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1. Introduction 

In this report I shall describe what seem to me the most interes­
ting developments in current algebra since the Vienna Conference. I shall emphasize 
those topics which are related to contributions to this conference. Please do not 
look for completeness, especially in the list of references, and forgive me if I failed 
to mention your work. My talk will be divided into two parts. The first part deals 
with the conventional vector and axial vector currents of the electromagnetic and 
weak interactions, the second with the energy momentum tensor and the closely 
related currents of the scale and conformai transformations. The study of the energy 
momentum tensor is a natural extension of the conventional current algebra, 
since it is the source of the hadronic gravitational field. The idea of current algebra 
is that one can, from the known properties of the electromagnetic, weak and 
gravitational interactions, infer certain symmetries of the strong interactions. 

Some progress has been made recently in the study of the vector and axial 
vector currents. It seems to me that it is mostly in the question of unitarity and 
in forming a relatively consistent picture of the SU (3) X SU (3) symmetry break­
ing. On the other hand, in questions concerning scale invariance and the energy 
momentum tensor, many new ideas and new problems have arisen in recent time 
and a new exciting field of theoretical speculation has opened up. By the next con­
ference, we shall probably have a better idea about the physical relevance of this 
approach. 
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2. Ward identities and effective lagrangians 

Let us begin with the vector and axial vector currents. Tradi­
tionally [1] , one writes down equal time commutators and (exact or partial) con­
servation laws for these currents. For instance, for SU (2) X SU (2) one has 

In addition to the commutators written here, one can try to assume commutators 
between time and space components of currents and also commutators involving 
time derivatives [2] . These additional commutators contain Schwinger terms and 
may be quite complicated. In order to study the consequences of these relations, 
one can employ different techniques. A very convenient technique is the use of 
the Ward — Takahashi identities for the T-functions. A x-function involving 
a number of currents and of hadronic fields 

provides the interesting amplitudes for electromagnetic and weak processes when 
the hadrons are put on the mass shell. Taking the divergence with respect to one 
index and using the conservation law for the current, one obtains the Ward iden­
tities. For instance 

+ terms from equal time commutators. 
As is well known, the additional terms on the right-hand side arise from the diffe­
rentiation of the # functions which give rise to equal time commutators. In the 
definition of the T-funetions, one must use a JT* product instead of a simple T pro­
duct. When this is appropriately defined the T-functions are covariant and satisfy 
Ward identities in which the Schwinger terms do not appear [3] . Sometimes, how­
ever, the cancellation between the Schwinger terms and the sea-gull terms 
of the T* product is not complete and anomalous terms remain [4] . 

The Ward identities can be analyzed [5] by observing that the T-functions 
(which correspond to all Feynman diagrams) can be put together from connected 
T-functions W (which correspond to connected Feynman diagrams). These in turn 
can be analyzed in terms of one particle irreducible vertices A (which do not have 
one particle singularities; they correspond to Feynman diagrams which cannot 
be cut in two by cutting only one internal line). Clearly the W-îunctions are con­
structed in terms of irreducible A-functions by putting them together in tree-like 
structures. For instance see fig. 1 (p.498) where G is the exact propagator. In the 
low energy region, the one particle irreducible vertices can be approximated by 
polynomials in the momenta of the particles involved. This gives rise to the 
so-called hard-pion method [6] . 

In co-ordinate space the polynomial approximation corresponds to using a 
finite number of derivatives. Therefore the one particle irreducible vertices can 
be described in terms of a local Lagrangian [7]. These effective or phenomenolo­
gical Lagrangians are to be used only in the tree approximation. The Ward iden­
tities for the T-functions imply restrictions on the one particle irreducible verti-
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Fig. 1. 

ces which can be stated as invariance properties of the phenomenological Lagran­
gian. These restrictions take the form of low energy theorems. In the case of a 
spontaneously broken symmetry, the invariance of the effective Lagrangian is 
with respect to a non-linear realization of the group [8] . 

In the hard pion calculations one applies the polynomial approximation in 
situations in which the momenta are no longer very small- Sometimes one even 
uses the effective Lagrangians for virtual particles and integrates the momenta 
to infinity. In these cases, of course, the results go far beyond the use of low energy 
theorems, but provide often useful indications of what one may expect in more 
realistic calculations. An interesting example is the fourth order calculation of 
the electromagnetic mass difference mn^ — mUo by Gerstein, Schnitzer, Wong 
and Guralnik [ 9 ] . They find that the mass difference is logarithmically divergent 
even if the pion mass is set equal to zero. Remember that, in second order, it is 
convergent in this limit and it agrees reasonably well with experiment [ 1 0 ] . It 
is not easy to trace the fourth order divergence to the non-vanishing of certain 
equal time commutators. 

A lot of work has been done on the construction of effective Lagrangians 
invariant under a group. A particularly elegant technique uses geometrical ideas 
in the manifold spanned by the field variables [ 1 1 ] . For instance, the pion-pion 
interaction can be described by a Lagrangian of the form 

-> 

where (cp) gives the invariant metric associated with the group SU ( 2 ) X SU ( 2 ) , 
—> 

the group manifold being parametrized by the pion field cp. Using particular field 
co-ordinates, one would have, for instance 

while the symmetry breaking term could be assigned to a particular representation 
and could have the form 

Why should ( 9 ) be the metric of a group space? A more general point of view 
is taken in the interesting work by Volkov [ 1 2 ] . He also uses geometrical concepts 
in the space of the field variables but formulates requirements on this space which 
are more general than group invariance. For broken SU ( 3 ) X SU ( 3 ) he uses the 
natural hypothesis that the covariant derivative in the, eight-dimensional Rie-
maun space should exist for SU ( 3 ) multiplets. This requirement gives strong 
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limitations on the structure of the Riemann space and determines it up to one un­
known function and possibly up to a constant. In the former case the corrections 
due to symmetry breaking (which means here deviation from the metric of a group 
space) begin to work in the quasikinetic terms of the Lagrangian correspond­
ing to the metric tensor of such a space only for six or more external lines. This 
could be considered as an explanation of the fact that symmetry breaking is usually 
considered only as the mass term. 

3. Algebraic form of sum rules 

Assuming that the amplitudes have a certain high energy be­
haviour (convergence or super con vergence ) inferred from experiment or from Regge 
theory, the low energy theorems can be transformed into sum rules and given an 
elegant algebraic form. This can be done by requiring that the tree diagrams of 
the effective Lagrangian behave not worse as s —>- oo than Regge theory would 
require [13] . I t can also be done, and was done this way earlier, by using directly 
the current commutators, for instance with the method of the infinite momentum 
limit [14] . For instance, for SU (2) X SU (2), one assumes that the forward iso-
spin odd amplitude for scattering TC + a n + p vanishes as s oo. This 
gives rise to the commutation relations 

Observe that T\ and Xj (X) are not operators but one-particle matrix ele­
ments directly related to observables. For instance, the rate for the collinear decay 
a p -f- m with helicity X is given by 

Assuming that the isospin even amplitude behaves as for s oo one ob­
tains information on the mass matrix m$a EE m|ôp a . I t turns out to be the sum of 
a chiral invariant and of the fourth component of a chiral four vector 

From these relations one finds mass formulae such as m\i = ml + ml. Other 
examples of such algebraic forms of sum rules are 

where J is the angular momentum matrix acting on helicity indices [15] , and 
yj (X)Xt(X) = Xt{X + l ) p / (X) 

where p ' (X) is the anomalous magnetic moment matrix, between states of helicity 
X + i and X. 
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The above examples show how the high energy requirements transform a «dy-
namical» symmetry of the non-linear or Goldstone variety into an algebraic sym­
metry operating on one particle states. Usually this method is applied to chiral 
groups [16]. In an interesting report to this conference [17], Ogievetsky applies 
it to SU (3), taking the hypercharge plus isospin group as the linearly realized 
subgroup. When the asymptotic requirements are imposed, one obtains mass for­
mulae which are generalizations of the Gell — Mann — Okubo formula and 
which agree reasonably with experiments. He also studies the case of SU (3) X 
X SU (3) with hypercharge plus isospin as the linear subgroup. These generali­
zations are very appealing. Unfortunately, whenever one goes beyond SU (2) X 
X SU (2), at the level of exact symmetry one must assume vanishing masses for 
mesons which actually have a rather large mass. 

4. Uni t ari ty 

One of the main theoretical problems of current algebra is that 
of unitarity. The Ward identities or the effective Lagrangians, treated in the tree 
approximation, satisfy the low energy theorems and crossing, but not unitarity. 
How should one improve on this, w'thout loosing the low energy theorems and 
crossing? Essentially three approaches have been tried. The first, represented 
by the work of B . W. Lee and J . L . Basdevant [18] on ji-jt scattering consists 
in taking a renormalizable field theory model (the «linear» o model) which satisfies 
the Ward identities, and calculating in perturbation theory. In order to improve 
the convergence of the series in a way which guarantees explicit unitarity they 
use the Padé approximation method. This approach is quite satisfactory, except 
perhaps for its being based on a specific field theory model. It has been extended 
to pion-nucleon scattering. 

The second approach, exemplified by the work of Schnitzer, also on U-K 
scattering [19], consists in finding a crossing symmetric ansatz for the solution 
of the Ward identities and then imposing on it elastic unitarity. The resulting 
equations are then solved as well as one can. This approach is very satisfactory 
in principle but it is not clear how to go beyond elastic unitarity. In practice, the 
results obtained with these two approaches have been almost identical. 

The third approach is to take the non-linear effective Lagrangian very 
seriously as a fundamental Lagrangian to be quantized. Since it corresponds to 
a non-renormalizable field theory, methods appropriate to such theories, such 
as the Efimov — Fradkin [20] method, have been used [21]. In particular se­
veral contributions in this direction have been presented to this conference. We 
consider it perfectly reasonable, in spite of the technical difficulties one encoun­
ters, to investigate how far one can go in widening the scope of quantum field 
theory and to study non-renormalizable and non-local field theories. However, 
we feel that these methods are out of place in the study of non-linear chiral Lag­
rangians, by their very nature phenomenological and not fundamental. 

5. Outstanding questions 

From the experimental point of view, the outstanding puzzles 
of current algebra have been for many years the following: jt° 2y, Ki3j r\ 3JC. 
As we shall see, the first (JX° 2y) is probably solved by the Adler anomaly. The 
second (Kis) is a puzzle only if the experiments confirm [22] a large negative value 
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for the parameter g. The third (r\ 3JX) is a puzzle because a point of view which 
works well in the analogous case of K 3JX gives here a vanishing amplitude 
[23]. A lot of theoretical effort has been put into finding theories of these effects 
which agree with experiment (e. g., the «weak» PCAC of Brandt and Preparata 
[24]). I believe, however, that the problems are still there. In order to solve the 
T ] -^3JX puzzle, it has been suggested [25] that isospin invariance is perhaps bro­
ken not only by a minimal electromagnetic interaction but also by a term u3 be­
longing to the (33) + (33) representation of SU (3) X SU (3). The existence of 
such a term would be welcome also for the electromagnetic mass differences [26] 
and in some theories of the Gabibbo angle [27]. Is it really there? At the present 
time the evidence does not seem sufficiently strong to accept such a drastic depar­
ture from our usual picture of the fundamental interactions. On the other hand 
such a term could perhaps arise «spontaneously» and not require a change in our 
usual picture. 

6. Anomalies 

The puzzle of the Jt° 2y decay is the following. Sutherland 
and Veltman have shown [28] , using gauge invariance and the PCAG equation 
for the neutral axial vector current, that the amplitude vanishes when extrapola­
ted to zero pion mass. With the usual assumption on slow variation of form factors, 
the physical amplitude should then also be close to zero, contrary to experiment. 
This puzzle was solved when Adler and others [29] pointed out that the neutral PGAG 
equation acquires an additional term («anomalous» term) in presence of an electro­
magnetic field. This re-establishes a non-vanishing amplitude for n° 2y 
decay. The origin of the anomalous term can be understood as follows. Consider 
the T-function of two electromagnetic currents and one axial vector current, 

<0 I J * (FfcF^v) j 0> ~ i ? ^ v (kl9 k2). 
In a theory with charged spinors the lowest order contribution is given by the 

triangle diagram (Fig. 2). 

Fig. 2. Fig. 3. 

A formal calculation using the operator equations of motion shows that one should 
expect the Ward identity 

— (*i + K)vR^v = 2mRKll 

where R^ (kv k2) is given by the corresponding triangle diagram (Fig. 3). The same 
result follows if one works directly with the (linearly divergent) integral corres­
ponding to the triangle diagram. However, it is well known in field theory that 
these formal manipulations are dangerous. Adler pointed out that if one de-
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fines the integrals by the Pauli — Villars regularization method, the above Ward 
identity is not satisfied, but rather one has 

The anomalous term on the right-hand side originates from the last term in the 
correct equation 

as the regulator mass M -~>- oo. The PGAG equation must now be written 

where S is the square charge of the fundamental spinor fields which enter in the 
axial vector current averaged with weights proportional to their coupling to the 

1 
axial vector current. For instance S — — in a nucléon model (like the a-model) 

1 
while S = -g- in the quark model. The magnitude and sign [30] of the amplitude 
is known; agreement with experiment requires S = + 0 . 4 4 , which seems to exclude 
the quark model and also certain integrally charged triplet models [31] which 

1 
give S = I find this success of the nucléon model rather puzzling. 

Questions have been raised about the uniqueness of the result, in view of the 
possibility of using different regularization procedures. In a contribution to this 
conference, Dolgov and Zakharov [32] have argued that the result is ambiguous, be­
cause the anomalous term can be absorbed into a redefinition of the matrix elements 
of tyybty (to show this they use the s regularization procedure in co-ordinate space). 
However, an unambiguous result can always be obtained by calculating first the 
imaginary part of an amplitude and then defining the amplitude by the require­
ment that the real part be well behaved at infinity. In this way the Adler anoma­
lous term emerges uniquely. The only objection I can see to this point of view is 
that higher order electromagnetic corrections to the matrix elements of the axial 
current diverge and therefore asymptotic requirements are less convincing than 
in the case of the propagators of renormalizable theories where they ensure fini-
teness to all orders. 

One may ask about corrections due to the strong interactions. I t has been 
argued [33] that the above result for S is not affected, but there is disagreement 
about this [34]. We remark that the Adler anomalies do not explain the non-va­
nishing of the T] —>- 3JX amplitude. In a report to this conference, Abers, Dicus 
and Teplitz have described a careful search for anomalous graphs which could 
produce such an effect, with negative result. 

Finally, let me mention that the anomaly in the Ward identity implies ano­
malies in equal time commutators [35]. 

7. A mathematical puzzle 

The usually accepted form for the strong interaction Hamil­
tonian [36] is 

where HinY is invariant under the chiral SU (3) X SU (3) while u0 and u8 belong 
to the (33) + (33) representation. For e 8 = — e0]/~2 one would have SU (2) x 
X SU (2) invariance and the pion would be massless. The observed pseudoscalar 
masses require e 8/e 0 « —1.25. 
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Kuo [37] has observed that the formally unitary transformation 

transforms the Hamiltonian into 

Since unitarily transformed operators should have the same spectrum of eigenva­
lues, the Hamiltonians H and H' should give the same mass spectrum (individual 
masses can of course exchange their role in the spectrum). However, the formulae 
for the pseudoscalar masses as functions of e0 and e8 do not appear to be explicitly 
invariant under the transformation. From this one has inferred that the approxi­
mations involved in deriving these mass formulae were unjustified. Alternatively, 
it has been argued that only explicitly invariant Hamiltonians are acceptable 
and that one must have e 8 = —e0"j/2; other representations could occur in the sym­
metry breaking, but always in such a way that explicit invariance is preserved. 

Clearly, a mathematical puzzle should be solved as such, and not by imposing 
restrictions on the physics. In this case the resolution is quite simple and is rela­
ted to the Goldstone nature of the SU (3) X SU (3) symmetry and the non-inva­
riance of the vacuum [38]. The correct mass formulae contain the parameters s0 

and B8 as well as the vacuum expectation values of the scalar fields u0 and uSJ and 
refer to a pseudoscalar octet plus a scalar correspondent of the kaon, the kappa. 
A Kuo transformation changes both sets of variables and actually leaves the mass 
spectrum invariant. The pion mass is invariant by itself while the kaon mass is 
exchanged with the kappa mass. Often the mass formulae are written by making 
the approximation (us) <^ (u0) and expressing the vacuum expectation value 
(u0) in terms of physical quantities such as Fn; the invariance is then lost. In 
conclusion there is no puzzle and the parameters 8 0 and e 8 cannot be determined 
a priori but must be found by referring to experimental data. 

8. The energy momentum tensor 

The energy momentum tensor must be symmetric and con­
served 

f) a d f) , —n 

Its matrix elements between physical particle states should be finite, just like those 
of the vector and axial vector currents. In a renormalizable field theory (finite 
S matrix) the finiteness of the matrix elements of local currents is an additional 
requirement, which in general must be separately verified. In theories which are 
exactly or partially invariant under a group, the resulting Ward iden­
tities connect % functions involving currents with % functions invol­
ving only field operators and can usually be used to show that the 
matrix elements of the currents are indeed finite. For that particular 
current which is the energy momentum tensor, one may expect that 
its finiteness will follow from the Ward identities (conservation iden­
tities) which follow from the above conservation equation, or more 
precisely from the general (Einstein) covariance satisfied by the Fig. 4. 
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hadronic system in an external gravitational field. Actually this is not the 
case. 

Coleman, Gallan and Jackiw [39] have considered a scalar field with a self-
interaction given by ÀqA In this very simple renormalizable theory the canonical 
(and symmetric) energy momentum tensor has divergent matrix elements. The 
lowest order divergent diagram is one on fig. 4 (see p. 503), where the wiggly line 
is an external graviton. In order to remedy this situation, the above authors 
have suggested the use of a modified or«improved» energy momentum tensor 

They have shown that the additional term cancels the divergence, at least to low­
est order [40] and if one performs the calculation by a particular regularization 
procedure. The modified B ^ v gives rise to the same integrated generators of the 
Poincaré group and even satisfies formally the Dirac — Schwinger equal time 
commutation relations. Furthermore, its trace is given by 

efi = - mh2 

and therefore vanishes for m0 = 0, while the trace of ©J^J1 contains more singular 
derivative terms. In addition to the conservation identities, the modified © ^ s a ­
tisfies certain «trace identities» which are smoother than those satisfied by 0 ^ -
Observe that a Xy* interaction must often be introduced in order to make a theory 
renormalizable, as in the well-known case of the pseudoscalar pion-nucleon coup­
ling. 

The modified 0 ^ v is simply related to the currents of the scale and conformai 
transformations. An infinitesimal scale transformation, of parameter s, on a field 
aj) is given by [41] 

where d is the dimension of the field (canonically d — 1 for scalars and vectors, 
d = — for spinors, e t c ) . An infinitesimal proper conformai transformation 
of parameters is given by 

where S^v are the spin matrices. If one extends the Poincaré group by the scale 
and conformai transformations, one obtains the 15-parameter conformai group. 
One can show that the currents associated with the scale and conformai transfor­
mations can be taken to be respectively 

so that 

We see here that approximate scale and conformai invariance of the strong inter­
actions, suggested first by Mack and Kastrup [42], is equivalent to approximate 
vanishing of the trace of the energy momentum tensor. 
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9. Scale invariance as a Goldstone symmetry 

The trace of the energy momentum tensor does not vanish 
hut is proportional to masses and dimensional coupling constants. I f approximate 
scale invariance should mean that all these parameters are very small, it would 
clearly not be a very useful concept in the case of the strong interactions. On the 
other hand, one may investigate the idea (analogous to PGAG) that the trace of 
the energy momentum tensor is dominated by a particular scalar field (b is a 
universal constant) 

® » = 4 - < ° 

and that it would actually vanish if the mass m0 were zero. The masses of all other 
particles can be arbitrarily large in this limit. This idea, which corresponds to 
a particular form of the trace identities, can be implemented by use of any of the 
techniques of current algebra, in particular by means of effective Lagrangians [43] . 

Interpreted in this way approximate scale invariance implies soft a theorems 
analogous to the soft pion theorems; unfortunately the experimental verification 
of these ideas is still very remote. The simplest of these theorems says that the cr 
should couple to all other particles with strengths proportional to their masses 
(for spinors) or square masses (for scalars, vectors, etc.) . If the a is identified with 
the e (700), which is strongly coupled to pions, its coupling to rho's or to nucléons 
should be enormous, a fact already empirically excluded. To avoid this difficulty, 
it has been suggested that the trace of the energy momentum tensor is dominated 
not by one but by more (according to some authors, three) scalar fields [44] . 
Actually the situation is not so bad. I t was shown first by Ellis [45] , using a con-
formal invariant effective Lagrangian, that the a-pion coupling has the form 

where d is the dimension of the SU (2) X SU (2) symmetry breaking term. On 
the mass shell this gives an effective coupling 

Yb[ml + {d-2) m*] ( i 5 2 . 

Since the 8 mass is much larger than the pion mass, this eliminates in part the 
above-mentioned difficulty. The resulting couplings between the & and other 
particles are not inconsistent with what is known (for the 8-nucleon couplings from 
analysis of pion-nucleon and nucleon-nucleon scattering). The same can be said 
in relation to mass formulae. For instance, if one makes the hypothesis that scale 
invariance and SU (3) X SU (3) invariance are both broken by a single term which 
belongs to the (3,3) + (3,3) representation and has dimension d, one finds 

For d = 1, and identifying the a with the s (700), one finds for the universal con­
stant b œ 1 • 6/Fn (Fn œ 190 MeV). However, the question of the precise number 
and form of the terms which break scale invariance is still unresolved [46] . 

10. Scale invariance at small distances 

We have seen how scale invariance gives rise to low energy 
theorems. We turn now to the study of some high energy questions. The problem 
is to study the behaviour of the product of two currents taken at nearby space time 
points when the separation goes to zero. 

505 



We begin with the vacuum expectation value 
< 0 | / ^ ( a : ) / v ( 0 ) i O > . 

If (T^ is the electromagnetic current this expectation value is related to the total 
cross-section for e + + er- annihilation into hadrons and the small x behaviour 
gives the high energy behaviour of the cross-section. In turn, the small x behaviour 
is related to the degree of divergence of the Schwinger term in the equal time com­
mutator o f / 0 and Ji. It has been pointed out some time ago by Gribov, loffe and 
Pomeranchuk [47] that, if the current is given by the ordinary bilinear expression 
for a charged spinor or scalar fields, the total cross-section goes like Î/E2 (E is 
the centre-of-mass energy of the electron pair). In the algebra of fields, where 
the electromagnetic current is proportional to the field of the neutral rho-me-
son, the total cross-section goes like 1/Z?4 as was first stated by Dooher [48]. 
This corresponds respectively to a Schwinger term diverging quadratically or 
convergent. In a contribution to this conference, loffe and Khoze have considered 
the case of charged vector mesons and obtained a Schwinger term diverging like 
a A 2 + (&/p| (A)) A 4 where pj (A) is the bare mass of the vector mesons and A 
an ultra-violet cut-off. This expression is valid for free vector mesons but their 
calculation gives strong indications that it remains valid in presence of strong 
interactions (unfortunately the corresponding theory would be unrenormalizable). 
If the bare mass is finite for A ->-oo, the cross-section will go like a constant, if 
the bare mass diverges with A, it will go like 1/Ey, with 0 < y < ; 2, depending 
on the degree of divergence of the bare mass. The case of the algebra of fields and 
that of charged vector mesons are instructive because they do not fall into the 
general pattern one would expect from purely dimensional considerations. It is 
easy to see, for instance, that in the algebra of fields, the time component of 
the current has dimension three (as must be) while the space components have 
dimension one. Under these circumstances one cannot expect the existence of 
a scale invariant «skeleton theory» which approximates the actual theory at 
small distances [49], 

How does one study matrix elements other than the vacuum? Wilson and 
others have postulated the existence of an operator expansion in terms of singu­
lar functions with operator coefficients. For two currents Jx and J% 

The existence of this kind of expansions has been verified in perturbation theory 
to all orders for renormalizable field theory models by Zimmermann and others 
[50]. Actually in perturbation theory there occur also logarithms and in some 
cases (A,cp4 theory) these logarithms seem to sum up to powers and can modify 
the main power I fx2 with consequent loss of scaling in the form factors, as shown 
by Gatto and Menotti [51]. Nevertheless, one usually assumes that in real 
life the logarithms are not there or can be neglected. One can further make 
the hypothesis that only certain operators have low dimensions and occur in 
the first terms of the expansion. With this kind of assumptions, one can write 
precise expansions such as 

Applications of this kind of expansions have been made in the interesting work 
of Gatto, Giccariello, Sartori and Tonin and of Mack [52] reported at this 
conference. Their work is perhaps still based on too stringent assumptions [53]. 
It is of interest as an example of a kind of technique which generalizes that 
of the use of equal time commutators and which may be very fruitful. Observe, 
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in particular, that relations like the above between the electromagnetic current 
and the energy momentum tensor can hardly be put on a group theoretic basis; 
here no symmetry connecting them is postulated, only an asymptotic connection 
[54]. 
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DISCUSSION 

K a m a 1: 
With what confidence can we take the value of g quoted by you? And if g is indeed close to 

— 1 , do you have any comments on the Brandt and Preparata's weak PC AC? 
Z u m i n o: 
The value of g I quoted was taken from a recent review article by M. K . Gaillard and 

I . M. Chounet (CERN 70—14) . I must say, however, that some people don't believe that value 
and I do not have a strong personal opinion on i t . I t is an experimental question which can only 
be resolved by more experiments. Concerning the weak PCAC of Brandt and Preparata, 
let me describe it briefly. In chiral dynamics we usually accept the idea that PCAC and 
the smallness of the pion mass are consequences of a particular form of symmetry breaking, 
which makes SU (2) x SU (2) a good approximate symmetry. This gives a consistent picture. 
Brandt and Preparata assume instead that SU (3) is a good approximate symmetry. For them 
the smallness of the pion mass is accidental and the use of PCAC depends on the convergence of 
certain dispersion integrals. I personally prefer the consistent picture based on approximate 
SU (2) x SU (2) symmetry. 

F a i s s n e r : 
Regarding the form factor ratio g = / _ / / + I should like to make the following com­

ments: It is true that some recent measurements of the total polarization of the muon gave a 
value of g close to — 1 . This includes the result of the X — 2 experiment of Aachen et a l . , which 
in my opinion was done very carefully. However, some of the people involved in the experi­
ment keep claiming that there might be some bias in the polarization measurement in the nega­
tive direction. As a matter of fact, all polarization measurements but one yield values of g lower 
than those obtained by the two other methods: Dalitz plot and K^/K^ branching ratio. If 
one takes an average over all measurements, one obtains g = —0.40 ± 0.15 (s. Particle Data 
Group, Phys. Letters, 33B, August 1970, p. 27) . 

Thus, a small negative value of g, or even zero for that matter, is not disproven by the pre­
sent data. 

A. A. M i g d a 1: 
The problem of scale invariance in the field theory was investigated in several works by 

A. M. Polyakov and myself [1, 2, 3, 4 ) . These works were based on methods, developed by Gribov 
and myself [5] . The main result is that carefull summation of logarithmic terms in the perturba­
tion theory leads to a convergent and scale invariant solution. The important point is that the di­
mensions of fields are anomalous and universal [4, 5] (they do not depend on bare parameters). 
It has been confirmed by an exact solution of a model [6] , In renormalizable theories i t may be 
shown [4] that if a cut-off L tends to oo and a bare coupling constant remains finite and sufficiently 
large, then the renormalized constant tends to a universal l imit , which obeys the eigenvalue 
condition of Gell — Mann — Low type. Scale invariance is valid in this case. The estimates of 
dimensions [4] show that the deviations from canonical values are small. 
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Z u m i n o: 
If I understand your comment, you are saying that it is possible to have scale invariance 

(with a noncanonical dimension for the fields) provided the renormalized coupling constant sa­
tisfies a certain eigenvalue equation. This fact was pointed out by a number of people. I first 
heard it some time ago from K . Johnson. 

N a u e n b e r g : 
In your slide concerning Wilson's operator expansion I noticed you consider only 1/x2 sin­

gularities near the light cone, associated with the energy momentum tensor. Would you comment 
also on the anomalous dimension discussed by Wilson, and the relation of the light cone singu­
lari ty to the inelastic electron scattering? 

Z u m i n o: 
One knows that the 1/x2 singularity gives rise to scaling. However I would rather not go 

into inelastic electron scattering, which belongs to the subject of a different session. Concerning 
anomalous dimensions, I think that not very much is known. Wilson suggested that the interac­
tion can change the dimensions of a field. His suggestion was based on an analogy with Johnson's 
exact solution of the two dimensional Thirring model. In relativistic renormalizable quantum 
field theory when the interaction is present one cannot in general ascribe a dimension to a field, 
not even an anomalous dimension. 

J . G. T a y l o r : 
I would like to comment on your remarks about the use of chiral Lagrangians as full-blown 

field theory. 
Z u m i n o: 
I was expecting that. 
T a y l o r : 
Well , good, now you have i t . The point is that field theory allows one to satisfy unitarity 

completely, so that the other methods you mentioned for incorporating i t into chiral calculations 
pale into magnificence beside field theory results. And these results for the chiral case are that 
unitarization generates ultraviolet divergencies which can only be removed by destruction of 
the current algebra that one started from. I have no doubt that similar difficulties will be met 
by the other methods when they will go that far. 

Let me finish by pointing out that you seem to be in the situation where one hand does 
not know what the other hand is doing. You denigrate the use of field theory for chiral Lagran­
gians, yet you also praise the use of the eikonal approximation to sum up soft meson contribu­
tions — a technique which clearly involves closed loops of particles though in a very distorted 
and approximated fashion. 

P o l y a k o v : 
I should like to point out that things similar to the Wilson expansion, scale invariance, 

and anomalous dimensions in the field theory were investigated several years ago in connection 
with crit ical phenomena problems. These investigations have shown that logarithmics terms in 
the perturbation theory, which violate scale invariance, finally sum up to give power functions 
of distances and hence anomalous dimensions of fields. (See papers: A. M. Polyakov, J E T P 55, 
1026 (1968), J E T P 57, 271 (1969); A. A. Migdal, J E T P 55, 1964, (1968); L . P. Kadanoff, Phys. 
Rev . Let t . 23, 1430 (1969)). 

My second comment is that though scale invariance is correct for interaction of virtual 
particles only and hence seems to be unobservable, it enables to obtain a number of predictions 
concerning deep inelastic lepton-hadron processes. Namely, for electron-positron annihilation 
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into hadrons: 

Here ojq(s) is the cross section for the production of N hadrons of any given sort, 5 is c. m. squared 
energy. 

For deep inelastic scattering the following formula is available (with notations commonly 
used): 

y (2) = 0, ; is any number > 2. 
This formula agrees with Bjorken's assumption only if v (/) = const = 0. There are no 

reasons in the theory for this. It is also possible to show that the averaged multiplicity N is: 
N — (<?2)0/ (cd, In <?2), where ô is the same as for annihilation. 
This comment is based partially on the paper: A. M. Polyakov, J E T P 59, 542 (1970). 
Y a n g : 
In statistical mechanics in recent years there have been many discussions of scale invariance. 

These discussions were very stimulating. But I disagree with a previous comment by Dr. Polya­
kov. I do not believe that there are either mathematical reasons or physical insight that would 
conclusively lead to scale invariance. 

L i p k i n: 
Weinberg considers an algebra including four operators m?, in addition to the generators 

2 
oîSU (2) x SU (2). Weinberg does not consider the commutators of these among themselves. 
But if you are crazy enough to consider them and simply assume that the algebra of these 10 ope­
rators closes, a miracle happens and several interesting results may be obtained automatically 
without any further assumptions. The algebra is O (5) (or S p (4)). The adjoint representation 
exactly accomodates the zero helicity states of the p, a, At. The right mass formula comes out 
(The squared mass operator is in the algebra); namely equal spacing between p and At with 
the 0 degenerate with <p. The right mixing angle for the n — Ax comes out — the factor 1/j/lT 
is a transformation coefficient connecting two subgroups of O (5). Then the miracle stops and 
there is nothing further I have been able to obtain that is useful from this O (5) algebra. Perhaps 
someone else can. 

S h i r o k o v : 
I should like to mention that I have derived the explicit form of the relativistic invariance 

conditions for the arbitrary set of the equal time commutators. These conditions provide the 
possibility to establish the invariance properties of the current algebra which includes both usual 
and Schwinger type terms. The energy stress tensor naturally enters the invariance conditions. 
This result is a part of the report presented to the field theory session. 

T. T. W u: 
I would like to go slightly further than Professor Yang. Not only are the so-called scaling 

laws in statistical mechanics not well-established, there are now experimental evidences and 
theoretical arguments against them. The situation was clearly presented almost a year ago by 
Barry McCoy in Physical Review Letters. 
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