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ABSTRACT

This thesis develops a learning framework for automation of acquisition of bridge
conceptual design knowledge. The thesis proposes a new learning methodology explicitly
aimed at capturing quality design aspects to help engineer gain insight into good
design. The research uses the National Bridge Inventory (NBI) data, which contains
more than 600,000 bridges. The physical condition ratings are used as proxies for design
quality.

In this data the relationships between physical condition ratings and bridge design
elements are not well-known. The simultaneous equation model (SEM) technique is
employed to model the physical condition ratings. SEM has the advantage over existing
methods of state transition probability estimation in that no a-priori subjective conditional
grouping is required. The resulting model yields the marginal effects of design variables
on condition ratings, which is easy for engineers to interpret. The analysis results reveal
that design features available in the NBI database alone do not adequately explain the
resulting condition ratings.

Using the identified performance model, COBWEB, an incremental clustering algorithm,
is employed to learn mappings from design specification to configuration space. However,
the COBWEB branching strategy focuses on probabilistic predictability of feature values.
The learned knowledge therefore represents not clusters of good design aspects but rather
clusters of local similarity. A modification to the existing strategy is proposed. A set of
experiments has been conducted to compare the original and the modified COBWEB.
Finally, the thesis provides a detailed discussion of issues related to the quality of the
NBI database and proposes strategies for improved analysis of the NBI bridge data.
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1. INTRODUCTION

1.1. Scope

The conceptual design phase lies at the heart of the engineering design process during
which an initial design is generated. This process, has a great bearing on the quality and
success of the produced artifact. Knowledge to perform such a task is only acquired
through years of practical experience. The scarcity of synthesis knowledge for conceptual
design and the importance - and difficulty - of this design phase has led to a desire to
build computer systems which incorporate design knowledge and which can generalize it
to new problems. Although the idea was promising, the fact that traditional strategy for
acquiring such heuristic knowledge using "knowledge engineers" that tries to capture
knowledge directly from experts has been found inefficient and expensive. With the
advent of cheap computational power, a number of attempts have been made to acquire
such heuristic knowledge automatically using a so-called "Machine Learning" (ML)
technique.

This thesis investigates the use of the ML technique for learning of design knowledge
from design examples in the light of the resulting performance of the produced artifact.
This differs from the majority of studies in the same area whose knowledge is found to be
shallow and usually does not provide insight about quality of design to engineers/experts.
This involves investigation and development of models capturing the relationships
between design choices and the resulting quality of design, in this case measured by
performance indices. The knowledge of induction algorithm should then incorporate the
identified performance model into the knowledge extraction strategy in an explicit
manner rather than using pure statistical measures like learning error.

This thesis uses National Bridge Inventory (NBI) data domain as an example of its
application. The NBI database possesses a certain degree of richness in terms of data
description for a Bridge Maintenance System (BMS). Part of the current thesis has been
devoted to in-depth analysis of the NBI data to gain insights into relationships between
various aspects that underscore the NBI bridge specification, design configuration, and
performance.

The thesis contribution to current studies on automated design knowledge learning is to
extend existing ML techniques whose learning strategy is purely constructed by statistical
measures of local similarity. The engineering objective is introduced to accommodate a
performance model, thus the resulting methodology tries to simultaneously optimize the
two objectives during the learning process. The starting point of the proposed framework
is a statistical identification of a performance model estimated from NBI data. Such a
model enables engineers to gain insights into the marginal effects of design elements on
the resulting performance. Then the model is incorporated into the modified knowledge



learning algorithm to produce general design rules for engineers to apply it to new
problems. The performance model plays a key and distinctive role here in that it provides
insight to engineers as to why, under a given design setting, one would prefer a particular
design to another. Thus making the knowledge deep and useful for engineers/experts.

1.2. Motivation

The philosophy espoused in this thesis is that recent improvements in statistical modeling
techniques open up new opportunities to view design knowledge learning from a different
perspective than the one provided by traditional Artificial Intelligence (AI) or expert
systems. This technique enables construction of a design knowledge learning machine
with arbitrary learning characteristics and behaviors tailored to fit niches of different
learning problems and situations. A learning problem can be viewed as the construction
of a hypothesis function that optimizes certain objective functions.

This development perspective is the main motivation of this thesis, in aiming to harness
this view to flexibly design a new knowledge learning algorithm that allows one to direct
learning to focus on the performance perspective of the artifact in an explicit manner. In
particular, this thesis explores the opportunities which are offered by the following ML
and econometric methods:

Simultaneous Equation Modeling (SEM): an econometric framework that allows
proper treatment of a system of contemporaneous response (or dependent) variables. The
framework is particularly useful in our context when modeling multiple performance
variables that contemporaneously exist with other exogenous variables to the
performance system.

COBWEB: an incremental conceptual clustering algorithm which constructs a concept
hierarchy partially ordered by generality through incremental incorporation of new
example instances. Each node of the classification tree represents a concept as the
probability of the occurrence of each attribute-value pair presenting that concept. The
criteria to identify appropriate operators for growing the tree (create a new node, merging
or splitting existing nodes) are driven by maximizing a so-called category utility measure.
The measure is purely probabilistic and represents a tradeoff between accuracy of
prediction of feature values in a cluster class and the class size.

The objective of this thesis is therefore to exploit the strength of the SEM model to
develop a performance model comprising multivariate performance measures which are
hypothesized to be endogenous to each other. The resulting model is then used to
augment the weakness of COBWEB to, instead of only focusing on purely balancing
node size and predictability of a class by a feature value, simultaneously optimize the
local gain of average performance over the global average performance.



1.3. Thesis Overview

There are three main components that form this thesis, namely: statistical analysis of NBI

bridge data, NBI bridge performance modeling, and development of learning algorithm

for design knowledge learning by performance. The relationship among these three

components is illustrated in Figure 1-1.

Statistical Analysis of

verify NBI Bridge Data verify

NBI Bridge Learning Algorithm for

re -Modeling incorporate-- Design Knowledge
Performance Modeling Data by Performance

Figure 1-1. Illustration of relationship among three main components of current thesis

The first component focuses on finding trend relationships between three aspects of NBI

data, i.e., specifications, design configurations, and performances. This serves as a basis

of understanding the underlying relationship structure embedded in the data. These trends

are useful insights that can be used to criticize and verify validity of the next two

components.

The second component is concerned with modeling of NBI bridge performance whereby

performances are measured as a system of multivariate variables. In our application, we

select physical condition ratings on deck, superstructure, and substructure elements of the

bridge to present design performance measures. They are hypothesized to following

common stochastic latent process of deterioration. A proper treatment of such a model is

to exploit SEM framework. The model for these performance measures are identified

with in-sample data and validated with out-of-sample data.

The third component demonstrates a proposed extension to the current design learning

algorithm, particularly COBWEB to incorporate the performance model identified in the

previous step into its learning objective. The central idea is to modify the category utility

definition to accommodate performance in a proper manner.



1.4. Contributions

The thesis has three contributions:

* In-depth analysis of NBI bridge data: the thesis presents detailed analysis of trend
studying in the NBI bridge data particularly on the relationship among
specifications, design configurations, and performances. Literature review -on
accuracy of NBI bridge performance modeling also provides an insight and hint
for further improvement for data collection in NBI database to better explain the
deterioration process in the physical condition ratings of NBI bridges. A review
on accuracy of physical condition rating measurement is also provided to raise an
issue on its impact to performance modeling accuracy.

* SEM approach for modeling bridge performance: The thesis presents the
necessity to proper treatment of endogeneity possessed by regression of
multivariate performance measures such as NBI bridge physical condition ratings.
The approach also has advantage over traditional method employed by typical
Bridge Management System (BMS) which relies on estimation of transition
probability in that it does not require bucketing bridge instances by its
characteristic to form conditional probability of transition. This is typically done
subjectively due to the difficulty in defining similarity on data space formed by
NBI data which is a mixture of continuous, nominal, and ordinal-scaled quantities.

* Development of design knowledge learning algorithm with performance
objective: Unlike traditional ML approaches employed in similar type of study in
which learning is driven by pure statistical objective, the thesis presented a
modification of the existing learning algorithm to accommodate performance into
its learning objective. The main goal is to construct a learning algorithm that
simultaneously optimizes similarity or prediction accuracy in order to measure
what was originally employed by the algorithm and the newly introduced
performance measure.

* Suggestion for current NBI data enhancement: In the thesis, we have found the
inadequacy of the NBI data in its current status to explain the measured
performance. Using the experience from studies in the current thesis, a set of
suggested enhancement for current NBI data is presented.

1.5. Organization

The thesis is divided into five parts.

The first part of this thesis consists of a brief introduction, followed by extensive review
of existing methodology for engineering design knowledge learning. The missing
element in the existing studies which is the learning for design performance is pointed out



and an outline of the methodological development described in the remainder of the
thesis is laid out. The subsequent three parts of the thesis describe the three components
of our work: Part I describes the statistical analysis of NBI bridge data, Part II describes
the proposed framework for construction of NBI bridge performance and empirical
evaluation of the estimated model, and Part III demonstrates to the incorporation of the
identified performance model into existing design knowledge algorithm to form a novel
algorithm that incorporates performance into its learning objective.

The organization of the chapters is given below:

Introduction:

* Chapter 1 consists of a brief introduction which outlines the scope, motivation,
and organization of the thesis as well as summarizing the main contributions
which it makes to the realm of automated engineering design knowledge learning
study.

* Chapter 2 presents a review of background and recent development of
methodology for design knowledge learning. The drawbacks and missing
elements of existing automated design knowledge acquisition methodologies are
discussed.

* Chapter 3 presents an overview of our proposed methodology in correspondence
to the drawback of existing methods identified in Chapter 2. The roadmap to the
rest of the thesis is also postulated.

Part I: Overview of NBI Database

Chapter 4 introduces NBI database and presents a detailed statistical study.
Particularly from the perspective to identify major trends and relationships among
design specifications, configurations, and the resulting performances.

Part II: Statistical Modeling of Bridge Performance

* Chapter 5 extensively reviews recent developments and methodologies used for
bridge performance modeling. It describes transition probability estimation based
approach, ordered probit model approach, and simultaneous equation model
approach in great detail. These methodologies are qualitatively assessed in the
light of their applicability of construction performance model comprising
multivariate performance variables.

* Chapter 6 describes empirical evaluation of performance model constructed by
the method suggested in Chapter 5. It also provides insights on adverse factors
that impair model accuracy observed from the experiment.

Part III: Conceptual Design Knowledge Learning by Design Performance Objective

* Chapter 7 examines existing design knowledge learning framework. The
discussion of metric for algorithm selection is introduced and used to identify



appropriate methodology for the study. The so-called COBWEB algorithm
appears to be the best suitable methodology to use. However, we suggest
necessary modification to the existing COBWEB learning strategy to incorporate
performance measure obtained from Chapter 6 into its learning objective.
Chapter 8 describes empirical evaluation of the modified COBWEB and
comparison of its performance to the plain vanilla COBWEB.

Conclusions

* Chapter 9 discusses inadequacy of NBI bridge data with respect to the outlook for
design for long-term performance scheme which is a topic of interest for Federal
Highway Administration (FHWA) and authorities in recent years. Using
experience from the studies in this thesis, a set of recommended enhancement to
the NBI data is presented.

* Chapter 10 describes the conclusions of the thesis and discusses avenues for
future developments.



2. BACKGROUND AND LITERATURE
REVIEWS

Lying at the heart of the engineering conceptual design process is the synthesis of
potential solutions during which an initial solution for the design problem is devised.
The synthesis of solutions is usually dependent on the knowledge of the designer. This
knowledge cannot easily be taught or captured due to the heuristic nature of such
knowledge. The advent of intelligent computer systems has set forth attempts to automate
acquisition of such knowledge. This chapter investigates existing studies in the area of
automatic design synthesis knowledge acquisition. We begin by classifying types of
design knowledge to be learned which, in turn, defines different learning schemes in
existing literature.

Among all these schemes, the ones relevant to this research interest are the so-called
'learning of design composition' and 'learning for performance evaluation' frameworks.
In this chapter, a subsection is devoted to thedetailed discussion and literature review on
each of these frameworks. Finally, we point out a gap between the two frameworks and
suggest a more suitable learning paradigm for synthesis knowledge.

2.1. Types of Design Knowledge Learned

In this chapter, unless specified, the term learning is used to mean automated learning of
design knowledge, in particular learriing by the method of Machine Learning (ML)
programs. According to Sim and Duffy (1998), the types of design knowledge learned
can be classified into the following:

* Product design knowledge
* Design process knowledge.

While the first type of knowledge to be learned is the heuristics behind generation of
design artifacts, the second type involves learning the rationale that drives design actions
to be taken to progress the design. Among the two types, the first is relevant to the
interest of this thesis. Within the paradigm of product design knowledge learning, there
exist various branches of research focusing on different types of knowledge specific to
the design product/outcome. From all learning types discussed by Sim and Duffy (1998),
the schemes relevant to this thesis are:

* composition of the components/subsystems that constitute the product
* performance evaluation knowledge



Type of Learning Goals

Knowledge for performance
evaluation

Knowledge of design
composition

Dynamic leaming of implicit
design knowledge

P.

Figure 2-1. Type of knowledge to be learned under product design knowledge learning category

In learning design composition knowledge, past design is used to initiate the synthesis
process of design problems that have similar design specification. Examples of this type
of learning are BRIDGER (Reich, 1993) and ECOBWEB by Reich and Fenves (1992).
The latter employs a hierarchical clustering technique which maximizes a so-called
'utility function' for classification of bridge specification and design attributes into
clusters of subspaces based on similarity of bridges specifications. It can be considered as
a framework to construct design concept and is employed in BRIDGER primarily for
synthesis of the different cable-stayed bridge concepts.

In the paradigm of learning for performance evaluation knowledge, the knowledge to be
learned is typically a mapping from the design solution space to the design behavior
space. The learned knowledge is useful in various stages of design processes in the sense
that it provides a support to the decision for furthering the design or not. Formalization of
relationship between decisions about values of design variables and their consequent
performances is represented as mapping from feasible design variable space to
performance space. Each point on the feasible design solution space represents a
particular combination of design decisions regarding the design variables. By identifying
the best or optimal feasible region on the design solution space, the mapping back from
performance space to the original design space yields the design solution which results in
such performance. An example of such a learning type is Grierson and Khajehpour
(2002). They applied multi-criteria optimization on selected office building design

Knowledge for Performance Evaluation

Goal: Learning if a design should proceed further (if performance is met)
Related Studies:

1) Murdoch and Ball (1996) have analyzed configuration of design solutions in term of
performance so that the good aspects can be reused

2) Grierson and Khajehpour (2002) used Genetic Algorithm (GA) to search office design
configuration space to optimize cost/revenue performance - cost/revenue function is a
priori known
Difficulties:

1) Subtle (and could always conflicting each other) and often involve a lot of uncertainty
2) Depending on standards

Knowledge for Design Composition

Goal: Finding knowledge that map to most relevant cluster of design configurations of
similar specifications
Related Studies:

1) BRIDGER (Reich, 1993) derives mapping of bridge design attributes from similar
specifications using hierarchical structure

2) ECOBWEB (Reich and Fenves, 1992) used probabilistic tree-like algorithm to cluster
design features based on similarity of specification
Difficulties:

1) No specific goal for learning (Shin and Duffy, 1998)
2) Similar specification does not tell anything about design quality

And more

.. ... No-

And 

more



configuration attributes and searched for candidate configuration that optimizes the preset
multi-objective using stochastic search.

In the following two sections, philosophy and techniques underlying these two types of
knowledge learning are reviewed and discussed in detail.

2.2. Learning for Knowledge of Design Composition

In this type of learning, design decisions are conceptualized and formalized as clusters of
designs with resembled specifications. Past designs are used as a starting point for
construction of such design conceptualization. Important to this learning type are two
components, namely clustering objective functional and clustering technique/strategy.

The followings are reviews of clustering techniques used in the literature.

COB WEB/ECOB WEB

COBWEB (Fisher, 1987) is a hierarchical clustering technique employing five operators
to determine how best to incorporate an example (e.g., existing design) into the hierarchy.
The category utility (Gluck and Corter, 1985) is used as clustering objective functional. It
can be viewed as a function that rewards traditional virtues held in clustering generally -
similarity of objects within the same class and dissimilarity of objects in different classes.
Classification topology is constructed in such a way as to maximize the average Category
Utility (CU) over all clusters on the hierarchy. Precisely, the CU function for the k-th
cluster is defined as:

CUk =P(Ck[ PA, = VI Ck _ jPAP( = V)2 (2-1)

where P(A = V I C) is the probability of the i-th attribute of the observed data taking

the j-th label value given that the observation is classified to the k-th cluster. The first
time can be rewritten as follows using the Bayes rule.

, P(A = V, Ck)P(Ck)P(Ck IA, = V) (2-2)

The first term in the product of Equation (2-2) can be interpreted as intra-class similarity.
The larger this probability, the greater the proportion of class members sharing the value
and the more predictable the value is of that class member. The last term is the inter-class
similarity. The higher this probability, the fewer the objects in contrasting classes that
share this value and the more predictive the value is of this class.

Thus, the term defined in Equation (2-2) can be viewed as a tradeoff between intra-class
similarity and the intra-class dissimilarity. The CU function is therefore defined as the



gain of expected number of attribute values that can be correctly guessed given cluster k

(P(Ck) X1  jP(A, = V CI' ) over the expected number of correct guesses with no

such prior knowledge (P(C,) .i P(A, = V )

Examples are permanently incorporated into the hierarchy by sorting through the
hierarchy and find the best host node that maximizes average CU over all clusters, i.e.

(2-3)
n

Note that COBWEB in its original version can only handle nominal data.

To be able to handle real world data, ECOBWEB (Reich and Fenves, 1992) has been
developed as an extension of the original COBWEB to be able to handle real values.

ID3 and C4.5

ID3 was first developed by Quinlan (1986). Its extension C4.5 (Quinlan, 1993) has been
a widely used classification/decision tree algorithm. In the context of engineering design
knowledge, Kumar, Subramaniam and Teck (2004) employed C4.5 algorithm to
inductively learn knowledge of fixtures conceptual design.

At the heart of C4.5 (or ID3) lies the entropy function as impurity measure for branching
control. Entropy or impurity after splitting at node m is given by

N K

I, = - 2Nm 'j log p, (2-4)
j=1 N i=1

where Nm and Nmj denote number of observations in node m and number of observations

in node m that takes valuej at the branching attribute. And pmj the probability of class

C at node m that takes valuej at the branching attribute is defined as

N' .
P(C, x,m, j) p, Nmj (2-5)

Although other measures for branching can be used, the most common ones are, for
example, Gini index (Breiman et al., 1984) and misclassification error.



2.3. Learning for Knowledge for Performance Evaluation

Typically, the problem in this learning scheme involves evaluating multiple conflicting
performance criteria. Examples of such learning problems are Grierson and Khajehpur
(2002) and Agarwal and Raich (2005). Both employ multi-objective genetic algorithms
(Kalyanmoy, 2001) to search feasible design spaces and identify configuration that best
optimize the competing strategies. Grierson and Khajehpur (2002) applied such
optimization technique totheconceptual office building design problem in which the cost
and revenue functions are used as objectives. Several design attributes such as structural
system or floor system, etc. are searched to simultaneously optimize capital cost,
operating cost and income revenue. On the other hand, Agarwal and Raich (2005) used a
similar type of algorithm to locate Pareto optimality for volume, deflections, and stress
on the space of truss topologies, geometries, and member size.

It should be noted that the solution obtained from optimization in this research is the
actual design configuration itself and it is impossible to extract any heuristics regarding
design aspects that separate good from bad design from the resulting Pareto solution set.

2.4. Gap between Methodologies

In this section, we further the discussion to show that although the above two approaches
are useful, they do not suffice the purpose of this thesis. Remember from Chapter 1 that
the thesis objective is to establish a framework for automated design knowledge
acquisition so as to understand which design configurations, as a rule of thumb, lead to
good or poor performance.

The learning for design composition knowledge is helpful in this purpose but is
insufficient. The knowledge is insufficient because the learning problem which is mostly
relying on clustering mechanism is constructed on statistical similarity or probabilistic
predictability of each cluster on some common attribute values. To confirm this, Reich
and Fenves (1992) reported the capability of adaptability of their COBWEB based
algorithm to design periods. In other words, clusters were organized in such a way that
they represent design concepts in each period. However, it is unclear from our
perspective how performance measures form a context or concept in the design space.
Generally speaking, it is unclear how predictability tradeoff between inter-class and intra-
class modeled in CU function relates to meaningful design cluster. Yet, the predictability
of cluster class with respect to specific attribute values is an indispensable tool. This is
because, by virtue of clustering, we would like to be able to determine the obtained
clusters that are best represented by which group of attribute values. Nonetheless, to
make a conceptual clustering like COBWEB meaningful for our purpose, some
adjustments on the control of clustering strategies, in particular, the CU function, should
be introduced in such a way that it explicitly directs the clustering strategy to focus on
performance measure simultaneously with trading off cluster predictability.



On the other hand, as pointed out earlier, most of the studies in the second paradigm to
learn for performance evaluation involve searching for a Pareto solution set that
optimizes competing objectives. The result is typically the design configuration itself
rather than the structure of heuristics that leads to understanding of what causes good or
bad performance. However, studies in this learning type explicitly exploit knowledge of
performance (which is a priori known or identified) of which the element that learning for
design composition is lacking.

2.5. Conclusions

This chapter first starts with classification of type of engineering knowledge learned in
the studies. Among all the types classified by Sim and Duffy (1998), those relevant to the
current thesis are the "learning for design composition knowledge" and "learning of
performance evaluation knowledge". In the first paradigm, the main trend of studies is to
cluster similar designs together and separate dissimilar ones. The clustering strategy can
be based on several types of strategies such as predictability of cluster class with respect
to specific attribute value group or impurity measures like entropy. In the second
paradigm, most studies involve solving for Pareto solution set that simultaneous
optimizes competing performance objectives (typically a priori known or identified).

Unfortunately, both paradigms do not suffice the purpose of our thesis. The scheme for
learning knowledge of design composition does not explicitly use performance as the
design goal for clustering but rather the predictability or impurity. It is unclear how these
measures relate to design goal or performance. Nonetheless, they are not completely
useless. On the other hand, the learning of knowledge for performance evaluation mostly
focuses on solving the Pareto solution set itself rather than extracting constructive
knowledge. However, they explicitly exploit the knowledge of performance in deriving
optimal solutions.

This observation suggests that these two paradigms cannot be directly applied to our
study. In the next chapter, we will devote our discussion to the adjustment to be made on
these two paradigms to make it sufficient to our thesis goal.



3. OVERVIEW OF PROPOSED
METHODOLOGY

The gap between the existing methodologies described in chapter 2 is due to the lack of
clear engineering objective in the learning for design configuration and the type of
knowledge learned from design for performance, which is in a functional form and thus
opaque to engineers. This makes it difficult for engineers to visualize the underlying
structure of learned knowledge.

In this chapter, we propose a methodology to be used in this study to overcome
described difficulties. The proposed methodology can be seen as a combination of the
two learning paradigms. However, the drawbacks of the two paradigms are addressed
with machine learning techniques such as conceptual clustering.

3.1. Proposed Methodology for Engineering Design
Knowledge Learning

As discussed in Chapter 2, the learning for design configuration typically assumes
knowledge of the design lies within the existing designs. The vast body of research has
been using machine learning by induction (mostly clustering technique) to extract design
knowledge from the examples. However, in most cases, the knowledge induction
strategies are carried out by employing statistical similarity measure. This type of
strategy searches for similarity in the underlying specifications to suggest existing design
configurations based on similar type of specification. However, it is unclear what the
rationale behind the suggested design is and how the performance of the suggested design
configuration would be.

On the other hand, the learning for performance mostly focuses on searches throughout
the feasible design configuration spaces constrained by design constraints. Using a priori
known as design performance objective function, the search is performed to find the
optimal design solution in the feasible space. Unfortunately, the structure of knowledge
to help engineers or experts understand the decision is not learned. In the literature, this
type of knowledge is called "incomprehensible" or "opaque" (Reich, 1997) and thus is
not suitable for our purpose.

In contrast to this approach, the first paradigm forms clusters of design specifications and
configurations and offers less opaque knowledge for engineers to consume. However,
what it lacks is the ingredient from the second paradigm which describes the design
performance.



Thus, the proposed methodology for this thesis is to incorporate the performance into a
learning goal. (see Figure 3-1) This approach can be viewed as design knowledge
formation which tries to capture specification and configuration combinations that results
in good performance.

(a) Without performance learning measure (most of existing studies)

I - - - - - - - - - - -

(b) With performance learning measure (proposed methodology)

Figure 3-1 Learning and prediction of design configuration

3.2. Elements and Requirements of Proposed Methodology

From Figure 3-1, the elements for the proposed learning methodology are:

* Existing design samples (annotated with specifications, configurations and
performances)

* Knowledge learning algorithm
* Objective function for knowledge learning algorithm



Existing design samples

The minimum requirements are that the design samples should include specifications and
the outcome design configurations. If the associated performance of an artifact is
unknown or unobservable, a priori known or estimated performance evaluation function
can be used to estimate it.

However, in order to help engineers and experts understand the relationship between
specification, design configuration and the resulting performance, it is desirable to
identify a mapping function between the specification and design configuration to the
observed performance. In the case of unobservable performance, some analytical model
could be developed.

Nevertheless, the performance model should be as comprehensible as possible because it
helps engineers understand the effects of design elements to the resulting performance.
This is a non-trivial task because engineering systems are typically involved with a high
degree of complexity and thus require sophisticated models to analyze behavior or
characterize performance. However, whenever possible, it is always beneficial to employ
a model with high comprehensibility.

Knowledge Learning Algorithm

The learning algorithm is applied on the design examples to extract knowledge out of the
example body, typically by means of induction. Machine learning has been extensively
used in the literature as discussed in Chapter 2. However, the learning algorithm should
provide a comprehensible knowledge to engineers. Therefore, algorithms like Artificial
Neural Networks (ANN) or Support Vector Machine (SVM) which provides a functional
form of knowledge is not suitable compared to clustering techniques like ID3 or
COBWEB. Other important requirements for the learning algorithm are its computational
complexity, timing of learning, mode of learning, etc. An in-depth discussion of selection
of learning algorithm is deferred to Chapter 8.

Objective function for knowledge learning algorithm

The objective function is a key element to success of meaningful knowledge with respect
to our objective, i.e., the capturing of design configurations that leads to good
performance. As noted above and in Chapter 2, the existing methodologies typically use
statistical measure such as information gain or category utility to define local similarity
for knowledge construction. (Other types of statistical measures in learning functional
form of knowledge are, for example, L2 norm of point error in typical classification
problem, or e -insensitive error for support vector machine.) As discussed in Chapter 2,
these statistical measures result in an unclear structure of the obtained knowledge. More
specifically, the statistical similarity of design configurations does not provide an explicit
basis for building body of knowledge whose intention is to represent designs that leads to
a good performance.



Therefore, as proposed in Section 3.1, a modification of the learning objective function
must be made to explicitly prescribe the clustering strategy to focus on designs of good
performance. Detailed discussion of the modification of existing learning objective
function used in this thesis is deferred to Chapter 8.

3.3. Domain of Application

The domain of application selected in this study is the bridge design synthesis knowledge
learning. The main reasons for this selection are:

* There exists a rich and well-defined data bank for study. The Federal Highway
Association (FHWA) has been gathering on-site data inspection of the nation-
wide highway bridges annually since 1972. This is catalogued in the so-called
"National Bridge Inventory (NBI) database". Until the year 2006, there are more
than 800,000 entries from which more than 500,000 instances are true bridges
with qualified length. Data available in the database covers the specification,
design configurations and performances at high-level and thus can be employed
for conceptual design knowledge learning problem.

* There has been quite a body of studies in this domain. Detailed lists of studies for
statistical analysis of NBI data is reviewed in Chapter 4 while bridge conceptual
design knowledge learning studies are reviewed in Chapter 2 and in greater detail
in Chapter 8.

3.4. Study Roadmap

Figure 3-2 provides a guide map of this study. This thesis study can be broken down into
three main steps:

* Step 1: Studying and analyzing NBI database
This step helps provide insight of design trends and the basic relationship of
bridge specification and design configuration to performance. The resulting
insight is useful for verifying the results of step two and three. Step 1 is discussed
in greater detail in Chapter 4 and 5.

* Step 2: Studying and analyzing NBI database
Using specifications, design configurations and recorded performance, a statistical
identification of model performance is conducted in this step. The purpose is to
quantitatively model map specification and design configuration to performance.
The resulting model is useful for engineers/experts to study marginal effect of
design factors to its performance. The resulting model is then used to input into
the design configuration/feature learning in step three whose objective is to



inductively learn design -configurations which maximizes bridge performance.
Step 2 is discussed in greater detail in Chapter 6 and 7.

Step 3: Studying and analyzing NBI database
In this step, the machine learning algorithm is employed with appropriate
modification to incorporate performance measure as a goal of learning in as much
as the resulting knowledge captures designs that lead to good performance. Step 3
is discussed in greater detail in Chapter 7 and 8.

input

input I, Design
output Knowledge

K no wl i

input

Sinput *

verify

verify

output-

Step 1

Step 2

E Step 3

Figure 3-2. Study roadmap

3.5. Conclusions

We presented in this chapter a high-level of proposed study methodology which aims at
addressing the capability to explicitly specify performance as learning goal in the existing
studies. We proposed that a performance measure is to be incorporated directly into the
knowledge induction objective function of the learning algorithm. The concrete
presentation of the actual modification is deferred to Chapter 8.

We also have proposed the domain of study to be the NBI bridge data for bridge
conceptual design knowledge learning. This is because of the rich data provided by NBI

Design Features Learning
- Mapping of bridge specifications and service
environments to design features is leamed using
evolutionary method
-The leaming goal is to maximize performances
- Result is to be compared with similarity-based
leaming approach



bridge data description and number of existing records. In addition, there have been,
significant body of studies on the NBI bridge data.
Finally, we proposed that the study is to be divided into three main steps. These are:
statistical analysis of NBI bridge data; performance model identification; and design
configuration learning. The first helps provide us insight of typical trends and
relationship for design specification, configurations and performances and thus serves as
a basis for verification and evaluation of the resulting performance model and learned
design knowledge in the latter steps. Step 2 pertains to statistical identification of
performance model which aims at capturing a mapping from design specification and
configuration space to performance space. It also aims at providing a quantitative insight
of design factor effects on its performance. The last step involves inductively learning
design knowledge with explicit incorporation of performance measure obtained in step 2
into its objective function.



PART I: OVERVIEW OF NBI
DATABASE





4. ANALYSIS OF NBI BRIDGE DATA

THE NBI DATABASE has been widely used for variety of research ranging from

understanding of Bridge Management System (BMS) area to prediction of bridge

performances. The database provides a descriptive attribute data that characterize

highway bridges in different aspects, such as, serviceability, design description,
specifications, and performance evaluations. This chapter is devoted to analysis of NBI

bridge data and comparison of the results from analysis to other known literatures. The

main purpose is to obtain general insights about trends in the existing designs especially

in the light of relationship between specifications, design configurations and performance

evaluations.

4. 1. NBI Databse Description

The United States has more than 3.9 million miles of roadway (U.S. Department of

Transportation, 1987) and mote than 600,000 bridges (as of 2006). In response to the

December 1967 collapse of the Silver bridge over the Ohio River which claimed 46 lives,
Congress mandated for the implementation of National bridge inspection standards. The

individual bridge inspection records that are based on these standards constitute the

National Bridge Inventory (NBI). The purpose of the NBI is to provide a uniform base of

bridge information that can be used to identify those bridges that are most in need of

repair and to serve as a basis for allocating Federal Highway Administration (FHWA)

funding for bridge rehabilitation or replacement. The NBI is administered by the FHWA

in Washington, DC, and data are updated continuously based on the latest bridge

inspection; most inspections are completed on a 2-year cycle. Culverts that are 20 ft (6 m)

or greater in span are included.

Among 116 attributes (called NBI item) (FHWA, 1992), we are interested in the

specifications, design configurations and performances aspects of the NBI database. The

related fields selected from the NBI data by categories are listed in Table 4-1 to 4-4

below.

Table 4-1. Service environment related attributes

Field Name Abbreviation NBI Item #
Age AGE N/A
Average Daily Truck Traffic ADTT 109
Average Daily Traffic ADT 29
State Code ADT 1



Table 4-2. Design specifiation related attributes

Field Name Abbreviation NBI Item #
Design Load DL 31
Type of Service On Bridge TSOB 42
Type of Service Under Bridge TSUB 42
Lanes On Structure LOS 28
Lanes Under Structure LUS 28
Structure Length SL 50

Table 4-3. Design description related attributes

Field Name Abbreviation NBI Item #
Main Structure Material MSM 43
Main Structure Design MSD 43
Deck Structure Type DST 107
Pier Protection PP 111
Number of Spans in Main Unit NSMU 45
Number of Approach Spans NAS 46
Length of Maximum Span LMS 48
Deck Width DW 52
Skew SKW 34

Table 4-4. Performance related attributes

Field Name Abbreviation NBI Item # Brief Description Possible values
Deck Condition Ratings DCR 58 Overall condition rating of the deck 0,1,234 5,6,7,8 9 N
Superstructure Condition Ratings SPCR 59 Physical condition of all structural members 0,1 2,3,4,5,6,7,8,9,N
Substrucure Condition Ratings SCR 60 Physical condition of piers, abutments, piles, 0,1,2,3,4,5,6,7,8,9,N

fenders, footings, or other components

The bridge age field is inferred from the year built field (item 27). Since our data is as of
2006, bridge age simply equals 2006 minus construction year. Note that most of the
attributes in Table 4-2 and 4-3 are nominal type. Meaning, they are discrete label values.
On the other hand, although the physical condition ratings listed in Table 4-4 take integer
values from 0 to 9, they do not have equidistance between each value. Rather, they are
ordinal-value attribute namely the value are discrete labels but possesses order
relationship. Table 4-5 tabulates meaning of each possible rating value shown for these
physical condition ratings.

Because of the mixture of data type, i.e. continuous, nominal and ordinal, in the NBI
database, the conventional continuous-valued analysis technique cannot be employed
directly. Rather, approaches like categorical data analysis (Agresti, 1996) is more suitable.



Table 4-5. Meaning of decoded values for physical condition ratings

Code Description
N Not applicable
9 Excellent condition
8 Very good condition - no problems noted
7 Good condition - some minor problems
6 Satisfactory condition - structural elements show some minor deterioration
5 Fair condition - all primary structural elements are sound but may have mionr

section loss, cracking, spalling or scour
4 Poor condition - advanced section loss, deterioration, spalling or scour
3 Serious condition - loss of section, deterioration, spalling or scour have seriously

affected primary structural components. Local failures are possible. Fatigue cracks
in steel or shear cracks in concrete may be present

2 Critical condition - advanced deterioration of primary structural elements. Fatigue
cracks in steel or shear cracks in concrete may be present or scour may have
removed substructure support. Unless closely monitored it may be necessary to
close the bridge until corrective action is taken

1 "Imminent" failure condition - major deterioration or section loss present in critical
structural ocmponents or obvious vertical or horizontal movement affecting structure
stability. Bridge is closed to traffic but corrective action may put back in light service.

O Failed condition - out ofservice- beyond corrective action

4.2. NBI Database Preprocessing

To ensure the quality of statistical analysis, the input data needs to be preprocessed for
appropriate identification and exclusion of anomalies. There are two types of anomalies
categorized in our study:

* Data semantic anomalies: This refers to missing data or ambiguous values such as

'Others' or 'Unknown' found in the database. Another type of semantic anomalies
pertain data qualification issues such as qualified NBI bridge length or bridge age
threshold.

* Statistical anomalies: This refers to outliers in the statistical sense.

4.2.1. Data semantic anomalies

The followings are identified as data semantic anomalies and are excluded from the
original data.

* Bridge that does not qualified for NBI bridge length of 20ft. This can be identified

by item 112 of code 'N'.
* Bridge constructed earlier than 1930. This threshold is adopted from

discretization of bridge period specified by Reich (1992). The discretization is



tabulated in Table 4-6. Our intention is to include only Modem bridges (those
constructed from 1941 onward). However, we allow 10 years extra cushion.

* Bridges with reconstruction are excluded because physical condition ratings of
these records are spurious. These instances can be identified from 'Year of
Reconstructed' field (item 108) with values not equal to 'N'.

* Missing data or ambiguous encoded values such as 'N', 'Unknown', 'Others', etc.
are excluded.

Table 4-6. Discretization of bridge period

Construction Date Period
1818-1870 Craftsman
1871-1890 Emerging
1891-1940 Mature
1941-present Modern

4.2.2. Statistical anomalies

To identify outlier in the data, we employed Mahalanobis distance (Alpaydin, 2004). It is
defined as follows:

D 2 = (X - P)t 1-" (X - L) (4-1)

where x is and N dimensional multivariate vector (in our case N = 24 from Table 4-1 to
4-4). ti and E are mean vector and covariance matrix of x respectively. Mahalanobis
distance can be viewed as a distance from N dimensional hyperellipsoid centered at pl
whose shape is spanned by covariance matrix 1 . The Mahalanobis distance
approximately follows ;2 distribution of N degree of freedom.

Note that we simplified data treatment here as continuous value since the proper
treatment of outlier finding is beyond the scope of this thesis.

The statistical anomalies or outliers can then be identified as two-tailed extreme values of
10% quantile on the approximated ;2 distribution.

After application of the above two types of anomalies exclusion, we are left with 260,331
instances.

4.3. Analysis of NBI Data



First, we start with analyzing bridge age in the selected period from 1930-2006. The
histogram of bridge age is shown in Figure 4-1. It can be seen that the majority of the
bridges are between 0-50 years.

Histogram of Bridge Ages

20 40 60

Age

Figure 4-1. Histogram of bridge ages

Next the distributions of nominal attributes are shown in Figure 4-2. The dominating

populations for type of services on and under bridge are highway and waterway

respectively. In term of design load, the newly introduced standard such as H25 or HS25

has not been widely adopted as did H20 and HS20. For construction materials, concrete,
prestressed concrete and steel take the majority volume of approximately 30% each.

Deck structure of type concrete cast-in-place is predominant. And for physical condition

ratings evaluation, ratings of 0-3 only governs less than 5% of the entire population while

the majority are ratings of 6-8.
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Figure 4-2. Distribution of bridge population by attributes
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4.3.1. Relationships of bridge age to spec/design/performance

Bridge Construction Year vs. Specifications/Service Environments

The highway bridges in NBI data, including overpass at interchange structure, are mostly

built in 20th century. Pedestrian and railroad bridges construction period were spanning

into 19th century as can be observed in Figure 4-3.

Purpose vs. Year Consiructed
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Figure 4-3. Distribution of construction year by bridge purpose (type of service on bridge)

A quantity "Average Daily Traffic per Lane (ADT/Lane)" is defined to reflect

normalized traffic volume intensity for comparison purpose among different bridges.

Histograms of ADT/Lane by year are plotted to examine distribution characteristics

conditioned on different year buckets. The result is shown in Figure 4-4. ADT/Lane

quantities of bridges from 1900 to current year have peak frequency at around 0-70 and

quickly dissipate after this range. In contrast, bridges prior to 1900 have different

distribution patterns for ADT/Lane quantity.

Similarly, a measure for Average Daily Truck Traffic per Lane (ADTT/Lane) is also

defined. The histograms by years are plotted in Figure 4-5. Resemble trend to that of

ADT/Lane case can be observed in ADTT/Lane.
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Figure 4-4. Histograms of ADT/Lane by construction years
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To facilitate finding trend of ADT/Lane and ADTT/Lane over constructed year, observed
mean value on each year bucket is also noted on the plot in Figure 4-4 and Figure 4-5.
Figure 4-6 shows the path of the mean value of ADT/Lane and ADTT/Lane for each year
bucket. It is clear from this plot that after 1900, ADT/Lane and ADTT/Lane increase
monotonically until 1980 from where the trend starts to move downward. On the other
hand, for bridges constructed during 1800s, ADT/Lane and ADTT/Lane mean values
have hump shapes in which they peak at 1840-1860 year bucket. Note that the peaks for
both ADT/Lane and ADTT/Lane at this year bucket are greater than the peak during
1960-1980.

ADTILane and ADTT/Lane by Constructed Year
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Figure 4-6. Mean value of ADT/Lane and ADTT/Lane by construction years

Another important trend is the relationship between design load assignment and
constructed year. Figure 4-7 shows a box plot of constructed year separated by assigned
design load. Note that the greater the number after prefix 'H' or 'HS', the higher load a
bridge is assigned to bear for during its service. Figure 4-7 suggests that bigger design
load is assigned as year passes by.



Year Constructed vs. Design Load
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Figure 4-7. Distribution of constructed year by design load

Bridge Construction Year vs. Design Configurations

Figure 4-8 shows a box plot of material of main structure by construction year. It can be
seen that mansory or aluminum has been used heavily from 1800s to 1900s. Whereas,
modem materials such as steel, concrete and pre-stressed concrete have been used during
1900s, especially after 1950s.

Bridge Construction Year vs. Performance

Figure 4-9 shows box plots of distribution of construction year conditioned by three types
of physical condition rating evaluations (deck, superstructure and substructure). From
this figure, it is clear that construction years of low rating (0-3) bridges center at around
1950s and gradually increasing to 1990s when reaching highest rating of 9. Also, it is
noteworthy that bridges of low rating tend to have widely distributed range of
construction year compared to those with high ratings (4-9).
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Year constructed vs. SCR
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Figure 4-9. Conditional distributions of construction year on physical condition rating (continued)

Summary of the overall relationship between bridge ages (or construction years) to
service environment, specifications, design configurations and performances are
summarized in Table 4-7 below.

Table 4-7. Summary of relationship of construction year and service environments, specifications,
design configurations and performances

Bridge Purpose Highway/PeIestran

SPedestan/bicycle ._" =

Railroad

lntercha e

Design Load H15 and H20

M10 and HS20

HS1 5, HS2 and Pedestrsn _

RPilroad _

ADT/Lane 2491 29391 31431 24001 2721 4231 901 1291 182 61 13571 1284
ADTT/Lane 0 166 239 126 11 19 53 110 214 111 114
Main Material Steel aid Mansory

Aluninumrn

Concrete I

Presressed concrete



4.3.2. Relationships between service environments and
specifications

To grasp a basic set of relationships among specification elements of the bridges, firstly,
conditioned distributions are plotted on ADT/Lane conditioned by other specifications.
The merit of finding relationship between ADT/Lane measure and other specification
elements is due to the fact that, intuitively, this quantity is one of the main factors that

affect bridge structural condition.

Starting with distribution of ADT/Lane by design load plotted in Figure 4-10, the

ADT/Lane's, again, have highest frequency at 0-70 and quickly dissipate away. It can

also be seen that majority of the bridges are designed under H20, HS20, and HS20+Mod
codes. The numbers after prefixes H and HS indicate weight of the truck used for load

testing. The greater the number, the heavier the truck is. As expect, it can be seen that the

mean ADT/Lane increases with the design load except for HS25. This is because

generally bridges are designed carry a 72,000-lb design load (HS20). The HS25 is

recently adopted. According to Chase (2003), bridges after 2001 have been designed

under HS25 code for one in every five bridges.
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Figure 4-10. Distribution of ADT/Lane conditioned on design load
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ADT/Lane vs. Design Load
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Figure 4-10. Distribution of ADT/Lane conditioned on design load (continued)
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Figure 4-11. Distribution of ADT/Lane conditioned on purpose (continued)

ADT/Lane conditioned on bridge purpose (Figure 4-11) also demonstrates the same trend
of distribution. However, the mean values indicate that overpass structure at interchanges
tend to have higher volume of ADT/Lane.

4.3.3. Relationships between specifications and designs

Now we examine relationship between bridge specification and design description. The
major field for specification to be used here is ADT/Lane measure. We start with
visualizing distribution of ADT/Lane by material type shown in Figure 4-12. For all
material types, highest frequency appears at very small ADT/Lane, i.e. about 0-70 like in
other cases. The majority of the bridges were designed with concrete and steel. Average
ADT/Lane observed is greatest in steel continuous and prestressed concrete continuous
types. Although concrete is the majority material of bridge design, concrete bridges do
not possess high average ADT/Lane.
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Figure 4-12. Distribution of ADT/Lane conditioned on material

By deck type, precasted concrete and cast-in-place concrete decks have highest
ADT/Lane masses (Figure 4-13). However, cast-in-place concrete and closed-grating
deck have substantially high ADT/Lane mean values compared to other deck types.
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By main structural design type (Figure 4-14), major design types include
* Box beam or girders (multiple)
* Slab
* Stringer/Multi-beam or girder
* Tee beam
* Truss (thru)

Note the irregular distribution shapes of movable, segmental box girder, stayed girder,
suspension and tunnel types. Though peculiar distribution shapes and their limited
number of instances, segmental box girder and stayed girder structural designs
demonstrate highest observed ADT/Lane mean values.
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Figure 4-14. Distribution of ADT/Lane conditioned on structure type of the deck
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Figure 4-14. Distribution of ADT/Lane conditioned on structure type of the deck (continued)
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4.3.4. Effects of specifications and designs on performances

NBI data contains item 58 to 60 that pertain condition ratings of deck, superstructure and
substructure of bridges. These items are defined by 10 level scales, i.e. 0 to 9. 0 indicates
failed condition whereas 9 means excellent condition. Structural deficiency can be
defined as bridges with values of these items less than or equal to 4.

Denoting DCR, SPCR, SCR for deck, superstructure and substructure condition rating
respectively, Figure 4-15 plots distribution of log ADT/Lane (base 10) versus the three
condition ratings by type of services.
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Figure 4-15. Log(ADT/Lane) vs. condition rating by purpose (continued)

The overall trends from these three plots suggest that structural deficiency concentrates in
highway and pedestrian type of bridges. For highway bridges, the ADT/Lanes amount
does not vary much among ratings. On the other hand, the pedestrian bridges have
relatively high ADT/Lane volume for those found structurally deficient.

Next is the trend for structural deficiency categorized by design load codes. Box plots for
DCR, SPCR, and SCR are provided in Figure 4-16. As expected, it can be observed from
these plots that the carry load a bridge is designed for, the higher ADT/Lane volume that
would cause the deficiency (rating 0-4). Note the lack of structurally deficient instances
of bridges designed by HS25 code. This is because the code is relatively new and not
many bridges have been designed under this load.
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r -- t



"r'- i , ,-- 1

S I I i I I I I i i

01 2345678 8 9N

Superstructure Rating

HS15

r

01 23456789 N

Superstructure Rating

HS25

0 1 2 3 4 5 6 7 8 9 N
01234S679Nuperstructure Rating

Superstructure Rating

0123456789 N

Superstructure Rating

HS20

4-i

0123456789N

Superstructure Rating

Pedestrian

0123456789ructure Rating

Superstructure Ratng

o " i- .

0123456789N

Superstructure Rating

HS20+Mod

0 1 2 3 4 5 6 7 8 9 N
0123456789N

Superstructure Rating

Railroad

O -l

0123456789N

Superstructure Rating

Unknown

I , " I I

0123456789N

Superstructure Rating

(b) SPCR

Figure 4-16. Log(ADT/Lane) vs. condition rating by design load (continued)
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Figure 4-16. Log(ADT/Lane) vs. condition rating by design load (continued)

In term of effects of traffic volume, ADT/Lane and design choice to bridge structural
condition, similar box plots on bridge material has been created in Figure 4-17. These
plots suggest high traffic volume on prestressed and steel continuous bridges. Note also
that the traffic volume that causes deficiency in prestressed concrete is higher than other
types of materials.

63



Aluminum, wrought iron, or coast ireo

I I 7 l l l l

0123456789NDeck Ring

Dock Ratig

Concrete

0 1 2 3 4 5 6 7 8 9 N

Deck Rating

Mansory Other

Concrete continuous

S I I I I I I I

012 3 4 5 6 7 8 9 N

Deck Rating

Presressed concrete

-T- -r'- -,I- --.

a- -r +i& ~ a 7 'a-aa- a -tti- 7Ts-0_ __III I_ _II I I I I 1'--'I 37I

0123456789N 0123456789N 0123456789N

Deck Rating Deck Rating Deck Rating

Prestressed concrete continuous

0 1 2 3 4 5 6 7 8 9 N

Deck Rating

Wood or Umber

0 1 2 3 4 5 6 78 9 N

Deck Rating

S- 1 I

0 1 2 3 4 5 6 7 8 9 N

Deck Rating

Steel continuous

t-4-

0 1 2 3 4 5 6 7 8 9 N

Deck Rating

(a) DCR

Figure 4-17. Log(ADT/Lane) vs. condition rating by material



Aluminum, wrought iron, or cast iron

o n

01 2345 67 8 9 N

Superstructure Ratng

Mansory

Concrete

e -- I- I

01 2345 6 7 8 9 N

Superstructure Rating

Concrete continuous

0 1 2 3 4 5 6 7 8 9 N

Superstructure Rating

Prestressed concrete

iEJF2-I
Ia -,- - -I

l I I I l I -

01 2346789 N 01 23456789N

Superstructure Rating

Prestressed concrete continuous

0123456789N

Superstructure Rating

Wood or timber

m -~ 1 i i

Superstructure Rating

Steel

0123456789N

Superstructure Rating

0 1 2 3 4 5 6 7 8 9 N

Superstructure Rating

Steel continuous

0 Superru23456789 N

SupeinructureRathg

01 23456789N

Superstructure Rating

(b) SPCR

Figure 4-17. Log(ADT/Lane) vs. condition rating by material (continued)
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Figure 4-17. Log(ADT/Lane) vs. condition rating by material (continued)

To help understand effect of design material on structural condition, percentage of
bridges in each bucket by DCR, SPCR and SCR are plotted in Figure 4-18. For
attribution to deck condition rating, it can be seen that aged bridges with aluminum,
mansory and steel bridges have distribution widely spread to structural deficiency region.
The degree of spreading is smaller in case of concrete and steel. For modem material
such as prestressed concrete, the distribution concentrates around good condition.

For superstructure condition, it can be seen that the width of the distributions are
typically greater than those for deck condition ratings. Specifically, aluminum, wood,
mansory, steel and prestressed concrete bridges now have higher proportion of population
that enter into structurally deficient realm. Note the shift in the centers of the distributions
of the above materials to the lower rating side. This pattern also holds for substructure
condition rating.
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4.4. Conclusions

In this chapter, we have presented empirical relationships between service environments,
specifications, design configurations and performances using visualization tools. Starting
from basic understanding of distribution of bridge populations by different nominal NBI
items to 2- or 3-way conditional analysis which helps us understand relationships
between different aspects of the NBI database. Especially, the focus of our interests is
mutual relationships/effects of how service environments, specifications, design
configurations could affect bridge performances which in we mainly use physical
condition ratings as proxies for performances.





PART II: STATISTICAL MODELING
OF BRIDGE PERFORMANCE





5. METHODOLOGY FOR CONSTRUCTING
BRIDGE PERFORMANCE MODEL

BRIDGE PERFORMANCE with respect to design choice is a special interested topic
for Bridge Management System (BMS). It obviously serves as a basis of understanding
and quantifying effects of design configurations choice on performances. Unfortunately,
the studies of bridge performance are typically a difficult problem because of complex
uncertainties that governs over the long lifespan of bridge infrastructure.

In this chapter, we review existing methodologies for bridge performance modeling.
Especially, with regards to NBI bridge data in which several performance measurements
coexist and typically change in tandem as shown in chapter 4. A system approach that
allows one to study effects of specifications and design configurations on performances is
proposed and presented.

5.1. The Use of Discrete Scale Performance in BMS

From the perspective of Bridge Management System (BMS), performance definitions
could be formed using either continuous or ordinal quantities. In the NBI database,
several of performance measures exist, such as physical condition ratings, operating
ratings, overall status appraisal, etc. However, there are benefits of measuring
performances in ordinal scales over the continuous scale. Discrete ratings are used
instead of continuous condition indices primarily for reducing the computational
complexity of the Maintenance and Rehabilitation (M&R) decision-making process
(Madanet, Mishalani, and Ibrahim, 1995). This is mainly because, from this level of
management perspective, detail of deterioration or physical condition is not necessary.

The choice of this choice of value scale has causes conventional technique for
continuous-scale values in applicable for modeling the performance. In the following
sections, we reviewed the main trends of techniques in detail.

5.2. Approach for Modeling Probability Transition

This approach is based on estimation of Markov transition probabilities from time series
of physical condition ratings. This is possible using NBI database because typical
inspection cycle of NBI bridges is about 1 to 2 years. This type of approach mainly
consists of the following steps:

1. Bridges are classified into buckets where each group presents bridges with similar
attributes. This is done based on experts' classification. From each bucket, one



can obtain a set of condition ratings, Y, and age, t. The main purpose of this
grouping is to conditioned transition probabilities on these common explanatory
variables.

2. For each group, one can use linear regression to identify linear relationship
between condition ratings Y and t. Precisely,

Y = , + fl2t, + E6 (5-1)

3. On the other hand, the theoretical expected value of condition rating can be
derived from Markov chain structure. The transition matrix, P, has the following
general structure:

Pkk Pk(k-1) . . Pki

0 P(k-1)(k-1) P(k-1)(k-2) ... P(k-l)1

0 0 0 0 p22 P21
0 0 0 0 0 p,,

(5-2)

where k is the highest condition rating and 1 represents the lowest rating. Because
of the upper triangular structure of this matrix, it represents non-reconstruction or
rehabilitation assumption. Therefore, it is important to exclude bridges with
reconstruction out of the study samples as described in chapter 4. Furthermore, it
can be seen from the matrix that bridges are permitted only to either stay in its
current state or deteriorate to some lower state. And not the other way round. Note
that the elements of this matrix which represent the target transition probabilities
are to be identified.

4. Given this matrix structure and Markov chain assumption, one can model the
theoretical expected value of condition rating at time t, denoted by E(t,P) as:

E(t,P)= MR (5-3)

where M, is a row vector denoting the probability mass function of the state of
the bridge at age t where the first entry is the probability that the bridge is in state
k and the last entry is the probability that the facility is in state 1; R denotes a
column vector of condition ratings.

Here, the probability mass function M, can be written as:

M, = q'P (t - r ) (5-4)

P =



where q, is a vector of condition state probabilities at age r whose entries are

the frequencies of the bridges in the various stages. P('-) reflects the fact that
probabilities transition from time -r to t consists of (t - r) steps of independent
transitions. This is the property of Markov chain.

5. The unknown transition probabilities in matrix P in equation (5-2) can be
identified such that it minimizes summation of point-wise distance between the
expected condition rating estimated by (5-3) and that from equation (5-1).
Precisely,

r+AT-1

minW= Y-E(t,P) (5-5)

Subject to 0 < p < 1; i, j = 1, 2,..., k
k

p, = 1; i, j = 1, 2,...,k

The probability of state transition estimation has been widely used and is advantageous
because it can reflect uncertainty from different sources such as uncertainty in initial
condition, uncertainty in applied stresses, presence of condition assessment errors, and
inherent uncertainty of the deterioration process (Lounis, 2000). The state-of-the-art BMS
system Pontis and BRIDGIT have adopted such methodology for predicting
performances of bridge components (Golabi and Shepard, 1997; Hawk, 1995). However,
linear regression is typically used to model facility condition rating described by other
observable indicators. This is not appropriate because the condition rating itself is not
continuous but rather discrete and ordinal. Moreover, the approach does not recognize the
latent nature of infrastructure deterioration. Deterioration is unobservable. Nevertheless,
it is the surface and subsurface distress which are manifestation results of deterioration
that is observable (Ben-Akiva and Ramaswamy, 1993). The expected value used for
transition probability estimation utilizes such ratings observations without linking them to
the underlying true deterioration thus has a major drawback. The limitation comprises an
unrealistic representation of infrastructure condition and its deterioration.

5.3. The Ordered Probit Model

Madanet, Mishalani, and Ibrahim (1995) used ordered probit model to overcome the
limitation of Markov chain model by incorporating latent variable presenting
deterioration process and bind this to the realized rating scores by threshold parameters.
The probability of transition is then equal to the area under the density curve between
these threshold values. In the case of probit model, this is normal probability density. (see
Figure 5-1) This approach turns out to be more realistic in capturing the unobservable
process as latent variable. Contribution of each explanatory variable in the regression
model has quantitative interpretation through its estimated coefficients.



The detail of the ordered probit is briefly narrated below. Let y be an ordered response
taking discrete values of {0,1,..., J} . The ordered probit model for y (of course,
conditional on explanatory variables x (e R K )) can be derived from a latent variable
model. Let y* be a latent variable and be determined by:

y = xI + , e 1 x- N(0,1) (5-6)

+1- Px)- ( ,7-lv - Px)

Yj-1Ij Yjij+I

Figure 5-1. Illustration of ordered probit model key idea

where p is K x 1. Note that by construction, the explanatory variable matrix x does not
contain a constant. Let y, < 72 <... < y be unknown cut points such that

y=O ify* y,

y= if yi Y* < 7 2

y = J if y > y

(5-7)

From normality assumption
value ofy as follow:

of e, one can derive response probability for each discrete

P(y =0 x)= P(y* y ,x)= P(xp+e < y Ix)= (y 1 -xp)

P(y = 1x)=P (7, I y' *y2 x) = (D(,V2-X )- (D ( -X )

P(y= Jl I x)=P(y, y* 72 I x)= (7 -x)-(y,_, -- xp)

P(y = J I x) = P( y* > yj ) = 1-D(y -xP)

(5-8)



Thus, one can form a likelihood function for estimation of the unknown p and y using
Maximum Likelihood Estimation (MLE). Precisely, for each i, the log-likelihood
function is:

L (y, )= I (yi = 0) log D (y - xp')+ I (yi = 1)log [D (y2 - x1)- (D(Yl - Xp)] +
... +I(y = J)log[1-((yj -xp)]

5.4. Simultaneous Equation Model (SEM) Approach

Although the ordered probit model is suitable for treatment of ordinal-scale response
variable, it does not suffice our application purpose on NBI bridge data. This is because
we hypothesized that the performance measures, DCR, SPCR and SCR are highly
correlated due to some common latent factors of deterioration. They should have strong
explanatory power on one another and therefore form a simultaneous equation.

However, the difficulty in having these response variables contemporaneously appear on
the RHS of equation for estimation of another response variable lies in endogeneity that
is formed by such a construction. The Simultaneous Equation Model (SEM) approach is
developed to deal with such nature of the problem.

Endogeneity can be described as a situation where disturbance terms of these equations
are likely to be contemporaneously correlated (Henningsen and Hamann, 2006). This is
because unconsidered factors that influence the disturbance term in an equation probably
influence the disturbance in other equations simultaneously. Therefore, ignoring this
contemporaneous correlation and estimating these equations separately leads to
inefficient and bias parameter estimates.

However, another difficulty emerges from the fact that the response variables are ordinal
and not continuous. Traditional methods like 2-Step Least Squares (2SLS) estimation
(Judge, et. al, 1980) cannot be applied directly. Such models are considered in Lee (1981),
and are postulated as follows. Consider the following simultaneous equation model:

Y + XB+E= O (5-10)

where Y (T x M) is the M-variate discrete response matrix of T observations. X is a
Tx K matrix of K-variate exogenous variables. E is a error term matrix of Tx M. F is a
Mx M coefficient matrix of endogenous variables. And B is a exogenous variable
coefficient matrix of K x M.

Lee (1981) suggested an alternative method to direct MLE to estimate (5-10) which
employs a two-stage technique. It relies on consistent estimation of the reduced form in
the first stage. Consider the reduced form of (5-10)



Y=XII+V (5-11)

From (5-10), one can confirm that H = -BF-' and V = -Er- 1. The reduced form
equations for specific endogenous variables can be written as:

y, = Xzr + v, (5-12)

The parameters z, can be consistently estimated using probit model.

In the second stage, the structural parameters are estimated. Let the i-th structural
equation be:

Y, = Yy, + Xi, + .6 (5-13)

And partition of the reduced form in (5-11) as

[Y, Y= ]=X[ r, Hi nI]+[v, V Vi '] (5-14)

The partition represents LHS endogenous variable (y,), the RHS endogenous variable

(YI) and the excluded endogenous variables ( Y') in the i-th equation. From (5-11),

S= rIi + JV. Substituting for 1Y in (5-13) yields

y, = ( Xn, + i) 7, + xiA + -v
= XF, , + xA, + ,ri + 6 (5-15)
= xnT, i, + X, A + v,

If X~Iiyi is added to and subtracted from (5-15), one obtains

Y, =XIy + ,f + X(I, -,), +v516)
(5-16)

= Xt,r, + Xi i + o,

This is the second stage of estimation where one can use probit model to estimate the
structural coefficients.

5.5. Condusions

We have reviewed two main types of modeling approach for performance on NBI bridge
data. The first type of methods which is broadly employed by BMS system is based on
estimation of transition probabilities between ratings. This approach has a major



drawback in that it depends on subjective bucketing of bridge group for conditioning the
probability. Another approach with less assumption is the ordered probit model which
attempts to capture the latent process underlying the observation response. We have
discussed that this type of model is more preferable for our application yet it requires
further modification when dealing with system of performance models which
contemporaneously involve each other such as one that is formed by DCR, SPCR and
SCR. The effect of endogeneity causes the estimation of coefficients to be inefficient and
bias. The framework that provides special treatment of such a model is the SEM.
However, unlike the SEM on continuous response variable, a direct application of 2SLS
is not possible due to ordinal nature of the response variables. We thus follow Lee (1981)
suggestion to employ two-stage approach for estimation of SEM model.



6. EMPIRICAL EVALUATION OF
PERFORMANCE MODEL

FOLLOWING THE CONSTRUCTION of Simultaneous Equation Model (SEM)
postulated in the previous chapter, we prescribe a model for physical condition ratings
comprising DCR, SPCR and SCR from NBI database. We show the estimation results
and performances both for in- and out-of sample data. Finally, we include some remarks
to justify the performance of the estimated model.

6. 1. Model Specification (Model: PERFI)

Using notation of NBI data in chapter 4 and SEM model in chapter 5, we describe our
SEM model for NBI bridge physical condition rating as follows:

YT+ XB+E=O (6-1a)
Y = [DCR, SPCR, SCR] (6-1b)

X = [ADT, AGE, MSM, MSD, ASM, ASD, NSMU, NAS, LMS, DST] (6-1c)

0 -7 2 713
S= -721 0 -723 (6-1d)

-Y 31 -732 0

[ , 16,2 0 0 0 0 0 1,8 1,9 p , 1
B= 162,1 Pf2,2 Pf2,3 Pf2,4 P62,5 P)2,6 P62,7 0 0 0 (6-le)

)63,1 13,2 0 0 0 63,6 P3,7 P3,8 0 0

In this model, we try to capture effects of design configuration choice on the physical
condition ratings.

6.2. Estimation Results of PERFI Model

Two batches of 130,000 records of NBI data were I.I.D. sampled by keeping the
probability of SPCR rating constants to the original data. The first batch is used for
estimation while the second is used for testing purposes. Estimation of the model in
equation (6-1) based on the two-stage estimation using ordered probit model is tabulated
in Table 6-1.



The R2 definition in the context of discrete response model is not the same as that used
in continuous response regression model. One of the possibilities to compute R2 is to
calculate the square of correlation between the fitted and actual response value. (Agresti,
1996) However, here we report the Cragg & Uhler's pseudo R2 (Long, 1997) measure
which is a variant of pseudo R2 used for Generalize Linear Model (GLM) literature. The
Cragg & Uhler's pseudo R2 is defined as follows:

R 2  - L ( MnterceptL ( M, )}2N(6-2)

1 - L (M,,,,ntercept ) 21N

where MFull and M,,tece are models with predictors and without predictors (intercept

only) respectively. (Note that the latter is usually called "null" model in the context of
generalized linear model) L is the estimated likelihood value. The numerator is indeed
the Cox & Snell's pseudo R2 . The intuition behind this measure is that the ratio of the
likelihood yielded from the two models suggests the level of improvement over the
intercept model offered by the full model. Furthermore, since the definition of L (M) is

the conditional probability of the dependent variable given the independent variables. If
there are N observations in the dataset, L(M) is the product of N such probabilities.

Taking the N-th root provides an estimate of the likelihood of each estimated dependent
value. The denumerator here is served as a normalization factor to ensure that the pseudo
R2 defined in (10) is bounded between 0 and 1.



Table 6-1. PERFI model step 1 estimation result of model (6-1)

DCR* SPCR* SCR*
t-valueValuet-valueValueValue

(0.0463)
(0.0319)
(0.0006)
(0.0295)
(0.0018)
(0.0030)
0.0003

(0.0036)
(0.0493)
(0.0155)
(5.4695)
(5.3956)
(5.1929)
(4.7770)
(4.1416)
(3.3835)
(2.5181)
(1.1893)
0.1023

AGE
MSM
MSD
ASM
ASD
NSMU
NAS
LMS
DST
ADT
011
112
213
314
415
516
617
718
819
R-Squared

(0.0475)
(0.0511)
(0.0049)
0.0107

(0.0162)
(0.0027)
(0.0021)
0.0021

(0.0916)
(0.0088)
(5.5446)
(5.4925)
(5.2520)
(4.8778)
(4.2734)
(3.5042)
(2.6614)
(1.4004)
0.1475

(248.4478)
(38.2316)

(0.9492)
(8.6387)
(0.6386)
(6.1839)
0.6674

(19.0642)
(43.9736)
(39.6772)

(132.5260)
(133.6180)
(134.3048)
(129.2523)
(114.7853)

(94.6845)
(70.8839)
(33.7039)

2.8951

(260.5324)
(12.9246)
(26.0962)

3.0505
(7.4285)
(7.5126)
(1.9033)
11.5932

(84.4790)
(16.8563)

(133.0554)
(135.3987)
(134.1081)
(126.9232)
(112.6151)

(93.9471)
(71.4393)
(34.0356)

3.1023
0.3510

Here, some of the distinctive trends can be observed, age negatively affects physical

condition ratings. Structure length on the other hand has positive effect on DCR but not

for SPCR and SCR. Note the very dense cutting points between ratings from 0-3 for DCR,

SPCR and SCR. The R2 values obtained for three cases are very low suggesting poor

quality of fit of the specified SEM.

Comparison of the fraction of estimated instances to the total number of observations (i.e.

probability) of each condition between the actual observation and the estimated values

yielded from fitted models are shown in Table 6-2 and plotted in Figure 6-1.

One can observe the failure of the model to capture ratings 0-4. On the other hand, the

rating 7 for DCR, SPCR and SCR are overly predicted by almost double of the actual

population.

t-value

0.3439

(212.1396)
(50.9812)

(6.2589)
2.6801

(4.7797)
(4.1976)
(4.3734)
9.4644

(68.2227)
(18.9224)

(111.7711)
(112.5739)
(113.9767)
(110.8214)

(99.8301)
(82.8379)
(63.3028)
(33.5380)

3.5316

(0.0492)
(0.0108)
(0.0172)
0.0104

(0.0213)
(0.0037)
(0.0009)
0.0022

(0.0953)
(0.0066)
(5.5768)
(5.4019)
(5.0610)
(4.6523)
(4.0575)
(3.3579)
(2.5398)
(1.2018)
0.1096

0.3241

MR*
1111 I SCR*



Table 6-2. Comparison of fraction of population for fitted and actual observed rating for each rating
level (yielded from PERF1 model step 1 estimation)

0
1
2
3
4
5
6
7
8
9

DCR*
Observed

0.0011
0.0003
0.0012
0.0053
0.0245
0.0848
0.2016
0.3988
0.2255
0.0569

0.0000
0.0000
0.0000
0.0000
0.0000
0.0016
0.1268
0.6647
0.2068
0.0000

SPCR*
Observed

0.0010
0.0002
0.0012
0.0042
0.0194
0.0718
0.1739
0.3633
0.2998
0.0652

Fitted
0.0000
0.0000
0.0000
0.0000
0.0000
0.0063
0.0822
0.5431
0.3683
0.0000

SCR*
Observed

0.0011
0.0006
0.0029
0.0078
0.0294
0.0850
0.1874
0.3882
0.2334
0.0643

0.0000
0.0000
0.0000
0.0000
0.0002
0.0129
0.1019
0.6441
0.2409
0.0000

Fitted vs. Observed Probability of Deck_Cond_Rating

- fitted
observed

Ratings

Fitted vs. Observed Probability of SuperstructureCond_Rating

Ratings

Fitted vs. Observed Probability of Substructure_Cond_Rating

0 2 4 6 8

Ratings

Figure 6-1. Fitted vs. observed population fraction of each condition rating (yieled from PERF1
model step 1 estimation)

84

SCR*Fitted Fitted
DCR*



Table 6-3 shows the result of step 2 estimation obtained by using the fitted DCR, SPCR
and SCR obtained from model estimated in step 1. Interestingly, one can observe that

SPCR has positive impact on DCR while SCR's is negative. For SPCR, DCR has
negative effect while SCR has, by far, greater positive effect. The same applies for SCR,
meaning SPCR's positive impact is well above the level of negative impact yielded by
DCR.

Unfortunately, the R2 values obtained in this step are also in the level of 30% suggesting
low quality of fit. Nonetheless, for completeness purpose, comparison of fraction of

population predicted and actually observed for each rating is tabulated in Table 6-4 and
plotted in Figure 6-2.

Table 6-3. PERF1 model step 2 estimation result of model (6-1)

DCR*
SPCR*
SCR*
AGE
MSM
MSD
ASM
ASD
NSMU
NAS
LMS
DST
DW
ADT
Oil
112

213
314
415
516
617
718
819

R-Squared

DCR
Value

N/A
0.8158

(0.1411)

(0.0146)
N/A
N/A
N/A
N/A
N/A
N/A

(0.0046)
0.0033

(0.0106)
(0.0049)
(5.3494)

(5.2660)
(5.0504)
(4.6104)
(3.9409)
(3.0919)
(2.3793)
(1.1077)
0.1705

t-value
N/A

39.70
(5.12)

(15.44)
N/A
N/A
N/A
N/A
N/A
N/A

(24.88)
1.49

(18.78)
(10.84)

(225.33)
(233.84)
(249.61)
(258.73)
(239.00)
(194.89)
(152.88)

(73.38)
11.25

SPCR
Value

(0.1181)
N/A

1.0486
(0.0020)
(0.0410)
0.0139

(0.0051)
0.0096
0.0011

(0.0013)
(0.0005)

N/A
N/A

(0.0035)
(5.4690)
(5.4183)
(5.1874)
(4.8108)
(4.2045)
(3.4167)
(2.6218)
(1.4057)
0.1217

t-value
(2.4300)

N/A
34.9819
(2.0392)

(24.1893)
16.4468
(1.2589)
3.1691
2.2082

(2.8078)
(1.6010)

N/A
N/A

(4.9755)
(138.0396)
(138.5188)
(138.3743)
(132.9900)
(118.8468)

(97.6038)
(75.3547)
(40.7151)

3.5225

Value
(0.5502)
1.1976

N/A

(0.0166)
N/A
N/A
N/A
N/A

(0.0015)
0.0022

(0.0019)
N/A
N/A

(0.0037)
(5.1779)
(5.0260)
(4.7086)
(4.3125)
(3.7074)
(3.0004)
(2.1992)
(0.8762)
0.4108

0.3242

SCR
t-value
(15.0229)
49.7103

N/A
(20.2631)

N/A
N/A
N/A
N/A

(2.9914)
4.5508

(6.8855)
N/A
N/A

(6.7391)
(224.4102)
(242.0067)
(265.5967)
(271.3054)
(251.8697)
(211.7139)
(159.1558)

(66.1696)
30.8431

3~
SPCR SCR I III II I

0.3198 0.3573



Table 6-4. Comparison of fraction of population for fitted and actual observed rating for each rating
level (yielded from PERF1 model step 1 estimation)

0
1
2
3
4
5
6
7
8
9

Observed
0.0015
0.0008
0.0034
0.0092
0.0346
0.0961
0.1942
0.3829
0.2176
0.0597

Observed

0.0016
0.0005
0.0018
0.0082
0.0367
0.1274
0.1876
0.3752
0.2089
0.0521

0.0015
0.0002
0.0017
0.0056
0.0247
0.0886
0.1799
0.3548
0.2823
0.0606

0.0000
0.0000
0.0000
0.0000
0.0002
0.0176
0.1268
0.6425
0.2127
0.0001

0.0000
0.0000
0.0000
0.0000
0.0001
0.0964
0.0170
0.7005
0.1860
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0237
0.0920
0.5485
0.3357
0.0000

Fitted vs. Observed Probability of Deck_Cond_Rating

- fitted
observed

0 2 4 6 8

Ratings

Fitted vs. Observed Probability of Superstructure Cond_Rating

0 2 4 6 8

Ratings

Fitted vs. Observed Probability of Substructure_Cond_Rating

(0D2

Ratings

Figure 6-2. Fitted vs. observed population framction of each condition rating
model step 2 estimation)

(yielded from PERF1

SPCR

fitted
- observed

--- ....... ,-- --

- fitted
observed

-----~

fitted Observed Fitted Fiepd

DCRDCR SPCR SCR
SCR



6.3. Investigation of Model PERFI's Performance

In correspondence to poor quality of fitness obtained from earlier attempt to fit a SEM of
bridge physical condition rating (DCR, SPCR and SCR) with design attributes, the
following analyses to analyze the cause of the problem has been conducted. The analyses
carried out in this note are aimed to pinpoint the cause of poor quality of fitness by
examining degree of association of these ratings to design attributes. The tool used to
study such relationship is the so-called categorical data analysis. Detection of no strong
association (or in other words independence) between a certain rating to a given design
attribute evidences the undermined predictability of that rating by that design attribute.

6.3.1. Analyses of degree of associations

In this section, the so-called categorical data analysis framework is applied to help
understand predictability of NBI bridge physical condition ratings by design attributes as
explanatory variables. The general idea here is to measure degree of association between
each condition rating score to each design attribute. Association is defined as a negation
of independence between a combination of rating and design attribute under
consideration. In other words, if the independence test fails for a pair of rating value and
design attribute with high observed probability, one can say that the pair of rating value
and design attribute possesses association among each other. Hence, supports
predictability of that rating using the design attribute under consideration.

Using two-way table analysis technique, one can apply Chi-square test to test
independency between response and explanatory variables in the contingency table. The
adjusted residual from the Chi-square test is defined as:

residual =(6-3)
V/U (1- p,+)1- P,)

The n, and the li are the observed count in the table and the expected frequencies of

cell (i,j) respectively. And p-, and p.j are the probability of occurrence in for the i-th

row and thej-th column respectively.

As a rule of thumb, adjusted residual from the test at each cell whose magnitude are
greater than 3 in absolute value is a strong evidence against independence among
response and a given explanatory variable level (Agresti, 1997). For example, given the
following two-way table (see Table 6-6(a)) whose response is Superstructure Condition
Rating (SPCR) and explanatory variable is Main Structure Material (MSM), the result of
Chi-squared independence test yields p-value of approximately 0.0003, a clear evidence
against the null hypothesis of independence. This means that MSM has association with
SPCR in a certain way. However, if one examines the adjusted residuals at each cell
(tabulated in Table 6-6(c)), those in red have absolute magnitude of less than 3 and thus



shows independence. In other words, MSM of those types cannot help distinguishing
SPCR in red in the corresponding row from other values. This is expectable because in

most cases, the observation frequencies for those cells are 0.

(The same type of tables for DCR and SPCR are shown in Table 6-5 and 6-7

respectively.)

Table 6-5. Main Structure Material vs. Deck Condition Rating

(a) Observed frequencies

Deck Condition Rating
6 9

Prestressed concrete 1 3 54 202 1013 3951 12607 38246 29103 6938

Mansory 0 0 0 0 0 0 5 3 2 1

Wood or timber 89 20 101 177 834 2599 4957 5452 2711 383

Prestressed concrete
continuous 0 0 3 32 164 514 1958 6908 4390 1085

Concrete 12 3 14 152 782 3780 10611 21501 12029 2893

Other 0 1 0 1 0 6 23 85 68 36

Steel 33 42 124 589 2492 9194 15568 21399 11316 3695

.- Steel continuous 2 3 43 296 1179 3260 8131 12445 4535 1143

Concrete continuous 3 16 32 236 1081 3161 7613 13788 5251 1682

Aluminum 0 0 1 0 3 9 25 18 18 3

(b) Expected frequencies (as if the two attributes are independent)

Deck Condition Rating

0 1 2 3 4 5 6 7 8 9

Prestressed concrete 42.293 26.584 112.379 509.028 2280.202 7997.625 18578.151 36204.405 20972.243 5395.089

Mansory 0.005 0.003 0.013 0.061 0.272 0.955 2.218 4.323 2.504 0.644

" Wood or timber 7.953 4.999 21.133 95.724 428.797 1503.972 3493.664 6808.321 3943.878 1014.559

Prestressed concrete
continuous 6.912 4.344 18.365 83.186 372.633 1306.979 3036.057 5916.554 3427.301 881.670

Concrete 23.772 14.942 63.165 286.110 1281.639 4495.246 10442.269 20349.503 11787.922 3032.432

Other 0.101 0.063 0.268 1.216 5.446 19.100 44.369 86.465 50.087 12.885

Steel 29.591 18.600 78.628 356.150 1595.384 5595.681 12998.534 25331.057 14673.603 3774.770

. Steel continuous 14.250 8.957 37.863 171.505 768.261 2694.612 6259.472 12198.225 7066.105 1817.749

Concrete continuous 15.088 9.484 40.091 181.595 813.460 2853.145 6627.736 12915.884 7481.826 1924.692

Aluminum 0.035 0.022 0.094 0.425 1.906 6.685 15.529 30.263 17.530 4.510

(c) Adjusted Residuals

Deck Condition Rating

0 1 2 3 4 5 6 7 8 9

Prestressed concrete -6.350 -4.574 -5.507 -13.608 -26.537 -45.249 -43.808 10.730 56.145 21.006

.o Mansory -0.071 -0.056 -0.116 -0.247 -0.522 -0.977 1.868 -0.636 -0.319 0.443
T Wood or timber 28.738 6.709 17.373 8.307 19.568 28.236 24.757 -16.438 -19.632 -19.828

Prestressed concrete
S continuous -2.629 -2.084 -3.585 -5.612 -10.808 -21.934 -19.565 12.889 16.444 6.848

Concrete -2.414 -3.089 -6.186 -7.929 -13.956 -10.668 1.651 8.072 2.220 -2.532

t Other -0.318 3.717 -11.518 -0.196 -2.334 -2.998 -3.208 -0.158 2.531 6.440

Steel 0.627 5.426 5.117 12.338 22.448 48.103 22.537 -24.705 -27.718 -1.298

.5 Steel continuous -3.245 -1.990 0.835 9.506 14.819 10.892 23.655 2.234 -30.111 -15.826

Concrete continuous -3.112 2.116 -1.278 4.037 9.380 5.763 12.102 7.674 -25.791 -5.532

Aluminum -0.188 -0.149 2.956 -0.652 0.792 0.895 2.403 -2.229 0.112 -0.711

I I I I I I
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Table 6-6. Main Structure Material vs. Superstructure Condition Rating

(a) Observed frequencies

Prestressed concrete 1 0 83 0 11 0 28 2 1 0

S Mansory 1 0 21 0 3 1 7 1 0 0

' Wood or timber 66 0 133 2 19 0 128 10 4 0

Prestressed concrete
continuous 198 0 249 3 171 1 527 74 68 0

Concrete 881 0 862 23 857 2 2451 397 439 3

Other 3193 0 2449 185 3779 14 8665 2128 1881 9

Steel 9109 5 4602 900 9584 19 16616 6559 5951 20

Steel continuous 28596 3 5473 4420 21483 56 20109 12620 15739 21

Concrete continuous 41829 3 3044 8027 12779 87 12359 7480 6890 22

Aluminum 8244 0 407 1494 3091 40 3562 1766 1890 2

(b) Expected frequencies (as if the two attributes are independent)

S perstructure Condition Rating

0 1 2 3 4 5 6 7 8 9

Prestressed concrete 38.064 0.005 7.158 6.220 21.395 0.091 26.632 12.825 13.579 0.032

Mansory 10.271 0.001 1.932 1.679 5.773 0.025 7.186 3.461 3.664 0.009

Wood or timber 109.358 0.013 20.565 17.871 61.467 0.261 76.514 36.846 39.013 0.091

Prestressed concrete
continuous 390.003 0.047 73.341 63.735 219.210 0.931 272.872 131.402 139.133 0.326

Concrete 1786.884 0.213 336.028 292.014 1004.358 4.268 1250.225 602.049 637.469 1.494

Other 6737.593 0.805 1267.020 1101.063 3787.016 16.091 4714.077 2270.074 2403.629 5.632

Steel 16121.224 1.925 3031.633 2634.544 9061.298 38.501 11279.502 5431.668 5751.230 13.475

.A Steel continuous 32783.195 3.915 6164.955 5357.457 18426.535 78.294 22937.347 11045.529 11695.371 27.403

Concrete continuous 27949.698 3.338 5256.004 4567.563 15709.758 66.751 19555.504 9416.995 9971.026 23.363

Aluminum 6191.710 0.739 1164.365 1011.854 3480.190 14.787 4332.140 2086.152 2208.886 5.176

(c) Adjusted Residuals

S perstructure Condition Rating

0 1 2 3 4 5 6 7 8 9
Prestressed concrete -6.008 -0.067 28.347 -2.494 -2.247 -0.302 0.265 -3.023 -3.414 -0.178

Mansory -2.893 -0.035 13.720 -1.296 -1.154 6.228 -0.070 -1.323 -1.914 -0.093

Wood or timber -4.146 -0.114 24.793 -3.754 -5.417 -0.511 5.886 -4.423 -5.606 -0.302
Prestressed concrete

continuous -9.722 -0.216 20.512 -7.608 -3.256 0.071 15.384 -5.008 -6.031 -0.571

Concrete -21.430 -0.462 28.693 -15.742 -4.650 -1.098 33.960 -8.357 -7.861 1.233

Other -43.183 -0.897 33.206 -27.607 -0.130 -0.521 57.544 -2.982 -10.660 1.419

Steel -55.228 2.216 28.521 -33.793 5.491 -3.143 50.247 15.296 2.634 1.777

Steel continuous -23.126 -0.462 -8.813 -12.808 22.516 -2.520 -18.675 14.981 37.391 -1.223

Concrete continuous 83.019 -0.185 -30.511 51.187 -23.383 2.478 -51.462 -19.961 -30.855 -0.282

Aluminum 26.082 -0.860 -22.195 15.157 -6.597 6.557 -11.701 -7.009 -6.785 -1.396

_ _ Su perstructure Condition Rating_
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Table 6-7. Main Structure Material vs. Substructure Condition Rating

(a) Observed frequencies

Prestressed concrete 0 4 34 202 1202 4484 12060 36910 29376 7846
Mansory 0 0 0 0 0 0 7 2 2 0

" Wood or timber 92 79 301 703 1801 3134 4242 4388 2205 378
Prestressed concrete

continuous 0 0 2 1 30 234 1107 6464 5462 1754
Concrete 13 70 267 536 2001 5377 11583 17619 11197 3114
Other 0 1 2 1 4 7 30 79 62 34
Steel 29 33 253 808 3249 9737 16201 20333 10129 3680

Steel continuous 4 0 19 84 544 2180 6823 13791 6140 1452
Concrete continuous 3 0 10 51 335 1370 5294 16306 7529 1965

Aluminum 0 0 0 2 3 10 27 19 14 2

(b) Expected frequencies (as if the two attributes are independent)

Substructure Condition Rating
0 1 2 3 4 5 6 7 8 9

Prestressed concrete 42.595 56.491 268.259 721.399 2769.896 8015.449 17332.317 35015.969 21785.781 6109.843
Mansory 0.005 0.007 0.032 0.086 0.331 0.957 2.070 4.181 2.601 0.730

i Wood or timber 8.010 10.623 50.447 135.661 520.885 1507.323 3259.382 6584.833 4096.866 1148.970
Prestressed concrete

continuous 6.961 9.232 43.839 117.892 452.659 1309.891 2832.462 5722.339 3560.250 998.476
Concrete 23.942 31.752 150.781 405.479 1556.883 4505.264 9742.020 19681.515 12245.190 3434.175

Other 0.102 0.135 0.641 1.723 6.615 19.143 41.394 83.627 52.030 14.592
Steel 29.802 39.525 187.692 504.740 1938.007 5608.152 12126.865 24499.547 15242.810 4274.860

.5 Steel continuous 14.351 19.033 90.384 243.059 933.252 2700.618 5839.718 11797.810 7340.208 2058.568
Concrete continuous 15.196 20.153 95.701 257.359 988.158 2859.503 6183.286 12491.910 7772.054 2179.680

Aluminum 0.036 0.047 0.224 0.603 2.315 6.700 14.488 29.269 18.210 5.107

(c) Adjusted Residuals

Substructure Condition Rating
0 1 2 3 4 5 6 7 8 9

Prestressed concrete -6.526 -6.984 -14.303 -19.338 -29.791 -39.445 -40.047 10.122 51.424 22.211
Mansory -0.071 -0.082 -0.179 -0.294 -0.575 -0.978 3.427 -1.067 -0.373 -0.854

Wood or timber 29.676 20.979 35.276 48.710 56.089 41.898 17.211 -27.072 -29.557 -22.745
Prestressed concrete

continuous -2.638 -3.038 -6.319 -10.766 -19.866 -29.727 -32.421 9.804 31.872 23.910
. Concrete -2.236 6.788 9.465 6.482 11.256 12.987 18.652 -14.702 -9.472 -5.464

Other -0.319 2.355 1.698 -0.551 -1.017 -2.775 -1.771 -0.506 1.382 5.081
Steel -0.147 -1.038 4.767 13.498 29.780 55.134 36.997 -26.619 -41.420 -9.098

. Steel continuous -2.732 -4.363 -7.509 -10.202 -12.742 -10.018 12.867 18.351 -14.009 -13.369
2 Concrete continuous -3.129 -4.489 -8.760 -12.863 -20.778 -27.855 -11.309 34.125 -2.757 -4.598

Aluminum -(.189 -0.217 -0.474 1.799 (1.4501 1.275 3.287 -1.898 -0.987 -1.375

By iterating combination of condition ratings (deck, superstructure and substructure) and
design attributes, one can accumulate number of design attribute value which has no
association (and hence predictability) over a given rating score. This total score is then
normalized by total number of design attribute value (76 for this analysis). The final
results for deck, superstructure and substructure condition ratings are tabulated in Table
6-8.

Substructure Condition R ting
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Table 6-8. Summary result of independence analysis for physical condition ratings

Physical Condition Rating
Rating Deck Superstructure Substructure

0 85.53% 85.53% 84.21%

1 86.84% 96.05% 77.63%

2 75.00% 73.68% 67.11%

3 63.16% 61.84% 57.89%
4 51.32% 46.05% 48.68%

5 51.32% 48.68% 51.32%

6 48.68% 48.68% 44.74%
7 57.89% 55.26% 47.37%

8 47.37% 44.74% 44.74%

9 43.42% 42.11% 40.79%

Table 6-8 coincides with the result of poor fitness quality obtained from the SEM

analysis conducted earlier. It is clear from Table 6-8 that ratings of 0-3 have higher rate

of independency over design attributes. This mean that they tend to be indistinguishable

given most of the design attributes. Especially, the superstructure condition rating 1

which possesses approximately 96% of independency detected over all design attributes.

This means that given a design attribute, says Main Structure Material, rating 1 is

independent of the type of material used. In other words, one observes similar probability

of obtaining rating 1 regardless of whatever material type selected. This can also be

confirmed by Table 6-6(c).

As one could observe from Table 6-5 to 6-6, the independency of design configuration

attributes to low ratings are typically due to low proportion of population in the low

rating regions (0-3) compared to higher ratings. This can be confirmed by the

distributions of data by ratings shown in chapter 4 in which we observed that ratings 0-3

forms less than 5% of the entire population. This imbalance of population thus cause the

tight distances between cutting points for these low ratings in the estimated model and

consequently impairs the quality of fit.

In the next subsection, we perform another set of examination on bridges with low ratings

to confirm peculiarity of this population that cannot be explained by the model.

6.3.2. Examination of low physical condition rating (0-3) bridges

Example of bridges of low physical condition ratings (from 0-3) in each type of NBI

condition appraisals (i.e. deck, superstructure and substructure) are selected from the

entire NBI database for examination. In addition, bridges with higher ratings but have

similar characteristics are also selected and compared side-by-side aid the analysis.

Deck Condition Rating (DCR)



Table 6-9 shows the comparison of bridges with low (highlighted in yellow) and high
DCRs of more or less similar characteristics. It can be seen from the table that while most
of other design aspects and age remain more or less similar, the most distinctive feature
that makes those with low DCR differ from those of high DCR is the Average Daily
Traffic (ADT). For low rating group (highlighted in light yellow), the ADT are over
5,000, that of the group with high rating is bounded within 2,000 except the one in PA.
Location-wise, it can be seen that those with low-rating (and probably caused by high
volume of daily traffic) are mostly in CA.

A noteworthy point is the negative correlation tendency between DCR and Superstructure
Condition Rating (SPCR) and Substructure Condition Rating (SCR) for those with low
ratings. This trend is also reflected in the previous regression analysis in which negative
coefficient of SCR appear to be negative in the Reduced-Form (RF) equation of DCR. A
probable reason could be that the bridges in CA are typically built to tolerate seismic
motion and thus have a good design consideration for superstructure and substructure and
deck condition are simply a function of ADT.



Table 6-9. Sample bridges with low and high DCR of similar characteristics



Superstructure Condition Rating (SPCR)

Table 6-10 shows the comparison of bridges with low (highlighted in yellow) and high
SPCRs of more or less similar characteristics. Unlike the case of DCR in which ADT is a
major cause for the deterioration of deck structure, the pattern of SPCR deterioration
cannot distinctively be seen in Table 6-10. The result in Table 6-10 suggests that the
majority of bridges with low rating for superstructure members are steel bridges. To gain
more insight in regard to this, Table 6-11 shows bridges with low SPCR ratings by state
and by main structure material. One can see that the deficient bridges are clustered within
steel, wood and concrete. Moreover, Oklahoma turns out to possess highest fractions of
deficient steel and wood bridges whereas Pennsylvania has highest fraction of defective
concrete bridges. This suggests that to obtain better statistical explanation of what causes
such a pattern, one would probably need geographical information which is unfortunately
not available in this study.



Table 6-10. Sample bridges with low and high SPCR of more or less similar characteristics
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Table 6-11. Fraction of bridges with low ratings by state and material (from total sample bridges)

N L

AK
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FL
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KY
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MN
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MT
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NV
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NM
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ND
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PA
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SD
TN
TX
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VA
WA
WV
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WY
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0.0000%
0.0000%
0.0000%
0.0000%
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0.0000%
0.0000%
0.0000%
0.0000%
0.0000%
0.0000%
0.0000%
0.0000%
0.0000%
0.0000%

U.UUUUVo

0.0000%

0.0000%
0.0000%
0.0000%
0.0003%
0.0000%
0.0000%
0.0000%
0.0000%
0.0003%
0.0000%
0.0003%

0.0000%
0.0000%
0.0022%

v.vvo /
0

o
0.0014%
0.0005%
0.0051%
0.0244%
0.0016%
0.0022%
0.0000%
0.0000%0.0000%
0.0014%
0.0076%
0.0005%
0.0022%
0.0089%
0.0092%
0.0295%
0.0138%
0.0198%
0.0182%
0.0046%
0.0049%
0.0068%
0.0469%
0.0114%
0.0168%
0.0122%
0.0014%
0.0184%
0.0000%
0.0073%
0.0041%
0.0014%
0.0130%
0.0087%
0.0054%
0.0347%
1),1599/

U.UUL+vo

0.0428%
0.0016%
0.0027%
0.0089%
0.0111%
0.0130%
0.0008%
0.0068%
0.0068%
0.0005%
0.0089%
0.0070%
0.0030%
0.0019%
0.6322%

v.vvvJo0

0.0000%
0.0000%
0.0008%
0.0011%
0.0027%
0.0003%
0.0000%
0.0000%

0.0005%
0.0008%
0.0000%
0.0000%
0.0014%
0.0005%
0.0035%
0.0005%
0.0005%
0.0003%
0.0000%
0.0003%
0.0003%
0.0008%
0.0000%
0.0003%
0.0014%
0.0000%

0.0000%
0.0000%
0.0005%
0.0003%
0.0008%
0.0005%
0.0014%
0.0000%
0.0024%
0.00811%
u.uuu 70

0.0041%
0.0000%
0.0000%
0.0005%
0.0014%
0.0019%
0.0000%

0.0000%
0.0014%
0.0000%
0.0033%
0.0011%
0.0003%
0.0000%
0.0450%

0.0019%
0.0005%
0.0005%
0.0005%
0.0022%
0.0000%
0.0000%
0.0000%
0.0043%
0.0041%
0.0003%
0.0005%
0.0011%
0.0005%
0.0068%
0.0141%
0.0000%
0.0577%
0.0005%
0.0011%
0.0003%
0.0008%
0.0033%
0.0572%
0.0014%
0.0027%
0.0133%
0.0000%
0.0008%
0.0000%
0.0019%
0.0003%
0.0016%
0.0019%
0.0000%
0.1005%
u.uaJO-/o

0.0003%
0.0005%
0.0022%
0.0030%
0.0041%
0.0098%
0.0000%

0.0005%
0.0005%
0.0024%
0.0000%
0.0019%
0.0005%
0.0000%
0.3282%

Total

0,0301%
0.0035%
0.0019%
0.0100%
0.0304%
0.0068%
0.0060%
0.0003%
0.0005%
0.0081%
0.0149%
0.0011%
0.0054%
0.0366%
0.0220%
0.0480/%
0.0409%
0.0274%
0.0948%
0.0060%/
0.0073%
0.0106%
0.0683%
0.0203%
0.0862%
0.0423%.
0.0046%
0.0333%
0,0003%
0.0117%
0.0062%
0.0068%
0.0160%
0.0135%
0.0079%
0.0577%
0.2813%
0.0117%
0.0986%
0.0027%
0.0073%
0.0171%
0.0203%
0.0279%
0.0024%

0.0076%
0.0135%
0.0049%
0.0238%
0.0225%
0.0041%
0.0046%
1.3379%



Substructure Condition Rating (SCR)

Table 6-12 shows the comparison of bridges with low (highlighted in yellow) and high
SCRs of more or less similar characteristics. There is no clear distinguishable trend that
separates those with low and high ratings. Like in Table 6-11, a breakdown of SCR in
each rating by state is tajulated in Table 6-13. One can see that the top three states with
high fractions substructure-deficient bridges are Mississippi, Louisiana and Kansas. The
first two are in the gulf area suggesting that there could be geographical environmental
factors that the regression analysis cannot capture for these bridges. Unfortunately, this
data is not available in the current study.



Table 6-12. Sample bridges with low and high SCR of similar characteristics
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Highway
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structure at
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s~end level
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Waterway

Waterway

Waterway

Waterway

Highway, w
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Waterway

Waterway
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640

10021

4600
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29000
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Table 6-13. Fraction of bridges with SCR ratings by state (from total sample bridges)

AL

AK
AZ
AR
CA
CO
CT
DE
DC
FL
GA
HI
ID
IL
IN
IA
KS
KY
LA
ME
MD
MA
MI
MN
MS
MO
MT
NE
NV
NH
NJ

NM
NY
NC
ND
OH
OK
OR
PA
RI
SC
SD
TN
TX
UT
VT
VA
WA
WV
WI

WY
PR

Total

0.0035%
0.0008%
0.0003%
0.0003%
0.0003%
0.0000%
0.0008%
0.0000%
0.0000%
0.0008%
0.0084%
0.0000%
0.0008%
0.0016%
0.0011%
0.0038%
0.0168%
0.0005%
0.0474%
0.0003%
0.0008%
0.0005%
0.0070%
0.0016%
0.0179%
0.0022%
0.0005%
0.0041%
0.0000%
0.0011%
0.0014%
0.0005%
0.0003%
0.0000%
0.0000%
0.0014%
0.0089%
0.0005%
0.0033%
0.0005%
0.0014%
0.0000%
0.0016%
0.0103%
0.0000%
0.0003%
0.0000%
0.0003%
0.0003%
0.001 1%
0.0000%
0.0008%
0.1561%

0.0014%
0.0003%
0.0000%

0.0003%
0.0000%
0.0000% 
0.0000%
0.0000%
0.0003%
0.0051%
0.0000%
0.0000%
0.0003%
0.0003%
0.0011%
0.0035%
0.0011%
0.0033%
0.0000%
0.0003%
0.0003%
0.0011%
0.0008%
0.0377%
0.0005%
0.0000%
0.0008%
0.0000%
0.0054%
0.0000%
0.0005%
0.0003%
0.0000%
0.0003%
0.0008%
0.0041%
0.0000%
0.0014%
0.0000%
0.0014%
0.0005%
0.0014%
0.0035%
0.0000%
0.0003%
0.0000%
0.0000%
0.0000%
0.0008%
0.0003%
0.0000%
0.0797%

0.0070%
0.0027%
0.0003%
0.0030%
0.0038%
0.0003%
0.0005%
0.0000%
0.0003%
0.0016%
0.0133%
0.0000%
0.0005%
0.0038%
0.0057%
0.0173%
0.0117%
0.0125%
0.0111%
0.0019%
0.0005%
0.0003%
0.0060%
0.0030%
0.1203%
0.0027%
0.0030%
0.0035%
0.0003%
0.0011%
0.0000%
0.0030%
0.0035%
0.0041%
0.0027%
0.0041%
0.1705%
0.0014%
0.0157%
0.0000%
0.0008%
0.0089%
0.0117%
0.0076%
0.0003%
0.0011%
0.0000%
0.0008%
0.0003%
0.0019%
0.0003%
0.0005%
0.4770%

0.0436%
0.0065%
0.0011%
0.0163%
0.0111%
0.0068%
0.0019%
0.0000%
0.0000%
0.0103%
0.0268%
0.0008%
0.0073%
0.0252%
0.0306%
0.1564%
0.0496%
0.0111%
0.0897%
0.0098%
0.0030%
0.0051%
0.0352%
0.0442%
0.0962%
0.0209%
0.0138%
0.0472%
0.0008%
0.0038%
0.0051%
0.0073%
0.0179%
0.0314%
0.0168%
0.0363%
0.1415%
0.0146%
0.0577%
0.0011%
0.0160%
0.0328%
0.0244%
0.0488%
0.0038%
0.0038%
0.0027%
0.0076%
0.0192%
0.0238%
0.0035%
0.0027%
1.2940%

0.1119%
0.0114%
0.0054%
0.0672%
0.0344%
0.0290%
0.0127%
0.0014%
0.0003%
0.0225%
0.1046%
0.0022%
0.0257%
0.1138%
0.1217%
0.4328%
0.1827%
0.1024%
0.1691%
0.0225%
0.0127%
0.0206%
0.0797%
0.1225%
0.2978%
0.1309%
0.0344%
0.2135%
0.0024%
0.0146%
0.0287%
0.0347%
0.1165%
0.1696%
0.0528%
0.1385%
0.3854%
0.0648%
0.3515%
0.0130%
0.1556%
0.0745%
0.1192%
0.1531%
0.0152%
0.0260%
0.0732%
0.0317%
0.0650%
0.0762%
0.0100%
0.0098%
4.6680%

0.3032%
0.0531%
0.0160%
0.1748%
0.1127%
0.1301%
0.0328%
0.0060%
0.0019%
0.0745%
0.2499%
0.0081%
0.1005%
0.2992%
0.2707%
0.7447%
0.4794%
0.2610%
0.2141%
0.0602%
0.0696%
0.0900%
0.1911%
0.2198%
0.4222%
0.4312%
0.0924%
0.3485%
0.0041%
0.0512%
0.1257%
0.1111%
0.4358%
0.5276%
0.0908%
0.3566%
0.9274%
0.1406%
0.8187%
0.0285%
0.2832%
0.1444%
0.4604%
0.5135%
0.0344%
0.0534%
0.4447%
0.0986%
0.1406%
0.2144%
0.0493%
0.0488%

11.5616%

0.5336%
0.0442%
0.0799%
0.4959%
0.4932%
0.3051%
0.1374%
0.0206%
0.0079%
0.2163%
0.4404%
0.0369%
0.3111%
0.6141%
0.5157%
0.8209%
0.8607%
0.6469%
0.7482%
0.1328%
0.1778%
0.1691%
0.4133%
0.3423%
0.3669%
0.7889%
0.1789%
0.3883%
0.0220%
0.0946%
0.2282%
0.1344%
0.6057%
0.9672%
0.1144%
1.0330%
0.8797%
0.3230%
0.8875%
0.0398%
0.3374%
0.3363%
0.5791%
1.7143%
0.0753%
0.1209%
0.6892%
0.2553%
0.2734%
0.4634%
0.1756%
0.1607%

20.7976%

6 "
0.8016%
0.0585%
0.3266%
0.7851%
3.0363%
0.7144%
0.3051%
0.0645%
0.0057%
1.0488%
0.8393%
0.1081%
0.3469%
1.2648%
1.0984%
1.0439%
1.2718%
1.0515%
0.6677%
0.1388%
0.2439%
0.2710%
0.6867%
0.6940%
0.6271%
0.9891%
0.4331%
0.5577%
0.1306%
0.1948%
0.3648%
0.1753%
0.6721%
0.7341%
0.1450%
1.4301%
1.2124%
0.6434%
1.0206%
0.0244%
0.6629%
0.4672%
0.8721%
3.4441%
0.2347%
0.1664%
0.8975%
0.8555%
0.5352%
06764%
0.3363%
0.0927%

oi

0.3978%
0.0648%
0.2320%
0.6482%
0.0778%
0.3390%
0.0341%
0.0195%
0.0016%
0.4057%
0.2547%
0.0084%
0. 1098%
1.7677%
0.8948%
0.8607%
1.0680%
0.5927%
0.7883%
0.0642%
0.0612%
0.0504%
0.4772%
0.4715%
1.3320%
0.7146%
0.3203%
0.6144%
0.0282%
0.0940%
0.0881%
0.0214%
0.4851%
0.7070%
0.1360%
1.2035%
0.2214%
0.3986%
0.2770%
0.0022%
0.4401%
0.0287%
0.3650%
0.7382%
0.1146%
0.1057%
0.2995%
0.2829%
0.3374%
0.9282%
0.0076%
0.0260%

20.0081%

0.1518%
0.0106%
0.0019%
0.0862%
0.0014%
0.0057%
0.0000%
0.0016%
0.0000%
0.0667%
0.0051%
0.0011%
0.0165%
0.4650%
0.0686%
0.5325%
0.1499%
0.0168%
0.0444%
0.0108%
0.0049%
0.0228%
0.0488%
0.1715%
0.3157%
0.9070%
0.0203%
0.6165%
0.0003%
0.0195%
0.0187%
0.0016%
0.3271%
0.1344%
0.0444%
0.6515%
0.0314%
0.0168%
0.0474%
0.0003%
0.0225%
0.0011%
0.0390%
0.0382%
0.0022%
0.0000%
0.0366%
0.0041%
0.0683%
0.2385%
0.0003%
0.0008%
5.4891%

Total
0.0049%
0.0011%
0.0003%
0.0008%
0.0005%
0.0000%
0.0008%
0.0000%
0.0000%
0.0011%
0.0135%
0.0000%
0.0008%
0.0019%
0.0014%
0.0049%
0.0203%
0.0016%
0.0507%
0.0003%
0.0011%
0.0008%
0.0081%
0.0024%
0.0556%
0.0027%
0.0005%
0.0049%
0.0000%
0.0065%
0.0014%
0.0011%
0.0005%
0.0000%
0.0003%
0.0022%
0.0130%
0.0005%
0.0046%
0.0005%
0.0027%
0.0005%
0.0030%
0.0138%
0.0000%
0.0005%
0.0000%
0.0003%
0.0003%
0.0019%

'0 .0003%
0.000%
0.2358%
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From these analyses, we conclude that there seem to be geographic regional information
that cannot capture by the model.we therefore propose the following two remedies:

* Excluding rating 0-3 out of the further analysis: they dominate only marginal
proportion of the entire population. They can be counted as anomalies that model
variables are not sufficient to explain it. This is consistent with comments from
Chase, Small and Nutakor (1999).

* Add additional exogenous variables such as design specifications and state
information to help increase explanatory ability.

6.4. Model Specification (Model: PERF2)

Unlike the PERF1 model specified in section 6.1, PERF2 includes design specifications
and state as exogenous variables to the SEM model. At the same time, Average Daily
Truck Traffic (ADTT) is also added to emphasize the adverse effect of truck traffic to
physical rating conditions. The exact model now becomes

YF+ XB + E = O (6-4a)
Y = [DCR, SPCR, SCR] (6-4b)

SSTA TE, LOS, LUS, DL, TSOB,TSUB, (6-4c)
S ADT, ADTT, AGE, MSM, MSD, NSMU, NAS, LMS, SL,DW, DST

0 -- 12 -Y13

= -721 0 -723 (6-4d)

-731 -"32 0

0 0 0 0 0 0 0 0 l,69 Pl,o gl,11  p 1,12  A,1 3  Pu, 14  Pf,1 5  Ai, 16  A,17

B = 0 0 0 0 0 0 0 0 f2,9  2,10 , 2,11  P2,12  f2,13  2,14 f2,15  0 0

0 0 0 0 0 0 0 3,9  p, 10  f3, 1 a, 3,12  f3,13  0 f3,15  0 0

(6-4e)

It is important to note that the response variables DCR, SPCR and SCR included in the
fitting now only include ratings from 4-9. The same sampled in- and out-sample data
were used as is but with exclusion of observations with ratings 0-3.

6.5. Estimation Results of PERF2 Model
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Estimation results of step 1 and 2 are tabulated in Table 6-14. Similar to PERF1 model

result, the observed and predicted proportion of each rating for both steps are summarized

in Table 6-15 and plotted in Figure 6-3.

Table 6-14. PERF2 model estimation result of model (6-4)

(a) Step 1

Lanes On Structure
Lanes Under Structure
State
Design Load
Type of Service On Bridge
Type of Service Under Bridge

Main Structure Material
Main Structure Design
Number of Spans In Main Unit
Number of Approach Spans
Length of Maximum Span
Structure Length
Deck Width
Deck Structure Type
Age
415
516
67
718
819
R-Squared

DCR*
Value
(0.0174)
(0.0030)
(0.0066)
0.0256

(0.0496)
0.0150

(0.1331)
(0.2764)
(0.0565)
(0.0154)
(0.0004)
0.0011

(0.0003)
(0.0002)
(0.0089)
(0.0328)
(0.0428)
(4.4284)
(3.5583)
(2.5583)
(1.2373)
0.0292

t-value
(2.3840)
(4.2201)
(2.1092)
6.2048

(7.2942)
0.9485

(18.2042)
(12.3404)
(29.3484)

(6.2404)
(10.2049)

4.1304
(4.3420)
(1.3494)

(20.4455)
(15.2837)

(298.3487)
(89.3238)
(83.4855)
(80.3948)
(74.4943)
60.4943

0.3743

SPCR*
t-value Value

SCR*
t-value

(8.3049)
(8.9879)
(2.5940)
3.8635

(0.2850)
1.2064

(15.6959)
(13.4436)

(36.0659)
2.9685

(17.5969)

(4.4054)
23.7218

(4.6976)
(10.6950)
(44.3857)

(248.7834)
(89.3875)
(87.3725)
(83.9687)
(74.2843)
60.3859

Value
(0.0020)
(0.0061)
(0.0049)
0.0389

(0.0171)
0.0150

(0.1066)
(0.3371)
(0.0167)
0.0028

(0.0002)
(0.0056)
0.0015

(0.0002)
(0.0009)
(0.1104)
(0.0465)
(4.4672)
(3.5554)
(2.6429)
(1.3356)
0.2495

(0.154)
(8.394)
(2.043)
10.394
(3.422)
1.985

(20.495)
(11.394)
(34.384)

4.959
(8.068)
(2.495)
2.395

(3.696)
(10.496)
(53.395)

(267.050)
(86.496)
(88.687)
(81.055)
(77.961)
60.506

0.4092

(0.0301)
(0.0843)
(0.0055)
0.0783

(0.0114)
0.0109

(0.1024)
(0.3118)
(0.0248)
0.0031

(0.0026)
(0.0038)
0.0019

(0.0002)
(0.0012)
(0.1077)
(0.0426)
(4.0269)
(3.1945)
(2.3088)
(0.9138)
0.4217

0.3852
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Table 6-14. PERF2 model estimation result of model (6-4) (continued)

(b) Step 2

Table 6-15. Comparison of fraction of population for fitted and actual observed rating for each
rating level obtained from PERF2 model

(a) Step 1

Observed
0.01818
0.07133
0.17491
0.36519
0.30410
0.06629

0.00414
0.01823
0.16026
0.61100
0.20636
0.00001

0.00313
0.02714
0.07043
0.51530
0.38399
0.00001

Observed
0.02811
0.08356
0.19044
0.39711
0.23636
0.06442

0.01085
0.02697
0.07951
0.63835
0.24431
0.00001

Value t-value Value t-value Value t-value
DCR* N/A N/A (0.0408) (4.0593) (0.0771) (8.3836)
SPCR* 0.086 6.783 N/A N/A 0.0767 9.2632
SCR* (0.033) (2.456) 0.0669 7.0212 N/A N/A
Lanes On Structure N/A N/A N/A N/A N/A N/A
Lanes Under Structure N/A N/A N/A N/A N/A N/A
State (0.0066) (31.2995) N/A N/A N/A N/A
Design Load N/A N/A N/A N/A N/A N/A
Type of Service On Bridge N/A N/A N/A N/A N/A N/A
Type of Service Under Bridge N/A N/A N/A N/A N/A N/A
ADT (0.011) (20.833) (0.0078) (14.1487) (0.0058) (10.9442)
ADTT (0.028) (13.702) (0.0707) (1.9789) 0.0179 0.5016
Main Structure Material (0.053) (33.339) (0.0360) (25.3486) (0.0406) (28.8145)
Main Structure Design (0.0003) (0.5635) 0.0033 5.5119 0.0028 4.7554
Number of Spans In Main Unit (0.0045) (8.1564) (0.0041) (7.4474) (0.0058) (10.6393)
Number of Approach Spans 0.0001 0.1359 (0.0075) (8.6625) N/A N/A
Length of Maximum Span (0.0013) (5.8007) N/A N/A N/A N/A
Deck Width (0.0358) (12.1839) N/A N/A 0.0020 3.1418
Deck Structure Type (0.0069) (10.6882) (5.4784) (60.5797) (4.8451) (49.0280)
Age (0.0424) (200.0899) (0.0472) (216.7022) (0.0456) (213.5423)
415 (6.5241) (72.5597) (4.3103) (48.0553) (4.0567) (201.2973)
516 (5.7049) (63.5095) (3.4960) (38.9652) (3.2418) (170.8179)
617 (4.8495) (54.0584) (2.6436) (29.4744) (2.3713) (129.1735)
718 (3.6126) (40.4258) (1.4781) (16.5322) (0.9929) (56.4096)
819 (2.4119) (27.0541) (0.0724) (0.8112) 0.3327 18.7081
R-Squared 0.3799 0.4131 0.3901

SPCR*

4
5
6
7
8
9
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Table 6-15. Comparison of fraction of population for fitted and actual observed rating for each
rating level obtained from PERF2 model (continued)

(b) Step 2

4
5
6
7
8
9

DCR
Observed

0.02730
0.08778
0.20832
0.40173
0.21902
0.05585

0.00326
0.01869
0.08954
0.64378
0.24473
0.00000

SPCR
Observed

0.01818
0.07133
0.17491
0.36519
0.30410
0.06629

0.00052
0.02862
0.06271
0.50348
0.40463
0.00003

SCR
Observed

0.02811
0.08356
0.19044
0.39711
0.23636
0.06442

0.01320
0.02488
0.07013
0.64828
0.24351
0.00001

Fitted vs. Observed Probability of Deck_Cond_Rating

obs--- erved

4 5 6 7 8 9

Ratings

Fitted vs. Observed Probability of SuperstructureCond Rating

4 5 6 7 8 9

Ratings

Fitted vs. Observed Probability of SubstructureCond Rating

Fgr6.Fte.os eo----p-- uc-loinmoe

Figure 6-3. Fitted vs. observed population fraction of each condition rating from PERF2 model (step
1 and 2 estimation)
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(b) Step 2

Figure 6-3. Fitted vs. observed population fraction of each condition rating from PERF2 model
(continued)

The estimation results show slight improvement over the PERF1 model by 3-5% in R2

value. This suggests that exclusion of low rating observations and inclusion of more
explanatory variables yields little improvement of the explanatory ability of the model.

For the sake of completeness, we have computed out-of-sample predictions and
compared to the in-sample ones. The observed and fitted proportion of each ratings for
out-of-sample data are tabulated in Table 6-16 and plotted in Figure 6-4. It can be seen
that while keeping the distribution of rating population fixed when sampling, the
estimated model behaves consistently on the out-of-sample data although low fitting
quality still can be observed in this case.
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Table 6-16. Comparison of fraction of population for fitted and actual observed rating for each
rating level obtained from PERF2 model on the out-of-sample data

4
5
6
7
8
9

Total

DCR
Observed

0.02730
0.08778
0.20832
0.40173
0.21902
0.05585

1.00

Fitted
0.00326
0.01869
0.08954
0.64378
0.24473
0.00000

1.00

SPCR
Observed

0.01818
0.07133
0.17491
0.36519
0.30410
0.06629

1.00

0.00052
0.02862
0.06271
0.50348
0.40463
0.00003

1.00

SCR
Observed

0.02811
0.08356
0.19044
0.39711
0.23636
0.06442

1.00

0.01320
0.02488
0.07013
0.64828
0.24351
0.00001

1.00

Fitted vs. Observed Probability of Deck_Cond_Rating

4 5 6 7 8 9

Ratings

Fitted vs. Observed Probability of Superstructure_Cond Rating

4 5 6 7 8 9

Ratengs

Fitted vs. Observed Probability of Substucture-CondRating

- fted
* observed .i

.... .... . .. ... .....C . ... ,

......

RatWgs

Figure 6-4. Fitted vs. observed population fraction of each condition rating from PERF2 model on
the out-of-sample data
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6.6. Discussions

6.6.1. Visualizations of data conditional distributions

To help gain insight of low quality of fitting from the model perspective, visualization of
different joint distribution of data on selected attributes is performed.

1) Data Distribution ofDCR, SPCR, and SCR conditioned on AGE and ADT
(Note that ADT is in x1000 scale)

Comments: Throughout the plots (Figure 6-4), one can observe that the mass of
ratings 0-5 mainly centers around old ages (more than 20 years) and relatively
low volume of traffic. Where ratings of 8-9 tend to center around ages of 1-20
years with, again, low ADT. Exception is in ratings 6-7 in which population mass
spans across all ranges of ages. Order probit model discriminates data by
identifying a set of parallel linear planes that best separate data. Plus, in term of
population number, rating 7 holds the majority of the entire population. From
these evidences, it is quite intuitive that discriminant planes would be mainly
influenced by rating 7 which will likely to fold in ratings 0-6 and some of ratings
8-9.
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Figure 6-5. Distributiion of data for each condition rating on Age and Average Daily Traffic space
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Figure 6-4. Distribution of data for each condition rating on Age and Average Daily Traffic space
(continued)
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Figure 6-4. Distribution of data for each condition rating on Age and Average Daily Traffic space
(continued)
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2) Data distribution ofDCR, SPCR, and SCR conditioned on AGE and Length of
Maximum Span

Comments: Similar trend but more emphasized can be found in these plots
(Figure 6-5).
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Figure 6-6. Distribution of data for each condition rating on Age and Length of Maximum Span
space
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Figure 6-5. Distribution of data for each condition rating on Age and Length of Maximum Span
space (continued)
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3) Data distribution ofDCR, SPCR, and SCR conditioned on AGE and Deck
Structure Type

Comments: The majority of bridges are designed with Deck Structure Type of 2,
6 and 10 (i.e. Closed Granting, Not Applicable, and Wood or Timber). While
those with conditions 0-6 tends to have heavier mass on high ages range, ratings
from 8-9 centered around 1-40 years. Exception is rating 7 group in which all
ranges of age seem to appear. See Figure 6-6 for more details
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Figure 6-6. Distribution of data for each condition rating on Age and Deck Structure Type space
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(continued)

From these visualizations of data distributions, a hint as to why the linear model such as
ordered probit model would exhibit poor fitting can be easily drawn. Recall that the
ordered probit model separates the probability space into different regions for
classification purposes by straight lines (in case of 2D space). However, using analogy of
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these joint distribution plots illustrated in Figure 6-7, where pink, green and orange dots
represent rating 0, 7 and 9 respectively. It is almost impossible to draw lines such that
data in low rating ranges can be distinguished from those with high ratings. Moreover
rating-7 population clouds almost over the regions of the entire data space. Hence, it is
not surprising that ordered probit model will try to accommodate this relatively large-
sized population with wide window of cutting points. As a result, we see that the model
tend to classify most of the data into rating 7.

A 2 A

".0

000 .S * ***4* o *** * *** * * ****

X,

Figure 6-7. Illustration of failure of ordered probit model

6.6.2. Effects of regional environmental information

We compared our results with similar type of analysis conducted by Chase, Small and
Nutakor (1999). They use NBI data along with GIS regional environmental data such as
precipitation rate, temperature range, etc. to fit the physical condition ratings. Note that
they also exclude ratings 0-2 out of the analyses due to the same issue that we have found.

For comparison purpose, we have computed Residual Square Error (RSE) on our in- and
out-of-sample data and compared with them. Everything similar except their richer set of
explanatory variables and smaller set of sample population of size 30,000, the RSE
comparison is charted in Figure 6-8.

A big difference in the level of RSE can be observed between PERF2 and Chase's result.
PERF2 exhibits RSE of about 1.0 whereas the Chase's are about 0.15-0.18. Intuitively,
incorporation of geographical environment information shall improve the result of the fit.
However, given that the quality of physical condition rating measurement which typically
errs by +/-1 (to be discussed in the next subsection), it is unclear to what extent additional
information on geographical environment could add more value to the accuracy of the
model. Another important point to note is the detail of sampling which is not clearly
stated by Chase's study. Since the estimation is done via MLE which is indeed a fitting of
observed distribution of the regression error tem, the underlying density must be
preserved when sampling to reflect the actual observation. In an extreme case, one can
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sample the data so that populations from each rating are of equal proportion. In this case,

the problem of tight cutting points which reflects the problem of underlying data

population would have not been realized in the model. By this way the result from the

model can be spurious.

Residual Standard Error

1.2

1

0.8

0 0.6

0.4

0.2

0
DCR SPCR SCR

[ Current study (n-sarple) u Current study (Out-sample) o Chase et. al

Figure 6-8. Comparison of RSE from in- and out-of-sample data of PERF2 model and that of Chase,
Small and Nutakor (1999) study

6.6.3. Accuracy of physical condition rating measurement

Another source (and probably the main source) that contributes most to the poverty of

fitness quality in our model is due to low accuracy of the physical condition rating

measurement reported in NBI database.

Washer (2003) has conducted a field study to empirically measure the accuracy of visual

inspection by inspectors and the nondestructive evaluation (NDE). The study was

conducted by asking 49 practicing bridge inspectors from across the country to examine

the test bridges in Virginia and Pennsylvania. Each inspector performed 10 separate tasks,
including routine and indepth inspections. They used common hand tools such as a

masonry hammer, plumb bob, carpenter's level, binoculars, and other nonintrusive tools.

During the routine inspections, the inspectors were asked to provide a condition rating for

the superstructure, substructure, and deck. The study revealed a wide distribution of

condition ratings reported by inspectors evaluating the same bridge sections. On average,
they assigned between four and five condition ratings for each separate component. For

some components, inspectors provided as few as three different condition ratings; for
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others, inspectors provided as many as six. The average was between four and five.
Reportedly, the results indicated that only 68% of the reported condition rating for these
elements would vary between +/-1 from the average rating for a particular element.

This obviously will have a direct impact on quality of fitness of the model. Now the
source of uncertainty in the observations consists of two sources following the context of
latent variable models such as the ordered probit model. The first source is, of course, the
deterioration process itself which we tried to capture it by ordered probit model. The
second source is from the measurement error. Without knowing the structure of
probability density of the error, a clear gauging of impact on model accuracy is not
possible.

6.7. Conclusions

Presented in this chapter is an empirical evaluation of SEM model on NBI bridge
physical condition ratings modeling. Using model with only design description and the
one with additional design specifications, we have found that the quality of fit is
generally poor with only information available in NBI. By comparing to study done by
Chase (1999) in which regional environment information is included, the result suggested
that with additional environmental information does improve model accuracy. However,
the degree of improvement is dubious because the accuracy of the measured ratings is
reportedly low. This also serves as a cause of poor fitness exhibited in our model for both
PERF1 and PERF2. Finally, from the model perspective, we found from the visualization
analysis that the simple ordered probit model which draws lines (or planes) on the normal
density space can perform poorly because the overall data is shadowed by rating 7.
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PART III: LEARNING OF
CONCEPTUAL DESIGN
KNOWLEDGE IN THE PRESENCE
OF DESIGN OBJECTIVES
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7. METHODOLOGY FOR LEARNING BRIDGE
DESIGN KNOWLDGE

THE ADVENT OF POWERFUL computational powers has given rise to the desire of
intelligent systems which incorporate design knowledge which can be generalized to
solving new design problems. Quite a volume of studies have been devoted to
development of a so-called inductive Machine Learning (ML) algorithms whereby
knowledge of the domain is constructed by induction over a given set of examples. In
design contexts, the idea of acquiring design knowledge from previous design examples
is an appealing one (Potter, et al., 2001). In this chapter, we briefly reviewed the
methodology employed in literatures on engineering design knowledge learning and
conclude that the approach of conceptual clustering is more suitable for our learning goal.
Finally, we proposed a new clustering measure which aims toward building cluster
structure such that it pays more attention to capturing characteristics of designs that leads
to high performance.

7. 1. Review of Inductive ML Techniques for Engineering
Design Knowledge Learning

There are typically two types of learning depending on the form of obtained knowledge
(Potter, et al., 2001). The first paradigm is to learn and obtain structure of the knowledge
such as case base or hierarchical tree. One can view this type of learning scheme as
acquisition of classification knowledge. On the other hand, the second type of obtained
knowledge is in a functional form. Examples of resulting functions are neural networks,
support vector machines, etc. This type of knowledge may or may not be comprehensible
for human or engineers. In the below subsections, we devote our discussion in more
detail to review each of these approaches.

7.1.1. Conceptual Clustering Approach

The most popular technique used in the first type of learning is a so-called conceptual
clustering. Based on the defined measure of similarity used for clustering strategy, design
examples are grouped together and usually in a hierarchical structure. Each cluster
represents a "concept". The more upstream a concept lies on the structure, the more
abstract or general design concept a cluster represents. The solutions under each cluster
are used as basis for derivation of solution to new design problem. The followings are
brief reviews of representative techniques in the class of conceptual clustering.

Decision Tree (ID3 or C4.5)

122



One of the techniques for conceptual clustering that has been widely used is a so-called
"decision tree" algorithm. It is also known as ID3 or C4.5 developed by Quinlan (1986
and 1993). Decision trees normally consist of a number of nodes, each representing an
attribute with different instances that are used to classify the test cases and build the tree.
When decision trees are built, they are usually pruned and converted to a set of rules that
can be easily understood and applied by users. Examples of study for acquisition of
knowledge using this algorithm are conceptual fixtures design by Kumar, Subramaniam
and Teck (2004), and construction of critics based on labeled living design space to aid
criticism of new design configuration by Williams (2003).

Most of the decision trees employed in various research are variations of the core
algorithm exemplified by the ID3 (Quinlan, 1986) and its successor C4.5 (Quinlan, 1993).
It utilizes a top-down, greedy search through the space of possible decision trees. For the
sake of further discussion, we briefly review the basic algorithm ID3 below.

Given a set of examples in form of attribute-value, the ID3 is grown by recursively
branching its leaf with the attribute which is most useful for classification of supplied
examples. The usefulness measure here is measured by a statistical quantity, called
information gain. The information gain can be viewed as expected reduction of entropy
caused by partitioning examples by an attribute. Here, entropy can be considered as a
measure of impurity at a particular node with respect to class labels of the node local data.
Precisely, an entropy function for K-class problem at node m can be defined as:

K

I =- p'm log pm (7-1)
i=l

where p', is the probability of class C at node m, i.e.

P(C Ix,m)- pm = Nm (7-2)
Nm

The information gain from using attribute A to branch node m is simply a reduction of
entropy and thus can be defined as:

K n K

Gain (m, A) = I -Im, = -np' log p, m P log pi (7-3)
i=1 j= m i=1

where Nm denotes number of observations in node m that takes valuej at attribute A.

And p' the probability of class Ci at node m that takes valuej at the branching attribute

is defined as

miP( Cj | x,m, j) -p Nmj= (7-4)
Thus, the ID tree can be considered as an algorithm that branches at the node which
yields greatest expected reduction of entropy. Pseudo code of ID3 algorithm (for binary
classification on categorical data attributes) is provided in Figure 7-1.
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Figure 7-1. Pseudo-code for ID3 algorithm (Mitchell, 1997)

It should be noted that the major drawbacks of ID3 include the followings: missing
values, continuous attribute and tendency to overfit data. C4.5 is the successor of 1D3 that
accounts for these shortcomings.

Cobweb

COBWEB (Fisher, 1987) is a hierarchical clustering technique employing five operators
to determine how best to incorporate an example (e.g. existing design) into the hierarchy.
The category utility (Gluck and Corter, 1985) is use as clustering objective functional. It
can be viewed as a function that rewards traditional virtues held in clustering generally -
similarity of objects within the same class and dissimilarity of objects in different classes.
Classification topology is constructed in such a way to maximize average Category
Utility (CU) over all clusters on the hierarchy. Precisely, the CU function for the k-th
cluster is defined as:

CUk = P(Ck ) i ZP((A, = Vj ICk - i jP(Ai = Vj)2 (7-5)

where P(A, = V I Ck ) is the probability of the i-th attribute of the observed data taking

thej-th label value given that the observation is classified to the k-th cluster. The first
time can be rewritten as follow using Bayes rule.
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ID3 (Examples, Target_Attribute, Attributes)

* Create a root node for the tree
* If all examples are positive, Return the single-node tree Root, with label = +.
* If all examples are negative, Return the single-node tree Root, with label = -.
* If number of predicting attributes is empty, then Return the single node tree

Root, with label = most common value of the target attribute in the examples.
* Otherwise Begin

o A = The Attribute that best classifies examples.
o Decision Tree attribute for Root = A.
o For each possible value, v;, of A,

* Add a new tree branch below Root, corresponding to the test
A = vi.

* Let Examples(v), be the subset of examples that have the
value vi for A

* If Examples(vi) is empty
Then below this new branch add a leaf node with
label = most common target value in the examples

* Else below this new branch add the subtree ID3
(Examples(vi), Target_Attribute, Attributes - {A})

* End
* Return Root



i~jP( -= V; I Ck)P(Ck)(CCk I A = Vj) (7-6)

The first term in the product of (7-6) can be interpreted as intra-class similarity. The
larger this probability, the greater the proportion of class members sharing the value and
the more predictable the value is of class member. The last term is the inter-class
similarity. And the higher this probability is, the fewer the objects in contrasting classes
that share this value and the more predictive the value is of this class.

Thus, the term defined in (7-6) can be viewed as a tradeoff between intra-class similarity
and the intra-class dissimilarity. The CU function is therefore defined as the gain of
expected number of attribute values that can be correctly guessed given cluster k

(P(Ck) jP(A, = Vi I Ck)2 ) over the expected number of correct guesses with no

such prior knowledge (P(C,) iZjP(A = V)2

Examples are permanently incorporated into the hierarchy by sorting through the
hierarchy and find the best host node that maximizes average CU over all clusters, i.e.

k=IP(Ck)[iEjP(A =V I|Ck )2(i7-7)

n

Note that COBWEB in its original version can only handle nominal data. To account for
this, the idea is to replace the discrete prior and conditional probabilities above with
integral over probability density functions. Example calculation of term

EijsP(qA = V Ck)2 _ iEPP(A = V) 2 in equation (7-5) assuming normal

distribution with an observed mean p and standard deviation ac is (Haglin, 2007):

2, ( = P(A , I c)'-I Ck) j )2
(7-8)

Ei(f(I4 ckC2d -f f(Ai4i)
Eiff (A I Ck)2 di- f ( 4)2d)=IE 1 1 (7-9)

Note that unlike ID3, the COBWEB is an incremental learning algorithm. That is, the tree
is updated every time a new example is presented to it. COBWEB tries to accommodate
the new example into an existing hierarchy starting from root then recursively traversed
through the tree by the following operators (see Fisher, 1987).

1. Expanding the root, if it does not have any sub-classes, by creating a new class

and attaching the root and the new example as its sub-classes;
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2. adding the new example as a new sub-class of the root;

3. adding the new example to one of the sub-classes of the root;

4. merging the two best sub-classes and putting the new example into the merged

sub-class; or

5. splitting the best sub-class and again considering all the alternatives.

If the example has been assimilated into an existing sub-class, the process recurses with
this class as the top of a new hierarchy. COBWEB again uses category utility to
determine the next operator to apply. Figure 7-2 summarizes the sketch for COBWEB
algorithm.

Figure 7-2. Pseudo-code for COBWEB algorithm (Fisher, 1987)

One can view node merging and splitting as inverse operators (Fisher, 1987). They allow
COBWEB to move bidirectionally through a space of possible hierarchies. In general,
merging is invoked when initial observations suggest that the environment is a space of
highly similar objects, relative to the actual structure of the environment suggested by
subsequent observations. In contrast, splitting is invoked when the environment is more
'compressed' than suggested by initial input. One can view merging and splitting as a
mechanism to decrease the sensitivity of COBWEB to input ordering due to their inverse
relation.

7.1.2. Artificial Neural Networks (ANN)

An artificial neural network - ANN comprises a network of a minimal unit called
perceptron. Each perceptron takes in input signals, an internal processing function called
"threshold function", and an output. The input may come from environments or from the
outputs from other perceptrons. Each input signals are voted with weights attached to the
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COBWEB (Object, Root)

* Update counts of the Root
* IF Root is a leaf

THEN Return the expanded leaf to accommodate the new object
ELSE Find that child of Root that best hosts Object and

perform one of the following
a) Consider creating a new class and do so if appropriate
b) Consider node merging and do so if appropriate and

call COBWEB (Object, Merged node)
c) Consider node splitting and do so if appropriate and

call COBWEB (Object, Root)
d) IF none of the above (a, b, or e) were performed

THEN call COBWEB (Object, Best child of Root)



arch connected to the destined perceptron. The result of voting from inputs is then
thresholded by the threshold function and is output. While the individual perceptrons are
relatively simple, when connected into a network they can display complex behavior.

The archs connecting between perceptrons are associated by numerical weighting which
serves to "amplify" or "diminish" the strength of the numerical signals passed along it.
And the core of the learning by ANN is to search through feasible space formed by real
vector represented by these weights and locate the optimal solution with respect to a
given objective function. Examples of these objective functions could be binary error (for
classification problem), L2 norm error (for regression problem), etc. (see Alpaydin, 2004)

The widely-used network is a feed-forward network and can be "trained" to respond to
certain input patterns by producing some associated output. The learning or adjustment of
network weights could be performed by a so-called "backpropagation" algorithm
(Rumelhart et al., 1986) Using this, the network is trained by repeatedly presenting
examples of the correct combinations of inputs and outputs to the network, and gradually
altering the connection weightings so that, for every example, the input produces the
desired network output.

Unlike ID3 or COBWEB, ANNs are subsymbolic learners: they expect data to be
represented numerically (and typically as normalized values between 0 (or -1) and 1). To
learn more complex associations, ANNs tend to need greater numbers of intermediate
perceptron units-and more layers of these units.

Examples of application of ANNs in the area of engineering design knowledge learning
consist of:

* Batill and Swift (1993) applied ANN technique to learn structural design

configurations that optimize structural performance. The problems concerned are:

the configurational design of a 10 bar truss for minimum weight, and the

configurational design of a four spar light aircraft wing-box with weight,

displacement, and natural frequency as constraints/objective functions.

* Srinivas and Ramanjaneyulu (2007) used Genetic Algorithms (GA) in

combination with ANN for cost optimization of bridge deck configuration. In this

study, ANN is used for prediction of bridge response given design configuration.

GA is then used to search through feasible design configuration space that results

in optimal cost.

7.2. Selection of Methodology for Bridge Conceptual
Design Knowledge Learning with Performance
Constraints
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In this section, we shall proceed by first comparing the aforementioned learning
paradigms and techniques with respect to characteristics of knowledge that we seek to
obtain for our study. By investigation of these algorithms on several dimensions required
by our objective knowledge, we can then derive a preferable choice of methodology to be
used for bridge conceptual design task.

According to Reich (1997), Machine Learning (ML) techniques can be characterized
along many dimensions that influence the applicability of the techniques. Some selected
dimensions are:

1) Complexity of input data representation and learned knowledge;

2) Mechanisms for learning knowledge and the functional form of these resulting

models/functions;

3) Mode of learning (i.e. batch or incremental);

4) Computational complexity of the algorithm;

5) Comprehensibility (clear to opaque), and

6) Timing in which the knowledge is learned (early or late).

Examples of comprehensibility of the learned knowledge here include extremists like
clear for the case of rules and opaque for the case of black-box systems such as neural
networks.

Here early learning means that learning pro-actively occurs when receiving new data.
The algorithm learns from data and stores the knowledge that can be subsequently used
for new problem solving. On the other hand, late learning refers to reactive learning by
storing data and subsequently retrieves it, learn from it (locally), and adapt to the problem.

The last two characteristics were specially paid attention by Reich as he postulated that
they form three clusters of machine learning approach into which most of the studies on
machine learning in civil engineering can be classified. The clusters are shown in Figure
7-3.
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Figure 7-3. Key dimensions of learning systems (Reich, 1997)

From our perspective, we are specially interested in classify best groups of existing

designs that yield high performance (in our case, we use physical condition ratings as

target) so that the resulting knowledge provides insight on which design configuration
conditioned on given sets of requirements leads to high performance and vice versa.

Therefore, clear comprehensibility of learned knowledge is indispensable. It follows that
a functional form type of knowledge obtained from ANN or similar type of algorithms
would not suffice this requirement. Rather, a well-structured knowledge such as those
obtained from rule induction or hierarchical structures is more preferable.

On the other hand, the timing aspect of learning algorithm for our application is not so
important. However, late or reactive learning such as K-nearest neighbor algorithm
requires search for local similarity based on certain distance measure. This could pose
difficulty to our application because it is unclear how to model distance measure on a mix
of ordinal and nominal data exhibited by NBI data. Thus, methods such as decision tree
or COBWEB which is less sensitive to this type of distance measure are more suitable.

Last but not least, in term of complexity of the knowledge and computational effort for
hierarchical clustering algorithms, algorithm like COBWEB could be far more efficient
than ID3. This is because COBWEB is an incremental learning algorithm and thus does
not require re-training like does ID3. A new example can be presented and added to the
existing structure. COBWEB is also constructed such that it confines itself into small and
useful number of clusters/classes compared to ID3. Reich (1992) reported that the
COWEB in the application of bridge conceptual design domain possesses branching
factor of about 2.8 and tree size normalized by number of samples consistently equal to
1.5. This can be seen by the fact that COBWEB involves bidirection operators (i.e.
merging and splitting) that helps further abstraction/generalization of knowledge by
smaller size of cluster numbers.

129



With these reason, we shall prefer COBWEB to ID3 and other algorithms for application
to this thesis. In the next subsection, we will discuss some shortcomings of the COBWEB
that needs further adjustment to suffice our thesis purpose. We will also propose
appropriate adjustments in detail.

7.3. Proposed Modification for COBWEB

Careful examination of Category Utility (CU) function in equation (7-7) reveals that
COBWEB trades off between predictive accuracy of feature values of a class, i.e.

[ I -jP(Ai = V I Ck)2 - EjIP(A, = V )12 term, and the class size P(Ck). The

class size term could lead to bias toward larger category size (Choi and Kim, 2005).
Therefore, the concept hierarchy COBWEB constructs may not reflect the underlying
class structure of instances.

From the thesis perspective, this hinders the algorithm to focus on design solutions that
lead to high performance. Basili, Pazienza and Velardi (1993) proposed a straight line
weighted sum between the original CU and another bias term. The similar idea can be
utilized to force COBWEB to focus on capturing well-performed design solutions. For
this thesis, we propose the following modified CU functions:

CUkCR=v[P(Ck){ i jP(A=VK Ck)V i-AP(A =V)2

DCRk DCR 1 [0,1] (7-1Oa)
( max (DCRk) max (DCR) J

CUP (C 11i,(k j P(A = V |Ck2 i2j A = V2

SPCRk SPCR (7-lOb)

+(1)P(c max (SPCR) max (SPCR)' [1

CUCR =v [P(Ck) 2i jP(A = VI |Ck)2 ij A A V)2}

SCRk SCR (7-10c)

kmax(SCRk) max(SCR)J 4v",
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cukM" =v[P(Ck){i jj P(A = VW I Ck) 2-XZ P(Aj )' ]

+ (1v)PDCRk DCR

3 (C max(DCRk) max(DCR)

-V) P(Ck) SPCR'k - SPCR 
(7-10d)

3 max (SPCRk) max (SPCR)

+ (1-v) SCRk SCR " q
3 max(SCRk) max (SCR) '  l

where the weighting term v can be identified by cross validation process. DCRk ,

SPCRk and SCRk denote the average of DCR, SPCR and SCR measures within the k-th
cluster.

Analogous to the original CU definition, the modifications introduced in equation 7-10
can be considered as an incremental in local average condition ratings (be they DCR,
SPCR, SCR or average of the three) over overall average condition ratings. Therefore,
another tradeoff that the modified version of COBWEB needs to perform is to balance
between cluster size and this gain concurrently with the original predictability of a feature
values in a cluster class from the original CU. The importance of trade off is expressed by
the weighting term v.

Z74. Conclusions

In this chapter, we have reviewed the two main machine learning algorithms being used
for engineering design knowledge learning namely the conceptual clustering and ANN
techniques. While, the latter is capable of adapt to highly complex association in the
underlying data, its critical drawback lies in its opaqueness of the resulting knowledge. In
other words, the model works like a black-box and thus hinders engineers/experts to
benefit from understanding the knowledge structure. The former is more suitable for the
thesis purpose from this perspective. With regards to complexity and adaptability of
learning algorithm, COBWEB is more preferable because it learns in an incremental
mode. Thus does not require retraining once a new example is presented to the COBWEB.

However, the original COBWEB can lead to arbitrary clustering that could results in
spurious cluster structures that do not reflect the underlying groups of design
configurations that lead to high performance. To circumvent this, we proposed a straight-
line weighting scheme between the original CU and average performance measure. The
latter term is added to introduce bias toward high performance designs. The weighting
coefficient can be empirically identified during the process of cross validation.
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8. EMPIRICAL EVALUATION OF LEARNING
MODEL

EXPERIMENTS PERFORMED in this chapter are targeted at evaluating and
measuring the degree in which COBWEB is capable of capturing high performance
design examples for induction of design knowledge. First we apply the original
COBWEB described in the previous chapter directly to NBI data. Results obtained are
examined in detail. Then we move on to the modified COBWEB models. Comparison of
the obtained knowledge between the original and the modified models is discussed.

8. 1. Experiment Setups with Original COBWEB

Input into COBWEB for learning is a set of attribute-value design specification and
configurations. Design specification, configurations and service environments are
summarized in Table 8-1. For prediction (or testing) purpose, only the service
environment and specification are input into the tree. The COBWEB tree is traversed
from root given the incomplete set of information and the cluster with best matched
environment and specification is located based on the following error measure at the k-th
node.

N i (x = )ec (max yk -min y)

where x, and yk denote the i-th attribute value of input vector and node value vector

respectively. A/1 and C are sets of nominl-., (or ordinal-) and continuous-valued
attribute respectively. The I(*) is an indicator operator whose value is 1 when argument

expression is true and 0 otherwise. Yjk denotes average value of the i-th attribute (whose

attribute is a continuous one) at the k-th cluster. N is the dimension of input vector.

Equation (8-1) represents cluster representative value by using the followings:

* Value with maximal cardinality if the attribute is nominal, or

* Mean value if the attribute is continuous.
Then the error measure in equation (8-1) is simply a combination of error measure for
nominal- and continuous-valued attributes normalized by the dimension size of the query
vector. For continuous attribute, the difference between input vector value and the node
mean is normalized by the attribute range local to cluster k.
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Table 8-1. Design specification and configurations for training data

Attribute Acronym Attribute Acronym Attribute Acronym
Average Daily Traffic ADT Lanes On Structure LOS Main Structure Material MSM
Average Daily Truck Traffic ADTT Design Load DL Main Structure Design MSD
State Code SC Type of Service On Bridge TSOB Number of Spans In Main Unit NSMU

Type of Service Under Bridge TSUB Length of Maximum Span LMS
Structure Length SL Deck Width DW

Deck Structure Type DST

After the best matched cluster is located, the design description of the query vector is
simply the design description of that particular cluster. The query example is not added to
the tree in case of prediction.

The input query vector combined with the predicted design configuration is then input to
the performance model identified in chapter 7 to determine the predicted performance
either DCR, SPCR and SCR (see Figure 8-1).

input - Tred output

Service
Environment

Design
Specification

Design
Configuration

input Peormance
Performance

-output (DCR, SPCR
and SCR)

Figure 8-1. Flow of experiment

Finally, the performances and the design configurations in the clusters at the first few top
levels of the COBWEB trees are examined to gain insight of the resulting knowledge in
term of how design configurations attributes to performances.

The training process of COBWEB involves selection of number of training examples that
optimizes validation set error (prescribed in equation 8-1). The error is calculated against
the actual attribute value found in the validation set. The range used for error calculation
of continuous attributes is computed from the range of the entire validation set on that
attribute. Finally, the validation error over the entire validation set is normalized by its
size. Because of limitation in computational resource, we constrain our experiment by
using 15,000 examples as number for training set and 30,000 examples for validation set.
These examples are I.I.D. and drawn from the entire set of NBI database. Finally,
trainings are performed on sample set of sizes {100, 200, 300, 500, 1000, 2000, 3000,
4000, 5000, 10000, 15000} to determine the optimal COBWEB tree.
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8.1.1. Identification of Optimal COBWEB

Figure 8-2 shows average prediction error over the validation set as defined in equation
(8-1).

Validation Error on Validation Set

0. 15

0 -
0.05

0-

0 5000 10000 15000 20000

Training Size

Figure 8-2. Validation error vs. training sample size

While validation error at 1,000 and 10,000 are more or less the same, the COBWEB with
1,000 has a potential to lack observations with some design attribute groups and therefore
should not be selected. Therefore, we select 10,000 point as our optimal training size and
define the optimal COBWEB as that trained with 1,000 observations.

An observation that confirms Reich (1992) and Fisher (1987) on the behavior of
COBWEB is that the normalized tree size (i.e. number of clusters over the number of
training samples) is kept consistently low for COBWEB. In our case, we observe that
COBWEB demonstrates average normalized tree size of 1.35 (although the overall trend
is still sloping downward). This is shown in Figure 8-3. This behavior is desirable
because the relative complexity of the learned hypothesis to the problem size does not
grow with the problem size.
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Normalized Tree Size vs. Training Sample Numbers
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0

0 2000 4000 6000 8000 10000 12000 14000 16000
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Figure 8-3. Normalized tree size vs. number of training samples

Next, let us examine effects of training sample size on predicted values. Figure 8-4 shows

histograms of actual value of each design configurations (shown in Table 8-1) versus the

predicted values from COBWEB at different training sizes. Densities are plotted instead

of histogram in case of continuous-valued attributes (i.e. NSMU, LMS and DW)

% of MSM (Actual vs. Predicted)

0.7

0.6

0.5

0.4

0.2

% o 0-%%%% °% %

(a) Main Structure Material (MSM)

Figure 8-4. Histograms of actual and predicted design configurations by training size
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(b) Main Structure Design (MSD)
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(c) Deck Structure Type (DST)

Figure 8-4. Histograms of actual and predicted design configurations by training size (continued)
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Figure 8-5. Histograms of actual and predicted design configurations by training size (continued)
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Figure 8-5. Histograms of actual and predicted design configurations by training size (continued)

From the comparison of the distributions between the predicted and actual attribute
values, it can be seen that the 10,000 point sample COBWEB provides a reasonable
matches for all attributes compared to others.

As a result, we deduce that the optimal COBWEB tree should be formed by training size
of 10,000 points. For the remaining of this subsection, we will use COBWEB trained
from 10,000 point samples for our discussion.

8.1.2. Analyzing COBWEB Knowledge Tree

Extraction of the first 3 levels of the COBWEB tree using 10,000 points for training is
illustrated in Figure 8-5. In each node (or cluster), the top three probabilities are listed.
The children automatically subsume these probabilities in most cases.
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Stringer/Multi-
MSD beam or girder 0.904
A D T  6.1080 0.500ADTT I 0.0832 0.500

Node 5
MSM Concrete 0.983

Channel beam 0.6541
DL  HS20  0.504

Node 6
Concrete precast

DST panels 0.842
Prestressed

MSM concrete 0.782
DL HS20 0.504

Node 7
Prestressed

MSM concrete 0.900

Node 0
TSOB Hiqhway 1 0.885

Concrete cast-in-
DST place 0.791
TSUB Wate way 0.747

SI I Node 2

MSM concrete 0.707 MSM Concrete 0.523
DL IHS20 I 0.655 ADT 3.93661 0.500
ADT 0.58921 0500

Node 8 Node 9

Concrete -

MSM continuous 0.955
DL HS20 0.627
LOS 2.0000 0.500

Prestressed I I IMSD Slat
Node3

1 0.616

DL HS20 0.627
ADT 0.6797 0.500

Figure 8-6. Optimal COBWEB tree obtained in section 8.1.1

At the root where all training instances are added, one can see that the majority are

highway bridges with concrete-cast-in-place type of deck structure. The service

underneath highway is mostly waterway.

In the next level, main structure design or material starts to divide samples into different

clusters. In this case, we have three. The first one (node 1) has stringer/multi-beam

structure design whereas node 3 has its majority instances of type slab. Node 2's majority

consists of bridges of prestressed concrete material, and so on.

It can also be seen that variety of design materials could be observed in the deeper nodes.

For example, node 5 to 7 contains different type of concrete material although they

subsume their parent, node 2 whose material is governed by prestressed concrete.

Unfortunately, it is hard to obtain a clear trend of designs that lead to high performances

from clusters formed by original COBWEB. As one can see from example in Figure 8-5,
the clusters are formed in such a way that it gather statistically similar trend into big

nodes to avoid high complexity of the resulting tree function. Therefore, the clusters

could be formed quite arbitrarily with respect to performances.

8.1.3. Out-of-sample Performance of Simple COBWEB
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The out-of-sample data is prepared by mutual exclusively, to the previous training and
validation set, I.I.D. sampling data from the NBI database. The sampled out-of-sample
data is of size 30,000 points.

Using the trained COBWEB with 10,000 points data, we obtain the prediction results for
out-of-sample data set on DCR, SPCR, SCR and average score. The results are
summarized in Table 8-2. From the tabulated results, it could be seen that COBWEB
tends to overestimate the physical condition ratings. The main trend is that the COBWEB
predicts the ratings for out-of-sample data to only rating 7 and 8 for all categories. This is
not surprising because the training has been done without inclusion of these performance
measures. The COBWEB is free to cluster around design specification and configurations
that yield the best trade-off between inter- and intra-cluster accuracy as defined by CU. In
addition, the error from performance model could worsen this performance as mentioned
in Chapter 7.

Another view of prediction accuracy is the Residual Squared Error (RSE) which is
simply the sum of squared residuals on all observations normalized by sample size. RSE
for all performance indices are calculated and tabulated in Table 8-3. Averagely, we
found RSE of approximately 2 using this simple COBWEB.

Table 8-2. Out-of-sample prediction of performance measures by COBWEB

(a) DCR

SI U.40/o

S 1.55%
3.39%

0.00% 6.70% 33.06%

U.UU /o

0.00%
0.00%

8.94%
20.80%

0.00%1 39.75%
0.00% 0.00% 0.00% 3.57% 18.55%1 0.00% 22.12%
0.00% 0.00% 0.00% 0.90% 4.76%1 0.00% 5.66%
0.00% 0.00% 0.00% 16.56% 83.44% 0.00% 100.00%

(b) SPCR

1. bl/0 U.UU1/o 1.60/o
5.91% 0.00% 7.25%

14.66% 0.00% 17.57%
30.42% 0.00% 36.36%

0.00%

0.00%
0.00%
0.00%

U.UU7O

0.00%
0.00%
0.00%
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Table 8-2. Out-of-sample prediction of performance measures by COBWEB (continued)

(c) SCR

U.UUoi U.UU07o

0.00% 0.00%
0.00% 0.00%
0 a 000%

U.UU7o ol 3.22% 15.71%
I i. U.
0.00%1 6.57% 32.56%

0.00% 18.
0.UUo%1 39.13/o

0.00% 0.00% 0.00% 3.80% 20.39% 0.00% 24.19%

0.00% 0.00% 0.00% 1.06% 5.41% 0.00% 6.48%

0.00% 0.00% 0.00% 16.56% 83.44% 0.00% 100.00%

(d) Average

0.00% 0.00% 0.00%
0.00% 0.00% 0.00%

0.00% 5.89%
0.00% 100.00%

Table 8-3. Out-of-sample prediction RSE performance measures by COBWEB

RSE
DCR 2.311
SPCR 1.931
SCR 2.239
Average 1.953

8.2. Experiment Setups with Modified COBWEB

While inputs to the modified COBWEB remains the same as tabulated in Table 8-1, the

search strategy has been changed to allow bias on high performance examples as

described in section 7.3. The performance model obtained in chapter 7 is not only used

for evaluation purpose, but also in the branching decision. As a proof of concept, we only

illustrate the last modification, i.e. the one in equation 7-10d which represents the case of

average performance. Similar to experiments in section 8.1, the same set of numbers of

training examples is used to identify optimal COBWEB on the validation sample set of

size 30,000.
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8.2.1. Identification of Optimal Modified COBWEB

Unlike the case of simple COBWEB, the cross-validation stage for modified COBWEB
also needs to identify optimal value of straight line weight v. Thus, we empirically vary
the value of v from 0.1 to 1 using 0.1 interval and find the optimal v and training size
over the validation set. The criteria for optimality cannot employ the validation error
directly because it does not include any information about the gain in term of
performance from the bias that we introduced into equation 7-10. For this purpose, we
propose that the criterion for validation is:

PERF 1
i :--= (8-2)

UPERF 6

where PERF is defined as the predicted performance index, i.e. DCR, SPCR, SCR or
average of the three. UPERF is the standard deviation of the predicted performance index
PERF. - is the mean of validation error. The intuition for this objective measure is to
direct the search toward the direction that simultaneously maximizes the average
performance and minimizes the standard deviation of the predicted performances and
average error of the prediction.

As a result, the empirical search for optimal COBWEB is performed on the 2-
dimensional space formed by sample size vector and vector of weighting coefficient v.
Below are results of the validation process.

Validation Error Surface Validation Error Stdev Surface

0.16

0.1A

0. 1

w 0.

0.0

> 0.1

01

eight

IJ 0o

.is

0.1

eight

Training Size

(a) Mean (b) Standard Deviation

Figure 8-7. Mean and standard deviation surface of validation error
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Average DCR DCR Stdev
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Training Size

(a) Mean

1.6
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, 0.6
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0.

Training Size
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KappaDCR
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0.1

Weight

Training Size
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Figure 8-8. Average, standard deviation and KDcR on validation set
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0.1
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Training Size
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Figure 8-9. Average, standard deviation and KSPcR on validation set
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Average SCR

0.1
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(a) Mean
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(b) Stadard deviation
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Figure 8-10. Average, standard deviation and KSPCR on validation set
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Average Mix Condition Rating

0.1

Weight

Training Size

(b) Stadard deviation

KappaMix

0.1

Weight

o

(C) KMix

Figure 8-11. Average, standard deviaion and Kix on validation set

As one could see from Figures 8-6 to 8-10, the trend is that with low size of training set,
we observed high variation of the predicted condition ratings. On the other hand, for
validation error, the trend is opposite. That is, one can observe that the higher the weights
the cluster-local condition ratings gain (relative to that of validation error), one see poorer
quality of fitting. Thus, we shall seek a good combination of training size and weight that
yield maximal value of K . For the case of average performance model modification
(equation 7-10d), we observe a peak of KMx at training size of 10,000 and v of 0.5.
Therefore, we will use this configuration for our discussion from this point onward.

8.2.2. Analyzing Knowledge from Modified COBWEB Tree

The modified COBWEB for average condition ratings is drawn until node at level 3 in
Figure 8-11.
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Node 0
TSOB Highway 0.885

Concrete cast-in-
DST Iplace 0.791
TSUB Wate way 0.747

Node 1
Concrete cast-in-

DST place 0I 950
Stringer/Multi-

MSD beam or irder 0.865
TSOB Highway 0.8101

Node 4
Stringer/Multi-

MSD beam or girder 0.935
- 1I nConcrete cast-in-

Concrete cast-in-
DST place 0.9721
I Highway-w-or-wo !
TSUB pedestrian I 0.792
TSOB Highway 1 0.726

Node 2
TSUB Waterway 0.984
TSOB Hi!hway 0.968
DL HS20 0.710

Node 6
Concrete cast-in-

DST place 0.988
TSUB Waterway 0.983
TSOB Highway 0.970

Node 7
TSUB IWaterway 0.985
TSOB Highway 0.9741
DL HS20 0.7751

Node 8
Concrete precast

DST panels 0.994
TSUB Waterway 0.985

Prestressed
MSM concrete 0.975

Node 3
TSUB Waterway 0.921
TSOB Highway 0.912

Concrete cast-in-
DST place 0.810

Node 9
TSUB Waterway 0.900

Concrete cast-in-
DST lace 0.868
MSM Concrete 0.799

Node 10
Concrete-

MSM continuous 0.983
TSOB Highway 0.890
TSUB Waterway 0.866

Node 11
TSOB Highway 0.987
TSUB Waterway 0.985
DL H15 0.719

Figure 8-12. Optimal modified COBWEB tree (by 7-10d) obtained in section 8.2.1

Similar root node as in Section 8.1 is found here because the underlying validation is the
same. However, a clear distinction from the original COBWEB tree is that, the modified
COBWB tree branches mostly from design specifications, i.e. TSUB, TSOB and DL and
cascade the design configuration detail down along the path of the tree. In contrast, the
original COBWEB tree (Figure 8-5) starts its hierarchy from basic design configurations
on the top and the detail of design specification will become more specific along the path
of the tree.

Thus constraining the branching strategy to explicitly focus on performance results in tree
clusters that is built from specifications, and then is propagated to specific design details.
In other words, the modified COBWEB provides a hierarchy of knowledge that one can
start from locating concepts of specification and then locate specific design detail along
the deeper node of the path.

8.2.3. Comparison of Original and Modified COBWEB

To better understand characteristics of the modified COBWEB, we compare distribution
of each attribute value predicted by the original COBWEB and the modified one.
Comparisons of attribute value distribution are plotted in Figure 8-12.
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First, in term of main structure material (Figure 8-12a), it is revealed from the plot that
unlike the original COBWEB, the predicted values from the modified COBWEB are
limited among concrete, steel and pre-stressed concrete. Especially, it is almost as is the
missing populations in other type of materials apart from these three were allocated to
pre-stressed concrete.

Second, for main structure design (Figure 8-12b), the modified COBWEB constrains the
prediction between slab and stringer/multiple beam type. Some occurrences of box type
structure are also predicted. However, in contrast to the original COBWEB,
approximately 20% of the entire population predicted as channel beam type does not
appear in prediction of the modified model.

Third, for deck structure type (Figure 8-12c), the results from the two models are quite
consistent. The majority is predicted as concrete cast-in-place whereas some (about 5-
20%) are assigned as concrete precast panel.

Forth, for numbers of span in main unit (Figure 8-12d), comparison of the predicted and
actual density suggests that the extreme value range for both low and high sides are not
captured by both models. Both models produced very closely similar results.

However, for length of maximum span attribute Figure (8-12e), it is clear that both
models tend to pick up values in certain ranges that are separated from each other.
Examples of ranges are 5-18, 20-25, 25-30. Comparing the original to the modified
model, the original model produces wider range of distribution which covers most of the
range that the actual observation does whereas the modified model produces prediction in
the range of 10-30.

For deck width (Figure 8-12f), the two models predictions are quite close to the actual
observation especially the original one. The modified model generates narrower
distribution.

On the condition rating side (Figure 8-12g-8-12j), a typical trend can be observed that
both models limits their prediction to range of 6-8. For the modified model, the
distribution tends to skew toward higher rate, i.e. 8 more than does the original one. The
important result is in Figure 8-12j which compares distribution of prediction on average
ratings from both model and references to the actual observation. The density of the
modified model clearly skews toward rating 7 and 8 whereas the original model produces
quite symmetric density around rating 7.

Therefore, it is clear that the modified model leads to clustering algorithm which results
in a more limited focus on high rating side. Thus satisfies our thesis hypothesis.
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(a) Main structure material

Distribution of Main Structure Design (Actual vs.
Predicted)
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(b) Main structure design

Figure 8-13. Comparison of fraction of population by attribute value (actual, original COBWEB, and
modified COBWEB)
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Distribution of Deck Structure Type
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(c) Deck structure type

Probability density of NSMU (Actual vs. Predicted)
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Number of Spans in Main Unit

(d) Number of spans in main unit

Figure 8 13. Comparison of fraction of population by attribute value (actual, original COBWEB, and
modified COBWEB) (continued)
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Probablity density of LMS (Actual vs. Predicled)
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(e) Length of maximum span

Probability density of DW (Actual vs. Predicted)

- Actdual
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(f) Deck width

Figure 8 13. Comparison of fraction of population by attribute value (actual, original COBWEB, and
modified COBWEB) (continued)
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Distribution of DCR (Actual vs. Predicted)

6 7 8

DCR

a Actual m Original 0 Modified

(g) Deck condition rating

Distribution of SPCR (Actual vs. Predicted)
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(h) Superstructure condition rating

Figure 8 13. Comparison of fraction of population by attribute value (actual, original COBWEB, and
modified COBWEB) (continued)
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Distribution of SCR (Actual vs. Predicted)
100%
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S50%

40%

30%

20%

10%

0%
8 9

SCR
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(i) Substructure condition rating

Probability Density of Average Condition Rating (Actual vs. Predicted)

I I I I 1
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Average Condition Ratings

(j) Average condition rating

Figure 8 13. Comparison of fraction of population by attribute value (actual, original COBWEB, and
modified COBWEB) (continued)
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8.3. Conclusions

In this chapter, we have presented empirical experiments that aim to illustrate
characteristics of the proposed modified COBWEB model which explicitly direct the
branching toward high performance designs. The optimal simple COBWEB (or original
model), in the sense of training size, is empirically identified by searching for model that
yields minimal validation error on the validation test. The optimal model is the one built
from 10,000 points of training set. The knowledge obtained from examination of the
resulting hierarchy reveals that design materials or design structure types of type concrete
and stringer/multi-beam or girder represents the main trends in design. The original
COBWEB clusters observation instances by their contribution to the local node
predictability on its attribute value rather than performance. Therefore, the predicted
design configurations cause high error of condition ratings of approximately 2 in term of
RSE.

In contrast, the modified model exhibits a clear tendency to form such a hierarchy that
focuses around observations with high performances. This can be observed from the
predicted design configurations that tend to centre around modem materials. As a result,
the predicted condition ratings have low variability and limits themselves to only rating 7
or 8. This is a clear evidence to support the success of our model development using this
type of branching strategy.
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9. DISCUSSIONS

BRIDGE DESIGN IS TYPICALLY conducted to meet budget and short-term
performance measures. Rarely has it been focused on long-term performance due to the
high complexity and uncertainty evolved during the long life-span of the bridge service
life. As a result, the NBI data reveals that more than 150,000 bridges are structurally
deficient or functional obsolete. This number is likely to increase due to increased traffic
volume, aging and the continuing deterioration process. Additionally there are limited
funds for rehabilitation and maintenance.

National Cooperative Highway Research Program (NCHRP) and other organizations
such as FHWA and AASHTO have started initiatives to address the issue of
incorporation into the design phase. NCHRP (2006) drafted detailed suggestions to
accommodate long-term performance into design as a component for asset management
and budget allocations. FHWA in cooperation with AASHTO (2004) initiated work to
provide strategic roadmaps toward performance specification which is meant for long-
dated performance.

Both attempts involve defining meaningful long-term performance measures and a higher
accuracy modeling approach that yields better prediction of future performance of the
design artifact. In contrast to the current scheme in which design is set to meet initial cost
and short-term performance, the long-term performance measure is used to estimate cost
over the service life cycle and is incorporated into the design phase. The objective of
design becomes more emphasized on estimating future conditions with respect to the
level of funding.

The following sections will be devoted to discussion on this new design aspect especially
from the NBI data and discoveries of this thesis work perspective. Firstly, the new
concept of design for long-term performance is introduced. The elements necessary to
enable such a scheme are described. Retrospectively, the current NBI bridge data is used
to reflect the inadequacy of the current data and plausible development to achievement of
design for performance is suggested.

9. 1. Overview of Design for Long-term Performance

With the limited budget for maintenance and deterioration in the bridges nation-wide,
several initiatives have been set forth to develop a new design framework that allows
engineers or designers to prescribe target long-term performance and use such
information to tradeoff between future conditions and investment budget especially from
the asset management perspective.
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FHWA in cooperation with AASHTO (2004) initiated works around performance
specifications. The goal is to establish a framework for prescription of design
performance during order process. The main objective is to ensure that the targeted
performance is satisfied over the planned life cycle. The emphasis is to determine
meaningful measures of performance that can be either estimated or tested using key
construction test or modeling approach, or measured after some predetermined time. The
former is known as 'performance-related measure' (PRS) and the latter as 'warranty'.
Among all fundamental requirements for PRS, the key items are measurability of quality
characteristics - which partly implies accuracy of the measurement itself - and
predictability of performance.

On the other hand, National Cooperative Highway Research Program (NCHRP) started
an initiative to establish a framework for life-cycle performance measures as a target for
asset management. The main idea is to identify meaningful long-term performance
measures and to provide guidelines on how these should be incorporated into asset
management plan. Especially, for the design stage, how the long-term performance shall
be reflected as investment cost and how it could affect life-cycle budgeting at an
individual and network level are thoroughly studied. Key components are more or less
similar to what PRS embraces and contain sound analytic constructions of performance
measures and solid quality foundation data. Without being able to accurately estimate
future performance, the estimation quality of budgeting for asset management level is
degraded.

Recently, FHWA has formed a synergy with bridge owners, bridge industry and
academia to form a so-called 'Long-Term Bridge Performance (LTBP) Program' with
similar objectives to the two initiatives mentioned earlier (FHWA, 2007). The program
focus is on data quality and collection, data mining and analysis, etc. In addition, it
clearly specifies periodical inspection of bridges using Non-Destructive Evaluation
(NDE) method with visual inspection to document deterioration.

9.2. Solid Foundation Data

In the report 551 from NCHRP, the criticality of solid foundation data to attribution of
successful asset management for performance has been emphasized. The interviews in
the study reveal emphasis on data quality and evaluation of data usefulness to support
performance measures meaningfully, accurately and reliably. Below are sample quotes
from the report that reelects the importance of data on performance evaluation.

* There is a direct relationship between specific performance measures and the data
needed to support these measures. "The most common data problems are in
ascertaining the quality of the data and in acquiring it in the exact form desired".

* Data that are highly uncertain translate into performance measure values that are
likewise highly uncertain, reducing their management value. "Investments in
accurate, high-quality data collection systems are essential to successful
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performance measurement and, by extension, to achieving the overall strategic
goals of the agency".
Some factors that are important, however, either cannot be measured at all or
cannot be measured accurately at an acceptable cost. "Transportation agencies
need to consider the uncertainty introduced by inaccurate data when taking action
based on their system of performance measures".

From this thesis study, the NBI data in its current stage fails to meet the above desired
characteristics. Firstly, the accuracy of measured performance is poor and thus rules out
the accountability of the resulting models to predict or analyze performance. For example,
over 68% of the measurement that varies between 1 and -1 unit for physical condition
ratings reported by Washer's study (2003) on comparison of routine visual inspection and
NDE approach.

Secondly, the NBI data collects data based on availability rather than the necessity driven
by business process of asset management. The NBI data contains more information on
results and manifestation of current deterioration or serviceability rather than detail of
factors that explains deterioration process. A clear example is impressive prediction
accuracy of physical condition ratings reported by Chase, Small and Nutakor (2000) with
geographic environmental explanatory variables. They achieved approximately 15-20%
in residual squared error (RSE) using ordered response model type of regression. This is
a significant improvement over this thesis achievement using data available in NBI data
alone. From an interview, Chase has emphasized that these factors indeed significantly
enhance explanatory power to condition rating. This supportively suggests that the
criticality of augmenting NBI data with necessary information for better describing
deterioration or future performance. This information provides more reliable foundation
for evaluation of design solutions and more accountable decision for investment
allocation at the bridge network level.

Thirdly, to address the cost of data collection and quality issue, the new technique such as
NDE should be used. Not only that the NDE can provide a more economical means for
data collection and inspection, it can also yield higher accuracy and less subjective data.
In the next section, we provide an example of such NDE measurement.

9.3. Accountable Performance Measures

One way to distinguish between overall health and critical deficiencies is through the
type of performance measures used and the establishment of critical threshold values.
For individual facilities, overall health can be gauged through indexes based on a set of
conditions (e.g., sufficient score in NBI). Critical deficiencies can be identified by
establishing a threshold for these indexes, the value of which experience shows is serious
enough to threaten the structural integrity of the facility, dramatically increase user costs,
or result in many customer complaints.
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Another approach is to focus on particular conditions that are critical to facility
performance and to define detailed measures and thresholds (e.g., physical condition
ratings).

Nonetheless, the performance measures should be defined in the most objective or
quantitative way as much as possible to avoid subjectivity or bias during evaluation or
measurement. A good example is found from Washer (2003) study that NBI bridge
condition rating (scaling from 0 to 9) has averagely +/-1 range of error. Also, among
about 50 inspectors, 4-5 different rating score can be assigned to the same bridge element
which well reflects subjectivity during the routine visual inspection process.

In contrast, a new methodology such as Non-Destructive Evaluation (NDE) technique
can be used to quantitatively and accurately evaluate performance or condition of the
bridges. For example, Figure 1 compares vibration mode measured from ambient
vibrometer of a healthy and structurally deficient bridge. A clear difference can be
observed in that the healthy one vibrates in its natural modes and have its spectrum
concentrated only on a few frequencies whereas the damaged bridges possess vibration in
almost every frequency, i.e. resonance. With this particular example, this type of
spectrum can be taken on the newly constructed bridge as a baseline performance and
each year vibration spectrum can be measured and compared with the baseline. The
approximate location and severity of an unknown defect is determined using a damage
correlation index calculated from the frequency response function (FRF) of the structure.
The damage index is a relative measure whose value depends on the differences in the
dynamical properties of the undamaged (baseline) and damaged structures (Mal, A., et.
al., 2005). This also emphasizes superiority of NDE technique over the conventional
visual inspection in that the NDE can identify damage which is hidden inside the
structure where visual inspection cannot be reached or assessed. Thus NDE can provide a
more quantitative and more accountable performance measure for use of design for long-
term performance.
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Figure 9-1 Spectrum of a sound bridge (left) and spectrum of a damaged bridge (right) (source:
SAMCO, 2007)

9.4. Suggestions for Improvement of NBI Data

In this chapter, we have used the design for long-term performance scheme to emphasize
shortfalls of the NBI data. Firstly, it does not serve as a complete set of data containing
information that supports understanding or explains the observed bridge performances.
Second, the data quality in the NBI data is low. In particular, the measurement of the
observed performance is subjective and erroneous. Third, the performance of the bridge
is defined on such a subjective and erroneous measure and thus causes the defined
performance to lack of accountability. As a result, it deters accountability of the resulting
model when analyzing such a performance measure.

In this subsection, we suggest some of the enhancement to the existing NBI bridge data in
the context of design for long-term performance.

* Provide supportive data that explains the observed performance: an example from
this study is geographic information which Chase, Small and Nutakor (2000) have
incorporated. The database should be self-contained in such a way that it provides
sufficient and meaningful data that is necessary to describe or support the
observed performance.

* Reliable data accuracy: the NBI data especially the performance measures tend to
include error. This is due to a subjective and inaccurate data collection process.
To avoid this problem, new techniques such as NDE can be introduced to yield
reliable level of accuracy. Additionally, the NDE technique can be used to assess
performance of bridges or structures in the unreachable area and hence provide
better coverage of performance measure.
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* Encourage usage of quantitative measures for performance: the problem with
performance assessment observed in the NBI data is that they are subjectively
measured. In particular, the physical condition ratings. As described in an earlier
subsection, the ratings are subjective and tend to be erroneous. Moreover, an
indirect implication from Washer (2003) experiment, that could explain why a
wide range of ratings could be assigned to the same bridge element by different
inspectors, is that the scale distance between each rating is fuzzy. In his report,
Washer claimed that it could be that the scale is too close to each other, for
example, there is very little difference between rating 7 to 9. To address this
problem, the NBI should instead adopt quantitative driven measures. For example,
change in baseline spectrum can be quantitative derived as a measure to indicate
structural health condition.

* Suggested standard model for performance evaluation: the baseline model for
performance evaluation especially for long-term investment purposes should be
standardized among authorities. The NBI should suggest the types of model for
performance evaluation and should ensure that necessary data for the model is
included in the database. Not only would it serve as a clear evidence for
supporting the observed or collected performance, but it also provides a baseline
for researchers to be able to suggest improvements of analysis on performance
model which, in turn, is beneficial for FHWA and authorities.

9.5. Condusions

We have presented examples of initiatives that steers design philosophy or objectives
from initial cost or construction performance to long-term performance and life-cycle
budget allocation planning. The value of incorporation of long-term performance into
design stage lies in the fact that it allows assessment of required budget level to sustain
long-term performance during bridge life cycle in the hope of obtaining control over
maintenance cost.

At the heart of these initiatives, solid data quality and accountable performance measures
are the crucial factors. Desirable data quality must be collected in an inexpensive and
accurate manner. Data must also well support and explain the observed or evaluated
performances. Performance measures should be a reliable measure that subjects to less
subjectivity and well capture health or status of the infrastructure.

Retrospectively, from this thesis study, it can be deduced that the current NBI data is
lacking in both areas. The performance data in NBI is erroneous with expensive visual
inspection. The available attributes do not possess explanatory power to the observed
deterioration condition. The use of subjective rating score is subjective and thus provides
a very crude and inaccurate means to assess performance. This also suggests a critical
need to introduce a new way of data measurement and performance defining achievable
by techniques like NDE to address the two factors for long-term performance design.
Finally, a set of recommendations for NBI to address these shortfalls are presented.
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10. CONCLUSIONS AND SUGGESTED FUTURE
DEVELOPMENTS

This thesis proposes a developed a methodology for conceptual design knowledge
learning which enables incorporation of design quality, particularly design performance,
as learning objectives.

Using the NBI bridge as application domain, we have presented empirical relationships
between service environments, specifications, design configurations and performances
using visualization tools. Starting from basic understanding of distribution of bridge
populations by different nominal NBI items to 2- or 3-way conditional analysis which
helps us understand relationships between different aspects of the NBI database. The
focus of our interests is mutual relationships/effects of how service environments,
specifications, design configurations could affect bridge performances which in we
mainly use physical condition ratings as proxies for performances.

In particular, we have found that bridges with low physical condition ratings (0-3)
constitute less than 5% of the entire population. We found that bridges with low ratings
tend to have more variety of materials used for construction and a wider range of ages
thus suggesting that aging and some of the classic materials used contributes to
deterioration. We also discovered that the normalized Average Daily Traffic per lane
quantity tends to be lower for lower rating bridges compared to those with higher ratings.

For bridge performance modeling purposes, we have employed the Simultaneous
Equation Modeling (SEM) approach to model the selected performances, i.e., the
physical condition ratings on deck, superstructure and substructure elements. Using the
estimated SEM models with only design description and the one with additional design
specifications, we have found that the quality of fit is generally poor.

To justify this observation, a set of literature has been reviewed. Compared to a study
done by Chase (1999) in which regional environment information is included, the result
suggested additional environmental information does improve model accuracy. However,
the degree of improvement is dubious because we have found that the accuracy of the
measured ratings is reportedly low. Over 67% probabilistically, the measurement
includes error of +/-1 scale. This also serves as a cause of poor fitness exhibited in our
models. Finally, from the model perspective, visualization of the underlying joint
distributions between data attributes helps to understand the cause of poor fitness quality.
This is because the majority of the data space is clouded by observations with rating 7
and thus the model will pose tendency to predict most of the observation to rating 7.

For selection of design knowledge learning algorithm, we have reviewed the two main
machine learning algorithms being used for engineering design knowledge learning
namely the conceptual clustering and ANN techniques. The latter suffers from the
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opaqueness of the resulting knowledge from which engineers can interpret rationale of
the design and thus provide only shallow knowledge. In contrast, the clustering type of
algorithm, particularly COBWEB which is an incremental hierarchical clustering method
is found more suitable for our thesis purpose.

However direct adoption of COBWEB would not satisfy our objective because its
hierarchical is built based on pure statistical measure called category utility which
measures a tradeoff between cluster size and predictability of a cluster class by a feature
value. We proposed a modification to existing category utility function to incorporate a
linearly weighted sum between the original predictability of cluster class by an attribute
value and the local increment in average performance over the global average
performance which is measured by the model constructed in the previous section.

A set of experiments to evaluate the proposed modified COBWEB is conducted. The first
one uses the original COBWEB to build hierarchical clusters which represents design
knowledge. However, no explicit incorporation of performance measure is included in
learning strategy. This forms a benchmark to which the modified COBWEB is to be
compared. An example of mixed performance COBWEB is used for illustration. The
optimal COBWEB is the one with the linear weighting term such that it maximizes the
average predicted rating normalized by prediction error. The rationale is to identify the
COBWEB that best balances capturing of good design features and consistency of
predicted design configuration with the actual observation. Experimental result has
shown that the modified COBWEB tends to suggest design with limited ranges of
choices, e.g. prestressed concrete, concrete deck type, etc. which tends to provide higher
performance compared to the original COBWEB. Also, the average out-of-sample
predicted rating on all three categories, i.e., DCR, SPCR and SCR are higher than those
obtained from original COBWEB. Thus, the result confirms that the modified COBWEB
has fulfilled our thesis purpose.

Finally, we discussed the insufficiency of the NBI in present to explain the performance
measure. While the design for long-term performance has been a topic of interest for
FHWA and authorities in the recent years, the quality of data in the current NBI is not
adequate to support such a vision. Not only that its data quality is not reliable and
erroneous, NBI's bridge performance measure such as physical condition ratings are
measured subjectively and cannot be explained by the data available in the NBI database.
Our recommended enhancement included: accurate data collection with the use of new
technique such as NDE, less subjective and more accountable performance measures,
supportive data that explains the observed performance evaluation, and standardization of
analytical model for performance evaluation.

In terms of suggested future developments, potential extension in the following three
main areas could be pursued.

Measurement noise as another source of disturbance to performance model: as
noted in chapter 6 that the physical condition rating is typically erred by +/-1.
This has a great impact on performance model accuracy because the true rating
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now is also latent to the model. A general structural equation model such as
recticular action model (RAM) (McArdle and McDonald, 1984) can be utilized.
However, the difficulty lies in the fact that the measurement error probability
density form is unknown and thus would falsify the model estimation if using
MLE on normality assumption. Another challenge is to capture the structure of
correlation between the measurement errors and the actual disturbance from latent
deterioration process.

* Explanatory power analysis of exogenous factors to NBI bridge condition ratings:
The physical condition rating model by Chase, Nutakor, and Small (1999) has
included several regional environmental variables as explanatory variables. These
results have, by far, exceeded our model accuracy which suggests the additive
value of such information. Especially from BMS perspective, this additional
information is useful for understanding the deterioration process. However,
explanatory ability of each exogenous variable for modeling of performance is
still worthwhile to investigate. A general framework such as PCA can be
employed to estimate relevancy and the degree of variation in performance
explained by each explanatory variable. However, the PCA type of analysis is
limited to stationary process and continuous-scaled variable. The difficulty thus
lies in development of PCA-like methodology that does not resort on stationarity
and can handle nominal and ordinal variables. This is especially useful for
improvement of data collection in NBI data. As far, it should be clear from
chapter 6 that the available attributes in NBI are not sufficient to capture the
deterioration.

* Filtering of relevant features during learning process: As data contains more
attributes in practice, it becomes difficult for engineers to interpret knowledge at
each node level, particularly in the case of COBWEB. Also this could deteriorate
effectiveness of learning algorithms. A natural extension is to perform local
feature selection before deploying the COBWEB. However, this type of method
oversimplified the problem and could lose global information that is useful for
describing local node. Rather, a construction of algorithm in which feature
selection at the node level is performed while learning is more preferable. This
would enable the clustering system to use all features at the global level while
limiting itself to a smaller set of relevant features at the local level.
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