

Therefore,

< 01, 11 > 2 PB (rmax + Emax)
qmin - 2PBemax

(3.47)



The choice of Xmin in (3.32) implies that

2PB (rmax + Emax)
Xmin - PB

qmin - 2PBOmax
(3.48)

Hence, it is shown that

W < 0, VxP E A (3.49)

in Case A.

Case B: Av - 0

Using the matching condition in Assumption 3.4, the plant in (3.12) can be written

as

where C = g(v) .

ip = Amxp - BpE (O + K)Tx + BpE (F + dp) (3.50)

The time derivative of W(xp) along the trajectory of (3.50) is

obtained as

(3.51)

Two sub-cases are considered.

Sub-case (i): 2x TPBp-C < -VminbojXpJ|

Using the condition for this sub-case and previously defined bounds, we can bound

W as

(3.52)

This implies that

(3.53)W< I111 < C- o
co

From the definition of Xmax, we can conclude that

W <0, VxP EA (3.54)

W= -X (Q 2PBpE (e+K)TP xYe K'

S< 12PBI ( + K)T I - qminll Xp 12 + (2PBdmax - vminbo) Ixpl|.

xp + 2xPBE ( + d)



in Sub-case (i) of Case B.

Sub-case (ii): 2xTPBEP > -vminbo ,Xp|

The condition to this sub-case implies that

2x PBp 1 + /minbollpll > 0.

Substituting v with u and r, (3.55) can be represented as

2x PBpE (Ex + K)Txp + 0 +
Omx +)) VminboIXpIr~~~~~~ /mnolp0- .

Using Ox = Ox + E0, (3.56) becomes as

2xzPBp- OX xx a

+ Vminbollxpll > -2TPBp~Z(E + K)Tx .
11011 - - X

Then, we add terms in order to construct W on the right side of (3.57) and obtain

an inequality as

- x, Qxp + 2xTPB, ( Tx + d +

+ + 2xTPB ,2> =W
11 1 p -

Omxl

r
(3.58)

since EO*T = -dp.d Using definitions in (3.30) and (3.32) and the fact that vmin <

--C| < Vmax, we can bound the left side of (3.58) as

- qminl P,11 2 + bolIvI Ix pl| + 2PBmaxllXpl

+ 2PB (EOmaxIxPH + rmax + emax) IIxp|I > W.

(3.55)

(3.56)

E +(
0r X))

(3.57)

(3.59)



We note that

|1 (< (e + K)T  + mx) |xpl + I l+ max + rmax (3.60)

and that from the definition of bo,

0 < bo < PB. (3.61)

From (3.59)- (3.61), we derive the following inequality as

(3PBOmax - qmin) ixp 12 + PB (2Vmax + 3rmax + 3emax + dmax) xp > Wi (3.62)

since IoET1I = Ildpl < dmax. From (3.46), 3PBOmax - qmin < 0 and (3.62) implies that

< 0, 1IXP1 > PB (2vmax + 3rmax + 3emax + dmax) (3.63)

qmin - 3PBOEmax

From the choice of Xmin, we conclude that

W < 0, Vx EA (3.64)

in Sub-case (ii) of Case B. As a consequence from (3.49), (3.54), and, (3.64), it follows

that

W< 0, Vx e A. (3.65)

As 1 min, which is the minimum among saturation limits, tends to oo, Xmax approaches

to oc and hence, the condition, IIx(to)j < Xmax/p, can be relaxed. In addition to that,

the constraint on dmax in (3.33) is relieved. In this sense, semi-global boundedness is

achieved with respect to the level of saturation. O

Remark 3.2. In the case of magnitude saturation, global boundedness of xp(t) is

impossible with the integral action in (3.3) since poles at the origin prevent BIBO

stability of the open-loop plant. Initial conditions can be always found to cause xp(t) to

become unbounded regardless of the controller design. Therefore, any stability result,



in nature, must be semi-global as presented in Theorem 3.1.

Remark 3.3. When there is no integral action, the stability result in the presence of

magnitude saturation depends on the stability of the open-loop plant. In the case of

the open-loop stable plant, the bounded trajectory of x(t) is guaranteed for all initial

conditions. If AA is stable, (3.2) is BIBO stable and (3.7) implies Es(u) is bounded.

Therefore, x(t) is bounded in the closed-loop plant. However, when the open-loop

plant is unstable, boundedness of x(t) is not globally guaranteed as presented in [34].

3.2.4 Proof of Bounded Tracking - Rectangular Saturation

In this section, the boundedness of xp is deal with when actuators are constrained

under the rectangular saturation. To avoid redundancy, similar procedures in the

stability analysis introduced in Section 3.2.3 are not discussed in details. We begin

with the plant in the form of

xp = Apxp + Bp (x + K)T xp + O + Omxi - A + d (3.66)

where Av = v - R,(v). Definitions in (3.27)-(3.31) are used as well as a0o, bo, co and

max in (3.32). Since I(O + K)T are max are positive and finite, there exists the

smallest N E N such that

1( + K) N max. (3.67)

46



We newly defines following constants:

m+1

o) = 1 max

i=1

PB (2vo + 5rmax + 5Em~, + 3dmax)
Xmin ---- qmin - (2N + 5)PBOmax (3.68)

qmin - PBP C (2vo + 5rmax + 3dmax)
max = a°

PB 5pC + 2N + 5
( ao

Theorem 3.2. Under Assumptions 3.1, 3.2, 3.3, 3.4, and 3.5, for the system in

(3.12) with the controller in (3.14) and the adaptive law in (3.22), Z,(t) has a semi-

globally bounded trajectory with respect to the level of saturation for all t > to if

(i) Ixz,(to)ll < Xmax
P

(ii) VTj(o < Qmax mm

Further,

IxZ(t) I < xmax, Vt > to

and the error, e(t), is in the order of

Ie(t)| = 0 sup IAv(T)I .

Proof. We define A as

A = { Xp I min < |IXp < Xmax } (3.69)

The stability is proved in two steps. From Conditions (ii), we prove that B C A. In

the second step, we prove that W < 0, Vx, E A.

Step 1: Approached in this step is identical to that in Theorem 3.1. Replacing Xmin

and 1max with tmin and Qmax respectively, we can take the same steps from (3.39) to

(3.42). Then, we obtain that B C A from the definition of A.



Step 2: We prove that W < 0, Vxp E A in this step. The first case is that there is

no saturation in the control inputs and the second one is that the control inputs are

limited by the magnitude saturation.

Case A: Av = 0

Procedures in (3.43), (3.44), and (3.45) are established as in Theorem 3.1 and the

Condition (ii) in Theorem 3.2 results in

Omax < max < minPB (3.70)
(2N + 5)PB

Therefore, we can have the same result in (3.47). From the choice of tmin in (3.68),

the following holds:

2PB (rmax + Omax)
Zmin > (3.71)

qmin - 2 PBOmax

Hence, it is shown that

W < 0, Vx ,EA (3.72)

in Case A.

Case B: Av 0

In this case, two sub-cases are considered as in Theorem 3.1.

Sub-case (i): 2xT PBE ', < -VminboIXp|

Since there is no difference in the first sub-case between Theorem 3.1 and 3.2, we now

discuss the second sub-case.

Sub-case (ii): 2xPBi > -VminbollXpl

Complexities arise in the stability analysis due to that the rectangular saturation

does not necessary preserve the direction of the control input as the control inputs



hit their limits. Therefore, F is decomposed into vd and [ as

/
- Vd + f = IIvdl +

Il II
(3.73)

and Vd is chosen such that

Vmin]. (3.74)

as shown in Figure 3-3. This decomposition can be constructed without loss of gen-

erality. The condition to this sub-case implies that

2xp PBE - Il vdlI + Vminbollxpll + 2x PBp~P 0.
xP '1VI

Multiplying IIvII/IIvad in (3.76), we have

2x PB.Ev + VminboIXpi IIdlP II~dII Tp BP 0 IIdll -

Since vd in (3.74) is chosen such that Vmin/llvdII < 1 and I1/11 vdll < 1 hold, we have

U'd

.'1 2

t2,n a.x,

R R ( u )

Figure 3-3: The control input, u, saturated by the rectangular saturation can be

decomposed into ud and ii.

2xPBp-.v + bollxplllljjI + 2PBIIxplII jjjI 0.

(3.75)

(3.76)

(3.77)

IIVdll > max[ll|ll,



We construct W in the right side of (3.77) and have an inequality as

- xP Qxp + 2xT PBPE x d

r (3.78)

+ bollxIl |v| + 2xPBpP- + 2PBljxp||vl > W.

Using the upper bound on Ilvl in (3.60) and the inequality in (3.67), we have

2PBllxPll lII < 2(N + 1)PBOmax IIXP1 2 + 2PB(dmax + Oma + rmax)llxpll. (3.79)

Incorporating (3.79) into (3.78), we have

[(2N + 5)PBOmax - qmin] ix p112
(3.80)

+ PB (2vo + 5rmax + 56max + 3dmax) IIxll > /W

since 11011 < o. From (3.70), we know that (2N + 5)PBOmax - qmin < 0 and then we

have

PB (2vo + 5rmax + 50max + 3dmax)W < 0, x||l > (3.81)
qmin - (2N + 5)PBOmax

From the choice of Xmin, we conclude that

W < 0, Vx A (3.82)

in Sub-case (ii) of Case B. As a consequence from (3.72) and (3.82), it follows that

W< 0, Vx, E A. (3.83)

Remark 3.4. As shown in (3.75), we have an additional term 2xTPBpv as the

rectangular saturation changes the direction of the control inputs. This brings con-

servativeness in the analysis such that Xmin < min. This, in turn, is followed by

Omax < max. This implies that Condition (ii) in Theorem 3.2 is more restrictive



than that in Theorem 3.1.

3.3 Simulation

This section validate the proposed adaptive controller which consists of a combination

of a PI baseline controller with the adaptive controller. A nonlinear 6-DoF hypersonic

aircraft model is employed to demonstrate the performance of the proposed adaptive

controller in Section 3.2. Aerodynamic data of the NASA X-15 hypersonic aircraft

discussed in [13] are combined with nonlinear flight dynamics as

S= F(X, U) (3.84)

whose states (X) and inputs (U) are defined as

X=[VT PPQR E O I NED] T

(3.85)
U = [Uthrust Uleft Uright Urudder]T

Uleft and Uright represent the left and right control surface of the elevon system.

Elevator and aileron inputs can be computed as

Uleft + Uright Uaeron Uleft - Uright
Ueievato = 2 , Uaieron, 2 (3.86)

2 2

Actuator limits are imposed as

Uteft/right E [-15, 15], Urudder [-30, 30]. (3.87)

Details regarding the NASA X-15 hypersonic aircraft are discussed in Appendix A.

3.3.1 Nominal Controller Design

For the purpose of control design, the nonlinear flight dynamics is linearized at the

trim point (Xo, Uo) condition where straight and level flight is achieved with a con-



stant speed. Trim states and inputs are shown in Table 3.1. This leads to a LTI

States and Inputs

Airspeed

Altitude

Angle of Attack

Thrust

Left & Right Elevon

Rudder

Symbols

VT

h(=-D)

a

Uthrust

Ule ftright

Urudder

Quantity

1929.7 ft/sec (Mach 3)

60000 ft

5.5 deg

7062 lb

-7.3 deg

0 deg

Table 3.1: Trim conditions and inputs.

system with full state vector x = X - Xo and full input vector u = U - Uo. To

efficiently design the controller, weakly coupled or decoupled states and inputs are

neglected from the LTI system and this results in the linearized flight dynamics in

the form of (3.1) with states and inputs given by

x =[Za A3 p q r]T
(3.88)

U =[Uleft Uright Urudder]T

The states of the integral controller and the command in (3.3) are given as

Xc=- [AaLI PI rI]T

(3.89)
r = [Aacad Acmd Pcmd cmd] T

where A a, p, and r, are the output error integrations defined by

0

Aa, = [Aa cmd(t) - A(t)] dt

PI= f[Pmd(t) - p(t)] dt,

ri = [rcmd(t) - r(t)] dt.

(3.90)



This, in turn, determines the error combination matrix B, as

0 0 0 0

0 -1 0 0

0 0 0 -1

(3.91)

As the linearized plant with integral actions is constructed, we design a LQR PI

controller by minimizing the the cost function given by

J = (Q + KRKT) xpdt (3.92)

where K is the controller gain.

3.3.2 Adaptive Controller Design

The adaptive controller is designed as in (5.17). First, we choose Q = 10018,8 and

then compute P from AmP+PAm = -Q. The adaptive rate denoted by F is designed

using an empirical rule in [8] described by

Fr= diag(V)

Tminprmax
(3.93)

where

i. E Rlp P+l is a vector given by the sum of the columns of #* where 9* corresponds

to the uncertainty A for which the plant has the most unstable eigenvalues.

ii. Tmin is the smallest time constant in the reference model.

iii. p is the norm of B, P.

iv. rmax is the maximum among the norm of the command signal r.

v. To is a small positive definite diagonal matrix which ensures that F is positive

definite.

-1

Be= 0

0



Combining the adaptive controller with the nominal one, the full control input be-

comes as in (3.14). The reference model and the overall control architecture can be

seen in Figure 3-4.

3.3.3 Simulation Results

Simulation 1 - A1 = diag([l 1 0.2 1])

The uncertainty, A1, implies that the right control surface in the elevon system has

lost 80% of effectiveness but the others have no loss. For example, the right elevon is

deflected only by 20 when 100 is given as a control input. At t = l0sec, the uncertainty

was applied to the nonlinear flight dynamics. A pulse of 40 angle of attack was given

as the command signal and the simulation was executed for 60sec. In order to ensure

that the aircraft has endurable accelerations, the verical acceleration, Az, was also

considered. Figure 3-5 shows that the plant with the augmented adaptive controller

(subscripted by "ad") is able to track the reference model (subscripted by "ref') while

the nominal controller (subscripted by "nom") fails to stabilize the plant. Oscillation

between 0 and l0sec is due to non-zero initial conditions. As shown in Figure 3-5,

the adaptive controller can regulate the non-zero initial conditions compared to the

nominal controller. This also indicates that the vertical acceleration remains ±2g.

Simulation 2 - A2 = diag([1 1 - 0.2 1])

The uncertainty, A2, has control reversal in addition to the same loss of effectiveness

in A. Control reversal represents the case when the sign of the control input becomes

opposite. This phenomenon was demonstrated in this simulation study. The right

control surface has both 80% loss of control surface effectiveness and control reversal.

The same command signal as in Simulation 1 was used. In order to compare the

performance of the nominal controller with that of the adaptive counterpart fairly,

information regarding the sign of A2 was also provided when the nominal controller

is designed. Similar to the previous simulation results, Figure 3-6 shows that the

proposed adaptive controller guarantees close tracking of reference model while the



Reference Model

Trim Inputs Flight Dynamics Trim States

U+o X- = F(X, U) - Xo

LQR PI Controller

Adaptive System

Uncertainty

+( A X = F(X. U) +

Saturation

Ua d _

Adaptive Controller

- ---------------------------------- 5

Figure 3-4: The block diagram of the reference model and the overall control archi-
tecture in nonlinear simulation.
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Figure 3-6: Response of angle of attack, pitch rate and vertical acceleration of refer-

ence, adaptive, and nominal systems under A2 .



nominal controller fails to track even though the sign of A2 is incorporated.

Simulation 3 - A3 = diag([1 1 - 0.5 1])

In this simulation, we introduce 50% loss of effectiveness as well as control reversal

in the right elevon. A more aggressive command which is 6' of acmd was given to

the plant in this simulation. This causes magnitude saturation in both elevons while

the aircraft is still subject to the uncertainty in A3. The uncertainty implies that

the right elevon is subject to 50% loss of control surface effectiveness and control

reversal at the same time. The actuator uncertainty A3 was introduced at t = 30sec.

When the uncertainty occurs at t = 30sec, the nominal controller fails to stabilize

the plant and the states and hence inputs diverges. In Figure 3-7, the responses,

aad(eu), qad(eu) and AZad(eu), are obtained by using the adaptive controller proposed

in this chapter. In the presence of magnitude saturation, this controller shows a

satisfactory tracking. It is noted that the responses, aad(e), qad(e) and AZad(e), by the

standard adaptive controller whose adaptive law is based on e instead of eu performs

poorly. These responses have high oscillation compared to aad(eu), qad(eu) and AZad(eu) -

This illustrates that the adaptive control designed by (5.17) improves the tracking

performance when magnitude of inputs is constrained.

Figure 3-8 shows AR,(u) which is the control input transmitted to the aircraft with

adaptive controller based on eu and e respectively. In Figure 3-8(b), the adaptive con-

troller based on e causes high oscillation in all three control inputs and both elevons

continues to hit the lower limits. This shows control inputs are beyond the band-

width and control surfaces are susceptible to structural failure. On the contrary, the

proposed adaptive controller provides admissible oscillation in the presence of mag-

nitude saturation. It is because the proposed controller activates adaptation based

on eu from which the error due to magnitude saturation is subtracted. Consequently,

the proposed adaptive controller succeeds to remove the error due to uncertainties

and hence smooth control inputs are possible.
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Figure 3-7: Response of angle of attack, pitch rate, and vertical acceleration of refer-
ence, adaptive, and nominal systems under A3.

3.4 Summary

In this chapter, we developed an extension of the approach used in [19] to multi-input

systems with realistic magnitude-constrained inputs while a PI baseline controller is

augmented with an adaptive controller. Sufficient conditions for uniform bounded-

ness of the closed-loop system were derived. A semi-global stability result was proved

with respect to the level of saturation for open-loop unstable plants while the stability

result becomes global for open-loop stable plants. Through the simulation based on

a nonlinear model of NASA X-15 hypersonic aircraft, it was demonstrated that the

proposed adaptive controller tracks the reference model even in the presence of actu-
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Chapter 4

Adaptive Gain-scheduled

Controller

In this chapter, we address the problem of controlling a nonlinear multi-rate plant

in the presence of parametric uncertainties. It is assumed that the plant consists of

multi-rate state variables and that it has multiple trim points over which its dynamic

characteristics vary significantly. A nominal controller based on gain-scheduling is de-

signed to control fast-varying states in the inner-loop and the outer loop which consists

of slowly-varying states is closed by fixed controllers. Slowly-varying states such as

altitude and velocity are used as gain-scheduling variables. An adaptive controller

that employs gain-scheduling as a nominal component and adjustable parameters for

accommodating uncertainties as an adaptive component is proposed. The closed-loop

system with the proposed controller is shown to be globally bounded under certain

conditions. Commands that are sufficiently slow and the trim points that are suf-

ficiently close to each other guarantee the stability of the overall closed-loop with

the nominal gain-scheduling controller and the adaptive time-varying controller. The

theoretical results are validated using nonlinear flight simulation models of a high

performance aircraft. The performance of the augmented adaptive controller is com-

pared with both the nominal and the adaptive controller without gain scheduling in

the presence of actuator uncertainties when aggressive commands are given to those

closed-loop systems.



4.1 Problem Statement

4.1.1 Linear Time-varying System

We consider a nonlinear multi-rate plant in the form of

X = f(X, X,) + g(X, Xg)U (4.1)
(4.1)

X, = h(X,, U2 )

where the system state is partitioned into two components, X E R n and Xg E Rng

so that the former represents the fast-varying controlled states relative to the slowly-

varying states, Xg. The latter will become gain-scheduling variables. The input is

also separated by the time-scale into U1 E R m and U2 E R'. The block diagram of a

multi-rate plant is depicted in Figure 4-1.

Xgcmd Xg Slow states

X: Fast states

Figure 4-1: A block diagram of a multi-rate plant. Fast states and slow states are

controlled separately.

It is assumed that sufficient information is available about the nonlinearity of h

so that the outer-loop controller, U2 = hc(Xg, Xg,cmd), can be chosen so that X,(t)

tracks Xg,cmd(t), its desired command signal, and satisfies the following assumption:

Assumption 4.1. Xg,cmd(t) is continuously differentiable and slowly varying, i.e.

Xcd(t) < 1, Vt > to. (4.2)



Xg,cmdX F2 light Envelope

X X X Xi
8 X X X ..,

4X XX

3 6 10
X X X

g,1 2 x5 9
X X

91

Figure 4-2: A schematic of trim points inside the operating envelope in the Xg space.

The goal is now to design U2 in (4.1) such that the closed-loop system has bounded

solutions in the presence of uncertainties in f and g. In order to control the nonlinear

system in (4.1) for arbitrary initial conditions and command signals encompassing

multiple trim points, we consider a family of k trim points near a given command

Xg,cmd(t) as

ag = {Xg,,, Xg,2,... , X g,k}. (4.3)

The dimension of X,,i is n, and its rth component is defined as Xgr,i.

Definition 4.1. Xg,i and X9,j are separated trim points if X9,,i Xgr,j for all 1 <

r < ng.

In Figure 4-2, Xg,, and X 9 ,5 are not separated trim points since X 92,1 = Xg2,5 but

Xg, and Xg,6 are separated ones.

Assumption 4.2. There exist k operating points to satisfy the following condition

for all separated trim points X,i and X9,,

max [min jjXg9, - Xgj < E2. (4.4)
l <i<k <kthat over the operating envelope, a large number of trim

The assumption implies that over the operating envelope, a large number of trim



points are required so that adjacent trim points are close enough. For each frozen
trim point X,i, we obtain a family of equilibrium states and inputs as

Up = {X(Xg,1), X(Xg,2), ... , X(Xg,k)}

a= { U(X,, 1), U(Xg,2), ... , U1(Xg,k) )}

such that

f(X(x,,i), xg,,) + g(x(x,,), x,,)u(x,,i) = 0.

ag, ap, and ao are tabulated off-line and are utilized to construct the desired state
and input (X*(t), U*(t)) by linear interpolation as

X*(t) = X(Xg,i) + M(Xg(t) - X,i) (4.8)
U;(t) = Ui(Xg,,) + N(Xg(t) - Xg,i)

where Mi and Ni are constant matrices which map Xg into X and U respectively. In
Figure 4-3, construction of X*(t) is illustrated.

(X,i,. x (X,,))

* X*(t)

*LI

x,, Xg(t)

Figure 4-3: This figure illustrates the construction of desired states, X*(t).

(4.5)

(4.6)

(4.7)

X91

X92



Using these trajectories, we linearize the plant in (4.1) about (Xg(t), X*(t), Ur(t))

as

d' = A(t)x, + B(t)u + e(t) (4.9)

where x = X - X*(t), u = U - U*(t) and

A(t) = Of + g U,(t)
S(X*(t),X,(t)) (X*(t), X,(t))

B(t) = g(X*(t), X,(t))

Er(t) = f(X*(t), Xg(t)) + g(X*(t), Xg(t))U* (t) - X*(t)+O(x2).

When the plant is linearized around a single trim point, we simply obtain Ex(t) =

O(Z2) because (4.7) holds. However, the nonliearity e,(t) is in more complicated form

in linearization around the time-varying trajectory as in (4.9). The following propo-

sition quantifies the slow variations in Xg(t), which is the gain-scheduling variable.

:Proposition 4.1. If O(x 2 ) is neglected, it can be shown under Assumptions 4.1 and

.4.2 that

|IeX(t)I _ ac1 + be2  (4.10)

where a and b are arbitrary positive constants.

Proof. See Appendix B. ]

Remark 4.1. By making el and E2 suitably small, c, can be made arbitrarily small.

In other words, if the gain-scheduling variable is varying sufficiently slowly, and trim

points around which the gains are scheduled are sufficiently close to each other, cx can

be made arbitrarily small.

The problem that we consider in this chapter is the control of the system in (4.9)

under Assumptions 4.1 and 4.2 in the presence of uncertainties introduced due to

control anomalies. In particular, we consider the case where the nonlinear dynamics

in (4.1) is of the form

X = f(X, Xg) + g(X, Xg)AUi (4.11)



where A is an unknown diagonal matrix with nonzero diagonal entries, and represents

loss of effectiveness in control input. If the nonlinear dynamics in (4.11) is linearized

about the same trajectory in (4.8), using the same procedure as described above, we

can obtain the linear time-varying system to be controlled as

x = AA(t)x + B(t)A(u + d(t)) + Ex(t) (4.12)

where

A, (t) = + AU*(t)XOf OXS(x*(t), X,(t)) (x-(t), Xg(t))

d(t) = (I - A-1)U,*(t)

and d(t) is the input disturbance due to A. Therefore, when there is no uncertainty

in the control input, i.e. A = I, d(t) becomes zero.

4.1.2 Augmentation with Integral Actions

The overall goal of the controller design is that the state, X(t), follows a desired

trajectory, X*(t), in spite of disturbances and uncertainties. Toward this goal, we

design an inner-loop controller that integrates the tracking error as

.c- = Bc(X - X*) = Bx (4.13)

where x, E R ue is the controller state. The plant in (4.12) combined with the con-

troller state is written as

= + [ t) 1 A(u + d(t)) + Ex(t) (4.14)
ic B c Oncxnc Xc Oncxm

xp ApX(t) Xp Bp(t)

or equivalently as

,p = ApA(t)xp + Bp(t)A(u + d(t)) + ex(t) (4.15)



where xp, RWn , Ap, R p X " , and Bp E Rnpxm. Oixj denotes the i x j zero matrix.

The plant in (4.15) is the overall plant to be controlled.

4.2 Adaptive Controller

4.2.1 Reference Model and Baseline Controller Design

In order to ensure that a priori knowledge about the plant and controller design is

utilized to achieve best possible performance, the adaptive controller is augmented

with a nominal controller which guarantees satisfactory performance in the absence

of uncertainties. For the purpose of the nominal controller design, we utilize the

principles of gain-scheduling, similar to those in [32] and [26], and develop a time-

varying controller, under the premise that no uncertainties are present. The details

of the gain-scheduled controller are given below.

We linearize the nonlinear plant in (4.1), where no uncertainties are present, at

every frozen equilibrium point and combine the integral action in (4.13). Then, we

obtain LTI plants at every trim points as

S  [At Onxnc x Bi= 1 + u (4.16)

nn B_ Onn L Zx Oncxm

SAr,i XP Bp,i

or equivalently as

p = Ap,ixp + Bp,ju (4.17)

where

A = + Ul (Xg,i)
(= x(x,,), xg,) O (xx(,), xg,)

Bi = g(X(X,,j), X,,j).



At the ith trim point, the nominal controller is designed as

Unom = Kxp (4.18)

where the feedback control gain, Ki, is found by the LQR method [10] which guar-

antees proper closed-loop performance of (4.17). Therefore, the reference model at

each trim point is designed as

im = Am,ixm (4.19)

where Am,i = Ap,i + Bp,iK7 and Am,i is Hurwitz. The nominal controller is designed

at several fixed points, the controller gain is scheduled based on the gain-scheduling

variables Xg as

unom = KT (t)xp (4.20)

where K(t) = Ki + Li(Xg(t) - Xg,i) and Li is a constant matrix which represents a

linear mapping from Xg to the controller gain K. The strategy of gain-scheduling is

shown in Figure 4-4. While measuring the gain-scheduling variable, Xg(t), online, it

updates the corresponding gain, K(t), by linearly interpolating gains in the off-line

gain table based on current values of Xg(t) in the gain-scheduling variable domain.

As a consequence of the design of the gain-scheduling of the nominal controller, we

choose a time-varying reference model that the plant in (4.15) needs to track as

i = Am(t)xm + ex(t) (4.21)

where Am(t) = A,(t) + Bp(t)KT(t). In order to design stable adaptive control, stabil-

ity of the reference model in (4.21) should be guaranteed in the first place. Stability

analysis of the time-varying reference model will be provided in Section 4.3.

4.2.2 Adaptive Controller Design

In order to improve the tracking performance in the presence of uncertainties, we

augment the nominal controller with an adaptive counterpart. The overall control
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Figure 4-4: Gain-scheduling strategy: linear mapping
Xg(t) to the offine gain table.

from online mearsurement of

input is designed as

U = Unom + Uad. (4.22)

The adaptive control input, Uad, is given by

Uad = OTw (4.23)

where

Od mx 1

For the model-matching condition, it is assumed that there exists an ideal control

parameter, 0*(t), such that

ApX(t) + Bp(t)A (K(t) + 9~(t)) = Am(t)
(4.24)

0*(t)T + d(t) = 0.

We define the tracking error to be e = x - xm and the adaptive parameter error to

be 9 = 9 - 9*. Subtracting (4.21) from (4.12), the error model is obtained as The



adaptive law is designed as in [21]

S= -rFweTPBp(t)sign(A) - 0 1 - m) (4.25)

where
( 1 if 0I > 0*

f(0) = 
max

0 otherwise.

p = pT > 0 is the solution of ATP + PA, = -Q for a given Q = QT > 0,

F = rT > 0 is a diagonal matrix which represents adaptation rate, sign(A)

diag (sign(Al), sign(A2), ... ,sign(Am1 )), 110*l < max, 0 ax is a known constant.

The second term in (4.25) is added to ensure the boundedness of O(t) in the presence

of the bounded disturbance e(t).

4.3 Stability Analysis

Since the adaptive control basically enforces to the unknown plant to follow a given

reference model, stability of the reference model should be guaranteed first of all.

Assumption 4.3. Given Q = QT > 0, there exist P(t) = P(t)T > 0 and E3 such

that

AT(t)P(t) + P(t)AT = -Q, IIPII : 3 < qmin (4.26)

where qmin is the minimum eigenvalue of Q.

The above assumption implies that P(t), and hence Am(t), vary slowly. This is indeed

true because the time-vary characteristic of Am(t) originates from the slowly-varying

Xg(t). This assumption, in turn, implies that the time-derivative of the positive

function

W = x PXm (4.27)

along with (4.21) is given by

TW = X(-Q + P)Xm + 2Pcxxm < -(qmin - E3) Ixmll2 + 2Pll II|mll. (4.28)



Defining a compact set M such as

M Xmqmin - 3) " .II (4.29)
(q - 63)

Outside M, we have W < 0 so that the reference model in (4.21) is globally bounded.

Remark 4.2. Assumption 4.3 is introduced primarily for the purpose of accommodat-

ing the reference model as in (4.21). Such a reference model may often be desired in

an application in order to accommodate different transient characteristics at different

trim points in the operating envelope.

We now prove the main result of the chapter.

Theorem 4.1. Under Assumptions 4.1, 4.2, and 4.3, the plant in (4.15) with the

controller in (4.22) and the adaptive law in (4.25), has globally bounded solutions for

all t > to.

Proof. A Lyapunov candidate function is chosen as

V = eTPe + trace (T F-O1AI) (4.30)

where a time-derivative is given by

V = - e Q - e + 2eTPex - 2trace (6Tp-0*)

- 2trace [ F1A| (P1 l) ] (4.31)

where JAl = sign(A)A.

Two cases are considered, (i) II01 _ 0e, and (ii) 11l > 0*.

Case (i): 10Ile11 < e

ll0l I O , implies that 1Il <5 20m and f(0) = 0 from which we obtain

S= -eT (Q - ) e + 2e Tpe- 2trace (T-r1'*). (4.32)



By taking bounds on right-hand side of (4.32), we have

Vr -(qmin - E3) e 112 + 211PI IEx|1 Iell + 2M 11611
'/min

(4.33)

where miax(min) is the maximum(minimum) of the diagonal elements of F. Hence, we

define a compact set D 1 as

(e,) (ell -
qmin - E32

4 0* lll ax
'Ymin(qmin - E1) (qmin - 61)2

Case (ii): 1111e > 9*

Time derivative of V in (4.30) becomes

V = - eT(Q ) e + 2eTPE - 2trace (OTF-lo*)

- 2trace (iF-lOAl) (1 -
(4.35)II01 )2

From (4.35), we have the following inequality as

V - (qmin - 3) 11e112 + 2lIP llleH + 2P1 * Il
"Ymin

-2 Amin
^/max

Amaxmax 
11 *11

AminYmin

(4.36)
10 1 2

max

where Amax(min) is the maximum(minimum) of the diagonal elements of JAl. We define

a constant ao and K by

Amax7Ymax
Amin7min K = 1 + ao + 64 64 > 0. (4.37)

We consider two sub-cases, (a) 0ax < II011 < KOmax and (b) 11011 > KOmax.

where

< kl, 110 i 20max} (4.34)Dx =



Sub-case (a): 0, < 11011L KOa

For a given condition on I0 I, we have following inequalities by using K - 1 = ao + E4

1011 < (K + 1)0m*

Ill - AmaxYmax" I*Smin Ymin(1 ,,, 2

< (K + 1 + ao)*ax

S(ao + E4 )2

Using these inequalities, we have

19*11V _ - (qmin - (3) Ile112 + 21Pl|lllcxlllell + 2 11011
7min

Amin 2o*2
+2 m (K + 1)(K + 1 + ao)(ao + E4)2 max

'max

Therefore, we obtian a compact set D2 as

(e, ) ( el - qmin )2
-mi (3

+ 1)nax

2(K + 1)119* 110x I PI 2 x 112
k2 minmin -min(qmi - ) (qmin- (3)2 +

2Amin(K + 1)(K + 1 + ao)(ao + 64) max

'/max (qmin - (3)

Since k2 > kl, we note that D2 D D 1.

Sub-case (b): 11011 > KOmax

In this case, we obtain following inequalities as

11l11 = ie0 - 0*11 > (ao + 4)0*ma,

Oll (1 - Aman7

AminYmin

> (ao + E4)2 ,

_ 11911 - aoOax > 4 4 Ill.ao + E4

(4.38)

D2 =

where

(4.39)

(4.40)

(4.41)

< k2, 1111 (K



Correspondingly, we have from (4.36)

V - (qmin - E3) lle 2 + 2IIP -l 2zxme - 2 min 4 (ao0  64) 1112 + 2 11 0il. (4.42)
'Ymax 'Ymin

Hence, we have a compact set D3 as

D = (e, 9) el IIP + 10 1 < k4 (4.43)q3 (el i) ll-min - E3 ) qmin - 63 ( 1 min3 k -

where

Amin IPI211p1 I2  110* 112
k 3 = 2 E4(ao + 6 4 ), k 4  +

Ymax (qmin - 63)2 7mink3(qmin - 63)

We define a compact set D to be D = D2 U D 3. Then, outside D, 1V < 0 and this

guarantees global boundedness of (e, 0), which results in bounded x, and 0. This, in

turn, proves control input u is globally bounded. [

Remark 4.3. The above proof established that outside the compact set, D, we have

V < 0 which in turn implies that all trajectories converge to the compact set. As

a result, the tracking error is of the order of the variations in the gain-scheduling

variables.

4.4 Simulation

A nonlinear 6-DoF hypersonic aircraft model is employed to demonstrate the per-

formance of the proposed adaptive controller in Section 4.2. To accommodate the

nonlinear simulation studies, BANTAM architecture is utilized where the dynamics

of a given aircraft model are loaded with aerodynamics data of the corresponding

aircraft [9]. The aerodynamics data of NASA X-15 hypersonic aircraft discussed in

[13] are combined with nonlinear flight controller which consists of a PI baseline con-

troller and the adaptive controller. Details regarding NASA X-15 hypersonic aircraft



are discussed in Appendix A. The nonlinear flight dynamics is written in the form of

X = F(X, U) (4.44)

whose states and inputs are represented as

X = [VT aOPP PQ R4 NED]T
(4.45)

U = [UThrust ULeft URight URudder]T .

where ULeft and URight are the left and right control surface of the elevon system.

The elevator and aileron inputs can be computed as

UElevator = ULeft + URight UAileron ULeft - URight (4.46)
2 2

Neglecting decoupled or weakly coupled states and inputs in (4.44), the nonlinear

plant in (4.44) is cast into the form of (4.1) with states and inputs as

X = [a p P Q R]T, U1 = [UAileron UElevatorl URudder]T  (4.47)

Xg = [V h]T, U2 = [UThrust UElevator2 I

Since the elevator input controls both the pitching moment and the altitude, it is

decomposed into two parts: UElevatori and UElevator2 . Considering the difference in the

dynamic characteristics of the pitching moment and the altitude, this decomposition

is plausible based on the time-scale.

4.4.1 Nominal Controller Design

To begin with, the outer loop controller, hc(Xg, Xg,cmd), is designed to adjust the gain

scheduling variables h, V so that they track the designed command signals hmd, Vmd

respectively. This controller closes the loop using the error between the actual and

commanded signals. A fixed PID controller (with an approximated derivative) is



chosen, with a transfer function given by

Ki Kds
G(s) = K, + +

s Ns +l1
(4.48)

The PID gains for both velocity and altitude controllers are tuned based on Ziegler-

Nichols tuning rule [10].

As the second step, we find the flight envelope of NASA X-15 [13] in which we

selected 44 trim points for the purpose of nominal (inner-loop) controller design as

shown in Figure 4-5. The intervals in Figure 4-5 between trim points are determined
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X X X X

X X X
I I I I I I I

2000 2500 3000 3500 4000 4500 5000
Velocity (fps)

Figure 4-5: Trim points and commands (hed, Vamd) on the V - h space.

such that that the linearization error, ex(t), in (3.5) is sufficiently small. The sim-

ulation is executed for 150s while the command, Xg,and is given as shown in Figure

4-5. The initial altitude is 50,000ft and it increases up to 100,000ft, and the velocity

increases by more than 4,500fps (Mach 5). Green circles on the command line in

Figure 4-5 indicate the way-points for every 10s. Figure 4-6 shows profiles of the

velocity and alitutde commands.
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Figure 4-6: Profiles of altitude and velocity commands

Linearizing the nonlinear flight dynamics in (4.1) at each trim point, we obtain

the linearized plant and combine the integral actions with the linearized plant. The

controller state vector, xe, in (4.13) consists of ep, ea, and er given by

ep = [P*(t) - P(t)] dt, e. = [a*(t) - a(t)] dt, and
(4.49)

er = [R*(t) -(t) - R(t)] dt

where X*(t) = [a*(t) 0*(t) P*(t) Q*(t) R*(t)]T is the desired state defined in (4.8).



This, in turn, determines the error combination matrix B, as

0 0 -1

Be = -1 0 0

00 0

As the linearized plant in (4.17) is constructed, we

minimizing the the cost function given by

design LQR PI controller by

ji= T (Qi + KiRjK7) xpdt (4.51)

where Ki is the controller gain. Figure 4-7(a) shows the pole location of the open-

-10 -5 0
Real

(a) Pole location of open-loop plants, A,,i

24 -S ................... . ....... .................

-6 .
-1 5K fps, 60K ft

-8 . 5K fps, 120K ft

-10 -5 0
Real

(b) Pole location of reference models, Am,i

Figure 4-7: Poles of the open-loop plants and the reference models

loop system at three different trim points:

and (5,000fps, 120,000ft). This plot implies

(2,000fps, 40,000ft), (5,000fps, 60,000ft),

dynamic characteristics of the plant vary

significantly as trim points differ, which necessitates a gain-scheduling controller. We

also note that as altitude and velocity become higher, open-loop poles are closer to

imaginary axis, and damping characteristic becomes worse. In Figure 4-7(b), poles

of the reference model are described for the same three trim points. The poles of the

(4.50)



reference model at each frozen trim point is located such that the dominant damping

ratio is less than 0.7. To meet this specification as well as well-behaved steady state

performance, we choose Qi and Ri in (4.51).

4.4.2 Adaptive Controller Design

First of all, we note that hc(Xg, Xg,cd) in the outermost-loop is a fixed controller.

Since hc(Xg, Xg,,md) only controls slow state variables, it enables those variables to

track given commands in the presence of uncertainties. However, as uncertainties

heighten, the performance of hc(Xg, Xg,cmd) will worsen which later requires the design

of adaptive parts in h,(Xg, Xg,md) for improved performance. This will be developed

in future studies.

The adaptive controller is augmented with the nominal gain-scheduling controller.

'The adaptive parameter, 0(t), is governed by the adaptive law specified in (4.25). Q

:is chosen as 10Is8x and P(t) is followed by solving A (t)P(t) + P(t)Am(t) = -Q at

,each time step. The adaptive rate, F, is determined based on the heuristic rule [8].

4.4.3 Simulation Results

The controllers, hc(Xg, Xg,cmd), Unom, and Uad, are employed to the 6-DoF nonlin-

ear plant in (4.44). To represent the uncertainties in the plant, the control failure,

A = diag([1 0.4 1]), is introduced at 30s and this failure implies a 60% loss of

congrol surface effectiveness on the right elevon and no losses in the other control

surfaces. In practice, the NASA X-15 has the input saturation limits which are in-

cluded in this simulation study. The limit for the left and right elevons is 300 and

one for the rudder is set to 150. Stability analysis guarantees the global boundedness

of signals in the closed-loop system in a similar manner as derived in Section 4.3.

Figure 4-8 shows the overall command-following performance of the proposed con-

troller. When the uncertainty occurs at 30s, the adaptive controller combined with

the gain-scheduling nominal one is able to stabilize and complete the commanded

mauneuver. Even the non-augmented adaptive controller performs the tracking in a



stable manner. However, the plant only with the nominal controller starts to deviate

from the command around 40s and results in instabilty.
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4500

, 4000

. 3500

> 3000 3Reference
-- Ad + Gain-schedule
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(a) Velocity command-following

x 10'
11

Reference
10 - -- Ad + Gain-schedule

- - *Ad only
9 .. Gain-schedule

8.

7-

U 50 100 150
time (sec)

(b) Altitude command-following

Figure 4-8: Velocity and altitude command-following in the presence of the uncer-

tainty, A.

Figure 4-9 shows the state variables of the closed loop systems and the refer-

ence model, where the performance of the augmented adaptive controller (denoted as

"Ad + gain-schedule") is compared with the nominal controller (denoted as "Gain-

Schedule").
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The state variables includes angle of attack (a), side-slip angle (0), roll rate (P),
pitch rate (Q), and roll rate (R). When the control failure occurs at 30s, all state

variables become unstable with the nominal gain-scheduling controller whereas in-

stability is overcome when the adaptive controller is augmented with the nominal

one. As the asymmetric uncertainty, A, generates the rolling and pitching moment

instantly, the nominal controller is unable to regulate P and R which results in the

sudden increase of P. The elevator and aileron inputs in the augmented adaptive

control intelligently increase their magnitudes to cope with the uncertainties so that

P and R are corrected back to those of the reference model.
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--Ad + Gain-schedule10"1 - Gain-schedule

0-:

1 -20[
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(c) Rudder

Figure 4-10: Control surfaces of the closed loop systems and the reference model

When the control failure occurs at 30s, the elevator and the aileron are deflected

to mitigate the adverse effect of the control failure while satisfactory tracking perfor-



mance is carried out simultaneously. As shown in Figure 4-10, as instability worsens,

the rudder is saturated at 60s which explains that the failure of the nominal controller

is primarily due to the uncertainty not the saturation.

For comparison purposes, we consider the case (denoted as "Ad only") where only

the adaptive controller is used without the gain-scheduling nominal controller, and

is illustrated in Figure 4-11. Even though stability is guaranteed and the command-

following of the velocity and altitude is obtained with both the augmented and non-

augmented adaptive controllers, it has undesirable oscillations in P, Q, and R with

the non-augmented adaptive controller particularly when the uncertainty occurs.

In Figure 4-12, control inputs are shown when the adaptive control is designed

without the nominal gain-scheduling controller. Since P, Q, and R with the non-

augmented adaptive controller have high oscillations, the control inputs also show high

frequency signals which is not desirable to aircraft control surfaces. This demonstrates

that the augmented adaptive controller shows better performance because a-priori

knowledge about the plant is utilized in the controller design appropriately. Overall,

it could be argued that the gain-scheduling controller deals with the variation in the

plant dynamics between trim points while the adaptive component copes with the

variation due to the uncertainty.

4.5 Summary

In this chapter, we have introduced design, stability analysis, and validation of an

adaptive control in augmentation with gain-scheduling for the control of nonlinear

plants with multi-rate state variables. The adaptive control architecture includes an

outer-loop and an inner-loop controller. The former controls the slow state variables

whereas the later is designed to regulate fast ones. The adaptive controller augmented

with the nominal gain-scheduling controller is proposed for the inner-loop controller

and a fixed controller is designed in the outer-loop. The adaptive law is derived based

on Lyapunov stability theory and global boundedness of states and control inputs is

proved.
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Nonlinear 6-DOF flight dynamics of a hypersonic aircraft is employed to validate

the control architecture through simulations. The adaptive controller proposed has

the benefit of safe performance compared to the nominal controller. It is also shown

that the augmented adaptive controller performs better than non-augmented one.
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Chapter 5

Stability Margins for Adaptive

Control in the Presence of

Time-delay

In this chapter, we derive stability margins for adaptive control. The starting point

of the derivation is well known stability properties of adaptive control. In the absence

of perturbations due to unmodeled dynamics, delays, or disturbances, the underlying

closed-loop system obtained with the adaptive controller can be shown to be stable

under certain conditions [28]. In such cases, the closed-loop system transitions to

a linear time-invariant system asymptotically when constant command signals are

given. Therefore, one can argue that the stability margins of the adaptive system

tend toward this "asymptotic" linear system. However, the response of the adaptive

system, understandably, is more vulnerable to perturbations during the initial tran-

sient stage where the overall system is markedly nonlinear. As such, the degrees of

robustness that the adaptive system has with respect to the perturbations during the

transient stage are the margins that become relevant. Therefore, in this chapter, we

focus on the margins of the AFCS during the adaptive phase. Standard stability and

robustness tools used for adaptive systems in [28, 15] are utilized in order to derive

these margins. The stability margins are validated with the NASA X-15 and then

they are compared with margins from simulation studies. To reduce the conservatism



in the stability margins, we introduce numerical methods which are demonstrated

with a generic transport model aircraft.

5.1 Problem Statement

The motivation for adaptive control stems from several causes including aerodynamic

uncertainties, modeling inaccuracies, environmental disturbances and the fact that

often actuators used in flight control can exhibit various anomalies such as loss of

effectiveness, saturation, or failure, the last of which is our focus in this chapter. The

problem is under consideration is the control of a linear plant of the form

= Ax + bu
(5.1)

y=c x

where x E R is the state, y E R is the output, and u IR is the control input of

the plant. A E R] x n , b E R n , and c E Rn are a known system, input, and output

matrices respectively. Suppose that there exists uncertainties and disturbances in the

plant in (5.1), leading to a description

x = Ax + bA(u + d) (5.2)

y= c x

where A CE R n x is an unknown system matrix, and A E 1R represents parametric

uncertainties in the plant. It is assumed that the sign of A is known. The main goal

of the controller design is that the output tracks a given command signal in spite of

uncertainties and disturbances. For this purpose, we integrate the output tracking

error as

c = - r (5.3)

where xc E R is the controller state vector and r E R is a command signal such that

Irl < ro without loss of generality. The overall plant to be controlled is outlined by



combining (5.2) with (5.3) as

= + b (u + d) + O r (5.4)
L c -  0 J x 0 -1

.p AvP xp bpl bp2

or equivalently

kp = Apxp + bpl A(u + d) + bP2 r (5.5)

where Xp E R'~ , Ap, E RpXnp, bp1 E R pP, and bP2 E RI p .

Into the plant in (5.5), we now introduce nonparametric uncertainties that may

occur due to time-delays in communication and processing or other unmodeled dy-

namics. While the rest of this chapter focuses only on time-delays, the same analysis

holds for unmodeled dynamics as well. With an unknown input delay 7, the plant

can be written as

ip = Ap,~x + bp,l(e-'"u + d) + bP2 r. (5.6)

For the purpose of analysis, e- s can be approximated as the (n, n) Pade approxima-

tion in the form of

e 1 + (5.7)
PA(s)

and pA(s) is Hurwitz. Since the approximation is only valid on a certain range of

frequencies, its usage needs to be justified. This issue will be discussed in Section

5.4.2. Then, the input delay is considered as an unmodeled dynamics in the control

input as shown in figure 5-1. Therefore, the plant in (5.6) is approximated to

u(t-A) (u(t)+ (t)
u(t) 2 u(t) +

Figure 5-1: Time-delay approximation

S (s(5.
P = Ap\xp + bp1A(u + r + d) + b2 r, A u. (5.8)

pa(s)



This assumption implies that the effect of time-delays can be approximated with the

state-dependent disturbance rl. Defining ( = [r 7rj 72 . T nr(n)]T, the state-space

representation of qA(s)/pA(s) can be derived as

S= -A, + bit
T

7 = cT (5.9)

We note that the boundedness of ( is not guaranteed even though A, is a stable

matrix, since it has not been shown to be bounded. Hence ( should be viewed as a

state-dependent disturbance. The overall goal of this chapter is to design an adaptive

controller in the presence of both parametric and non-parametric uncertainties such as

delay, and to derive the guaranteed margins of the closed-loop system with proposed

adaptive controller. We will also investigate the effect of adaptive parameters on the

margins.

5.2 Adaptive controller

5.2.1 Nominal controller and reference model design

In order to ensure that all available information about the plant is utilized to obtain

the best performance, the adaptive controller is designed in augmentation with a

nominal controller. The nominal controller input, unom, is chosen as

Unom = k TXp (5.10)

where k E Rn is the nominal feedback gain. The nominal control input is designed

so as to optimize the performance in the absence of uncertainties, disturbances, and

unmodeled dynamics. Combining the nominal controller with the plant that does not

have uncertainties and time-delays, the reference model is generated as

Xm = Amxm + bmr (5.11)



'where

Am=Ap+bpikT , bm=bP2, Ap= A (5.12)
cT 0

Since (Ap, bp,) is controllable, k can be chosen to ensure that Am is Hurwitz. The

:reference model is the desired dynamics which need to be tracked by the adaptive

controller. As the size of the delay is not known, the reference model is designed

without the delayed input.

5.2.2 Adaptive controller design

An adaptive controller is designed based on the modeled part of the plant in (5.2)

and the reference model. The overall control input, u, consists of the nominal and

adaptive controller as

U = Unom + Uad (5.13)

and we design the adaptive part as

Uad = OTw = [9T Od] [P (5.14)

where 0 E Rn+± is the adaptive parameter.

Assumption 5.1. There exists an ideal gain 0* = [9*T 90]T such that the plant can

be matched with the reference model in the absence of delay, i.e.

Am = A , + bp, A(k + 0*)T, 9~ + d = 0. (5.15)

We define the tracking error to be e = x, - xm and the adaptive parameter error to

be 0 = 0 - 0*. Subtracting the reference model in (5.11) and the plant in (5.2), we

have an error dynamics as

e = Ame + bp, Afw + bp, q. (5.16)



The adaptive parameter is governed by the following law as

6 = -ywe Pbp,,sign(A) - @O (5.17)

where P = pT > 0 is the solution of ATP + PAm = -Q for a given Q = QT > 0 and

y > 0 determines the adaptive rate. It should be noted that while (17) is an adaptive

law based on sigma-modification, other standard methods that have been proposed in

the literature for robust adaptive control can also be used with equivalent results. In

the absence of the unmodeled dynamics, i.e. qA(s)/pA(s) = 0, it is straightforward to

establish the global boundedness and asymptotic tracking of the closed-loop system

with the proposed adaptive controller using standard Lyapunov stability analysis and

robustness arguments in [28].

5.3 Delay Margins

We now derive the stability properties of the adaptive system in the presence of

perturbations due to qA(s)/pA(s) 0 O. First of all, we introduce the concept of

semi-global boundedness.

Definition 5.1. A system

± = G(x, u) (5.18)

is said to be semi-globally bounded if, for each compact subset E C ~' where E* C E

for a compact subset E* C ", there exists a feedback control input u = u(x) such that

the solutions x(t) of the corresponding closed loop system , x = G(x, u(x)), remain

bounded inside E.

We note that when there is no disturbance, equilibrium points exist, and E*

shrinks to those equilibrium points; in such a case, semi-global boundedness can be

conversed to semi-global stability as in [16]. In what follows, we first derive the

guaranteed delay margins for the case of (1, 1) Pade approximation.



5.3.1 (1,1) Pade approximation

The (1,1) Pade approximation of e-" is described as

-Irs 5 + 2/7e -s+2/T (5.19)
s + 2/7

and then we have the unmodeled dynamics qA(s)/p(s) as

qA (s) -2s
(s) s(5.20)

To analyze the stability of the closed-loop system in the presence of qA(s)/p(s) = 0,

we express the unmodeled dynamics as the state form of

2
7 = -- - 2t. (5.21)

T

For the purpose of simplicity in stability analysis, y E R 2n +2 is defined as y =

[eT 9 T 771T

Theorem 5.1. The system in (5.2) in the presence of (1, 1) Pade approximation with

the controller in (5.13) based on the adaptive law in (5.17), there exist Tm > 0 and

ymax > 0 such that x(t), O(t), and r(t) have bounded trajectories for all t > to if

i. O < T < Tm,

ii. Ily(t)ll< Ymax-

Furthermore, Tm is defined as a delay margin.

Proof. We propose a Lyapunov candidate function as

V = eTPe + IAT + T (e + bpl A)TP(e + bp, A). (5.22)
y 2

The time-derivative of V can be obtained along the trajectories of (5.9), (5.16), and

(5.17) as

= -e Qe - 2uoAT - 2A 2bPPbplr, 2 + rH(e, 9, r- )2oiA * (5.23)
7 Y



where

H(e, 0, ) = - eQe + Ab Pew AbT Pej - 2Ab PeiL + AbT PAme
2 P1 P 1 P1 Pi2 (5.24)

+ A2b Pb, T Awr 2b Pbp 2 - 2A2 bpT Pbpl i.

From (5.13), we have it = kTBi + )Tw + OTc. In order to find a upper bound of

H(e, 0, q) in terms of Ilell, j1011, and 1i11, we need to find the upper bound of -2AbT Peit

and -2A 2 bT PbplirL first of all. Based on the adaptive law in (5.17), -2AbT Pei canPi Pi r f of

be rewritten as

-2AbT Peit = - 2AbTPe (kT p + T + 0 )
Pi P1 k W

= - 2Ab Pe(kTp + oTC) + 21AlyeTPbp bT PewTw (5.25)

+ 2AabT PeOTw

We note that I II denotes the vector 2-norm for a vector and it also denotes the

matrix norm induced by the vector 2-norm for a matrix. From the bound on r, we

have

IlXmll < Coro, llimll _ (11Amllco + Ilbmll) ro (5.26)

for a constant co > 0. Following inequalities can be useful to find the upper bound

of (5.25):

w w = xpx + 1 = le 2 + 2me 11xm2 +

le 1e2 + 2corollell + cgr2 + 1,

oTW < I1 + 0*11 I W
(5.27)

< 11 + 0*ll(iXll + 1)

(1111 + |l0*lI)(lell+ IlXml + 1)

I Ie1111 11 + IIO9*lell + (coro + 1)10| 1 + (coro + 1)110*11.



From (5.27), we obtain inequalities as

2|A7eTPb,,bp PewTw <21Aly lbpPIl2 [lell + 2corollell3 + (cr + 1)lle 2]

2Aub PeOT w <2AlorbpT P [lell2llll + 011* le 112 (5.28)

+ (coro + 1) ell 11011 + (coro + 1)I 0* lllel].

We also have

- 2Ab Pe(kT . + T)

= -2AbT Pe(k + Ox) (Ame + bp, AOTW + bp, Ar + -km)

_ 2AJilbP'l1 (11|11 + Ilk + 0*l) IIAmlIle I2  (5.29)

+2A 2 bT Pbppell (110 1 +Ilk+ 0*11) [Ilell 911 + (coro + 1)11011 + lu]

+ 2 AllbT Pllllell (1111 + Ilk + 0) (IIAmllco + lbml) ro.

Combining (5.27) and (5.29), we have the upper bound of -2AbTPeit in descending

powers of Ilell, 11l, and Ill as

- 2Ab TPeit

27ylA lbT P| 2llel 4 + 2A 2 b Pbp, e11 2116112

+ 4llcorollbP 2 lell~ +2 [AIIIbTPIl (o + llAmll) + 2b1Pbpllk +0 |l] /le21111

+ 2A2 b Pbp,(coro + 1)11 e111 2 +2A 2bPbpl lelllllll r

+ 2|A|lllbPlll [yllb Pll(c ro + 1) + a|9*I + Ilk + 0 JAmll] lel 2

+ {2AIl bIb P [(coro + 1) + (lAmllco + llbmll)ro]

+ 2A2 bPbp,(coro + 1)1 k + O 1} 1 Iljel + 2A2b1Pbp lk + 0 11IlelllI l

+ 2AIIIbTPl [a(coro + 1)110*11 + Ilk + I(lAm Ico + llbmll)ro]lell. (5.30)

In a similar manner, we can find the upper bound on -2A 2 b Pbpl it in descending

powers of Ilell, Il l, and lrl. Using it = kTip + ~Tw + 0Tw and the adaptive law in



(5.17), we obtain

-2A2 bT Pb iq = -2A 2 bT Pbk, (kTi, + OTCw ) (5.31)

= 2-y lAlbTPb, bpT PewT w7 + 2aA2 bT P bp, l O T W

- 2A2 b Pb1 (k Tp + Tl)r.

From (5.28), we have following inequalities as

2-yAlb bT Pbp, bT PewTw),

2A2ybp Pbpl b ,PII [l e + 2corollel2 + (cOr 2 + 1)lel (5.32)
2aA2 bT Pbp, OTwL)i

< 2A°2 b Pbl [Ile l11l + II0* Ile11 + (coro + 1)110l( + (coro + 1)11]

We also have

- 2A2bT, Pb (k Tp + OTLD)>l

= -2A 2 bPbp, (k + O)T (Ame + Ab,Tw + Abpirl + im)

< 22b T Pbp (ll + lk xl) I+Amlllell I (5.33)

+21A 3b Pb, 1 bp 11 (1111 + + l+ 0:l) [Ilelll Ii + (coro + 1)1111

+ I l] 111 + 2A 2 b Pbp, (11011+ Ilk + 0l1) [(IIAmllCo + llbmil) ro] Imi.



Combining (5.32) with (5.33), we find an upper bound on -2A 2b PbpliLr as

- 2A 2 bTPb,, it77

S2/A 2bA Pb , lb Pl jell~ J + 21AlbTPbllbl ellll 111121771

+ 4/A2CorobP Pb, lbT, PIle I217l

+ 2A2b, Pbp, (a + IAm II + AIIIb Jl Ilk + x ll) IleJll11 1 1

+ 2A 3 b Pb lb JI(coro + 1) 91+ 2j 3 bPbp, II 1191117712
+2A2 b Pb,, [/lbP TPJ(crI I) + olaJ0*JJ + Ilk + ijjAmlI] le177

+ 2A2b Pb [(coro + 1)(o7 + lAlJlb, 1 Ilk + 0*l) + ( IAm co + Ilbmll)ro 11111771

+ 21A IbPb,, IIb, 1 Ilk + 0 117 2

+ 2A 2b Pb,, [u(coro + 1)110*11 lk Ilk + 8l(IAmllco + IIbmll)ro] In1. (5.34)

Other terms in H(e, , 77) except -2AbT Pei and -2A 2 bT Pb, it 7 can be bounded as

1 eTe < _ qmin JeI2
2 2

Ab Pe9T w < AI IlbPilleiI [Iell II + (coro + 1)11911]

= IAllb PIIJleh 2 II6Il + IAllbT PIl(coro + 1)llellll9ll

Ab, Pe 7  I AXllb, PIIIlellll (5.35)

AbT PAme 7 <J Al lbT P IlAm 11le[ll qI

A2b- Pb,, Tw 2h A 2bPb 1 ell fii + (coro + 1)1111] 1q71

= 2bP Pbp, lleI dll0111 + A2b, Pb, (coro + 1) 111 1,1
2bP Pbpl72 2 b P blPbpl 7

2

where qmin is the minimum eigenvalue of Q. We now have an bound on H(e, 0, 7) as

H(e, 9, rl) < H4 + H3 + H2 + Hi. (5.36)



where Hi denotes the summation of i powers of Ilell, Ill1I, and I1j as

Hi= p,, l le lllq1,IS (5.37)
p+q+s=i

p,q,sENU{O}

and Cp,q,s is the coefficient corresponding to lel Pl q 0<rllq from (5.30), (5.34), and

(5.35). Cp,q,,'s are determined as follows:

C4,0,0 = 27yIAIIbpPIl 2, C3,0,1 = 2~yA 2 bTPbpl Ib P1, C2,2,0 = 2A2b Pbl

C1,2,1 = 2A l3b Pb llbpl Il, C3,o,o = 4~I AcorollbpT PI 2

C2,1,o = 21A IIb PII ( + IlAmil) +2Ab, Pb, Ilk+0 I + IA|Ib Pi

C2,o,1 = 4,y A2Corobp Pb, b P I, 01,2,0 = 2A2b ,Pb, (coro + 1)

c1,,,1 = A2b Pb,P [3+ 2(a + IAmlI + AI IIb, Ilk + 11)]

C00,2,1 = 21XA 3bP Pb IIlb,,P1 I(coro + 1)

Co,1,2 = 21A PbPbP lb b1I

C2,o,o 21AIIIb-1PI [-/llbT1PJl(C 2 T 2 + * + I qmin2,0,0 = 2AbP bP(cr + 1) + 110* + Ilk + 0 IIIAmII -

C1,1,0 = 2 AIIIbP I [a(coro + 1) + (I Aml Co + lbm l)ro (5.38)

+ 2A 2bPb, (coro + 1)l|k + 0l + IAII bP l(coro + 1)

,,1 = 2A 2  Pb lb P(cr + 1) + I0*l + Ilk + ll(llAmll + 1)]

+ AlllbPTPlI(IAmll + 1)

Co,1,1 = 2A 2 bPbpl [(coro + 1)(o + AII bpx k + 0l) + (I Am|Ico + llbm l)ro

+ A2bT Pbpx (coro + 1)

CO,0,2 = A2bT Pbpl (2AIlb Ilk + 110 l + 1)

C1,0,0o = 2|A lbl PI [(coro + 1)| 0*-i + Ilk + 0; l(IAmIco + llbmll)ro]

Co,o,1 = 2A 2bp Pbpl [o(coro + 1)10* I + Ilk + 0I(l Amllco + IbmI)ro] .

In order to find the upper bound on Hi, we define constants ci for 1 < i < 4 such



C4 = max { ,0,0,

3 = max { 3,0,0,

c2 = max { 02,0,0,

C3,0,1

4

C2,1,0

3

C2,2,0

6

C2,0,1

3

C1,1,o
C0,0,2, 2

2

C1,2,1

12

C1,2,0 CO,2,1

3' 3

Cl,o,2 Co,,'2
2 '2

C1 = max {Cl,o,o, Co,o,i}

We define y = [eT fT r]T and then obtain

(ell + +fll + )2 2 (e12 + 11i112 + 1712) = 211yl 2.

Using the inequality in (5.40) and constants defined in (5.39), we have

H 4 + H3 + H 2 + H 1  4c4 1Y114 + 2V2c3 lll 3 + 2c 2 11112 + xVc1 llyl .

We can rewrite (5.23) as

S -d 2l + 4c4 4 + 2Vc 3 yy + 2c211y1 2 + V'Cl + dillyll (5.42)

d2= min qmin, , 2A2bT Pb,
d 11*2ol X .

d = *8' j.

We can rewrite the inequality in (5.42) as

2s+13+C4 1 C2
V 2C 2c

d2 1~ C +4 TC1 1
7 )2c4

< 0. (5.44)

For the purpose of analysis, we set f(z) for z > 0 as

f(z) = z3 +1 K2Z +KZ + 0

that

Co,1,2

3 (5.39)

(5.40)

(5.41)

where

(5.43)

(5.45)



C3

2c41
1 = C (C2

2C4

1
K0 = C1 +

2 /2c 4 (

' )di (5.46)

Since f(z) is a third-order polynomial, f(z) is continuous. From the facts that r 2 > 0

and lo > 0, f(0) > 0 and lim f(z) = +oo00. From these facts, following two cases
z--*+oo

are possible which are mutually exclusive (Figure 5-2):

(a) f(z) does not intersect with z-axis at [0, oo).

(b) f(z) intersect with z-axis twice at [0, oo).

To show that the case (a) cannot occur for r E (0, Tm), it suffices to prove that

(i) zl = arg min f(z) exists and
zE[0,oo)

case (a) occurs. Therefore, Tm <

c(T)

Case (a)

f(z, 7)

C(T)

(ii) f(zl) < 0. If K2 > 0, i.e. T7 d 2/c 2 , then the

d2/C2 is necessary.

Case (b)

f(z,7)

n. U

0 Ymini

Figure 5-2: Two mutually exclusive cases in the cubic polynomial f(z)

Proof of (i) Roots of f'(z) = 0 are

-K2 + - 3nj Z2 K2 - Vra2 - 3n,
z 1 - , z2 =

3 3

In order for zl and z2 to exist, K2 - 3; 1 > 0. That is,

3d27< 2
3C2 - d3

100
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In order for zl > 0, we also requires

< d2

C2

Since T < d 2/c 2 , this completes the proof. V

Proof of (ii)

min
ze[,oo)

Using 3z + 2K2z 1 + K 1 = 0, the minimum of f(z) can be simplified as

f (z) = f(z) = z3 + K2 z2 + K1Z 1 + KO

2

9 +
2) 1
3l Z

K2K1

9- o (5.50)

2
+ 2 K -

272

1
-K 2K 1 + K0 .
3

Since n 1 and 1 o are a function of 7, f(zi) is a function of T which is denoted by g(7)

and given by

d2 )

T

3
2c4 C2

2c 3

54V c2
C3

c672c4

d2
C2 -

7
(5.51)

+ T

g(T) is a continuous function of T at (0, c00) and, lim g(T) = -oc and g(d 2/C2) > 0

so that by the intermediate value theorem, there exists Tm E (0, d2/C2) such that

g(Tm) = 0 and g(T) < 0, VTE (0, TI). (5.52)

This proves that f(zi) < 0 for T E (0, Tm). V

Because f(zi) < 0 for rT (0, Tm), there exist Ymin and Ymx such that 0 < Ymin <

zi < Ymax and f(ymin) = f(Ymax) = 0 by the intermediate value theorem. Defining a

set A as

A = {ylymin < IIyII < Ymax}, (5.53)
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(5.49)

1

2 c4 l

= VT - -3nl
27 K K 3

2 [
g(7) =

27 2c 4C



it leads that 'V < 0 in A. As r tends to zero, zi and ymax approach to oo. In this

sense, the stability result obtained is semi-global as A expands to the whole space as

T --+ 0. O

Figure 5-3 illustrates the cubic polynomial f(z) with T > Tm, T = Tm, and T < ITm.

For T < IT, we have the region where f(z) < 0 and hence V < 0.

/ N
/ N

'N
// N

N

f(z) /

z = zi(r)

Figure 5-3: The cubic polynomial, f(z), with T > Tm, T = Tm, and T < Tm.

5.3.2 (n,n) Pade approximation

We now extend Theorem 5.1 to the general (n, n) Pade approximation. As the unmod-

eled dynamics, qA(s)/pA(s), have n states, y E R3 n + 1 is redefined as y = [eT fT (T]T.

Theorem 5.2. The system in (5.8) in the presence of (n, n) Pade approximation

with the controller in (3.9) based on the adaptive law in (5.17), there exist Tm > 0

and yma > 0 such that x(t), 9(t), and ((t) have bounded trajectories for all t > to if

i. O < T < Tm,

ii. Ily(to)ll < Ymax-

Furthermore, Tm is defined as a delay margin.

Proof. We propose a Lyapunov candidate function as

V = eT Pe + I~T + T(e + bp, AcT)TP(e + b, Ac T) + aoT( R. (5.54)
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T > Tm

T = Tm

T < Tm
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where ao = A2b, Pbp, and T is chosen such that

cP2
,= -- c bit. (5.55)

For a given S = ST > 0, R = RT is chosen such that

Ar +2 + R) + + R Ar = -S (5.56)

T

and Ccc + R is positive-definite. The Lyapunov candidate function is similar to the
2

one in Theorem 5.1 but it needs to have an extra term aoTT R( because the state

vector ( has n states. We obtain the time-derivative of V along the trajectories of

(3.19), (5.17), and (5.9) as

-= eTQ e - 2uJA + -ao+TS+ TrH(e, ,() -2a i (5.57)
-y

and H(e, 0, () is redefined as

H(e, 0, ) = (T Pe + eT P) + eT PAb, cTib + T c,7 bTAP2 
(5.58)

+ ao T(c~~c + 2R)brit.

By following a similar procedure as in the proof of Theorem 5.1, it can be shown that

V < 0 holds in an annulus which extends to the entire state space outside a compact

set around the origin as 7 tends to zero. O

Cp,q,s's required to prove Theorem 5.2 are introduced in Appendix B.

5.4 Simulation

5.4.1 Delay Margins in the NASA X-15

In this section, we validate the proposed analytic margins based on the short period

dynamics of the NASA X-15 hypersonic aircraft. Aerodynamic data of the NASA X-
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15 hypersonic aircraft discussed in [13] are combined with nonlinear flight dynamics

as

X = F(X, U) (5.59)

whose states (X) and inputs (U) are defined as

X=[VT a P Q R (, eO N ED]T

U= [Uthrust Uleft Uright Urudder ]T
(5.60)

Uleft and Uright represent the left and right control surface of the elevon system.

Elevator and aileron inputs can be computed as

Uleft + Uright
Uelevator = 2 right Uaileron2

Uleft - Uright

2 (5.61)

Actuator limits are imposed as

Uleft/right E [-15, 15], Urudder E [-30, 30]. (5.62)

Details regarding the NASA X-15 hypersonic aircraft are discussed in Appendix A.

The nonlinear flight dynamics are linearized at the trim point (Xo, Uo) shown in

Table 3.1. The short period dynamics of a(deg) and q(deg/sec) with the elevator

input u(deg) is in the form of (5.1) with

-0.2950 1.0000 0 1
A - , b= , c =-13.0798 -0.2084 -9.4725 0

and the output is chosen to be a(deg). To build an unknown

unknown constants, A, and Aq, are introduced as

AA =
-0.2950

- 13.0798Aa

plant in (5.2), two

1.0000

-0.2084Aq
(5.64)
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and an unknown parameter, A, is used to model the control failure. In simulation

studies, we compare the proposed margins with the delay margin found by simula-

tions. To enhance the tracking performance, we integrate the output tracking error

between the output and a given command signal (acmd) as

.c = a - acmd (5.65)

such that the overall plant of interest is written in the form of (5.5).

Simulation 1 A = 0.5, A~ = 0.4, and Aq = 1

This uncertainty implies that the elevator input loses 50% of its control effectiveness

and that 60% loss in one parameter occurs in the system matrix A. A step input to

the angle of attack is given as a command (amd). Then, we compute the guaranteed

margins for various sets of adaptive parameters (y, a) with (1, 1) and (2,2) Pade

approximations. The (2, 2) Pade approximation can be written in the form of (5.9)

with

0 -1 0 1
A,= , b, = , c, = (5.66)

-12 -6 -12 0

The c, and S for the Lyapunov candidate function in (5.54) are chosen as c,

[1 1/6] and S = 21. Figure 5-4 shows the plots of analytically guaranteed and

simulation-based margins with the adaptive rate (7) when a is 0.5. 0.02, 0.1, and

0.01 respectively. As shown in Figure 5-4, for a given a, the both analytical and

simulation-based delay margins decrease as the adaptive rate increases. This explains

that the increased adaptive rate enhances the performance but there is a trade-off

between performance and robustness in the adaptive control. The maximum delay

margin obtained analytically is 0.00134s which is conservative compared to 0.272s

from simulation studies. It should be also noted that the margins are more con-

servative with (2,2) Pade approximation than with (1, 1) Pade approximation. It

is because stability analysis becomes more complex as the order of the time-delay

approximation increases.
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O
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100 101

o=0.1

Figure 5-4: Analytically
Aa = 0.4, and Aq = 1.

guaranteed and simulation-based margins with A = 0.5,

Simulation 2 A = 0.5, A, = -0.2, and Aq = 1

In this simulation, we employ a more aggressive uncertainty so that the closed-loop

system with only the nominal controller is unstable. The same command input is

utilized to compute the margins from (1, 1) and (2, 2) Pade approximation, and sim-

ulations. Figure 5-5 shows the plots of analytically guaranteed and simulation-based

margins with the adaptive rate (7) when a is 0.5. 0.02, 0.1, and 0.01 respectively.

We have similar results to Simulation 1 as the both analytical and simulation-based

delay margins decrease as the adaptive rate increases. The maximum delay margin

obtained analytically is 0.00083s which is conservative compared to 0.245s from simu-

lation studies. Maximum delay margin from simulation is smaller than its counterpart

in Simulation 1 because a more aggressive uncertainty is introduced in Simulation 2.

This is also captured in the analytically guaranteed margins. In Simulation 1 and
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Figure 5-5: Analytically
Aa = -0.2, and Aq = 1.
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guaranteed and simulation-based margins with A = 0.5,

2, it is found that robustness in both analytical margins and simulation-based mar-

gins decrease as the adaptive rate (y) increases. We have heuristically known that

increased a contributes to gain more robustness which is captured in the analytic

margins. In conclusion, physical significance of the adaptive controller parameters,

7 and a, is reflected in the proposed analytic margins though they are conservative.

The conservatism in the analytic margins will be discussed in detail in the next two

subsections.

5.4.2 Delay Margins in First Order Plants

As seen in the previous section, the analytically guaranteed margins are conservative

compared to the ones from simulation studies. In order to bridge the gap between

these margins, we thoroughly investigate Lyapunov analysis for the analytic margins.
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To begin with, the first order plant is proposed with input time-delay as

(5.67)

where ap is an unknown parameter. When the delay is approximated with (1,1) Pade

approximation, the plant of interest is written as

A, = a, xP + U + l
(5.68)2

S= -- 2.
7-

The reference model is designed as

Im = amxm + r (5.69)

and to track this reference model, the plant in (5.68) is combined with the adaptive

controller described by

u = OxP +r
(5.70)

9 = -yxpe - aO.

A Lyapunov candidate function is proposed as

(5.71)V = le2+ 2 (e+7)2.
2 2 4

The overall procedure to derive the analytic margins for the first order plant is the

same in Section 5.3. Therefore, we will introduce the fundamental steps in this section.

The time-derivative of V can be written as

V' = ame 2 _ _'2 _ 2 _ oa*

+ (ame2 + exp + e - 2e + ame + + 2 - 2)
2

(5.72)
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where 0* = am - ap is the ideal gain from the standard matching condition. Replacing

it with Oxp + O 0, + and taking bounds on the right-hand side of (5.72), we have the

following inequality as

<_ 1 aml 12 -1 12 + 10*1101 + T(H4 + H3 + H2 + H 1) (5.73)

where

Hi = Cp,q,rlelP 1 | 1 Ir. (5.74)

p+q+r=i

From the same steps as (5.40) and (5.41), we can obtain

V < 4 c4TII llf (Ily||) (5.75)

where f(llyll) is the cubic polynomial as in (5.45) corresponding to the first order plant

and the adaptive controller. y is defined to be y = [e 0 77]T. We now provides three

methods to reduce the conservatism in the analytic margins. Each method is validated

with the first order plant with the adaptive controller where the plant parameters are

chosen as ap = 0.5, am = -1, and the adaptive parameter are y = 0.5, 1, 2, 5 and

a = 0.5.

Method 1 Mutipliers

One of the most conservative steps in deriving (5.75) occurs when Hi is bounded

above, for example,

H 4 = C4,o,o e 4 + C3,o,ile 13 171 + C2,2,o0e116 2 + c1,2,1 e11i121 7 (5.76)

< c4(lel + ll + 1 q)4 (5.77)

< 4c4(le12 + 162 + l712)2  (5.78)

= 4c4 11y4. (5.79)

where

= axC3,,1 C2,2,0C121 (5.80)

c4--maX C4,0,0, 4 ' 6 ' 12 "
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'l (0, 0, 1)

(1,0,0)

tel

,1 - A2)

(0,1,0)

Figure 5-6: Multipliers

Inequalities above are the key steps to build a cubic polynomial f(llyll) though the

upper bound in (5.77) is the most conservative bound. Therefore, we utilize multiplies

to provide less conservative bounds on Hi. For example, H4 can be bounded above

as

H4 = C4,0,0 e 4 + C3,0,1 e131771 + C2,2,01e12 1612 + C1,2,le11121 q

< c4 (Ae + A211+(1- A1 - A2) 4

< 4c411y'I1

where c'4 and y' are defined as

f, C4,o,o C3,0,1 C 2 ,2,0  C1,2,1
C4 = max~. A4 ' 4A 3(1 - A 1 - A2 )' 6A2 A 2 ' 12AA 2(1 - A1 - A)

(5.81)

(5.82)

and y'= [Ale A2 0 (1 - A, - 22)>~]T with A > 0, A2 > 0, and 1 - A1 - A 2 > 0. A set of

multipliers, (A1, A2, 1 - A1 - A2), is shown in Figure 5-6. It should be also noted that

the region of attraction in Theorem 5.1 is in the shape of an ellipsoid with multipliers

whereas it has a spherical shape without multipliers. Then we optimize the analytic
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margins over multipliers to obtain the lease conservative one as

max Tm. (5.83)
A1 >O,2>0
1-Al-A2>0

Method 2 Search on G(e, 0, q7)

In order to reduce the conservatism in the analytic margins, we directly search

G(e, 9, 7) which is the right-hand side of (5.73) as

G(e, 9, 7) = amle-2  2 - I 2 + -1j*111 + r(H4 + H3 + H2 + H1). (5.84)

We evaluate G(e, 9, q) in (e, 9, 7)-space and find the minimum Tm that provides a

bounded set of attraction. Schematics of bounded and unbounded sets are shown in

Figure 5-7. As described in Figure 5-7, stability of the overall system is not guaranteed

-- Vx > 0 z(t)

~2, 7 -

V<0

Bounded Unbounded

Figure 5-7: Bounded (left) and unbounded (right) sets of attraction.

when the region of attraction is not guaranteed since the state variables can grow in

an unbounded fashion for small perturbations. For y = 0.5 and a = 0.5, the result of

this method is plotted in Figure 5-8. As shown in Figure 5-8, there exists a bounded

region of attraction when T = 0.081. However, the region of attraction becomes

unbounded as T is increased to 0.082. Therefore, we claim that the analytic margin

is rm = 0.081.
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Figure 5-8: The region where G(e, 0, q) > 0 is shaded in blue. A bounded set ofattraction exists when T = 0.081 (left) but there is no bounded set for T = 0.082.

Method 3 Search on V

The third method is to directly search V in (5.72) over the (e, 9, 71) space. This
method is able to reduce the gap between the analytic and simulation-based margins
more compared to Method 2. In order to evaluate V in (5.72), it is required to know
the value of Xm(t). Assuming that r(t) = c, Vt > to and xm(to) = c, we obtain that

(5.85)Xm(t) = c, Vt 2 to.

In a similiar manner to Method 2, we need to find the maximum 7 such that a
bounded region of attraction exists. When r(t) = 1 and the adaptive parameters are
7 = 0.5 and c = 0.5, the search results are plotted in (5-9). The figure shows that a

71 01

S '-I
6 

--

C ,--- O
0j

Unbounded

Figure 5-9: The region where 1V(e, 9, r) > 0 is shaded in blue. A bounded set ofattraction exists when T = 0.15 (left) but there is no bounded set for 7 = 0.16.
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bounded region of attraction exists when 7 = 0.15 but as 7 increases, the region of

attraction becomes unbounded. Using Method 3, we can reduce the analytic margin

to Tm = 0.15.

We utilize Method 1, 2, and 3 to reduce the conservatism in the analytic margins

for the first order plant in (5.67). For comparison purpose, we find simulation-based

margins where all the signals in the simulation result are bounded. Table 5.1 compares

the margins from analytic methods and simulation study for 7 = 0.5, 1, 2, 5 and

a = 0.5. As seen in the table, the margins decrease in both analysis and simulation

Adaptive rate (7) 0.5 1 2 5

Analytic Margin 0.039 0.012 0.0035 0.00061

Method 1 0.040 0.029 0.023 0.011

Method 2 0.081 0.064 0.049 0.032

Method 3 0.15 0.11 0.079 0.047

Simulation-based Margin 0.45 0.40 0.38 0.30

Table 5.1: Analytic and simulation-based margins for the first order plant when

y = 0.5, 1, 2, 5 and a = 0.5.

as the adaptive gain (7) increases. As we use Method 1, 2, and 3 in the analytic

margin, we can reduce the gap between analytic and simulation-based margins and

with Method 3, they are finally in the same order of magnitude when 7 = 0.5.

5.4.3 Time delay and the Pade approximations

Time-delay (e-") can be approximated only in a limited range of frequency as shown

in Figure 5-10. Figure 5-10 compares the phase plots of the time delay and the first,

second, and third order Pade approximations. As the order of the approximation

increases, the frequency range where the approximation is relevant also increases.

Therefore, in order to approximate the input-output relation of e-" with the Pade

approximations, it is required to investigate the frequency range in the control input

signal. When the maximum frequency of the control input remains in the frequency
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Phase plot of time-delay and approximations
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10.1 100 1. .. . 10

la Frequency (rad/sec)

,W3a

Figure 5-10: Phase plot of time-delay and the Pade approximations.

range where e-" is properly approximated, it is appropriate to replace e-" with the

approximation. Then Tm which is obtained based on the Lyapunov analysis can be

claimed as an analytic margin. However, we need to use more precise approximations

when the control input signal has frequencies where the time-delay and the approx-

imation do not match. Then the order of the approximation needs to be increased

until the frequency condition is met. The following is the pseudo code to compute

the analytic margin.

SET n to zero

REPEAT

COMPUTE the analytic margin Tm with (n, n) Pade approximation

COMPUTE the frequency w* where e-" and (n, n) Pade approximation depart

SIMULATE with time-delay Tm

COMPUTE the frequency of control input signal w8

UNTIL w8 < w*

One may argue that this loop can run infinitely. However, as we witnessed in the

previous computation, the analytic margin, T, decreases with the order of Pade ap-

proximation. With the increased order, the range of frequency where the time-delay
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and its approximation match widen while the control input becomes less oscillatory.

This guarantees the convergence of the loop in the above code.

We use the first order adaptive system from (5.67) to (5.70) to justify the replace-

ment of time-delay with the Pade approximations. When the adaptive parameters are

given as 7 = 0.5, o = 0.5, we obtain the analytic margin as Tm = 0.15. For this Ti, we

can draw the phase plots of the time-delay and (1, 1) Pade approximation as shown

in Figure 5-11. When the frequency of the control input is less than 5.13rad/sec,

Phase plot (T=0.15 sec)

-100

U-200

d-300-

,-400 - s
-e

-500 - (1,1) Pade Approx.

10 1 100 101 102
Frequency (rad/sec)

Figure 5-11: Phase plot of time-delay and (1, 1) Pade approximation (T = 0.15).

then the phase difference between the delay and the first order Pade approximation

is less than 20. Then we simulate in the presence of the time delay with T = 0.15 and

obtain the control input signal to check if its dominant frequency is within the range

of 5.13rad/sec where the delay is properly approximated.

As we can see in Figure 5-12, the amplitude spectrum of the control input signal

becomes negligible when the frequency is beyond lrad/sec. From the result in Figure

5-12, we can conclude that (1, 1) Pade approximation can replicate the time-delay for

the given adaptive parameters. Therefore, stability of the closed-loop system with

adaptive control is guaranteed when 7 < 0.15. Furthermore, we compute the frequen-

cies of control inputs for various adaptive parameters to check if they are within the

range where the time-delay is properly approximated. Results are tabulated in Table

5.2. As shown in Table 5.2, the dominant frequencies in control inputs are less than
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Figure 5-12: Control input signal (above) with the delay (T = 0.15) and the amplitude
spectrum of the control input (below)

Adaptive rate (7) 0.5 1 2 5

Method 3 0.15 0.11 0.079 0.047

Departing frequency (w*) 5.13 7.00 9.74 16.38

Dominant frequency in control inputs(w,) 1.00 0.63 0.59 0.28

Order of the Pade approximation (n) 1 1 1 1

Table 5.2: Analytic margins with the Pade approximation. departing frequencies,

and dominant frequencies in control input
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the departing frequencies so that the (1, 1) Pade approximation is relevant.

5.4.4 Delay Margins in a Generic Transport Model (GTM)

One instance which mandates to develop stability margins in adaptive control is that

a technical tool to estimate its robustness is required to transition adaptive control

to safety critical application such as a passenger aircraft. As an extended study of

the first order plant in Section 5.4.2, we find the analytic margins with the GTM.

To investigate the analytic margin, we employ a C-5A (Galaxy) aircraft as the model

and compute the margins. The planform of a C-5A aircraft is given in Figure 5-13.

The short period dynamics of the C-5A in [11] is given in the presence of uncertainties

.251
F.S. 134.9

S 6200 ft

b a 219.2 ft
E 2 30.1 ft

' so0'

F.S. 384.8

Figure 5-13: Planform of the C-5A aircraft [11]

and time-delay in the form of

Z 1 0 a 0 0
S = AM, AqM 0 q + M Ae-"u + 0 r

a I 1 0 0 ea 0 -1

'p ApA Xp bpl bP2
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where Aa, Aq, and A are uncertainties and T is an unknown time-delay. For nominal

control, we design LQR PI controller based on the known part of the plant and then

we build a reference model to be tracked by the adaptive controller. With the error

between the plant and the reference model, the adaptive controller is designed in an

augmentation with the nominal LQR PI controller.

The analytic margins of the C-5A are obtained by Method 1 and 2 introduced

in Section 5.4.2. For given uncertainties as A = 0.8, A, = -0.2, and Aq = 1, the

analytic margins are computed for the case where a = 0.5 and - is set to 2, 3, 4,

5, and 10. Results of the analytic and simulation-based margins are shown in Table

5.3. When the analytic margins are obtained from Method 1, its margin is more

Adaptive rate (y) 2 3 4 5 10 Computation Time

Method 1 0.0077 0.0069 0.0062 0.0051 0.0040 11.6 sec

Method 2 0.0089 0.0082 0.0076 0.0071 0.0059 1 hr 43 sec

Simulation Margin 0.29 0.27 0.24 0.20 0.16

Table 5.3: Analytic and simulation-based margins for the short period dynamics of

C-5A when 7 = 2, 3, 4, 5, 10 and a = 0.5.

conservative but it can be computed more efficiently. When we use Method 2, i.e.

evaluate G(e, 0, rl) and search a bounded region of attraction, analytic margins are

less conservative whereas computational workloads become high.

5.5 Summary

In this chapter, we derived the delay margins of the proposed adaptive controller for

linear plants whose states are accessible. In particular, semi-global boundedness of

states is established with respect to the amount of time-delay, using the general (n, n)

Pade approximation. The delay margins derived theoretically are validated with the

NASA X-15 aircraft and they are compared with margins from simulation studies.

We also investigate the effect of adaptive parameters on the margins. In order to
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reduce the gap between analytic and simulation-based margins, we proposed three

methods which are shown to be useful by the first order plant. These methods are

finally validated by a generic transport model aircraft.
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Chapter 6

Summary and Future Work

6.1 Summary

In order to deploy adaptive control to safety critical applications such as flight control,

a unified framework needs to be developed to design and analyze adaptive control in

the presence of both parametric and nonparametric uncertainties, control failures,

multi-input saturation, and perturbations such as time-delay. In particular, analyt-

ical tools to measure its robustness with respect to perturbations are of paramount

importance since absence of those tools has been one of critical obstacles to utilize the

adaptive controller. In addition, a formal stability analysis is provided to combine

adaptive control with a gain-scheduling nominal controller for a general nonlinear

system and this analysis has a critical value in a sense that most of physical systems

are represented by nonlinear dynamics.

The importance of compensating multi-input saturation is highlighted in Chapter

3. In this chapter, we develop an extension of the approach used in [191 to multi-input

systems. First of all, to utilize the characteristic of direction-preserving in its con-

strained inputs, we introduce an artificial elliptical multi-input saturation and provide

stability analysis while the proposed adaptive controller is in an augmentation with

the nominal PI controller. This result is naturally extended to the case where inputs

are constrained in magnitude with a realistic multi-input saturation. Then we derive

sufficient conditions for boundedness of the closed-loop system, showing that stability
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result is semi-global with respect to the level of saturation. In other words, bound-

edness is globally guaranteed without input saturation while locally guaranteed with

input saturation and its region of attraction is determined by the degree of satura-

tion. Through the simulation studies based on the nonlinear 6-DoF model of NASA

X-15 hypersonic aircraft, we demonstrate the proposed adaptive controller follows

the desired model even when actuator anomalies are present. Simulation studies also

show that the compensating method for magnitude saturation prevents input signals

from being excessively oscillatory and then being susceptible to structural failure.

In Chapter 4, we discussed design, stability analysis, and assessment of the pro-

posed adaptive controller when it is augmented with gain-scheduling algorithm to

control nonlinear systems. Under the assumption that the underlying nonlinear sys-

tems are composed of multi-rate state variables, the approach taken in the control

design consists of two steps; the outer-loop controller is designed to control the slow

state variables and the inner-loop counterpart is designed to regulate the fast state

variables. The adaptive controller is combined with the gain-scheduling controller

and is proposed as the inner-loop controller. A non-adaptive controller is designed

in the outer-loop. The adaptive law is built such that global boundedness of state

variables and adaptive parameters are guaranteed based on Lyapunov stability the-

ory. The nonlinear 6-DoF model of NASA X-15 hypersonic aircraft is utilized to

demonstrate the control design. To accomplish gain-scheduling, multiple trim points

are chosen over the large flight envelope based on gain-scheduling variables and a

fixed gain controller is designed as the inner-loop controller at each frozen trim point.

Then the inner-loop controller is implemented to vary with the current values of gain-

scheduling variables. Augmented with the inner-loop gain-scheduling controller, the

adaptive controller is designed to cope with uncertainties. Simulations results show

that the augmented adaptive controller with the gain-scheduling nominal controller is

capable of stabilizing in the presence of uncertainties while instability cannot be over-

come only with the nominal controller. Though non-augmented adaptive controller

can stabilize the closed-loop system, it causes state variables to have undesirable high

frequency signals.
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As we see in the previous results, the adaptive controller promises its ability to

change control parameters on-line in order to guarantee safety and reliability during

various maneuvers when uncertainties are present. While stability of adaptive control

systems and their robustness to disturbances, unmodeled dynamics, and time-delays

have been extensively analyzed for last three decades, what is missing is the devel-

opment of margins that explicitly quantifies the extent of these perturbations that

the adaptive controller can withstand. We make an attempt to quantify theoretically

the robustness of adaptive controllers to time-delays and unmodeled dynamics. To

develop analytical margins, a formal stability analysis is conducted which results in

semi-global boundedness with respect to the perturbations. The margins derived an-

alytically are validated using a generic transport model (GTM). For given adaptive

parameters, we first compute the analytical margins and compare with margins that

we obtain from simulation studies. It should be worth noting that both margins are

reduced when the adaptation rate (y) is increased. In order to reduce the gap between

the simulation-based margin and the analytic margin, we utilize numerical methods

which provide less conservative margins but require more computational workloads.

6.2 Future Work

In this section, we introduce the future work associated with this thesis. These

include rate saturation in the adaptive control inputs, robust adaptive control in a

linear time-varying system, and numerically efficient stability / robustness analysis

tools.

Inputs in flight control applications are generally constrained in both magnitude

and rate. From simulation studies, we found that the same compensation algorithm

for rate saturation also works efficiently as well as for magnitude saturation. Further-

more, the combined constraints in both magnitude and rate can be compensated with

the similar algorithm discussed in Chapter 3. Though results from simulation studies

are convincing, there is no formal stability analysis for the case when the rates of in-

puts are saturated. Once such an analysis is completed, the theoretical gaps between
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adaptive control theory and its application can be reduced and the usage of adaptive

control will be expedited.

To control a nonlinear plant over a large flight envelope, adaptive control is aug-

mented with the gain-scheduling nominal controller. To provide rigorous stability

analysis, we use a robust adaptive controller in [21] where the adaptive law is modi-

fied to prevent adaptive control parameters from diverging due to disturbances. It is

well known that the adaptive law should be robustified when there are disturbances

in state variables [28]. However, the closed-loop system with adaptive control in

Chapter 4 has bounded disturbances in adaptive parameters not in state variables.

It is mainly due to the matching conditions of linear time-varying (LTV) systems.

When the underlying plant is represented by a linear time-invariant (LTI) system,

ideal adaptive parameters (0*) are obtained as constants from the matching condi-

tion. When it comes to a LTV system, ideal adaptive parameters become bounded

functions of time. This, in turn, implies that there exist disturbances in adaptive

parameters. Since adaptive control is capable of coping with parameter variations, it

is certain that stability can be guaranteed without robust adaptive control. This is

also observed in simulation studies but there is no formal stability analysis yet. The

value of this work will be critical because there is no formal method even in designing

linear controllers to guarantee stability for a general LTV system.

In addition to the analytic margin developed in the previous chapter, it is nec-

essary to develop numerically efficient techniques to estimate stability / robustness

boundaries for a given system with an adaptive controller and a pre-specified set

of uncertainties. Since thorough computation studies require high workload but are

necessary in practice, stability / robustness analysis tools should be numerically ef-

ficient. This will contribute to Verification and Validation (V&V) techniques for

general adaptive systems. Utilizing the proposed numerical tools, it is hoped that the

worst case uncertainties that the adaptive controller can withstand will be determined

theoretically for a given controller design.

The research topics introduced above are under development and they will con-

tribute to improve adaptive control to one of the enabling technologies for safety
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critical applications such as aircraft, spacecraft, automobiles, and underwater vehi-

cles. Particularly in flight control applications, adaptive control is designed for high

performance aircraft such as the X-43 hypersonic aircraft and it will be flight-tested

in the near future under the circumstances where there are numerous unknown un-

certainties. For examples, it is highly expected that adaptive control can mitigate

the effect of shock waves on the control surface effectiveness as the aircraft flies faster

than than the speed of sound. With success on unmanned aerial vehicles, adaptive

control will be transition to passenger jet aircraft where safety is one of the most

critical issues in control design. This will trigger the development of more precise and

numerically efficient tools for validation and verification (V&V).
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Appendix A

NASA X-15 Hypersonic Aircraft

In order to evaluate the performance of the proposed adaptive controller, a nonlinear

6-DoF flight dynamics model is constructed based on NASA X-15's aerodynamic data.

In this chapter, we introduce NASA X-15 hypersonic aircraft with a brief review of

its history and discuss the formulation of its nonlinear flight dynamics model.

A.1 History

The X-15 was designed for a hypersonic research aircraft and had the first flight in

1959. The X-15 fuselage was long and cylindrical as shown in Figure A-1 and it

was a missile shaped vehicle with an wedge-shaped vertical tail powered by a rocket

engine. The X-15 was designed to be carried aloft under the wing of a B-52 bomber

plane like other experimental aircraft. Three NASA X-15s were built and they were

flown over a period of nearly 10 years - from 1959 to 1968 with making a total of 199

flights. The X-15 program successfully contributed to investigate various aspects of

manned hypersonic aircraft and information gained from this program was later used

to design the space shuttle.

Unfortunately, there was only one fatal accident during the entire X-15 program.

On November 15th 1967, the third X-15 aircraft was launched in Nevada and an elec-

trical disturbance degraded the aircraft's controllability while climbing. The aircraft

began a slow drift in heading, which soon became a spin. Through some combination
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X-15 in Flight Air Force Photo Date Unknown

Figure A-1: NASA X-15 hypersonic aircraft [3]

of pilot technique and basic aerodynamic stability, the pilot recovered from the spin

and entered an inverted Mach 4.7 dive. As the X-15 plummeted into the increasingly

thicker atmosphere, "so called" adaptive flight control system caused the vehicle to

begin oscillating. As the pitching motion increased, aerodynamic forces finally broke

the aircraft into several pieces.

A.2 X-15 Flight Dynamics Model

The X-15 flight dynamics is modeled using five components as shown in Figure A-

2. These include the equations of motion, aerodynamics data, actuator dynamics,

actuator saturation, and sensor dynamics. Each of these components is discussed in

discussed in subsequent sections.

A.2.1 Equations of Flight Dynamics

In order to derive the equation of motion, state and input variables are introduced in

Table A.1 as well as constants relating to aircraft specifications and geometry.
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Figure A-2: The full nonlinear X-15 aircraft model

Table A.1: Nomenclature

Aircraft position (North)
Aircraft position (East)
Aircraft position (Down)
Angle-of-Attack
Sideslip angle
Roll rate
Pitch rate
Yaw rate
True Airspeed
Roll angle
Pitch angle
Heading angle
Aircraft velocity (x-direction)
Aircraft velocity (y-direction)
Aircraft velocity (z-direction)
Altitude
Aerodynamic Forces (x-direction)
Aerodynamic Forces (y-direction)
Aerodynamic Forces (z-direction)

Mx
MV
MV
6th

SLeft

6Right

Sr
6e
6,

bref
Creyf

S
W
I'xx

IZ

Izz

Ixz

Aerodynamic Moment (x-axis)
Aerodynamic Moment (y-axis)
Aerodynamic Moment (z-axis)
Thrust
Left elevon deflection
Right elevon deflection
Rudder deflection
Elevator deflection
Aileron deflection
Aircraft wingspan
Mean aerodynamic chord
Wing surface area
Aircraft gross weight
Moment of Inertia (x-axis)
Moment of Inertia (y-axis)
Moment of Inertia (z-axis)
Product of Inertia (xz-plane)
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With given notations in Table A.1, the standard equations of motion can be

formulated based on conservation laws. These includes linear momentum and angular

momentum equations, kinematic equations and navigation equations as

Fx - mg sin 0 = m(it + qw - ru)

F, + mg cos 9 sin q = m(it + ru - pw)

Fz + mg cos 0 cos = m(it + qw - ru)

Mx = IxzP - Izi + qr(Izz - Iyy) - I9zpq

My = Iyy + rq(I. - Izz) + Iz(p 2 _ r 2)

Mz = -IzI + Izz + pq(Iy - Ixx) + Ixzqr

9 = q cos 0 - r sin ¢ (A.1)

= p + q sin q tan 0 + r cos tan 0

= (qsin4 + r cos 0) sec 0

N = u cos 0 cos 4 + v(- cos ¢ sin V + sin ¢ sin 0 cos V)

+ w(sin q sin 4 + cos ¢ sin 0 cos 0),

E = u cos 0 sin O + v(cos € cos 0 + sin 4 sin 0 sin ,)

+ w(- sin ¢ cos 0 + cos ¢ sin 0 sin 0),

h = u sin 0 - v sin cos 9 - w cos ¢ cos 9.

A.2.2 Aerodynamic Data

The aerodynamic forces and moments acting on the aircraft are generally written

with non-dimensional force and moments coefficients multiplied by dynamic pressure

and geometric constants [37]. Forces acting on the aircraft body can be computed by

transforming aerodynamics forces such as lift and drag in stability axes to those in
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body axes. Forces and moments are described by

F cosa 0 -sina -CD Mx bre C1
Fy S 0 1 0 Cy , My S cre Cm (A.2)

F sina 0 cosa -CL Mz be C

where CL, CD, and Cy are lift, drag, and side-force coefficients respectively and C1 ,

Cm, and C, are the moment coefficients. These coefficients are functions of state

variables and inputs. The X-15 totally has four control inputs: one thrust (6 th) and

three control surfaces (Figure A-3). A rudder (6 r) is designed for yaw control, and

roll and pitch are controlled by elevons (6 Left, 6Right) which combines functions of the

elevator and the aileron. From the deflection of elevons, the elevator and the aileron

inputs can be computed as

h6 eft + 6Right a eft - 6Right (A.3)
2 2

.25C
F S 345.4

x-15
MGC

8L.44.3

O' 5' 10' 20'

FS, 115.9

W.LO- W.L.0

Figure A-3: Planfrom of the X-15 hypersonic aircraft [12].

With the above control inputs, the force and moment coefficients are written in
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the following form:

CL= CLwing-body + CL6e3

CDCD wig-,od, + CDD o 
6 e + CDSB 6SB

bref bref

Cy = C + Cy p + (Cy. - Cy) (r - ) + Cy6, 6a + Cy, 6r

c0 = c, + + (Cr C ) (r - T + c,,, + C,, 6(A.4)

Cm =cmwing-body + (Cmq + Cm)(q - c me e + m SB

be f +(C -Cnb)(ri) +C~5+C6
c I+ 2V T+C,6a+ r6

CLwing-bod, CDwing-body, and CMing-body are the coefficients of lift, drag, and pitching

moment with respect to the wing and the body. CDSB and CmSB are the coefficients

of drag and pitching moment with respect to the speed brakes. Though they are

included in the aircraft to increase drag and pitching moment, it is not modeled in

the simulation setup. All other aerodynamic coefficients in (A.4) are non-dimensional

derivatives which are found by wind tunnel tests, flight tests, and theoretical studies

[40, 42, 43]. These derivative (shown in Figure A-4) are transformed to lookup tables

based on Mach number and angle of attack. Equations from (A.1) to (A.4) construct

the model of NASA X-15 hypersonic aircraft.

I I _J

.40

0 0 0 0 0 .04 .00 co e1 20 1s4 1
0

Figure A-4: Lift and drag coefficients [13].
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A.2.3 Actuators and Sensors

The control input deflections on the X-15 aircraft were actuated by hydraulic actua-

tors. The dynamics of these actuators can be modeled as second order systems with

transfer functions described by

2

Gactuator(S) 2 (A.5)2= + 2(W+n n

where the damping ratio ( = 0.7 and natural frequency wn = 90 Hz for the elevons

and wn = 70 Hz for the rudder. The actuator saturation limits were imposed to be

±150 for the elevons and ±300 the rudder. The rates of the aircraft p, q, and r were

measured by rate gyroscopes, however the dynamics of these sensors were neglected

for simulation studies.
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Appendix B

Proofs and Constants

B.1 Proof of Proposition 4.1

Proof. We define a compact set S such that

i= 1, 2, -.. ,k. (B.1)

This implies S covers all operating points of the nonlinear plant in (4.1). For sim-

plicity, we also define

H(X, Xg, UI) = f(X, X,) + g(X, Xg)U1 . (B.2)

When hc(Xq, Xg,cmd) is designed, X, follows Xg,cmd in a bounded manner so that

X*(t) and U(t) are bounded from the definitions in (4.8). Then, there exist Lipschitz

constants, L, Lg, and L,, such that

IIH(X*(t), Xg(t), Uj(t)) - H(X(X,,i), Xg,i, U1(X,, )) 

< L i|X*(t) - X(Xg,j)II + Lg IXg(t) - Xg,ill + Lu IIUr(t) - UI(Xg,)I .
(B.3)
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From (4.8), (B.3) can be written as

IfH(X*(t), Xg(t), Uj(t) - H(X(Xg,i), Xg,i, Ui(Xg,i)) I

< (LpM + Lg + LN) jIXg(t) - Xg,ill

where M = max MpII
1<i<k

and N = max jIN jI. From Assumption 2, (B.4) is rewritten
l<i<k

IfH(X*(t), Xg(t), Ul(t)) - H(X(X,i), Xg,i, Ui(Xg,i)) I
(B.5)

(LM + Lg + LN) 6 2.

The higher order term, O(x ), can be neglected and by differentiating both sides in

(4.8) and using Assumption 1, the following inequality is obtained:

X*(t) 1< ME,. (B.6)

Finally, it is shown that ex(t) is uniformly bounded and its bound has dependency on

c1 and E2 as

eI1X(t) 1 ME1 + (LpM + Lg + LuN) 62. (B.7)

136

(B.4)



B.2 Constants for Theorem 5.2

C4,0,0 = 7lAJ[c b IlbpT p 2

Ca3,o,1 = Yaoll c T + 2RIllbb, lb1 PII

C2,2,0 = aolc bbr

C1,2,1 = IAlaollcc + 2RI b7- lb IIbJ 1

C3,o,o = 2Y IAIcorolc 7bll~b PII2

C2,1,0 Ic~l [ lbIb PII (a + lAmll) + aollk + i l + AIlb Pll

C2,0,1 = 27aocorol c cC + 2Rllllb- lllb ,PII

C1,2,0 = aolc bI(coro + 1)

C1,1,1 = ao [IcTb,7- + Ilcc + 2R111b 1 (a u+ IIAml + JAIjjbpl I1k + 09xI) + IcJ]

Co,2,1 = I claollc cT + 2RIIIb -IlIbplll(coro + 1)

C00,1,2 = IAlaollcycT + 2Rj Ib lllb 1 Jll

C2,0, =AIc b , P ylb P1 (cr + 1) + uo*|11 + Ik + 0 llAm- (8)

c1,1,o= Ic br{ AI IHbplP [a(coro + 1)+ (lIAm|Cco + lbmJi)ro]

+ao(coro+1)11k+ l + IAIIbP1l(coro+1)

Cl,o,1 = aolc b,[[[k + 0 II + ao I(ccT + 2RIjJlb,JJ [yllbPll (cor + 1) + ai9*i

+ Ilk + llIIIIAmll] + IAIlIb PII + IAlllclbT PIIAm

Co,l1, = aollcc + 2RII1bII [(coro + 1)(o + IJA Ib1p1 llIk + 011)

+ (IIAmllo + libmll)ro] + aollcll(coro + 1)

C0o0,2 = cIAlaollc + 2RIIllb-lllbpl IkIII + 09II + aollcll

C1,0,0 = lAlIlb PlllcTbl [oa(coro+ 1)11O*11+ Ilk+ O l(llAmlco+ llbmil)ro]

Co,o,i = aollc ~c + 2RJIJIbll [u(coro + 1)119*11 + Ilk + Oll(llAmll o + llbmll)ro]
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