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Abstract

Actual performance of sequential decision-making problems can be extremely sensi-
tive to errors in the models, and this research addressed the role of robustness in
coping with this uncertainty. The first part of this thesis presents a computationally
efficient sampling methodology, Dirichlet Sigma Points, for solving robust Markov
Decision Processes with transition probability uncertainty. A Dirichlet prior is used
to model the uncertainty in the transition probabilities. This approach uses the first
two moments of the Dirichlet to generates samples of the uncertain probabilities and
uses these samples to find the optimal robust policy. The Dirichlet Sigma Point
method requires a much smaller number of samples than conventional Monte Carlo
approaches, and is empirically demonstrated to be a very good approximation to the
robust solution obtained with a very large number of samples.

The second part of this thesis discusses the area of robust hybrid estimation.
Model uncertainty in hybrid estimation can result in significant covariance mismatches
and inefficient estimates. The specific problem of covariance underestimation is ad-
dressed, and a new robust estimator is developed that finds the largest covariance
admissible within a prescribed uncertainty set. The robust estimator can be found
by solving a small convex optimization problem in conjunction with Monte Carlo
sampling, and reduces estimation errors in the presence of transition probability un-
certainty. The Dirichlet Sigma Points are extended to this problem to reduce the
computational requirements of the estimator.

In the final part of the thesis, the Dirichlet Sigma Points are extended for real-time
adaptation. Using insight from estimation theory, a modified version of the Dirichlet
Sigma Points is presented that significantly improves the response time of classical
estimators. The thesis is concluded with hardware implementation of these robust
and adaptive algorithms on the RAVEN testbed, demonstrating their applicability to
real-life UAV missions.

Thesis Supervisor: Jonathan P. How
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Decision-Making Systems

Many modern day aerospace systems, such as Unmanned Aerial Vehicles (UAVs),

require an increasing level of autonomy. While UAVs are currently primarily pi-

loted by human operators, future systems are expected to autonomously (or at least

semi-autonomously) acquire information, process the observations, and come up with

optimal decisions.

In the context of UAV applications, autonomous decision-making is a very chal-

lenging problem [6, 7, 14, 17, 20, 28, 83]. Autonomous agents will be flying over fairly

unstructured and dynamic environments, whose true state can only be indirectly in-

ferred from noisy observations. A hierarchy of decisions systems comes into play,

ranging from low-level path planning algorithms (that, for example, control the alti-

tude or airspeed of a particular vehicle), to more high-level task allocation algorithms,

that decide which vehicle should be allocated to which region of the environment, or

what optimal strategy should be used to accomplish a particular objective.

There are numerous active areas of interest in decision systems for autonomous

systems. For example, computational issues have been, and still are, a very important

area of research. Real-time implementations of task assignment algorithms developed

in the Operations Research community are seeing applications in the UAV commu-

nity [1, 2, 6, 11]. While smaller problems can typically be solved in adequate time for



real-time implementation, scaling up the size of these problems results in potential

computational difficulties that limits the implementation of these decision algorithms

in real systems. Adding the complexities of target motion makes this an increasingly

challenging problem. Furthermore, higher-level control algorithms (such as those for-

mulated as Markov Decision Processes) are confronted with the so-called "curse of

dimensionality", which results in significant computational difficulty as the problem

size increases [8].

Another important area of research is that of the role of communication of the

agents in the decision-making process [1, 22, 70, 71]. For example, given a group of

distributed agents connected by an intermittent communication network, the issues

of which information needs to be passed to which agent and when, is still an active

topic of research [22]. Including the additional realities of noisy transmissions, coupled

with noisy observations, make this a particularly challenging problem. Furthermore,

questions such as "what is the minimal information that should be transmitted in

order to satisfactorily achieve a desired objective?", are still an open problem that

attracts the attention of many researchers.

Yet another important area of research is that of the role of uncertainty in the

modeling assumptions of more complex decision systems such as Markov Decision

Processes. Decision systems generally rely on accurate modeling of the uncertainty in

order to achieve the desired optimal performance, and minor deviations in these model

parameters can lead to suboptimal performance. Due to importance of performance

loss, model uncertainty in decision systems forms the key theme of this thesis where

the emphasis is on a family of decision systems driven by a Markov Chain.

This class of systems is of general interest, as it forms the core of popular Markov

Decision Process- (MDP-) based control approaches extensively used in a large variety

of planning problems. MDP-based approaches have increasingly been applied in the

aerospace community, and active research is being done in the computational chal-

lenges associated with these control problems [14, 83]. Within this class of Markov

Chain-based decision systems, we also include a family of estimation problems known

as stochastic hybrid estimation, where the Markov Chain is one of the model parame-



ters. Hybrid estimation provides a framework for estimating the state of a broad class

of systems, and the outputs of the estimators such as state estimates and covariances

are used as inputs to decision systems (such as the afore-mentioned task allocation).

While the transition probabilities of the Markov Chain model an intrinsic un-

certainty in the state dynamics of the system, the probabilities themselves are the

outcome of a separate estimation process, and are likely to be uncertain. It has been

previously shown by other authors that the poor knowledge of the transition prob-

abilities of the Markov Chain can degrade optimal performance of decision systems

systems [3, 43, 69]. In some of the systems that we will investigate in this thesis,

performance loss of 50% may not be uncommon in the presence of uncertainty in

these model parameters.

An important item to note is that the problems of interest in this thesis are known

to suffer the so-called "curse of dimensionality" [8], making real-time solutions for

large systems an active topic of current research. In the estimation of multiple model

systems, the optimal multiple model estimator cannot be implemented in real-life due

to memory storage requirements. Thus, one resorts to suboptimal approximations for

the estimation of these models. As a result, in accounting for the model uncertainty,

one must take great care to not additionally increase the solution time of the robust

counterpart of these problems.

1.2 Summary of Contributions

The emphasis of the first two chapters is to properly account for, and hedge against,

errors in the transition probabilities in control and estimation frameworks. While

the commonality between these frameworks is the uncertainty in the transition prob-

abilities of the Markov Chain, the systems are fundamentally different in how the

uncertainty impacts the overall performance. The final chapter discusses a technique

for adapting to the Markov Chain via online measurements and has a slightly different

objective from the first two chapters. The goal is to learn the transition probabilities

efficiently, rather than solely being robust to model uncertainty.



One way of accounting for the uncertainty in the transition probabilities is to take

a Bayesian approach, and generate samples (or scenarios) from the prior distribution

on these probabilities, and use these samples to find the robust policy. As this is

generally a computationally intensive task, we extend the work in robust Markov

Decision Processes by presenting a new sampling-based algorithm that requires far

fewer scenarios than conventional algorithms by exploiting the first two moments of

the distribution.

We also show that transition probability uncertainty can degrade performance in

estimation problems. In particular, this thesis demonstrates that transition probabil-

ity uncertainty can generate mismatched covariances, which in turn leads to significant

estimation errors. One key problem is covariance underestimation, where the estima-

tor is overly confident of its estimates. We formulate a robust counterpart to classical

multiple model estimation algorithms, and mitigate the overconfidence phenomenon.

A complementary strategy to incorporating the uncertainty using robust tech-

niques, is to account for model uncertainty reduction by incorporating real-time ob-

servations [76]. We conclude this thesis with some insight into adaptation mechanism

for the uncertain transition probabilities.

The individual contributions are as follows. In the area of robust decision-making,

this thesis presents:

* An algorithm that precisely defines the model uncertainty in terms of credibility

regions, using the Dirichlet prior to model the uncertain transition probabilities.

This bisection algorithm is used in conjunction with Monte Carlo sampling, and

can efficiently find the credibility region used in the robust MDP;

* A new sampling-based algorithm using Dirichlet Sigma Points for finding ap-

proximate solutions to robust MDPs in a computationally tractable manner.

We prove that the Dirichlet Sigma Points are proper samples of a probability

vector (summing to unity, and between 0 and 1) and can therefore be used in

general sampling-based algorithms. By using Dirichlet Sigma Points, we signif-

icantly reduce the total number of samples required to find the robust solution,



while achieving near optimal performance;

* Guidelines for choosing the tuning parameter used in the Dirichlet Sigma Points,

and provides numerical results demonstrating the reduction in samples required

for the robust solution. In particular we show results in a machine repair prob-

lem, and autonomous agent planning.

In the area on multiple model estimation, this thesis:

* Addresses the issue of uncertain transition probabilities in multiple model es-

timators. In particular, we extend the work of Refs. [27, 46] and identify the

problem of covariance mismatch due to the uncertain Markov Chain;

* Provides a robustness framework for generating robust estimates and covari-

ances. In tracking applications, one of the main problems of covariance mis-

match is the problem of covariance underestimation, in which the estimator

is more confident about its state estimates than it should be, and can result

in an increased estimation error. Our robustness framework ensures that the

covariance is not underestimated, and is able to maintain a low estimation error;

* Shows reduction in estimation error in two aerospace tracking problems: the

first one is a UAV multi-target tracking problem, and the second an agile target

tracking problem.

The section on Markov Chain adaptation discusses a method of learning the transition

probabilities of the Markov Chain. In particular:

* An explicit recursion is derived for the mean and variance of the transition

probabilities under a Dirichlet prior, and uses this formulation to identify the

cause of the slow learning of the Markov Chain;

* A new estimator is derived that introduces the notion of an effective process

noise to speed up the transition probability identification problem, and has links

to measurement fading techniques;



* Numerical examples are presented that demonstrate the faster adaptation of

the transition probabilities using the new estimator. This new estimator is

also demonstrated in the context of real-time MDP re-planning where the op-

timal reward is collected almost twice as quickly as conventional adaptation

algorithms.

Finally, we implement the robust and adaptive group of algorithms in our lab's

multi-vehicle testbed. In particular, we demonstrate that our algorithms can sig-

nificantly extend a mission's lifetime by allowing vehicles to perform robust missions,

and quickly adapt to changes in the environmental conditions. More concretely, these

new algorithms reduce the number of vehicle crashes that occurred in the presence of

transition probability uncertainty, thereby extending overall mission effectiveness.



Chapter 2

Decision Processes with Model

Uncertainty

This first chapter addresses the impact of model uncertainty in a general class of

decision-making problems known as Markov Decision Processes (MDPs). It has been

previously shown that MDPs are sensitive to uncertainty in the transition probabilities

of the underlying Markov Chain and that this uncertainty can significantly degrade

optimal performance.

This chapter presents several contributions that build on the work of other au-

thors in the field of robust MDPs. Previous work has primarily presented uncertainty

sets described by ellipsoidal models or polytopic descriptions of the uncertainty in

the transition probabilities. In some cases it might not be possible to construct a

priori bounds on the transition probabilities (as in the case of polytopic uncertainty),

and we therefore use a Dirichlet prior distribution on the transition probabilities.

Importantly, the Dirichlet prior can be described compactly with a small number of

parameters. Using the Dirichlet prior, the analogue of the uncertainty region becomes

a credibility region. Unfortunately, the credibility region for the Dirichlet cannot be

found in closed form and we present an efficient bisection algorithm that, in con-

junction with Monte Carlo sampling, can successfully identify this region. These

samples amount to realizations of the uncertain transition probabilities, and the sam-

ples within this credibility region are then used in a scenario-based optimization to



find robust MDP policies. The key benefit of using a sample-based robust MDP

approach is that it only requires minimal modification of standard solution methods

for nominal MDPs, and hence many systems can be easily modified to account for

robustness.

Using the samples from the credibility region to find the robust MDP policy is

computationally expensive as this approach requires a very large number of samples.

Little work has been done in the context of robust MDPs to address this computa-

tional issue. The main contribution of this chapter is a new algorithm that reduces

the total number of samples by introducing Dirichlet Sigma Points. The Dirichlet

Sigma Points are deterministically chosen samples that are selected by using the first

two moments of the Dirichlet, and are used to approximate the uncertainty in the

transition probabilities. We present some numerical results demonstrating the imple-

mentation of the Dirichlet Sigma Points, and highlight the reduction in total scenarios

required to obtain the robust solution. Guidance is also provided on the selection of

the tuning parameter for the Dirichlet Sigma Points.

2.1 Introduction

2.1.1 Previous work

Markov Decision Processes can be quite sensitive to the transition probabilities of the

underlying Markov Chain, and there has been a lot of work that has addressed this

issue [3, 43, 51-53, 55, 69, 791. In particular, this body of literature has identified the

sensitivity of the MDP to the transition probabilities, and researchers have developed

optimal solutions robust to errors in the transition probabilities.

The work of Satia [79] considered the on-line identification of the state transition

matrix by observing the system's transitions across the states and updating the model

for the transition matrix with these observations. The work of Kumar et al. [51-53]

considered the problem of controlled Markov Chains, when the state transition matrix

governing the chain was unknown. An additional term in the objective function was



added to account for the identification of the transition probabilities.

More recent work (e.g., [3, 43, 55, 69, 86]) incorporates the uncertainty in the

state transition matrix directly in the MDP formulation and finds policies that are

both optimal in minimizing the cost and robust to errors in the optimization param-

eters. In particular, Nilim [69] considers both finite and infinite horizon problems,

and derives a robust counterpart to the well-known Value Iteration (VI) algorithm.

Nilim and El Ghaoui [69] also present numerous uncertainty formulations that can

be used very efficiently with Robust VI. Other approaches have also proposed tech-

niques for adaptively identifying the state transition matrix online [18, 42, 80], but

were not concerned with the robust problem. Poupart [74] has shown that Bayesian

reinforcement learning can be expressed as a Partially Observable MDP (POMDP),

and have presented their Beetle algorithm that can very efficiently adapt to online

observations.

Recent work by Jaulmes et al. [44, 45], Mannor et al. [59] and Delage and Man-

nor [23] has also addressed the impact of uncertainty in multi-stage decision problems.

The work by Jaulmes has addressed the uncertainty in the parameters of Partially

Observable Markov Decision Processes (POMDPs). The solution method uses a di-

rect sampling of the uncertain parameters in the MEDUSA (Markovian Exploration

with Decision based on the Use of Sampled models Algorithm). Additional recent

work by Mannor has investigated the issue of bias and variance in MDPs with poorly

known transition probabilities. In particular, Mannor [59] discusses an analytical ap-

proximation to the mean and variance of the objective function of an infinite horizon

MDP with uncertain parameters.

Delage [23] presents a percentile optimization approach as an attempt to mitigate

the potential conservatism of robust solutions. The percentile optimization formu-

lation addresses the variability in the optimal cost, and they show that solving a

percentile optimization problem for an MDP with uncertain rewards results in a sec-

ond order cone, while the more generic percentile optimization with general, uncertain

transition model is shown to be NP-hard. Delage and Mannor approximate the (un-

certain) value function using a second order approximation introduced in Mannor [59],



Table 2.1: Comparison of Some Uncertain MDP Formulations
Optimization Robust Bayesian Optimization Certainty Equivalence
Formulation Min-max Probabilistic Substitute best estimate

Nilim [69], Iyengar [43] Delage, Mannor [23]
Used by Bagnell [3], Satia [79] Li, Paschalidis [58] Doshi, Roy [26]

White [86b Doshi, Roy [25] Mannor [59]
Jaulmes et al. [44, 45]

Assumptions Uncertainty set of Prior on Mean of
transition model transition model transition model

but these results are only valid for a fixed policy. A summary of these formulations

is shown in Table 2.1.

Nilim and El Ghaoui [69] presented an alternative approach to solving the robust

MDP that used scenarios, but did not provide an explicit method for how these

scenarios were generated. This motivates the following work, as we provide an explicit

method for generating these scenarios, as well as formalizing the regions in a Bayesian

sense by using credibility regions.

2.1.2 Outline

This chapter discusses the general decision making process formulation in Section 2.2,

and the reliance on an accurate model. Model uncertainty is described in detail in Sec-

tion 2.3, where we present an algorithm that precisely defines the model uncertainty

in a Bayesian sense in terms of credibility regions. We then discuss the robustness

approach to mitigate sensitivity to errors in Section 2.4 and use the results from the

credibility region to develop a new scenario-based approach to robustness. In seeing

that this scenario-based approach can be fairly computationally expensive, a new sam-

pling algorithm with lower computational requirements is presented in Section 2.5.

This new algorithm achieves the robust performance of other sampling algorithms,

but requires much fewer samples to find the robust solution. We then apply this new

algorithm to illustrative machine repair and robot planning problems in Sections 2.6

and 2.7.



2.2 Background

2.2.1 Markov Decision Processes

Finite state, finite action, discrete time Markov Decision Processes are defined in the

following manner (see for example, Bertsekas and Puterman [10, 75]):

* State: The system state, i, is an element of all possible states i E X. The

cardinality of the state space, N is denoted as IX I

* Action: The decision maker at each decision epoch (time at which a decision

is made) can choose a control input (action) ak E A. The cardinality of the

action space is denoted as Na = IAl. An optimal policy is defined as u* =

[a*, a ,... ,af], where a* E Na is the optimal control action, and ak(i) is the

optimal control in state i at time k

* Transition model: The transition model describes the (probabilistic) system

dynamics IPa, where ra describes the probability that the system will be in

state j at the next time given that it was in state i at the previous time step,

and action a was implemented'

* Reward model: The reward gk(i, a) is the value of being in state i at some time

under action a at time k. The reward model can also be defined as gk(i, a, j)

where this is the value of being in state i at the current time step, implementing

action u, and transitioning to the next state j

* Optimality criterion: The optimality criterion is the desired objective, and

can include maximizing the expected reward over a finite time horizon, or min-

imizing an expected cost. The optimization can be performed over a finite time

T which constitutes the time horizon or an infinite time horizon

'Note that to maintain consistency in notation with the subsequent chapters, the transition model
is denoted by HIa . In many other texts, see for example Bertsekas [10], the set of admissible policies
is denoted by H.



* Discount factor: A discount factor 0 < ¢ < 1 is usually introduced to account

for the fact that current costs or rewards have a higher weight than costs or

rewards in the future

The transition model is more precisely defined as Ia E 7NxN Va, given by

Ha =

7ra I ra a

1 ,1  1,2 ... 1,N

7 , aI , 2 ... 7ra
2,1 2,2 "2 " 2,N

a a 2a7N, 1 7N,2 ... rN,N

whose (i, j)th entry describes the probability of being in state j at time k + 1, given

the preceding state was i at the previous time step

r,j = Pr[xk+1 = j I Xk = i ak = v] (2.1)

Throughout this chapter, we consider the well-studied linear, additive utility of

the form

T-1

JT = g(iT, aT) + E gk(ik, ak) (2.2)
k=O

where gk(ik, ak) denotes the cost at time k for being in state ik under action ak, and

g(iT, aT) is the terminal cos. Our objective will be that of minimizing the expected

cost as

minE [JT] (2.3)

Note that maximizing an expected reward in this stochastic setting is also fairly stan-

dard and can be solved using Dynamic Programming (DP). Alternative formulations

of a more general nature are presented in the next section.



2.2.2 Alternative Formulations

While the linear, additive utility is a common objective, it does not take into account

a user's risk aversion, and alternative formulations have been studied that do take into

account this important criterion. For example, a user might be generally interested

in finding the optimal policy that maximizes an expected reward, but the reward also

has low variability. This gives rise to so-called risk-sensitive policies [21, 61]. The

optimal policy in this case is a policy with lower expected reward, but much lower

variance, than the optimal policy of Eq. 2.3. An example of such a risk-sensitive

framework is shown below

min - log E [exp T] (2.4)

where - > 0 is a tuning parameter that reflects a user's risk aversion and by taking a

Taylor series expansion for small values of y, this formulation approximates a "mean-

variance"-like expression of the form

1
min- log E [exp'JT] P. min [EJT + y/2Ej] (2.5)

where Ej indicates the variance of the cost JT. Mannor [59] calls this the "internal

variance" of the MDP. Note that when y --+ 0, this formulation results in the familiar

linear additive utility of Eq. 2.2.

Coraluppi et al. [21] have shown that finite horizon risk-sensitive formulations

satisfy a Dynamic Programming-like recursion and that Markov policies are optimal.

However, the infinite horizon formulations in general may give rise to non-stationary

policies [61], which may not be practical to implement. This issue is addressed by

extending the horizon of the finite horizon problem and taking the limit to an in-

finite horizon. Coraluppi and Marcus [21, 61] also considered MDPs with partial

observability.

An alternative optimization is the worst-case approach, where the optimization is



of the form

min max [JT] (2.6)
u X

This alternative formulation looks at the worst-case trajectory (or "sample-path"

from the Markov Chain) that can occur with non-zero probability and that results in

the worst possible reward. This model does not weigh the probability of this worst-

case trajectory, and bears a close resemblance to the conservatism of classical robust

control [90]. Coraluppi [21] showed some relationships between the risk sensitive

formulations of Eq. 2.4 and Eq. 2.6.

In closing, these important formulations present more general optimizations to

that of the linear additive utility, but like the linear additive utility formulation,

assume that the transition probabilities of the Markov Chain are well known.2 The

issue of model uncertainty is addressed in the next section.

2.3 Model Uncertainty

2.3.1 Transition model uncertainty

In practice, the transition model 11H is usually inferred from previous observations

and the transition probabilities are themselves the outputs of a separate estimation

process. For example, in a financial applications [42], the generators of the Markov

Chain are derived from empirical observations of the state transition matrix. In an

estimation context, Jilkov [46] and Doucet [27] identify the transition probabilities

by observing online transitions. In the machine learning and Hidden Markov Model

(HMM) community, learning the transition model through noisy observations is a

common objective [76]. There are many models for describing the uncertainty in the

transition model, and the more common ones are described in the next section.
2 The worst-case approach actually only relies on the knowledge of the structure of the Markov

Chain.



Polytopic Model

A classical approach for describing uncertainty in the transition probability is a poly-

topic model, that provides upper and lower bounds on the transition probability,

where

= r I 7r-w< 7< } (2.7)

and the lower and upper bounds (7r- and ir+ respectively) are used to provide infor-

mation on the admissible range of the probability. In addition, the appropriate row

or column sum constraint of the transition probabilities is enforced.

Likelihood Model

An alternative description is a likelihood model, where

i={7i. Zfijlogij>} (2.8)

where fij are the empirical frequencies of the state transitions, and ' is a tuning

parameter constrained such that V < Z-,j fij log fj - 4 max- ' can be found via

resampling methods [69], and is related to the Bayesian credibility regions we will

discuss in the next sections.

A second order approximation to the log likelihood model is the ellipsoidal model,

defined as

Sij < 2 , Vi (2.9)

and a is a constant that needs to be found. Again, for both example, the appropriate

constraints for the probability must be enforced for Wij.



Bayesian Approach

The approaches introduced previously, such as the polytopic approach, require knowl-

edge of the constraints on the transition probabilities, and it may be unclear how to

derive these constraints. An alternative approach is to provide a prior distribution

on the transition probabilities. This approach is useful in that it does not require

hard constraints (such as knowing a priori the bounds 7r and +s). Also, depending

on the choice of prior, this methods provides a rich class of follow on algorithms that

learn, or adapt to, the transition probability.

In following this Bayesian approach, one assigns a prior fD to the uncertain transi-

tion probabilities 7r - fD (p a), where a is a vector of hyperparameters, or parameters

that characterize the probability density fD. This density is introduced next.

2.3.2 Dirichlet density

This thesis primarily uses the Dirichlet density to represent transition probability un-

certainty.3 The primary reasons for using the Dirichlet is that this choice of density

implicitly accounts for the unit sum constraint on the rows of the probability transi-

tion matrix 1l, and positivity constraints. Furthermore, the Dirichlet distribution is

defined by hyper-parameters ai that can be interpreted as counts, or times that a par-

ticular state transition was observed. By exploiting conjugacy 4 with the multinomial,

this makes any measurement updates available in closed form. The Dirichlet prior

has been applied frequently in the Artificial Intelligence literature [25, 26, 44, 45].

The Dirichlet fD is a prior for the row of the transition matrix. That is, by

defining p = ri,., we have p = [Pl,P2, ... ,pN]T and parameter (or prior counts)

a = [al, a 2, ... , aN] T , is defined as

N N

fD(Pla) = K p-, E pi = 1, 0 < pi < 1 (2.10)
i=1 i

3The Dirichlet density is the multi-dimensional extension to the Beta distribution [72].
4The conjugacy property ensure that if a Bayesian update is performed with a Dirichlet prior,

and a multinomially distributed sequence of observations, the updated prior is a Dirichlet.



where K = r(Ei) is a normalizing factor that ensures the probability density inte-H Ir(a,)

grates to unity. Two examples of the Dirichlet with different choices of hyperparam-

eters are given in Figure 2-1.

2.3.3 Uncertainty set using the Dirichlet

While the Dirichlet density is characterized by the hyperparameters ai for each row of

the transition model, the density itself does not completely provide a precise notion

of uncertainty in the row of the transition matrix. A more precise notion of the

uncertainty is the idea of the credibility region [9, 19]. The credibility region is the

Bayesian equivalent of a confidence region, and is formally defined as follows: a

100 x 7% credibility region for parameter p is a subset P of P of the form

P = {pEPI fD(p I a) > k( ()}

and k(r) is the largest constant such that

IffD(p I a)dp 7 (2.11)

In other words, given a prior fD(a), the output is a credibility region P, such that

the overall mass of the density covers a 100 x r% region, such that the likelihood of

the density achieves at least the threshold k(77).

Two examples of the credibility regions are shown in Figure 2-2, for two different

values of r7, r = 0.50 and 77 = 0.95. The red line indicates the credibility region for a

level of 50% and 95%. Note that as expected, as the credibility region increases, the

area covered by the density fills a larger portion of the probability simplex.

The integration problem for the credibility region, unfortunately, cannot be solved

in closed form for the Dirichlet density. Even for the simpler Beta density (a one-

dimensional Dirichlet), it turns out that the credibility region P is a line segment
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Dirichlet confidence level: 0.95

Fig. 2-2: Two different Dirichlet credibility regions for a = [3, 3, 3]: (left) 7r = 0.50

and (right) 7r = 0.95. These regions were obtained by Monte Carlo sampling (see

Section 2.3.5).

over p, and that the integration

Kpa(1 - p)a2 dp = KpaY(1 - p)a 2dp > k(17) (2.12)

can only be evaluated numerically. This is in fact the definition of the incomplete Beta

function. Matlab for example, evaluates this by numerical gridding.5 Even though

the numerical gridding approach is fairly efficient for the Beta density, extending to

higher dimensions like the Dirichlet becomes highly impractical, and computationally

expensive. Common alternative techniques for bypassing the computational complex-

ity of numerical grids is the use of Monte Carlo methods [19, 29]. We introduce these

next, and discuss how to incorporate them in finding the credibility region for the

Dirichlet.

2.3.4 Monte Carlo Methods

Monte Carlo methods can be used to efficiently approximate difficult integration

problems. Our approach for finding the credibility regions relies crucially on the

simplicity of generating samples from the Dirichlet. Since the Dirichlet is in the

5http://www.mathworks.com/

Dirichlet confidence level: 0.5



exponential family of distributions, it can be sampled very effectively with commercial

software by normalizing samples obtained from the Gamma distribution. To generate

Dirichlet samples from a density fD(pla) = K j=N p- ', one samples from the

Gamma distribution with shape parameter ai and scale factor of unity,

qi - Gamma(ai, 1) (2.13)

The Dirichlet sample is then given by yi = qi/ Ej qi. This corresponds to a single

realization of the probability vector described the Dirichlet density.

2.3.5 Dirichlet Credibility Region Using Monte Carlo

Monte Carlo integration still does not provide any insight into how to ultimately find

this region P, as we still need to evaluate the difficult integral of Eq. 2.11. The basic

idea of the approach is to use Monte Carlo sampling to generate realizations from the

Dirichlet distribution, and approximate the integral over the entire credibility region,

with a finite sum of Dirichlet samples Yi in the credibility region

/ fD(P I a)dp > , 6i(fD(yi I a) > 9) (2.14)

where 6i (x) is an indicator function that is 1 if the argument x is true, and 0 otherwise.

The additional requirement is that

P = {p E P I fD(yi Ia) _ k(r/)}

is satisfied for each of the samples. Unlike Chen [19], we will be using the samples

to ultimately seek a robust solution in the next sections, and we do not know a

priori what the value for k(r) is. In order to find the value for k(77), we employ a

bisection algorithm to find the actual threshold k(71). Our approach relies on the

unimodal property of the Dirichlet density to find this credibility region using a

bisection scheme.



Algorithm 2 Selecting samples within the Credibility Region
1: Provide an initial guess for lower bound k-(j), and upper bound k+(rq) on the

threshold
2: Define k(,q) = 1(k-(7) + k+(77))
3: Generate N, samples yi, Vi = 1,..., N, for a Dirichlet prior fD(P I a)
4: For all samples i, evaluate the density, and update the indicator function 6i

i I1 If fD(i I a)> k(7) (2.15)

0, else

5: if F > , then
6: k-(r) (k-() + k+(,q))/2
7: else
8: k+(r) := (k() + k+(r))/2
9: end if

10: if Ns "I- < E then
11: Return k(r7) and 6i
12: end if

The algorithm is initialized with an upper and lower bound on k(r), and uses

Monte Carlo simulation to generate a large number N, of random samples of the

Dirichlet density. Each of these samples is then checked to see whether or not they

exceed the density k(rl) at the current time step. All the samples that exceed this

threshold are then summed up, and if their total fraction exceeds the threshold, then

there are too many samples, and the threshold k(r) is reduced. If there are too few

samples, the threshold is increased. The algorithm converges since the Dirichlet is

unimodal, and the solution is unique.

These iterations are shown in Figures 2-3 and 2-4. The red line indicates the

credibility region, the blue x denote the samples of the Dirichlet, and the gray x are

all the samples that fall within the credibility region, which means that at convergence,

95% of the samples fall within this region.

2.4 Robustness in MDP

Now that we have an efficient method for calculating the uncertainty region given a

Dirichlet density, we can move on to the problem of making robust decisions. The
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Fig. 2-3: Iterations 2 (left) and 4 (right) for finding the
(shown in red) for a = [3, 3, 3] using 1000 samples. The
credibility region are shown in gray, while the remaining
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Fig. 2-4: Iterations 6 (left) and 8 (right) for finding the Dirichlet credibility regions
for a = [3, 3, 3]



previous section has discussed methods to quantify the level of uncertainty in the

transition probabilities of the Markov Chain by using the Dirichlet density. The

method of choice was a Monte Carlo method that samples from the uncertain tran-

sition probabilities. The idea in this section is to use this uncertainty set (and these

samples) to find solution to robust Markov Decision Processes. First, the robust MDP

is introduced, following from the precursor work of Nilim [69] and Iyengar [43].

2.4.1 Robustness

As we have stated earlier, in the presence of uncertainty in the optimization parame-

ters, the optimal control policy u* generated from incorrect parameters may no longer

be optimal. Even if one had access to an estimator that could report the best estimates

II (in some maximum likelihood sense for example), simply replacing the uncertain

parameters II with their best estimates lI may lead to biased results [59]. Thus we

introduce a robust counterpart to the nominal problem. The robust counterpart of

Eq. (2.3) is defined as

min max E [Ju] (2.16)
U nHEn

Like the nominal problem, the objective function is maximized with respect to the

control policy; however, for the robust counterpart, the uncertainty set II for the

transition matrix is given, rather than the actual state transition matrix II for the

nominal problem. The objective is then minimized with respect to the worst case

realization of the transition matrix II belonging to the uncertainty set fl. The robust

policy is found from

u = arg min max E [J] (2.17)

Nilim and Iyengar show that robust Dynamic Programming [43, 69] can be used

to solve for this robust policy. They also present robust dynamic programming and

robust value/policy iteration counterparts to the classical (error-free) MDP formula-



tions for both finite and infinite horizon MDPs. These theorems are repeated below

for convenience, and the proofs are in the references provided.

For the finite horizon problem, the following robust Dynamic Programming theory

is provided.

Proposition 1 (Robust Dynamic Programming [43, 69]) The robust control problem

minmaxE g(iT, aT) + gk(ik, ak) (2.18)
u IIEf k=O

can be solved via the recursion

Jk(i) = min(g(ik, ak) + o%(Jk+1)), Vi, Vk (2.19)
ak

where o~ = sup,E7r J is the support function over the uncertainty set II. A corre-

sponding optimal control policy is obtained by setting

a*(i) E arga min (g(ik, ak) + a 1(Jk+l)) (2.20)

For the case of an infinite horizon, discounted cost objective, Nilim and Iyengar

show that Value Iteration can be generalized to Robust Value Iteration in the case of

an uncertain transition model, and is shown in the next algorithm

Proposition 2 (Robust Value Iteration [43, 69]) The infinite horizon problem's value

function with stationary uncertainty on the transition matrices, stationary control

policies, and discounted cost function

minmaxE lim (Z-1]kg(ik, ak) (2.21)
u IIEfl To--o

satisfies the optimality conditions

J(i) = min (g(i, a) + oau(J)) (2.22)
akwhere the value function J(i) is the unique limit value of the convergent vector se-

where the value function J(i) is the unique limit value of the convergent vector se-



quence defined by

Jk(i) = min (g(i, a) + ¢ao(Jk+1)) , Vi, Vk (2.23)

and the control action is found as

a*(i) E arga min (g(i, a) + ai(J)) (2.24)

2.4.2 Computational Tractability

The solution times for the robust optimization of Eq. (2.16) are of course dependent

on the number of stages in the problem, the dimension of the state, and the number

of control actions. However, for the robust MDPs, these solution times also depend

on the choice of the uncertainty model for the parameters.

Nilim [69] shows that uncertainty models such as the likelihood and polytopic

models lead to computationally tractable optimizations. Scenario-based methods

were also introduced in Nilim [69] as an alternate uncertainty model for the transition

probabilities. In this uncertainty set, the decision-maker has access to, or can generate

scenarios that form a scenario set II, that can then be used in performing the robust

optimization of Eq. (2.16). This is similar to the random sampling from the MEDUSA

approach [45]. Nilim shows that such a scenario-based optimization can also be solved

with Robust Value Iteration, and requires only a marginal modification of standard

value iteration.

Scenario-based approaches generally require tradeoff studies to determine the total

number of simulations actually required to accurately represent the uncertainty in the

transition probabilities. For example, in determining the credibility region alone, one

must generate a large number of scenarios, but it is impractical to include all these

scenarios in the robust optimization. There are as yet no known results that can a

priori determine how many samples are sufficient. Some current results in a particle

filtering framework [31] that rely on the Kullback-Leibler divergence as a distance

measure to the underlying distribution indicate that these samples could be on the



order of 103 . Thus, alternative sampling strategy must be investigated.

2.5 Sigma Point Sampling

The key problem in using scenario-based approaches is that there is no clear method

for selecting how many scenarios are sufficient to obtain the robust solution; further-

more, this number tends to be quite large. As a consequence, one needs to either pick

a sufficiently large number of samples, or come up with an algorithm to reduce the

total number of scenarios required. In this section, we present a heuristic method to

reduce the total number of scenarios, whose origins are in nonlinear estimation.

Julier et al. [47 developed Sigma Points as a deterministic sampling technique

that selects statistically relevant samples to approximate a Gaussian distribution for

nonlinear filtering problems. The Sigma Point algorithm is defined as follows for a

Gaussian random vector x E 'N. If the random vector x is normally distributed with

mean xG and covariance RG E NxN, x , N(RG, RG), then the Sigma Points Mi

are formed deterministically as follows

MO = XRG, Wo = KI(N + n)

Mi = RG+ + )R i ... ,N

Mi = G - ((N + )RG)i, Vi = N + 1,...,2N

The notation (/-R)i denotes the ith row of the square root matrix of R. Each of

the samples carries a weight wi = 1/(2(N + rt)) and a tuning parameter , is used

to modify the level of uncertainty desired in the distribution.6 For example, in the

Gaussian case, a good heuristic [47] choice is r = 3 - N. After these samples are

6The only requirement on the weights wi is that they sum to 1, Ei wi, but can otherwise be
positive or negative.



propagated through a dynamic model, the posterior distribution can be recovered as

+ = wi A +

R+ = wdM + - )(M+ -+)T (2.25)

where Mt are the Sigma Points propagated through the dynamic model.

2.5.1 Dirichlet Sigma Points

While the Sigma Points were originally developed in a Gaussian setting to reduce

estimator divergence issues associated with linearization of the nonlinearity (hence,

a completely different problem), our application is slightly different. Our objective is

to approximate the Dirichlet with these Sigma Points, and in so doing, find a subset

of statistically relevant scenarios that can capture the fundamental uncertainty in the

transition probabilities. In other words, by using the first two moments (p, E) of the

Dirichlet, we have an expression for finding these Dirichlet Sigma Points as follows

yo=p

Yi = P + (V ) Vi = 1,.. , N

y = p- a i, Vi=N+1,...,2N

where /i is a tuning parameter we will discuss at length later, but has the same effect

of the wi for the Gaussian Sigma Points. p and E are the mean and covariance of the

Dirichlet.

In contrast to the Gaussian Sigma Points, the fact that the support of the Dirichlet

is over the probability simplex requires that the following two statements must apply

in order to use the Dirichlet Sigma Points:

1. The Dirichlet distribution must be well-approximated by a mean and a covari-

ance.

2. The samples Yi must satisfy the requirements of a probability vector, namely [72]:



ZY 2 = 1, and 0 < Yi < 1

The first point is satisfied since the parameters ai can be recovered from a set of

Dirichlet-distributed random variables only using first and second moment informa-

tion [88]. Furthermore, the mean and the variance of the Dirichlet are

Mean: j3 = ai/ao, ao = E a

Variance: (i, j) =
ai (o-ai)

aO(ao+1)

and Appendix B shows two approaches to recover the original Dirichlet from the first

two moments.

The two-moment approximation is a very good approximation. We can show this

by obtaining the mean and variance of the Dirichlet, and recover an estimate & of the

original parameters ai from these moments using the technique of Appendix B. The

absolute error, e, was normalized for each parameter

e = -llai - ail|

and the results are shown in Figure 2-5. Here 200 random parameters ai were chosen

for an increasing number of state dimensions: for the top figure, the parameters were

chosen in the uniform interval a E [2, 5], while in the bottom figure, the parameters

were chosen in the uniform interval a E [2, 50]. The plots show the mean value (and

1-standard deviation) of the accuracy on the left axis, while they show the logarithm

(base 10) of the error on the right axis. Even for small values for a, where the

two-moment approximation may be less valid, the two-moment approximation still

achieves a 4% error for the parameters, and in fact achieves less than a 1% error for

state dimensions N > 10.

Thus, it remains to show that the Sigma Point samples in the case of a Dirichlet

satisfy a probability vector subject to an appropriate choice of the weights wi. The

following propositions (whose proofs are in the Appendix) show that the Sigma Points
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generated for a probability distribution in fact satisfy the assumptions of a probability

vector, subject to an appropriate choice of weights.

Proposition 3 If E[p] and E are the mean and covariance of a Dirichlet distribu-

tion, then each Sigma Point satisfies a probability vector; namely, each Yi satisfies

1 T Y, = 1, Vi, where E /2 is the ith column of the square root of the covariance

matrix E

Proof: See Appendix B.

The following additional proposition constrains the choice of the parameter 3 to

ensure that the Sigma Points generated completely satisfies the requirement that

o0 yI<1.

Proposition 4 If E[p] and E are the mean and covariance of a Dirichlet distribu-

tion, the maximum positive value for the parameter /, O3max, which guarantees that

each Sigma Point Yi = E[p] - max,ii/2 is a probability vector, is given by

maxi max E[p]i 1 - E[p]i -E[pli -1 + E[p]i (2.26)

S= 1/ 1/2 2 1/2
ii --ii ij

where E 2 is the (i, j)th entry of the square root of the covariance matrix E, and

E[p]i is the ith row of the mean probability vector.

Proof: See Appendix B. [

Based on this statistical description of the uncertainty in the transition proba-

bilities, the Sigma Point sampling algorithm applied to uncertain MDPs selects the

following Dirichlet Sigma Points

Yo = E[p]

Yi = E[p] + Omax (E1/2)i Vi = 1, .. , N (2.27)

Yi = E[p] - 3max (E1/2)i Vi = N + 1,... ,2N



2.5.2 Dirichlet Sigma Point Discussion

Remark 1 (Relation to Sigma Points): The Dirichlet Sigma Points can be inter-

preted as modified and constrained versions of the Sigma Points originally developed

for a Gaussian density, since they sum to unity, and each Dirichlet Sigma Point must

be between 0 and 1. A visualization of the Dirichlet Sigma Points is in Figure 2-6,

where the Dirichlet Sigma Points (blue) are shown for different values of the credi-

bility region (shown in red). While the credibility region increases (e.g., from a 95%

to a 99% region), the Sigma Points are expanded outwards and thus cover a greater

region of the probability simplex, while for smaller values of the credibility region,

the Sigma Points are tightly clustered. Recall that this is in fact a visualization of

the Dirichlet Sigma Points for a row of the transition matrix.

Remark 2 (Sampling requirement): The Sigma Point algorithm for an Ns di-

mensional vector requires 2Ns + 1 total samples. Hence, even for a 100-state system,

only 201 total samples are generated. Random sampling methods like MEDUSA [45]

often use a heuristic number of samples, or need large-scale Monte Carlo investigation

of the total number of simulations required to achieve a desired confidence level since

the sampling is done in a completely random fashion. The Sigma Point algorithm

however, explores along the principal components of the probability simplex identi-

fying samples that have a 0 deviation along those components, and so captures the

statistically relevant regions of uncertainty. Furthermore, since the number of sam-

ples scales linearly with the number of dimensions, the uncertainty can be absorbed

readily in more sophisticated problems. For each transition probability matrix row,

only a total of 2N + 1 Sigma Points are required.

Remark 3 (Two-moment approximation): The two-moment approximation of

the Dirichlet distribution implies that there might be inaccuracies in the third and

higher moments of a reconstructed Dirichlet distribution. However, the higher mo-

ments of the Dirichlet decay to zero very rapidly (see for example Mannor [59]), and

experience has shown that the two-moment approximation is quite accurate.

Figure 2-7 shows the result of solving a 2-dimensional infinite horizon Machine
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Fig. 2-6: Dirichlet Sigma Points (blue) shown to approximate the contours of con-

stant likelihood (red) for different sizes of the credibility region.

Repair problem we will revisit in the numerical examples, using Monte Carlo realiza-

tions of the transition probabilities (red), and evaluating the cost J = (J(1), J(2))

associated with this optimal policy. That is, an optimal policy and cost were calcu-

lated for each realization of the transition probability matrix. The Dirichlet Sigma

Points (blue) were also used to find the optimal policy and cost. The distribution of

the costs obtained with these two methods are shown in Figure 2-7 and the Dirichlet

Sigma Points approximate the cost distribution extremely well. Furthermore, the

worst case cost of J = (9.5, 10) is found by evaluating only 9 Dirichlet Sigma Points

instead of evaluating all 500 Monte Carlo realizations.
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Fig. 2-7: Cost distribution approximation using Dirichlet Sigma Points (blue)

2.5.3 Robust MDP Using Sigma Point Sampling

The new robustness objective of Eq. (2.16) can now be specified in terms of the finite

number of Sigma Point samples. Rather than solving the optimization problem

J = minmaxE [Ju(xo)] (2.28)

over the uncertainty set 1I E II, containing the scenarios, the robust optimization

is solved over the smaller set of scenarios generated by the Dirichlet Sigma Points

YPC I,

J p = minmaxE [Ju(xo)]
u Hey

9.5

8.5

6.5

E

F

1

;e

0,
k

(2.29)



Algorithm 4 Sigma Point Sampling for Uncertain MDP
1: Select 3 = [0, ,max] using Proposition 4
2: Select uncertainty model for i th row of transition matrix by choosing appropriate

parameters a for the Dirichlet distribution, Hi,. - fD(P I a)
3: Calculate the mean and covariance

E[p] = E[Hj,.1 = a/ Za

E = E[(H,. - E[p)(I,. - E[p]) T ]

4: Generate the samples using the Sigma Point algorithm according to Eq. (2.40)
5: Solve the robust problem using the Sigma Points and Robust Dynamic Program-

ming

J = min max E [Ju]

The full implementation of the Sigma Point sampling approach for an uncertain MDP

is shown in Algorithm 4. The choice of P and the selection of the Dirichlet distribution

fD(p I a) are made prior to running the algorithm. Using the uncertainty description

given by fD(p I a), the mean and covariance are used to generate the Sigma Points

Yi, which are the realizations for each of the models of the uncertain MDP. Robust

Dynamic Programming [69] is used to find the optimal robust policy.

2.5.4 Choice of P

The selection of P is a critical choice for the algorithm, and any decision-maker that is

extremely concerned with the worst case would obviously choose , = /ma'. However,

in this section we provide insight into choosing other values for P to trade off this

worst-case approach by using the notion of the credibility region introduced earlier.

The Sigma Points, Yi E R Z are defined as follows for a distribution with mean



E[p] E RN and covariance E E RNxN, where N is the state dimension.

Yo = E[p]

Y3 = E[p] + ( 1 / 2)i Vi = 1, ... , N (2.30)

yj = E[p]- 0 (E1/2) Vi = N + 1,...,2N

The choice of 3 captures the amount of uncertainty the user is willing to embed in

the problem, and is related to a percentile criterion of the credibility region.

Choice of / for a Beta distribution

First, we address the issue of choosing P3 for a 2-parameter Dirichlet distribution

known as the Beta distribution. Suppose that a user is interested in accounting for a

credibility region with i7 = 95% for a Beta distribution with parameters a and b. For

completeness, the Beta distribution is defined as [33]

fB(pa, b) = (a b) (1 _)b-1 (2.31)r(a)r(b)

Finding the 7 percentile is equivalent to finding an interval on [1-, l+] such that

pE[p]+FE
1 / 2

I - fB(pa, b)dp (2.32)
JE[p]-P1/2

where r7 is the desired percentile (e.g., r = 0.95 for a 95% percentile), E[p] is the mean

of the variable, and E is the variance. The parameters of the Beta distribution are

a and b. Since this is a single equation with two unknowns, we make the additional

simplification that the interval is symmetric, thus making the optimization well posed'

1- = E[p]- ,v/

1+ = E[p] + /v (2.33)

7Conditions under which this may not be warranted are those where a lower and upper quantile
are provided, and thus the optimization is over two equations and two unknowns and is thus well
posed.



where p is the mean value of the Beta distribution, E is the variance, and now P is

the optimization variable that needs to be found. The optimization is therefore that

of finding the , such that

OB: min 7- fB(pla, b)dpJ (2.34)

While the integral is known as the incomplete Beta function, and does not admit a

closed form solution, this can be solved via a bisection algorithm over P (a related

problem of finding the Beta parameters from quantile information is provided in

vanDorp [85], where a bisection scheme is also used to find the upper and lower

quantiles of a Beta density). The justification for using the bisection algorithm is

that the optimization is over the Beta cumulative distribution which is a smooth

(and continuous) function over [0, 11. Hence, there exists a unique solution 3* for the

optimization OB. Such a bisection algorithm is shown in Algorithm 5.

Figures 2-8 and 2-9 show an increase in , for a Beta distribution with an increased

credibility region, which implies a higher degree of conservatism. Figures 2-8 and 2-9

show the equivalence of finding the tuning parameter , for a zero-mean, unit variance

Gaussian distribution (red) and a Beta distribution (blue). For a Gaussian, a 95%

percentile implies , = 2, while for a Beta distribution, a 95% percentile implies3 - 2.

Choice of / for a Dirichlet distribution

The tuning parameter 3 can be obtained for the Dirichlet using the results obtained

earlier with the credibility region. In fact, one can first sample to find the credibility

region approximately with the samples qi (from Monte Carlo sampling)

PfD(P I a)dp >_ 7 6 (f(qi I a) > 77) (2.36)
i



Algorithm 5 Bisection Algorithm for optimal /
1: Inputs:

* Beta parameters a, b, termination threshold c

* Threshold 7r

2: Output:

* Tuning parameter 3

3: Initialize lower and upper bounds 1 = 0, u = 1, and d = 1/2
Beta distribution mean = a/(a + b)
ComDute the incomDlete Beta function

J+d

J(d)= fB(pla, b)dp (2.35)

6: if J(d) - rl < E then
7: 1 = d

8: else if J(d) - rl > E then
9: u=d

10: end if
11: if IJ(d) - rjI < E then
12: / = d/E 1 / 2

13: end if

and once the credibility region P is found, the optimal / can be found by equating

the Dirichlet Sigma Point Yi with the likelihood

fD ( I a) = k (7) (2.37)

Note that for each Y3, there is only a single /3, and so this is a single equation with

one unknown. By the unimodality of the Dirichlet, we can take log-likelihoods of

both sides to obtain

log(k(r)) - log(K) = E ai log(Y)

Z i log(Pi + OE//2) (2.38)
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Fig. 2-8: Choosing 3 for a Beta distribution (blue) and a Gaussian distribution

(red) is similar, but not identical for a two-state system. Here, the distribution has a

large variance ("low weighting"); a user that wanted to include 95% variation for the

uncertain variable p would choose 3 = 2 for a Gaussian distribution, but 3 x 2.25

for a Beta distribution.

This equation can also be solved using a bisection scheme over /, since the Dirichlet

is globally concave. In summary, this section has shown how to select the parameter

/ for the Sigma Points, based on the desired size of the credibility region q.

2.5.5 Relations to the Ellipsoidal Model

This section draws an interesting link to the ellipsoidal scheme of Nilim with the

Dirichlet Sigma Points. Nilim's ellipsoidal uncertainty model [69] is a second order

approximation to the log likelihood function. In the ellipsoidal formulation, the un-

certainty model is an ellipsoid intersected with the probability simplex and results in
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Fig. 2-9: Choosing P3 for a Beta distribution (blue) and a Gaussian distribution

(red) is similar, but not identical for a two-state system. Here, the distribution has

a small variance ("high weighting"); a user that wanted to include 95% variation for

the uncertain variable p would choose 3 = 2 for a Gaussian distribution, and also for

a Beta distribution.

the following expression

Pell = P I "N I 1p =1, (p (j  f (j )) 2 <2 (2.39)
j=1

where 2 is provided a priori (or found via resampling), f(j) are the empirical fre-

quencies, and 1 is the vector of ones.

This ellipsoidal optimization is performed at each time step in the robust value

iteration in order to find a set of feasible p. Consider now solving Eq. 2.39 with

the additional constraint that the optimization variables p are required to be Sigma

Points: that is, replacing p with Y. Recalling the Sigma Points definition (where we



have replaced p with the empirical frequency f),

Yo = f

Y, = f + p, (E'/2)i Vi = 1,..., N (2.40)

y = f - P3 (E1/ 2)i Vi = N + 1,... 2N

then, the ellipsoidal approximation results in

f(j) (2.41)Pell = P N I 2 2 (2.41)j=1

This inequality provides an alternative method for choosing 3. Select Pi as

O/ < (2.42)N 0 2 If (j)

Note that in this case, the problem can be either that of choosing 3 (in which case

this is a very easy 1-dimensional optimization), or that of simply fixing the choice of

/ based on the previous discussions of this chapter.

An example of the latter case is shown in Figures 2-10 and 2-11, where the Dirich-

let Sigma Points (red) are compared to the ellipsoidal approximation (blue contours)

as the algorithm proceeds in the value iteration steps. At convergence, the Dirich-

let Sigma Points found an optimal (robust) solution of 16.607, while the ellipsoidal

method had a solution of 16.652, which is within 99% of optimality. The Dirichlet

Sigma Points solutions were obtained in approximately half the time of the ellipsoidal

method, which had to solve a linear program with quadratic constraints.

2.6 Example: Machine Repair Problem

This section considers a small, but illustrative, numerical examples using a machine

repair problem adapted from Bertsekas [10], and investigates the effect of the errors

in the transition probability.
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Fig. 2-10: Comparison of ellipsoidal approximation with Sigma Points
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Fig. 2-11: Zoomed comparison of ellipsoidal approximation



Table 2.2: Nominal Machine Repair Problem

Xk = 1 (Machine running):

Jkl = lJk + C 1

a.(k = 1) = arg max {Jk+(Xk = 1, ak= m), Jk+1( = 1, ak = n)
ak

Xk = 0 (Machine not running):

Jk+l = IOJk + Co

a*(Xk = 0) = arg max {Jk+1(Xk = O, ak = r), Jk+1(k = 0, ak = p)}
ak

I = [; 1 - , C 1  [Cmaint 0 ]T

Io [= 73 1 -Y3 C= [Crepair Creplace ]T

J = [Jk+l(Xk = 1) Jk+1(Xk = 0)]T

A machine can take on one of two states xk at time k: i) the machine is either

running (xk = 1), or ii) broken (not running, Xk = 0). If the machine is running, a

profit of $100 is made. The control options available to the user are the following: if

the machine is running, a user can choose to either i) perform maintenance (abbre-

viated as ak = m) on the machine (thereby presumable decreasing the likelihood the

machine failing in the future), or ii) leave the maching running without maintenance

(ak = n). The choice of maintenance has cost, Cmaint, e.g., the cost of a technician

to maintain the machine.

If the machine is broken, two choices are available to the user: i) repair the

machine (ak = r), or ii) completely replace the machine (ak = p). Both of these two

options come at a price, however; machine repair has a cost Crepai,, while machine

replacement is C,,eplac, where for any sensible problem specification, the price of

replacement is greater than the repair cost Creplace > Crepair. If the machine is

replaced, it is guaranteed to work for at least the next stage.

For the case of the machine running at the current time step, the state transitions



are governed by the model

Pr (Xk+l = fails Xk= running, ak=m) = 71

Pr (xk+1 = fails I xk=running, ak=n) = 72

For the case of the machine not running at the current time step, the state transition

are governed by the following model

Pr (Xk+1 = fails I xk=fails, ak=r) = 73

Pr (Xk+l = fails Xk=fails, ak=p) = 0

Note that, consistent with our earlier statement that machine replacement guarantees

machine function at the next time step, the transition model for the replacement is

deterministic. From these two models, we can completely describe the transition

model if the machine is running or not running at the current time step:

Running (xk 1) I1 = 1 [ 1 - 1

1 - 72 72

Not Running (xk = 0) : H = 3 1 - 73

1 0

The objective is to find an optimal control policy such that ak(xk = 0) E { r, p } if

the machine is not running, and ak(xk = 1) E { m, n } if the machine is running, for

each time step. The state of the machine is assumed to be perfectly observable, and

this can be solved using Dynamic Programming

Jk(i) = max g(xk, ak)+ Ia Jk+l (
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Fig. 2-12: The difference between the worst case objective through sampling (blue)

and Sigma Point sampling (red) decreases only slightly as the number of simulations

are increased significantly. The Sigma Point sampling strategy only requires 5 samples

to find the worst case objective of J* = 28, but the line has been extended for

comparison.

2.6.1 Uncertain Transition Models

In this numerical example, it is assumed that the transition model H0 is uncertain;

that is, there are errors in the likelihood of the machine failing after is repaired. This

is a credible assumption if the person repairing it is new to the job, for example, or

there is some uncertainty on the original cause of the machine failure.

The robust control U*R,k maximizes the objective function over all matrices IIo in

the uncertainty set flo that minimize the objective function

Jk*(i) = min max [g(xk, ak) + ijJk+l1(
fl ft akEA I

.1 Worst-case
objective gap

1
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Note that since the transition model 1 is well-known, the robust counterpart of the

nominal problem only needs to be formulated for the model Ho.

The solution approach using Sigma Point Sampling generate realizations of the

matrix 1o based on Algorithm 4, and in particular, the Sigma Points were found by

Yo = E[I 0]

y = E[Io] + Omax ( 1/2) Vi = 1, ... ,N (2.43)

Yi = E[Io] - max (Er/2 Vi N 1,..., 2N

2.6.2 Numerical Results

The machine repair problem with uncertain Ilo was evaluated multiple times with

random realizations for the transition matrix H0 , and compared with the Sigma Point

algorithm.

The main result comparing the Sigma Point approach to random sampling is

shown in Figure 2-12 where the worst case objective (y-axis) is plotted as a function

of the number of samples required. The blue line is the worst case found by using

conventional sampling, and the red line is the Sigma Point worst-case using 3 = 3.

This choice of / was in fact sufficient for this example to find the worst case of J" =

28. Note the slow convergence of the brute force sampling, with a significant gap even

with 1200 samples. The Sigma Point only required 5 samples, since the uncertainty

was only in one transition model of dimension R2x2. Hence, N, = 2 x 2+1 = 5. Note

that the number of scenarios required to find the worst case varied significantly with

the choice of hyperparameters ai of the Dirichlet distribution. When cai 100, for

example, the Dirichlet distribution has a much smaller variance than when ai ' 10

and the total number of samples required to find the worst case for ai 10 is smaller

than ai 100.

Figure 2-13 shows the performance of the worst case as a function of the parameter

/1 E [0, 1]. The objective of this figure is to show the tradeoff between protecting

against the worst-case and choice of the parameter /3. Since the Sigma Points only
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Fig. 2-13: Sigma Point sample tradeoff of robust performance (top subfigure) vs.

normalized / shows that increasing the robustness also decreases the objective. The

robust policy (bottom two figures) switches at 0 = 0.65.

require a small number of samples to find the worst case in this smaller machine

repair example, this tradeoff can be performed very quickly.

The worst case objective was found for each value of / and is shown in the top

figure. The bottom two subfigures show the policy as a function of 0. For 0 < 0.65,

the optimal (robust) policy is to perform maintenance, while if / > 0.65, the outcome

of the maintenance is too uncertain, and it will be more cost effective (in a worst-case

sense) to not perform maintenance at all. Hence, there is a discrete policy switch at

3 = 0.65 that indicates that a different decision should be made in response to the

high uncertainty in the transition model.
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2.7 Example: Robot on a Grid

In this next numerical example adapted from Russell and Norvig [78], consider an

autonomous agent on a M x N grid that has to reach an exit (in minimum time) while

accumulating a maximum reward. The exit is either a +1 reward or a -1 reward.

The agent can move in any of the squares in othogonal directions and the control

actions, u, available are u = {up, down, left, right}. To model the uncertainty in the

agent's actions, the desired action u* will only occur with probability p, and with

probability 1 - p the agent will move in an orthogonal direction. That is, if the agent

selects u = up, then the agent will go up with probability p, but will move left or

right with probability 1 - p. If the agent hits the wall, it will bounce back to the

original location.

In this problem, the nominal objective is to maximize the expected reward; in

the presence of uncertainty in the model parameter p, the adversarial effect of any

uncertainty in the transition model will be to decrease the reward. The transition

models lHa of this MDP are parameterized by p, fIa(p) E RMNxMN . Therefore, simply

choosing different values for p will result in different transition models, and as a result,

different optimal actions. The actual transition model is of dimension R MNxMN, but

for this problem is very sparse since the agent can only transition to adjacent cells.

Also, for the discounted case, infinite-horizon policies, u*(i I p, r(i)) are parame-

terized by p and will in general vary with the reward r(i) for being in each state i.

Here it is assumed that r(i) is given by

+1, Agent in high reward exit

r(i) = -1, Agent in low reward exit (2.44)

-0.02, In all other cells

That is, the cell rewards are equal except for the exits, where the agent may either

obtain a negative reward or a positive reward.

An optimal policy for an almost deterministic case is shown in Figure 2-14, where

p = 0.99. In this case, an agent starting from cell(1,1) will try to reach the goal



cell(4,3) by implementing u* = up for two steps, and then u* = right for the remaining

three steps. This will take 5 steps. Likewise, an agent starting from cell(3,1) will

implement u* = up for two steps, and u* = right for a single step, and this will take

3 steps.

Next, we consider the case of uncertainty in the parameter p, the probability of

performing the desired action. This parameter may not be well known, for example,

if the agent is a newly designed robot and p may only be at best estimated by the

designer.

We take a Bayesian approach, and use the Dirichlet distribution to model the prior

of this parameter. (For this simple case, this Dirichlet becomes a Beta distribution

on p):

fD(p I a) = Kpal-1 (1 - p)a2-1 (2.45)

where K is a normalization constant that ensures fD(p I a) is a proper distribution.

From the parameters al and a2, we can calculate the mean and variance of p as

p = a,/(a, + a 2)

2 a 1 2

(a + a 2)2 (a + a2 +1)

By appropriately choosing a, and a 2, we can come up with three distinct cases

for p. These are also shown in Table 2.3:

* Case I (Low Uncertainty): al = 40, a 2 = 10

* Case II (Medium Uncertainty): al = 12, a 2 = 3

* Case III (High Uncertainty): al = 4, a 2 = 1

Note that for each case, the mean of p is the same, p = 0.8, but the variance is

different.



Table 2.3: Different Levels of Uncertainty for p

Case # Uncertainty Level al a 2 Mean, p Variance, a
I Low 40 10 0.80 0.003
II Medium 12 3 0.80 0.010
III High 4 1 0.80 0.027

Nominal Policies

The Certainty Equivalent optimization will be identical for each Low, Medium, or

High Uncertainty case since A = A(p). The resulting policies will also be the same.

Hence, the certainty equivalent policy (CE) will be

u*E(i) = arg max [g(i, u) + rJ*(j) , Vi, a (2.46)

where we are maximizing the reward (hence, maxu instead of minu). Such a policy is

visualized in Figure 2-15. For this policy, the optimal action at cell(3,1) is to go left,

since there is only an 80% of implementing the desired control action, as opposed to

selecting u* = up for the case of Ip = 0.99. Note that for case III (High Uncertainty),

p can actually take worst-case values much lower than pS = 0.8; the policies found

from these worst-case p values result in different policies from policies using p. For

example, a 2-o deviation from p3 = 0.80 for case III will result in p = 0.57, and this

policy is quite different from a policy that assumes p = 0.80: see Figure 2-16. In

particular, if the agent is in the proximity of the low reward exit (cell(3,1)) and since

the probability of performing the desired action is so low, the agent will perform

actions that on average would not let it enter this cell. In this case, the optimal

action u* = left. This is so that with probability 1 - p, the actions will be either up

or down, but not right, which would send the agent in the low reward exit. The CE

policy completely ignores this behavior by excluding the variability of p.

An example of the impact of the variability in p is shown in Figures 2-14 and 2-16.

In Figure 2-14, the optimal policy was found using p = 0.99, and the true transition

model was A(p)a. Here, the optimal path starting from cell(2,1) takes the agent to

the high reward goal in 4 time steps. In case of a worst-case value for p, p = 0.6, the



agent still uses the optimal policy found for p = 0.99 (see Figure 2-16, but now the

agent ends up in a low reward state, and takes 5 steps. This was because the agent

oscillated between two states.

Sigma Point Policies

The Sigma Point policies explicitly take into account the variability of p. For this

simple problem, the Sigma Points are

y 2 = P + 0f

Y3 = P - OV

where / is chosen to ensure that all the Sigma Points satisfy 0 < Yi < 1.

The Sigma Point optimization is

u(i) =arg min max g(i,a) +*(j) , Vi anE(Yi()) U A ij

The Sigma Point policy for the High Uncertainty environment, max = 10, and 3 = 0.5

is identical to the policy p = 0.60. We solve this problem using scenario-based Robust

Value Iteration, where each of the scenarios are the Sigma Points Yi(O).

2.7.1 Numerical Results

To compare SP and CE, we computed the policies off-line, and then simulated sample

agent paths using the worst-case values of p calculated as p = p - /V for / =

{0, 0.1,..., 1}. This resulted in the following p (note they are parameterized by /3),

Table 2.4: Uncertainty in p
p 0.8 0.76 0.73 0.69 0.65 0.62 0.58 0.55 0.51 0.47 0.44
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Probability of correct action: 0.99 and reward: -0.02

right right right HI GOAL

up OBST up LO GOAL

up right up left

Fig. 2-14: Nominal policy when p = 0.99. Agent starting in cell (3,1) will choose
u = up to approach the high-reward goal (4,3) since agent will successfully implement
desired control action with 99% probability.

Probability of correct action: 0.8 and reward: -0.02

Fig. 2-15: Nominal policy when p = 0.80. Agent starting in cell (3,1) will move left
since agent will successfully implement desired control action with 80% probability,
and there is less risk by avoiding the neighborhood of the low reward cell.

right right right HI GOAL

up OBST up LO GOAL

up left left left



Probability of correct action: 0.6 and reward: -0.02

1 2 3 4

Fig. 2-16: Nominal policy when p = 0.60. Agent starting in cell (3,1) will now
move up because there is a low probability (60%) of the agent actually performing
this action successfully. The actions in the states neighboring the low reward cell are
consistent with the agent avoiding this cell: for example, when the agent is in cell
(3,2), the optimal action is to choose u = left since, if this action is not performed,
the agent will either implement u = up or u = down, but not u = right, which is
towards the low reward.

2.7.2 More general scenario

We conclude the autonomous agent planning problem with a larger scenario and

slightly more complex obstacle structure (see Figure 2-17). The agent starts in cell

(1,5) and can either exit in cell (2,1) collecting a low reward, or in cell (4,2) collecting a

high reward. The optimal policy turns out to be the one that has the robot collecting

the high reward. The probability of transitioning to an adjacent cell is different from

cell to cell.

However, in the presence of transition model uncertainty (Figure 2-17), the robot

path realizations end up in the low reward exit. By using the robust formulation with

the Dirichlet Sigma Points (see Figure 2-18), the robot takes the slightly longer path,

but avoids the low reward altogether.

The robust policy was obtained with the Dirichlet Sigma Points, and the compu-

I I I
right right right HI GOAL

up OBST left LO GOAL

up left UD down

U I i I _ _ doI



Table 2.5: Suboptimality and Computation Time (To) for Different r7
7r = 95% r = 99%

# Scenarios Suboptim (%) Tc Subptim (%) Tc
1250 3.5 3 6.7 3.7
2500 1.1 13 4.3 10.9
3750 0.5 15 1.6 17.0

Sigma Point 1.3 0.7 3.2 0.7

tational savings are shown in Table 2.5, as a function of the total number of scenarios

used, the suboptimality ratio of the optimal (robust) objective using 5000 scenarios,

and the overall computation time T,. In order to achieve a suboptimality ratio of

1.1% with 2500 scenarios required a computation time of 13 seconds, while using the

Dirichlet Sigma Points, a similar performance was obtained in only 0.7 seconds.



Current State = 6 Time = 6
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Fig. 2-17: A realization of the nominal policy under transition model uncertainty:

the robot falls in the low reward exit, and accrues a large negative reward.

Current State = 17 Time = 13

Al Il
l

Il Al
-I- I I -I - I

HIGH )

2 3 4 5 6

Fig. 2-18: A realization of the robust policy under transition model uncertainty: the
robot takes a longer path, but avoids the low reward exit altogether.
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Accumulated reward (Nominal)
.... ...I ... . . .- . . . . ..i.. . . . . . . . . .
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Accumulated reward (Robust, Conf = 0.9)
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Fig. 2-19: Histogram of expected rewards for a nominal (above) and robust policy

(below). Note that the robust policy has a slightly lower on average performance, but

greatly improved worst case performance.
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2.8 Conclusions

This chapter has discussed the role of the uncertainty in the transition probabilities

of a Markov Chain, and how it impacts decision-making algorithms formulated as an

MDP. We have taken a Bayesian approach to modeling the uncertainty in the transi-

tion probabilities, and presented a Monte Carlo-based bisection algorithm to precisely

define a model uncertainty for these probabilities. This extends the applicability of

results obtained by other authors to more Bayesian-based uncertainty descriptions.

We found that sampling-based strategies to find the robust policy was computa-

tionally expensive, and presented a computationally tractable technique - the Dirich-

let Sigma Points - for efficiently creating the samples of the uncertainty transition

probabilities. We have shown computational savings over otherwise straight Monte

Carlo simulation, while at the same time maintaining consistent performance with

these numerically intensive approaches.

Appendix 2A: Dirichlet Sigma Point Selection Proofs

This appendix shows that the Dirichlet Sigma Point algorithm generates samples that

are proper transition probabilities, a critical point for using this approach in Markov

Decision Processes. In particular, we will show that the quantity y = E[p] + O'1/2

satisfies a proper probability, namely that 1T(E[p] +OE 1 /2) = 1. This is done by first

showing (Proposition 5) that the row sums of a covariance matrix of a probability

distribution sum to 0. Then we show (Proposition 6) that for any matrix whose row

sum equal to zero, its square root (if it exists), will also have row sums equal to zero.

Using these two proofs, we can then show that the quantity y satisfies a probability

(Proposition 7), and show additional requirements on the choice of 0 (Proposition 8).

Proposition 5 (Row/column sum constraint on covariance matrix E') The row and

column sums of the entries of the covariance matrix of a probability vector E are equal

to 0.



Proof: Given a probability vector p = [Po, Pi,... ,PN]T , then the covariance matrix of

this probability vector is given by

E = E[(p - E[p])(p - E[p]) T ] (2A-1)

However, since p is a probability vector, then PN = 1- Ej pi, and thus the covariance

matrix E will not be full rank, implying that 3v (a left eigenvector) such that

vTE = AvT = 0 (2A-2)

where A is the eigenvalue, equal to 0 since the matrix E is not full rank. One such

eigenvector is the vector of ones, 1 = [1, 1, 1, ... , 1]T

1TEi = E

=E (po

N

(Po - E[po]) 1 (p2 - E[p ])
i=O

- E[Pol) Pi

1=1

-E[p ]]
i /i

=0

Example: (Dirichlet density) Consider the covariance matrix of the Dirichlet,

which is given by

-a'-- If i =j,

Qi(ao-ai)
ao2(ao+l)

Then,

-E
joi

1
= ci,(ao + 1)

a(ao - a)
0 (ao + 1)

(E
isi

1
a2(ao + 1)

-ai 1: aj + &0&i

ji

=0

-(i, j)
j

(2A-3)

(2A-3)

(i, j) =

iaja
ao(ao + 1

io



since the last summation term is equal to ao.

Ultimately, however, the goal is to demonstrate that the quantity Yi = E[p] +

'31/2(E 1 /2)i satisfies the unit sum constraint of a probability vector. In order to prove

this, we need to demonstrate the following intermediate result.

Proposition 6 (Properties of a square root matrix) The matrix square root (B) of

a matrix A whose row and column sums are zero also satisfies the property that row

and column sums are equal to 0.

Proof: Consider a positive semi-definite matrix B E 7NxN whose (i, j)th entry is

Bij. Also consider a matrix A such that B is the square root of A (when such a

square root exists), namely A = B 2 . In the case of a symmetric B, this implies that

A = BB = BBT. Consider the (k, m)th entry of A, Akin. Then, by direct matrix

multiplication,

N

Akm E BkjBjm (2A-4)
j= 1

Now, since the rows and columns of the matrix sum to zero, namely 'k Akm = 0 and

Em Akin = 0. Then, consider the kth row sum

N

SAkm E BkjBjm = 0 (2A-5)
k k j=1

which, by rearranging the summation is satisfied by

Bm Bkj =0 (2A-6)

that is if the sum on the jth column is zero, Zk Bkj = 0. In the case of the symmetric

B, of course, this also implies Ej Bkj = 0. 0



This is the result that we needed to therefore show that if 1T (E[p] + O3E) = 1,

and 1T i = 0, then the sum of the rows/columns of the matrix square root, 11/ 2, will

also sum to 0, namely, 1T(E1/2)i = 0. Thus, the probabilities formed by E[p] + fEi

will necessarily satisfy a probability vector.

Proposition 7 (Mean-variance satisfies a probability vector) If E[p] and E are the

mean and covariance of a Dirichlet distribution,

E[p] + j3E/2 (2A-7)

is a probability vector, where EJ1/2 is the ith column of the square root of the covariance

matrix E

Proof: Following directly from the earlier propositions, since the square root of the

covariance matrix satisfies 1TE 1 / 2 = 0 (by Proposition 6), then

1 T (E[p] + /2) 1 T (E[p])+ 1 /2

=0

= 1T (E[p])

=1 N

An important point, nonetheless, is that an appropriate selection for 3 is still

required; while the probability vector constraint is implicitly satisfied (as we have

shown), each entry is not enforced to satisfy a valid probability: i.e., there is no

constraint on each probability to be non-negative or greater (in magnitude) to 1, only

the sum constraint is satisfied with this approach.

Proposition 8 (Selection of P) If E[p] and E are the mean and covariance of a

Dirichlet distribution, the maximum positive value for the parameter ,, l,,ax, that

guarantees that E[p] ± OmaxE i/2 is a probability vector is given by

/1max = 1 min (E[p] 1, 1 - E[p]i) (2A-8)
i3



where is the (i,j)th entry of the square root of the covariance matrix E, and

E[p]i is the ith row of the mean probability vector

Proof: For E[p] ± OE1/2 to satisfy a probability vector, two conditions must be

satisfied:

i) 1T(E[p] i //2) = 1,

ii) 0 < E[p]i ± O E/2 < 1

0 and 1)

Vi (a probability vector sums to 1)

Vi (each entry of the probability vector lies between

Item i) is satisfied by Proposition 7, and hence we seek to find the maximum /

that will satisfy item ii). Addressing each side of the inequality,

0 < E[p]j ± OE1/2

E[p]j ± O2 < 1 -
23

and

±E[p]j

1/2-ij

1/2

In the first inequality, since only positive values are considered, then Ei5 3. The
23

minimum value for the second inequality to hold is given by/3 < 1-E[p. Note that
SE/2

since E[p]- <-1 and typically - < E[p]i, the value of fmax will generally be greater

than 1.

Appendix 2B: Dirichlet Distribution Parameter Iden-

tification

Given a Dirichlet distribution fD for an N-dimensional state with probability given by

p = [p, P2, -... , PN]T and parameters (or can interpret them as counts of a particular

transition) a,

fD(pla) = K
N

p i-1 = K p -1pa2-

i=l1

N-1

i=l N-
i= 1

(2B-1)



the first and second moments can be derived as

E[p] = [P1,2,. , N] T

= 1 [al,a2, ... , YN]

S1 [
= 1 [a , 2., aN]T

and

E = E[(p - E[p])(p - E[p])T ]

1
a(ao + 1)

- aa2

a2(a0 - a2)

where ao = EN aj.

The parameter identification problem is as follows: Given the mean E[p] and

covariance E of the Dirichlet distribution, determine the parameters a. A

first approximation of the parameters can be made by observing that the trace of the

covariance matrix E is given by

tr(E) =
1

o+1)
ao ai - a

1

o+) 2

(2B-2)

However, since ai = aoE[p], then substituting this in obtain that

1
tr(E) = (1 - E[p]TE[p])

ao + 1

... - j!IN

... -0a2a N

... aN(ao - aN)

(2B-3)

a (ao - a,)
-O2a1



in the following way

1 - E[pJTE[p]

tr(E)
a = ao E[p] (2B-4)

Note that these are estimates of the parameters. In order to obtain the Maximum

Likelihood estimate of the parameters, &, we must first form the log likelihood of the

Dirichlet distribution (see for example, Wicker [88], where N observations are made),

£(a I p) = log(fD(Pla))

= N log(F(ao)) - log((ak))+ Z(ak - 1) lo (Pk) (2B-5)
k k

and solve the optimization

a = arg max (a I p) (2B-6)

The log likelihood is globally concave (since the Dirichlet belongs to the exponential

distribution), and a solution to this optimization problem is globally optimal, and

furthermore, can be found for example by using a Newton-Raphson method. However,

we have noted in our work, that using the two-moment approximation (without the

need for the optimization) provides very accurate values for the parameters.



Chapter 3

Hybrid Estimation with Model

Uncertainty

This chapter addresses the role of Markov Chain uncertainty in a common class of

stochastic hybrid estimation problems. The key distinction from the previous chapter

is that the performance loss in this class of problems is the estimation inefficiency

that arises from the uncertainty in the transition probabilities. In this chapter, the

state of the system is more general that than of the previous chapter, in that it is

composed of both a continuous and a discrete set of dynamics.

This chapter presents two key results. First, we show that uncertainty in the

transition model can lead to covariance mismatches. This is an extension to previous

work that only considered estimation bias in the case of uncertain transition models.

An important effect of mismatched covariances is that they can lead to overconfident

estimates, and ultimately lead to large estimation errors. An example of this is in the

context of a UAV multi-target tracking problem, where covariance underestimation

can lead to unacceptable estimation errors. Our second main result is the develop-

ment of an algorithm that explicitly accounts for the uncertainty in the transition

probabilities and hedges against the overconfidence phenomenon. This new Robust

Multiple Model filter shows improved tracking performance in the presence of this

uncertainty.



3.1 Introduction

3.1.1 Previous Work

A broad range of modern systems can be modeled as hybrid systems, or systems

that have both a continuous and discrete set of dynamics [81]. A common example

of a stochastic hybrid system is a Jump Markov Linear System, which is composed

of a finite set of dynamic models, and at any given time, the switch between the

different dynamic models (or "modes") is modeled by a Markov Chain with a known

probability transition matrix. This chapter focuses on these types of systems, as

they are fairly general models for a broad range of applications. In the engineering

community, for example, hybrid systems show up in sensor management problems [36],

Air Traffic Control [4J, failure detection [65, 87, 89] and diagnostics [37, Bayesian

tracking [38, 48, 67], and in underwater applications, such as tracking jellyfish [73].

The medical community has applied hybrid models to tracking ventricular motion

from ultrasound [68] and tumors [77].

Multiple model estimation is used to find the state estimate and covariance for

stochastic hybrid systems [4, 40, 41]. There are numerous techniques in the litera-

ture for tackling this challenging problem [57, 63]. The Interacting Multiple Model

(IMM) [4, 15, 56] and Generalized Pseudo Bayesian (GPB) estimators are two popu-

lar implementations of multiple model filters and it has been shown that under certain

conditions, these filters can significantly outperform individually tuned Kalman fil-

ters [4]. These empirical results generally assume that the probability transition

matrix is available to the estimator designer. In reality there may be insufficient data

to justify this assumption, or the transition model may simply not be available to the

estimator designer at all. It has been recently shown that multiple model estimators

may be sensitive to the transition parameters of the Markov Chain, and that uncer-

tainty in the transition model can lead to biased nominal estimates [27, 46]. This

chapter extends these results to the case of the covariance mismatch problems that

can in turn lead to estimation errors.

Accounting for uncertainty in the transition probabilities is not a new problem.



However, the main emphasis in the estimation community has been the identification

of the uncertain probability transition model. For example, Tugnait [82] considers lin-

ear systems with stochastic jump parameters. The linear dynamic model is a function

of an unknown, but stationary probability transition matrix which is estimated by

online observations using a truncated maximum likelihood technique; Tugnait shows

that this estimate of the probability transition matrix converges after the system

achieves quiescence.

More recently, Jilkov and Li [46] and Doucet and Ristic [27] have considered

the problem of probability transition matrix identification using noisy observations,

and empirically show the estimation bias that can occur from the unknown transition

matrix. Jilkov and Li propose new algorithms for identifying the most likely transition

model driving the Markov Chain of the system, II. Their work relies on a certainty

equivalence-like approximation where at each time step, the most likely estimate of

the transition model is used to update the state estimate and covariance. Doucet [27]

presents an analytical approach for identifying the transition probabilities using a

Dirichlet model to estimate the probability transition matrix. While Doucet [27]

and Jilkov [46] assume the transition matrix is unknown and develop a systematic

identification process to reduce the uncertainty, they do not consider the impact of

the uncertain transition model fI on the covariance mismatch problem, which is one

of the results of this work.

3.1.2 Outline

This chapter is organized as follows: Section 3.2 reviews multiple model estimation

and Section 3.3 discusses the issue of transition probability uncertainty in multiple

model estimation and describes the covariance mismatch problem. We introduce

the Robust Multiple Model Filter in Section 3.4 and present some conditions for

covariance underestimation. Some numerical results are presented in Section 3.6 in

the context of a UAV multi-target tracking problem.



3.2 Background

Linear multiple model estimation assumes that a dynamic system is driven by a

unique set of N, different dynamic models, but the system actually is in mode i

at some time k. Each dynamic model is described by a different system with state

Z = C4xt + GWu + w, k = H Ik + v (3-1)
Xk+ 1  k  k -k Zk = H'

A noisy measurement zk E No is available at time k. For each model i, the system

matrices Vi E RNxN, G' E RNxN,I Hi E RNoxN and control inputs u i E RN

are assumed known.' The noise term w' (respectively, v) is zero mean, Gaussian,

w , N(O, Qi) (respectively, v - N(0, Ri)). At a time increment from k to k + 1, the

system can transition from mode i to a mode j according to the probability transition

matrix II E Nm xN-. The probability transition matrix is a stochastic matrix with

column sums equal to unity, and each entry satisfies the definition of a probability:

0 7rij < 1. The current mode of the system is not directly observable due to the

noisy measurements zk. Hence the current model is only known with some probability,

p'j, which denotes the probability of being in model i at time k given the information

at time j. Note that the key difference between the transition matrix in this chapter

is that it does not depend on the control input, whereas in the previous chapter, the

transition matrix depended on the control action.

It turns out that the optimal multiple model filter cannot be realized in practice

since this requires keeping track of a combinatorial number of mode transitions of the

system throughout the course of the estimation process. As a result, one generally

resorts to suboptimal schemes such as the Generalized Pseudo Bayesian (GPB) and

Interacting Multiple Model (IMM) to overcome this complexity. [4] The prediction

and measurement updates for the GPB1 filter are shown in Table 3.1 and a diagram

of a GPB1 implementation is shown in Figure 3-1.2 The state estimate, xk+lk+1,

'Here No is the dimension of the observation vector, N, is the dimension of the control input,
and N is the dimension of the state vector.

2Note that the GPB1 estimator is one of the many forms of the GPB estimator and we use it to



Table 3.1: Estimation Steps for a GPB1 implementation showing the prediction
and measurement update steps for both the probabilities (left) and dynamic models
(right). Note that each estimator cycle, the estimator for each model i is re-initialized
with the combined estimate Xk+llk+l and covariance Pk+llk+1*

Probabilities Model
Propagation step: /k+11k = IIklk Xk+llk = (IXklk + Gus

P%+ilk = iPklk(i)T + Qi

Measurement update: p +11k+1 1j +1k+1 k+1k + W - )

kz+ 1 k+1 - +1k Wk

error covariance p+11k+ 1, and the probability Pk+llk+l are computed recursively for

each model i. For linear systems, each filter estimate and error covariance is the

output of a Kalman filter tuned to each particular model. The probability updates

are shown in the left part of the table, and the state estimate and covariance updates

are shown in the right hand side.3 Note that just as in classical estimation, there is

a propagation and measurement update step for both the continuous state and the

probabilities.

In order to maintain computational tractability (and avoid the combinatorial ex-

plosion of maintaining all possible mode sequences), suboptimal filters (such as the

GPB and IMM) then approximate the combined posterior distribution from the in-

dividual Kalman filters, into a single Gaussian distribution with mean Xk+llk+ 1 and

covariance Pk+llk+l. This process relies on a two-moment approximation of a mixture

of Gaussians, and the following expression can be derived [4] for the combined state

estimate Xk+lk+l and combined covariance Pk+lk+l

k+1k+1 = +k+i 1% (3-2):4k+ ~l= Pk+llk+lXk'+llk+l

i

- zIk+1k+l (Pk+llk+ + 1k+l1+ll11k+1 - X (3-3)

highlight the key features of the covariance mismatch problems in the following sections.
3The parameters Sk and the Kalman filter gain Wk are given by Sk = HiPk+llk(Hi)T + Ri,

Wi= P+ki (Hi)TSi7'- , and A' is the likelihood function.
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Fig. 3-1: Multiple Model updates (propagation, measurement update, and combina-
tion) for a Generalized PseudoBayesian formulation.

where X = (k+l1k+1+)(:k+1k+) T . The GPB1 formulation then uses this combined

estimate and covariance as a common initial condition for the Kalman filters at the

next estimator cycle (see Figure 3-1).

3.3 Model uncertainty and covariance mismatch

Multiple model filters are parametrized by many different quantities that are poten-

tially uncertain or unknown, such as the statistics of the process noise Qi and the

dynamic models Vi. In this chapter, we are principally concerned with the uncer-

tainty of the transition matrix II. We motivate the importance of accounting for this

uncertainty in this section, and show how it ultimately leads to both biased nominal

estimates and mismatched covariances through the combination step of Equations 3-2

and 3-3.

X++ 1 - +lk Measurement
Pk+lk+1 - +11k update

a+llk-



3.3.1 Source of Uncertainty in II

While the transition probability matrix inherently captures uncertainty in mode tran-

sitions by the use of probabilities, these probabilities are generally the outcome of an

estimation process themselves [46]. For example, the frequentist interpretation of

these probabilities is that they are calculated by normalizing the counted mode tran-

sitions nij by the total number of transitions Nj

ni=j Nj = u (3-4)
7Nj - -,n

3 i

In practice, this counting process requires a large number of observed transitions be-

fore the estimated probability ii, converges to the true probability, ij = limN--oo ij.

Hence, with a small number of observations, the transition probabilities themselves

can be thought of as uncertain parameters of the multiple model estimator. Further-

more, even if an estimate of the transition probabilities were available for a complex

systems, it is unlikely that this estimate would be precisely matched to the true

underlying stochastic process.

3.3.2 Covariance Mismatch

We next provide the key steps showing the impact of an uncertain probability transi-

tion matrix in the overall multiple model estimator. First, we express the uncertain

probability transition matrix Hi as a sum of a nominal probability transition matrix

fI, and a perturbation An: II = I + An.

i1,1 *1,2 ... r,N , 1,1 71,2 ... r,N

fr2,1 fr2,2 -- - F2,N T2,1 fr2,2 ... 7 2,N

iN,1 ~rN,2 ... 7rN,N [rN,1 lrN,2 ... N, N

An(1,1) An(1,2) ... An(1,N)

An(2,1) An(2,2) ... An(2,N)
(3-5)

An(N, 1) An(N, 2) ... An(N,N)



Note that each column of the perturbation matrix An has to sum to 0 to ensure

that the perturbed transition matrix Ii is a proper probability transition matrix with

column sums equal to unity. The probability propagation step (see Table 3.1) can

then be written out as

Ak+llk = fIPkIk = nllkIk + AIkjk = /k+1jk + Ak+1|k (3-6)

which shows that the uncertainty in the transition model has impacted the propagated

probabilities btk+llk. Note that the probabilities have been expressed as a sum of a

nominal term tk+l1k and a deviation Ak+llk. These propagated probabilities are

then updated with the likelihood function A' in the measurement update step (see

Table 3.1), renormalized, and result in uncertain posterior probabilities

Ak+llk+ = k+llk+l + A, Pk+1Ik+1 E Mk+1 (3-7)

where A is the perturbation in the posterior probabilities and .Mk+1 is the uncertainty

set for the posterior probabilities. For clarity of exposition, we delay remarking on

how this set is found until the end of this section.

When the uncertain posterior probabilities are incorporated in the combination

step, they perturb the combined estimate and covariance, i'k+llk+1 and Pk+llk+l

Xk+±k+11 i (+ 1 +k+1
i

= Xk+llk+l + Ax (3-8)

+1k+1 Z(+k+l1 ++ Ai{P i (+ Ik+ll+ (4k+1k+T - k+1k+ k+1k+1
i

= Pk+llk+1 + Ap (3-9)

Here Ax E RN and Ap E NxN are the respective perturbations from the nominal

state estimate and covariance, -k+llk+1 and Pk+llk+l1

In summary, the uncertainty in the transition matrix An generates uncertainty
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Fig. 3-2: Visualization of the sampling component of the Robust Multiple Model
algorithm. The samples of the posterior probabilities (blue) are overapproximated
by both the convex hull (red) and a polytope (gray) which is the definition of the
uncertainty set Ak.

in the posterior probabilities A 0, which ultimately gives rise to a biased nominal

combined estimate (Ax / 0) and a mismatched covariance Ap # 0. Alternatively,

one can think of this as a Gaussian mixture problem with uncertain weights. We will

address the case of Ap 0 in Section 3.4.

3.3.3 Constructing Uncertainty Set Mk+1 using Sampling

It is not generally possible to propagate the effect of the uncertain probability tran-

sition model lI to the posterior probabilities Pk+llk+l of Eq. 3-7 in closed form. That

is, in general there is no analytical expression for finding the posterior uncertainty



set of /k+1lk in an exact form

Ak+llk = IiRkIk (3-10)

We thus approximate this propagation by using Monte Carlo (MC) sampling meth-

ods. We take a Bayesian approach for the uncertainty in the probability transition

matrix, and assume that a suitable prior fD(p I a)can be provided on the transition

probabilities. Namely, we assume ir - fD(p I a), where a denotes the hyperparam-

eters that characterize the prior. This prior could be, for example, the outcome of

previous transition observations of a dynamic system. While a Dirichlet prior is fre-

quently used to model the uncertainty in the transition probabilities, [33] the sampling

strategy presented in this chapter can be used with other appropriate priors.

The sampling approach proceeds as follows: first, sample the transition probability

from its prior, and obtain N, unique samples of the probability transition model, IP.

Thus, the propagation step can be approximated as

k1+1|k = ISPklk VS = 1, ... , Ns (3-11)

We can then perform the mode probability update step for each sample s, and using

the likelihood Ak (from the measurement update of Table 3.1), the posterior samples

of the probabilities are proportional to the product of the propagated samples p4 '+llk

and the likelihood

k,1|k+1 A 8k, j, s (3-12)

Note that this is done for all samples s and for all models j. The posterior probability

samples Pklk+1 are then normalized for all N, realizations.

The uncertainty set Mk+1 is then constructed from some approximation of the

posterior probability samples fP'+llk+ 1. Examples of the sampling scheme and uncer-

tainty sets Mk+l are shown in Figure 3-2, where the posterior probability samples

(blue) are over approximated by both an appropriately chosen credibility region (red



line) and a polytope (gray). Note that either of these choices results in a convex

uncertainty set. Furthermore, the polytope can be described in terms of the max-

ima and minima of the samples, where the minimum and maximum of ~'k for

all realizations s, that is p- = mins{Pl'+lk+l} and p+ = max,{p'+l|k+l}, and the

uncertainty set Mk+1 is defined as

Mk+1 = {Pk+llk+l I A- < ; k+ l lk+ l 5 p+} (3-13)

Note that this polytope over-approximates the posterior probability, and the com-

putational effort increases with an increased number of samples. We show some

preliminary computational results in Section 3.6.

3.4 Robustness in Hybrid Estimation

As shown in the last section, a key issue resulting from the transition model uncer-

tainty is that it affects the combination step of the filter, by introducing uncertainty

in the posterior probabilities, and in turn, generating biased nominal estimates and

mismatched combined covariances. In this work, we are primarily concerned with the

covariance underestimation problem, where multiple model filters can over-predict

their confidence and ultimately accrue large estimation errors. In this section, we

introduce the Robust Multiple Model filter (RMM), which mitigates the problem of

covariance underestimation by finding the largest covariance matrix given the uncer-

tainty description Mk+l for the posterior probabilities.

3.4.1 Problem Statement

Recall that the covariance mismatch problem arises when the perturbed combined co-

variance (Pk+1lk+,' see Eq. 3-9) differs from the nominal combined covariance Pk+llk+l

due to the uncertainty in the posterior probabilities [Lk+llk+1 E Mk+1. Furthermore,

by simply using mismatched probabilities pk+llk+l (arising from a mismatched proba-

bility transition model) in the combination step, the estimator effectively ignores any



uncertainty in the probabilities themselves, and this in turn can cause the perturbed

covariance to be smaller than the nominal, P+1k+l < Pk+llk+1. By underestimat-

ing the covariance, the estimator is in fact overconfident, and for our applications,

overconfidence is an undesirable prospect.

The main idea of our approach is to use the entire uncertainty set Mk+1 of the

posterior probabilities to construct a combined covariance that is not underestimated,

by solving for the largest combined covariance Pk1|k+1 admissible from any uncertain

posterior probabilities in the uncertainty set E MAk+l. We quantify the size of the

covariance matrix by using the trace of the combined covariance matrix. In other

words, this optimization finds the maximum mean square error that could result

from the uncertain posterior probabilities tk+k+1 E Mk+1. Note that maximizing

the trace is a fairly standard approach in estimation, as it forms the basis for the

Kalman filter. Trace maximization is also used in robust estimation problems [34).

We summarize our goal in the following problem statement:

Find the combined covariance Pk+lk+1 with the maximal trace

T+lk+1 = max (Trace P'+lik+l() subject to: pf Mk+1 (3-14)

where

k+1k+1 (A) = Z +l+1k+k+ll k+l

Pk+llk+1() i+1|k+1p-+l^k+l + 4 +11k+1 (-k+1k+T} - k+k+1 )(ik+1|k+1()

The probabilities A* that corresponds to this robust covariance are found with /* =

arg max Tk+llk+l'

Remark: A game theoretic interpretation for this optimization is as follows.

First note that the Kalman filters for each of the i models are the minimum variance

estimators for each model [32], and the combination step merges the optimal estimates

and variances into a single combined state estimate Xk+llk+1 and covariance Pk+llk+1

using moment-matching. This combination can be loosely interpreted as outputting



the minimum combined covariance, conditioned on the probabilities Pk+llk+1. Since

the uncertainty in the posterior probabilities can cause Pk+1k+1 to be mismatched,

the goal of this optimization is maximize the minimum combined covariance.

3.4.2 Finding the maximum trace

Due to the linearity of the trace operator, the following proposition states that the

optimization in Eq. 3-14 can be solved using a quadratic program:

Proposition 9 The trace of P+ll1k+1 is quadratic in f, and can be solved with the

following quadratic program

T*+llk+l = max (-ATAk+l + Bk+l ) subject to: f Mk+1 (3-15)

where

Ak+1(j, m) Trace{+llk+1 M+1k+1)} Vj,

Bk+1(j) = Trace {Pj + '+llk+1 (V+1 1k+)T} Vj

Ak+1 E RNxN and Bk+1 E RN are a function of the estimate and covariance of each

model. Furthermore, Ak+1 > 0.

We summarize this result by noting that since the quadratic objective is convex

(Ak+1 >- 0), and since Mk+1 is a convex uncertainty set, then this is a convex opti-

mization with a global maximum. In fact, this guarantees that the maximal trace of

Pk+1k+1+l() is unique.

Solving for the robust covariance gives rise to our Robust Multiple Model filter,

where the algorithm is summarized in Figure 3-3. All steps are identical to the

classical MM filter (see Figure 3-1) except for the robust combination step, where we

solve for the maximum trace of the combined covariance Pk+llk+l (Note that this

must be done at each time step as the estimates llk+1 and covariance P+k+ are

time-varying.)
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Fig. 3-3: Diagram of the feedback implementation Robust Multiple Model updates

(note in particular the robust combination step) for a GPB1 formulation.

To complete the Robust Multiple Model filter, recall that the GPB1 implemen-

tation of the MM filter feeds back the combined estimate and covariance at the

beginning of each estimator cycle. For the Robust MM filter, a feedback formulation,

feeds back the the robust estimate 1k+1k+1(Ai*) and robust covariance P+l1k+l(A*) at

the beginning the estimator cycle

A* = arg max T+llk+1

k+1|k+1l*) = k+ llk+l k+lIk+1 (3-16)
i

Pk+ lk+1() = Z kI ik+1pI+ll{k+l + 4 k+l1 (+lI4Tk+ - k+lk+1() (k+llk+( )T

(An alternative implementation is use the robust estimate and covariance only as out-

puts with which to measure the effect of the uncertainty in the transition probability

matrix on the the combined covariance.) Note that if the transition probabilities are

completely unknown, the robust MM filter is effectively a worst-case filter. In this

situation, the only requirement on the uncertainty set Mk+l is that each entry is

bounded and non-zero, 0 < p < 1, subject to the unit sum constraint -i iP = 1.
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e
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3.4.3 Summary

In summary, the Robust Multiple Model algorithm (RMM) has similar prediction

and measurement update steps as a conventional multiple model algorithm. There

are however two key differences from a conventional multiple model estimator. First,

the RMM solves for the combined covariance Pkl11k+1 with the maximal trace rather

than simply computing the covariance from the posterior probabilities, as these prob-

abilities are now uncertain. This ensures that the trace of the covariance under some

uncertainty in the probability transition matrix is not underestimated. Secondly, the

RMM requires an uncertainty set for the posterior probabilities Mk+l; this uncer-

tainty set is obtained from numerical sampling. If the uncertainty set is unavailable,

we have also remarked on a worst case estimator, where the uncertainty set is the most

conservative set over the entire probability simplex, and constrains the probabilities

to their definition: namely, being between 0 and 1, and summing to unity.

3.5 Sampling with the Dirichlet Sigma Points

If the prior on the transition probability is described by a Dirichlet density, the results

from the previous chapter on Dirichlet Sigma Points are applicable, and we can find

the uncertainty set Mk+1 using a much smaller number of scenarios, which in turn

leads to an economical approach to find the robust covariance.

Recall that for a row p of the transition probability matrix, the Dirichlet density

is defined as

N N

fD(pIa) = K p' 1 , Pi =1, O < Pi < 1 (3-17)
i=1 i

and the corresponding Dirichlet Sigma Points Y E RN are defined as

Yo = E[p]

Yi = E[p] + Omax (1/2)i Vi =- 1,... 7N

Yi = E[p] - Omax, (E1/2)i Vi = N + 1,...,2N



where mx, is a tuning parameter that reflects how much uncertainty is desired in

the Dirichlet Sigma Points. Each of these Dirichlet Sigma Points correspond to indi-

vidual realizations of the row of the transition probability matrix, and the complete

realization s of the transition probability matrix is given by

fs =
y°2

7 (3-18)

The complete sequence of iterations is to propagate each of these samples through

the prediction and measurement update steps,

KI+lk = fisklk, Vs = 1,..., N8  (3-19)

where F8 E RN is the full probability vector. Each of the elements j of this probability

vector, for each s realization, is updated as

i'+l lk+l c A llk , j, s (3-20)

We will demonstrate the computational advantages of using the Dirichlet Sigma

Points in the next numerical section.

3.6 Numerical results

We present results on the impact on transition model uncertainty, and benefits of

robust multiple model estimation, in two different tracking problems. In the first

example, we consider a single UAV, multi-target tracking problem (see Figure 3-4).

In the second example, we revisit a slight variation of a tracking problem originally

analyzed in Jilkov and Li [46] and Doucet and Ristic [27].
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3.6.1 UAV Tracking Problem

In the first example, we consider a UAV with a multiple model filter that has to

maintain a constant track on N, > 1 unique targets (see Figure 3-4). Each jth

target can be described by a unique set of Nm kinematic models {( i, Gi, Qi, fI'}, Vi =

1,.. ., Nm. Each target can have a unique probability transition matrix Hi between the

different models. The data association problem is not considered in these simulations.

Since there is only a single UAV tracking 4 targets, the UAV has to be allocated

among the different targets in order to maintain good estimates of target states; to

model the non-zero flight time it takes for a UAV to fly to a different target, the

allocation is performed according to the following, simple rule: if the trace of the

combined covariance of any target exceeds a threshold y, revisit that target. For these

numerical simulations, we used y = 100 and y = 500 meters.

We considered both a 2- and 4-state kinematic models. For the 2-state prob-

lem, each target's state (position and velocity) is denoted as Xk = [x vx] and the

kinematics are

S [= T] C = ,AT u= 0 2 [m/ 2]1 (3-21)

where AT = 1 for both the 2-state and 4-state models.

For the 4-state problem, each target's state is denoted as Xk = [x y vx vy], and

the targets operate under the following set of kinematics

1 0 AT 0

0 1 0 AT

00 1 0

0 0 0 1

AT 2/2 0

0 AT/2

AT 0

0 AT

The four different target control inputs u' were modeled as follows (where each column

of u. is the different model): i) constant velocity; ii) acceleration in the x direction;

iii) acceleration in y direction; iv) acceleration in both x and y. The probability

0 2 0 2
Uk -

0 022
(I)

i -- G'



transition matrix was modeled with a Dirichlet prior, with a maximum likelihood

value of

0.375 0.11 0.125 0.18

0.125 0.56 0.25 0.18

0.25 0.22 0.50 0.18

0.25 0.11 0.125 0.46

(3-22)

The actual target model is the maximum likelihood estimate of the probability tran-

sition matrix. While the UAV is tracking a target i, it receives observations on the

target's state. The filter simply propagates the state for all other targets j $ i.

The decision mechanism for a revisit is as follows. Since the UAV maintains a

multiple model filter on each of the targets, it maintains a combined covariance for

each of the i targets, Pk+llk+l(i). The revisitation is determined when

Trace(Pk+1 k+l(i)) > -y (3-23)

where 7 is an appropriate threshold chosen for the problem, and depends on the UAV

ability to track the different targets. For large y, the UAV spends a lot of time visiting

the different targets, and hence the revisitation rate will be lower than for a lower 7.

Tracking Results

We evaluated the performance of the Robust Multiple Model filter to the GPB1

implementation that uses unique realizations of the probability transition matrix in

50 Monte Carlo realizations. Figure 3-5 shows the benefit of using the RMM in terms

of mean absolute error in a 2-state tracking example. The filter covariances (position)

for the mismatched (green), robust (red), and true (blue) are shown on the bottom,

and the mean absolute error over the 50 Monte Carlo simulations in shown in the

top figure. Since the UAV revisits a target when the target's combined covariance

Pk+llk+l exceeds the threshold y, the mismatched covariance achieves this threshold

approximately 6 units after the true covariance, and the mean absolute error almost

Ift -
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Fig. 3-5: Overall effect of the covariance underestimation problem: by underestimat-
ing the covariance, the UAV visits target 2 (shown) later, and accrues a much higher
error.

doubles from 100 meters to 200 meters because the UAV revisits the target at a later

time. Note that the mismatched estimator accrues a much higher error due to the

mis-modeling of the probability transition model, and furthermore, by visiting the

target at a later time, incurs additional estimation error. The robust filter ensures

that the target is revisited sooner, and manages to keep the estimation error on the

order of 100 meters.

Table 3.2: Revisitation Times
-y = 500 Mismatch (veh 1) RMM (veh 1) Mismatch (veh 2) RMM (veh 2)

Mean time 6.2 4 6.4 4
Max time 9 4 9 4
Min time 6 4 6 4
7 = 100 Mismatch (veh 1) Robust (veh 1) Mismatch (veh 2) Robust (veh 2)

Mean time 4 4 4 4
Max time 5 4 5 4
Min time 4 4 4 4
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Fig. 3-6: Trace of the robust covariance (blue) and mismatched estimator (red)

as a function of time for -y = 500. Note that the robust (in this case, the worst-

case) estimator requires revisits every 9 time steps, while the mismatched on average

requests every 10.

Variations in the revisit times of the UAV for the 4-state example were investi-

gated for different values of threshold parameter 7; the mean, maximum, and min-

imum times are reported in Table 3.2. The RMM filter, by over approximating the

covariance, sends the UAV back to revisit the targets sooner than the mismatched

model, both on average (in terms of mean time), and in the worst case. This is a

desirable feature as the target will travel a smaller distance, and the UAV will reac-

quire it with greater ease. More importantly, in the worst case, the revisit time for

the mismatched case of Target 1 is of 9 time units, while the (conservative) RMM

ensures that the target is revisited in at most 4 time units.

In general, the performance results of the robust multiple model estimator varies

with the uncertainty model on the probability transition model I, but also on the

other parameters of the estimators, such as magnitude of the control inputs and

0



the process noise. An example is shown in Figure 3-6 where the control input was

0f 0.5 0 1.5
decreased to u =1.5 and the process noise was decreased by a

0 0 1.5 1.5
factor of 2. The simulation was for y = 500. Here, the revisit time of approximately

10 time steps for the mismatched model is longer than the revisit time of the robust

MM estimator, of approximately 9 time steps. Note that the benefits of the robust

formulation, as the mismatched model revisit the target for the first time after 20

time steps, while the RMM revisits the target after 15 time steps, ensuring the overall

estimation error remains low.

3.6.2 Tracking an Agile Target

We visit a variation of the tracking example used in Jilkov and Li [46] and Doucet

and Ristic [27], where they consider the tracking of a single, but agile, target. The

target has the same kinematics as the previous 2-state example, but now AT = 10

and the control input takes on three distinct values:

u = [0, 20, - 20] [m/s 2 ] (3-24)

The target starts at the initial state xo = [8 x 104 400] with initial covariance

1002 0
Po = .1002 The measurement Zk = Xk + Vk is corrupted by zero-mean

Gaussian noise, Vk , N(O, R), and unlike our earlier example where observations were

taken only when the UAV was reallocated to a different target, the measurements in

this example are taken at each time step k. For this numerical example, we compared

a GPB1 filter operating with a nominal and mismatched transition matrix of

0.50 0.29 0.2 0.99 0.005 0.005
0.33 0.43 0.20 , IImm= 0.005 0.99 0.005 (3-25)

0.17 0.29 0.6 0.005 0.005 0.99
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Fig. 3-7: Mean absolute error (MAE) in velocity as a function of time for two

different noise covariances: (left) R = 2502, and (right) R = 5002. The nominal

model (black) has the lowest MAE, while the mismatched model (red) has a higher

MAE. The robust filter (blue) improves the performance of the mismatched model.
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and compared them to the performance of the RMM algorithm. For this implemen-

tation, we used the sampling-based version of the RMM with N, = 100 samples. We

analyze the Mean Absolute Error (MAE) of the velocity for two different noise co-

variances, R = 2502 and R = 5002. The absolute error was calculated as the absolute

value of the difference between the true velocity Vk and the estimated velocity k,

Absolute error = II)k - vk 1 (3-26)

This quantity was then averaged over 200 Monte Carlo simulations to obtain the

MAE. The results are shown in Figure 3-7. For a lower noise covariance (R = 2502),

the overall MAE is decreased from 74 meters/sec to approximately 66 meters/sec

using the RMM, while for R = 5002, the MAE of the mismatched filter was substan-

tially decreased from 105 meters/sec to 90 meters/sec. Hence, the RMM improved

the overall MAE by approximately 14%, highlighting the importance of accounting

for the transition model uncertainty.

3.6.3 Computation Time

We conclude the results section with the run times of the proposed algorithm as a

function of the total number of samples. There is an implicit tradeoff between the

total number of samples used and the accuracy of the robust solution, and as the

number of samples grows to infinity, the sampling approximation solution is exact.

However, a large number of samples is generally sufficient, and Table 3.3 shows that

the run times for a moderate number of samples is on the order of 0.6 seconds for 4

different targets each having 4 unique models. Note that the worst case formulation,

which does not sample at all, has a mean run time of 0.02 seconds.

Table 3.3: Run Times of RMM as a function of number of samples N,

N8  0 (Worst case) 50 100 200 500 1000

Time (sec) 0.02 0.05 0.08 0.13 0.19 0.29
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Fig. 3-8: Histogram of the updated covariance using the Dirichlet Sigma Points, and
comparing to conventional Monte Carlo sampling. Dirichlet Sigma Point sampling,
using only 7 transition matrix samples, recovers the histogram of the robust covariance
that was generated using 2000 samples.

3.6.4 Computation time with Dirichlet Sigma Points

We finally compared the computational requirements of the Robust Multiple Model

filter with a Dirichlet Sigma Point implementation of the Monte Carlo sampling.

In a similar set of scenarios, we compared the covariance underestimation of using

Ns = {50, 100, 200, 1000, 2000} samples.

Figure 3-8 shows the histograms of the traces of the covariance over 100 Monte

Carlo simulations for different choice of number of samples N,. As N, is increased,

thereby making the Monte Carlo approximation more exact, the histograms con-

verges around approximately 2000 samples. The histogram obtained with the Dirich-

let Sigma Points however, converges using only 7 total transition matrix samples.

The effect on the computation time is more apparent in Figure 3-9. The robust

covariance found with 2000 samples requires an average of 0.5 seconds per iteration of

the RMM, while the robust covariance using the Dirichlet Sigma Points is found using
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Fig. 3-9: Covariance estimation as a function of run time

only 0.02 seconds per iteration, with an order of magnitude computational savings.

3.7 Conclusions

This chapter has presented a new multiple model estimator that accounts for uncer-

tainty in the probability transition model of the Markov Chain, and has extended

previous work with uncertain transition models by identifying covariance mismatch

problems in hybrid estimation. In particular, our concern was the covariance under-

estimation problem, as it is undesirable for an estimator to be overly confident of its

estimates.

To mitigate the worst-case impact of the uncertain transition probabilities, we

have developed a new robust estimator with improved behavior over a nominal (mis-

matched) estimator, and specifically ensures that the estimator is not overly confident

in the presence of an incorrect transition model. In the context of a UAV multi-target

tracking problem, covariance under-estimation results in longer periods between re-
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visits to the target, which ultimately results in larger estimation errors. Our new

formulation is capable of keeping these errors small by ensuring more frequent revis-

its. In the context of a tracking problem for an agile target, the new filter is able to

keep the overall tracking errors small in comparison to a fairly mismatched filter.
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Appendix 3-A: Multiple Model Estimator Remarks

Remark 1 (Choice of estimator): The Multiple Model Adaptive Estimator

(MMAE) [62] and the Generalized Pseudo Bayesian [4] are two common estimators

used in multiple model settings. The primary distinction between MMAE and GPB

(or other suboptimal filters) is that the MMAE assumes that the discrete state of the

hybrid system is invariant throughout the estimation process. That is, MMAE does

not explicitly include information about the transition probabilities.

Remark 2 (Impact of Measurement Noise): The sensor quality directly im-

pacts the estimator's ability to uniquely identify the current model pi, and update

the state estimate and covariance. In this section, we show the limiting effect of the

noise on the state estimate, covariance, and probability updates.

The sensor likelihood can be expressed in terms of the measurement noise covari-

ance Ri as

A'(zk) oc IS'-l exp{-1/2(z - i")T (Si)-l (z - Zi)}

S i = H$Pk+llkH T + R' (3A-1)

In the limiting case R -- oo, the likelihood At(zk) -+ A -- 0, and the Kalman gain

Wk -, 0. As a result, the measurement update simply becomes the prediction step

Xk+llk+1 = Xk+1k = 4 kjk + Gk%

P+11 +k T i (3A-2)Pk"+lk+l = k+llk = k 'Pklk(( V + Q-

As the likelihood A -- 0, the mode probability update step then becomes

j A I Pi , (c= A HI 14) (3A-3)
C
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and by taking the limit as A -* 0 and applying l'Hopital's rule,

lim A i
A-O j AjEi HIij/i

Therefore, the probability update with a

agation using the transition model II.

= lim
A--O A E E i/ij#i

j i
=1

poor sensor is simply the probability prop-

Appendix 3B: Optimization Derivations

The derivations in this Appendix develop the form of the optimization used to find the

posterior probability model M that maximizes the trace of the covariance at the com-

bination step. The first section shows how to form this maximization while including

the unit sum constraint (-j Mj = 1) as part of the constraints. In the second section,

the derivation is repeated for the case of the equality constraint directly included in

the objective function.

Including equality constraint Given the state and the covariance,

Xk+lk+1l A +i lk+ l
i

Pk+llk+l i [ k+lk±1 + ( .+1k+I1 - Xk+l+1) ( k+lk+1 - Xk+llk+l) 3B- )
i

we can rewrite the covariance as

i ,,i - i

Pk+llk+= i [P k+llk+l k+ k++1 - lk+)( k+ k+l k+ - k+llk+l)T ] (3B-2)
i

- >j I{Pi + k+lk+1k (±+ll+lT} (E jk+ik+l)( E Aj'k+llk+l)

i j j
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Note that the last term (j. ~j +lk+l )(J jpk + 1l k+ l)T is a rank one matrix of the

form pILQP, where rank(Q) = 1. Now, the trace of this matrix is

Tr(pk+llk+l) = Tr j Iij{P + Xk+l lk+1 (+lk+ l) T  - TE( ik+1jk+1)(E Xj k+lk+l)
i i j

S Tr{Pi  + Xk+lk+l (-k+lkll)T}fJ - Z Z /jITr 1 1 Xk~ ~ 1^k+)}

j m

where the linearity of the trace operator was used. Thus, we can now now define

Aj,m Tr {y+lk+l (-+1|k+1 T m

B " Trf{P j + 'k+llk+l k+( 1T

and with A - [P1, 2, ... , NM], then the optimization of maximizing the trace of the

combined covariance becomes

max {-fTAA + BA I 1Tj = 1, A E Mk} (3B-3)

Note that Ak+1 can be formed as the product of G GT, where

G = [+llk+ll Ik+ kk+1 I ... I Xllk+l] (3B-4)

is non-singular. Since Ak+1 can be formed as the product of a (non-singular) matrix

and its transpose, this forms the sufficient and necessary condition for Ak+1 to be

positive definite. [241 Hence, Ak+l >- 0 and the optimization is convex.

Removing the equality constraint The equality constraint of Ej Ij = 1 can

be removed from the set of constraints of the robust optimization, by rewriting the

covariance

Pk+lIk+l = ft{Pi + X+lllk (k+lk+l)T} - ( 'V+1|k+1)(E - jj+lk+lT
i j j
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and through a series of algebraic manipulations obtain

Pk+llk+l = M1 + M2 + M3

Nm-1 Nm-1
All ~ "i "Nm "" ~ N m

M{ = a jj(-k+lk+1 - k+1 - (+k+ k+l)k+ 1

i=1 j=1

Nm-1
i "Nm Tm

2= Z i - pNm + k+1 N1|k- k +1|k+1- ( k+l))T}M2-+ll+l Xk+lk+ ) ( k + l lk + x  ll+l
i=1

M3 = PNm+ (k+ll+l)( k+1)

Hence new matrices can be evaluated (Vi, j = 1,..., Nm - 1)

i

C -

I{ (NNm T
r( 1 k+ kl[k1(l ) +1lk+1- ( k+ik+))T}

Tr{Pi + (4k+llk+l - k+llk+l- Z +llk+ l - ( Ill-

^ Nm N T pNm

{pN + )T}

and the optimization can be posed as

min {ii T AA -BiA - C I A E Mk} (3B-5)

where now A = [u1 , 2,..., ANm-1

Appendix 3C: Selecting Uncertainty Set Mk

The uncertainty description for f, Mk, can be described in numerous ways; two com-

mon approaches are shown below. Nilim and El Ghaoui [69] developed the ellipsoidal

model and interval uncertainty to describe the modeling of the rows of the transition

model, but we use them to describe the posterior probabilities.

Interval Bounds Uncertainty Model One possible approach is to assume that

each fj is bounded above and below, A7- j ft Af+ by some values f+ and A7. This
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uncertainty set is therefore defined as

Mk {:- < j5 1 } (3C-1)

The optimization of Eq. 3-14 can be rewritten as

min {f T AA - BA 1I = 1 5 ft < ft+} (3C-2)

This can be converted into the equivalent quadratic program

min {fiTAf - BA I 1T = 1, A 5 f B}

A = [INmxNm, INmNm]T , / = [A+, _T-]T (3C-3)

and solved directly as a QP using interior point methods.

An Alternative Solution The single equality constraint 1TA = 1 can be removed

by explicitly accounting for the unit sum constraint directly in the objective function.

The optimization becomes

min { T AA -B I A't5 I'} (3C-4)

where now f = [1, f2, ... N,,-1] and

Bj = Tr [(^ -N )( _ ( N)T] Vi j = 1,..., Nm - 1

Bj = Tr[(Xi Ng)(ij _ ,N)T + pj - pg, Vj = 1,..., Y. - 1

A' = [JINm-1x-1N _I,--IxNm-1]T

fr = [ftJ _A] T

This is also solvable solvers that allow quadratic programs (i.e., AMPL/CPLX). If a

QP solver is not available, other techniques are available to solve this problem using

decomposition methods for quadratic programs (using a modified simplex algorithm).
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Ellipsoidal Uncertainty Model The ellipsoidal uncertainty model assumes the

existence of a maximum likelihood estimate for the uncertain likelihood f. This model

is equivalent to a second order approximation to the log-likelihood function and the

uncertainty set can be constructed as

Z j log(< ) ( -( - ft) 2 / (3C-5)

using the approximation logp 5 (1 + p) (Iyengar [43]). The optimization for the

uncertain A is given by the following optimization

min {f T AA - BA I 1T  7 = 1, (~(j -Aj) 2/f K2}

where r = 2(m,, - 3) and 3m,, = Ej ̂ i log f. 3 is a tuning parameter chosen

by the filter designer to select how much uncertainty is desired in the filter design.

The resulting optimization is a quadratically constrained quadratic program (QCQP),

which can be solved with CPLEX 10.

Note that the particular constraint -j(Atj - j) 2/f can be simplified to

j 3

since j Pj = 1 and E = 1. Hence the quadratic constraint is simply of the form

fTMk < Nk (3C-6)

with Mk = diag(1/-1, 1/f2,.. ., 1/N) and N = n2 + 1.
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Chapter 4

Markov Chain Adaptation

This chapter addresses the important issue of identification of the uncertain transition

probabilities. Whereas in the previous chapters we have been concerned with mitigat-

ing the impact of the uncertainty on the performance of the control and estimation

algorithms, this chapter addresses the question of model updating: given some se-

quence of observed state transitions of the system, how do we update the estimate of

the transition probabilities, and their uncertainty description? In particular, how do

we update the Dirichlet Sigma Points if the transition probabilities are time-varying?

Our primary contribution in this chapter is an algorithm that can adapt to online

observations more efficiently by reducing the overall adaptation time of the Markov

Chain. We first derive recursive forms for the the first two moments of the Dirichlet,

and obtain recursive expressions for the Dirichlet Sigma Points. It turns out that this

mean-variance recursion (used as a synonym for the recursive Dirichlet Sigma Points)

can be slow in responding to changes in the transition probability. This mean-variance

estimation is then improved by adding what amounts to an effective process noise term

to the covariance term of the Dirichlet Sigma Points. We present the details of this

simple, but effective algorithm, as well as some theoretical justification for the process

noise addition as an effective measurement fading technique of the Dirichlet counts.
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4.1 Introduction

4.1.1 Previous work

In the earlier chapters, we have seen that many decision processes, such as Markov

Decision Processes (MDPs) and Jump Markov Linear systems, are modeled as a

probabilistic process driven by a Markov Chain. The true parameters of the Markov

Chain are frequently unavailable to the modeler, and many researchers have recently

addressed the issue of robust performance in these decision systems [12, 59, 69, 86].

However, a large body of research has also been devoted to the identification of the

Markov Chain using available observations. With few exceptions (such as the signal

processing community [50, 76]), most of this research has addressed the case of a

unique, stationary model.

When the transition matrix H of a Markov Chain is stationary, classical maximum

likelihood (ML) schemes exist ([46, 76]) that can recursively obtain the best estimate,

II, and covariance of the transition matrix. Typical Bayesian methods assume a prior

Dirichlet distribution on each row of the transition matrix, and exploit the conjugacy

property of the Dirichlet distribution with the multinomial distribution to recursively

compute II. This technique amounts to evaluating the empirical frequency of the tran-

sitions to obtain a ML or Maximum A Posteriori (MAP) estimate of the transition

matrix. In the limit of an infinite observation sequence, this method converges to the

true transition matrix, H. Jilkov and Li [46] discuss the identification of the transition

matrices in the context of Markov Jump systems, providing multiple algorithms that

can identify H using noisy measurements that are indirect observations of the transi-

tions. Jaulmes et al. [44, 45] study this problem in an active estimation context using

Partially Observable Markov Decision Processes (POMDPs). Marbach [601 considers

this problem, when the transition probabilities depend on a parameter vector. Borkar

and Varaiya [16] treat the adaptation problem in terms of a single parameter as well;

namely, the true transition probability model is assumed to be a function a single

parameter a belonging to a finite set A. The adaptation algorithm recursively com-

putes the maximum likelihood estimate of the parameter & and Borkar and Varaiya's
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adaptive algorithm is shown to converge (though their estimator may not converge

to the true parameter). If the true parameter is not in the set A, however, some

examples were shown where their adaptive controller could not converge at all.

Konda and Tsitsiklis [49] consider the problem of slowly-varying Markov Chains

in the context of reinforcement learning. Sato [80] considers this problem and shows

asymptotic convergence of the probability estimates also in the context of dual control.

Kumar [53] also considered the adaptation problem. Ford and Moore [30] consider

the problem of estimating the parameters of a non-stationary Hidden Markov Model.

If the Markov Chain, HI, is changing over time, classical estimators will generally

fail to respond quickly to changes in the model. The intuition behind this is that since

these estimators keeps track of all the transitions that have occurred, a large number

of new transitions will be required for the change detection, and convergence to the

new model. Hence, new estimators are required to compensate for the inherent delay

that will occur in classical techniques. Note that if the dynamics of the transition

matrix were available to the estimator designer, they could be embedded directly in

the estimator. For example, if the transition matrix were known to switch between two

systems according to a probabilistic switching schedule, or if the switching time were

a random variable with known statistics, these pieces of information could enhance

the performance of any estimator. However, in a more general setting, it is unlikely

that this information would be available to the estimator designer.

4.1.2 Outline

This chapter proposes a new technique to speed up the estimator response that does

not require information about the dynamics of the uncertain transition model. First,

recursions for the mean and variance of the Dirichlet distribution are derived; this

is a mean-variance interpretation of classical MAP estimation techniques. These are

recursions for the Dirichlet Sigma Points, as the Sigma Points introduced in the earlier

chapter are calculated using the first two moments of the Dirichlet distribution.

Importantly, however, we use the similarity of these recursions to filter-based pa-

rameter estimation techniques to notice that the mean-variance estimator does not
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incorporate any knowledge of the parameter (or transition matrix) dynamics, and

therefore results in a stationary prediction step. To compensate for this, the respon-

siveness of the estimator is improved by adding an effective artificial pseudonoise to

the variance that is implemented by scaling the variance. Scaling the variance leads

to a very natural interpretation for updating the Dirichlet parameters, which, as we

show, amounts to nothing more than progressively fading the impact of older tran-

sitions. This result provides an intuition for measurement fading applied to Hidden

Markov Models [50]. This insight, and the resulting benefits of faster estimation when

applied to decision systems, are the core results of this chapter.

4.2 Markov Chain and the Dirichlet Distribution

As before, when the transition matrix H is uncertain, we take a Bayesian viewpoint

and assume a prior Dirichlet distribution on each row of the transition matrix, and

recursively update this distribution with observations. 1

The mean and the variance of the Dirichlet distribution can then be calculated

directly as

i = ai/ao (4-1)

ai(ao - ai) (4-2)

a2( a o + 1)

These are the mean and the variance of each column of the transition model, and

need to be evaluated for all rows (recalling pi = r(m, i)). We have shown that the

Dirichlet Sigma Points only rely on these first two moments.

4.2.1 Derivation of Mean-Variance Estimator

It is well known that the Dirichlet distribution is conjugate to the multinomial distri-

bution; therefore, performing a Bayesian measurement update step on the Dirichlet
1Since each row of the transition matrix satisfies the properties of a probability vector, the

following description of the Dirichlet distribution is interpreted to apply to each row of the transition
matrix.
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amounts to a simple addition of currently observed transitions to the previously ob-

served counts ac(k). Here, we define Pk = [pl,P2,... ,PN]T as the parameter at time k.

The posterior distribution fD (pk+l Ia(k + 1)) is given in terms of the prior fD (Pk a(k))

as

fD(Pk+lla(k + 1)) cc fD(PkIa(k))fM(3(k)(Ipk)
N N

"ps-- p/i = flj 3-l

i=1 i=1

where fM(,(k)Ipk) is a multinomial distribution with hyperparameters P(k) = [31,..., 3N].

Each 3i is the total number of transitions observed from state i to a new state i':

mathematically 3i' = Ej 6i,i' and

1 if i= i

0 else

indicates how many times transitions were observed from state i to state i'. For the

next derivations, we assume that only a single transition can occur per time step,

i = 6ii'-

Upon receipt of the observations 6(k), the parameters a(k) are thus updated in

the following manner

ai(k + 1) = { a(k) + 1 Transition i to i'

ai(k) Else

The mean and the variance can then be calculated by using Eqs. 4-1 and 4-2.

Instead of calculating the mean and variance from the transitions at each time

step, we can directly find recursions for the mean pi(k) and variance Ei,(k) of the

Dirichlet distribution by deriving the Mean-Variance Estimator with the following

proposition.

Proposition 10 The posterior mean pi (k +1) and variance Ei (k +1) of the Dirichlet

distribution can be found in terms of the prior mean pj (k) and variance Eii (k) by using
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the following recursion for the Mean- Variance Estimator:

pf (k + 1) = p (k) + E i (k) (( _I (k))
6 -p2 (k))

E- 1(k + 1) l= k1 1(k) +
ii ii Pj~+1()(1- (k))))

where yk+1 P= (k+l1)(1-ji(k+1))"

Proof: Since the prior mean pi(k) = ai/ao and the posterior mean is given by

pi(k + 1) = (ci + 6i,i,)/(ao + 1), the difference between the two means is given by

Ap(k + 1) - p(k) =
ai + ky ai

ao + 1 ao

(4-3)

The variance Eii(k) is given by

ox(ao - ai)
Eii(k) = (o -1)

a(ao + 1)

P (k) (1 - pf(k)
ao+ 1

Eq. 4-4 can be inverted to solve for ao + 1 and substitute in Eq. 4-3 to obtain the

desired result

pi(k + 1) = pi(k) + Eii(k)pi - p(k)
pi (k) (1 - i(k))

(4-5)

An equivalent argument follows for the variance, Eii (k). Since

Eii(k + 1) =
(ac + 6~,,')(ao + 1 - (aj + 6',,))

(ao + 1)2(ao + 2)

(k + 1))i(k + 1)(1- p
ao + 2
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Table 4.1: Mean variance recursion shown in prediction and update step

Mean-variance

Prediction pi(k + Ilk) = pi(klk)
Eii(k + ilk) = Eii(klk)

Measurement update i(k + Ilk + 1) = pi(k + ik) + Eii(k + 1lk) 6'(k ik)(p(k+1k))Measurement update Ai(k+1|k)(1-ji(k+1|k))
E-1(k + Ilk + 1) = 7k+l-1 (k + ilk) + 1i(k+1Ik)(1-fi(k+Ik))

then we can see that the inverse variance E-l(k + 1) satisfies the following recursion

pi(k) (1 - p(k))

1
pi(k + 1)(1 - pi(k + 1))

but given the definition of Yk+l, then

1
E-'(k + 1) = yk+l 1 (k) +

Pi(k + 1)(1 - p(k + 1))

Remark 1: The recursion for the mean is actually the maximum a posteriori (MAP)

estimator of the Dirichlet distribution, expressed in terms of prior mean and variance.

If the updated counts are a'(k + 1), then the posterior distribution is given by

N

fD(Pk+lla(k + 1)) = K fp a , pi = 1 (4-6)
i=1 i

and the MAP estimate is Pi = arg max fD(pa'(k + 1)).

Remark 2: This mean-variance estimator explicitly guarantees that the updated

Dirichlet Sigma Points sum to unity, Ei p(klk) = 1, Vk, since they are calculated

directly from the MAP estimate. Other mean-variance approaches [46] only enforce

the unit sum constraint at the end of each estimator cycle, through some form of ad-

hoc renormalization, which is not exact. However, in the mean-variance form for the

Dirichlet, no approximations are needed to ensure that the estimates remain within

the unit simplex.
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Remark 3: The convergence of the mean-variance estimator is guaranteed since the

MAP estimator is guaranteed to converge [44]. After a large number of observations,

the MAP estimate of the probability pi = ai/ao will be equal to the true probability

pi, and the variance asymptotically approaches 0.

This is immediately clear from the mean-variance formulation as well. From

proposition 1, the estimate p2(k) will converge if limk-ooi (k + 1) - p(k) = 0, which

implies that for any arbitrary measurement kil,, that this will be true if the variance

asymptotically approaches 0, limk--oo ii(k) = 0.

The steady-state covariance can be found explicitly in the mean-variance estimator

by rearranging the expression in Proposition 1, and taking the limit.

lim Eii = lim (1 - 7yk+1) p(k + 1)(1 - p(k + 1)) = 0
k- +oo k-+oo

Note that we have used the fact that, since the estimate converges, then by definition

of Yk, limk-oo -k+1 = 1.

Remark 4: The mean-variance estimator can also be expressed more explicitly in a

prediction step and a measurement update step, much like in conventional filtering.

The prior distribution is given by fD(pkjkla(k)) where the prior estimate is now

written as p2(klk). The propagated distribution is fD(Pk+lJkJa(k)) and the propagated

estimate is denoted as pi(k+ 1 k). The posterior distribution is fD(Pk+llk+1 Ia(k + 1)),

where a(k + 1) are the updated counts, and the updated estimate is written as

p (k + llk + 1). These steps are shown in Table 4.1. In the (trivial) prediction step,

the mean and the variance do not change, while the measurement update step is the

proposition we just derived.

4.3 Discounted Mean Variance Estimator Deriva-

tion

The general limitation of applying this estimation technique to a non-stationary prob-

lem is that the variance of the estimator decreases to 0 fairly rapidly after Nm 00oo
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measurements, which in turn implies that new observations 6i,i, will not be heavily

weighted in the measurement update. This can be seen in the measurement update

step of Table 4.1: as the variance Eii approaches zero, then new measurements have

very little weighting.

This covariance can be thought of as the measurement gain of classical Kalman

filtering recursions. A way to modify this gain is by embedding transition matrix dy-

namics. If transition matrix dynamics were available, these could be embedded in the

estimator by using the Chapman-Kolmogorov equation f P(7rk+ll7rk)P(wrka(k)drk in

the prediction step. However, in general, the dynamics of the parameter may not be

well known or easily modeled.

In parameter estimation, well known techniques are used to modify this predic-

tion step for a time-varying unknown parameters, such as through the addition of

artificial pseudonoise [4], or scaling the variance by a (possibly time-varying) factor

greater than unity [66]. Both pseudonoise addition or covariance scaling rely on the

fundamental idea of increasing the covariance of the estimate in the prediction step.

In Miller [66], and in the context of Kalman filtering, Miller artificially scales the

predicted covariance matrix Ek+llk by a time-varying scale factor Wk (wk > 1) and

shows that the Kalman filter recursions remain virtually unchanged, except that that

predicted variance 3 k+11k is modified to E'k+llk = WkEk+llk. Since wk > 1, this has the

effect of increasing the covariance, thereby reducing the estimator's confidence and

changing the Kalman gain to be more responsive to new measurements.

4.3.1 Adaptation for Dirichlet Sigma Points

This similar intuition is used to derive a modified mean-variance estimator for the

case of the Dirichlet distribution; define Ak = 1/wk (where now Ak < 1), modify

the prediction steps in a similar way to Miller, and obtain the direct analog for the

modified mean-variance estimator. The new update step for the variance is given by

1il(k + 1lk) = Ak l(kk) (4-7)
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The variance is now scaled by a factor 1/Ak > 1 at each iteration. This discounted

mean-variance estimator is shown in Table 4.2. We will remark further on the choice

of Ak in the numerical simulations, but there is an implicit tradeoff between speeding

up estimator response, and overall estimation error.

Table 4.2: Kalman filter recursion and using scaling

Conventional KF Scaled form [66]

Prediction Ek+1Ik I k+1Wk k+llk, W+ k > 1

The complete recursion for the Discounted Mean-Variance Estimator is as

follows (the prediction and measurement update step have been combined)

Ei(k + lk + 1) = zA3(kIk) + 1/Akii(kik) eT;k)

Eg'(k + 1lk + 1) = Akk+l 1(kIk) + pi(kIk)(1-Pi(kIk))

Note that since the posterior mean fi (k + 1 k + 1) is directly dependent on Eii(k +

1lk + 1), scaling the variance by 1/Ak will result in faster changes in the mean than if

no scaling were applied. Table 4.3 shows this estimator also in terms of the individual

prediction and measurement update steps.

Finally, this provides an explicit update for the Sigma Points, as the Dirichlet

Sigma Points at the next time are calculated as

Yo = E[p(k + 1ik + 1)]

3i = E[p(k + 1Ik + 1)] + 3ma (E(k + 1lk + 1)1/2)i Vi = 1,...,N (4-8)

Yj = E[p(k + ilk + 1)]- Om (E(k + 1ik + 1)1/2)i Vi = N + 1,...,2N (4-9)

4.3.2 Intuition on the Dirichlet model

There is a fairly natural counts-based interpretation of covariance scaling for the

Dirichlet distribution.

Proposition 11 The discounted mean-variance recursion is equivalent to updating

the Dirichlet counts as a(k + 1) = Aka(k) + i,i,.

122



Table 4.3: Discounted Mean variance recursion

Prediction

Measurement update

Combined updates

pi(k + ilk) = pf(klk)
E '(k + ilk) = Ak > 1 (klk)

6 , -p(k+1| k)pi(k + ilk + 1) = pz(k + ilk) + Eig(k + llk)- ,',i -i(k+1k)

(k +(k+lk)(1-Pj(kk))
1i(k + ilk + 1) = A(kk) + P (k k)(1-p(kk))

E1 (k + lk + 1) = Ak'k+ 1 (klk) + p (kIk)(-ldkIk))|k)(11 ikk)

Proof: Note that the variance of the Dirichlet implies that the following holds,

a(ao - aj)
1/Ak Yii(k + ilk) = 1/A a o + 1)

Akai(,kao - Akai)
Aga0(ao + 1) (4-10)

When ao > 1 (this holds true very early in the estimation process), the above ex-

pression is approximately equal to

Akai(Ak - Akaji) Ci(O - Akai)

a(ao + 1) a(Akao + 1)
Akao0o

(4-11)

But this is nothing more than the variance of a Dirichlet distribution where the

parameters are chosen as a'(k) = Ak a(k) instead of a(k). In fact, if the distribution

is given by fD(pla'(k)) = K H pAki, the first two moments are given by

A = Akai /kao = ai/ao
= Aa(ao - aj) _ ai(ao - a)(4-12)

Eii 2 2 - 2 (4-12)
Akao(Akao + 1) a(Ako + 1)

Hence, the discounted mean variance formulation can be interpreted as updating the

counts in the following manner

a(k + 1) =
Akai(k) + 1

Akai(k)

Transition from i to i

Else
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rather than a (k + 1) = ai(k) + 6j,i, in the undiscounted version.

4.3.3 Switching Models

Now, consider a specialized case of a time-varying transition matrix: the case when

the matrix switches at a single (but unknown) time T,, from a model II- to a model

II+ . In this case, the Mean-Variance estimator will eventually converge to the true

model.

The discounted mean-variance estimator does not exhibit the same convergence

properties as the undiscounted estimator for arbitrary Ak < 1; this includes the case

of constant Ak, where Ak = A < 1. This is because the estimator has been modified

to always maintains some level of uncertainty by rescaling the uncertainty. This can

be seen in Figure 4-1 where the estimator gain is plotted as a function of time for a

simple adaptation example, for different values of (constant) A.

In particular, it can be shown that the estimator will constantly be responding

to the most recent observations, and will only converge if the following proposition

holds.

Proposition 12 The discounted estimator converges if limk-+ 0oo k = 1.

Proof: The asymptotic variance, Eii () = limkc Eii(k) is given by

ii(oo) = lim (1- A k+l) (k + 1)(1- f (k + 1))
k-oo 2 - Ak

and will asymptotically reach zero if both limk-oo -Yk+1 = 1 and limk,o Ak = 1. If

Ak = A < 1, the variance will not converge to 0; however, if limk-, Ak = 1, the

discounted mean estimator will converge to the undiscounted form, and hence the

estimator will converge to the true parameter.

It is shown in the next simulations that using a constant Ak still provides good

estimates of the true parameter, but we caution that to achieve convergence, Ak should

be chosen such that limko,, Ak = 1. Such a choice could be Ak = 1- Ak, where A < 1.
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(a) Estimator gain does not converge for constant A < 1
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Fig. 4-1: Estimator gain constantly responds to new observations for constant A < 1
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4.4 Robust Replanning

While the discounted form of the estimator results in a much faster response to the

change in the parameter, and is a useful result in its own right, it is also important to

remember that the outputs of this estimator will also be the inputs to some decision-

making system. This is where the ultimate benefits of a faster estimator will be most

apparent. We revisit the Markov Decision Process framework of the first chapter in

order to demonstrate the utility of these faster updates on the overall control solution.

Recall that the first chapter emphasized the robustness issue associated with the

uncertainty in the transition probability of a Markov Decision Process, and by using

the Dirichlet Sigma Points, we were able to approximate the uncertainty set of the

transition probability, and generate robust solutions. By updating the Dirichlet Sigma

Points with the result from the previous section, one can robustly replan using the

latest information. For small to medium problems, MDP solutions can be found in

reasonable time.

There are many choices for re-planning efficiently using model-based methods,

such as Real Time Dynamic Programming (RTDP) [5, 35]. These papers assumed

that the transition probabilities were unknown, and were continually updated through

an agent's actions in the state space. The complete value iteration was not repeated

at each update, however. For computational considerations, only a single sweep of

the value iteration was performed at each measurement update, and the result of

Gullapalli [35] shows that if each state and action are executed infinitely often, then

the (asynchronous) value iteration algorithm converges to the true value function. As

long as the estimator that was updating the estimates of the transition probabilities

was convergent, the optimal policy was guaranteed to converge.

In this section, we consider the full re-planning problem (though the re-planning

problem as mentioned above could also be implemented), but the re-planning is done

robustly, by taking into account the residual uncertainty in the transition probabilities.

This results in the robust replanning algorithm (Algorithm 7).

126



Algorithm 6 Robust Replanning
Initialize Dirichlet Sigma Points
while Not finished do

Using discounted estimator, update estimates

p1(k + ilk + 1) = 3i(klk) + 1/Ak ii(klk) ( ,, )(-(kk))

E1'(k + ilk + 1) = Akyk+l~ 1 (kk) + pj(klk)(1-vP(kk))

For each uncertain row of the transition probability matrix, provide mean and covariance

yo = E[p]

S= E[p] +,max /2) Vi = 1,...,N (4-13)

Y = E[p]- Ima (E/2 Vi= N +1,...,2N

Solve robust MDP

min maxE [J,] (4-14)
u nHEY

Return
end while

4.4.1 Convergence

We can use a similar argument from Theorem 1 of Gullapalli [35] to note that be-

cause the discounted estimator in fact converges in the limit of a large number of

observations (with appropriate choice of A), and the covariance E can eventually be

driven to 0, then each of the Dirichlet Sigma Points will collapse to the singleton,

unbiased estimate of the true transition probabilities. This means that the model

will have converged, and that the robust solution will in fact have converged to the

optimal value function. We address the implementation of this algorithm in the flight

experiments.

4.4.2 Nominal Replan

Note that in the case that a user is not interested in robustness issues, then the

above algorithm can also be implemented in a RTDP-like framework, where only the

estimates (and not the covariances) are used in the optimization. In such a way, the

algorithm returns the optimal policy at each time step given the current information.
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We demonstrate this in the next numerical simulations.

4.5 Numerical Simulations

This section presents some numerical simulations showing the responsiveness of the

discounted mean-variance estimator. In the first set of examples, we show a set of runs

showing the identification of an underlying (non-stationary transition matrix) that

switches from II- to 111 at some unknown time T,,. We also show that the discounted

mean-variance estimator responds quicker to the change than other estimators, such as

the undiscounted version or a finite memory estimator. In the second set of examples,

we show an implementation of the discounted mean-variance formulation in an infinite

horizon Markov Decision Process, where at each time that the transition matrix is

identified, a new control policy is calculated. The optimal performance of each policy

converges quicker when the discounted mean-variance approach is used to identify

the transition matrix.

4.5.1 Transition Matrix Identification

This first example has an underlying transition matrix that switches at some unknown

time T,,. First, we show the benefit of using the discounted version of the estimator

over the undiscounted estimator. This is shown in Figure 4-2 where the discouned

estimator (blue) responds to the change in transition matrix almost instantly at t = 50

seconds, and after 20 seconds from the switch, has a 50% error (P3 = 0.7) from the

true parameter p = 0.8. The undiscounted estimator (red) has a 50% error after 50

seconds, and is much slower.

Next, compare the identification of this model with a finite memory estimator

which calculated by storing all observed transitions in previous M time steps,

k

^i(k) = (4-15)
j=k-M+1

where 6j., is unity if a transition occurred from state i to state i' at time j. The meani'i
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Fig. 4-2: Discounted estimator (blue) has a faster response at the switch time than

undiscounted estimator (red).

and variance are calculated using

pi(k) =

Eii(klk) & -
&2(d0 + 1)

where do = Tj &i(k). Note that the finite memory estimator does not include infor-

mation that is older than M time steps. The three estimators compared in the next

simulations are

* Estimator #1: Undiscounted estimator

* Estimator #2: Discounted estimator (varying Ak)

* Estimator #3: Finite memory estimator (varying M)

Figure 4-4 shows the average of 200 different simulations for a sample problem, and

compares the response of the finite memory estimator with the discounted estimator.
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Fig. 4-3: Mean absolute error vs. response delay plot showing the discounted es-
timator (square) has better performance than finite memory estimator. Each data
point is an average of 200 simulations with random transition matrices for a 2x2 case.

Figure 4-4(a) (top) shows the the time response required to detect the change in

the model, for A = 0.85 and M = 10, while Figure 4-4(a) (bottom) shows the mean

absolute error of the two estimators. The discounted estimator has a smaller absolute

error. Figure 4-4(b) shows the analogous figure for a case of A = 0.90 and M = 20.

Note that the discretizations for the finite horizon M and the discount factor A are

not related in any obvious manner, and are only used to discretize the parameter

spaces for the two estimators.

Figure 4-3 presents a summary of the results for different M and A values, where

each data point corresponds to 200 different simulations of random transition matrices

for a 2 x 2 identification problem. The plot compares mean absolute error of the

estimator at the switch time to the response time of the estimator to achieve a 20%

estimation error. The finite horizon length was varied in M = {10, 15, 20,25, 30}

while the (constant) discount was varied in A = {0.85, 0.875, 0.90, 0.925, 0.95}.
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(a) A = 0.85, finite memory estimator M = 10
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tor.

L-

0

o.

0.

A I ' ' ' '

- . ... . ...

M=20



Table 4.4: Mean / Standard Deviation of Absolute Error

A Mean Variance Min Max

0.85 0.215 0.099 0.018 0.632
0.875 0.196 0.096 0.011 0.601
0.90 0.178 0.094 0.005 0.577

0.925 0.163 0.094 0.013 0.563
0.95 0.156 0.096 0.011 0.587
Al Mean Variance Min Max

10 0.255 0.119 0.014 0.659
15 0.236 0.108 0.017 0.777
20 0.204 0.102 0.004 0.586
25 0.144 0.084 0.009 0.463
30 0.144 0.084 0.009 0.463

The results clearly show the benefit of using the discounted estimator because for

most reasonable values of the response time, the mean absolute error of the discounted

estimator is lower on average than the finite memory estimator. Table 4.4 presents

the summary statistics of these simulations in terms of mean absolute error, standard

deviation of absolute error, and min/max of the absolute error. A two-sided T-test

showed that the difference between the discounted estimator and the finite memory

estimator up to A = 0.925 and l = 20 was statistically significant at p < 0.01.

Also note that the use of a finite memory estimator generally requires that all the

observed transitions in the previous M steps be stored. For large lM and a large

system, this may in fact be impractical; this memory storage is not required in the

discounted mean-variance formulation, where only storing the ai(k) is required (if

using the counts-based formulation).

4.5.2 Online MDP Replanning

This section considers a machine repair/replacement problem [10] driven by a time-

varying transition matrix, posed as a Markov Decision Process (MDP). Similar to

the previous example, the transition model is assumed to switch from model IIF to

model H at an unknown time T,,. The estimate of the transition matrix is updated
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at each time step with the most recent observations, and the optimal policy for the

DP is re-calculated using the current estimate.2

Problem Statement A machine can take on one of two states xk at time k: i)

the machine is either running (Xk = 1), or ii) broken (not running, Xk = 0). If

the machine is running, a profit of $100 is made. The control options available to

the user are the following: if the machine is running, a user can choose to either i)

perform maintenance (abbreviated as uk = m) on the machine (thereby decreasing

the likelihood the machine failing in the future), or ii) leave the maching running

without maintenance (uk = n). The choice of maintenance has cost, Cmaint, e.g., the

cost of a technician to maintain the machine.

If the machine is broken, two choices are available to the user: i) repair the

machine (Uk = r), or ii) completely replace the machine (Uk = p). Both of these two

options come at a price, however; machine repair has a cost Crepair, while machine

replacement is Creplace, where for any sensible problem specification, the price of

replacement is greater than the repair cost Crepace > Crepair. If the machine is

replaced, it is guaranteed to work for at least the next stage.

For the case of the machine running at the current time step, the state transitions

are governed by the following model

Pr (Xk+l = fails x k=running, uk=m) = 71

Pr (Xk+1 = fails I xk=running, uk=n) = 72

For the case of the machine not running at the current time step, the state transition

are governed by the following model

Pr (Xk+l = fails I xk=fails, uk=r) = 73

Pr (Xk+l = fails Xk=fails, Uk=p) = 0

2This problem is sufficiently small that the policy can be quickly recalculated. For larger prob-
lems, this may not be the case, and one might have to resort to Real-Time Dynamic Programming
(RTDP) techniques, such as in Barto et al [5].
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Note that, consistent with our earlier statement that machine replacement guarantees

machine function at the next time step, the transition matrix for the replacement is

deterministic. From these two models, we can completely describe the transition

matrix if the machine is running or not running at the current time step:

Machine Running (Xk = 1), It : 1- 71 yl
1 -7 2 72 J

Machine Not Running (k =0)l, HI2 [ - 7 3  3

0

The objective is to find an optimal control policy such that Uk(Xk = 0) E { r, p } if

the machine is not running, and uk(Xk = 1) E { m, n } if the machine is running, for

each time step. The state of the machine is assumed to be perfectly observable, and

this can be solved via dynamic programming.

Results The transition matrix for time t < T,, was

E 0.05 0.950.7

0.3 0.7 J

while for t > T,,, the transition matrix was

EJ+ [0.8 0.2

0.3 0.7

The response speeds of the two types of estimators can be calculated by evaluating the

difference in the mean objective function and. The optimal policy u*(k, s) and optimal

cost J*(k, s) are calculated at each time step k and simulation s using i) the discounted

estimator (u*(k, s), J*(k, s)) and the undiscounted estimator (u* (k, s), J*(k, s)). The

mean of the objective function is calculated as follows

1Ns

J (k) =
s=1
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The mean of the objective function for Ak = 0.90 is shown in Figure 4-5 while for

Ak = 0.95 is shown in Figure 4-6. The discounted estimator response (blue) is shown

to be much faster than the undiscounted response (red) at the switch time of T,, 10

seconds.

4.6 Conclusions

This chapter has presented a formulation for the identification on non-stationary

Markov Chains that uses filtering insight to speed up the response of classical ML-

based estimator. We have shown that the addition of an artificial pseudo-noise like

term is equivalent to a fading of the transition observations using the Dirichlet model;

this fading of the observations is similar to fading mechanisms proposed in time-

varying parameter estimation techniques, but our pseudo-noise-based derivation pro-

vides an alternative motivation for actually fading these Dirichlet counts in a perfectly

observable system. Additional work will account for measurement noise addition, and

the sensitivity of the overall estimator to the discount factor.
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Fig. 4-5: At t = 10, the transition matrix changes from H- to H'I, and the MDP

solution (after replanning at each observation) using the discounted estimator (A -

0.90, blue) converges in the neighborhood of the optimal objective J* quicker than

with using the undiscounted estimator (red)
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Fig. 4-6: At t = 10, the transition matrix changes from H1- to H+ , and the MDP

solution (after replanning at each observation) using the discounted estimator (A =

0.95, blue) converges in the neighborhood of the optimal objective J* quicker than

with using the undiscounted estimator (rle3d
IVC



Chapter 5

Persistent Surveillance

Implementation

5.1 Introduction

This chapter describes the hardware implementation using the robust replanning

MDP formulation in the application of multiple unmanned aerial vehicles persistent

surveillance missions. Experimental validation of the proposed algorithms is critical

in verifying that the algorithms truly are implementable in real-time with actual

hardware. Recent work by other authors has formulated UAV persistent surveillance

missions as an MDP. The essence of the surveillance mission is the time maximization

of UAV's coverage of a desired region in the environment, while accounting for fuel

constraints and random vehicle failures. In particular, the fuel flow of the vehicles

is governed by a probabilistic process that stochastically characterizes how much

fuel will be burned at each time step. We also account for the time-variability of

this fuel flow probability, to more realistically model real-life effects, such as vehicle

degradation over time, as well as adversarial effects.

In this section, we apply the Dirichlet Sigma Points with replanning to the per-

sistent surveillance mission when the fuel flow probability is uncertain. The effect of

this uncertainty can range from slightly degraded total coverage to an increased level

of vehicle crashes as the UAVs run out of fuel prematurely. Use of the Dirichlet Sigma
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Figure 5-1: RAVEN Testbed

Points with the replanning mechanism is shown to mitigate the effect of vehicle fail-

ures by conservatively replanning with new observations as the fuel flow probability

varies over time.

5.2 RAVEN Testbed

The Real-Time indoor Autonomous Vehicle test ENvironment (RAVEN) testbed is

an advanced testbed that is used for rapid prototyping of new control and estimation

algorithms, ranging from aggressive flight control [64] to multi-vehicle coordinated

control [14, 83]. At the heart of RAVEN is the precise positioning of a Vicon MX

camera system [83] that can accurately position a vehicle to within tenths of millime-

ters. The RAVEN testbed is composed of a wide variety of flight vehicles, but the

ones used in this chapter were quadrotor UAVs. For a much more detailed description

of the testbed, the reader is referred to the work of Valenti and Bethke [39, 54, 83, 84].

5.3 Persistent Surveillance Problem

The problem description of the persistent surveillance mission is as follows. A desired

number Ndes of UAVs is required to maintain coverage of a surveillance area (see

Figure 5-8). The vehicles start from a base location, traverse one or more intermediate
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Fig. 5-2: Persistent surveillance mission: vehicles must take off from a base location,
Yb, fly through intermediate locations, and finally reach the desired surveillance area

Y, [14].

areas (modeling the finite amount of time it takes a vehicle to reach the surveillance

location), and finally arrive to the surveillance area.

At each time step, the vehicles have three actions available to them: they can

either 1) return close to base, 2) approach the surveillance area, or 3) do nothing,

at which point the vehicle remains in its current location. Once the vehicle take off

from the base area, they lose fuel in a stochastic manner. With probability pnom, the

vehicle will lose fuel at a rate of F = 1 unit per time step. With probability 1 - Pom,

the vehicles will lose fuel at an off-nominal rate of F = 2 units per time step.

5.4 MDP Formulation

Given the qualitative description of the persistent surveillance problem, an MDP can

now be formulated [13, 14]. The MDP is specified by (S, A, P, g), where S is the

state space, A is the action space, Pxy(u) gives the transition probability from state

x to state y under action u, and g(x, u) gives the cost of taking action u in state x.

Future costs are discounted by a factor 0 < a < 1. A policy of the MDP is denoted

by p : S -+ A. Given the MDP specification, the problem is to minimize the so-called

cost-to-go function J, over the set of admissible policies II:

min J (xo) = minE akg(Xk, p(Xk))O
PEH PEH E k=0
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5.4.1 State Space S

The state of each UAV is given by two scalar variables describing the vehicle's flight

status and fuel remaining. The flight status y describes the UAV location,

Yi E {Yb, Yo, Y1, .. Ys, Y

where Yb is the base location, Y is the surveillance location, {Yo, Y ,..., Y-i } are

transition states between the base and surveillance locations (capturing the fact that

it takes finite time to fly between the two locations), and Y is a special state denoting

that the vehicle has crashed.

Similarly, the fuel state fi is described by a discrete set of possible fuel quantities,

fi {0, Af, 2Af,..., Fmax - Af, Fmax}

where Af is an appropriate discrete fuel quantity. The total system state vector x is

thus given by the states yi and fi for each UAV, along with r, the number of requested

vehicles:

x= (yi, Y2,., yn;fl, f2,., fn; r)T

5.4.2 Control Space A

The controls us available for the ith UAV depend on the UAV's current flight status

Yi.

* If y E {Yo, .. , Y - 1}, then the vehicle is in the transition area and may either

move away from base or toward base: ui E {" + " "- " }

* If yi = Y, then the vehicle has crashed and no action for that vehicle can be

taken: ui = 0

* If yi = Yb, then the vehicle is at base and may either take off or remain at base:

ui { "take off", "remain at base" }
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* If yi = Y,, then the vehicle is at the surveillance location and may loiter there

or move toward base: ui E { "loiter"," - "}

The full control vector u is thus given by the controls for each UAV:

u = (u1,..., Un)T  (5-1)

5.4.3 State Transition Model P

The state transition model P captures the qualitative description of the dynamics

given at the start of this section. The model can be partitioned into dynamics for

each individual UAV.

The dynamics for the flight status y are described by the following rules:

* If y E {Yo,..., Y- 1}, then the UAV moves one unit away from or toward base

as specified by the action ui E {" +", " - "}.

* If y = Y, then the vehicle has crashed and remains in the crashed state forever

afterward.

* If y = Yb, then the UAV remains at the base location if the action "remain at

base" is selected. If the action "take off' is selected, it moves to state Yo.

* If y = Y,, then if the action "loiter" is selected, the UAV remains at the

surveillance location. Otherwise, if the action "-" is selected, it moves one unit

toward base.

* If at any time the UAV's fuel level fi reaches zero, the UAV transitions to the

crashed state (yi = Y).

The dynamics for the fuel state fi are described by the following rules:

* If yi = Yb, then fi increases at the rate Freflet (the vehicle refuels).

* If yi = Y, then the fuel state remains the same (the vehicle is crashed).
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* Otherwise, the vehicle is in a flying state and burns fuel at a stochastically

modeled rate: fi decreases by Frn with probability pnom and decreases by

2F r,, with probability (1 - pom).

5.4.4 Cost Function g

The cost function g(x, u) penalizes three undesirable outcomes in the persistent

surveillance mission. First, any gaps in surveillance coverage (i.e. times when fewer

vehicles are on station in the surveillance area than were requested) are penalized

with a high cost. Second, a small cost is associated with each unit of fuel used. This

cost is meant to prevent the system from simply launching every UAV on hand; this

approach would certainly result in good surveillance coverage but is undesirable from

an efficiency standpoint. Finally, a high cost is associated with any vehicle crashes.

The cost function can be expressed as

g(x, u) = Co max{0, (r - n,(x))} + Crashnc,,ashed(X) + Cf f(x)

where:

* n,(x): number of UAVs in surveillance area in state x,

* ncrashed(x): number of crashed UAVs in state x,

* nf(x): total number of fuel units burned in state x,

and C1 , Cc,-rash, and Cf are the relative costs of loss of coverage events, crashes, and

fuel usage, respectively.

5.5 Robustness

In this first section, we address the issue of sensitivity of the persistent surveillance

mission to the nominal fuel transition flow probability. At first glance, it may not

be surprising that the mission is in fact sensitive to Pnom, the actual sensitivity of
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the coverage time of the mission is fairly dramatic. To empirically determine this

sensitivity, Po,, was discretized into a finite number of values. These values were

chosen under the assumption that Pno. was an uncertain quantity with a nominal

value of 0.80, and we used the Dirichlet Sigma Points of Chapter 2 to generate a set

of different pno, for different values of 3. The discretizations resulted in the values

of p,,m : {0.605, 0.7,..., 0.995}.

The optimal policy and other characteristics of the persistent surveillance mis-

sion are very sensitive to the precise value of the parameter p,c,. Figure 5-3 (top)

demonstrates the sensitivity of the coverage time of the mission (the total number of

time steps in which a single UAV was at the surveillance location) as a function of

p,,o. For values of pom < 0.9, typical coverage times for a 50-time step mission can

range from 25 to 30 time steps, while for values of pno, > 0.9, the coverage times can

increase to almost 47 time steps.

Figure 5-3 (bottom) shows the impact of a mismatched transition model on the

overall mission coverage times. The modeled value for pn,, is shown on the "Modeled"

axis, while the true system operated under a value of Pno, on the "Actual" axis.

When the modeled Pno is less than the actual pn, this results in more conservative

policies, where the control policy recalls the UAVs to base well before they were out

of fuel, because it assumes they will use a lot of fuel on the flight back to base.

This results in fewer crashes, but also led to decreased surveillance coverage since the

vehicles spend less time in the surveillance area. Conversely, riskier policies are the

result when the modeled pnom is greater than the actual pnom, since the control policy

assumes the UAVs can fly for longer than they actually are capable of. This leads

to significant coverage losses, since the UAVs tend to run out of fuel and crash more

frequently.

A seemingly counter-intuitive result is that the optimal coverage time need not

occur along the diagonal "Actual=Modeled". This is however easily resolved as the

off-nominal fuel transitions are simply occurring less frequently, and even though the

vehicles return to base with residual fuel, they immediately take-off again and return

to the surveillance area. The almost immediate refueling therefore partially mitigates
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the performance loss that is suffered by the mismatched estimates.

5.6 Adaptation Flight Experiments

The prior results showed that value of the parameter Pnom has a strong effect on

the optimal policy, and in particular, how mismatches between the true parameter

value and the value used to compute the optimal policy can lead to degraded perfor-

mance when implemented in the real system. Therefore, in order to achieve better

performance in the real system, some form of adaptation mechanism is necessary to

enable the planner to adjust the policy based on observations of the true parameter

values. These observations cannot be obtained prior to the start of operation of the

real system, so this adaptation must be done online.

Flight experiments were flown on RAVEN to demonstrate the advantage of an

adaptation mechanism. Multiple tests were implemented, involving step changes to

the probability of nominal fuel flow. This reflected the more realistic set of scenarios

where a vehicle could suffer damage throughout the course of the mission.

The estimator of Chapter 4 was implemented for estimating this probability. For

our hardware implementation, the estimator was implemented in terms of the fading

memory interpretation of the Dirichlet counts. Namely, we initialized the estimator

with parameters (a(O), ,(0)), and our a priori density was given by

fB(p I a(O), P(O)) = K p(o)-l(1 - p)P(0)-i (5-2)

For the undiscounted estimator, the parameters were updated as

a(k + 1) = a(k) + 6

,3(k + 1) = P(k) + (1 - 6)

where 6 = 1 if a nominal transition was observed (incrementing a(k) by 1), and 6 = 0
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if an off-nominal transition was observed (incrementing p(k) by 1).

ca(k + 1) = A a(k) + 6

P(k + 1) = 3(k) + (1 - 6)

such that at each iteration, the parameters were faded by the factor A < 1. As

described in Chapter 4, this tuning parameter is used to vary the response speed of

the estimator.

The following tests were performed to validate the effectiveness of adaptation in

the hardware testbed:

* Test 1: The probability was changed in mid-mission from p,,o = 1 to pnom = 0,

and the estimators were anlayzed for responsiveness.

* Test 2: Incremental step changes, where the probability was initialized to Pno, =

1 and decreased by 0.3 approximately every 5 time steps (corresponding to

approximately 2 minutes of actual flight time).

In these tests, the optimal policy was recomputed within 4 time steps of the updated

estimates. At each time step, the previous policy and optimal cost were used as

initial condition for the new value iteration. More details about warm-starting the

optimization using the previously calculated policy can be found in Ref. [13].

5.6.1 Test 1

The next scenario demonstrated the ability of the adaptation mechanism to adjust

to actual model changes during the mission, such as might be observed if the vehicles

were damaged in flight. In this scenario, the vehicles were initialized with a Pnom = 1

and the model was changed to Pom = 0 after approximately 2 minutes (5 time steps),

mimicking adversarial actions (such as anti-aircraft fire) and/or system degradation

over time. The change in the probability estimate is shown in Figure 5-4 for three

different choices of A = {0.6, 0.8, 1}. It can be seen that the classical estimation

(A = 1) results in a very slow change in the estimate, while A = 0.8 is within 20% of
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Fig. 5-4: Step response from pnom = 1 to pno, = 0 for three different values of A,

showing that A = 0.6 has a response time of approximately 5 times steps, while A - 1

has a very slow response time.
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the true estimate after 10 time steps, while A = 0.6 is within 20% after only 3 time

steps, resulting in a significantly faster response. The variation of A resulted in an

interesting set of vehicle behaviors that can be seen in Figure 5-5. For A = 1 (top),

the estimate converges too slowly, resulting in an extremely slow convergence to the

optimal policy. The convergence is so slow that both vehicles crash (vehicle 1 at

time step 9, and vehicle 2 at time step 12), because the estimator was not capable of

detecting the change in the value of Pnom quickly, and these vehicle were still operating

under an optimistic value of p,om 0.8. Due to the physical dynamics of the fuel

flow switch for this scenario, it turns out that the first vehicle will inevitably crash,

since the switch occurs when the vehicle does not have sufficient fuel to return to

base. However, if the estimator were responsive enough to detect the switch, this

could results in a much decrease surveillance time for the second vehicle. This does

not occur when A = 1. The benefits of the more responsive estimator are seen in the

bottom figure, where by selecting A = 0.8, the second vehicle only spends one unit

of time on surveillance, and then immediately returns to base to refuel, with only 1

unit of fuel remaining. Thus, the faster estimator is able to adapt in time to prevent

the second vehicle from crashing.

5.6.2 Test 2

The final scenario was a slightly different test of the adaptation mechanism in tracking

a series of smaller step changes to pn,,. In the earlier flight tests, under a nominal

fuel flow, Pno, = 1, the fuel transitions were always of 1 unit of fuel. Likewise,

when Pnom = 0, the fuel transitions were always of 2 units of fuel. In this test, the

transition probability pom was decreased in steps of 0.3, and the estimators saw

both nominal and off-nominal fuel transitions in the estimator updates at each time

step (unlike the earlier tests where they either saw nominal transitions or off-nominal

transitions). As a result, this test was perhaps a more realistic implementation of a

gradual temporal degradation of vehicle health. Figure 5-6 is shown for two different

choices of A = {0.8, 1}. The first item of note is the step decreases in p,,o, that unlike

the earlier flight results, are much more subtle. Next, note that the initial response of
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Fig. 5-6: Probability estimates of Pnom for A = 0.8 and A = 1. Due to the slow

response of the A = 1 estimator, both vehicles crash by time step 13, and no further

adaptation is possible. Estimator with A - 0.8 shows faster response, and ultimately

converges to the true value.

the undiscounted estimator (blue) is extremely slow. In this flight test, the adaptation

was so slow that the significant mismatch between the true and estimated system

resulted in a mismatched policy that ultimately resulted in the loss of both vehicles.

Note that using an undiscounted estimator, both vehicles end up crashing in 13

time steps, while by using the discounted estimator, the vehicle lifetime is extended to

25 time steps, at which point one of the vehicle crashes due to the off-nominal sequence

of transitions corresponding to the new pnom = 0, which the estimator had not yet

converged to. Further decreasing the A parameter emphasizes the new observations

significantly, and thus was less desirable venue to pursue. This observation served as

an appropriate motivation for the next section, which accounted for vehicle failure by

merging both robust and adaptive planning.
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5.6.3 Further remarks

Remark 1 (Same model for all vehicles): These experiments assumed that the

same transition model was used for all vehicles. This assumption is valid if the vehicles

were in fact impacted by the same adversarial effects, but the estimators used in this

paper can be applied to situations where individual vehicles have unique transition

models.

Remark 2 (Information updates and cooperation): Since each vehicle was

assumed to have the same transition model, the vehicles could update the models

with their individual observations during the flights. Furthermore, if neither vehicle

crashed, then twice the information was available to the estimators to update the

probability estimates of nom. This implies an indirect (but unintentional) cooperation

among the vehicles for estimating this unknown, time-varying parameter.

5.7 Robust and Adaptive Replanning

In this section, the adaptive replanning was implemented by explicitly accounting

for the residual uncertainty in the probability estimate 5no. Since this was a scalar

estimation problem and the counts-based approach was used, at each time step the

estimator output the updated a(k + 1) and f3(k + 1), and calculated the mean and

variance as

a(k + 1)
Po (a(k + 1) + ,(k + 1)
2 oz(k + 1)P(k + 1)

an =(a(k + 1) + P(k +1)) 2 (a(k + 1) + P(k + 1) + 1)

The Dirichlet Sigma Points were then formed using this mean and variance

yo = Pnom

1 - Pnom + O'p

Y2 - no= - Or,,
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and used to find the robust policy. Using the results from the earlier chapters, ap-

propriate choices of 0 could range from 1 to 5, where 8 r 3 corresponds to a 99%

certainty region for the Dirichlet (in this case, the Beta density). For this scalar

problem, the robust solution of the MDP corresponded to using a value of om- Pfap

in place of the nominal probability estimate 1nom, as this corresponded to a more

cautious policy.

Flight experiments were repeated for a case when the transition probability esti-

mate no was varied in mid-mission, and compared three different replanning strate-

gies

* Adaptive only: The first replan strategy involved only an adaptive strategy,

with A = 0.8, and using only the estimate inom (equivalent to setting 3 = 0 for

the Dirichlet Sigma Points)

* Robust replan, undiscounted adaptation: This replan strategy used the

undiscounted mean-variance estimator A = 1, and set / = 4 for the Dirichlet

Sigma Points

* Robust replan, discounted adaptation: This replan strategy used the

undiscounted mean-variance estimator A = 0.8, and set P = 4 for the Dirichlet

Sigma Points

In all cases, the vehicle takes off from base, travels through 2 intermediate areas, and

then reaches the surveillance location. In the nominal fuel flow setting losing 1 unit

of fuel per time step, the vehicle can safely remain at the surveillance region for 4

time steps, but in the off-nominal fuel flow setting (losing 2 units), the vehicle can

only remain on surveillance for only 1 time step.

The main results are shown in Figure 5-8, where the transition in pn,, occurred

at t = 7 time steps. At this point in time, one of the vehicles is just completing the

surveillance, and is initiating the return to base to refuel, as the second vehicle is

heading to the surveillance area. The key to the successful mission, in the sense of

avoiding vehicle crashes, is to ensure that the change is detected sufficiently quickly,
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and that the planner maintains some level of cautiousness in this estimate by embed-

ding robustness. The successful mission will detect this change rapidly, and leave the

UAVs on target for a shorter time.

The result of Figure 5-8(a) ignores any uncertainty in the estimate but has a

fast adaptation (since it uses the factor A = 0.8). However, by not embedding the

uncertainty, the estimator detects the change in Pnom quickly, but allocates the second

vehicle to remain at the surveillance. Consequently, one of the vehicles runs out of

fuel, and crashes. At the second cycle of the mission, the second vehicle remains at

the surveillance area for only 1 time step.

The result of Figure 5-8(a) accounts for uncertainty in the estimate but has a

slow adaptation (since it uses the factor A = 1). However, while embedding the

uncertainty, the replanning is not done quickly, and for this different reason from the

adaptive, non-robust example, one of the vehicle runs out of fuel, and crashes. At

the second cycle of the mission, the second vehicle remains at the surveillance area

for only 1 time step.

Figure 5-8(c) shows the robustness and adaptation acting together to cautiously

allocate the vehicles, while responding quickly to changes in pno,. The second vehicle

is allocated to perform surveillance for only 2 time steps (instead of 3), and safely

returns to base with no fuel remaining. At the second cycle, both vehicles only stay

at the surveillance area for 1 time step. Hence, the robustness and adaptation have

together been able to recover mission efficiency by bringing in their relative strengths:

the robustness by accounting for uncertainty in the probability, and the adaptation

by quickly responding to the changes in the probability.

5.8 Summary

This chapter presented hardware implementation that demonstrate the detrimental

impact of modeling mismatches, and show that the adaptation approach can mitigate

these effects even in the presence of poorly known initial model and model changes.

Furthermore, the adaptive approach yields better performance over offline, minimax
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type approaches, which must trade-off performance versus robustness.

The flight experiments demonstrate the effectiveness of the adaptive architecture.

With this architecture in place, there are a number of interesting future research areas

that could be explored. First, in the flight experiments done to date, the same fuel

model was assumed for all vehicles. A minor, but interesting modification would be to

run a separate fuel model estimator for every vehicle, allowing for the possibility that

vehicles degrade at different rates, for example. Another area would be modification

of the system cost function to explicitly reward exploration, where vehicles would be

rewarded for taking actions that reduce the uncertainty in the system parameters.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has presented new contributions in the area of robust decision-making and

robust estimation. In the area of robust decision-making, this thesis has presented:

* An algorithm that precisely defines the model uncertainty in terms of credibility

regions, using the Dirichlet prior to model the uncertain transition probabilities.

This bisection algorithm is used in conjunction with Monte Carlo sampling, and

can efficiently find the credibility region used in the robust MDP;

* A new sampling-based algorithm using Dirichlet Sigma Points for finding ap-

proximate solutions to robust MDPs in a computationally tractable manner.

We prove that the Dirichlet Sigma Points are proper samples of a probability

vector (summing to unity, and between 0 and 1) and can therefore be used in

general sampling-based algorithms. By using Dirichlet Sigma Points, we signif-

icantly reduce the total number of samples required to find the robust solution,

while achieving near optimal performance;

* Guidelines for choosing the tuning parameter used in the Dirichlet Sigma Points,

and numerical results demonstrating the reduction in samples required for the

robust solution. In particular we show results in a machine repair problem, and

autonomous agent planning.
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In the area on multiple model estimation, this thesis has

* Addressed the issue of uncertain transition probabilities in multiple model esti-

mators. In particular, we have extended the work of Refs. [27, 46] and identified

the problem of covariance mismatch due to the uncertain Markov Chain;

* Provided a framework for generating robust estimates and covariances. In track-

ing applications, one of the main problems of covariance mismatch is the prob-

lem of covariance underestimation, in which the estimator is more confident

about its state estimates than it should be, and can result in an increased es-

timation error. Our robustness framework ensures that the covariance is not

underestimated, and is able to maintain a low estimation error;

* Shown reduction in estimation error in two aerospace tracking problems: the

first one is a UAV multi-target tracking problem, and the second an agile target

tracking problem.

Finally, the work on Markov Chain adaptation provided a method for learning

the transition probabilities of the Markov Chain when these transition probabilities

are time varying. In particular,

* An explicit recursion is derived for the mean and variance of the transition prob-

abilities under a Dirichlet prior, making the Dirichlet Sigma Points amenable

to real-time adaptation.

* This recursive formulation has been used to identify the cause of the slow learn-

ing of the Markov Chain, namely that the effective estimator gain drives to zero

too quickly;

* A new estimator is derived that introduces the notion of an effective process

noise to speed up the transition probability identification problem;

* Numerical examples are presented that demonstrate the faster adaptation of

the transition probabilities using the new estimator. This new estimator is
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also demonstrated in the context of real-time MDP re-planning where the op-

timal reward is collected almost twice as quickly as conventional adaptation

algorithms.

This robust and adaptive group of algorithms has then been implemented in the

RAVEN testbed. The benefits of using the proposed algorithms has been demon-

strated in extended mission times with reduced vehicle crashes.

6.2 Future Work

There are many interesting venues for future work in this problem. At a high level,

this thesis has presented new algorithms for applications to sequential decision-making

applications that can cope with the uncertainty in the transition probabilities, and

can efficiently adapt to changes in these transition probabilities. This of course draws

a stronsg parallel to alternative learning techniques that do not explicitly use a model

for the optimal control problem, such as Reinforcement Learning (RL) methods.

RL-like methods, for example, allow an agent to incorporate an "exploration" set

of actions, where the agent actively tries actions that are not necessarily optimal

("exploitation" actions), but serve to find out more about the uncertain world. The

methods proposed in Chapter 4 adapt passively only based on transitions that have

been observed. Being able to extend the proposed model-based robust adaptive meth-

ods to account for an active uncertainty reduction mechanism such as those proposed

in the RL literature would be an important extension of this work.

When dealing with multi-agent problems, an additional set of important research

questions addresses the tradeoffs of decentralization and centralized decision-making.

In particular, if all agents share the same transition model (as in the example using

the RAVEN testbed), and each agent is experiencing a different set of transitions, how

do the agents share their own information with other members of their group? With a

much larger number of dispersed vehicles, possibly in a non-fully connected network,

recent ideas from consensus for uncertain probabilities will also present interesting

areas of future research [70].
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