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Abstract

The Graspables project is an exploration of how measuring the way
people hold and manipulate objects can be used as a user interface. As
computational power continues to implemented in more and more objects
and devices, new interaction methods need to be developed. The
Graspables System is embodied by a physical set of sensors combined
with pattern recognition software that can determine how users hold a
device. The Graspables System has been implemented in two prototypes,
the Bar of Soap and the Ball of Soap. User studies have been conducted
demostrating the effectiveness of the Graspables System and a variety of
applications have been developed to demonstrate its utility.
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Introduction

Perhaps the best place to start in explaining the Graspables project is to

define what exactly is meant by grasp-recognition. For the Graspables,

the goal was to explore how basic manipulations of an object can contain

useful information. In other words, what can you learn from the way peo-

ple hold an object? Can you distinguish whether a user wants to make

a phone call or just look up a contact by the way they hold their phone?

Can a golf club predict a slice if it is gripped improperly?

In pursuing these questions, the Graspables project was constrained by

the desire to have a system that could be realistically implemented in ex-

isting objects and devices. This led us to shy away from approaches that

require elaborate sensing environments or expensive input devices. The

hope was that the right combinations of sensors and software could give

objects a enhanced understanding of their users' actions without limiting

portability or affordability.

Another key aspect of the research was the focus placed on objects them-

selves. Instead of focusing on just creating a new interface method or a
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specfic type of controller, we were very interested in understanding and

exploring how people interact with a variety of different objects. Our

view was that how people interact with a coffee cup potentially has as

much to say about grasp-recognition and interaction as how they hold

modern electronics. Thus, we wanted a system that could be implemented

into arbitrary geometeries.

1.1 Motivation

The origin of the Graspables project can be traced back to a high level

discussion of ways to improve multi-function handheld devices. It was

then that someone tossed out the idea that an ideal multi-function device

would need to be capable of two things: it would need to automatically

know what users want to do with it and it would need to be able to alter

its affordances accordingly. When it wasn't being used, the device would

simply appear to be an undifferentiated block, like a bar of soap.

Fig. 1-1 The Ideal Handheld Device?

While the Graspables may not completely fulfill this vision, the idea of

creating devices that implicitly understand users' intentions- without

the need for menus and direct commands- was the launching point for

the project. As the project evolved, emphasis shifted away from multi-

fuction handhelds to how manipulating objects in general can be used as
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an interface. Throughout this process, motivations came from a variety of

fields, ranging from handheld accessories to virtual reality controllers to

sensate skins and more.

1.2 Thesis Structure

This thesis will seek to explain the Graspables project and provide con-

text for the work it entails. Chapter 2 explores projects and fields of

study that relate to or provide inspiration for the Graspables project.

Chapter 3 will discuss the design concepts used in the Graspables. This

chapter will also entail detailed discussions of the Bar of Soap and Ball of

Soap as implementations of the Graspable system. Chapter 4 will discuss

software design aspects of the Graspables System. It will also give a de-

tailed explanation of how the classification techniques were explored using

an early user study. Chapter 5 will discuss applications of the Graspable

system and explore specific implementations. Chapter 6 will explain con-

clusion drawn form the work on the Graspables as well as future work to

be considered.

1.2.1 Background

The problems that the Graspables seek to explore intersect with a variety

of projects and research fields. From kinesiology and ergonomics to sen-

sate skins and virtual reality, there is, not surprisingly, a lot of interest in

different aspects of how people interact with objects.

Chapter 2 will review areas of research that are relevant to the develop-

ment of the Graspables project. This chapter will explore how the goals

behind the Grapsables are relevant to such fields and how implementa-

tions of grasp-recognition can provide them with a novel tool. Finally, the
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Graspables implementations will be explicitly compared to other research

devices.

1.2.2 Hardware

Obviously, how users interact with an object is largely dependent upon

what the object is and what they are trying to accomplish with it. One

aspect of the Graspables was to explore how the physical geometry of a

device impacted what it could be used to respresent. Chapter 3 discusses

the two prototype implementations of the Graspables System, the Bar of

Soap and the Ball of Soap. While the general design ideas and their evo-

lution through prototype iterations will be provided here, more detailed

descriptions of the hardware can be found in Appendix A.

1.2.3 Software

Similar to how the physical nature of the devices impacts how users will

interact with them, interpretation of grasps and manipulation is depen-

dent upon on how the device is being used. Chapter 4 will discuss the

software methods that were used throughout the Graspables project.

1.2.4 Applications

The applications represent how the Graspables project is presented to

users. This chapter provides a detailed description of the specific inter-

faces and objectives that have been created to study how grasp-recognition

can be used as an interface.
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1.2.5 Conclusions

The final chapter of this thesis will give a brief assesment of the Gras-

pables project and the use of grasp-recognition in general. It will also dis-

cuss future implementations and studies that would be useful.

1.3 Thesis Terminology

Throughout this thesis a variety of terms will be used to describe differ-

ent aspects of the research. The term "Graspables" will be used when

discussing the ideas and goals of the project as a whole. The "Graspables

System", on the other hand refers to the combination of sensors and soft-

ware that are actually used to create the grasp-recognition interface. The

"Bar of Soap" and the "Ball of Soap" refer to specific hardware impleme-

nations of the Graspables System.
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Background: Objects and

Interfaces

In a film class it was once suggested that good editing was one of the

least appreciated aspects of film. The reasoning being that if an editor

has done his job correctly, the audience will never notice his work.

In many ways this applies to the design of user interfaces as well. When

well designed, interactions becomes so second nature that people think of

the interface and function as a single entity. At the other end of the spec-

trum are the VCRs blinking "12:00" and other devices whose operations

seem to be more work than they are worth.

This chapter will seek to explain some of the motivations behind devel-

oping the Graspables as a new user interface. It will then discuss some

of the fields of study that are relevant to the development of grasp recog-

nition. Lastly, this chapter will compare the Graspables to other specifi-

cally relevant projects.
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2.1 Ubiquitous Computing

Nearly twenty years ago, Mark Weiser coined the term Ubiquitous Com-

puting to describe the idea of a vast network of computing devices inter-

acting unobtrusively to enhance productivity. While the profliteration

and dispersion of computational power has certainly occurred, it has not

yet "anish[ed] into the background" [34, p.94].

Projects like the Graspables fit into the realm of Ubiquitous Computing

by trying to expand the ways in which computers are controlled. By de-

veloping grasp-recogntion as a user interface, it is hoped that users can

be presented with a more natural method of interacting with devices.

Instead of seeing a device and trying to imagine how its menu system

and buttons are mapped, grasp-recognition can leverage users' intuitions

about how devices should be used for certain functions.

2.1.1 New Sensing Modalities

Aside from the abundance of touchscreens, there really has not been a

dramatic change in computer interfaces since the mouse and Graphical

User Interface (GUI) took over. However, recent trends indicate that new

interaction methods are starting to gain a foothold.

Voice recognition is becoming more and more common, with the mar-

ket topping one billion dollars in 2006 and growing steadily since[8]. The

Nintendo Wii has become the top selling current generation video game

system[30], no doubt largely because of its inovative accelerometer and

optical sensing based controller. Niche markets from motion capture suits

to brain wave readers (see Figure 2-1) further indicate new opportunites

to break away from old interface methods.
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Fig. 2-1 (A) Motion Capture Suit Used in Lord of the Rings[3] (B)Emotiv EEG Headset
Controller[2]

2.1.2 Affective Computing

Affective Computing focuses on how computers can sense and respond to

emotional cues. Studies, ranging from to detecting facial expressions[33]

to controlling user posture[4], have shown that behaviors normally over-

looked by computer systems can provide valuable information about the

user. By recognizing these cues, Affective Computing hopes to make

interfaces less frustrating and more focused on users' emotional needs.

While the Graspables project is not designed to interpret emotions, it

does share the goal of using multimodal sources of information to make

computational systems that respond in a more intuitive manner.

2.1.3 Physical Computing

The area of Physical Computing is interested in incorporating physcial

objects into computational systems to enhance user interactions. Stud-

ies have been performed demonstrating how certain computerized tasks

can be more easily accomplished when properly modeled by physical

devices[12]. Early work on the concept of Graspable User Interfaces sug-

gested that by "facilitating 2-handed interactions, spatial caching, and

parallel position and orientation control" physical computing could pro-

vide a richer interface than virtual, graphics-based interfaces[13].
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A grasp-recognition based interface would, by virtue of its nature, cap-

italize on these advantages. Rather than creating controls through ar-

bitrary key-mappings, the physical nature of an implementation of the

Graspables System would provide suggestive physical affordances and

passive haptic feedback by approximating and representing real-world

objects.

2.1.4 Interfaces for Portable Devices

Portable device interfaces provide a distinct challenge for designers. For

more complex portable systems, there is a natural desire to mimic the

operational semantics of the computer as much as possible. People are

accustomed to the window metaphor of most desktop computer GUIs, so

it makes sense to leverage this knowledge to some extent. While some

portable devices, such as the Sony Vaio VGN-UX490N, shown in Fig-

ure 2-2, really try to recreate the interface of a desktop computer, in gen-

eral the sizes of portable devices make this impractical.

A common approach in portable devices is to imitate the clicking and

dragging functions of a mouse with a touchscreen. Full keyboards are of-

ten implemented either in the form of physical buttons or virtual ones.

Both approaches have drawbacks. Physical buttons are necessarily small

and always present, even when an application only needs a subset of the

keys. Virtual buttons on the other hand, provide no tactile feedback which

can render them unusable to certain groups of users.

These issues have led researchers to explore other interaction methods

that may end up being more appropriate for handheld devices. A com-

mon example is the use of accelerometers in many cameras and phones

for switching between portrait and landscape views. Another approach

is to capitalize on the inherent mobility of handheld devices by exploring

gestures as an interaction method. Studies have explored using gestures
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Fig. 2-2 The Sony Vaio VGN-UX490N, a 4" x 6" Portable Computer that Attempts to
Preserve the Desktop's Interface

for things such as the detection of common usage modes[21] to the map-

ping of functions to relative body positions[5]. While it is hard to predict

what new interfaces will catch on, successes like the iPhone's Multi-Touch

display[l] provide encouragement for continuing research.

2.2 Object Representation and Simulation

In implementing the Graspables system into the Bar of Soap and Ball

of Soap, we were interested in how the devices' geometries impact what

objects they can easily represent.

The most common input devices, mice, keyboards and even video game

controllers generally sacrifice representation in favor of more robust, gen-
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eral controls. Over time, these systems develop a semantic of their own

(think how similar all video game controllers are or how people expect

to be able to click icons in graphical interfaces) and people hardly even

think about the control metaphors. However, there are exceptions.

Tablet and stylus systems exist to better bridge the gap between writing

or drawing and computers. Video games often have speciallized periperi-

als such as steering wheels or guns. These examples highlight the im-

portance of objects for some tasks. While there is likely no way to com-

pletely avoid the tradeoff between robust and representative controls, it

is certainly worth exploring how new interfaces can create more literal

interactions and of what value these may be.

2.3 Adaptive User Interfaces

Adaptive User Interfaces rely on artificial intelligence techniques to train

systems to better respond to specific users and uses. As would be ex-

pected, adaptive user interfaces have typically been focused on human

interaction that have subtle variations across populations. Speech recogn-

tion [6] and hand writing recognition [7] have long been the focus of such

research. However, more recently other applications such as synthetic mu-

sic controllers[22] and gesture recognition for mobile phones[15] have also

made use of these algorithms.

Given the wide variations in hand sizes across populations and the open

ended nature of possible interaction methods, Adaptive UI's are relevant

to the development of grasp-recognition. Even for situations where pre-

scribed grasps would be desirable, Adaptive UI's could provide useful

techniques for testing and understanding potential pitfalls in the inter-

face.
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2.4 Sensing Grasps

This section will look at areas of research that are relevant to the devel-

opment of grasp-recogntion hardware.

2.4.1 Whole-Hand Interfaces

The area of whole-hand interfaces has long been viewed as a potential

method for creating more natural human-computer interactions. While

such interfaces can be applied in place of the standard keyboard or mouse

for general computing[23], they are more commonly considered as a way

of interacting in virtual environments. Unfortunately, these systems typi-

cally require complicated setups usually involving either a data glove[9] or

some form of machine vision system[25].

While there is obviously some overlap between this research and the goals

of the Graspables project, there are a couple of key distinctions. The first

and most obvious is the difference in levels of complexity and robustness.

While a whole-hand interface could potentially perform grasp recognition

tasks, the systems are significantly more expensive and less portable than

the Graspables System. Secondly, the Graspables project places a higher

interest in exploring how various object affordances impact user manip-

ulations, whereas whole-hand interfaces typically focus on hand gestures

independently of objects.

2.4.2 Sensate Skins

In robotics research there is a strong interest in being able to mimic the

dense and varied sensing capabilities of human skin[20]. While building

the sensor arrays poses significant challenges by itself, there is also the



2. Background: Objects and Interfaces

related issue of making sense of the sensor data.

Early on in the Graspables project, implementing the system in a modu-

lar form that could be connected in arbitrary geometries was considered.

The Tribble, a device developed by the Responsive Environments group

at the MIT Media Lab[19], provided inspiration for how such distributed

sensing nodes could be combined and used as a single sensing unit. While

this approach was eventually abandoned in favor of implementing the

Graspables as a limited set of complete devices, the concepts behind the

sensate skins provided an excellent starting place for grasp-recognition.

2.5 Interpreting Grasps

This section will discuss a few specific projects that use touch sensing as

a means to infer information about user intentions.

2.5.1 The Huggable

The Huggable, shown in Figure 2-3, is a robotic Teddy Bear being de-

signed by the Personal Robots group at the MIT Media Lab to provide

therapeutic interactions similar to those of companion animals. In order

to accomplish this, its necessary that the Huggable be "capable of prop-

erly detecting the affective content of touch" [32]. The Huggable is thus

equipped with an array of sensors that detect the proximity of a human

hand, measure the force of contact and track changes in temperature.

The data from these sensors is then processed to distinguish interactions

such as tickling, poking or slapping[31].

From a technical perspective, the goals of the Huggable are very similar

to those of the Graspable System. Both seek to identify and understand
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Fig. 2-3 The Huggable, Shown with and without its Skin[14]

the ways users manipulate an object. In many ways, the Huggable could

be viewed as a sophisticated example of a grasp-recognition system. That

said, there are obvious differences between the Graspables System de-

scribed in this thesis and the hardware/software system of the Huggable.

The sensing hardware of the Huggable, for example, relies on dense arrays

of Quantum Tunneling Composite (QTC) force sensors and broad electric

field sensors for touch sensing, whereas the Graspables are implemented

with a dense set of capacitive sensors. Similarly, the Huggable has been

demonstrated using more computationally complex classification tech-

niques than would be ideal for the Graspables.

2.5.2 The Tango

The Tango is a whole-hand interface designed by the Multisensory Com-

putation Laboratory at Rutgers for the manipulation of virtual 3D objects[24].

The device, shown in Figure 2-4, is a hand-sized spherical object with a

3-axis accelerometer and an 8x32 capacitive sensing grid housed in a com-

pressible dielectric material. The Tango is calibrated to detect variations

in pressure from which a simplified hand model can be estimated. The
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Tango uses spherical harmonics to create a rotationally invariant map

of pressures[18]. These pressure maps can then be reduced using princi-

pal component analysis and classified using K-nearest neighbors. A 3D

virtual environment in which the Tango was used to manipulate virtual

objects was also developed.

I

Fig. 2-4 The Tango Device[24]

While the Tango clearly shares certain objectives with the Graspables,

there are significant differences in their respective implementations. First,

the grid structure of the capacitive sensors and the classification software

of the Tango would not directly translate to other device geometries,

severely limiting the number of objects it could represent. Also, since the

Tango is actually attempting to infer general hand poses it requires addi-

tional constraints, such as single hand use. In the end, while the sensing

techniques and software analyisis provide interesting references, the goals

of the Tango require a significantly different approach than those of the

Graspables.

2.5.3 SAIT Grip Pattern Recognition

When development began on the first version of the Bar of Soap, a sim-

ilar study was being conducted by the Samsung Advanced Institute of

Technology (SAIT)[10, 17]. After receiving encouraging results from an

initial study in which painted gloves where used to create image maps of
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grasp patterns, a prototype device was built for real-time grasp detection.

The SAIT device, shown in Figure 2-5, contained a 3-axis accelerometer

and 64 capactive sensors. A user study was performed to try and classify

8 different use modes with the device.

(a) (b)

Fig. 2-5 The SAIT Prototype Device[10]

The results from the SAIT study match up well with those of the intial

Bar of Soap study (see Section 5.1) which is encouraging for the larger

concept of grasp-recognition. The SAIT device uses non-binary capacitive

sensors, a different sensor layout on a device of different physical dimen-

sions, a unique set of use modes and different classification techniques

from the Bar of Soap. Even so, the SAIT device was able to correctly

classify 75%-90% of modes across users, which is very similar level of ac-

curacy that the Bar of Soap acheived. It is worth noting that the subjects

in the SAIT were instructed to hold the device in a certain way, unlike

the Bar of Soap study, where the users were only given a use mode with

no suggested grasp. Even so, the study provides independent validation

of the Graspables concept, if not of the Bar of Soap's particular imple-

mentation.
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Graspables Hardware

Implementations

The Graspables System is a hardware and software platform capable of

detecting how a user is manipulating a device. This chapter will describe

the hardware used in the Graspables System. This chapter will also dis-

cuss the design of two specific implementations of the Graspables System,

the Bar of Soap and the Ball of Soap.

3.1 Hardware Goals

The goal of the Graspables System is to develop a set of sensors capable

of measuring relative hand position and orientation. The system needs to

be flexible enough to accomodate distinct sensor layouts for objects with

different physical geometries. It is also important that the system be able

to process and transmit data in real-time.
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3.2 General Hardware

The hardware within the Graspables System can be divided into two

functional groups. The first group consists of components that provide

infrastructure for the Graspables. This group regulates power, processes

data and communicates with other devices or computers. The second

group consists of the sensing components. Whereas the first group is con-

sistant across different implementations, the sensors vary depending on

the needs of the realized system.

Fig. 3-1 A Partially Populated PCB for the Bar of Soap

3.2.1 Controlling and Communicating

The Graspables are envisioned as devices that can operate independently

or as periperials for a computer. The key infrastructure features that

are needed for any instantiation of the Graspables system are: (1) a con-

troller to collect and process data, (2) a method of sending and receiving

data from other computers and devices and (3) a battery or power sup-

ply. For all the prototypes discussed in this thesis the Atmel Atmega644

ICs were used as the controller, BlueGiga WT12 bluetooth chips provided
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communication and 1000mAh Lithium Polymer batteries provided power

(see Appendix A for more details). These specific components were cho-

sen solely for reasons of convenience and could easily be replaced by com-

parable components.

3.2.2 Sensors

Unlike the control and communication components, the sensing hardware

was customized for each implementation. However, some general princi-

ples still apply.

Early on we made the desision to use capacitive sensoring as the method

for measuring how users hold the Graspables[27]. Specifically, we chose

QT60248 Qmatrix touch sensor ICs for the implementations[26]. These

chips allow for independent design and placement of up to 24 capaci-

tive sensors. Each sensor can then be individually calibrated to ensure

consistant response across the device. Lastly, a 3-axis accelerometer was

incorporated in order to determine the device's orientation and relative

motion.

3.3 Prototype Implementation

In order to test the Graspables System, it was necessary to have a an

object to implement the system in. The Bar of Soap, a rectangular box

designed to approximate the size of modern handheld multi-function de-

vices, was the first prototype for the Graspables System. Three versions

of the Bar of Soap were built, each improving upon the sensing system

and the prototype's functionality as well. The Ball of Soap was then built

to expore grasp recognition in other scenarios
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3.4 The Bar of Soap

The Bar of Soap was designed to explore how grasp-recognition could be

of use in a variety of modern handheld devices. It also served as a test

bed for the Graspables System's hardware. The following sections will

describe each of the three versions.

3.4.1 Version 1

The first Bar of Soap prototype, shown in Figure 3-2, is a 4.5x3x1.3 inch

rectangular box containing a 3-axis accelerometer and 48 capacitive sen-

sors encased in an 1/8th inch thick shell of transparent, vacuum-formed

PETg plastic. A microcontroller in the device samples these sensors and

reports the results to a PC via Bluetooth. This device did not contain a

battery and thus had to have a power cord connected to its sensor-less

face.

Fig. 3-2 The Front and Back of the Bar of Soap V1 without the PETg Shell

The capacitive sensors were created by printing interdigitated copper

traces (See Figure 3-3) on a printed circuit board (PCB). The sensors

are approximately a quarter of square inch in area, roughly the size of a

fingertip. These sensors were controlled by Qprox QT60248 chips, each

of which can support 24 buttons. The sensors were evenly spaced on five

of the six faces of the prototype with 24 sensors on the back, 7 on each

longer side and 5 on each shorter side. For this version, no capacitive sen-
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sors were placed on the front of the device, with the intention of having

it represent a display surface. Parameters in the Qprox chip were ad-

justed so that each sensor would respond when a finger was placed di-

rectly above it, but not above a neighboring sensors.

--I -- ->T -4 -I T

Fig. 3-3 The PCB Layout Schematic for the Bar of Soap's Capacitive Sensors

3.4.2 Version 2

The initial feasibility study, discussed in Section 5.1, provided encourag-

ing results from our first prototype. However, there were various limita-

tions that needed to be addressed. Thus, we built a second prototype,

shown in 3-4.

The most obvious change was the addition of a cholesteric LCD screen.

These screens employ a bi-stable display which only requires power when

the image is changed, greatly increasing battery life. We felt that the lack

of a display surface in the first version severely limited what we could ex-

plore with the Bar of Soap. By adding a display, we were able to indicate

to the users the layout of various affordances corresponding to different

modes that Bar of Soap could represent. Thus, if we wanted to explore

how users grasp a camera, we could display a facsimile of a camera dis-

play instead of just a sensorless face (see Figure 3-5). This also allowed us

to examine how different layouts of virtual buttons on the display would

impact how users interact with the device.
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Fig. 3-4 The Second Version of the Bar of Soap

Fig. 3-5 A Sample Screen Image from the Bar of Soap

In addition to the screen, a battery was added to the second version so

that the device could operate without a power cable tethering it.

3.4.3 Version 3

Whereas the second prototype had been a modification of the original

PCB, the third version of the Bar of Soap was created from a new cir-

cuit board design. Seen in Figure 3-6, the Bar of Soap V3 has screens on

CAMERA
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both the front and back surfaces. The battery charging and power circuit

were redesigned to include a power button and an additional 24 capaci-

tive sensors were added so that all the surfaces had capacitive touch sen-

sors. Lastly, a transparent acrylic case was used in placed of the vacuum-

formed PETg shell of the previous versions.

Fig. 3-6 The Final Bar of Soap V3 Prototype

The primary reasons for the development of the third version were to pro-

vide more flexibility in what could be done with the display and to make

the device more uniform and symmetric in its sensing abilities. Trans-

parent capacitive sensors were developed and placed over both screens.

This allowed the display surfaces to also function as sensing surfaces,

which in turn allowed the Bar of Soap to better emulate functional de-

vices with interactive touchscreens. The additional screen on the back

side and accompanying touch sensors also gave us the ability to treat the

Bar of Soap not just as a multi-function handheld, but as a generic rect-

angular sensing device with two customizable faces.

The transparent sensors were created by placing thin film coated with

Indium Tin Oxide (ITO) on opposite sides of a clear piece of acrylic, as

shown in Figure 3-7. ITO is a transparent conductive material that fills
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the role of the interdigitated copper traces (see Figure 3-3) of the other

capacitive sensors. By connecting the outer layer of ITO to the pulsed

'X' line of the QT60248 chip, a user's finger will cause enough coupling

with the ITO to create a measurable effect on the other, inner layer of

ITO. By testing a variety of ITO shapes and sizes, it was determined that

strips of approximately 5mm width provided the best response. Settings

in the QT60248 chip were able to amplify the responses of sensors located

further along the ITO to compensate for its resistance.

Fig. 3-7 Clear Capacitive Sensors Made with ITO Coated Film

3.5 The Ball of Soap

As the Bar of Soap evolved from an exploration of ways to improve multi-

function handhelds into a more general platform to explore grasp-recognition,

we began to consider the limitations of its physical form. While a small

rectangular box provides an adequate representation of many handheld

electronics, it has inherent limitations.
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3.5.1 Version 1

In order to explore interactions with different physical forms, the Ball

of Soap was developed. Since a truly spherical object would create dif-

ficulties in laying out the capacitive sensors used in the Bar of Soap, we

built the Ball of Soap as a small rhombicosidodecahedron. This 62-sided

Archimedean solid, shown in Figure 3-8, provides flat surfaces near the

quarter square inch size and surface density of the Bar of Soap's sensors

when the overall diameter approaches 3 inches.

Fig. 3-8 A Small Rhombicosidodecahedron

The surface structure of the Ball of Soap prevented the simple printing

of interdigitated copper traces used as sensors on the Bar of Soap. In-

stead, adhesive copper pads were cut and attached to the faces with wires

running to circuit boards inside the ball. We explored using a variety of

trace shapes for each of the different face geometries (see Figure 3-9), but

found that only using the smallest, triangle arrangement provided a more

consistent response across the capacitive sensors.

As can be seen in Figure 3-10, the small Rhombicosidodecahedron shape

also allowed the Ball of Soap to be separated into three sections for easier

assembly. The two end pieces are identical and each contain a Qprox chip
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Fig. 3-9 Capacitive Sensor Layouts Tested on the Ball of Soap

that controls the 23 capacitive sensors on its surface. The center piece

has 16 faces, 15 of which have capacitive sensors and one that houses the

power button and programming interface. Inside the Ball, attached to the

center piece is the main circuit board housing the microcontroller and ac-

celerometer. As can be seen in Figure 3-11, this version of the Ball had a

cable that ran power and UART communication lines to the main circuit

board.

Fig. 3-10 The Three Sections of the Ball of Soap

Finally, the shell of a baseball was wrapped around the outside of the

Ball of Soap. While this particular covering was chosen specifically for

the application described in Section 5.2, it could take on any number of

appearances as long as the capacitive sensor traces are not left exposed to

contact.
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Fig. 3-11 The First Version of the Ball of Soap with its Baseball Shell

3.5.2 Version 2

As with the first Bar of Soap, the Ball of Soap V1 was built as much to

test the sensing hardware as it was to study manual interactions. While

the power cord reduced the complexity and made programming and test-

ing the device easier, it certainly interfered with how the device could be

held.

The second version used the same circuit board as the first, only this

time the bluetooth chip and battery were attached. Figure 3-12 shows

the inside of the Ball of Soap in its final assembled state.
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Fig. 3-12 The Insides of the Second Version of the Ball of Soap
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Any implementation of the Graspables hardware is only as useful as the

software that makes sense of it. This section will describe the methodol-

ogy used in selecting appropriate pattern recognition algorithms.

4.1 General Approach

This chapter will focus on general principles of the Graspables pattern

recognition software. These principles will be illustrated with specific

examples and data from the initial feasibility study performed with the

first version of the Bar of Soap (described in Section 3.4.1). This should

provide a general overview of how developing grasp-recognition as a user

interface was approached. Specific variations implemented for different

applications will be discussed in Chapter 5.
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4.2 Feasibiliy Study

With the first Bar of Soap, we were essentially testing two hypotheses at

once. First, we were hypothesizing that users naturally grasp and interact

with multi-function handhelds in measurably distinct ways depending on

the functions they are using at a given time. Secondly, we were hypoth-

esing that the first Bar of Soap was capable of measuring the differences

between these interactions.

4.2.1 Study Objectives

When we first began exploring the idea of a grasp-based sensing system,

much of our work focused on finding adequate sensor resolution and pat-

tern recognition techniques. The first user study, performed with the

screen-less first version of the Bar of Soap allowed us to explore these is-

sues and provided valuable data for improving the device. In this study,

we had users treat the Bar of Soap V1 as a mutlti-function handheld de-

vice and measured how they interacted with it for five different function-

ality modes.

4.2.2 Data Collection

Users were seated with the Bar of Soap in front of them on a table. They

were told that they would be given a specific functionality mode (e.g.

"the device is a phone") and that they should then pick up the device

and interact with it however they saw fit until instructed to set it back

down. Users were also informed that they should treat the front, sensor-

less face of the of the device as the location of any display that they would

expect from such a device. It is important to note that no suggestion of

appropriate grasps was given to the user either before or during the tests.
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After giving these instructions to the user, we would begin recording the

data stream from the Bar of Soap and then verbally indicate what func-

tionality mode the device should be treated as. Once the user had estab-

lished a relatively stable pose with the device, we would label and save

the data sample and have the user place the device back on the table. We

would then repeat this process with each user until we had data samples

from each of the five tested functionality modes: camera, gamepad, PDA,

phone, remote control. Typical pose examples for each of the five poses

are shown in Figure 4-1.

Fig. 4-1 Example Grasps for Each of the Five Functionality Modes (clockwise from top
left): Camera, Gamepad, Remote Control, PDA, Phone

Since, in this study, we were interested only in the way the user grasps

the device and not in the dynamics of how they pick it up, each data

sample was trimmed to a single measurement of the 48 capacitive sensors

and 3 accelerometer axes. This was done by simply averaging over the fi-

nal four measurements in each sample to smooth over any minor changes

in the way the user held the device.

Using this data collection process we generated two distinct data sets,

each containing 39 grasp samples for each of the five functionality modes.

The first set was obtained from a single user to see how consistently one

person held the device. For the second set, 13 different users held the de-

vice to see how grasps varied across a population.
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4.2.3 Training and Testing Sets

With the two data sets, we were able to explore both how well we could

distinguish a single user's grasps and also how well grasps generalize across

a population. To study a single user, we trained the classifiers using 29

of the 39 samples for each mode. The final 10 samples were used to test

the classifiers. To test how well these grasps held across a population, we

used the 39 samples from multiple users as the test data.

4.3 Feature Selection

With each capacitive sensor and accelerometer axis acting independently,

computational constraints and limited amounts of training data can lead

to classification difficulties. To circumvent this, features were created

from the raw sensor data to make classification more feasible. The feature

selection varied depending on the application.

4.3.1 Feature Selection and the Feasibility Study

In order to analyze the data, we first had to explore methods of reducing

the 51 independent sensor readings to a more manageable feature space.

We explored many different techniques, including Principal Component

Analysis (PCA)[11], Fisher Linear Discriminant Analysis, data subsets

(such as only using accelerometer data), and grouping capacitive sensors.

Of the methods we tried, the one that provided the highest recognition

rates across multiple users was by grouping sensors on each face and ac-

counting for symmetries.

With this method, the 48 capacitive sensors formed six sensor groups

(two 5-sensor sides, two 7-sensor sides, and two 12-sensor halves of the
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back face) with the value of each sensor group being a count of the ac-

tive sensors in that group. Since the device should not have a preferred

orientation (aside from the sensor-less face) we grouped the buttons ac-

cording to accelerometer orientation rather than their physical location.

Thus, if the device were rotated by 180 degrees, the capacitive sensors on

the left side would always be treated as the left side group, even though

the specific sensors would move. Finally, to give equal weight to both the

accelerometer and sensor groups, all the data were normalized on a scale

of 0 to 1. This feature reduction method will be referred to as "Rational

Reduction".

4.3.2 Discriminability and Sensor Impact

To try and quantify what impact different sensors had in the Bar of Soap's

ability to distinguish grasps, we created additional data sets that ommit-

ted data from certain sensors. Using these data sets we calculated the

discriminibility of the five modes. The discriminibility[l1], d, between two

classes, i and j, is defined as

where

Pi is the mean for class i,

and YE is the covariance matrix for class i

and indicates how distinguishable different classes are. A lower number

indicates that the classes will appear more similar to each other in the

classification algorithm.

Table 4.1 shows the discriminibilities for the the data using only accelerom-

eter data. Table 4.2 shows the discriminibiilities when only the capacitive
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Cam Game PDA Phone Remote
Cam 0 3.15 3.33 0.28 8.32
Game - 0 0.70 3.99 1.20
PDA - - 0 4.18 3.59
Phone - - - 0 10.2

Table 4.1 Class to Class Discriminabilities Using only Accelerometer Data

Cam Game PDA Phone Remote
Cam 0 2.63 4.45 5.34 2.72
Game - 0 5.85 6.38 5.86
PDA - - 0 1.56 5.39
Phone - - 0 5.77

Table 4.2 Class to Class Discriminabilities Using only Capacitive Sensor Data

sensor data is used. The particularly low discriminibilities between the

Camera and Phone classes and between the Gamepad and PDA mode in

Table 4.1 indicate modes for which the orientation of the device are very

similar. The relatively low value for discriminability between the Phone

and PDA classes in Table 4.2, on the other hand, shows that users tended

to grip their phones and PDAs in similar fashions.

Cam Game PDA Phone Remote
Cam 0 3.96 5.99 4.60 7.34
Game - 0 6.82 8.49 5.74
PDA - - 0 5.33 5.85
Phone - - - 0 9.48

Table 4.3 Class to Class Discriminabilities Using the Rationally Reduced Feature Set

Table 4.3 shows the discriminabilities using all the sensors and reducing

them to the feature set described in Section 4.3.1. While it may not be

surprising that the more inclusive data set provides better discriminabil-

ities on average, these tables do give some indication of the relative roles

that different sensors are playing. The relatively high discriminabilties

across Table 4.3 also provides encouragement that the feature reduction is

not detrimental to the classification process.
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4.3.3 Feature Selection and Classification Rates

The data from the feasibility study was reduced to different feature sets

and then run through a variety of classification techniques (discussed in

Section 4.4.1) to compare how they impacted classification. The classifi-

cation results from using Fisher Linear Discriminants and the Rational

Reduction technique (see Section 4.3.1) to reduce the data are discussed

in this section.

Single User Testing Multi-User Testing
Templates 97.5 61.5
Neural Nets 97.5 59.0
K-Nearest 92.5 63.6
Parzen 95.5 66.7
Bayes 92.5 64.1
GLD 90.0 58.0

Table 4.4 Classification Rates Using Fisher Linear Discriminant Reduced Feature Set

Single User Testing Multi-User Testing
Templates 82.2 75.4
Neural Nets 92.4 79.0
K-Nearest 95.0 75.8
Parzen 95.4 72.3
Bayes 95.0 79.0
GLD 87.5 70.3

Table 4.5 Classification Rates Using Rationally Reduced Feature Set

Table 4.4 shows the classification rates from a variety of classification

techniques when using Fisher Linear Discriminant to reduce the data.

Table 4.5 shows the classification rates for the Rationally Reduced data.

As you can see, both feature reduction methods acheived high accuracy

across the classifiers when trained and tested on a single user. However,

when training the data on a single user and testing on a population, the

results favor the Rationally Reduced data significantly. This seems to in-

dicate that the Fischer Linear Discriminant is preserving more idiosyncra-

cies of the individual that do not apply widely.
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4.4 Pattern Recognition

In exploring a variety of classifiers, high recognition accuracy was not the

only consideration. Since the classification would ultimately need to be

determined by the device in real-time, a lower complexity calculation

would be preferable. Additionally, since the five modes we selected are

essentially arbitrary, it was important that the classification technique be

easily adapted to other modes.

4.4.1 Classification Techniques

A wide variety of classification techniques were explored to evaluate the

ability of the Bar of Soap to distinguish grasps. A neural network was

trained and tested using 10 iterations of randomized, leave N out valida-

tion for a number of network nodes[ll]. K-Nearest Neighbors was imple-

mented for K values one to twenty, each with three different tie-breaking

algorithms. Parzen Windows, another non-parametric classification tech-

nique in which labeled points contained within a hypersphere around the

sample point are compared, was tested for a variety of hypersphere vol-

umes and voting schemes. Multicategory Linear Discriminant functions

and Naive Bayesian classifiers were also implemented. Lastly, Template

Matching, which simply compares the distance from data samples to the

mean values of the different classes, was tested.

4.4.2 Classification Rates and Results

From the methods we tested, the simple Bayesian classifier provided a

good mix of recognition accuracy, ease of implementation and adaptabil-

ity. The Bayesian classifier works by assuming that each mode can be

represented as a Gaussian distribution in the feature space. The feature
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space, in this case, is a nine-dimensional space where each dimension rep-

resents an accelerometer axis or capacitive sensor group. Thus, any way

in which the Bar of Soap is grasped will provide data that corresponds to

a single point, x, in this feature space. This point can then be input into

a discriminant function, gi(x), one function for each mode, as shown in

equation 4.1. The discriminant function that returns the highest value is

chosen as the most likely mode for the given grasp, x[11].

1 TZ -1 1 ln(lci]) (4.1)
gi(x) = -tx + i i - ln( i1) (4.1)

2 2 2

where

x is the vector of the reduced data from a sample grasp,

Pi is the mean for class i,

and Ei is the covariance matrix for class i

This method provides the advantages that the mode can be determined

with relatively simple arithmetic and that the only parameters that must

be stored are the means and covariances of the different modes. Addition-

ally, it would not require extensive work to update these stored parame-

ters to allow the device to adapt to specific users' grasps.

4.5 Learning Algorithms

One of the fundamental problems with training a classifier is determin-

ing the optimal amount of training. If there is not enough training data,

the classifier is likely to have difficulties as new data variations are intro-

duced. On the other hand, too much training data can lead to overfitting

the training data. In a system designed for multiple users, this can be

especially problematic as the end user's behavior can varies significantly

from the training data.
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A common method for overcoming these deficiencies is to adopt a learn-

ing mechanism in the device. While doing so requires extra initial effort

from the user to train the device to their behavior, it can add a lot of

flexibiity to a device.

Among the classifiers we tested, some lend themselves more easily to

learning than others. The non-parametric methods, such as K-Nearest

Neighbor and Parzen Windows can easily adopt new data points by sim-

ply expanding the database of known points. The main drawback to

these learning methods is that classification time is dependent upon the

size of the known database, so each learned point increases the computa-

tion time.

4.6 Gesture Recognition

By itself, static grasp recognition might have a rather limited set of uses.

However, by incorporating gesture recognition, hand movements and rel-

ative location can be determined. Instead of only analyzing static poses,

dynamic actions can be recognized.

Increasingly, gesture recognition using acclerometers and other sensors

is being incorporated into handheld device interfaces[29, 16]. Much like

single decision classification techniques, there are a variety of ways to im-

plement gesture recognition. Hidden Markov Models provide a very flex-

ible means of gesture recognition. HMMs model a gesture as a series of

states with statistical transition rates and observable characteristics[28].

After training the models, the probability of an observed sequence can be

calculated on the fly.
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Applications & Analysis

In the process of developing the Graspables System, applications were

always a consideration. While it is hoped that the grasp-recognition tech-

nique is general enough to be applied to many other scenarios, specific

objectives strongly influenced the design of the prototypes. This chapter

will discuss the applications that have been developed for the Graspables

implementations. For each application, details will be provided about

how the classification techniques work and what kind of user experience

they provide.

5.1 The Bar of Soap as a Multifunction Hand-

held Device

Following the model of the feasibility study (see Section 5.1), the third

version of the Bar of Soap was used to implement a natural mode switch-

ing handheld device. The addition of two screens and battery power made

for a more realistic handheld model. The additional 24 capacitive sensors
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on the front face also provided denser coverage for the grasp-recognition

system.

5.1.1 Data Collection

As with the original feasibility study, users were seated with the Bar of

Soap in front of them on a table. They were informed that the device

should be assumed to take on a certain functionality which would be in-

dicated by the screen. The screen images used in the study can be seen

in Figure 5-1. The users were asked to pick up and interact with the de-

vice as they saw fit given the interface that appeared on the screen. No

demonstrations were provided.
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Fig. 5-1 Screens Displayed on the Bar of Soap Indicating Functionality Mode (clockwise
from top left): Camera, Gamepad, Remote Control, PDA, Phone

A desktop computer collected the raw sensor data at a rate of 100Hz via

a Bluetooth connection with the Bar of Soap. This connection also al-

lowed commands to be sent to the Bar of Soap to select the appropri-
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ate screen and label the sensor data. Data was collected in groups of 10

modes at a time. This allowed each of the 5 modes to be randomly dis-

played along with a mirrored image of each mode. Additionally, at the

beginning of each training session, the upward facing screen of the Bar

of Soap was alternated. This precaution, along with the mirroring of the

screens, was taken to reduce the chance of any orientational bias appear-

ing in the data.

5.1.2 Feature Selection

The feature selection followed that of the original Bar of Soap feasibil-

ity study. Capacitive sensors were grouped together according to which

face they were on, with the sensors on the screens being divided into two

halves. These active sensor counts, along with the accelerometer read-

ings, were all normalized between zero and one, giving a total set of 11

features.

5.1.3 Data Processing

A naive Bayesian classifier was used to distinguish the functionality modes.

Before this could be done, features were ordered to maintain consistant

relative positions. This insured that when the Bar of Soap was held in a

certain position, the left edge was always treated as the left edge, even if

the device was flipped about one of its axes. After training the Baysian

classifier on a desktop computer, the classifier was simple enough to be

run in real time on the Bar of Soap's microcontroller.
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5.1.4 User Interface

The Bar of Soap as a handheld provides a very self-contained demonstra-

tion of the potentials of grasp recognition. The device passively senses its

orientation and the position of a user's hands, then displays the an vir-

tual interface corresponding to the most appropriate mode. For demon-

stration purposes the sampling and classification routine is performed ev-

ery three seconds, but it could easily be triggered by some sort of gesture.

Figure 5-2 shows the Bar of Soap as a handheld application in use.

Fig. 5-2 The Bar of Soap as a Multi-Function Handheld

5.2 The Ball of Soap as a Baseball Pitch De-

tector

In baseball, subtle differences in the way the pitcher grips the ball have

a profound effect on the outcome of the pitch. Thrown correctly, a slider

can become nearly unhittable as it darts away from the batter at the last

second. However, the slightest error in its delivery can see the pitch land-

ing hundreds of feet in the wrong direction.
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Given the importance of fine finger manipulations on pitching, this seems

an ideal scenario for the Graspables system. A baseball that can detect

how it's being held could be extremely useful in training players to throw

certain pitches or diagnose potential delivery issues. On the other hand,

baseball video games could use such a device to provide a method of

pitch selection that is more realistic and engaging than pushing a button

on a controller.

5.2.1 Data Collection

When using the Bar of Soap to represent a multifunction handheld de-

vice, there was an interest in how interactions vary across populations

depending on the assumed mode of the device. This led to a situation

where how users held the device came to define the grasp that was as-

sociated with a certain mode. For baseball, this is not the case. While

individual grasps may vary slightly from pitcher to pitcher, in general the

outcome (pitch type) is mapped directly to a certain, set hand position.

Thus, instead of collecting data from a variety of users who were allowed

to hold the device as they please, training data was aquired by having a

single user appropriately hold the Ball of Soap for a set of pitch types.

An example grasp is shown in Figure 5-3. Due to the four-way symmetry

of a baseball, training data was collected for each pitch being held in the

four different orientations.

5.2.2 Feature Selection

The Ball of Soap faces some classification issues unique from the Bar of

Soap. While it has slightly fewer capacitive sensors, its rotation sym-

metry can create some additional difficulties. The Tango[24] (see section

2.5.2) dealt with this issue by using spherical harmonics to create a clas-

sification technique. However, for this specific application, the seams of a
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Fig. 5-3 The Ball of Soap Being Grasped as a Fastball

baseball reduce the symmetries to only four.

Like with the Bar of Soap as a multifunction handheld, the capacitive

sensors were grouped in order to reduce the size of the feature space. In-

stead of grouping by sides, as in the Bar of Soap, capacitive buttons are

grouped around the 12 pentagonal faces on the small rhombicosidodec-

ahedron. Each pentagonal face is surrounded by 5 square faces, shared

with a single other pentagonal face, and 5 triangle faces, shared with

two other pentagonal faces (see Figure 3-8). These faces are weighted in-

versely to the number of groups they inhabit with an active pentagonal

face receiving a weight of 6, a square 3 and a triangle 2. Thus each of the
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twelve groups creates a feature with a value between 0 and 31 depending

on the number of activated faces.

5.2.3 Data Processing

The pitch recognition application for the Ball of Soap operates very sim-

ilarly to the multi-function mode switching application for the Bar of

Soap. The capacative sensors are grouped and processed as discussed

above, then Bayesian discriminants are calculated. Each of the four pitch

orientations are treated as a separate class. Thus, for N pitch types, 4xN

determinants are calculated.

The classification routine is triggered by a throwing gesture. This is ac-

complished by continually sampling the sensors, but not calculating the

discriminant functions until the accelerometer values surpass a threshold.

When the threshold is crossed, the discriminants are calculated using the

current capacitive sensor data and acclerometer data that was sampled a

few cycles before the trigger.

5.2.4 User Interface

The Pitch Detection application operates as a Matlab script. Upon ac-

tivation, Matlab opens a serial port for communication with the Ball of

Soap and a screen presents the user with a pitcher ready to throw. The

user then grips the Ball appropriately for the desired pitch and makes a

throwing gesture. The acceleration of the Ball triggers the classification

routine, which in turn triggers an animation taken from Nintendo's Mario

Super Sluggers videogame to display the selected pitch (see Figure 5-4).
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Fig. 5-4 The Ball of Soap as a Pitch Selector Application in Action

5.3 The Bar of Soap as a Generic Controller

The concepts contained within the Graspables project are not just lim-

ited to recognizing a small number of static grasps. Any object equipped

with the sensors necessary for grasp-recognition can also be used for more

standard computer interface objectives. A virtual Rubik's cube applica-

tion was developed to demonstrate how the Bar of Soap can be used to

represent and control a virutual object.

The idea is that sliding a finger across different faces of the Bar of Soap

would trigger the rotation of the corresponding part of the Rubik's cube.

While it might be possible to detect sliding gestures in a simpler man-

ner, it was desired that the method be generalizable to more complex ges-

tures. Thus, we chose to implement Hidden Markov Models[28] to detect

the sliding gestures.
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5.3.1 Data Collection

In order to train the Hidden Markov Models, data was collected and la-

beled as a single user slid his finger over the face of the Bar of Soap. The

sliding gesture was recorded in both directions along each edge of the Bar

of Soap and along the outermost rows and columns of sensors on the two

faces. While the sliding gesture was being recorded on a specific side, no

particular attention was placed on how the user was holding the Bar of

Soap. This insured that data about manipulations that were not sliding

gestures was also recorded.

5.3.2 Feature Selection

The sliding gestures were modeled using a left-right Hidden Markov Model

(see Figure 5-5). The states represented the position of the finger acti-

vating either a single capacative sensor or two as it slides between them.

The number of states in the model depended upon the number of ca-

pacative sensors on the side that was being modeled. In addition to the

left-right HMM's modelling the sliding gestures, ergodic models exist to

model general, non-sliding interactions.

Fig. 5-5 A Left to Right HMM Model of a Four Button Sliding Gesture

These models are trained using the raw sensor data as observation se-

quences. The sliding models are trained using the corresponding sliding

gestures. The general ergodic model is trained using the data from sliding
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gestures that do not correspond to the modeled area. For example, the

data set that represents a sliding gesture along the short edge of the Bar

of Soap is used to train the ergodic model of the long side.

5.3.3 Data Processing

For the virtual Rubik's cube, the Bar of Soap merely transmits raw sen-

sor data to a computer for processing and interpretation. The sequences

of activated capacitive sensors are then broken up into appropriate ob-

servation sequences corresponding to the different gesture models. The

trained models are used to calculate the probability of observing such a

sequence. If a sequence has a higher probability of being observed given

one of the sliding gesture models, a sliding event is triggered.

The sensor data is also used to overcome the fact that the single row of

sensors on the edges of the Bar of Soap cannot determine which end of

the Rubik's Cube should be rotated (see Figure 5-6). In the event of a

sliding gesture on the edge of the Bar of Soap, the end correspoding to

whichever face has fewer activated touch sensors will be rotated.

5.3.4 User Interface

This application, developed as a Matlab script, streams raw sensor data

from the Bar of Soap via Bluetooth. A graphical version of a Rubik's

cube, shown in Figure 5-7, is displayed on screen that it mapped to the

Bar of Soap's orientation as determined from the accelerometer data.

To rotate an end of the Rubik's cube, the user simply slides a finger over

a row of capacitive sensors on the Bar of Soap. If the sliding gesture is

performed on either of the larger faces, the rotation will occur in the di-

rection of the sliding gesture and on the corresponding end of the virtual
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cube. To rotate the end along the axis that is mapped perpendicular to

the front and back face, the user simply places their hand over one of the

large faces and slides their finger along one of the edge faces in the direc-

Fig. 5-6 Ambiguous Mapping of the Rubik's Cube Solved by Hand Detection

Fig. 5-7 Screen Shot of the User Interface for the Bar of Soap as a Generic Controller
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tion of desired rotation. The virtual cube will interpret the covered side

as the stationary side of the cube and rotate the opposite side.



Conclusion

The work described in this thesis was undertaken with the goal of de-

veloping an intuitive and effective interface for handheld devices. As the

Graspables system was developed and tested, it became apparent that

there was no reason to confine grasp recognition to the realm of portable

devices. However, the goals of an intuitive and effective system remained.

One could argue that the fact that people seeing the Bar of Soap for the

first time implicitly understand the meaning of "Hold it like a camera"

demonstrates its intuitiveness. However, in many ways this is a better

indictment of the pervasiveness of similarly designed commercial products

than of the intuitiveness of a sensor covered box. As for effectiveness, the

statistical nature of pattern recognition techniques automatically blur the

idea with needs for acceptable error rates and the such.

On the other hand, this work does give a strong indication that grasp

recognition certainly can implemented in an effective and intuitive way.

The Graspables prototypes show that the hardware requirements for

grasp recognition are acheivable. The user studies offer evidence that the
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software can perform at an acceptable level. Combine these results with

a wide variety of potential applications and it would seem that the Gras-

pables definitely succeeded in its goals.

6.1 Future Work

The prototypes discussed in this thesis only represent a small fraction of

the potential implementations of the Graspables System. Another imple-

mentation that was discussed and would be worth developing is a stylus

prototype. In the graphics art world alone, pencils, paintbrushes, erases

and wands could all be represented by different ways of grasping a stylus.

For more of departure from the work in this thesis, implementing Gras-

pables into existing devices would be interesting. Using the handheld de-

vice mode switching that was demonstrated by the Bar of Soap in a fully

functional handheld would be worth studying. Questions about when to

trigger the classification algorithms, what error rates would be acceptable

to user, and the general effectiveness of the natural mode switching would

be better explored by longer studies with functional devices. There is also

the open question of how form factor variations in comercial handhelds

would impact the Graspables System's effectiveness.

Applying what has been learned from the existing applications to other

scenarios also has potential. Can the Graspables System be used as a

safety check to ensure that power tools are being operated properly?

What could be gained by expanding the scale of the system from hand-

held objects to whole body-sized arrays?

There is also room to perform further tests to improve the reliability and

robustness of the system. Optimizing sensor densities could be valuable.

Exploring how environmental factors such as humidity impact the capac-
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itive sensors could improve system reliability. Exploring additional inputs

such as pressure sensors could be beneficial. The software and classifica-

tion routines could always benefit from more training data.





Appendix A

Schematics and PCB

Layouts



A. Schematics and PCB Layouts

Fig. A-1 Schematics for the Bar of Soap V3 Control Circuit
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Fig. A-2 Schematics for the Bar of Soap V3 Power Circuit
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Fig. A-3 Schematics for the Bar of Soap V3 Capacitive Sensors Circuit
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Fig. A-4 Top Layer of the Bar of Soap V3 PCB
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Fig. A-5 Bottom Layer of the Bar of Soap V3 PCB
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Fig. A-6 Schematics for the Ball of Soap V2 Main Board
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A. Schematics and PCB Layouts

Fig. A-7 Schematics for the Ball of Soap V2 Power Circuit



Fig. A-8 Schematics for the Ball of Soap V2 Top Board
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Fig. A-10 Top Layer of the Ball of Soap V2 PCB



A. Schematics and PCB Layouts

Fig. A-11 Bottom Layer of the Ball of Soap V2 PCB
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