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Abstract

High T, cuprates have a number of features that are anomalous from the point of
view of the conventional theory of metals, i.e. the Fermi liquid theory. These include
the high Tc itself, the linear resistivity in optimally doped cuprates, the "spin gap"
phenomena, and antiferromagnetic fluctuations. Some of the basic features of the high
T, phase diagram can be readily understood from slave boson mean field theories of the
t-J model that yield a variety of phases like the uRVB phase (strange metal), d-wave
RVB phase (spin gap), and the superconducting phase. This thesis is concerned with
improving this picture by considering important fluctuations around the mean fields.
This leads to certain gauge theories in which neutral spin 1/2 fermions ("spinons")
and charged spinless bosons ("holons") are coupled to gauge fields. If the gauge field is
not "confining", the spin and charge degrees of freedom are separated to some extent,
and an unconventional picture for transport and magnetic properties is expected.

Following an introduction and overview, the first half of the main body of this
thesis analyzes a simple model of a degenerate two-dimensional Bose liquid inter-
acting with a fluctuating gauge field, with the goal of studying the charge degree of
freedom in the cuprates. It is shown that the fluctuating gauge field efficiently de-
stroys superfluidity even in the Bose degenerate regime. The nature of the resulting
normal state is discussed in terms of the geometric properties of the imaginary-time
paths of the bosons. Charge response functions are studied numerically (by path
integral Monte Carlo methods); it is found that the transport scattering rate behaves
as h/Ttr - 2kBT, consistent with the experiments on the cuprates in the normal state,
and that the density correlations of our model resemble the charge correlations of the
t-J model.

The second half considers the magnetic properties of cuprates from the point of
view of a gauge theory of spinons, with emphasis on the underdoped regime. Despite
the spin gap, there is a substantial antiferromagnetic correlation in the underdoped
cuprates, as evidenced by the q-space scan of Neutron scattering cross section and
different temperature dependences of the Copper and Oxygen site relaxation rates,
features which are not captured well by mean field theories. As a concrete illustration
of the gauge-fluctuation restoration of the antiferromangetic correlation and the feasi-
bility of the 1/N perturbation theory, a U(1) gauge theory of id Heisenberg spin chain
is worked out exactly, and then perturbatively. The difference between the behavior
of uniform and staggerd spin correlation functions is discussed in terms of conserved



and nonconserved currents. The 1/N-perturbative treatment of the gauge theory
in 2+1D (which can be motivated from the mean field Flux phase of the Heisnberg
model) leads to a dynamical mass generation corresponding to an antiferromagnetic
ordering, but it is argued that in a similar gauge theory with an additional coupling
to a Bose (holon) field, symmetry breaking does not occur, but antiferromagnetic
correlations are improved, which is the situation in the underdoped cuprates.

Thesis Supervisor: Patrick A. Lee
Title: William and Emma Rogers Professor of Physics
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Chapter 1

INTRODUCTION AND
OVERVIEW

Give me a condor's quill! Give me Vesuvius' crater for an inkstand! Friends, hold
my arms! For the mere thought of penning my thoughts of this Leviathan, they weary
me, and make me faint with their out-reaching comprehensiveness of sweep, as if to
include the whole circle of the sciences,- - - . To produce a mighty book, you must choose
a mighty theme.

Herman Melville, Moby-Dick

The fair breeze blew, the white foam flew,
The furrow followed free;
We were the first that ever burst
Into that silent sea.

Samuel Taylor Coleridge, The Rime of the Ancient Mariner

The discovery of superconductivity in the layered perovskite compound LBCO by
Bednorz and Miller in 1986[1] was something new and BIG by any measure, and was
immediately recognized as such. It was quickly realized that the unusually high Tc was
somehow due to the presence of copper oxide planes (hence the name cuprates), and
the flurry of activities during the following couple of years have discovered cuprates
with substantially higher Tes, including the Yttrium compound YBa 2 Cu30 7 (Tc=92K)
and the Thallium compound T12Ba 2Ca 2Cu30 10 (Tc=125K). By now a variety of su-
perconducting cuprates are known, with Tes as high as 164K[2]. Though the initial
excitement about the technological and materials-science aspects seems to have sub-
sided to some extent, in the intervening decade the physics of the cuprates would
remain as the problem to many condensed matter physicists. Every now and then,
there have been new experiments that repeatedly reminded us that the high super-
conducting transition temperature is only a part of the surprising saga. In the mean
time a number of theories rose, and waxed, waned, or fell. Currently there is still
little consensus on the mechanism of superconductivity or on the theory of the metal-
lic states in the superconducting cuprates. One might even get the impression of an
"optimistic resignation" that the problem won't be solved within near future.



Of course this does not mean to deny considerable progress toward the under-
standing of the physics of the cuprates over the years. Array of ingenious experiments,
improvements in the resolution of experimental probes, and the availability of large
single crystals and crystals with clean surface have settled some important controver-
sies and thrown new lights on these fascinating materials. Compared to earlier days
of the high Tc , we now have a lot better idea of what experiments are important,
what needs to be explained, and what more experiments are needed, although the
relative importance attached to certain experiments might depend strongly on dif-
ferent theoretical viewpoints, and uncertainties remain as for the future direction of
the high T, research; after all, we have been constantly surprised and directed by the
experimentalists over the past decade. At this point it may be worthwhile to review
what may be regarded as the key points of the cuprate physics.

1.1 Notable Features of the Cuprates
these extracts are solely valuable or entertaining, as affording a glancing bird's eye

view of what has been promiscuously said, thought, fancied, and sung of Leviathan, by
many nations and generations including our own.

Herman Melville, Moby-Dick

1.1.1 symmetry of the order parameter

In early days of the high Tc superconductivity, the NMR in the superconducting state
of the cuprates showed power-law-like behaviors of temperature dependences, indicat-
ing the existence of nodes in the gap function as in the case of d-wave pairing, while
the penetration depth did not seem to obey the d-wave prediction. This discrepancy
was explained (in favor of d-wave) in terms of localized states in the gap[3]. More
refined penetration depth measurements now show AA(T)/A(O) oc T, consistent with
d-wave pairing. Strong support for the d-wave pairing also came from the angle re-
solved photoemission spectroscopy (ARPES) experiment which found maximum gap
at (Ir, 0)[4]. Soon, half integer flux quantum effects in a superconducting loop con-
taining Josephson junctions have shown unambiguously that the orbital symmetry of
the superconducting order parameter is of the d.2_y2 type[5].

1.1.2 quasiparticles in the superconducting state

Thermal conductivity measurement in YBa 2Cu 307[6] indicates that the supercon-
ducting state has long lived quasiparticles with mean free path that exceeds 500
lattice spacings. Also, these quasiparticles can be "seen" in photoemission[7, 8] as a
sharp peak whose spectral weight is about x (doping).



1.1.3 unusual superconducting state

The d-wave quasiparticles in themselves might not constitute something abnormal.
P.W. Anderson had earlier on remarked that the superconducting state of the cuprates
may be more "normal" than the normal state. However, some recent experimental
and theoretical investigations have strongly questioned the standard BCS paradigm
for the superconducting state[9]. For example, the photoemission experiments have
found that the superconducting gap does not depend on doping, while it is well
known that for not-overdoped cuprates Tc is roughly proportional to doping. This
is hard to reconcile with the BCS theory which gives A/T = const for both weak
and strong coupling because superconducting transition in that case has to do with
self-consistent closing of the gap. The superfluid density (inferred from penetration
depth and specific heat) is notably small (- x) and has a temperature dependence
characteristic of a d-wave quasiparticle p,(T) e x - aT, but value of the coefficient
of the T-linear term does not agree with simple theories[9].

1.1.4 transport anomalies in the normal state

Many of the normal state transport properties in the cuprates are fairly univer-
sal, and also highly anomalous. For example, optimally doped cuprates such as
YBa 2CU307, La1. 85 Sro.15 CuO 4, and BI2212 have a linear temperature dependence of
in-plane resistivity p(T) - aT, with the slope a that is nearly uniform throughout
these compounds despite differences in phonon spectrum, spin fluctuation properties,
etc. This means that a common mechanism of unfamiliar origin is at work in these
materials, scattering current carriers very strongly at low temperatures (Recall that
the Fermi liquid theory can only give p(T) c T n with n > 2, n=2 for electron-electron
interaction, and n=4 for electron-phonon interaction.) Also, the dc conductivity (l/p)
is seen to scale roughly with doping x (rather than 1- x), although the photoemission
indicates the existence in the optimally doped cuprates of a large Fermi surface with
area 1 - x. At least, the dc results are consistent with measured optical conductivity

ab(w) that show a Drude-like peak of width 2T with spectral weight cx x. The Drude
weight actually measures the combined quantity n/m*, (n =charge density) therefore
one may argue for n - 1 - x and m* - 2me(1 - x)/x, but such dependence of m* is
inconsistent with other experiments like NMR.

The Hall effect is also anomalous. The Hall coefficient RH, which in the Fermi
liquid theory is given by a temperature independent expression RH = 1/nec, has
an anomalous temperature dependence (roughly - T - 1) in the cuprates like YBCO,
though this is not as universal. The Hall effect in the cuprates is also quite sensitive
to disorder; small Zinc doping in YBCO substantially weakens the temperature de-
pendence into one similar to that of LSCO[10], possibly implying that the LSCO may
be subject to some intrinsic disorder effects. The sign of RH is positive (for doping
x <- 0.3), indicating that "holes" are charge carriers. Another remarkable feature
is that the relaxation time inferred from the Hall angle OH (= tan- 1 /Xx) has a
temperature dependence TH cx T - 2 in clear disagreement with the usual transport
relaxation time T oc T - 1 deduced from the resistivity.



1.1.5 spin gap in underdoped cuprates

NMR experiments including the Knight shift, the Cu site relaxation rate, and the
O site relaxation rate in YBa 2CU30+, first gave an indication of a "gap" for spin
excitations existing already in the normal state in the underdoped cuprates. For
example, the Copper site relaxation rate 1/TT in YBa 2 CU306. 63 drops with decreas-
ing temperature below about 150K, far above Tc 60K. Later, the ARPES[11] has
revealed that a gap for quasiparticle-like excitations opens up in the normal state,
leaving only "segments" of Fermi surface near (7r/2, ±ir/2). The c-axis optical con-
ductivity and the specific heat have also indicated the existence of gaplike features.
The most important point is that the gaplike features (loss of low energy spectral
weight) are seen only in probes that involve spin degrees of freedom. For example,
the spin gap does not show up in the in-plane optical conductivity ab(w). Because
of the reduced scattering of charge carriers, Tab(w) of the underdoped cuprates has
a sharper drudelike peak than the optimally doped cuprates (this also causes the
deviation from linear in T resistivity), but the spectral weight is still there. The
basic quasiparticle excitations of the Fermi liquid theory carry both spin and charge,
therefore the gaplike features appearing only in spin-related responses are a strong
violation of the conventional paradigm.

1.1.6 antiferromagnetic correlations

Neutron scattering experiments and numerical studies have established that the high
Tc parent compounds such as La 2CuO 4, YBa 2Cu30 6 are a quantum antiferromagnet
with an ordered ground state. Their low temperature behaviors are well described by
the "renormalized classical" regime of the the nonlinear sigma model[12]. With about
2% doping, the antiferromagnetic order is rapidly destroyed, but certain short range
antiferromagnetic correlations persist into the doping range where superconductivity
is observed.

The magnetic properties of the superconducting cuprates are not as universal
as the transport properties. In the normal state of (optimally doped) YBa 2CU30 7,
inelastic neutron scattering (INS) has failed to detect any magnetic scattering that
would reveal itself above the background, while in the underdoped YBa 2CU30 6+x and
Lal.85Sr 0o.15CuO 4 (believed to be slightly underdoped from optimal) inelastic neutron
scattering at or near the antiferromagnetic wavevector (7r, r) displays a magnetic
scattering for a wide range of frequencies, with a broad peak around 20-30 meV. In
YBa 2Cu 30 6+ and LSCO, the peaks are also observed in the superconducting state,
being somewhat sharper than the normal state counterparts. In the superconducting
state of YBa 2 Cu 307, the INS shows a sharp peak at 41 meV, with little scattering
below. This peak can be regarded to evolve (and broaden) into the aforementioned
peak of the YBa 2Cu30 6+x as the doping is reduced.

Evidence for antiferromagnetic correlations in YBa 2 Cu30 7 comes from the NMR
which shows the Copper site 1/T1T increasing with decreasing T, in contrast to the
Oxygen site 1/T 1T that seems to follow the Korringa behavior (i.e. temperature
independent). The NMR reveals stronger antiferromagnetic fluctuations in the 214



system; in fact even in the doping concentration which is believed to be underdoped,
LSCO Cu 1/TIT shows no sign of spin gap. This and the relatively low Tc of LSCO
system are suspected to be due to intrinsic disorder (due to Strontium doping).

1.2 Other Correlated Electron Systems
"Is there any point to which you would wish to draw my attention?"
"To the curious incident of the dog in the night-time."
"The dog did nothing in the night-time."
"That was the curious incident," remarked Sherlock Holmes.

Arthur Conan Doyle, Silver Blaze

To appreciate just how unusual the properties of the cuprates are, it helps to
compare and contrast the cuprates with other correlated electron systems. We are
quite lucky in this regard, since the years following the discovery of high Tc have have
enjoyed burst of activities in a number of other correlated electron systems. These
include old (in the sense of pre-high T, ) systems like heavy fermion superconductors,
organic superconductors, Mott insulators (like V2 03), and (literally) new ones that
came into being following an enormous surge of interest in the synthesis of novel
electronic systems.

1.2.1 heavy fermions

Heavy fermion systems, which may include UPt 3, CeCu 6, have rare earth or actinide
atoms with partially filled f-shell arranged in a periodic lattice supplemented by other
atoms that provide conduction electrons. The f-electrons behave like well-localized
moments at high temperatures, while they are strongly coupled to the conduction
electrons at low temperatures, and have to be counted as a part of the Fermi sur-
face. Below some temperature scale usually associated with Kondo screening, the
system behaves as a Fermi liquid with an enormously large effective mass (hence
the name heavy fermions), as can be seen from the Pauli susceptibility and specific
heat coefficient that are two to three orders of magnitude greater than the usual
metal. The resistivity of this "almost localized" Fermi liquid has the standard form
p(T) = Po + aT2 , with a very large a.

The antiferromagnetic order seen in some heavy fermion materials (like U2Z17)
is usually understood in terms of the RKKY interaction between the local moments

(rather than nesting or SDW effects of heavy quasiparticles), although the system
seems to retain a substantial itinerant character in the ordered phase[13]. The su-
perconductivity in heavy fermion systems, first found in 1979[14], is still poorly un-
derstood. In view of the fact that the order parameter seems to have a complicated
symmetry and the fact the local moments are destructive to the superconductivity in
the standard the BCS scenario, the superconductivity is regarded to be "unconven-
tional." However, the normal state is essentially conventional in the sense of being a
Fermi liquid, albeit one with a very heavy mass.



1.2.2 organic conductors and superconductors

Organics were proposed as a candidate for a "high Tc " superconductor as early as in
1964 by W. A. Little[15], but the superconductivity in organic compounds was not
discovered until 1980. The first discovered organic superconductor, tetramethylte-
traselenafulvalene (TMTSF) 2PF 6, is a quasi-one dimensional compound with a rather
low Tc of - 1K. Currently, organic compounds with T, as high as 12K are known, e.g.
the family K - (BEDT - TTF) 2X, but the mechanism of superconductivity in these
materials is not very well understood. P.W. Anderson said of them in 1992, "these
are still almost a complete mystery" [16]. Strong electron-electron interaction accen-
tuated by reduced dimensionality is an important characteristic of these materials;
as in the cuprates the superconductivity seems to compete with antiferromagnetic
or SDW instability. The higher T, organics (BEDT class) seem to share titillating
similarities with the cuprates[17], such as the layered (quasi 2d) structure, unusual
transport properties, and gaplike features in the normal state, though these materials
are not as well characterized as the cuprates.

1.2.3 Sr 2RuO4

The layered perovskite material Sr 2RuO 4 may turn out to be the closest Galilean non-
invariant analogue of He3. It has a lattice structure identical to that of the high T,
parent compound La 2CuO 4 , but electronic properties are very different. Sr 2RuO 4 is
a Fermi liquid with fairly large Fermi liquid parameters (F1s, etc.); mass enhancement
is about 3 - 4. It is also a prime example of an anisotropic Fermi liquid, having a
metallic c-axis resistivity that are about 3 orders of magnitude greater than the in-
plane resistivity. Recently[18] superconductivity with T, of - 1K was discovered in
this system; it has been suggested that the pairing symmetry is p-wave[19]. Sr 2RuO 4
proves two important points: 1) interaction effects in a Fermi liquid do not produce
high Tc , and 2) a complicated chemical formula with rather obscure elements is not
a sufficient condition for a non-Fermi liquid behavior.

1.2.4 other (doped) Mott insulators

In the cuprates, as we dope away from the insulating parent compound, we quickly go
into a metallic regime with carrier density x z. While the notion of metal insulator
transition (MIT) caused by carrier density - 0 might appear quite innocent now (a
decade after the discovery of the high Ta), this is not the "usual" way a Mott-type
metal-insulator transition occurs. The usual scenario due to Brinkman and Rice[83]
is that the carriers become infinitely heavy as we approach the MIT from the metallic
side, i.e. m* c( 1/ly - yJ where y is a parameter that can be tuned to the transition.
In other words, in the conventional scenario, as the MIT is approached the carriers
get localized, rather than disappear.

A typical example is the V20 3 system[21] which can undergo a MIT by changing
pressure. A more spectacular example is the recently discovered LaTiO 3 compound[22],
which is an antiferromagnetic insulator and a 3D analogue of the high T, parent com-



pound La 2 CuO 4 . LaTiO 3 can be doped with Sr (Lal_-SrxTiO3 ; just like La 2-xSrxCuO 4 !),
and the system quickly becomes metallic. So far, so good, but the measurements of
the Pauli susceptibility (X), the specific heat coefficient (-y), and the Hall coefficient
(RH) show clear difference from the cuprate case: RH is negative, and carrier density
increases as the transition is approached; at the same time diverging effective mass is
seen in X and 7y. The magnetic properties are also in stark contrast with the supercon-
ducting cuprates. NMR in the metallic state[23] gives little sign of antiferromagnetic
correlation. In fact, the system seems nearly ferromagnetic, consistent with the view
that ferromagnetic spin fluctuations go along with incipient localization[24, 25, 26, 27].
Ferromagnetic spin fluctuations in the viscinity of an antiferromagnetic insulating
phase sounds strange, but so does the Nagaoka's theorem[28] which indicates that
the Hubbard model with a very large repulsive interaction U is a ferromagnet in the
limit of small doping.

1.2.5 novel spin systems

Ever since Anderson's 1987 suggestion[29] that the high T, has to do with doping a
liquid of spin singlet pairs (Resonating Valence Bonds: RVB), there has been consid-
erable interest in the possibility of spin systems with "quantum" disordered ground
state with no broken symmetry (quantum spin liquids). Among quantum spin liquids,
we might make further distinction between critical and noncritical spin liquids.

1)critical spin liquids: These were an inspiration for Anderson's RVB theory. In
Anderson's own words, "[I] grouped toward a connection with the "resonating valence
bond" liquid of singlet pairs of which Bethe's linear spin chain was the only physical
exemplar,..." Spin one-half (or more generally half integer) Heisenberg chain is a
critical system with spin-spin correlation (Si - Sj) , (-1)i- j lnl/ 2(i - j)/li - jj, and
has gapless excitations, in accordance with the Lieb-Schultz-Mattis theorem. It is
one of the best understood many body problems, filled with elegant methods like the
Bethe ansatz and conformal field theories, and theoretical predictions are in excellent
accordance with experiments on systems like Sr 2CuO 3[30] and KCuF 3[31].

2)noncritical spin liquids: These are more generic spin liquids, and the list of this
class is longer. They have a gap to the lowest spin (triplet) excitations, and has only
short range spin correlations. Although both the 2d square lattice and the triangular
lattice of the original Anderson proposal[32, 29] turned out to have a Noel ordered
ground state (in the case of triangular lattice, see R.R.P. Singh and D.A. Huse[33]),
some 2d examples of spin liquids are known, including CaV40 9. In ld or quasi-ld,
there are a number of examples, including integer spin chains (Haldane gap materials
like NENP), two-leg spin ladders (SrCu 203), and spin-Peierls system (CuGeO3).

* CaV40 9: 1/5 depleted 2d system CaV40 9 is, at present, probably the closest
realization of Anderson's 2d RVB idea (but not quite, since Anderson wanted
to have gapless excitations [Fermi surface]). It has been suggested that the dis-
ordered ground state of CaV40 9 can be understood in terms of the "plaquette
RVB"[34]. There is a strong evidence that the frustration (n.n.n interaction)
plays an important role; without it the system might have a N6el order. In-



elastic neutron scattering[35] shows a sharp spin-triplet excitations, with finite
minimum gap at Q=(0,0), rather than at (7r, 7r).

Spin ladders like SrCu 2 03 are a ld example of RVB system with only a short
range antiferromagnetic correlations[36, 37]. The neutron scattering[38] dis-
plays a sharp peak corresponding to a spin triplet excitation and a clear gap.
Qualitatively similar behaviors are seen in the INS of the Haldane gap (integer
spin chain) systems AgVP 2P 6[39] and NENP[40], and the inorganic spin-Peierls
system CuGeO 3[41]. It should be noted that CuGeO 3 system is not a full quan-
tum spin liquid in that it has a dimerized ground state which breaks transla-
tional symmetry and thus has nonvanishing correlator ((S 2i -S 2i+ 1)(S2j -S2j+1))
but B.S. Shastry and W. Sutherland[42] who studied the Majumdar Ghosh
model[43] first applied (half a decade before high T, ) the terminology "quan-
tum spin liquid" to such a state.

At present, all known examples of the generic spin liquids are nonconducting. The
spin ladder compounds have been successfully doped. NMR measurements, made in
the doping region where the material has a semi-conductor type resistivity, indicate
that the spin gap remains in lighted doped spin ladders, though the size of the gap
is reduced. Recently superconductivity was discovered a doped spin ladder system
under very high pressures, but magnetic excitation system of that system is not well
known.

1.3 Theoretical Considerations
What song the Sirens sang, or what name Achilles assumed when he hid himself

among women, though puzzling questions, are not beyond all conjecture.

Sir Thomas Browne, Urn-Burial

We have reviewed the characteristics of the superconducting cuprates and other
correlated electron systems. Some questions naturally emerge.

1.3.1 questions (beyond all conjecture?)

* How can we reconcile the presence of a large Fermi surface (in the optimally
doped case) of area (1 - x) with the small number of "holelike" (positive-sign)
charge carriers with density r x?[44].

* How can we understand the strong scattering of charge carriers, as evidenced
in the linear in T resistivity? What kind of low lying fluctuations are respon-
sible? In other correlated electron systems, we have seen that at low enough
temperatures, the standard Fermi liquid form p(T) - Po + aT 2 holds.

* How can we have a metal without a Fermi surface? In the 1960s, A. MacKintosh
said of metals (as quoted in Kittel's solid state physics book), "Few people



would define a metal as 'a solid with a Fermi surface.' This may nevertheless
be the most meaningful definition of a metal one can give today; it represents a
profound advance in the understanding of why metals behaves as they do." To
the extent that the Fermi surface is understood to be a closed locus (or loci) of
points in the reciprocal space at which excitations with arbitrary small energy
can occur, the underdoped cuprates are a metal without a Fermi surface.

* How can we understand the antiferromagnetic correlations in the superconduct-
ing cuprates? In the heavy fermion systems, the antiferromagnetic correlation
has a lot to do with extra degrees of freedom (the f-electrons), which doesn't
seem to be the case with cuprates. As indicated earlier, the notion of an "anti-
ferromagetic Fermi liquid" is an illusory one (for a strong criticism of the "nearly
antiferromagnetic Fermi liquid" scenario, see Ref.[45]). There are always spin-
density-wave (SDW) systems like Chromium or systems near SDW transition,
but the basic phenomenology of the cuprates seems inconsistent with the SDW
ideas.

* Is there a relation between antiferromagnetism and superconductivity? To what
extent is the proximity of the antiferomagnetic state and the superconducting
state in the phase diagram of certain heavy fermions and organic compounds

(e.g. BEDT-TTF) similar to that of the cuprates?

* In the underdoped cuprates why is there a gap for spin excitations, and not for
charge excitations? How similar is this "spin gap" to the spin gaps seen in the
bona fide quantum spin liquids, like the ladder systems and CaV409?

1.3.2 conjecture: spin-charge separation

Though there is still a lot of controversy surrounding these issues and other issues not
discussed here, it wouldn't be too presumptuous to say there is a broad consensus that
the essential physics of the cuprates can be explained by an electronic mechanism,
and that the strong electron-electron interaction and the layered structure (2d) are
the chief culprit for the bewildering array of anomalies.

Furthermore, there is certain optimism (not shared by everybody) that the basic
physics of the cuprates is "simple". Simple, not in the sense having to do with
triviality, but in the sense typified by Anderson's 2 dogmas[46] (He has many more,
but we shall withhold judgement on other ones): "All the relevant carriers of both spin
and electricity reside in the CuO 2 planes and derive from the hybridized 0 2p - dx2_y2
orbital which dominates the bonding in these compounds", and "Magnetism and high
Tc superconductivity are closely related, in a very specific sense: i.e., the electrons
which exhibit magnetism are the same as the charge carriers." That the basic physics
of cuprate plane can be understood in terms of an electron at the copper site in each
unit cell that can hop from cell to cell has been also convincingly argued by F.C.
Zhang and T.M. Rice[47].

Accepting this point of view, we can approach the cuprate problem with some
confidence (and hope) in terms of the one-band Hubbard model with on-site repulsive



interaction U:
H = -t E (c cj, + h.c.) + U C nini (1.1)

<ij> i

or the t-J model

H= -tP(c cj, + h.c.)P + J(Si -Sj - lninj) (1.2)
<ij> "o

where ni = cci, Si = i opCiaC, and P is a projection operator that projects out

double occupation. While the t-J model, the simpler of the two, can be understood
to derive from the Hubbard model in the large U limit (second order perturbation
would give J = 4t 2/U), the value of J deduced from magnetic Raman scattering is
quite large (J . 1500K e t/3), so it is more reasonable to take the t-J model as a
basic model in itself and explore the consequences.

Within the t-J model, the basic physics is seen to be the competition between the
energy gain (- xt) due to the mobile holes and the cost of exchange energy (- J)
resulting from the disruption of AF order. If J is small, the cost of exchange energy
is overcome by delocalization, so we have the usual Fermi liquid, which seems to be
the case of the aforementioned doped Mott insulator Lal_-SrxTiO 3. However, for
the cuprates J is large (J >,- xt), and we can expect different physics. Indeed,
Nature seems to solve this problem in a unique way: spins on nearby sites form
into "resonating" singlet pairs to retain some exchange energy, and have sufficiently
liquid-like character so that the "holes" can propagate through them coherently and
superconduct at low temperatures. This is the crux of P.W. Anderson's 1987 paper
on the resonating valence bond (RVB) theory of the high Tc superconductivity. The
AF order of the parent compound does not invalidate the essence of the argument; it
is quite sensible that in the doped case, mobile holes frustrate the tendency for the
spins to order and stablize the singlet liquid phase. It should be also pointed out that
this scenario already points to a strong deviation from the usual metallic behavior:
it is hard to believe that this picture can be reconciled with the usual Fermi liquid
quasiparticles propagating with both spin and charge.

A rigorous mathematical theory that realizes above RVB picture has been lacking,
and this is not for the lack of trying. Nevertheless, a trick applied to the t-J model,
so called the slave boson method, supplemented by some heuristics and physical
considerations, can be argued to be a right step forward. Within the slave boson
method, one can decompose the electron operator into a neutral spin-1/2 fermion
operator and a charge-e spinless boson operator (ct = fy bi), and enforce the no-
double-occupancy constraint by a Lagrange multiplier. In other words, a "slave"
boson operator that keeps track of moving hole (vacancy) has been introduced. The
t-J Lagrangian then becomes

= -t (fi Ybibfj + h.c.) + J4 apip f #fj + E Ai(fi, bbi - 1).

<ij>, <ij> i

(1.3)
At this point the situation seems to have gotten more complicated, but now mean field
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Figure 1-1: Cuprate phase diagrams: a) slave boson mean field theories (the SGap
(spin gap) phase is identified with the d-wave RVB phase (or the sFlux phase of the
SU(2) mean field theory to be discussed in Chap. 3); the "strange metal" phase
with a large Fermi surface corresponds to the uRVB phase; "dSC" stands for d-wave
superconducting phase), b) the "real" phase diagram.

analysis (similar to the original BCS theory) can be applied. There are quite a few
possible mean field parameters, including Aij - (fitfj - fifjt), Xij - (fitfj,), and
(b). The slave boson mean field studies of Fukuyama and coworkers[48], and Kotliar
and Liu[49] have found a phase diagram consisting of the d-wave superconducting
phase ((b) # 0, i,i+x = -Ai,i+y Z 0), the "spin-gap phase" ((b) = 0, Aij / 0),
the uniform RVB (uRVB) phase ((b) = , Aij = 0), and a Fermi liquid like phase
((b) # 0, Aij = 0). In the superconducting phase, the bosons are condensed and the
fermions are paired. The spin gap phase is a normal metallic phase since the bosons
have not condensed, but the fermions are paired so that there would be a gap for
magnetic excitations. Remarkably, this simple approach captures rough qualitative
features of high T, phase diagram (See Fig.1-1). It is even more remarkable, when we
note that at the time there was little evidence for the d-wave symmetry of the order
parameter or the spin gap phenomena.

The key feature of the mean field theory is that the spin carrying fermions
(spinons) and charge carrying bosons (holons) are decoupled. In other words, we
have a full spin-charge separation. This can explain two of the most puzzling feature
of the cuprates: 1) "spin gap" and no "charge gap" in underdoped cuprates [The
state with nonzero (b), Aij would correspond to such a state], and 2) the large Fermi
surface with area 1 - x and charge density x near optimal doping (large Fermi surface
can be understood to be that of the spinons in, say, uRVB phase, while the charge
density is that of the holons).

1.3.3 spinons, holons, and gauge fields

Above slave-boson approach is subject to a number of criticisms. We know that such
an approach would be a poor (or unnatural) description of most metals that we know.



Also, why not write instead the electron operator as Ci b f and proceed similarly
(Schwinger boson method)? The point is that the slave boson (or Schwinger boson)
mean field decompositions are not justified a priori. However, physics can more or
less dictate theories; in our problem of doped Mott insulator with J > xt it stands
to reason that the slave boson mean field theory is a good starting point, because by
construction the mean field parameters (Aj, Xij) embody a lot of singlet correlations
central to Anderson's RVB theory.

Granted that the mean field theory is "reasonable", we still have a host of problems
to grapple with: 1) The mean field theory does not capture energy scales accurately.
In particular, the Bose-Einstein temperature at which holons acquire macroscopic
coherence ((b) : 0) comes out too high (thus the superconducting Tc comes out too
high), 2) there are fictitious phase transitions between certain mean field phases which
should actually be crossovers (e.g. between spin gap phase and uRVB phase), 3) the
mean field theory does not explain why the normal state is a poor metal. 4) the mean
field theory loses most of the antiferromagnetic correlations.

The rest of this thesis will describe the efforts to remedy some of these problems.
The key is the role of fluctuations around the RVB mean fields. It is quite natural to
expect that the incorporation of fluctuations ignored in the mean field theory would
improve the picture. We will focus mostly on the gauge fields that correspond the
phase fluctuations of RVB order parameters and the fluctuation of Lagrange muliplier
enforcing no double occupancy condition. The gauge field reflects the fact that the
t-J model is invariant under the local transformation fi -+ ei0efi, bi -+ eioibi since
ci, = bi fi, is obviously a gauge singlet.

With the inclusion of gauge fields, the theory takes the following schematic form
in the continuum

Z = DaDaoDf *DfDbDb*Dbe- d2xdr (1.4)

L = 1F + B - ia. (iF jB) - iao . (nf +nb - 1). (1.5)

where ZF, IZB are mean field spinon and holon lagrangians. The main difference be-
tween this lagrangian and the more familiar QED lagrangians is that here the "kinetic
term" for the gauge fields (F2,) is absent, so the apparent gauge coupling is infinitely
strong. This enforces the no double occupancy constraint and the constraint that the
boson current is cancelled by fermion backflow, as can be seen from integrating out
the gauge field first in the functional integral of Eql.5.

The gauge field acquires dynamics from the fermions and bosons. Integrating out
the matter fields (fermions and bosons) in Eq.1.5, we see that the gauge propagator
is given (in the Coulomb gauge) by

(ai(q)aj(q)) = (6ij - qiqj/q2 )(IIF + 1 ) - 1

(ao(q)ao(q)) = (11 + H )- 1  (1.6)

where II1, and IIF,B are transverse and longitudinal polarization functions of fermions
and bosons. Therefore, the dynamics of gauge field depends on the mean field ground
states and excitations of spinons and holons, and in turn the gauge field affects the



dynamics of the matter fields.
This is a complicated problem; a fully self-consistent treatment of effects of the

gauge field and the matter fields on one another seems out of question. Moreover,
because of the gauge field, the fermions and the bosons are no longer decoupled.
In this sense we do not have a full spin-charge separation. Yet, given the physical
motivation, we can expect that the basic picture, "quasi-spin-charge separation,"
survives, in which spinons (holons) would feel the effects of holons (spinons) and
themselves by a gauge field interaction. Within this picture, the magnetic properties
of the cuprates can be understood mainly in terms of spinons interacting with a
gauge field, while the transport properties can be understood mainly in terms of
holons interacting with a gauge field (although in such a difficult transport case like
the Hall effect, the spinon might play a more visible role, as suggested by Anderson).
Of course, in the case of the ARPES where a physical electron is taken out of a
system, spinons and holons would appear on a more or less equal footing.

Chapter 2 will discuss the transport and other charge response properties of the
cuprates within the holon-gauge field picture. Fermions do not enter the picture
directly, but they are believed to dominate the gauge field dynamics. The problem
is not an easy one, because there is no "Bose surface" for Bose liquids, and "free
bosons" is a poor limit to perturb around (Because of no double occupancy condition,
our bosons are hard core bosons). Therefore, most of the results of this chapter are
based on numerical techniques, in particular the path integral Monte Carlo method
first used by Ceperley and Pollock to study superfluid transition in He4[50, 51].

The results of the Monte Carlo simulation are quite positive. It is found that the
too high Tc found in the mean field theory is strongly suppressed by gauge field fluc-
tuations. The conductivity obtained from the Kubo formalism (non-Boltzmann!) has
a Drude like peak with width - 2T, indicating that the low lying gauge fluctuations,
which can be interpreted as spin-chirality fluctuations[52], are the anomalous scatter-
ing mechanism whose existence was suspected earlier from the linear resistivity data.
The density correlation function of the holon-gauge field theory has a fair agreement
with the numerics on the full t-J model, supporting the spin-charge separation. The
gauge field propagator of chapter 2 has in mind a spinon spectrum with a large Fermi
surface, as in the uRVB phase (optimally doped normal state). If the spinon spec-
trum has a gap (like the spin gap phase), the gauge fluctuation might not scatter the
holons as strongly, resulting in a sharper Drude peak and a reduced resistivity at low
temperatures. The material of chapter 2 is pretty much self contained. It is actually
an outcome of a thoroughly enjoyable collaboration with D.K.K. Lee and P.A. Lee
(Phys. Rev. B 55, 591, @American Physical Society, 1997).

Chaper 3 discusses the magnetic properties of the cuprates within the spinon-
gauge field picture. The magnetism in the cuprates is terribly interesting in its own
right, but it is also at the heart of the high T, debate. The emphasis in this chapter is
given to the physics of underdoped cuprates and its connection to the Neel state. As
noted earlier, the spin gap phenomena in the underdoped cuprates can be regarded
as a confirmation of the spin-charge separation. H. Fukuyama[53], who advocates a
similar point of view, nevertheless points out the following problems that the slave
boson mean field theories face: a) the origin of very different temperature dependence



of the Copper (TIT)-' and the Knight shift, and b) the effects of the fluctuations
(gauge field) on the mean field solutions.

Chapter 3 attempts to address these problems. Here, we look at them as different
facets of a single problem: it will be argued that the issue of gauge fluctuation is
essential to understanding the antiferromagetic spin dynamics probed by neutron
scattering, as well as the question why the Oxygen and Copper site NMR relaxation
rates differ markedly. The starting point is the mean field spinons with a gap (not a
full gap, but rather a Dirac spectrum). A comparison is made of the spin gap seen in
the cuprates with those of the more generally accepted quantum spin liquids (see Sec.
1.2.5), and the notion of deconfined (quasi free) spinons is discussed in this context.
The inadequacy of the mean field theory is pointed out, and the bulk of the chapter
examines how the inclusion of gauge fluctuation affects the mean field picture. The
contents of this chapter represent a long collaboration with P.A. Lee, with additional
participation of X.-G. Wen, and include an already published work (Don H. Kim, P.
A. Lee, and X. -G. Wen, Phys. Rev. Lett. 79, 2109, @American Physical Society
1997).

Before concluding the overview, it is only fair to mention briefly the main lim-
itations and omissions in this thesis. This thesis focuses mostly on the study of
"abnormal" normal state properties to advocate that the explanation of these re-
quires a new theory involving a spin-charge separation, more specifically the "RVB
mechanism". To some extent the unusual normal state implies that the supercon-
ducting state has to be also unusual, and that this seems to be so was indicated
early (Sec. 1.1.3). The point of view adopted here (the slave boson theory) naturally
gives the maximum superfluid density p,(T = 0) ~ x. The long-lived quasiparticles
inferred from experiments suggest that the finite temperature reduction of superfluid
density is mainly due to the d-wave quasiparticle excitations. This gives the correct
linear temperature dependence of p,(0) - p,(T) r aT, but the coefficient a deduced
from simple theories does not agree well with the experiments. Eventually, one has to
face the question: Can we understand the quasiparticles in the superconducting state
via the "recombination" of spinons and holons through some modellable interaction,
or is there a more subtle and intrinsically nonperturbative effect at work? (see, for
example, Ref.[54]) Opinions on these matters are not discussed here in any depth.

Also, some well known experimental features are not discussed, notably the in-
commensurate nature of the antiferromagnetic spin excitations. In the case of LSCO,
it is well documented: the Q-space scan at a fixed frequency shows peaks displaced by
(6, 0) or (0, 6) from the antiferromagnetic wavevector. In YBCO the spin excitation is
nearly commensurate; some signatures of incommensurate behavior is observed at low
temperatures (superconducting phase)[55]. Static "stripes" are seen in LSCO around
1/8 doping and its close relatives, and in a number of CMR (manganese) materials.
The incommensurability issue has been taken seriously by those who advocate the
"stripe" mechanism[56]. At least for me, it is difficult to reconcile the presence of
quasiparticles of a convincingly two-dimensional character and a mean free path of
r 500 lattice spacings with quasi-ld mechanisms like stripes. I shall not attempt
to explain the origin of the incommensurate features: currently I am of the opinion
that a solid theoretical framework has not been established even for basic issues like



the origin of antiferromagnetic correlation in metallic cuprates; the incommensurate
features are then certainly beyond the scope. Of course, implicit here is my view that
the incommensurability, though interesting, is not a central issue (if it is, then we will
need to begin anew from an entirely different starting point). In 12 years since the
discovery of the high T, , a large set of strange (too strange to be a coincidence) fea-
tures that are believed to be "universal" to all cuprate compounds has been collected;
at the moment I am not sure whether (and how) the "stripes" fits into it.

Finally, I should like to emphasize once more, with a little bit of philosophizing,
why I have adopted and pursued the slave boson and gauge theory approaches[57].
I believe that a theory (or even the theory) of high T, cuprates must begin from the
recognition that the superconductivity occurs near an insulating phase with a large
charge gap, and that the charge carriers are positive and have a small density , x.
Slave boson theories are quite natural in that respect, despite the necessity of dealing
with cumbersome gauge fields. In high energy physics, the gauge fields (photons,
gluons, etc.) are "god-given" - they are simply there, just like electrons and quarks.
The gauge fields in our problem, or those arising in other condensed matter examples,
may be regarded to reflect the inadequacy of our description of certain many body
systems in the conventional langauge of commutative and anticommutative algebra
of bosons and fermions. Fermi liquids are systems describable by Slater determinants
(anticommuting algebra of fermions) or systems continuously (or adiabatically) de-
formable from Slater determinants. It may be difficult to define precisely what is
meant by "continuously deformable", but it seems easier to give an example of what
is not: for example, the Laughlin 1/3 state, for which a simple description in terms of
wave functions exist[58], while an attempt to discuss the problem in terms of a com-
mutative algebra (bosons) has to pay a price - the introduction of a (Chern-Simons)
gauge field[59]. The "quantum spin liquid idea" of the high T, cuprates envisions
something quite different from Slater determinants. It may be a pessimistic streak
in me to view that it would be (at least) very difficult to find a new algebra that
realizes a more natural description of the materials than the known algebras. At the
moment, the gauge theory approach stands as a partly charming and partly homely
theoretical description in terms of currently available notions.



Chapter 2

HOLONS AND TRANSPORT
PROPERTIES

[BOSONS, GAUGE FIELDS, AND HIGH Tc CUPRATES] - The following is a work
done in collaboration with D. K. K. Lee and P. A. Lee, and has appeared in Physical
Review B 55, 591 (1997).

We study the low-temperature behavior of repulsive bosons in a spatially fluctu-
ating gauge field in two dimensions. This is motivated by the gauge theories of the
t-J model for the cuprate superconductors, where low-energy charge excitations are
described by bosonic degrees of freedom. The internal gauge field of this model sup-
presses superfluidity in the Bose liquid, even below the Bose degeneracy temperature
when there is significant exchange among the bosons. We can study the imaginary-
time trajectories of the bosons in the path-integral representation of this model. We
see that the boson world-lines retrace themselves in the presence of strong gauge
fluctuations, giving rise to interesting dynamics in this degenerate but metallic Bose
liquid.

We have studied this metallic state using quantum Monte Carlo techniques. We
find that this model does indeed capture some of the long-wavelength charge prop-
erties which are common to the cuprate superconductors. This includes a linear
temperature dependence of the transport scattering rate 1/Ttr, as deduced from a
Drude-like optical conductivity from our model. This is consistent with experimental
data on the cuprate superconductors near optimal doping. We also find that the den-
sity excitations in our model are qualitatively similar to those in the full t-J model, by
comparing our results with diagonalization results in the literature. A brief account
of this work has already appeared [60].

2.1 Motivation

The normal metallic state of the superconducting cuprates displays many non-Fermi-
liquid properties. For instance, the in-plane resistivity of La2-.Sr.CuO 4 has a power-



law temperature dependence of the form p oc T" where a increases from 1 to 1.5
with increasing hole doping [61]. In particular, near optimal doping, the resistivity
is linear in temperature up to 1000K. This linear-T dependence is found in many
of the cuprate superconductors with similar values of dp/dT (1.2pQcm/K ± 20%)
[62]. This should be contrasted with the quadratic temperature dependence of Fermi-
liquid theory. Similarly, the transport relaxation rate appears to be universal among
optimally-doped compounds: 1/Ttr - 2kBT (from a two-component-model analysis of
the optical conductivity in YBCO[63], LSCO[64], Bi2212[65], Bi2201[65]). Transport
in a magnetic field is also anomalous. The Hall coefficient indicates the existence
of hole-like carriers in the doping range where superconductivity occurs. The Hall
coefficient RH increases with decreasing temperature, but it remains smaller than the
classical value of 1/nhec for a hole density of nh for a wide range of temperatures
down to the superconducting transition. These compounds also have a small positive
magnetoresistance with a temperature dependence[66] different from conventional
theory using Ttr-

The transport properties of these compounds appear to have common features in
spite of considerable differences in the transition temperature and spin fluctuation
properties among these compounds. This indicates that a common mechanism is
responsible for the scattering of charge carriers in these materials. One might hope
that this scattering mechanism can be understood in terms of a low-energy theory
with a minimum number of microscopic parameters. In this paper, we study a Bose
liquid in a fluctuating gauge field as a possible candidate for such an effective theory.

The anomalous transport behavior, together with other unusual features such
as temperature-dependent magnetic susceptibility and non-Korringa behavior of the
nuclear magnetic relaxation time, leads to the conclusion that the metallic state of the
cuprates cannot be described in a simple Fermi-liquid scenario. It has been postulated
that "spin-charge separation" is responsible for these anomalies[29]. For instance,
such a scenario might reconcile the apparent low density and hole-like character of
the charge carriers with the observation of a large, electron-like Fermi surface in
photoemission. Numerical studies of the t-J model, which is believed to be a low-
energy model of the cuprates, also provide some support for spin-charge separation
[67, 68, 69], such as different energy scales for the spin and charge excitations, and
the suppression of 2kF-scattering in the charge spectrum.

A model of spin-charge separation is a gauge theory where neutral spin-half
fermions ("spinons") and charge-e bosons ("holons") interact via an internal U(1)
gauge field [70, 52]. Physically, the transverse part of the gauge field is related to
"spin chirality" fluctuations [52]. In this picture, the charge properties of the sys-
tem should be dominated by the behavior of the holons. We will study the holon
subsystem in this paper, treating the spinon subsystem simply as a medium through
which the gauge field propagates. To be more precise, we study a model of bosons
with on-site repulsion in the presence of a spatially fluctuating magnetic field with
short-range correlations. The repulsive interaction is necessary for the stability of
the system, which means that one cannot treat this problem perturbatively starting
from an ideal Bose gas. Previous studies [71, 72, 73, 74, 75] have implicitly studied
the non-degenerate regime of low density or high temperature, whereas the regime



relevant to the cuprates is the degenerate regime where the thermal deBroglie wave-
length of the bosons is greater than the mean particle spacing. A concern from earlier
studies of the gauge model is that degenerate bosons would have strong diamagnetic
response to the internal gauge field and hence effectively Bose-condense at a relatively
high temperature (kBTBE - 47rnht - 1000K). This would in fact restore Fermi-liquid
behavior to the system. We shall show here that gauge fluctuations suppress this dia-
magnetic response and the bosons remain normal without strong diamagnetism at all
finite temperatures. Furthermore, our numerical results indicate that the resistivity
of this Bose metallic phase has a linear temperature dependence which is consistent
with experiments.

It should be noted that we will work exclusively in the "slave-boson" scheme where
the holons are bosonic and the spinons are fermionic. One may also obtain a "slave-
fermion" gauge theory where the statistics of the holons and spinons are interchanged.
Although these two approaches are equivalent in principle, they do not produce the
same results in the approximate treatments. We believe that, at the mean-field level,
the slave-boson approach describes the cuprates near optimal doping (for instance,
the observation of a large Fermi surface in photoemission), while the slave-fermion
mean field theory is more suitable in the underdoped regime. The physics of the
underdoped regime, such as the presence of a spin gap, is beyond the scope of this
U(1) theory (see Ref.[ll3]).

Besides the possible relevance to the transport in the cuprate superconductors,
the model we consider is of intrinsic theoretical interest. The model is a Bose version
of the problem of a quantum particle in a random magnetic flux, which has received
considerable attention in recent years. It is also related to frustrated spin systems
and vortex glasses. However, since we deal exclusively with annealed averaging in
this paper (see later), we cannot draw any direct conclusions about these problems
with quenched disorder.

The rest of the paper is organized as follows. In section II, we review the con-
nection between the gauge theory of the t-J model and our boson model. In section
III, we discuss the path-integral formalism which provides a convenient framework
to visualize physical processes in terms of the imaginary-time paths of the bosons.
In section IV, we look at the effects of the gauge field on the world-line geometry of
the bosons. We will see that the partition function of the system is dominated by
self-retracing world-line configurations. We will also argue that superfluidity is de-
stroyed by the fluctuating gauge field, giving rise to a degenerate Bose metal. In the
subsequent sections, we present the results of a quantum Monte Carlo study of this
metallic phase. We will discuss the transport properties and the density correlations
in this boson model.

2.2 A Boson Gauge Model

In this section, we provide the motivation for studying an effective boson model from
the gauge theory of the t-J model, which describes the motion of vacancies in a doped



Mott insulator:
S= -to E (ct cj, + h.c.) + J Si Sj (2.1)

(ij) (ij)

with the constraint of no double occupancy. Experimentally, J !_ 1500K and to/J - 3.
The constraint of no double occupancy allows us to write the creation of a physical

hole in terms of the creation of a charged hard-core boson (holon) and the annihilation
of a spin-half fermion (spinon): ci, = fibtb. In terms of these slave bosons and
fermions, the Hamiltonian of the t-J model can be written as:

7t = -to (fbib f + h.c.) + JES

(ij)a (ij)

+ E aoi(ft, fi - + btbi- 1) (2.2)

where Si = ftia~ fip, The aoi-field is a Lagrange multiplier enforcing the local oc-
cupancy constraint, and acts as a fluctuating scalar potential for the spinons and
holons.

Among the mean field theories proposed to decouple the quartic terms in Eq. (2.2),
a candidate for the normal state near optimal doping is the the uniform resonating-
valence-bond (RVB) ansatz: & (ftr fj,) = ei a ij . This incorporates short-range anti-
ferromagnetic correlations without any long-range Noel order. The Lagrangian of this
RVB phase can be written as:

£L = E fi*(T - PF + aoi) fi + E b*(r - PB + aoi)bi
i,a i

2 ( E(ei"i fifp, + h.c.)2 (ij)
--to (eiaij bbj + h.c.) (2.3)

(ij)

The vector potential aij arises from the fluctuations in the phase of the RVB
order parameter. Longitudinal fluctuations of the gauge field aij do not affect the
Lagrangian due to an internal U(1) gauge symmetry:

fi " f iei

bi -- bieie

aij -+ aij- O + O (2.4)

We will therefore work in a fixed gauge, such as the Coulomb gauge, and consider
only the fluctuations in the transverse part of the gauge field aij. In other words, we
will consider only fluctuations in the internal magnetic and electric fields which are
gauge-invariant quantities.

Since we are interested in the charge degrees of freedom, we wish to consider an
effective theory with bosons only, and regard the spinon fluid as a medium through
which the gauge field propagates. The gauge field has no dynamics in vacuo. The



response of the spinon fluid to the gauge field is responsible for the dynamics of
the gauge field as seen by the holons. More specifically, we can obtain the Gaus-
sian fluctuations of the a-fields by treating the spinon response in the random-phase
approximation. The effective gauge-field propagator is:

1
SG 2/L 2  00 (k, wn)a*(k, wn)ao (k, wn)SG 22 k,wn

+ 2L 2 E (k, w,)a*(k, Wn)aL (k, wn), (2.5)
2L 2 k,W,

where / = 1/T, wn = 27rnT, L is the linear size of the system, and a1 is the transverse
part of the gauge field. (We use units where distance is measured in terms of the lattice
spacing and kB = h = e = 1.) Here, for small k and wn, HIo - PF, the spinon density
of states at the Fermi level. This describes the Thomas-Fermi screening of internal
electric fields by the fermions. The effective interaction mediated by the screened
a0o-field is a repulsion between the bosons (of range oc pF1/ 2), consistent with the
original hard-core requirement for the bosons. We will model this with an on-site
repulsion energy, U. On the other hand, the magnetic fields due to fluctuations in
aij are not effectively screened out by the fermions[76]. The gauge-field fluctuations
as experienced by the holons are therefore strong. More specifically, the Gaussian
fluctuations have the correlation function D(k, w,) = (a (k, wn)a±(k, wa)), given (in
the continuum limit) by:

1 1
D(k, un) H (2.6)

II (k, wn) - yInl/k + xk 2

where X is the orbital susceptibility of the spinon fluid and y is a Landau damping
coefficient. These gauge-field fluctuations cause profuse forward scattering of the
bosons. We believe that this is the dominant scattering mechanism in this problem.
Since it is overdamped at long wavelengths with a relaxation rate which diverges as
1/k3 , we will ignore the slow relaxation and work in a "quasistatic" limit for the gauge
fields:

D(k, wn) + D(k, wn = 0) 6n,o = 6n,o/Xk 2. (2.7)

(On a square lattice, k2 is replaced by 1 - (cos k, - cos ky)/2.) This quasistatic
approximation is justified when the gauge field relaxes on a time scale longer than 1/T.
Since the typical scattering wavevector of interest is the inverse deBroglie wavelength
of the bosons, the relevant relaxation time scales as 1/k3  ~ 1/T3/2 . One might
therefore expect[77] that this approximation is valid at a sufficiently low temperature.

One might object that arguments above are based on a weak-coupling theory of
the response of the spinons to the gauge fields. However, we believe that the essential
features remain correct in general, namely a separation of times scales between the
relaxation of the gauge fields and the boson dynamics, as well as the magnitude of
the gauge fluctuations being controlled by the spinon diamagnetic susceptibility X-

The gauge-field correlator (2.7) corresponds to a spatially uncorrelated flux dis-



tribution with the correlation function:

(Tr'r') = - (2.8)

where Dr = (0o/27r) Eo aij (oriented sum around the links of plaquette r) is the flux
through plaquette r. (4D = hc/e is the flux quantum.) Since we are treating the
thermodynamics for the gauge field classically, we have a thermal factor of T in Eq.
(2.8) for the flux variance (D2). Given that the fermion orbital susceptibility is roughly
constant at low temperatures, we might expect the flux variance to have a linear
temperature dependence. However, a lattice calculation by Hlubina et al.[78] has
indicated that the Gaussian fluctuations are sufficiently strong that the flux through
a plaquette is of the order of the flux quantum o: ( 2)1/2 > 0 .5'0 down to a
temperature of 0.4J. Since the experimental superconducting T, is of the order of
0.1J, we expect that this regime of strong random flux is relevant to the normal
state of the cuprates until one approaches the superconducting transition. In this
regime, the precise value of (D2) should not affect the behavior of the bosons, and we
will focus on a large and temperature-independent flux variance when we study the
transport and correlation functions of our boson system.

Another factor leading to the reduction of the flux variance at low temperature
is one that has not been discussed so far, namely that the magnitude of the gauge
field should also be affected by the diamagnetic response of the holons as well as the
spinons, i.e., (D2) = T/(Xspinon(T) + Xholon(T)). The holon contribution dominates
near an instability to Bose condensation where Xholon diverges and the bosons develop
a Meissner response to expel the gauge field from the system altogether. However, we
will see in this paper that Bose condensation and the holon diamagnetism are strongly
suppressed even below the boson degeneracy temperature. Therefore, in a wide range
of temperatures above the superconducting Tc, we are justified in neglecting this
feedback effect of the holons on the magnitude of the gauge field fluctuations.

We can now define more precisely the effective model which we study in the rest
of the paper. It is a model of lattice bosons interacting with a quasistatic gauge field,
described by effective action S = SB + SG:

SB = [ b(O, -B p)bi- HB(T) dT

SG = 2L2 D- 1(k, 0) a (k, 0)12  (2.9)
20L2 k

(2=r (2.10)
r 2(42)

with the boson Hamiltonian

U
HB = -t (eiai bbj +h.c.) + n,(n -1), (2.11)

(i j)



where t = to0 , to, L is the linear size in units of lattice spacing and U > t. Note that,
on performing the average over the gauge field, we average over static configurations
only, i.e., a(k, w, 7 0) = 0.

We cannot say that we have rigorously derived above effective action from the
slave-boson mean field theory of the t-J model. Many approximations have been
introduced to obtain this simple model with few adjustable parameters. For example,
we have neglected the temperature dependence of the RVB order parameter ( and
also the gauge-field correlations of higher order[79]. We take the point of view that
we are studying a "minimal" low-energy theory which hopefully captures many of the
generic features of more complicated models.

2.3 Path Integral Representation

It is convenient to study our boson model in a first-quantized formulation. The
partition function Z for a system with N bosons in the canonical ensemble can be
written in terms of a Feynman path integral[80] over the boson trajectories {x,(T)}
(a = 1, ... , N):

Z = N! .. X] x

fDa 6(V - a)e - s G(a) - i  f a -S({x}) (2.12)

where S° is the action for bosons in the absence of magnetic fields:

S = fod b ,b - H ° ) (2.13)

where HB is given by (2.11) with aij = 0. In this section, we will discuss the model in
the continuum limit for notational convenience. In the continuum, one would have:

S= jdT E Ix + E U6(x,(T) - x .r))]. (2.14)

Particle identity is taken into account by performing the path integral over all tra-
jectories where the set of final boson coordinates at {x1 (),..., XN(,)} is some per-
mutation of the initial boson coordinates {x1 (0),..., XN(0)}. Any such permutations
can be broken down to cycles. Each cycle forms a closed loop when the imaginary-
time trajectories (world lines) of a many-boson configuration are projected onto real
space. At high temperatures, cycles of length 1 dominate the partition function and
the system is in a non-degenerate classical regime. At temperatures below the degen-
eracy temperature of the bosons, particles can travel large distances in the imaginary
time, forming many ring exchanges (see Fig. 2-1).

In this formulation, we may integrate out the Gaussian fluctuations of the gauge
field in (2.12). Thus, we arrive at a boson-only effective theory which we study



Figure 2-1: A schematic configuration for 6 bosons after projecting the imaginary-
time paths onto the xy-plane. There are a total of 3 cycles: 1 cycle of one particle,
1 cycle of two particles, and 1 cycle of three particles. Solid circles denote particle
positions at T = 0 and /.

numerically in this work. The system is described by the partition function Z =

fDxe- sff where the effective action is given by:

Seff = S ° + S 2  (2.15)

with

S2 = J D(x(r) - x, (T')) *, *Q dr dr'. (2.16)

where D)(x) = (1/L 2) Ek0o D(k,O)e- ik'x. Note that the k = 0 contribution has
been excluded in the sum over k, corresponding to a gauge choice where the k = 0
part of a is zero. This is one way to fix the remaining degree of gauge freedom which
is not determined by the condition of V -a = 0. If we consider a system with periodic
boundary conditions in space, another scheme would be to fix the line integral of
the gauge field around a specified path which wraps around the boundary. However,
the latter scheme is inconvenient for our purposes because it breaks translational
invariance explicitly.

The current interaction D(x) mediated by the gauge field is logarithmic at large
distances, and is attractive between opposite currents. Due to the quasistatic nature
of the gauge fields, the interaction is also infinitely retarded in time. We will see in the
next section that this encourages world lines to retrace themselves, with important
consequences for the boson dynamics.

Before proceeding to discuss the physical consequences of the current interaction
S2, some remarks about our averaging procedure for the gauge fields are in order. We
have performed an "annealed" average over the gauge fields, rather than a "quenched"
average. Annealed averaging is necessary in our case because our gauge field a is an
internal thermodynamic variable. Formally, we evaluate observables (0) as:

S1 
s fDxDa P[a] O e-s°-if a.dx

aP[a] e-s- fa.dx (2.17)
Z Dxl)aP[a] e-sO-if a-dx



where P[a] = NV-16(V - a)e - s G[a] is the probability distribution for the gauge field,
and K is a suitable normalization factor. This is different from quenched averaging
which would be appropriate if we dealt with a system with frozen impurities, such as
a vortex glass. Quenched averaging requires the evaluation of:

Da P[a] [f D x ( e - s - i f a dx (2.18)L f Dx e-s -if a .dx

The differences between quenched and annealed averaging from the point of view of
perturbation (diagrammatic) theory has been addressed elsewhere[74, 166].

From the point of view of the path integral Monte Carlo method, our ability to
perform the annealed averaging means that we would not have to perform extensive
averages over different frozen realizations of the random flux. Moreover, note that the
effective action (2.15) is manifestly real, and so we avoid the sign problem which occurs
numerically when performing a quenched average over the gauge fields. We have
studied boson densities between nb = 1/4 and 1/6. We choose an on-site interaction
strength U > 4t. We follow the Monte Carlo methods of Ceperley and Pollock[50]
and Trivedi[82]. Each Monte Carlo step involves the reconstruction of the world lines,
{Xa(T)}, for all N particles using the ideal boson propagator in a short interval in
imaginary time. The on-site interaction and the current interaction S2 are taken into
account using Metropolis tests. To ensure quantum exchange, we may insist that each
accepted configuration differs from the previous one by a pair exchange. This can be
incorporated, without loss of detailed balance, as a Metropolis test. We refer readers
to the original references[50, 82] for further details. (In evaluating the gauge field
contribution S2, we have also made use of a geometrical interpretation of S2 which
we discuss in the next section.) In the discretization of the imaginary time, we have
used a small AT = 0/M < 0.1/t, so as to minimize the systematic error and to allow
the reliable use of maximum entropy techniques to perform analytic continuation on
our imaginary-time data to obtain the dynamical quantities of interest. This sets the
lowest accessible temperature to T - 0.1t for lattice sizes considered here. For studies
on dynamic response to be discussed later, we have restricted ourselves to lattices of
sizes up to 6 x 6, due to the need to obtain imaginary time correlation functions to
a high accuracy. For the calculation of static properties, we have studied lattices as
large as 10 x 10.

To summarize, we have obtained an effective theory of bosons with current interac-
tions which are long-ranged in space and time. This model can be studied using path
integral Monte Carlo methods. In the next section, we will discuss how these interac-
tions affect the geometry of the boson world lines and hence the physical properties
of the system.



2.4 Effect of Gauge fields on World Line Geome-
try

2.4.1 "Brinkman-Rice bosons"

In this section, we will discuss how the current interaction S2 mediated by the gauge
field affects world-line geometry. On the infinite plane, there is a simple geometrical
interpretation of this interaction in terms of the winding numbers of the boson world
lines. The winding number Wr around a plaquette r is the number of times the
imaginary-time world lines of all the bosons wind around the plaquette. Consider the
partition function before averaging over the gauge field. The effect of the gauge field
enters the partition function as the phase factor exp[-i &~ f a dx,] in Eq. (2.12)
over the gauge field. This phase factor can be written in terms of wr: Z, f a dx, =

Er rr. We can now perform the average directly over the Gaussian flux distribution
(2.10), instead of the gauge field distribution (2.9). We will be working with periodic
boundary conditions (i.e., on a torus). This will be well-defined if we impose a
constraint of zero total flux through the system. On averaging, the phase factor
becomes:

dA f d r e- Er - r wrer+iAEr or

/ 2-7r 2'b 2 (wr+A)2 S

c< dAe 0 o e

S2 = 2 2  2 Wr (2.19)

Thus we see that the action cost due to the current interaction is proportional to a
geometrical property of the world lines, similar to an unoriented area, which has been
termed the "Amperean area" [72]:

Aa = wU - ( Wr ) (2.20)

This geometrical interpretation of S2 is particularly useful in the numerical evaluation
of this quantity.

If we are working with periodic boundary conditions, the geometrical definition
of Wr given above will not work because there is an ambiguity in identifying which
plaquettes are inside or outside a loop on a torus. Nevertheless, we can still use the
above analysis for paths which do not wrap around the boundaries. (We will discuss
wrapping paths in the next section.) The only modification is that we need a definition
of the winding numbers which preserves Stokes' theorem: f a(x) -dx = Er Wr r. In
the case of zero total flux, a suitable definition is: Wr = i-1 f[ao(x)-ao (x)]-dx, where
ao(x) is the vector potential at x due to a test flux 4i placed at plaquette r, and R is
an arbitrary reference plaquette. Geometrically, this picks R to be on the "outside"



of any loop on the torus. The Amperean area as defined above is independent of the
choice of this plaquette, because different choices amount to global changes in the
winding numbers (e.g., Wr -+ Wr +1) and the above definition is invariant under such
changes.

The effect of the gauge field on the particles is now clear. The action S 2 suppresses
world-line loops with large winding numbers. Indeed, since S2 is non-negative, it
excludes all configurations with finite Amperean area in the limit of infinite (D2).
This suppression can be related to the original problem of holes moving in a spin
liquid with a slowly varying spin quantization axis. A hole moving in a loop comes
back with a random phase due to the locally fluctuating spin chiralities of the spin
background[52]. The random phase can be interpreted as arising from a fictitious
random flux. World-line loops that enclose large areas are strongly suppressed when
averaged over random flux distribution due to the destructive interference of the
random phases. Therefore, we expect that, in the presence of strong random flux, the
dominant contribution to the partition function comes from a special kind of paths
that do not "see" the random flux, i.e., paths where f a-dx = 0. These are "retracing
paths" where each traversal of a link on the lattice is retraced in the opposite direction
at some point in time [83, 84], and such paths have zero Amperean area.

A similar picture of retracing paths has been studied by Brinkman and Rice[83]
who studied a single hole in a Mott insulator where the spins are treated classically.
Indeed, studies of a single particle in a strong random flux have yielded a density
of states nearly identical to that of the Brinkman-Rice problem[85, 86, 87]. The
Brinkman-Rice model gives a linear-T resistivity at high temperatures (T > t) but a
constant scattering rate of order t. Although we might expect this to be applicable
to our model far above the degeneracy temperature of the bosons, this behavior does
not extend down to the degenerate regime relevant to the present problem.

At boson densities of interest here and at low temperatures, Bose statistics and
particle exchange are important; they can give rise to behavior different from the
single-particle Brinkman-Rice result. We shall look at the effect of the gauge field on
the quantum exchanges among bosons more carefully in section IV-c. For now, we
point out that, even in the presence of strong gauge-field fluctuations, the bosonic
nature of the particles cannot be ignored because the particles can form long ex-
change cycles that retraces themselves so that an individual boson does not have to
retrace its own path. This is an important consideration at low temperatures where
the imaginary-time paths are long allowing for a strong degree of particle exchange.
Although the system can be highly degenerate at low temperatures, we shall now
argue that these "Brinkman-Rice bosons" remain normal at all finite temperatures,
due to interactions with the fluctuating gauge fields.

2.4.2 destruction of superfluidity

We will now discuss the effect of the gauge field fluctuations on the superfluidity of
the Bose system. We will see, as in the previous section, that this can be understood
in terms of the geometrical properties of the boson world lines.

A neutral Bose system with short-range interaction in two dimensions is a super-



fluid below Kosterlitz-Thouless temperature TKT. The onset of superfluidity at TKT

is caused by the binding of vortex-antivortex pairs in the Bose fluid so that vortex
motion does not cause phase slips across the system. An essential ingredient of the
existence of the superfluid phase is a long-range logarithmic attraction between the
vortices and the antivortices. A single vortex costs infinite energy in an infinite sys-
tem E, = (rp,/m) log(L/a) where a is a short distance cutoff (- vortex core radius)
and p, is the superfluid density. Therefore single vortices cannot exist at low temper-
atures. Nevertheless, the proliferation of free vortices is possible above TKT because
this provides a gain in entropy which also scales as log L. However, in a charged
Bose system, screening currents causes the vortex interaction to be short-ranged. In
our problem, the vortex interaction becomes exponentially weak at distances beyond
Ap = [T/2pt(2)1] 0o, which can be interpreted as a penetration depth of the Bose
fluid. Now, the creation of a single vortex costs a finite amount of energy[88, 89]
E, = (rp,/m) log(Ap/a). This no longer compensates the entropic gain from vortex-
antivortex unbinding, and so we do not expect to see a sharp phase transition of the
Kosterlitz-Thouless type at finite temperatures.

One might still expect that there is a crossover temperature scale below which
the vortex density will be sufficiently low that the Bose system would have strong
diamagnetic response. A rough estimate of this temperature scale using a Boltzmann
weight for the vortex density gives a large value for this crossover temperature[89].
However, we will see later that, in the presence of strong gauge fluctuations, the
diamagnetic response of the bosons remains small.

To understand the suppression of superfluidity specifically in our model, we turn to
the path-integral formulation of the problem with periodic boundary conditions (i.e.,
on a torus). Ceperley and Pollock[50] have shown that superfluidity is associated with
the existence of long world-line cycles which wrap around the torus. The superfluid
density is given by

(W2)n (W) (2.21)

where W (Wy) is the number of times the boson world lines wrap around the torus
in the x (y) direction. In other words, W = EN fo dr a/L. In the presence
of gauge fields, superfluidity is destroyed by the same mechanism that causes the
Brinkman-Rice behavior: wrapping configurations pick up random phases, and should
be suppressed by destructive interference on averaging over the gauge field. The
number of plaquettes whose random fluxes contribute to the phase picked up by
a wrapping path should increase with increasing system size. For a large enough
system, one might expect this phase to be totally random. We therefore expect this
suppression to be very strong. For instance, one can evaluate S2 for a straight-line
path which wraps around the torus in the y-direction. To do so, we use Eq. (2.16)
instead of Eq. (2.19) because the geometrical interpretation of S 2 in terms of winding
numbers is not applicable for wrapping paths. We find that such a path gives

W2 (42)S2 = D(k, 0) , 27r2W2L2( 2 (2.22)2 k,$O,ky=O 0



To compute S2 for a more general path with wrapping W,, one can break it down into
a wrapping path with the same wrapping number and a non-wrapping path (Fig. 2-2).
(S2 will consist of the contributions of the wrapping paths and non-wrapping paths
separately, as well as a cross-term between the two paths.) We argue that S2 diverges
for all wrapping paths in the thermodynamic limit, and so superfluidity is destroyed
at all finite temperatures.

(a) (b) (c)

Figure 2-2: (a) Projection of a world line onto the xy plane shows a retracing path. (b)
A wrapping path. (c) Decomposition of (b) into a reference path and a non-wrapping
path.

It should be noted that we are studying a gauge model where the uniform part of
a is set to zero. We may alternatively work with a model without this gauge fixing.
With periodic boundary conditions, this model allows an arbitrary Aharonov-Bohm
(AB) flux through the torus. This flux is related to the phase of the product of RVB
parameters (ij) along a (Wilson) loop which wraps around the torus. If we average
over this AB flux assuming a uniform distribution, we would find that all wrapping
paths are strictly prohibited and n, = 0 at all temperatures even for samples of finite
size. We will not impose such a drastic condition on the wrapping paths in this work.

We can also ask whether long-range order exists in the Green's function for the
bosons. The Green's function itself (bt(r)b(0)) is not gauge invariant, and would
vanish on averaging over different gauges. However, we can study the Green's function
in a fixed gauge, for example the transverse gauge V - a = 0. In fact, one can
write a gauge-invariant analogue correlation function which coincides with the Green's
function in the transverse gauge[90]:

G(r) = (bt(r)b(0))v.a=o

= (bt (r)b(0)e- i f d2r'f(r')Va(r ' )) (2.23)

where V2, f(r') = 6(r' - r) - 6(r'). In the path-integral representation, the evaluation
of G involves a world line originating at site r and a world line terminating at site
0 at the same point in imaginary time. Note that this quantity coincides with the
Green's function in the Coulomb gauge. Consider now the phase factor & f a -dx,
picked up by the world lines {x,} in the evaluation of the Green's function G(r)
in this gauge. The random flux D~ at a distant plaquette R (with R > r) has a



contribution of magnitude JR/R to the vector potential at a point Q near 0 and
r. The sum of the contributions to the vector potential at Q due to the random
fluxes at radius R from the origin is a random vector with a mean squared magnitude
of 27rR x (((p2)/R 2) , ((D2)/R. This analysis is valid for all fluxes which are at a
distance R > r. Integrating over the contribution of such fluxes, the variance of the
magnitude of the vector potential at Q scales as (( 2) log(L/r). Summing over all Q
near 0 and r, we obtain a random phase with a divergent variance: ()2)r 2 log(L/r).
Thus, averaging over the distant fluxes for these sites, one obtains a suppression factor
of exp[-(&2)r 2g(r/L)] where g(x) , log 1/x for small x. This can be interpreted as
a binding potential for the end points of G(r). We therefore do not find long-range
order in this quantity because of the destructive interference of the random phases
due to distant fluxes.

We will now present numerical evidence for the suppression of superfluidity be-
low the degeneracy temperature TDO of the system. A measure of the degeneracy
temperature is the Kosterlitz-Thouless temperature of the system at zero flux. We
make use of the observation of Ceperley and Pollock[51] that the the probability of
bosons to participate in the multi-particle exchange is about 1 at Kosterlitz-Thouless
transition. In other words, the probability P that a boson is in an exchange cycle of
length 1 is about 1. We estimate that, for our lattice bosons with density nb = 0.25
and on-site interaction U = 4t, the degeneracy temperature TDO = 1.1t. (For strong
on-site repulsion, TDO is not particularly sensitive to the value of U, e.g., TDO = 0.9t
for U = 16t.)

We have measured, using Eq. (2.21), the superfluid fraction n,/nb at T = t/6 with
U = 4t for a range of flux variances and for systems up to 8 x 8 in size (Fig. 2-3).
We see that the superfluid fraction decreases with increasing system size. In fact,
the superfluid fraction as a function of (42)L collapses onto a single curve (Fig. (2-3
inset), indicating that n,(L, /, (,2)) = f(L((I2), "). Since f(x, /) -+ 0 as x -+ o, we
see that an arbitrarily small random magnetic flux would destroy superfluidity in the
thermodynamic limit. In the language of the renormalization group, this shows that
the scattering by gauge fields is a relevant perturbation at finite temperature.

2.4.3 world line geometry in the normal phase

Having established that our system remains normal at low temperatures, we will
now examine the geometry of the world lines in this normal phase in the presence
of strong gauge fluctuations. In particular, we will look at the effect of the gauge
fields on quantum exchange and imaginary-time diffusion. These are mutually re-
lated: imaginary-time diffusion over large distances aids quantum exchange among
particles and quantum exchange facilitates imaginary-time diffusion. For example,
in a dissipative model of bosons coupled to external heat bath, a slow logarithmic
imaginary-time diffusion is expected to suppress quantum exchange very strongly,
resulting in an incoherent liquid even at zero temperature[71, 91]. In our case, the
bosons are elastically scattered by the gauge fields. We find that the gauge fields have
less dramatic effects on quantum exchange and imaginary-time diffusion.

We have shown that the world lines retrace themselves in the presence of random
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Figure 2-3: Superfluid density vs. ((2) for different system sizes at 3t = 6. Inset: a
scaling plot suggests that superfluidity vanishes at (42) c , 1/L.

flux. One might expect that, compared with the case of zero flux, this would reduce
the distance traveled by the particles in the imaginary-time interval 3 before their
paths must return to some permutation of their starting positions. This should slow
down the imaginary-time motion of the bosons as well as reduce the probabilities for
exchange. We find that this is indeed the case.

We first look at the exchange probabilities Pi of a particle participating in an
exchange cycle of i bosons. As before, we may deduce a degeneracy temperature TD
from the probability (1 - P1 ) for a particle to be involved in particle exchange[92].
This degeneracy temperature is reduced compared to the case of zero flux. For U = 4t
at quarter filling, we find that the zero-flux degeneracy temperature TDO = 1.1t is re-
duced to TD = 0.5t at (42) = 0.5I)0. At -- filling, it is reduced from TDO = 0.8t to
TD = 0.34t. A finite TD does not imply Bose condensation at a finite temperature.
Indeed, one cannot deduce a superfluid transition by examining the exchange proba-
bilities. Remarkably, in the degenerate regime below TD, the exchange probabilities
for the cases of (42) = 0 and 0.5 are nearly identical (see Table 2.1). In this tem-
perature regime, a particle is equally likely to participate in an exchange cycle of any
size: P _ P2 - ... - PN -- 1IN.

We can gain a qualitative understanding of the low-temperature exchange proba-
bilities, by examining how the suppression of Amperean area by S 2 affects the geom-
etry of the world-line configurations. When there is significant quantum exchange,
individual bosons do not have to retrace their own paths in order to minimize the
total Amperean area of the world-line configuration of all the bosons. Instead, one



Table 2.1: One, two, three, and four- boson exchange probability for various T, ((2),

and U at quarter-filling.
T U (()2)/)2 P1  P2  P 3  P 4
0.5t 4t 0.5 0.51 0.23 0.13 0.07
0.5t 4t 0 0.20 0.12 0.11 0.11
0.25t 4t 0 0.12 0.11 0.11 0.11
0.25t 4t 0.5 0.26 0.16 0.13 0.12
0.25t 16t 0.5 0.41 0.21 0.13 0.10
0.11t 4t 0 0.11 0.11 0.11 0.11
0.11t 4t 0.5 0.12 0.11 0.11 0.11
0.11t 16t 0.5 0.12 0.11 0.11 0.11

(a) (b) (c)

Figure 2-4: Schematic world-line cycles which retrace when projected onto the xy-
plane. Solid circles denote boson positions at T = 0. (a) Each boson retraces its own
path; (b) Exchange cycles with more than one boson retrace their own paths; (c) Two
exchange cycles can retrace each others paths, and two wrapping paths can retrace
each other to give zero total wrapping around the boundaries.

might minimize the Amperean area of each world-line loop formed by several bosons
in the same exchange cycle. We find that this is not the entire situation at sufficiently
low temperatures. Below TD, the different world-line loops have strong overlap. We
find that different cycles retrace each others' paths. (See Fig. 2-4.) Thus, although
the gauge fields have a drastic effect on the total area enclosed by all the boson world
lines, individual world-line cycles may enclose large areas. One might therefore expect
that some aspects of the world-line geometry, which are insensitive to the total area,
may indeed be very similar to the case of zero flux.

The observation that individual particles do not have to retrace their own paths
suggests that they could diffuse a greater distance than in the single-particle case.
One should see a reduction in the kinetic energy (K) of the particles compared to the
Brinkman-Rice theory[83]. This is indeed the case. (See Appendix for a discussion
of the measurement of the kinetic energy.) A single particle with retracing paths
has a band edge at -2V3't rather than -4t. In our system, the kinetic energy per



particle goes below the Brinkman-Rice band edge at low temperatures, approaching
-4t roughly linearly in temperature (Fig. 2-5). Thus, we see that the strong gauge
fluctuations do not have a large effect on some aspects of the world-line geometry
(e.g., exchange probabilities) while having a dramatic influence on others (e.g., su-
perfluidity).

-3.0

-4.0
0.0 0.5 1.0

T/t

Figure 2-5: Kinetic energy per particle as a
marks the Brinkman-Rice band edge for the
and U = 4t.

function of temperature. Dashed line
single-particle problem. (4 2) = 0.54D

Let us now examine the imaginary-time motion of the particles in more detail.
Ideal bosons are diffusive in imaginary time at all temperatures, i.e., the mean-squared
displacement of particle a is linear in imaginary time 7: R 2 (7) = ([Xa(T) - Xa (0)]2) =

4tT for 0 < 7 < 6/2. With repulsive interactions, there is an increase in the effective
mass of the particle, e.g., for U = 4t at quarter filling, we find t -+ t* = 0.95t. In the
presence of random magnetic flux, the imaginary-time diffusion is slowed down, and
the mean-squared displacement R2 (T) is no longer linear in T at all temperatures.
Fig. 2-6 shows our results for the (superfluid) zero-flux case at temperature ft = 9
and the case of strong random flux at ft = 4, 6, 9. Since we are working with periodic
boundary conditions, we have used the definition: R2() = ([fo/2 ca (T)dT]2). We can
see that, whereas R2 (T) has significant downward curvature at Pt = 2, it becomes
closer to diffusive behavior as the temperature is lowered. However, we are unable to
reach the asymptotic regime where the particle has traveled far on the scale of the
interparticle spacing over a time period of 3/2 (see Fig. 2-6 inset).
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Figure 2-6: Single-particle diffusion R2 (T) = ([X(T) - x(0)]2)
0 < 7 < 3/2. Solid lines: strong random flux with (42) =

Dashed line: zero flux at Pt = 9. Inset: R 2(f/2) for zero flux
(0); dashed line marks the squared interparticle spacing.

in imaginary time for
0.54D at t = 4, 6, 9.
(o) and ((D2) = 0.54I

In order to study the long-time behavior, we can examine the size of the world-
line exchange cycles. A cycle where the world lines of 1 particles {xl,..., xt} form a
loop can be roughly regarded as a particle traveling over a time interval of 10. Thus,
the possibility of exchange means that a world-line cycle can travel large distances
compared with an individual boson. In a system with periodic boundaries, the size
R1 of the cycle is defined by:

R 2= )3/2

2

(1-1)/2 0P
dr + 1 a dTr

= [ i :, d] r I even.

1 odd,

(2.24)

For ideal bosons, R2 should equal R2(r = 1/2) at inverse temperature 10, and
therefore should scale linearly with 1. Fig. 2-7 shows R for a 4x4 lattice with 9
particles. We have measured only cycles which do not have a net wrapping number
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around the periodic boundaries so that we do not have contributions from cycles with
different topologies. We see that R2 is linear in 1 for the cases of zero flux and strong
random flux, although the slope of the case with the strong random flux is reduced
substantially. This demonstrates that the imaginary-time motion of the bosons is
diffusive at long distances.

These results indicate that we are probing an unconventional phase of a Bose
liquid. Although the system remains normal, many aspects of the imaginary-time
motion of the particles in the degenerate regime resemble that of a neutral Bose
liquid which is a superfluid in such temperatures. In subsequent sections, we shall
study the physical properties of this "strange metal" and discuss the relevance to the
normal state of the cuprate superconductors.
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Figure 2-7: Cycle sizes R2 as a function of cycle length I for a 6x6 lattice with 9
particles.

2.5 Transport and Optical Conductivity

In this section, we will present our quantum Monte Carlo (QMC) results on lon-
gitudinal transport for this strange Bose metal. To obtain the conductivity of the
system, we measure its imaginary-time analogue oap(iw,) in our quantum Monte

I I I I I I 1



Carlo simulation:

ap (iw,) = 1] (i n)

I (iw) = j )d

(2.25)

(2.26)

where jq(r) = rjr(T)eiq -r and jr(T) = Ea 6(r - xa(r)) is the gauge-invariant
current (Fig. 2-8).
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Figure 2-8: Current correlation function II(iwn) for a 6x6 lattice with 9 bosons
with (42) = 0.54 and U = 4t.

The imaginary-time measurements are related to the real-time conductivity a(w)
aO (w) by:

00 jq () q((0))) dw
2L2 q=0 () -q=o(0)) = 0 1 - e-fu 7r

(2.27)

Deducing dynamical properties (such as conductivity) from imaginary-time data is
in general an ill-posed problem. Several approximate methods are often used in the
context of QMC studies. A simple method, which has been used in the study of the
superfluid-insulator transition[93, 94], is to fit a(iw,) to a simple functional form,
such as the Drude form a(iwn) = ao/(1 + IWnITtr). More generally, one can use a Padd

SPt--
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SPt-9



approximant to fit an arbitrary number of poles and zeroes:

ao + alz +...aN, zN "

a (z) = . (2.28)bo + blz + ... bNdzNd

This approach is particularly suitable if the scattering rate 1/Ttr (or the position of
the pole closest to the origin in (2.28)) is large compared to the temperature at low
temperatures. This is however not the case in our problem. In our system, IIz(iwn)
is nearly constant as a function of n for finite n even at low temperatures, suggesting
that 1/Ttr is proportional to T. (Note that Ix,,(n = 0) = 0 in the limit of strong
random flux because paths which wrap around the torus are strongly suppressed.)

We have calculated the conductivity by numerical analytic continuation using the
maximum-entropy (MaxEnt) method[95, 96]. Eq. (2.27) takes the form of a linear
integral equation:

d(T) = K(r, w)r(w) dw, (2.29)

where K(-, w) is the kernel relating the imaginary-time data d(T) to the response
function r(w). In our QMC simulations, d(T) is measured at discrete points T7 = lAT
with mean d1. The errors for the time points 1 and m are correlated with a covariance
matrix Cm = ((d, - d) (dm - dm)). The MaxEnt method finds an estimate of r(w)
as the function i(w) which maximizes the functional: ¢[i(w); a] = -X 2 /2 + aS. The
goodness of fit is X2 = Z1,m(DI - dt)[C- 1]im(Dm -d m) where D, = fdwK(T1 , w)?(w).
The "entropy" S is:

S = f dw [i(w) - m(w) - f(w) log ) (230)

where m(w) is a default model (or measure). We have chosen m(w) to be a constant
in order not to build in any bias. Our results are not sensitive to this choice. The
variable a controls the competition between the smoothness and the goodness of the
fit, and 0 is also maximized with respect to it[97]. Details of the MaxEnt method are
given in Refs.[95, 96, 97].

One can check the results of the MaxEnt inversion using relevant sum rules. In
the case of conductivity, we have used the sum rule

Sa(w) d w =  (231)

which is the lattice version of the more familiar form in the continuum: Jfo a(w)dw =
rnb/2m. In our MaxEnt results, this sum rule is obeyed to within 3% error. In
order to obtain reliable data for the MaxEnt inversion, we have worked with a fine
discretization in imaginary time (tAT < 0.1). For the lowest temperatures (T < 0.4t),
we worked at fixed AT and p/L 2. We chose P oc L2 to control the finite-size effects
because of the imaginary-time motion of the bosons is roughly diffusive, as discussed
above. Our results are in fact not very sensitive to this choice, indicating that finite-
size effects are small. For instance, the values of resistivity at ft = 4 and nb = 1/4



for 4 x 4 and 6 x 6 are similar within statistical error.
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Figure 2-9: Optical conductivity for 6x6 lattice with 9 bosons at Pt =9,6,4,2,1,0.5.

(4)2) = 0.54 2 and U = 4t.

We find that a(w) consists of a single Drude-like peak (Fig. 2-9). Since this peak
exhausts the sum rule (2.31), its spectral weight is proportional to -(K). This spec-
tral weight has a weak temperature dependence in this temperature range because, as
already discussed, the kinetic energy approaches -4t per particle as the temperature
is lowered. This should be contrasted with the Brinkman-Rice result [83] for non-
degenerate particles (T > t) where the weight under a(w) decreases as (-K) ~ T - 1.

The width of a(w) gives a transport scattering rate consistent with: 1/tr = (kBT
with ( = 1.8-2.2 (Fig. 2-10). This result has been obtained for two densities nb = 1/4
and 1/6 so that this scattering rate appears to be independent of density. Again this
differs from the Brinkman-Rice result where 1/Ttr is a constant of order t (as one
begins to see at the highest T in Fig. 2-10). The resistivity p, given by the peak
height, is consistent with a linear temperature dependence of pe2/h = (1/27rnb)T/t
for T < 2t (Fig. 2-11). We estimate a statistical error of 5% for p by examining
fluctuations due to statistical errors in the measurement of the current correlation
function. There are also systematic errors due to the smoothing of structures.

There appears to be a systematic deviation from the linear-T behavior below
T = 0.3t, in particular in the case of quarter filling. This deviation is stronger for p
than for 1/7tr. The difference can be attributed to the T-dependence of the Drude
weight discussed above which should affect the resistivity but not the relaxation
time. We speculate that the deviation from linearity at the lowest temperatures may
indicate the approach to zero-temperature critical behavior. This is beyond the scope
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of this paper.
Our resistivity agrees, to within a factor of 2, with Jakli6 and Prelovsek [98]

who provided an approximate diagonalization of the t-J model on 4x4 lattices and
found a Drude peak with width 2T. They also found a broad background, and
interpreted it with a frequency-dependent scattering rate r(w). Indeed, some authors
have interpreted the experimental optical conductivity as possessing a power-law tail
and emphasized its importance[46]. This incoherent part of the conductivity is absent
from our boson model, and may be due to inelastic scattering of the bosons with the
gauge field or, more generally, with the fermionic degrees of freedom.

2.6 Magnetic Response

We now discuss the response of this degenerate Bose liquid to a weak external mag-
netic field perpendicular to the plane. In the absence of the random magnetic fields, a
Bose liquid has a strong diamagnetic response as the temperature is lowered towards
the transition to a superfluid when it develops a Meissner response. We argue here
that the linear response of the system to a magnetic field is strongly suppressed by
the gauge fluctuations. Qualitatively, this can be again understood by examining the
world-line configurations. We have already demonstrated that the partition function
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Figure 2-11: Resistivity as a function of temperature. Solid(hollow) symbols corre-
spond to a boson density of nb=1/4(1/6). (D2) = 0.54 and U = 4t.

is dominated by world-line paths which are unaffected by the internal gauge fields
& f a - dxa = 0 for any a. These configurations are therefore also unaffected by
any external magnetic fields. Thus, we see that the system has a vanishing linear
response to magnetic fields in the limit of strong gauge fluctuations. For the sake of
completeness, we will now discuss more quantitatively the magnetic response of the
system. Relevant physical quantities are the diamagnetic susceptibility XB, the Hall
coefficient RH, and the magnetoresistance Ap/p.

Consider first the diamagnetic susceptibility. On the infinite plane, in the presence
of a weak external field H, each world-line configuration picks up an extra factor of
exp[-i E, Aext " dxo] = exp[-iHAo] where curlAext = H, and A, = ,r Wr is the
oriented area of the configuration. (In this section, we will use units where Do = 27r.)
Expanding this in a Taylor expansion, one can write the partition function Z(H) as:

Z(H) = fD{x} (1-iHAo- H2Ao) e-Sff

- Z(0) 1 - H2(A )). (2.32)

where Ao is the oriented area of a world-line configuration and (...) denotes an average
for the system at H = 0. We have assumed here that the external magnetic field H
has negligible effect on the spectrum of the gauge fluctuations. The diamagnetic



susceptibility is given by:

1 2 In Z 4 2T
X (Ao). (2.33)B = H 2  20

Since A > Ao by definition, we can see that, when the gauge fluctuations are strong
so that configurations with zero Amperean area dominate, the system has no diamag-
netic response, as suggested in Section IV B.

It should be noted that, with periodic boundary conditions, the total flux pene-
trating the torus is quantized in units of the flux quantum. One should use replace
(A ) by 4(sin2[HoAo/2])/Ho where Ho = o0/L 2 is the smallest uniform field allowed
in a torus of size L. Moreover, as in the case for the Amperean area, a geometrical
interpretation of the phase factor f Aext - dx is not possible for paths which wrap
around periodic boundaries. However, these wrapping configurations are strongly
suppressed in the case of strong random flux and should give negligible contribution
to the susceptibility.

We can also consider magnetotransport properties in terms of the conductivity
tensor 0 .H For instance, the Hall number is given by RH aHU/(Ha2 ). We need
the current-current correlator at a small external field: (j (T)j'P(0))H. Expanding
again in a Taylor series in H, one obtains the correlator:

(JaJ) (jj 3 ) - iH(jaj PAO) - H2 (jaj a) ...
(jP)H 1 2(2.34)1 - H 2 (A 2) +

From (2.26), we get

Uy (iwn)  27i 0
zyH j drewn(q=" o ()j= 0 (0)Ao),

Aa x (iwn) 272  f3 T
- [ drewnr x

H2  n 0o

[(J= o(r)j o(0)A ) - (j 0(i )j= 0 (0))(A 2)]. (2.35)

where Auxa = aH - uH=0 is the magnetoconductivity. Since the oriented area A, can
be written as A, = r f, f " (j, (-) x r) dT, we see that we can relate this expression
for the Hall conductivity aH to the more familiar one involving the average of three
currents[100].

Again, we see that the magnetotransport response is strongly suppressed by the
gauge fluctuations because it is sensitive to the oriented area of the world-line con-
figurations. In principle, the quantities Im uH() (from which we can obtain Re U
from a Kramers-Kronig relation) and Aaux (w) can be computed. However, these
quantities are too small to measure in the regime of strong gauge fluctuations that
we study.

Since we have argued that the gauge field fluctuations are indeed strong in the
cuprates at temperatures above the superconducting transition, it appears that our
simple boson model with a quasistatic gauge field cannot describe quantitatively the



magnetotransport in these materials. This result is however qualitatively consistent
with the experimental finding that these magnetotransport properties are generally
suppressed from the classical values. To obtain a quantitative prediction for these
properties, one may attempt to restore dynamics to the gauge fields. If the gauge
field may relax in time, then the boson world lines no longer have to obey the condition
of strictly retracing paths. This would allow the world lines to enclose a finite oriented
area and hence a finite response to external magnetic fields. However, we emphasize
that such an approach might not represent the physics completely. We believe that
our model illustrates the general point that the influence of an external field on the
system is strongly masked by the fluctuations of the internal magnetic field.

2.7 Density Correlation Function

2.7.1 phase separation

Non-interacting bosons are infinitely compressible. They would therefore collapse
into a small region of the system in the presence of any quenched disorder which has
a tail of localized states in the single-particle spectrum. An analogous collapse is also
found in this problem with annealed random flux. Such an instability was discussed
by Feigelman et al.[89] who have argued that it occurs also in the case of interacting
bosons at low densities, leading to a hole-rich phase and a hole-absent phase. They
further argued a long-range Coulomb repulsion would be necessary to stabilize the
uniform phase.

Within the world-line picture, one can visualize the instability of the homogeneous
phase in the limit of strong gauge fluctuations. The condition of retracing paths in
this limit encourages the bosons to come close to each other so that their paths may
retrace each other. This will allow individual boson paths to explore a larger area
(in imaginary time), and hence lower the kinetic energy of the system compared
to the case with each boson has to retrace its own path. In the absence of any
repulsive interactions, this effect would dominate at low temperatures, making the
homogeneous phase unstable to collapse.

We find that this instability towards the formation of dense aggregates indeed
occurs in our model in the absence of boson repulsion, although the instability is
prevented by on-site repulsion, at least for the moderate boson densities of interest
here. We have studied the instability by examining the compressibility of the system:

= lim 0-o i(q) with

,(q)= dr(nq(T)nq(O)), (2.36)
Nnb 0o

where nq(7) is the Fourier transform of the boson density at imaginary time T. Al-
ternatively, a = limq.+o0 S(q)/n 2 where S(q) is the static structure factor:

1
S(q) = -- (nq(r)n_q(r)) (2.37)

L2
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Figure 2-12: Static structure factor (inset) and the q-dependent compressibility as a
function of q in the (r,7r) direction for different values of U. Pt = 4, ((2) = 0.54,
nb = 0.25.

In Fig. 2-12, we show the behavior of S(q) and r(q) for different values of the
on-site repulsion U for a 10 x 10 lattice with 25 bosons. The structure factor S(q)
as a function of q is qualitatively different for the cases of small U and large U
(compared to t): S(q) for q = (5, 5) is greater than the density nb for when the on-
site interaction is small. We can also look at the compressibility. Since we work with
finite systems at fixed boson number, we will evaluate rc(q) at the smallest wavevector
of the system as an estimate of the q = 0 behavior. We see that, in the presence of
random magnetic flux, the compressibility increases with decreasing U. This can be
interpreted as a divergence as q -+ 0 for small U, and hence an instability of the
homogeneous phase. (This is also reflected in the magnitude of the fluctuations in
our QMC results for K(q) which grows as q -+ 0 for sufficiently small U.) However,
for strong on-site repulsion, the density correlations show no sign of an instability at
this density.

2.7.2 static structure factor

The density fluctuations in our boson model should be relevant to the charge fluctu-
ations in the full t-J model. It has been pointed out that the density excitations of
the t-J model does not resemble those of a conventional Fermi system. We will now
compare our results with numerical results on the full t-J model in the literature.



The static structure factor (2.37) has been calculated by various means[67, 101].
Fig. 2-13 shows the static structure factor for our boson system together with that of
the t-J model[67] at T = 0.25t. We see that our results are qualitatively similar to
the t-J model, with improving quantitative agreement as one approaches the hard-
core limit (see, for example, U = 16t). We should point out that this dependence
on U should not be as strong for the transport properties of the system, because the
particle currents are not directly affected by the repulsive density interactions.

It is also interesting to note that the magnitude of the gauge field fluctuations has
a relative weak effect on S(q) when the on-site repulsion U is strong. However, as
we shall see in the next section, the dynamics of the density excitations is strongly
modified by the interaction with the gauge fields.
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Figure 2-13: Static structure factor of the boson model at density nb = 0.2 along
the (ir,ir) direction at T = 0.25t. Asterisks: t-J model result[67] at electron density
n = 1 - nb = 0.8 and t/J = 2.

2.7.3 dynamic structure factor

We now look at the dynamic structure factor S(q, w):

S(q, w) = 1 Jdt eit(nq(t)nq(O))

SI I I I

*-* tJ model
22

-O U=4t, (2) =0
U=4t, (D2 )=0.502
U= 16t, (D2)=0

w- U=16t, (02)=0.50 o2

(2.38)



where nq(t) is the Fourier transform of the density in real time. The dynamic structure
factor is related to the imaginary-time density-density correlation function by

(2.39)
L2 (nq()q(0))-= (e-'e- -' ) S(q, w)dw.

Again, we use MaxEnt to perform the inversion of this integral equation. Two sum
rules can be used as a check of the MaxEnt procedure.

dw(1 - e-w)wS(q, w) =

dw S(q, w) =

LK) (2 - cos q, - cos q)t

12
n K(q)

2 n

These are lattice versions of the f-sum rule and the compressiblity sum rule. They
are satisfied within 1% error in our results.
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Figure 2-14: Dynamic structure factor of the superfluid phase (((D2) = 0) and the
normal phase ((4p2) = 0.5( 2 ) in the (ir, 7r) direction. U = 4t, T = t/6 at quarter-
filling.

Fig. 2-14 shows S(q, w) for our bosons with and without the random flux. The
system in the absence of random flux should be a superfluid at the temperature and
densities considered here, and therefore should possess well-defined phonon excita-
tions. We see sharp phonon peaks in the density excitation spectrum, for instance, at

(2.40)



wavevector q = (E, E). These long-lived phonon excitations of the superfluid phase
do not survive the coherence-breaking effect of the gauge-field interactions. We find
only break peaks in S(q, w) in the presence of strong random flux.

Another effect of the presence of the gauge field is a reduction in the bandwidth of
the density excitations. This might be expected because the gauge-field interaction
tends to increase the compressibility of the system. Indeed, we see that the center of
the (7r, ir) peak is pulled in from 7.6t to 6.8t.

We also see that the dynamic structure factor has a simple scaling with the hole
density (Fig. 2-15): S(q, w; nh) = nhSo(q, w) holds for nh = 0.1 r 0.3. This is natural
in a model of degenerate bosons where the boson density is equal to the hole density.
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Figure 2-15: Scaling of S(q, w) with boson density in the (7r, 'r) direction. The
solid(dashed) lines are S(q,w;nh)/nh for 9(6) bosons on a 6x6 lattice. ft = 6,
U = 4t, (c) = 0.5 0.

We will now compare our results with numerical results on the full t-J model[68,
69]. It should be noted that, although we expect the electron density excitations
of the t-J model to be dominated by its holon component, there is no quantitative
equivalence between the structure factors of the t-J model and our boson-only model.
Nevertheless, we argue that the dynamic structure factor of our model has qualitative
similarities with that of the t-J model. For instance, the absence of sharp peaks in
the dynamic structure factor is also found in the t-J model. An obvious similarity,
built into our boson model a priori, is the lack of any structure indicating scattering
across a Fermi surface at q = 2kF. Another feature is the scaling of dynamic structure
factor with the hole density [69].

We find that S(q, w) along the (7r, r) direction agrees well with an exact diago-
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Figure 2-16: Dynamic structure factor. Solid lines denote our Monte Carlo results
for 6x6 lattice with 9 bosons at Pt = 6 with t = 0.9to. (D2) = 0.502 and U = 4t.
Dashed lines denote exact diagonalization results[69] for 4 holes in an 18-site cluster
with to/J = 2.5.

nalization study of the t-J model at a similar hole density, as shown in Fig. 2-16.
(We have used a moderate rescaling of the hopping energy: t = 0.9to where to is
the hopping energy in the t-J model.) The area under q = (, 3) peak is larger
in our model than in the t-J model. We believe that, as in the case of the static
structure factor, this discrepancy can be improved with if we use a stronger on-site
repulsion. However, the structure factor does not agree with the t-J model along the
(r, 0) direction. It might be that the spectrum of the holes at zero temperature is
qualitatively different from the simple tight-binding spectrum that we have assumed
here.

2.8 Conclusion

In summary, we have studied a degenerate Bose system which remains metallic be-
low its degeneracy temperature due to elastic scattering with random and quasistatic
gauge fields. In the path-integral picture, the bosons retrace their paths in the limit of
strong gauge fluctuations in order to avoid the quantum frustration due to the fluctu-
ating gauge field. We have demonstrated that many features of these "Brinkman-Rice
bosons" indeed mimic the behavior of the full t-J model and the normal state of the
cuprate superconductors. These features include the linear-T dependence of the lon-



gitudinal scattering rate and a charge excitation spectrum which consists of broad
incoherent structures. This model itself has a strongly suppressed response to exter-
nal magnetic fields, hinting that the behavior of the system as measured in Hall and
magnetoresistance experiments have to understood in terms of a separate mechanism.

It would also be interesting to understand the behavior of the system in the zero-
temperature limit. Although the limit of infinite gauge fluctuations (i.e., a uniform
flux distribution on a lattice) would strictly forbid any world lines to wrap around
periodic boundaries, one may consider the case of weaker gauge fluctuations in the
zero-temperature limit and ask whether there is a critical value of (2) below which
the system is a superfluid at zero temperature. This will involve a study of the system
at very low temperatures near a quantum critical point. This is beyond the scope of
this paper.

This work was done in collaboration with D. K. K. Lee and P. A. Lee. We thank
Wolfgang von der Linden for sending us his MaxEnt code and for many helpful cor-
respondences. We also thank W. Putikka, R. Eder, and S. Maekawa for sending us
their data for comparison. We acknowledge helpful conversations with J.T. Chalker,
S.M. Girvin, D.H. Lee, E. Sorensen, X.-G. Wen, and S.C. Zhang.



Chapter 3

SPINONS AND MAGNETIC
PROPERTIES

[THEORY OF SPIN EXCITATIONS IN UNDOPED AND UNDERDOPED CUPRATES]

Now sing my muse, for 'tis a weighty cause.
Explain the Magnet, why it strongly draws,..

Lucetius Carus, De Rerum Natura,
as quoted in D.C. Mattis, The Theory of Magnetism I

3.1 Introductory Remarks

The essence of the physics of high T, cuprates boils down to the problem of how
to treat the dual nature of the electrons that form local moments in the insulating
compound, yet make up a Fermi surface when doped with - 15% holes. The problem
conjures up an old ghost and invokes new ones. Many have struggled with the old
ghost before, for example, in the localized-itinerant dichotomy of the f-electrons in
the heavy fermion problem or in the familiar ferromagnetic metals like Ni and Fe. The
present cuprate problem is simpler in the sense that a single electron in the unit cell
(i.e. the Cu site) is believed to account for the transport and magnetic properties (su-
perconductivity and antiferromagnetism), and there are no other electrons or orbitals
of importance (see chapter 1), yet some new ghosts must be lurking underneath.

Central to our understanding of the problem is the physics of "underdoped" re-
gion which lies between the antiferromagnetic insulator and the optimally doped
superconductor. How does the Fermi surface evolve from small hole pockets near
(±7r/2, +7r/2) in a slightly doped antiferromagnet to the full Fermi surface obeying
Luttinger's theorem in the optimally doped materials? What are the magnetic prop-
erties in this intermediate doping region? Experimentalists have already answered a



substantial part of these questions. In particular, the angle-resolved photoemission
spectroscopy (ARPES) has shown the existence in the normal state of a gap with the
same anisotropy as the d-wave gap of the superconducting state. Low-lying excita-
tions are observed along a patch near (±+r/2, ±7/2) ["Fermi surface segments"], but
the Fermi surface, in the veritable sense of the word, does not exist. The ARPES
results might have been accepted without much grudge simply as a plausible inter-
polation between the antiferromagnet and the optimally doped superconductor, had
our understanding of metals not been so entrenched in the Fermi liquid theory; the
notion of a metal without a Fermi surface is a serious embarrassment. At the same
time, gaplike suppression of spin excitations are seen in NMR: the Knight shift and
spin-lattice relaxation rates all decrease with decreasing temperature below certain
temperatures.

Gaplike features in the underdoped cuprates might remind us of the spin liquids-
the liquid of spin singlets. Yet the devil is in the details, and the underdoped cuprates
deviate significantly from generic spin liquids like spin 1/2 ladders and integer spin
chains. The latter, whose known examples are all nonmetals, are characterized by
a clear gap (a scale below which there is no spectral weight for spin excitations)
to the lowest (triplet) excitation that is inversely related to the correlation length;
this gap can be seen in inelastic neutron scattering. The magnetic responses like
uniform susceptibility and the NMR relaxation rate as a function of temperature
have activated behaviors. Many of them can be satisfactorily described in terms of
the "quantum disordered" phase of the nonlinear sigma model L = (-(,n)2,g >

g[102, 103] which can be also understood in terms of the CP N -1 model involving
bosonic "spinons" (z fields) - these spin 1/2 excitations are said to be confined, as
they do not appear in the basic physical spectra[104]. In other words, a description
in terms of fluctuating spin 1 objects is most natural for them.

On the other hand, in the underdoped cuprates, inelastic neutron scattering does
not show a clear gap like those of the generic spin liquids[105]. The decrease of
the Knight shift with temperature looks more like a power-law. On the whole, the
magnetic excitation spectrum of the cuprates seems to display a curious mixture of
singlet and antiferromagnetic correlations. There are evidences for antiferromagnetic
correlations from the Q-space scan of neutron scattering cross section, and from the
difference in the temperature dependence of the NMR relaxation rates : the Oxygen
1/TIT (which has little contribution from spin excitations near wave vector Q =
(7r, 7r)) monotonically decreases with decreasing temperature, while the Copper 1/T 1T
(which weighs (7r, r) spin excitation strongly) increases with decreasing temperature
until around 150K and then falls[106, 107].

The antiferromaget-singlet debate has enormous ramifications for the theories of
high Tc (for a succinct review, see Ref.[108]). Some theorists[109] have advocated
the picture of Fermi liquid quasiparticles exchanging "antiparamagnons" for under-
standing the anomalous normal state properties and the superconductive pairing.
Such a view (namely that the NMR is the isotope effect-equivalent for the cuprate
superconductors) is not shared here. Instead of viewing the antiferromagnetic fluctu-
ations as the cause of the superconductivity in a BCS-like scenario, in this chapter we



would rather regard the antiferromagnetic correlations as a residual but important
consequence of the local repulsive interactions that lead to superconductivity in the
presence of doped holes, a part of Nature's conspiracy to find a compromise between
a magnetic ground state and an itinerant metallic state. This line of thinking goes
back to Anderson's seminal 1987 paper[29] on the resonating valence bond (RVB)
theory, in which he reasoned that doped holes may propagate coherently in the liquid
of spin singlets.

Theoretical attempts to realize Anderson's RVB picture are based on strong cou-
pling models, such as the one band Hubbard model or the t-J model[47]. These
models are considered to contain some essential physics of the cuprates at appropri-
ate parameter values U/t or J/t. The t-J model, the simpler of the two, captures in
a transparent way what is believed to be the basic physics, namely the competition
between the magnetic exchange and the delocalization energy of holes. The no-double-
occupancy constraint in the t-J model can be taken care of by writing the electron
operator as a composite of a neutral fermion (spinon) and a spinless boson (holon)
[c, = fibi] and demanding each site be occupied by either a fermion or a boson
(E, f ,fi, + btbi = 1). The theory then contains four-particle interactions which can
be decoupled by introducing "mean fields" like Xij = (ft fj ), Aij = (fitfi - filfit),
and rij = (btb j ). Within the mean field approach, Kotliar and Liu[49] and Fukuyama
and coworkers[48] have studied the phase diagram of the t-J model. At low dop-
ing (and below some temperature scale), it was found that the phases in which the
fermions are paired into d-wave singlets (Ai,i+x = -Ai,i+, 0)are favored. Depend-
ing on whether the bosons are condensed, they could be superconducting (SC phase)
or normal ("d-wave RVB phase").

As noted by Rice[110] and others, the fermionic mean field theory captures some
important features of the spin gap phenomena in underdoped cuprates which refuse
clear-cut characterization in terms of a well-defined correlation length and relax-
ation times. The theory describes some kind of quantum spin liquid, but unlike the
generic spin liquids, there is a particle-hole (spinon-antispinon) continuum, which
would create some spectral weight for magnetic excitations at arbitrarily low energy.
More specifically, the Dirac spectrum of the fermionic quasiparticles in the d-wave
RVB phase gives the Knight shift K - T and the Oxygen site NMR relaxation rate
1/T1 - T3 , in rough agreement with experiments in underdoped cuprates. Moreover,
the absence of the gap in the charge response (for example, the in-plane optical con-
ductivity) could be explained simply, since the spin and charge degrees of freedom
are separated, i.e. the spin is carried by fermionic spinons while the charge is carried
by bosonic holons.

A Dirac-type spectrum as in the d-wave RVB phase was also found by Affieck and
Marston who considered the flux phase[111] as a possible spin liquid ground state of
the cuprates. It turned out that at half filling the d-wave phase with IAsjl = IXijl
is equivalent to the flux phase, due to a local SU(2) symmetry[112]. Wen and Lee
reasoned that this symmetry might still be a pretty good (and important) symmetry
at small dopings, and came up with a slave boson theory that respects the SU(2)
symmetry even away from half filling by introducing an SU(2) doublet of slave bosons,



hoping to get a better description of underdoped cuprates[113]. In this theory, the
mean field corresponding to the "spin gap" phase of the underdoped cuprates was
identified as the "sFlux phase" which can be considered a combination of the d-wave
RVB phase and the staggered Flux phase[114] of the U(1) theory. This phase also
has fermions with a Dirac spectrum, but in contrast to the d-wave RVB phase of the

U(1) mean field theory[ll115], the fluctuations around this mean field include a massless
gauge field which is expected to affect strongly the magnetic and transport properties
of the system[116]. With the inclusion of a residual attraction between bosons and
fermions, the sF phase was shown to reproduce the gross features of the ARPES, such
as the Fermi surface segments near (+7r/2, ±+r/2) and a large gap at (7r, 0).

Despite the successes, the mean field treatments (both the SU(2) theory and its
predessesors) are unsatisfactory in several respects. For example, it is not clear how
the spin gap phase is connected to the Noel ordered phase at zero doping. The mean
field ansatz loses a lot of antiferromagnetic correlation; within the mean field theory,
the Copper site 1/TIT has the same behavior as the Oxygen site 1/TT, in disagree-
ment with experiments. Attempts to fix the problem by some kind of RPA scheme to
enhance antiferromagnetic correlation do not seem to work naturally. Another serious
question is the role of gauge fluctuations around the mean field solution which had
not been studied carefully so far. In fact, a strong gauge fluctuation might destroy
the mean field picture altogether, in which case we have to re-identify the elementary
excitations of the theory[117].

In this chapter, we look into these questions. The basic point is that the gauge
fluctuations ignored at the mean field level strongly enhance antiferromagnetic cor-
relations. The gauge fluctuation could be so strong that the elementary excitations
of the mean field theory disappear completely from the low energy spectrum. This
is believed to be the case with the "flux phase" description of the undoped cuprates

(antiferromagnet), which is a theory of massless Dirac fermions coupled to a U(1)
gauge field (massless QED3). The QED3 can be treated in the 1/N perturbation
theory. For physical N(= 2), a dynamic mass generation and spontaneous symmetry
breaking corresponding to Noel ordering would occur[118], while for large enough N,
the theory would still describe some kind of a spin liquid. The true low energy excita-
tions of the symmetry-broken case are recognized as the Goldstone bosons-"mesons"
which are a bound state of a particle and an antiparticle (spinon & antispinon). In the
sFlux phase of the SU(2) theory for underdoped cuprates, again there are massless
Dirac fermions coupled to a U(1) gauge field, but it is argued that due to additional
coupling of the gauge field to the holons (bosons), the gauge fluctuations will not de-
stroy the validity of the mean field picture, but the picture of antiferromagnetic spin
excitations will be much improved. The coupling to the bosons would result in the
screening of the time component of the gauge field which will prevent the Neel or-
dering. The gauge field will nevertheless mediate an attraction between spinons and
antispinons and try to create a bound state with momentum - (7, 7r), but due to
the particle-hole continuum, this will appear only as a broad resonance. This can be
viewed as a Goldstone boson precursor mode that comes down in energy as the transi-
tion is approached (as the boson density is reduced). The recent neutron scattering in
underdoped cuprates which sees a broad peak in Q (7r, -) magnetic response whose



energy scale is roughly proportional to doping might be consistent with this point
of view[121]. We shall also discuss the issue of confinement, as there are lingering
questions about the fate of "spinons" in the case of strong coupling gauge theories.

In order to illustrate some aspects of the foregoing ideas more concretely (in
particular the gauge-fluctuation restoration of antiferromagnetic correlation and the
feasibility of the strong coupling gauge theories), we'll first reexamine the well known
spin half chain from the point of view of gauge theory - the Schwinger model.

3.2 Lessons from ld Spin Chain
I do not know that I shall have anything particularly new in substance, but shall

be contented if I can so choose my standpoint (as seems to me possible) as to get a
simpler view of the subject.

Josiah Willard Gibbs, Letter to John William Strutt (Lord Rayleigh), 1892

At first, the prospect of describing the id quantum antiferromagnet in terms
of massless quantum electrodynamics might seem dubious. After all, the original
1+1D massless QED of Schwinger is often discussed in particle physics as a model
theory exhibiting quark confinement and chiral symmetry breaking[122] whose spin
chain analogues are not obvious. Nonetheless, it has been known using conformal
field theories (bosonization) that certain strong coupling gauge theories with massless
Dirac fermions describe the id antiferromagnet[123, 124]. Here, we take a more
pedestrian point of view. More specifically, we shall see that treating the effects
of gauge fluctuations in 1/N perturbation theory systematically improves the mean
field result, i.e. enhances the antiferromagnetic correlation. Although the ld case is
special in several important ways, some features of the perturbation theory may be
viewed to persist, albeit in a less spectacular form, into the 2d case.

3.2.1 RVB theory of id spin chain

The Heisenberg model (H = J E<ij, Si -Sj) in the fermion representation of the spin
can be written

H = 2 f- fififjfp (3.1)
<ij>

with the constraint E, fftfi,t = 1. The 4-fermion interactions and the constraint
can be handled by the introduction of a Hubbard-Stratonovich field and a Lagrange
multiplier, which gives

H -J/2 , (ijft fc, + h.c.) + i ififii - 1). (3.2)
<ij> i



Within the mean field theory, Xij = X, A = 0, hence the mean field hamitonian in the
k-space is

Hm = -XJEcos(k)fkf ak (3.3)
k

= -XJ cos(k)(f k fak ,k-rak-r) (3.4)

= -XJE'k cos(k)(f!ekfaok + faokfak). (3.5)

Here E'k denotes sum over the magnetic BZ, say 0 < k < 7r, and f, f, ok are even
and odd site operators (fek = (fk + fk-7), fok = (fk - fk-)). This hamiltonian

has the same form as that of spin 1/2 XY model in ld written in terms of different
fermions (Jordan Wigner fermions).

Linearizing around k = ir/2 + k', we arrive at the continuum hamiltonian

H = -f dk'O (k') ak'10 (k') , (3.6)

where c = fe and o = ) is a Pauli matrix. This is just the hamil-
fao 1 0

tonian of free Dirac fermions (we have set the velocity of the fermions =1). The
corresponding (Euclidean space) lagrangian is

L = 9 00, , , (3.7)

where 4 = ?yo, and p = 0, 1, and the 7 matrices are

70 = a3, 71 = -a2. (3.8)

In 1+1D, we define y5 matrix as 75 = -i7071 = al, which has the property

{'75, 7,} = 0, ETv, = iyys. (3.9)

Including the fluctuations around the mean field (the fluctuations of Ai and the
phase of Xij) amounts to coupling the fermions to a U(1) gauge field by the minimal
prescription. Hence the continuum version of {the mean field + fluctuations} is the
two flavor Schwinger model

L = V7 1,(ad - ia,)4a. (3.10)

The apparent gauge coupling (bare coupling) is infinitely strong, as there is no kinetic
term for the gauge field.

Above lagrangian is obviously invariant under the global SU(2) transform (spin
rotation symmetry)

-+ (exp(iott)),apP (3.11)

where T1, 1 = 1, 2, 3 are Pauli matrices (belonging to a space different from that of



tj). The lagrangian is also invariant under the "chiral transformation"

Va) -+ exp(iOy, 5)a.. (3.12)

This "chiral symmetry" is explicitly broken by higher derivative terms ignored in
taking the continuum limit, like

L' = O757y(0u - ia,)2V.. (3.13)

We now consider spin correlation functions at the mean field level (i.e. ignoring
gauge fields). The spin operators in the continuum has two contributions (uniform &
staggered):

S'(x,) [fe (X)a f3e(X1) + fa.(x)" f,3o(xi)22

+ (1)x'1[fee(Xl)i) fpe(Xl) -
2f
2

= (xl)-0- P (Xl) + (-1)lYa (x) P (xi)2 2
(3.14)

To evaluate the spin correlation function

= (V~o'ir(x)YoT -r(0)) + (-1) + ()7-'(0))
= (017002(O)270o1 (0)) + (-1)21 (012(x)02 1 (0))

(T7 = (T 1 + iT2)/2), we need the fermion Green's function

Gp(x) = (,(x)i(0)) = G(x)6 (3.15)

which can be obtained from the momentum space Green function G(k) = -iky/k 2

G(x) = ,
axA

I d 2 k e-ik.x _

(21r) 2 k2 27rx 2

Here and from now on, unless otherwise specified, we use the usual field theory no-
tation: k = (ko, kl),x = (x0o, x) [italics denote space time vectors]; xz - x ,;

2 = + x2, etc. Using Wick's theorem, we have

(S+(X)S-(O)) = -tr, [G(x)yoG(-x)yor - ] - (-1)x'tr.,,[G(x)T+G(-x)r- ]

1 22 22 0 ______
27r2 L(X2 + X2)

1 1 1
4~2 + T2472 2

+ (_1)X, 2

XX+]

(x± = xo ± izl; tr 7 , denotes trace over both the y and T spaces (spinor and spin

(3.16)

(3.17)

(S+(z)S-(0))



spaces), which does (and should) equal the (S,(x)S(O)) correlation function in the
XY model[125, 126]. The equal time correlation function (S(xi) - S(O)) behaves as

3
(S(x) S()) 47r2 ((- - 1) (3.18)

(the spins on the same sublattice are not correlated at all, while the correlation
among spins on different sublattices are decaying algebraically as 1/x2). This peculiar
behavior (that nevertheless agrees with Arovas and Auerbach's lattice version of the
mean field theory[127], as well as Bulaevskii's Hartree-Fock treatment of the Jordon-
Wigner fermionized Heisenberg model[128]) is viewed as a pathology of the mean field
theory: we have lost a substantial amount of antiferromagnetic correlation.

3.2.2 Schwinger model

We now consider the effect of gauge fluctuations. It is natural to expect that the
inclusion of gauge fluctuations will improve the mean field picture. The time com-
ponent of the gauge field can be regarded to originate from the Lagrange multiplier
field (for no-double-occupancy); this corresponds to Gutzwiller-projected (half filled
tight binding) Fermi surface, which is known to be a pretty good description of ld
antiferromagnet[129, 130]. Haldane has implemented similar ideas by the bosonization
method and shown that the correct correlation functions are easily reproduced[131].

As mentioned earlier, our theory with fluctuations is a Schwinger model[132]. For
reasons that will become clear shortly, we consider a slightly more general case of
N-flavors:

Z = fDDbDaexp(-S),

S = Jd2x ap ~u ,( - ia) + -4e2F (e2 = Oc). (3.19)

The physical case is N = 2; general (even) N corresponds to an SU(N) antiferromag-
net.

Integrating out the fermions gives

Z = Da, exp(N Tr ln(1 - iga,)) (3.20)

where G(x, x') = (y,&,)-16(x - x'), and Tr denotes traces over the spinor space and
the position space (Tr=trf d2xd2x'...). The logarithm can be expanded, giving

Z = Da, exp (-f J d2 d22x'a,(x)I,(x - x')a,(x')), (3.21)

where H,(x) = -Ntr[G(x)y,G(-x)y,]. Note that the beyond-Gaussian terms (like
F,p6a,,aapa6) are all zero; the proof can be found, for example, in Refs.[133, 134].

The polarization function I,(q) (in the momentum space) contains a divergence



that has to be regulated using gauge invariant schemes, like the dimensional regular-
ization or the Pauli-Villars regularization. Relegating the details to Appendix A.2,
we have

,ri,,(k) = Nc, - kk) , (3.22)

which means that the gauge boson acquires an infinite mass (= e N/7). The
transversality of Eq.3.22 guarantees the conservation of the current j, = 7,0:

qj(q) = q,(inr,,(q)a,(q)) = 0 -+ oj, = 0. (3.23)

On the other hand the current j, (= ia7p5a, = -,,j,) associated with the chiral
symmetry (Eq.3.12) is not conserved:

iN iN
qj5p, = -q%,EillpaP = ~ Epqa, - 10js, = I--E C,,F,. (3.24)

7r 27r

This result, the so-called axial anomaly, can be regarded as either a consequence of
or a condition for gauge invariance.

The exact spin correlation functions can be evaluated with the use of "chiral
rotation" [135, 136, 137, 138]. In this approach, the gauge field is written as the sum
of a div-free part and a curl-free part:

a, = i,,t,0a + 1,¢9 b. (3.25)

The transform
a --+ = exp(-iy5 4a - i$b)~a (3.26)

decouples the gauge field from the 0' fermions, but the chiral part (0a) does not leave
the Grassmann measure invariant. The jacobian J for the change of measure

DVDO = j2DO'D ' (3.27)

can be found straightforwardly by Fujikawa's technique[136]:

= exp (i N d2 aXqaF,) = exp (NI f d2x(Oa.o)2) . (3.28)

The same result can be obtained in a simple manner using the axial anomaly condition
(Eq.3.24)[137] or by other methods[138]. In terms of the new fields, the functional
integral is

Z f D 'DO'DaDb exp - J d2X - N(aG Oa )2. (3.29)

These are "free" fields, but note that the ka-field has an indefinite (negative) metric!
Now, the spin correlation function

(S(x) S(0)) = ('170'Yo 2 (x)4 2 7 Ol 1 (0)) + (-1)xl (l 2 (x) 2 1 (0)) (3.30)



can be evaluated easily:

(01702 (X)'27YO1i (0)) = (4Y o ' (x) 'Y(o2 (0))

1 2 -0 2

27r2 (X2 +X2) 2 '

1 11 () e( - 2((151x)-#a(0))
1 ( ia(x)e 2i~a(o)) 10))2)27r2 X 2 \- 27r22 e

C 1 ln(X2) _ C
= CeN ( X 2) C (3.31)

where we have used

2rf d2k 1 i. 1 1 ln(22) (3.32)
((Oa(x) - Oa(0)) 2> = 27 (2 d 2 k2 (eik-2N n( 2 2 ), (3.32)

(A is a UV cutoff originating from the lattice theory, and C is a nonuniversal constant
that depends on high energy details A). In the physical case (N = 2), we then have

1
(S(x) -S(0)) (-1)X1 (3.33)

which agrees with the more accurate result[139] up to a ln 1/2(x2) factor. The log
factor, not captured by the Schwinger model, must be due to terms ignored in our
derivation from the lattice theory, e.g., the amplitude fluctuation of the RVB field; this
is analogous to the bosonization theory of Heisenberg model, in which the Umklapp
processes give rise to logarithms[140]. Sachdev[141] and others have used the corre-
lation function of Eq.3.33, and shown that it captures the low energy (temperature)
properties of the Heisenberg spin chains quite well.

Before moving on to the perturbative treatment of the same theory, we note that
we have concentrated on correlation functions, rather than elementary excitations. It
is well known that the basic elementary excitations (the true spinons) in the Heisen-
berg spin chain are solitonic objects with spin a half[142]. It is tempting to identify
them with our O' fields: they carry spin 1/2, and the relation between 4' and 4 fields
(0' = exp(-i5 a-iqb)) is reminiscent of the expression for spinons (Jordan Wigner
fermions) of the XY model (fi = eikiS,-, qi = ir E-1 S+ S - ) . However, because 0, is
a field with a negative norm, such identification is rather premature, and it is perhaps
necessary to bosonize the theory to pin down the real elementary excitations.

3.2.3 perturbation theory

We now examine the physics in terms of the perturbation theory in 1/N. This
can be regarded as an implementation of the program suggested by Arovas and
Auerbach[127]. The key point is that the nature of the perturbative correction to
the mean field results is very different for the uniform part and the antiferromagnetic



a) b) c)
Figure 3-1: Leading 1/N correction to uniform spin correlation.

a) b) c)

Figure 3-2: Leading 1/N correction to staggered spin correlation.

(staggered) part of the spin correlation: While Q = 7r response is strongly affected by
perturbative correction, the Q = 0 response receives no correction at all (no correction
is a special feature of the id).

The leading 1/N correction to the spin correlation functions can be straightfor-
wardly evaluated. They are represented by the Feynman diagrams in Fig.3-1 and
Fig.3-2. Within the usual Faddeev-Popov scheme of gauge fixing (the introduction
of the 1A( . a) 2 term to the lagrangian), the gauge propagator (represented by the
wiggly line) is given by

7rq qq,
DJL, = (a, a,,) = - - q I + A (3.34)

We choose the Landau gauge (A = 0) which is a natural choice, since in this gauge no
infrared divergence occurs in the perturbation theory[143]. The fermion propagator
G(p) = (ipy)- 1 is represented by a solid line. The fermion-gauge vertex is simply iy, ;
the external current vertex is yo for the uniform part (represented by a square) and
1 for the staggered part (represented by a circle). Of course a trace is taken over the
fermion loops.

In 1+1D, the transverse projector has a special property

6,, - qq,/q2 = EpEfV,6qpqj/q 2  (3.35)

which, together with the "Ward identity"

G(p + q)qyG(p) = i(G(p) - G(p + q)), (3.36)



simplifies the algebra substantially (Note 7yeppp = -iP7y5). For example, the dia-
gram 3.lb is

f  d2p d2q1 tr[G(p + q)q'y7s 5G(p + q + q')7yoG(p + q')q'7s5 G(p)yo]/q'2

r ( d7)2 d2q

- 2 )2 tr[(G(p + q) - G(p + q + q'))7o(G(p + q') - G(p))yo]/q 2.
N (2w)2 (27r)2

(3.37)

It's straightforward to show that sum of the diagrams 3.la+3.1c is the same as
Eq.3.37, except for a minus sign. Therefore in the uniform channel, the vertex cor-
rection and the self energy correction cancel. Similar cancellation is expected at all
orders of perturbation theory; the nonrenormalization of uniform part of the spin
correlation function is quite natural, since in our theory

('0170y 2 27 0b1) OC (jojo)= I00, (3.38)

and Eq.3.21 is an exact result.
On the other hand, the diagrams in the staggered channel do not cancel. The sum

of the diagrams 3.2a and 3.2c are equal to 3.2b, which is given by

r I d2p d2 q'
S(2) 2 (2)2 tr[(G(p + q) - G(p + q + q'))1(G(p + q') - G(p))1]/q'2

2x d2p  d2 q
_I 2 tr[G(p + q')G(p + q) - G(p+q)G(p))]/q'2. (3.39)
N (27)2 (2r)2

(3.40)

Therefore, in the coordinate space, the 1/N correction is

4J f d2q 1 - 1
tr[G(x)G(-z)]d - (e q2  - 1) = ln(x2). (3.41)

N (27)2 q2 27r2Nx2

Similar (but a lot more tedious) calculation would show that 1/N 2 correction is given
by 2 (ln(x 2 )). In other words, the perturbation series exponentiates:

1 1 1=X1 + )21n2 (x 2 ) + ... ) oc (x2)I_/N
(01V)2(X)V)'2) (1 + (1/N)ln(x2 )+ (11N 2

X2222 2 (2)1-1/N '

(3.42)
giving the same result obtained from the chiral rotation approach.

3.3 2d Undoped Cuprates

The success of 1+1D gauge theory with Dirac fermions in describing the Heisenberg
spin chain tempts us that a similar theory of massless Dirac fermions strongly coupled
to a U(1) gauge field might describe a 2d quantum antiferromagnet. In fact, it is



known from lattice gauge theories[144] that this is indeed so. SU(2) gauge theories
with massless Dirac fermions may also describe the quantum antiferromagnet[1 12,
145], but we shall not consider this possibility because of the greater complexity of
the nonabelian gauge theories.

3.3.1 Dirac fermons and the 2d Heisenberg antiferromagnet

A 2+1D theory of Dirac fermions

L = Oaa 0 7 , (3.43)

(p=0,1,2) contains fermions whose density of states that behaves as I lIe (in a general
D = d + 1 dimensions, the density of states will be - IEld-1). In condensed matter
context, the paramagnetism of such fermions will result in the uniform susceptibility
behaving as T d - 1 . This seems to have little in common with the 2d antiferromagnet,
but we shall see that a gauge field coupled to fermions can produce the correspondence
with the physics of 2d antiferromagnet. Such a picture can be motivated from the
flux phase mean field ansatz of the Heisenberg hamiltonian. The ansatz is so named
since the phase of the product of the mean field parameter Xij around each plaquette
(Imln(X12X23X34X41)) is 7r. Despite the "flux," the mean field does not break the
parity and time reversal symmetry since the flux of ir is equal to -7r. This phase
has a lower energy than the BZA phase (with a large Fermi surface); it also has the
fermion spectrum

e(k) = v cos2 (k ) + cos2 (ky) (3.44)

that roughly captures the high energy features of the undoped cuprates and the
dispersion of a single hole in the antiferromagnet[146, 147]. The low energy fermionic
excitations of the flux phase reside near two "Fermi points", kl,2 = (ir/2, ±r/2).
Linearizing around these points gives the continuum theory[148]

L = aadpYja, (3.45)

where = faloe a2 a2o , (a = 1, 2 labels the two Fermi points;
wflo0  fa2e

e,o denote even and odd sites.) Organizing the Oal, Oa2 fields into a single spinor

Oa Oa , we have a theory described by the lagrangian of Eq.3.43, with 4 x 4

'y-matrices:

70o U3 0 71 U2 0 72 = 0 (3.46)0 -U3 0 -U2 0 -a,

Similarly to the ld case, the uniform spin S'o is given by YoT-p$, while the
staggered spin S1 is given by -Op0 . The spin correlation function

(S(x) - S-(O)) = (b) 1 Yo0V2 (X)0 2 "-0Y'i1 (0)) + (-1)x 1x2 (+10 2 (x)O 2 02l1 (0)) (3.47)



can be evaluated easily at the mean field level using the Green's function

GaP(x) = 60PG(x) = 63f- = 6
04( wx)3/27r3q2 4r(x2)a/2

(3.48)

(as in 1+1D, the italics like x, q denote space-time vectors, and q2 = q + q2,x 2

zx + X2.) We have,

= -tr[G(x)yoG(-x)yo] - (-1)xl+X2tr[G(x)G(-x)]

X2 X2  +X1]= 4r 2 + (-1)X+2 4 . (3.49)

The equal time correlation function is then

(S+ (0, x)S- (0, 0)) = (-1)(xl+x2) - 1
47r2 x 4

The mean field spin correlation function falls off as 1/x 4, and again as in
on the same sublattice are not correlated.

To go beyond the mean field level, gauge fluctuation is included by
coupling scheme, leading to the following theory:

Z = f DbDbDa, exp (-

(3.50)

id, the spins

the minimal

(3.51)

where N is a general number (in the physical case, N = 2). The absence of the F1 2
term means the bare coupling is infinite, but the theory is still sensible: the infrared
behavior of the theory is well-behaved (within 1/N expansion, as we shall see), and the
original lattice theory sets a ultraviolet cutoff. (Ultraviolet divergence can be also reg-
ulated by the the kinetic term 4F with e2 <oo.) As in 1+1D, the lagrangian con-
tains more symmetries than the Heisenberg model. For example the theory is invariant

under the transform 0a, -+ exp(iy4,50) a (where y4 = 1 0 ')5 = ( 1 0 )

Again, these symmetries are broken by higher order terms which have been ignored.

3.3.2 content of the gauge theory

We now explore the physical content of the theory with massless Dirac fermions.
Integrating out the fermions generates the dynamics for the gauge field (see Appendix
A.2 for details)

Z = Daexp (

II, = (6 - q2qi/N /
H.V 8 Vq2 (J,, - qpqv

(2qr) )d3q3-- ap(q) Iv.q)a,(q)

(3.52)

(S+()S-(O))
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Figure 3-3: Leading 1/N correction to vacuum poloarization. The diagrams d) and
e) are zero due to Furry's theorem.

The form of I,, indicates that, unlike the 1+1D case, the gauge field is massless,
though the infrared behavior is not as singular as the free gauge field (i.e., L = F 2).
The effect of the fermion-gauge field interaction can be analyzed perturbatively in
1/N. The natural choice for the gauge fixing is the landau gauge

D,(q) = NF (j - . (3.53)

The fermion self-energy at the leading order in 1/N is given by

(k)=if = d3q (k + q)y7 iyn A2S(27) 3 (k + q) 2 7lDs(q) iky In . (3.54)

This log divergence does not occur in the 1/N correction to the polarization func-
tion represented by the diagrams in Fig.3-3. These diagrams have been calculated
explicitly in a different context by Chen, Fisher, and Wu[149]. They found that the
logarithmic divergences in the self energy correction (Figs.3-3 a+c) are cancelled by
the vertex correction (Fig.3-3 b); the diagrams sum to

1/N~ =3 2 qjqvIV 4r(q)= 2  (6w q (3.55)

which is of the same form as the zeroth order result (Eq.3.52) but down by some fac-
tor involving 1/N. Thus, although we do not have a complete cancellation (like Id),
the gauge field is essentially unrenormalized, except for a some modification of the
effective coupling constant (1/N - 1/N' e 1/N). In other words, Z 3 (charge renor-
malization) - 1. Weak correction to the gauge propagator (despite strong self energy
correction) was seen in several other contexts, including the half-filled Landau level
(fermion Chern-Simons theory)[150], bosonic Chern Simons theories[151, 152], and
the uRVB gauge theory[52]. This robustness is due to the fact that II,, is the corre-



lation function of conserved currents[152], and conserved currents have no anomalous
dimensions (as a consequence of the Ward identiy)[153, 154]. The foregoing argument
provides some optimism for perturbation theory in 1/N.

Because the uniform spin correlation HI,(x) = (4 1 70'0 2 (x) 2o1 (0)) . Ioo(x), it

wouldn't be renormalized significantly. On the other hand, the staggered part I,(x)
of the spin correlation function does not involve conserved currents, and is expected
to be strongly affected by gauge fluctuations. This difference can be more or less
seen in perturbation theory. The diagramatic representation of IIH is the same as in
the 1+1D case (Fig.3-1). The external vertices in this case are a fermion-gauge field
vertex (yo). Using the Ward identity

S E() = ir(p,p), (3.56)
apt

we can see that the 2 overlapping divergences of Fig.3-1b are cancelled by self-energy
bubbles of Fig.3-la+c. For II, the external vertices are 1 (unit matrix in the spinor
space). In that case, the cancellation does not occur, and divergences develop in In,.

The question is, what would be ultimately the behavior of HII? Would II,(x) be
characterized by simple power law correlations like II,(x) - 1/(x2) a , (a < 2) like the
1D case? This might be a realization of Anderson's 2d Luttinger liquid scenario[46],
but we feel that a priori there is no reason to expect so; after all, 1+1D is rather
special, with all sort of fascinating features like the conformal invariance[125, 126]
and Coleman's theorem[155] which prohibits spontaneous symmetry breaking. More
plausibly, we would expect a symmetry-broken phase (Neel order) or a symmetric
phase with a more complicated magnetic correlations.

3.3.3 spontaneous symmetry breaking

The previous section has identified a possible antiferromagnetic instability, which
corresponds to the staggered magnetization ( T41) acquiring a definite orientation
- an SU(2) symmetry breaking. We now examine this possibility more closely. In
the symmetry-broken case, the fermions acquire a mass (dynamic mass generation).
Without loss of generality, we assume that the rotation symmetry is broken in the
z-direction. Then the fermion Green's function G(k) becomes 1/(iky+m(p)T3). Note
that G is a matrix Green's function in both the spinor space and the spin space. The
"mass" m(p) is related to the sublattice magnetization M by

M3 tr,,[G(q)3]. (3.57)

Self-consistent equation for m(p) can be obtained from the Schwinger-Dyson equation.
Expressed in terms of matrix (both in T and y space) Green's function and (matrix)
self energy (pictorially represented by Fig.3-4a), the S-D equation is

d3 q -
E(k) = -m(k)r = f-(2 ), (k, q)G(k - q)y,,D,,(q) (3.58)



a) b)

Figure 3-4: Schematic representation of the Schwinger-Dyson equation. In part a)
the solid line with shaded blob is the self-consistent Green's function of the fermions
G, the thick wiggly line is the dressed gauge field (which incorporates the changes in
the vacuum polarization due to changes in fermion Green's function), and the shaded
triangle is the dressed vertex. Part b) is a representation of the contribution to the
self energy.

where fl, D, are fully renormalized vertex and gauge propagator. Within the ap-
proximation of replacing F, by y, and !D, by D,,, we have

m(p) = d3 k  m(k ) D, (p - k). (3.59)
( (27) 3 k2 + M2 (k)

Still this is a nonperturbative theory; it is easy to check that a finite order perturbation
theory cannot generate a mass term in the fermion Green's function. Diagrams that
contribute are shown in Fig.3-4b.

The context in which the self-consistent equation arises is similar to the SDW
problem[156] and the superconductivity[157]. However, in our case, the mass m(p)
is dependent upon 3-momentum. Eq.3.59 has been already analyzed by Appelquist
and coworkers in a different context ("chiral symmetry" breaking) [158]. Some of the
steps are sketched here:

From the result
( q6 qq qq

7tL, , - 2  = L qq= 3 - 1 = 2  (3.60)
q2 q2

we have, after some angular integrals,

m(p) = A km(k) (k +p - Ik - p). (3.61)N)= r2p o k2 + m 2(k)

Note that the lattice origin of our theory sets the UV cutoff scale A, while in the theory
of Appelquist et al. which retains the kinetic term - -F ,, the coupling constant e2

sets the scale (QED3 is a superrenormalizable theory). The integral equation (3.61)
is equivalent to the differential equation

d (2 dm(p) 8 p2m(p)

dp dp 7r2N p2 + m 2(p) (3.62)



with boundary conditions
Am'(A) + m(A) = 0 (3.63)

and
0 < m(0) < oo. (3.64)

It turns out that this nonlinear differential equation has a nontrivial solution only for
N < Nc = 32/7r2. For the physical case of SU(2) antiferromagnet, N equals 2; there-
fore, the dynamical mass generation occurs, and the Neel-vector rotation symmetry
is spontaneously broken. Thus, provided that we include the gauge fluctuations, we
have a Neel order.

The foregoing argument, however, should be taken with a grain of salt. In prin-
ciple, the gauge propagator that enters Schwinger Dyson equation must be a fully
dressed one, and so should be the vertex. In the symmetry-broken phase, the gauge
propagator is different from the symmetric phase, as the polarization function I,,
is different. At the crudest level, if we assume that the fermions acquire a constant
mass of m, then the polarization function would be (See Appendix A.2).

I,,v (q) e 1 2 q2 ) , (3.65)

which means that a kinetic term - IF is generated. This results in the Coulomb
potential for the fermions which in 2+1D is

V(x) = -m d2qez2

= mln(txl/R), (R 1/m). (3.66)

Since the potential increases at large distances, it is a confining potential (Sec. 3.5),
and a different physical picture for the fermions might be expected in that case.

Arguments can be made that these considerations do not affect seriously the con-
clusion as far as the issue of determining whether dynamical mass generation occurs
and (in the case of occurrence) the value of Nc [159]. (The point is that very near Nc,
the polarization of the fermions in the symmetry-broken state must be pretty close
to that of the massless fermions. On the other hand, above treatment is too crude
to study the behaviors of quantities like m(p). Lattice gauge theory simulation[160]
does find that the symmetry breaking occurs, and N, . 3.5, which is close to above
analytical results.

Having "seen" the symmetry breaking, we can identify the elementary excitations
- the Goldstone bosons. We all know that the Goldstone bosons in an ordered
antiferromagnet are spin waves. In the fermion picture, the Goldstone bosons are
a collective mode, and appear as a pole in the two-particle Green's function, the
scattering amplitude in the appropriate channel, and in the related vertex[161]. Here
we show this by considering the SU(2) vertex. The Bethe-Salpeter equation for the



Figure 3-5: Bethe-Salpeter equation for the isovector vertex in the Q = (7r, 7r) channel.
The fermion lines willed a shaded blob represent the renormalized (self-consistent)
Green's function.

vertex is given by

A(p; q) = 1 T1t - (2) 7,G(k)A(k; q)G(k + q)yDt,,(p - k), (3.67)

which is represented by the ladder diagrams of Fig.3-5 (In Eq.3.67, the 1 in the first
term on the RHS is the unit matrix in the spinor space.)

If there is a Goldstone boson, then A'(p; q) has a pole at q2 = 0, in which case the
homogeneous equation

d3k
A(p; 0) = - (2 3 -7, G (k) A(k; 0)G(k)7 ,D,, (p - k) (3.68)

has a nontrivial solution. It is easy to see that

At(p; 0) = [m(p)r3 , T7] (3.69)

with m(p) given by Eq.3.59 is the solution. Therefore, if there is a dynamical mass
generation (m(p) : 0), then we have two Goldstone bosons (SU(2) symmetry break-
ing): T = 7TI, 72 (or 7 , 7-) in Eq.3.69 gives a nonvanishing commutator. The Lorentz
invariance restricts the mesons to have a linear dispersion q2 = q2 (Minkowski space),
which is indeed the case with antiferromagnetic spin waves.

3.4 2d Underdoped Cuprates

3.4.1 antiferromagnetic correlations

The foregoing was one horrible way of looking at 2d quantum antiferromagnet, yet
(hopefully) not without certain value. The qualitative idea that a strong attraction
between spinons and antispinons via gauge field can result in the formation of a vector
condensate with Q= (r, 7r) (the antiferromagnetic channel) [164] may shed some lights
on the underdoped cuprates. In the underdoped cuprates, an effective theory based
on the sFlux ansatz of the SU(2) mean field theory[165, 113, 116] consists of 2 flavors
of massless Dirac fermions and a U(1) gauge field just like above, but now the gauge



a) b) c)

Figure 3-6: Ladder diagrams. a) Our case: staggered spin correlation. The wiggly
lines are interactions mediated by the gauge field. Structurally similar examples: b)
ferromagnetic spin correlation. The dotted lines are short-range repulsive interac-
tions. c) superconducting correlation. The dotted lines are some kind of attractive
interaction causing pairing.

field is also coupled to the bosons (holons). In other words, schematically,

L = 7, (a, - ia,,)*, - iaJ B + LB. (3.70)

This additional coupling to the bosons will weaken the gauge field in the sense that
it will screen the time component of the gauge field. In the simplest approximation,
we ignore this massive part:

D -(q) = 6i 6 2 - (3.71)

and examine the self-consistent equation for m(p) (Eq.3.59). Since

YVDq,, = yz i i) = 2- 1 = 1 (3.72)
q2

(the gauge field in 2d has one transverse mode and one longitudinal mode the latter
of which becomes massive), we have

m(p) =A dk k (k) k +p - k - pl). (3.73)m(p) = N,2. d k2 + m2(k)

This is identical to the Eq.3.59, except for a factor of 2 difference in the prefactor.
Thus, we know immediately that there will be a symmetry breaking for N < N' =
Nc/2 = 16/7 2 . Now, for the physical case of N = 2 > N', the spontaneous symmetry
breaking would not occur!-This is what was hoped for our mean field theory.

The attraction in the Q = (7r, ir) channel mediated by the gauge field, although
not strong enough to generate a condensate, will nevertheless have a strong effect on
the spectrum of antiferromagnetic excitation. The fluctuation of the order parameter
associated with the transition (staggered moment) can be examined by looking at the
staggered-channel spin correlation function in the ladder approximation, similar to
the more familiar problems like the superconducting fluctuations or the ferromagnetic
spin fluctuations[166, 167] (See Fig.3-6).

In the problem of nearly ferromagnetic Fermi liquids, short range interaction be-



tween fermions are often modelled in terms of an on-site repulsion U (UN(EF) is the
dimensionless coupling constant corresponding to our 1/N). This problem is a lot
simpler, as the ladder series sum immediately to the RPA form X = Xo/(1 - UXo)-
The pole of the RPA propagator gives the diffusive mode ("paramagnons") associated
with a conserved order parameter. This mode (more accurately the peak in X"(w))
comes down in energy and becomes sharper as U approaches Uc.

Unfortunately, in our problem the interaction is retarded and long-ranged, with
the propagator taking the form

D,, 1 6 -( p. j + 1_5 0 02 (3.74)

(in the Coulomb gauge), hence the diagrams are not easy to evaluate. Nevertheless,
on physical grounds, it is quite reasonable to expect that the same gauge field which
caused the antiferromagnetic instability in the absence of holons will try to create a
(massive) mode (particle-hole bound state in the Q = (rx, 7r) channel) in this case.
Because the symmetry is unbroken, there is a particle-hole continuum, as a result
of which a sharp mode cannot exist, but a "broad resonance", i.e. a very unstable
meson with a Minkowski-space dispersion

q2 = h2 _ irr, (3.75)

is expected. The mass of the mode hi would come down as the transition is ap-
proached ("soft mode"). A physical consequence will be that the dynamic sus-
ceptibility X (,,)(w) (which can be probed by neutron scattering) has a broad
peak, with a substantial rearrangement of the spectral weight compared to the mean
field prediction. This heuristic picture is consistent with experiments of Keimer and
collaborators[121] that find in the normal state (and in the superconducting state)
of underdoped cuprates a magnetic scattering with a broad peak at some frequency
scale that comes down in energy as the doping is reduced.

In principle, we should be able to study this by looking into the Bethe-Salpeter
equation for spinon-antispinon scattering amplitude or the associated vertex. The
analysis, however, entails a number of practical and technical difficulties. We can get
around the problem of the complicated Lorentz-noninvariant gauge propagator for
the doped case (Eq.3.74) by convincing ourselves that the we would obtain a similar
physics by considering a Lorentz invariant one

D ( - q v) (3.76)

with N > N, (Reducing the doping would correspond to reducing N). Still, the fact
that we are investigating a mode that is massive and unstable causes complications
unseen in the B-S equation for the Goldstone bosons of the ordered antiferromagnet.
Generally, the scattering amplitude and the vertex have many components ("invariant
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Figure 3-7: Rearrangement of spectral weight in X'=(Q , )(w) due to gauge fluctua-
tions.

amplitudes"), e.g.,

A1(P; q) = f(p; q)Tr + g(p; q)Py' +'. (3.77)

The Goldstone modes are massless, hence we can focus on q = 0 in which case
f(p; 0) decouples from other amplitudes and has the same equation as that of the
dynamical mass, as we have seen in Sec.3.3.3. The decoupling doesn't occur for
q $ 0. Appelquist et al.[168] have considered the scalar component of the Euclidean
scattering amplitude in the ladder approximation, ignoring the coupling to other
components; this corresponds to considering f(p; q). They claim to find no light
meson (soft mode) whose mass comes down to zero as the transition is approached,
and hence the transition must be a novel one, i.e. neither a first order nor a second
order transition. However, that conclusion seems questionable, as the analysis of
Ref.[168] is not appropriate for finding an unstable meson which resides in the second
Riemann sheet of the Minkowski space.

It would be difficult to calculate finite temperature properties within our gauge
theory, but we believe that what has been discussed so far throws some light on the
Copper and Oxygen NMR relaxation rates. Due to different effects of the gauge field
on the Q=0 and Q=(ir, 7r) response, there is no reason why the Copper site and the
Oxygen site NMR relaxation rates should have the same temperature dependence.
It is plausible that at high temperature side the Cu site 1/T1 T will be increasing
with decreasing temperature, as the gauge fluctuation restores certain amount of
antiferromagnetic correlations (note that above some energy scale, the screening effect
of bosons won't be too important and the propagator would look like that of the
undoped cuprates), while at low temperatures (below some scale) it will go down
with decreasing temperature, since we still have the d-wave gap if the mean field
picture is going to survive.



3.4.2 thermodynamic properties

In the underdoped cuprates the gauge field interaction also affects the uniform part of
the spin response (the thermodynamic properties) though the effects are subtler. More
specifically, the coupling of the gauge field to the nonrelativistic bosons results in the
renormalization of the velocity of the fermions, which has the effect of enhancing the
specific heat and the uniform susceptibility. This seems to be in accordance with experi-
ments on underdoped cuprates. Although one might alternatively view the enhancement
features in the normal state as having to do with the "Fermi surface segments", these
are not really quasiparticle states in the strict sense (z=0) and there are likely to be
theoretical complexity and possibility of overcounting. It seems a lot simpler to view that
the fermions account for most of the entropy and spin response. A curious feature of
our theory is that the Wilson ratio W = C/TX, has a value quite close to that of the
"quantum critical" phase of the nonlinear sigma model[169, 170]: W in our theory is
0.128, while the O(N) nonlinear sigma model gives W = 0.124 at zeroth order, and
W = 0.116 with the inclusion of 1/N correction. Could this be a coincidence? The rest
of this Section is an already published work (coauthored with P. A. Lee and X. -G. Wen)
that discusses the effect of gauge fluctuations on the thermodynamic properties.

Recent experiments have indicated the existence in the normal state underdoped
cuprate superconductor of a gap with the same anisotropy as the d-wave supercon-
ducting gap. One proposed explanation involves spin-charge separation: an electron
in these highly correlated materials is a composite object made of a spin 1 neutral
fermion (spinon) and a spinless charged boson (holon). The suppression of normal
state magnetic excitation seen in NMR and neutron scattering is thus viewed as a
singlet pairing of neutral fermions in the absence of coherence among holons. As a
possible realization of this idea, two of us have taken the t-J model (which is be-
lieved to capture essential physics of CuO 2 planes) and developed a slave boson mean
field theory[113] that extends the local SU(2) symmetry at half-filling to the finite
concentration of holes by introducing a SU(2) doublet of slave boson field. Among
the mean field phases reported in Ref.[ll3] the so-called staggered flux (sF) phase
(which is connected to d-wave pairing phase by a local SU(2) transformation) was
argued to describe the pseudogap in underdoped cuprates. The low energy physics of
this phase can be described by massless Dirac fermions, non-relativistic bosons, and
a massless U(1) gauge field which together with two massive gauge fields forms SU(2)
gauge fields that represent the fluctuations around the mean field.

The purpose of this paper is to address the low energy effective theory of the
sF phase as a U(1) gauge theory problem. Although Dirac fermions coupled to a
gauge field had been considered in several contexts in the past[120], we shall see
that interesting new physics emerges when massless Dirac fermions are coupled to a
gauge field that is also coupled to a compressible boson current. More specifically,
the Lorentz symmetry breaking due to coupling to the bosons results in the renor-
malization of fermion velocity which have consequences on physical properties such
as uniform susceptibility X, and electronic specific heat c'. Experimentally, X, of
underdoped cuprates begins to decrease with lowering of temperature far above the
superconducting Te, and decreases more rapidly below T,[171, 106, 172]. Electronic



specific heat experiments[173, 174] show that -y(T) (- ce(T)/T) of the normal state
behaves quite similar to X. Although constant Wilson ratio (Q/X,) is a hallmark
of Fermi liquid theory, the anomalous temperature dependence calls for a departure
from the time-honored theory of most metals. We make a case that the puzzling
normal state behavior of X, and 7 may be viewed as enhancement over linear-in-T

Xu and 7 of Dirac fermions due to logarithmic decrease of Dirac velocity caused by
fermion-gauge field interaction.

We begin with the following continuum effective lagrangian for our problem

L - j7(03' + ia,y1F,,, +
1

b*(io - IB + iao)b - b*(V + ia) 2b. (3.78)
2mB

The Fermi field T,, is a 2 x 1 spinor: Ts, = (ftse, f so), 'I = (f*o, f*e), where
a = 1, 2 labels the two Fermi points, s = 1, .. , N labels fermion species (N = 2
for physical case s =f, 4), and e, o stands for even and odd sites, respectively. The
'y" matrices are Pauli matrices (y0, 1 y3 2) = (a3 , a 1 , a 2) and satisfy {I, -y"} = 26 "

(, = 0, 1, 2). Ws - 1~8,0. In the sF phase of Ref.[113], the fermion dispersion near
the fermi points is anisotropic, but we rescale it to an isotropic spectrum E(k) = vD Ik
where vD = ,JvFv, the geometric mean of the two velocities (v 2 is proportional to the
energy gap). We set VD = 1, unless otherwise specified. The gauge field a, = (ao, a)
corresponds to the a,3 part of the SU(2) gauge fields of Ref.[113]. The terms in Eq.
(3.78) involving the Bose field b (representing charge degree of freedom) are believed
to play several important roles, including the suppression of chiral symmetry breaking
(Noel ordering[120]) and instanton effects[175]. Most importantly, the compressible
boson current screens the ao field, making it massive. Unfortunately we do not have
a detailed understanding of our boson subsystem. Therefore we shall draw upon only
a few of qualitative features of the Bose sector while focusing mainly on the Fermi
sector of the theory.

Eq. (3.78) carries certain similarity to the uniform resonating valence bond
(uRVB) gauge theory[176, 52] proposed to describe optimally and slighly overdoped
cuprates, and some of the theoretical framework can be carried over to our prob-
lem. As in the uRVB case, the internal gauge field a, does not have dynamics of
its own, but it acquires dynamics from the polarization of fermions and bosons. In-
tegrating out the matter fields generates the self energy term for the gauge field
Ica = la, (II" f+ AII )a, up to quadratic order. The fermion polarization HII0 from
the two Dirac points is given by

2N - d2k1I (q) = / ( 2 k tr [GF(k)y"GF(k + q)~yV], (3.79)

where GF(k) = (ikl/) -l is the fermion Green's function and k, q denote 3-momentum;
for example, k = (k0o = (2n + 1)7rT, k). In the Coulomb gauge, the spatial part
and the time part of the gauge field are decoupled, the propagators being DOO(q) =
(IO0(q) + UIO(q))-1 and Dij(q) = (6ij - qiqj/q 2)D'(q) (i,j = 1, 2), with D'(q) =



(IIH(q) + IIL(q)) - 1. As mentioned earlier, the bosons should have a finite compress-
ibility (IIon(q -+ 0) - 0) so the time component of the gauge field becomes massive
(at finite temperature fII(q -+ 0) is also nonzero and contributes to the screening of
a0 field), but the spatial part of the gauge field, which is purely transverse, remains
massless even at finite boson density and temperature, as long as the bosons are un-
condensed (as in the spin gap phase). In the remainder of this paper, we will focus
on the effect of this massless mode, ignoring the ao field.

In the absence of detailed understanding of the Bose sector, we assume that
the transverse gauge propagator is dominated by the fermion part. In other words,
D-(q) ? D-f(q) = 1/IIl(q). This approximation, which is often used in the uRVB
gauge theory, may not be fully justified in our case, but it allows us to organize the
infrared behavior of our theory within 1/N expansion. The full expression for ana-
lytically continued transverse polarization function Hf(w, q) at finite temperature is
rather complicated and therefore we shall not write it here, although it is used later
in the evaluation of gauge fluctuation contribution to X, and c i . In the limiting case
of T > Jqi > Iwi, we have

wT q2IIH(w, q) -iCwT + C2 , (3.80)

while in the zero temperature limit,

ImlIf(w,q) = -Nsign(w)O(IwI-Iq lj)w 2 - q2 /8

ReHfl(w, q) = NO(IqI - w) q2 - w2/8. (3.81)

To the leading order in 1/N, fermion self energy due to transverse gauge fluctua-
tions is

E(k) = - 2 d y'GF(k + q) yD (q), (3.82)

where D (q) = - At zero temperature, the self energy is [177]

N f d3 q ko + qo
8 (2r)3 (k + q) 2xVf7

. d3 q (k+qx)(q - q2) - 2qq(ky+qy)' (2r)3 q2(k + q) 2Vr7

. d3 q (k,+q,)(q2 - q;) - 2qxqy(k+q) (3.83)
-sY r2 (3.83)S(2)3 q2 (k + q) 2v'/

We find, for Ikl > Iko,

E(k) = ciko°y0Ao(k) - 2cik - Ali(k) (3.84)

with c = 4/(3Nr 2) and Ao(k) ,- A 1 (k) r ln(A/Ikl), where A is a UV cutoff. Now



the pole of the renormalized Green's function GR(k) = (GF(k)- - C(k)) - 1 occurs at

E(k) = Ikl(1 - 4/(Nr 2) ln(A/Ikl)). (3.85)

Note that the presence of compressible bosons and the resulting breaking of Lorentz
symmetry is crucial to have logarithmic velocity renormalization. Indeed, in the ab-
sence of bosons, the gauge propagator (gauge independent part) is given by D'"(q) =
8/N(6p, - q,q,/q 2)/vR and the zero temperature fermion self energy takes the form
E = ik,yuf (k2 ); therefore the velocity is not renormalized.

Treating the quasiparticles described by Eq. (3.85) as "free", we calculate c, and
X, up to 0(1/No):

c = (9/ir)((3)NT 2 (1 + (8/Nr 2) ln(A/T) + ..)

Xu = (2/r) ln(2)NT(1 + (8/Nr 2) ln(A/T) + ..), (3.86)

(((3) = 1.202). These results are believed to be valid for two reasons: 1) ImAo,i(V +
iO+, k) = 0 for IvI < Iki, so the quasiparticles are well-defined. 2) Unlike the usual
Fermi liquid theory, the free particle response function vanishes as T -+ 0. To the
extent the Landau parameters in Fermi liquid theory enter as in mean field theory,
this means that Landau parameter correction vanish in T -+ 0[179]. Indeed, it will
be shown shortly that the calculation of X, and cl from the free energy shift due to
gauge fluctuation yields the same results.

The enhancement of c1 seen here finds its counterpart in the more familiar prob-
lems such as electron-phonon interaction in metals[180], uRVB gauge theory[52], and
half-filled Landau level[181], where interactions induce mass enhancement which man-
ifests iteself in the specific heat. In the nonrelativistic analogues, however, mass
renormalization does not necessarily result in the enhancement of compressibility and
uniform susceptibility[180, 182, 150], because the corrections are tied to the Fermi
surface[180]. The crucial difference in our case is that there are only Fermi "points"
instead of Fermi "surface". Thus in contrast to the nonrelativistic case, we find
that the susceptibility is also renormalized such that the Wilson ratio y(T)/x,(T)
is constant. In fact, the Wilson ratio is the same as that of free Dirac fermions be-
cause quasiparticles are well-defined and Fermi-liquid type corrections are absent, as
discussed earlier.

To check this conclusion, we calculate X, and cel in a gauge invariant way, using
the correction to the free energy due to gauge fluctuations. We consider only the
leading correction in 1/N, which is 0(1/No):

1 0 1ImIlM(w,q)
AF= - d2 qdwn(w) tan-. (3.87)

(2 )3 _00 RerlF(w,q)

The entropy shift AS (= -oAF/oT) due to gauge fluctuation has two contributions:
AS1 from the temperature dependence of the Bose function n(w) = 1/(exp(w/T) - 1)
and AS 2 from the temperature dependence of fermion polarization. Numerically we
find that the former gives a - T 2 contribution to entropy, while the latter which can



be written as
-1 ql<TYv oo a

AS 2  (2 3) d dwn(w)Im(D _rIF) (3.88)

(Tuv=high energy cutoff) gives a singular contribution oc -T 2 In T. The gauge fluc-
tuation contribution to X (Ax) is obtained by taking -0 2/OH 2 at H = 0 of AF(H).
This approach corresponds to summing the bubble diagrams for the vertex correction
and the self energy correction. It takes the form

-- 1~

Ax=-1 d wn(w)Im(D' I), (3.89)ax--(2)3 Iql<Tdvr 2 2F

where 8021tz/OM2 is a short-hand notation for 02Il (w, q; PF) /0L 2F=O in which
II(w, q; pF) is the transverse polarization function of Dirac fermions with finite
chemical potential IAF. This expression, which closely resembles that of AS 2, gives
a singular contribution oc -TlnT. Note that the expressions for AS 2 and Ax, are
also applicable to (nonrelativistic) uRVB gauge theory[52, 181], but they are usually
ignored in that case because they give only subleading corrections while AS 1 gener-
ates a singular correction cc T2/3[181], unlike our case in which AS 2 dominate at low
temperatures. Summarizing our numerical evaluation, we have

0.358 Tuv 2.79 TuyAX, 0 35 8 T el 7 9T2 In TU(3.90)
vD 2.4T' vD 2.6T

at low temperatures (T <- Tuv/5) in agreement with Eqs. (3.86).
We now discuss our results in light of the experiments. In Fig.3-8a we plot Xu

of YBa 2CU306.63 , a prototypical underdoped (bilayer) cuprate, from the Knight shift
data of Takigawa et al.[106] We took the liberty of moving the zero of X, by 0.27
states/eV Cu(2), which is within the error bars corresponding to uncertainty in the
orbital contributions Korb (Xu c Kpin = K - Korb). This change avoids the un-
physical situation of Ref.[106] in which 63Ks",17, < 0 at T = 0. Further
support for the adjustment of 0 comes from precision measurements of the Knight
shifts in YBa 2Cu40 8 by Brinkmann and collaborators[172] who made substantial up-
ward shift of Kspin from their previous values[183]. We find that the normal state
data of Ref.[106] are well-fitted (solid line) by X,(T; vDo, Tuv) = AXu + x0. Here AXu
is the numerical evaluation of Eq. (3.89) whose low T behavior is given by Eq. (3.90),
and X° is the uniform susceptibility of bare Dirac fermions with the same upper cutoff
Tuv: X = 4TT(Tuv/2T), F(x) = fo y/ cosh 2 ydy. The two parameters in the fit
are chosen to be VD = 0.76J and Tuv = 0.63J, where we set the antiferromagnetic
exchange energy J=1500 K. We expect the gauge fluctuations to be suppressed in
the superconducting state (due to Higgs mechanism) so that Xu should cross-over
to X° (dashed line) at low temperatures. This is in qualitative agreement with the
data below T. The inset of Fig.3-8a shows a similar fit for the spin Knight shifts
of YBa 2Cu 4Os[172], which is again very good. Thus our theory can account for the
susceptibility in both the normal and superconducting states, without the need to
adjust the energy scale of the gap parameter. Using the same parameters vD and Tuv
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Figure 3-8: a)X, of YBa 2 CU3 0 6.6 3 . The inset: spin Knight shifts of YBa 2Cu 4Os. The
vertical lines indicate T,. Symbols are as in Ref.[106] and [172]. Dashed line is the
susceptibility Xo of free Dirac fermions and solid line is the fit to our thoery, which
includes gauge fluctuations. b) 'y(T) of YBa 2CU30 6.67 . c) Xu of La2-SrzCuO4 (see
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as in the fitting of YBa 2CU30 6.63 Knight shift data, we plot y = Ac /T + yo (where
70 = 6g(Tv/2T), G(x) = fO y3/ cosh 2 ydy) in Fig.3-8b. Also shown is the experi-

mental data for y(T) of YBa 2CU30 6.67 [174]. Rough agreement of scales between the
curves is quite encouraging.

In monolayer La2-_SrCuO4, the uniform susceptibility is usually deduced from
bulk susceptibility by subtracting the core diagmanetism Xc and Van Vleck para-
magnetism Xvv,, Fig.3-8c shows X, of La2-_SrCuO 4 obtained by subtracting the
powder average value X,, + Xc = -0.5 states/eV[184] (there's some uncertainty in
the value of Xv) from the bulk susceptibility X[171]. The data can be character-
ized by X, = AXu + X° + Xeonst with (VD = 0.99J, TuV = 1.17J) for x = 0.10 and

(VD = 0.79J, Tuv = 0.65J) for x = 0.14. Unlike the YBCO compounds, temperature
independent part Xconst > 0 is needed for a reasonable fit. Regarding the specific heat
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data of LSCO, cutoffs significantly smaller than the ones used for X, are needed to
fit -y of the same compound in terms of y = Ace T + y 0 + ycons. In Fig.3-8d we have
kept the same VD as in Fig. ic, but used smaller cutoffs (Tuv = 0.8J for x = 0.1
and Tuv = 0.49J for x = 0.135) to fit the 7-data[173]. This discrepancy and the
origin of nonzero 7,onst and Xcost are not well understood. The Xcomt > 0 feature
in LSCO has been emphasized by some[185] to be an important evidence that the
bilayer structure is important for spin gap behavior. Recent experiments on trilayer
HgBa 2Ca 2Cu 30, 6 [186] and monolayer HgBa 2CuO 4+0[187], however, find similar spin
gap behaviors as in YBCO, suggesting that LSCO is a rather special case.

Despite reasonable agreement, we feel that above comparisons do not provide a
conclusive test, because the Tc is too high to probe the normal state infrared behavior
for a wide range of temperature. In fact, most of the bending feature seen in the
-y(T) data is presumably related to the high energy cutoff (the deviation from linear
Dirac spectrum) which have been treated in a cavalier manner here by using a hard
cutoff Tuv. The low-T curvature in X. data (d2x"/dT2 < 0; faster decrease at lower
temperature) seems to support the gauge fluctuation picture, but it may not be simple
to separate this effect from the curvature due to high energy cutoff. Nevertheless,
we view that the theory advocated here presents a simple and appealing picture of
the spin gap phase. In this theory, no new energy scale is introduced to distinguish
the spin gap phase and the superconducting phase; the Dirac velocity in both phases
is taken to be the same. Rather, it is the gauge fluctuation that distinguishes the
phases by causing the enhancement of X, and y in the normal state.

Instead of conclusion, we recapitulate some issues that have been glossed over.
We have ignored the ao field whose effect may not be totally innocuous[188]. In fact,
we have checked that in the absence of bosons the contributions to Xu and ct' derived
from the free energy shift due to the ao fluctuation cancel the singular contributions
from transverse gauge fluctuation, in agreement with non-renormalization of Dirac
velocity in a Lorentz invariant situation. Secondly, we have not treated contribu-
tions from the Bose sector, especially in regard to the entropy. Lastly, we mention
the issue of whether the renormalization of fermion propagator feeds back to the
gauge propagator. In the non-relativistic gauge theory[52, 181], the density-density
correlation function and the transverse gauge propagator receive only sub-leading
corrections[150]. This might not hold any longer in our case. At present it is not
clear to what extent the transverse propagator is modified by "feedback effect" and
to what extent this affects the physical picture.

3.5 Concluding Remarks

We now conclude with a discussion of some difficult issues, hoping not so much as to
resolve them but to content ourselves with placing them in perspective.



3.5.1 confinement, spinons, and all that

Confinement, like relativity and quantum mechanics, is not something that you can

understand in your bones the way you understand Newtonian mechanics. You have to

get used to it. - Howard Georgi

The term "spinon" has been used rather carelessly in this chapter. In the strict
sense, it refers to well-defined neutral elementary excitations carrying spin 1/2. A
well-known (and perhaps the only widely-accepted and physically-realized) example
is solitonic (topological) objects in ld spin chain that are usually understood within
bosonization framework[131, 126].

The "spinons" in this chapter refer most of the times to spin 1/2 objects strongly
coupled to fluctuating gauge fields. These spinons are far from being well-established.
They were obtained by breaking a gauge symmetry (at the mean field level) which
may be a questionable procedure. The pre-high T, empiricism and experiences also
provide resistance to such a notion. After all, in most metals (2 and 3d), the basic
elementary excitation is quasiparticles that carry both spin 1/2 and charge e, and in
most insulating antiferromagnets or in generic (gapped) spin liquids, the elementary
excitations are spin 1 objects (spin waves or magnons). In other words, spinons and
holons do not exist on their own, but are "confined" in spinon-antispinon composite
objects (spin waves: f* f) or in spinon-holon composite objects (quasiparticles: f*b).

The sense in which this "confinement" is discussed is quite similar to the quark
confinement in particle physics - the curious absence outside the nucleus of the
quarks that make up hadrons (baryons and mesons). In fact, the strong interac-
tion physics appears to share quite a few parallels with our problem[189]. Quantum
chromodynamics (QCD), which is widely believed to be the correct theory of strong
interactions, is a gauge theory whose low energy physics is as poorly understood as
the high Tc cuprates. At a more substantial level, the phenomenology of strong in-
teractions indicates that the (approximate) chiral symmetry is spontaneously broken,
giving rise to mesons (such as pions) which are Goldstone bosons, in analogy with
spin waves in a Neel ordered system. Just as the nonlinear sigma model gives an ex-
cellent description of the low energy spin dynamics of the undoped cuprates[12, 190],
in particle physics it has been well known that similar effective lagrangians (sigma
models, chiral perturbation theory[191, 192], etc.) give a very good description of
the hadronic physics. However, attempts to "derive" the parameters of the effective
theories, such as the pion decay constant, from first principles have not been entirely
successful. The basic difficulty is that the same asymptotic freedom that led to the
confirmation of the quark picture at the high energy side causes grave difficuties in
analyzing the low energy physics. At present, no consensus exists as regards the
"mechanism" of chiral symmetry breaking in QCD, but at least it seems clear that
the problem is intimately connected to the general issue of confinement.

It is the basic underlying idea of this thesis that the confinement does not oc-
cur for the normal state of the superconducting cuprates, or more loosely, spinons
and holons are "meaningful" objects. On the other hand, some sort of confinement
seems necessary to describe the Neel ordered state in undoped cuprates and in the



superconducting state of the doped cuprates: confinement might be necessary to ex-
plain why simple Ioffe-Larkin[176] rule does not work in the superconducting state[9]
(e.g. in describing the temperature dependence of superfluid density); in an ordered
antiferromagnet, we know that the low energy excitations are spin waves, not the
spinons.

In considering confinement, we are (helped but also) burdened by previous stud-
ies in particle physics regarding the issue. The confinement motivated by the strong
interaction phenomenology - no color nonsinglet particles exist in the physical spec-
trum - is a strong statement, and it is not clear to what extent the confinement in
our case should match the quark confinement. The situation is not helped by the
murky status of the quark confinement problem: a practical gauge invariant order
parameter that can distinguish confined and deconfined phases is not known gener-
ally, and different definitions (of various degrees of rigor) are employed to identify
confinement. Philosophies and semantics may often aggravate confusions.

Take the gauge theory of the spin chain (Sec. 3.2), for example. The original
spinons (the fermions that couple to the gauge field) are regarded to be confined[122],
since they don't appear in the physical spectrum which can be found exactly. This
is in accordance with Green's function of the spinons, which (to all orders of per-
turbation theory) has the form G(k) = -iyk/k2-,7; since it has a branchcut instead
of a pole, these spinons do not have asymptotic states. However, the evaluation of
the meaningfulness of these spinons involves preferences and opinions. From a pos-
itive point of view, they are pretty good spinons, since the mean field spinons give
a reasonable description of the T-dependence of the specific heat and the uniform
susceptibility[193], and the perturbative treatment of gauge fluctuation systematically
improves the antiferromagnetic correlations. In fact, we may almost claim to "see"
them in experiments. For example, the particle-hole excitation of these spinons might
be one of the simplest explanation for the des-Cloizeaux-Pearson continuum seen by
neutron scattering. A more spectacular example[194] is the changes in the continuum
caused by a magnetic field (Zeeman splitting of up-spinons and down-spinons) and
the associated incommensurate magnetic excitations which can be understood very
naturally within our framework, although the Bethe ansatz can also produce the same
result (in a far less transparent manner)[195].

In regard to the confinement of spinons in 2d undoped system, we can ask some
definite questions that go beyond semantics. 1) On the low energy side, are the
spin waves the only massless degrees of freedom, or could there be an additional
mode hiding? 2) On the high energy side, do the spinon states exist, or have they
disappeared completely? In other words, can we somehow "see" spinons at high
energies?

We now consider the results of Sec. 3.3 in light of these questions. The answer
to the first question is immediate: in addition to the spin waves, we have another
massless mode - the gauge field. This is rather bothersome, in view of the common
wisdom that the spin waves deplete the low energy excitations. Practically, it may
be difficult to determine the absence or the existence of the gauge field, as it is an
internal field. The gauge field may have _ T 2 contribution to the specific heat,
like the spin waves, but the modification due to gauge field might be considered a



spin-wave renormalization effect. The second question (high energy side) is more
difficult to answer. We have to determine whether the Minkowski-space Green's
function of the spinons has a pole at some mass scale. If the dynamical symmetry
breaking occurred in such a way that the spinons acquire a constant mass as in
the NJL model[162], then the spinons should be found at high energies, and we
might be able to "see" them[196] with the aforementioned method of Ref.[194]. If
the symmetry is broken by (long-range, retarded) gauge field interactions as in our
case, the problem is quite complicated; we need to continue the mass function m(p)
(Sec. 3.3.3) from the Euclidean space to the Minkowski space (p2 -+ _-p2), and
examine whether p2 - m(-p 2 ) = 0 has a solution near the real axis. The results
from the literature[159] indicate that when the "feedback" effect of the spinon mass
generation on the vacuum polarization is taken into account (in which case the gauge
field dynamics looks like FA,), no poles are found near the real axis. This may
be connected to Witten's mechanism for confinement[198], namely that the strong
dynamic gauge field produced by matter fields in turn confines the matter fields. In
the 1+1D CPN-1 model (L = I(1, - ia,)zl2 + m 2ztz), integrating out the matter
field (z-field) generates a kinetic term (self energy) for the gauge field F,[199]. The
Coulomb interaction in 1+1D is confining (i.e. V(xi) = - fdql exp(iqlxl)/q 2 Ixll)
while it is marginally confining in 2+1D (V(x) - log Ixl)[200].

We should like to point out that so far we have ignored one possibly important
aspect of our gauge theory - the compactness. The models that we have examined
in this chapter originate from the lattice, hence are compact gauge theories. The
usual assumption is that the compact theory can be replaced by a more amenable
noncompact theory in the continuum, but this is not always justified. A representative
and scary example is the pure gauge theory in 2+1D. Polyakov[201] has shown that
the compact pure gauge theory (2+1D photodynamics) differs from the noncompact
one due to instantons - the topologically nontrivial, extended classical solutions
of Euclidean gauge field equations, that can be viewed as tunneling events between
topologically inequivalent vacua. Instantons cause the Wilson loop to follow the area
law (exp(f dx,a)) - exp(-Area), which means the presence of a linear potential
V(xa, Xb) Ixa - xb between static sources, a sign of (strong) confinement.

When matter fields are present as in our case and in QCD, the situation is not
so simple. In QCD, for example, despite theoretical attempts[202] the relevance of
instantons to quark confinement remains uncertain. Generally, the fluctuations of
matter fields (especially the massless fields) are adverse to instantons. One specific
scenario by which instantons are suppressed is fermion zero modes. For example, in
the massless Schwinger model, the fermion determinant det[(,, - ia,)y,] in a gauge
configuration a, with an instanton vanishes, so that only the topologically trivial
sector contributes to the functional intergral (partition function). Similar mechanism
turned out to be account for the famous U(1) problem[203] in QCD. In both cases
(1+1D and 3+1D), the zero mode is connected to (axial) anomalies, whose analogue
in odd space-time dimension (2+1D) is nonexistent.

In the context of our problem (compact 2+1D gauge theory with Dirac fermions),
Marston[120] studied the possibility of fermion zero modes, and concluded zero modes
do not exist, suggesting a possible relevance of instantons. Marston has also calcu-



lated the action of an instanton, and found that it is logarithmically divergent with
a prefactor proportional to the number of flavors (S oc N n R). Kosterlitz-Thouless
type argument then indicates that below critical Nc which turns out to be 0.9, in-
stantons may proliferate, while for N > Nc which includes the physical case (N = 2),
the instantons are suppressed. Ioffe & Larkin[176] have also calculated the action of
an instanton, considering only the bilinear part of the gauge field action obtained by
integrating out the fermions, and found logarithmic divergence, but N, in this case
turns out to be 24. It has been noted that this treatment may be too simple, and
the question of instantons for physical N remains unclear[205]. We take the point of
view that two massless fermions are enough to suppress the instantons.

The suppression of instantons may no longer be the case if the fermion masses
are dynamically generated by spontaneous symmetry breaking, which is indeed our
situation. We now have the possibility of symmetry-breaking-induced instantons.
What are the consequences of instantons? Marston[204] has concluded that unlike
the bosonic spinon theory[206] the instantons cannot induce the dimerization (valence
bond solid order). The effect of instantons on the spinons is not clear. Does instantons
lead to a very different picture of the spinon confinement? One thing reasonably clear
is that the gauge field will be now massive[201], hence the spin waves will be the
only low energy excitations of the ordered antiferromagnet. The difference between
pictures with and without instantons would also affect issues like the calculation of
Goldstone boson decay constant fGB (related to the spin wave stiffness as fGB = V,)-
In principle, it must be possible to work out fGB microscopically, for example, in terms
of the mass function m(p) and other ingredients of the theory. In QCD, analogous
attempts[207, 208] were made to calculate the pion decay constant f, using the results
of Jackiw and Johnson[209] or other methods. The result for fGB might be quite
different for the two pictures.

In the normal state of the underdoped cuprates, instantons are probably not rel-
evant, as we have massless fermions and there are additional massless fluctuations
due to the introduction of holes. In any case, the unusual phenomenology of high Tc
cuprates points to that the spinons and holons are deconfined, and possible mecha-
nisms of confinement can be ruled out on this ground. It is beyond the scope of this
chapter to discuss the confinement in the superconducting state of the doped cuprate;
we simply note that there the confinement might be understood from the equivalence
of the confinement phase to the Higgs phase[210].

3.5.2 loose ends

In this chapter we have examined the magnetism of the undoped and underdoped
cuprates from the point of view of neutral fermions with spin 1/2. Admittedly, the
theory as it stands is far from rigorous. The philosophy has been to analyze possibly
the simplest effective field theory of massless Dirac fermions, bosons and gauge fields,
motivated by the sFlux phase that appears as a saddle point solution of the SU(2)
mean field theory. In reality, the situation is a lot more complicated. The mean field

fermion spectrum is anisotropic: e(k) = vk2 + vk2, and the velocities VF, V2 have



some doping and temperature dependences. These dependences, however, do not
account for the puzzling properties of the cuprates that we have discussed, and the
photoemission does indicate that the quasiparticle gap remains large in the normal
state of the underdoped cuprates (i.e. superconducting transition is not a gap-closing
transition) and the gap is only weakly doping dependent. Therefore, the effective
theory may be quite sensible for studying qualitative features not captured by mean
field theories. We have made a number of approximations to treat the complicated
dynamics of the gauge fields, but we hope it's not too optimistic to view that the
qualitative conclusions are correct. In any case, the idea that the holon coupling to
the gauge field prevents spontaneous symmetry breaking in the fermion system is an
attractive one, and is very much in the spirit of the empirical fact that moving holes
quickly destroy antiferromagetic order. Unfortunately, even with simplifications, the
calculations quickly become rather intractable.

Evantually the "spin gap" has to close up as we go to the optimally doped regime,
which in the mean field theory is modelled by the uRVB saddle point[52]. The details
of this crossover is certainly beyond our hopes. This will severely limit us in consid-
ering some very interesting issues, like the relation between the neutron scattering
peaks in the underdoped cuprates and the sharp 41meV peak in the superconduct-
ing phase of the optimally doped YBCO 7. In any case, the present theory does not
say much about the spin excitations in the superconducting state of the underdoped
cuprates, since the dynamics of gauge field in the superconducting state is different
from that considered here. Another drawback is that in our framework it is difficult
to consider possible incommensurate features in spin excitations. At present, it is
not clear how universal and important the incommensurateness is. "Static stripes"
are seen in the magic 1/8 filling in LSCO and its close relatives, while dynamic in-
commensurate features are well documented for LSCO at general dopings[211]. Some
caution is necessary, however, since LSCO might not be a generic "clean cuprate
material", as it does not display clear-cut spin gap behavior, and this class seems to
suffer sample problems easily. At least for YBCO, the incommensurate aspects are
weaker.

Granting these limitations, we still feel that the picture of spin excitations in
underdoped cuprates in terms of deconfined fermionic spinons is reasonable and per-
haps more natural than other descriptions like those based on fluctuating staggered
moments. Features like the linear-in-T behavior of uniform susceptiblity and the spe-
cific heat coefficient in underdoped cuprates might be also explanable in terms of the
"quantum critical" regime of the nonlinear sigma model, but it is not clear in that
approach how to account for the strange behavior of the Copper 1/T 1T in the same
temperature range. Attempts to explain the Copper 1/T 1T in terms of the "quan-
tum disordered" regime then has to explain why activated behaviors are not seen in
quantities like uniform susceptibility. Again, this seems to point to the difficulty of
achieving a theoretical description of a system that involves a mysterious combination
of gaplike (short range) correlations and critical correlations.
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Appendix A

A.1 Operator Averages

In this appendix, we discuss the evaluation of operator averages. In the path-integral
representation of the partition function, world-line configurations are sampled accord-
ing to a distribution proportional to exp(-So - S2). In our Monte Carlo scheme, we
discretize the imaginary-time interval P into M segments of length AT, and we de-
fine a world-line configuration by the boson coordinates at these discrete time points:
{Ro, R1, R2,..., RM = P(Ro)}. (Rm denotes the coordinates of the N bosons at m-th
time slice: Rm = (xlm), ... , x(m)), and RM is a permutation of the coordinates of R0.)

The configurations are sampled according to the probability:

1 - M-1

P({R}) = -e-s2(({R) II pzA(Rm, Rm+1), (A.1)
m=O

where is a normalization constant, and pA,(R, R') is the short-time (high-temperature)
density matrix in the absence of gauge fields. It is given by:

pA,(R, R') = (Rje-A(HK U)IR ')
S(Rle- A He -A7HOe- dH RI

= (Rle-ATH I -R')e- A-r(Hu(R)+fu(R')) (A.2)

with IHu(R) = (RIHuIR), and

Ho = -t (bb + h.c.) (A.3)
(ii)

Hu = ni (ni -1). (A.4)

The error involved in this approximation of the density matrix is O(AT3).
Measurements which depend only on particle positions are simple to evaluate in

this path-integral representation. The expectation value of such a measurement 0 is
given by

(0) = Tr [O(Ro, R1, R2,. ..)(R0 R1, R2,...)] (A.5)



where O({R}) is the measured value for the world-line configuration {R}, and the
trace is taken over all such configurations.

Averages of operators which are non-local in position space are more cumbersome
to evaluate. An example is the kinetic energy:

(HK) = -t Z((eiaijbtbj + h.c.)). (A.6)
(ij)

The gauge field aij is defined on the link between the neighboring sites i and j. The
Peierls factor closes the gap in the imaginary-time loop caused by the action of kinetic
energy operator. Inserting the operator HK in the imaginary-time slice between the
m = 0 and 1, it can be shown that the kinetic energy can be evaluated as:

(HK) [ (RojHKU Ri1) P({R})

= Tr xR H e - A r ° R 1)

(Role-a-rHK lR)

e!A r((Ro)-fl(KRo))P({ R}) (A.7)

where Hu(KR) is defined by Hu {HIR)} = HIu(KR){H R)}, and UA, is the short-
time evolution operator:

U = e-2 e-H KeH -ATHU (A.8)



A.2 Fermion Polarization

In this appendix, fermion vacuum-polarizations in 1+1D and 2+1D are worked out
using "dimensional regularization" [197].

For massless Dirac fermions, the polarization function 1,, is given by

dDk
H, (q) = -N (2 )D tr[G(k)7,G(k + q)y,]

dDk tk- (k + q)y 1
(27r)D [k2 - (k + q)2

f1 d dDk ' tr[(k' + (1 - x)q)7y,(k' - xq)yy,]
Jo (2-x)D (k 2 + q2 (1 - )) 2  (A.9)

where N is the number of flavors of fermions. Using the trace identity

tr[-py,7-ry] = (trl)(6,p6,, - 6po,6, + 6,,6,,), (A.10)

The numerator of the integrand is found as

2k'k' 2x(1 - x)(q,q, - 6,vq 2) - 6, [k'2 + q2 x(1 - x)]. (A.11)

Substituting, we get

i,(q) = N(trl) ldxf (D [k 2kdzk,
(2r)D (k2+ 2 qx( -))2

6V 2x(1 - x)(61,q 2 - q ) (A.
k2 + q2x(1 - Z) (k2 + q2 (1 - X))2

The first two terms cancel, and we have

F(2 - D/2)II,(q) = 2N(trl) ( D/2 2p - qtq) dxx(1 - x)(q 2 (1 - D / 2 - 2

32 D=2+1(A.13)
N(trl) (t /.V'22 q, D=I+.

27r (6, q-2 D= 1+1.

For the situations discussed in the main text, we have trl=4 for the 2+1D (Sec.3.3)
as we have 4 component fermions, while trl=2 for the 1+1D (Sec.3.2).

If the fermions are massive, i.e., L = (8, - ia,,)y,4 + mrn, similar calculation
shows that the polarization function is given by

17(2 - D/2)11,,(q) = 2N(trl)(2 - D/2) (q - qq) dx( - x)x(m 2 + q2 (1 - D / 2 - 2

(trl)N(2 q 1 4m 2 ) - q)) [D= +]
2 (q2, - qq,)m 2  tanh-1 ( 2 [D = 1 + 1],27r q2 q3V4m2T+_ 2 4m2+ q2



(trl)N 2  m q2 - 4m2 ( 4m ) )

r N(q24 qq) q2 + 4q sin-1 [D = 2+1].

For small q (i.e. q2 << m 2 )), we would have

(trl)N - q 1 q2
H,,(q) (q2 6m 3 + . D = 2 + 1

(tr)N q1 q2
H ,(q) (t q ,) 2  4+... D = 1 + 1

27 (6m 30m (A.14)

Note that the massive fermions give rise to a gauge field dynamics of the form alla ,
(F,,,)2 like the real electromagnetic field!



Appendix B

B.1 Remarks on Styles and Notations

The Euclidean space is used throughout, unless noted otherwise. In chapter 3, the
convention for the Euclidean space lagrangian is chosen such that {y,, y,} = +26,,.
The Greek indices p, v are space-time indices, while the Latin indices i, j are spatial
indices. In most cases, spin indices are denoted by a, or a. Boldfaces are used for
space vector, while italics are often used to denote space-time vector, for example,
x = (xo, X) = (T, x), q = (qo, q) = (wn, q), although now not always so. For example
p could stand for either (Po, p) or /jp- . It should be pretty much clear from the
contexts. Some abbreviations for integrals are: f d3  f dqod2  1 d at

finite temperatures) and f d3 x = f dxd 2X.

Sec. 3.4.2 has been published as an independent article, and the notations and
conventions can be a little bit different from the rest of Chap.3. For example, a in
the fermion field denotes the two fermi points, while s is used for spin indices.
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