
Interpretation and Aggregation of Marks

in Classroom Learning Partner
MASSACHUSETTS INSrITUTE

OF TECHNOLOGY

by

NOV 13 2008
Kenneth D. Wu

LIBRARIES
Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

January 30, 2008

Copyright 2008 Kenneth D. Wu. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
to distribute publicly paper and electronic copies of this thesis document in whole and in part in any

medium now known or hereafter created.

Author

Department of Electrical Engineering and Computer Science
February 1, 2008

Certified by
Kimberle Koile, Ph.D.

.... -;.' Research S ientist, MIT CSAIL
Z Thesis Supervisor

Accepted by
'Arthur C. Smith, Ph.D.

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses

ARCHIVES

Interpretation and Aggregation of Marks

in Classroom Learning Partner

by

Kenneth D. Wu

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract:

This thesis explores the mark understanding problem in the context of a Tablet-PC-based classroom
interaction system. It presents a novel method for interpreting digital ink strokes on background images,
and aggregating those interpretations. It addresses complexity of mark interpreters and development
and acquisition of a representation of a contextual background. It details the design, implementation,
testing, and plans for future extension of a mark interpreter and aggregator in the Classroom Learning
Partner, our classroom interaction system.

Thesis Supervisor: Kimberle Koile, Ph.D.
Title: Research Scientist

Acknowledgments

Many people have assisted and inspired me during the creation of this thesis.

First and foremost, I would like to thank my supervisor Kimberle Koile, who has been a
very patient and understanding advisor ever since I started to work with her, even despite her

extremely busy schedule. Also, my fellow members in the group have brightened my time here
with their cooperation and camaraderie: especially Kevin Chevalier, whose work was parallel to

mine, and who spent much time with me discussing various concerns about both our projects;

Adam Rogal, whose dry humor made sure there wasn't a dull moment in lab and whose

expertise with the code base was invaluable to completing this project; Kah Seng Tay, who has

been a great help and friend both inside and outside working at CLP; Michel Rbeiz, who laid the

foundation for my work by teaching me much that I know about sketch recognition; and Capen

Low, whose many hours of toil have resulted in the instructor authoring tool that is crucial to

the success of this thesis.

I am very grateful to my friends over the last few years at MIT, who have kept me

focused, sane, and sometimes, awake until very late in the night; to my various mentors, who

have been a great influence on me and kept me on the correct path throughout life; and of

course, to my parents for their support, understanding, and love.

Table of Contents

1 Introduction 7
2 The Mark Understanding Problem 10

2.1 Gestures 11
2.2 Editing Documents 14
2.3 Digital Pen and Paper 15
2.4 Similarities and Differences in Application 18

3 Classroom Learning Partner 19
3.1 Classroom Learning Partner Overview 19
3.2 Classroom Learning Partner Architecture 20
3.3 Interpretation and Aggregation Paradigm 22

4 Formulation of the Framework 24
5 Design 31

5.1 Interpretation of Marks 31
5.2 Aggregation of Marks 35
5.3 Intermediate Representation of Regions 37

6 Testing 39
7 Discussion and Future Work 41

7.1 Improving Accuracy of Interpretation and Aggregation . . 41
7.2 Expanding the Scope and Reach of CLP 44

8 References 50
Appendix A . . 52

Table of Figures

Figure 1: An example of marking in chemistry and physics 8
Figure 2: The scratch-out gesture 12
Figure 3: The line feed gesture . . . 13
Figure 4: Example marks in a document-editing program . . . 15
Figure 5: Architecture of CLP 21
Figure 6: Three methods of shading 24
Figure 7: Encirclement . . . 25
Figure 8: Survey question 26
Figure 9: Shading a part of the brain 27
Figure 10: Highlighting text . . . 27
Figure 11: Intuitively answering a multiple choice question 28
Figure 12: Encirclement of part of an environment diagram . . . 29
Figure 13: Shading detection on a partially filled region . . . 33
Figure 14: Algorithm for shading detection done with parallel lines . . 34
Figure 15: Voronoi diagram 36
Figure 16: Aggregation of encircled regions 37
Figure 17: Compression of the representation for an encircled region . . 38
Figure 18: Alternate ways of shading . . . 44
Figure 19: Voronoi diagram with actual boundaries 46
Figure 20: Example question needing instructor-input semantics . . . 48

1 Introduction

Classroom Learning Partner (CLP) is a prototype classroom presentation tool developed to

facilitate and enhance the processes of teaching and learning by allowing instructors and

students to receive live feedback from student in-class exercises. Students complete the

exercises on individual Tablet PC machines and submit their answers wirelessly and

anonymously via CLP to the instructor during class. CLP automatically interprets these answers,

separates them into equivalence classes or bins, and displays to the instructor a histogram,

detailing what kinds of answers were given, along with a representative answer for each bin.

This automatic grouping of answers, similar to that produced by wireless polling systems

(Duncan 2005), allows the instructor to view class results without being overwhelmed by a large

number of answers. Unlike polling systems, however, CLP allows students to write their

answers rather than choosing from a predefined set. This information empowers the instructor

to determine on the spot whether students sufficiently understand the subject material, and

whether to proceed to the next topic or to continue pursuing the current one. When the

instructor displays and discusses representative answers with the class, students also receive

feedback about their own understanding. CLP has been shown to successfully boost the

performance of students in 6.001, the introductory computer science course at the

Massachusetts Institute of Technology, using exercises that take alphanumeric strings as

answers (Koile et al. 2007a, Koile et al. 2007b).

CLP's applicability to teaching computer science, as well as other fields such as

chemistry and physics, however, is hampered by an inability to process specialized inputs, such

as the box-and-pointer diagrams and environment diagrams that are commonly used to

visualize data structures, variable scope, and program flow in Scheme, the language introduced

in 6.001 (Abelson and Sussman 1996). Without the ability to read in and understand these

specialized kinds of answers, CLP would be unable to support the wireless interaction described

above, as the grouping of answers into equivalence classes is critically dependent on machine

interpretation of the answers. This thesis presents a novel extension of CLP that allows it to

handle exercises whose answers are in the form of markings on a background image, a type of

input that we will hereafter refer to simply as marking. An example of a marked image in the

fields of chemistry and physics can be seen in Figure 1 below.

rLN A

Figure 1: An example of marking two sample in-class exercises in freshman science
curricula, one in chemistry, and the other in physics.

Marking can be seen as a subset of sketch recognition, depending on the broadness of

the definition of what constitutes sketch recognition. Our definition of marking differs from the

traditional model of sketch recognition in that, unlike sketch recognition systems, a marking

understanding system need not understand the meaning of the background image; for some

applications, ours in particular, it is sufficient for a system to recognize the location and extent

of drawn marks. A true "understanding" of marks would have to rely upon a sketch recognition

0U
6201

.00vV%

J

technique that understands the mark itself and contains a model of an underlying object

associated with the mark.

This thesis aims to explore the mark understanding problem for a classroom interaction

system. It is a prototype implementation of a solution to the problem in our classroom system,

CLP, and presents ideas for future implementations of solutions in both CLP and other

applications. This document is organized as follows: first, we define and examine the mark

understanding problem, considering possible ways to implement a mark understanding system

for different applications, determining how to classify different types of marks, and

understanding what kind of tools we will need to tackle the difficulties. We identify what, if any,

commonalities and differences might exist between different possible mark understanding

methods, and describe a technique for use with CLP. If such commonalities exist, identifying

them and listing them can provide a starting point by which others, whether in academia or the

private sector, may approach mark understanding. By sorting out the differences, on the other

hand, we can formulate ways to reconcile these differences and define a unified approach for

implementing of a mark understander. We then provide a quick overview of CLP, explore how

we apply our discussion of mark understanding to the specific domain of classroom interaction,

and detail the steps along the way to integrating our solution into our prototype architecture.

Last, we evaluate the success of the CLP implementation and discuss future extensions to both

the CLP implementation and implementations of mark understanding in general.

2 The Mark Understanding Problem

Mark understanding can be useful in many applications, such as in games, business software

suites, automatic form-fillers, and music composition tools for pen-enabled computers like the

Tablet PC, or for specially enhanced pens like those by the Anoto Group (anoto.com). Because

the kinds of things being marked in such applications differ greatly, different approaches are

required for each application, whether in modeling the background or in deciding what exactly

each mark signifies. In spite of these differences in approach, however, we have identified a

common process among applications employing a marking understanding component. In this

section, we discuss three possible marking applications, their varying needs for marking

understanding tools, and the three steps in the process.

1. Mark Analysis. A mark detector uses data about the mark itself to narrow down the

possibilities of what it could mean.

2. Context Identification. The meaning of a mark is tied to an area of the background data

in some way. This area is the context of the mark, and it must be located.

3. Context Analysis. The context is further analyzed so that the meaning of the context

can be understood sufficiently to fully understand the mark.

At the same time, applications will differ from each other in significant ways.

1. Location of Mark Entry. Marks may be input either directly on top of background data,

or separately from background data. If they are placed on background data, then they

are to be evaluated at a certain salient point or points of the mark with respect to the

10

background data. If they are separate from background data, there must be some

mechanism by which a location on the background data can be selected and indicated.

2. Variation in Physical Mark Complexity and Mark Meaning. Marks may not have a one-

to-one correspondence with meanings, and they may consist of one stroke, several

strokes, or may even be input images with an undetermined number of strokes. To deal

with variation in types of marks, mark meanings, and mark complexity, one must then

suitably adjust the complexity of the mark recognizer. The recognizer must be able to

differentiate between different shapes of marks, decide on a meaning or number of

meanings depending on the mark shape, and then pinpoint the location or locations on

the background image to which the mark corresponds.

3. Variation in Mark Context. The underlying representation of the background data must

be sufficiently sophisticated so that the meaning of the context can be understood, and

this understanding must be sufficiently sophisticated enough for the mark in its entirety

to be understood.

With these points in mind, we now proceed to examine the design of solutions for different

applications.

2.1 Gestures

We first consider gestures, a type of interaction currently used in various kinds of software on

Tablet PCs (Jarrett and Su 2003). With this kind of interaction, a user touches a pen-like stylus

to the computer screen and moves the pen tip in some way to command the computer to carry

out a task. Depending on which gesture is being performed, gestures can create visible strokes

that are drawn, interpreted, executed, and then automatically deleted; or they may not be

displayed on the screen for the user to see, but simply interpreted and executed. The obvious

advantage of showing the user the mark lies in user feedback; that is, the user can see exactly

what he or she drew on the screen, so that if the gesture is not read correctly, or not read at all,

the user can modify the way in which he or she drew the gesture to improve the chance of its

being interpreted and executed correctly. Gestures may be performed directly over the

background upon which the command must act, or they may be performed in a separate input

window. In both cases, though, the Tablet PC provides an infrastructure by which gestures are

recognized and evaluated. The example in Figure 2 contains a gesture in Windows Journal,

nicknamed the "scratch out" gesture, which deletes all the strokes through which the gesture

crosses.

VJL- I4A

LU

Figure 2a: The

li &kApi

~if #~.4 ckk &;Z-

scratch out gesture over the word "less."

--

A-

Figure 2b: The Journal pad after the gesture is evaluated.

Another example given in Figure 3 below shows the gesture that is equivalent to inserting a line

break in Microsoft Word, this time while using the handwriting recognition feature of the

Tablet PC.

U~/f~ t ; , nhC

Anma viumque cano, Troiae qui primus ab oris
Italiam fato profugus. Lavinaque venit
litora-multum ile et tenis iactatus et alto
vi supeum, saevae meaoran lunonis ob iramJ
Multa quoque et bello passus, dum conderet urban
inferretque deos Latio--genus unde Latinum,
Albanique patres, atque altae moaxia Romae.

Figure 3: The gesture drawn in the input area below the main window
will insert a line break at the cursor, at the end of the fourth line.

Because the handwriting recognition on the Tablet PC is separate from the actual word

processor itself, the gesture in the second example is different: the mark is not made on a

previously created image. In the Journal application shown in Figure 2, the gesture was

recognized to be a scratch-out gesture, and the command for deletion was evaluated on the

previously created strokes that the gesture intersected. In the Word application in Figure 3, on

the other hand, the gesture was recognized to be equivalent to an Enter key button press, and

the handwriting recognizer was able simply to tell Word to create a line break. This difference,

however, is superficial at best. In both of these applications of gestures, pen input is

recognized and evaluated based on the state of the program, or more specifically, the gesture

causes a change at a certain position on the screen. The only difference is that while screen

position is not abstracted from gesture evaluation in the Journal example, it is abstracted in the

Word example by the input window passing a command to the Word program, which inserts

the line break at the current position of the cursor.

While the Journal implementation of mark understanding via gestures depends on

traditional, well-documented handwriting and symbol recognition and interpretation methods,

it also depends implicitly on a detailed representation of the underlying image to supply the

contextual information concerning which commands must be executed and which objects on

which to execute those commands. In Journal, the underlying representation for the image

presumably contains far more information than could be contained in a pixel matrix of

brightness values. This representation can easily be built up because the objects manipulated

in Journal were also built with Journal, or imported from another application in an appropriate

intermediate format from which Journal is able to deduce an internal representation.

Additionally, this application of marking is a relatively simple command, in that there is a

definite one-to-one correspondence between the mark and the meaning of the mark; that is,

the scratch-out gesture is defined to signify a deletion, and the user who performs the gesture

can only have one intended outcome by performing this gesture.

2.2 Editing Documents

We now consider a more complex example, a document-editing program that has the capability

to read more "intuitive" marks from the user when editing a pre-existing document, similar to

the ones explored in (Rao 1998, Conroy et al. 2004, Rodriguez et al. 2006). These gestures are

unlike the Journal case in that they are drawn on the screen and left there to be executed at a

later time, presumably by the writer after the editing marks have been reviewed. In addition,

these marks are much more complicated than a simple scratch-out gesture. In this case, the

system needs to be able to differentiate between different types of marks, and have a

complicated mark recognizer that is capable of doing so. We will now formulate a design for a

new system similar to those aforementioned to evaluate these marks given an underlying

representation that could be expected of a word processor. Examples of marks that could be

used are shown in Figure 4. There is a very large variety of marks with differing levels of

complexity, and one might expect a mark recognizer built for this program to be as complex, if

not more so, than a handwriting recognizer.

Now we consider a way to evaluate the marks in a different model of program use. In

this new model, the document-editing program is used by the editor to merely indicate minor

changes and annotations to the document, and is completely separate from the program used

to create the document, and therefore, the editing program has no extra information other

than a mere image of the document. When a user initiates the changes based on mark

evaluation, the program must still be able to make the changes as if it understood the

underlying document. In this case, however, a program can merely apply a type of optical

character recognition (OCR) algorithm to the image to come up with a representation of the

document. This is possible because the program can make an assumption about the nature of

the incoming data that should be true for all background images being annotated by the

program; that is, this background image input to this program has one expected type, a

document of text. Nevertheless, it must be noted that even the best OCR programs still cannot

deliver 100% accuracy and may introduce errors to the text that were not there in the first

place, which is unacceptable for this application (Rice et al. 1996).

At this point, one might observe that OCR provides the program with a representation

that perhaps contains more information than is necessary, and that perhaps one could come up

with a representation that does not have to exactly know each and every letter or word.

15

Call me Ishmael. Some years ago-never mind how long precisely--having little or no money in

my purse, and nothing particular to interest me on shorf. thought I would sail about a little and

see the watery part of the world. It is a way I have of dAving off the spleen, and regulating the

circulation. Whenever I find myself growing grim about the mouth; whenever it is a damp,

drizzly November in my soul; whenever I find myself involuntarily pausing before coffin

warehouses, and bringing up the rear of every funeral I meet; and especially whenever my hypos

get such an upper hand of me, that it requires a strong moral p 'le to prevent me from

deliberately stepping into the street, and methodically knodng hae's en, I

count it high time to geea as soon as I can. This is my substdtutt an d ball. With a

philoop cai nou Cato throws himself upon his sword; I quietly take to the ship. There is ,

nothing surprising in this Ifthey but knew it, almost all men in their degree, some time or other.

cherish very nearly the same feelings towards the ocean with m here now is your sular city

of the Manhattoes, belted round by wharves as Indian isles by coral reefs 4 commerce surrounds

it with her surf. Right and left, the streets take you wateraward. Its extreme down-town is the

battery, where that noble mole is washed by waves, and cooled by breezes, which a few hours

Figure 4: Example of marks in a document-editing program.

I

Although we do not need to know more than which pixels are not white to insert a comma or

transpose words, though, consider the insertion of many words, a line break, or a new

paragraph. In this case, subsequent line breaks and page breaks would have to be redone. If,

for example, the document has instances of long words that fragmented between lines and

therefore separated by hyphens, then in the re-evaluation of a line breaking algorithm, these

must be taken into account, and hyphens removed from words that no longer require them,

and added to words which may now require them. To run hyphenation algorithms on the new

text, our editing program would require knowledge of all of the letters in all of the words

following the original mark as to create acceptable hyphenations. At the same time, however,

automatic hyphenation is a feature that many would consider not very important, so in practice,

an editing program only would have to know information about where there was text and

where there was not text, except for around the areas which are marked. Thus, we must note

that the more complicated a representation of the background is, the harder it is to accurately

represent it based on the background image alone; and also, we note that the complexity of the

representation needed to accurately place, interpret, and evaluate a mark depends on the

complexity of the task that the mark is designed to accomplish.

2.3 Digital Pen and Paper

A careful balance between an accurate, simple representation and a less accurate, complex one

can also be seen in the last marking example we will analyze, the automatic filling out of forms

with digital pen and paper, as is done with Anoto functionality. In this type of paradigm,

someone can write or draw on a special piece of paper and have the data sent to a computer

automatically, eliminating the step where traditionally one must then enter the data on the

completed form into one on the computer. While the pen uses actual ink, it also contains a

camera to capture and process data on the paper; the paper used has a pre-printed proprietary

pattern that allows the pen hardware to uniquely identify position and even the exact sheet of
16

paper upon which the user is writing. Using this position data, the information is then sent to a

computer in real time. An example of this functionality can be used for sending e-mail. Using a

special form, a user can specify destination addresses and subject line, as well as scribble or

draw a message. When a certain box on the form is marked with a check, the e-mail will be

sent; based on the position of a recognized check mark, a computer program can find that the

check mark was placed at a certain position on a certain piece of paper, and that this mark is

equivalent to a command to sending an e-mail.

Another way Anoto functionality is used is called PaperPoint, which extends PowerPoint

input devices to include pen and paper, where a new presentation can be drawn, or an existing

presentation annotated on paper, and commands can be issued using a special "pidgets," or

paper widgets, to move forward or backward in the presentation (Signer and Norrie 2007). The

PaperPoint equivalent of clicking a GUI button in PowerPoint is simply touching the "paper

button" with the pen tip. In this case, the underlying representation is the knowledge of what

is expected to be drawn on each paper, and where on each paper (as Anoto technology can

distinguish exactly which sheet the user of a pen is drawing on), and upon processing this

position data, issue a command to PowerPoint, which then carries out the instruction using its

own internal representation of the presentation. The marks here, however, are merely the

touching of the pen to the paper: they are not complex and are the only action expected to be

done in those areas by the user, so they do not have to be interpreted by a complex mark

recognizer (although they still have to be detected). One might consider the paper annotations

done on a special printout of an existing presentation to be marking, but because these marks

are only displayed in the presentation and read by another human, this is not inside the

problem of marking understanding. This is a situation where marking occurs, but the actual

understanding is left up to the user to deduce, and no other functionality is required.

2.4 Similarities and Differences in Application

We have examined three different applications for mark understanders. As mentioned in

Section 2.1, all three of them contain a mark analyzer to find what kind of mark was inputted (if

there was one at all), a context identifier which locates the relevant areas in the background

image, and a context analyzer which builds a model of the background image so that the

system can synthesize the information from the other two systems to figure out a response. At

the same time, there exist stark contrasts: each system had different ways of locating the mark

context; each system has unique requirements for how complex and varied the mark

"dictionary" was, and therefore needs to have unique ways to analyze the marks; and each

system has different information about the context of the mark, so a representation for the

background image can have varying accuracy depending on how complex the representation

has to be able to fully understand the meaning of each mark.

3 Classroom Learning Partner

Before describing our mark understanding system, we provide an overview of Classroom

Learning Partner (CLP) and how the marking operation fits into our classroom interaction

scenario.

3.1 Classroom Learning Partner Overview

Classroom Learning Partner is a wireless presentation system that uses Tablet PCs to allow

students to complete in-class exercises and have their answers assessed and reviewed quickly

during class. Developed at the Computer Science and Artificial Intelligence Laboratory at MIT,

CLP aims to enhance student performance and overall experience in large classes by increasing

interaction between instructors and students (Koile and Singer 2006a, Koile and Singer 2006b,

Koile et al. 2007a, Koile et al. 2007b). CLP is built on top of Classroom Presenter, a wireless

Tablet-PC-based presentation system (Anderson et al. 2003, Anderson et al. 2004, Anderson et

al. 2005). CLP extends Classroom Presenter by supporting interpretation and aggregation of

student answers to in-class exercises so that an instructor and students can quickly get a sense

for students' level of understanding. Using the Tablet pen, students can take digital ink notes on

the presentation, work out exercise solutions, and submit these solutions anonymously via a

wireless network to the instructor. The instructor can then examine individual solutions, select

solutions for display on a public machine, and lead a class discussion of both correct and

incorrect answers. In order to help instructors choose answers to display, CLP groups student

answers into equivalence classes and presents the result to the instructor, who then can select

representative examples from each of the classes. Our three controlled studies done in classes

using Tablet PCs and this wireless feedback pedagogy suggest that use of a CLP and similar

systems improves student learning, especially among students who would otherwise struggle

with the material (Koile et al. 2007a, Koile et al. 2007b).

The bulk of the work in extending Classroom Presenter into CLP has been in creating

interpretation and aggregation schemes for different expected types of student answer input

methods. At the beginning of the project, the CLP group concentrated on interpretation and

aggregation of answers containing alphanumeric characters (e.g. "480," "define," "a5-c4"), and

sequences of several alphanumeric character groups (e.g. "(foo bar)," "(list 1 2 3)," "(set-cdr! x

y)") (Rbeiz 2006, Smith 2006). While research in this area continues (Tay 2008a, Tay and Koile

2008b), CLP has also been extended to interpret and aggregate a specialized kind of diagram

often used in the old computer science introduction course, called a box-and-pointer diagram

(Chevalier 2007, Pal 2007). This thesis extends CLP's answer types to include various kinds of

marks, as described in later sections.

3.2 Classroom Learning Partner Architecture

The architecture of CLP shown below in Figure 5 illustrates the different modules in CLP and

where interpretation and aggregation fit in.

The following description of the interaction among CLP's components is also presented

in (Koile et al 2007b):

1. Slides Saved. Before class, the instructor creates the presentation and specifies the

exercises to be presented in class using the Instructor Authoring Tool, or IAT. Exercise

data is stored on a database, and slides are stored on a file server.

2. Slides Retrieved. At the beginning of class, the instructor retrieves the presentation

from the database, or the slides can be placed on the machine beforehand.

Figure 5: Architecture of Classroom Learning Partner (Koile et al. 2007b).

3. Slides Broadcast / Slides Loaded. A remnant of Classroom Presenter, the instructor can

use multicast broadcasting to deliver the slides to individual student Tablets. However,

in a large classroom setting, this may not be desirable, so in the CLP framework used at

MIT, students automatically download the slides from the file server, or the slides may

be manually loaded onto student machines. This generally allows a more error-free

delivery of slides to student Tablets.

4. Ink Answers Sent. While going through the presentation in class, the instructor directs

the students to answer in-class exercises. After the students have completed the

exercise, they submit their student answers. In the process of submission, each

student's submission is read by the interpreter on each individual student machine.

Placing the interpretation step on individual student machines is an attempt to balance

the workload among the machines. At this point as well, the actual ink answers may be

broadcast over the ad-hoc network to the instructor machine, should the instructor also

wish to see every answer.

5. Interpreted Ink Answers Sent. Using the same ad-hoc wireless peer-to-peer network,

each student machine sends individual interpretation results to the database for storage.

6. Interpreted Ink Answers Retrieved. When the instructor clicks the "Aggregate" button

on his or her own machine, ink answers are retrieved by the aggregator, which then

divides these answers into bins, which constitute the summary data.

7. Summary Data Stored. The aggregator stores the finished bin data in the database.

8. Summary Data Retrieved. The instructor machine retrieves and displays summary data.

3.3 Interpretation and Aggregation Paradigm

Interpretation begins when on a student clicks the "Submit" button on his or her own machine.

The ink interpreter runs on the background on the student machine, getting all the ink in the

"exercise box" area pre-defined by the instructor when the instructor created the presentation

using the IAT and proceeds to create and send to the database an internal representation of the

ink to be processed later during the aggregation step. The student does not see the results of

interpretation in class, as the student may be distracted by the added step, and undisturbed

interaction between the student and the instructor is important for learning.

When the "Aggregate" button is pressed on the CLP instructor machine, aggregation

takes place in the background of instructor machine. While aggregation does not have a time

limit per se, generally, a time of less than 30 seconds is preferred in order to not delay the class

discussion of submissions. Different aggregation techniques have been used in CLP for different

expected types. The aggregator clusters the answers into up to a number of bins that can be

pre-defined in two ways. While creating an exercise in the IAT, the instructor may specify a

number of instructor answers. Instructor answers are example student answers, as they are

inputted and interpreted in the same way that student answers are, and may represent correct

22

or incorrect responses. An instructor may include incorrect responses in order to guide a class

discussion about common misunderstandings of the concepts tested in the exercise. By

specifying these instructor answers, the instructor can bias the aggregator to create

equivalence classes centered about these instructor answers, thereby controlling the number

and content of the bins. If the instructor does not specify these answers, the system creates a

default number of bins, currently set to seven, and clusters student responses using similarity

measures based on previously implemented answer types (Koile et al. 2007b). The bins are

stored in the database and displayed on the instructor machine in the form of a histogram and

representative answers for each bin. In a large class setting, the instructor would be

overwhelmed by seeing all student answers, so the histogram provides important feedback

about overall class understanding.

4 Formulation of the Framework

One of the goals of this project was to have it work on representative domain-independent

marks, so it was decided to concentrate on a subset of marks-those used for selection. We

identified two main classes of such marks, location-based and region-based. Location-based

marks point out a certain location on a background image, whereas region-based ones

delineate an entire region on a background image. Location-based marks can be used to select

small boxes or buttons that correspond to text, as in multiple choice questions and surveys; to

mark critical points of graphs on a provided set of axes; or to select small pre-defined regions

on a map. Region-based marks are used to select regions on background images that are not

pre-defined, such as areas of text or parts of a diagram.

Two commonly used and widely applicable location-based marks are the X mark and the

check mark, whereas two common styles of region-based marks are shading in of a region, and

encirclement of a region. Shading can be done in a variety of ways, three of which are shown in

Figure 6: (1) totally covering an area with ink; (2) partially covering an area with ink (i.e. a

sloppy attempt to totally cover); and (3) using spaced parallel lines.

Figure 6: Three methods of shading.

Encirclement can be done using either one single stroke to encircle an area, or using a

collection of more than one stroke to create an encircling polygon, as shown below in Figure 7.

Show the former Yugoslav republics on the map, and circle their capitals.

i. .-

L;r ii

Vienna

Ljubijana

Podgori ca

Bucharest

Figure 7: A

agreb ra arajevo

S10 Vie a Tirana Athens

)M At re Budapest A Bel

S Bratislava

n example of a problem using encirclement.

While the X mark and check mark are specific types of marks that sometimes do not

share similar semantics, shading and encirclement each constitute different kinds of marking

methods that lead to a semantically identical mark. Often, however, all four of these marking

methods could technically be interchangeable in that no matter what kind of mark was used,

someone could understand what was meant, but connotations of each of the marks can change

which mark is used conventionally. To illustrate these ideas, we present seven canonical

examples using these four mark types.

1. Surveys. Surveys often have boxes in which users mark their choices, as shown below.

In census or medical forms, for example, one question might ask for a person's gender,

giving the choices of "male" or "female," each with a small box next to them. One could

* ~ i~
;6

; _i

ai --i

use either an X mark or a check mark to indicate one's choice. This kind of interaction

could be used for multiple choice questions or true/false questions as well.

What is your gender?

L Male

S Female

S Decline to state

Figure 8: An example of a survey using boxes for participants to mark.

2. Odd One Out. A student might be asked to select the odd one out of a number of small

pictures or diagrams. A logical way to do so would be to X out the diagram that is the

odd one out. A check mark here is much less conventional, though, since the X mark

carries the connotation of incorrectness, whereas the check connotes correctness.

3. Identifying Countries on a Map. In a geography class, a student may be asked to

identify a country on a map of a continent, given an unlabeled map of the continent.

For this type of question, the student generally would shade in the country on the map,

but an instance where a student might circle the country or countries in question is

shown in Figure 7 above.

4. Parts of the Brain. A student participating in a psychology or physiology class may be

asked to demonstrate his or her knowledge of the structure of the human brain by

shading in a certain area of the brain on an unlabeled diagram of the brain. This

example is similar to the Example 3, but involves a region that is not pre-delineated,

which can cause much more variation in the region that is actually shaded, and

therefore make answer equivalence determination more difficult. In Figure 9, for

example, the highlighted area could extend into the middle of the image and still be

considered correct, as long as it was mostly touching the lower-right side of the diagram.

5. Highlighting Text. In an English class, a student may be instructed to examine a passage

of literature to identify portions of the text that are rhetorical devices, unusual syntax,

or grammatical imperfections. An intuitive way to do this would be to highlight the text,

which constitutes the shading of an area. With text, areas to be shaded are not

delineated because there are no absolute boundaries of a region (for example, one

might include extraneous words in a correct answer); however, these areas are not

completely unbounded either, because the highlight marks should be centered on or at

least include certain portions of the text, as shown in Figure 10.

Where is the occipital lobe?

Figure 9: Shading in a part of the brain.

Show where anaphora is used in the
following passage.

To be or not to be, that is the question;
Whether tis noblerin the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing, end them.

and by a sleep to say we end
The heart-ache and the thousand natural shocks
That flesh is heir to - tis a consummation
Devoudty to be wish'd.

Ay, there's the rub,
For in that sleep of death what dreams may come,
When we have shuffled off this mortal coil,
Must give us pause.

Figure 10: Highlighting a portion of text.

6. An Intuitive Multiple Choice Response. Multiple choice questions can be asked in a

number of ways. A student, for example, might be asked to the write the letter of his or

her response in a box, or, as in Example 1, to check one or more boxes that correspond

to choices. Nevertheless, an equally intuitive way to answer a multiple choice question

is by encircling the letter that corresponds to the choice one makes, as is commonly

done on paper multiple choice exercises. Figure 11 shows an example of this style of

asking and answering multiple choice questions.

Which of the following is an even-toed
ungulate?

a) rhinoceros

b) horse

@ama
Figure 11: An intuitive way of asking and answering a multiple choice question.

7. Identifying Parts of an Environment Diagram. In 6.001, the introductory course to

computer science at MIT, students analyze a structure known as an environment

diagram, which provides a model for reasoning about scoping rules. In analyzing a pre-

existing diagram, students may be asked to identify parts of the diagram that are

incorrectly drawn, or that correspond to certain snippets of code, as seen below in

Figure 12. Often, these parts are not easily enclosed shapes, so they may be encircled

with tight polygons consisting of multiple strokes, or wide single-stroke loops that

contain large areas of blank or extraneous space. The disparity between the region

encircled by these marks leads to a challenge in designing an accurate system.

28

Figure 12: An example of an environment diagram with two parts enclosed.

We now describe the general framework for integrating the interpretation and

aggregation of marks on exercises similar to canonical examples. When the instructor uses the

instructor authoring tool (IAT) to create a presentation, the central database receives

information for each exercise, which includes the expected type of mark for the exercise and

instructor answers for the exercise. As shown by the variation in the canonical examples above,

we cannot expect that expected mark type will be sufficient to understand the context of marks,

so we must rely on instructor answers for contextual information. This means that the system

does not "understand" context to the point of being able to reason about the semantics of the

background image-it "understands" merely the type and location of the mark. As discussed in

the next section, this representation is sufficient for our application; we need not tackle the

difficult question of extracting semantics from a background image.

Once the instructor has inputted expected mark type and answers, interpretation, then,

is a task of deciding which strokes in the students' answers constitutes marks, and then

29

translating the digital ink of those marks into a representation of the locations or regions

indicated by those marks. Upon identifying these locations and regions, the aggregator uses

similarity measures between student answers and instructor answers to place each student

answer in an appropriate bin.

This system supports the three marking understanding steps identified previously: mark

analysis, context identification, and context analysis.

1. Mark analysis is done in CLP by the interpreter. The interpreter receives the ink and

must decide whether or not each stroke in the ink is part of a mark. Then, it decides

which mark is being made, and sends a representation of the marks that were made to

the database. This representation is merely a location for each location-based mark, or

a region for each region-based mark.

2. Context identification can be said to be done in the interpreter because it decides what

the relevant location or region is.

3. Context analysis can be said to be done in the IAT in that the instructor inputs instructor

answers. The meaning behind each answer is later recalled by the instructor when

viewing the summary data returned by the aggregator, so it need not be supplied to CLP.

5 Design

5.1 Interpretation of Marks

The mark interpreter must perform mark analysis, which translates incoming ink into a set of

locations and regions. Actual detection of marks could be done in many ways. It might seem

that a mark recognizer from another system could be easily imported and extended to fit the

CLP system. Three different systems were considered.

1. Gesture Recognizer. The gesture recognizer is a compact way of recognizing small pre-

defined marks such as the check or X. A gesture recognizer, however, is also designed

with relatively tight direction and speed parameters which a user can be trained to

satisfy with continued user feedback, and CLP does not support this, as one of its goals

was to not require students to spend time training or being trained by the system.

Moreover, a gesture recognizer is not easily customizable (Jarrett and Su 2003).

2. LADDER. The LADDER shape recognizer can be used to recognize simple shapes

(Hammond and Davis 2005). LADDER's main drawback, though, is that it is a large

system written in Java, and tends to make CLP runtime long and sluggish (Chevalier

2007). CLP needs to be able to interpret ink quickly so as not to interrupt the flow of the

class. In addition, LADDER's representation contains much more information than our

extension needs.

3. Reverse Graphics. Reverse Graphics has much potential for use as a marking interpreter,

but it is currently patented (Rao 1998).

As all three of these systems have issues for integration with CLP, it was decided that a simple

mark interpreter should be implemented. The resulting mark interpreter recognizes four types

of marking methods by analyzing all of the strokes and looking for a certain type of mark.

1. X Marks. The mark interpreter tries to look for two strokes that intersect at an angle

within some angle error e of their expected intersection angle 4x, and that are relatively

straight. We say that a stroke is straight enough if a certain percentage p of the length

across the stroke is close to the stroke's overall direction, which is calculated between

the endpoints.1 To ascertain that each X mark is not part of another mark or an

extraneous mark, we make sure that neither stroke intersects with other long strokes

near their intersection. The location returned is the intersection of the two strokes.

2. Check Marks. The mark interpreter looks for strokes with one large sharp turn in the

middle by looking for cusps in the stroke, and then divides the strike in two at the cusp.

Then, it checks that the two divided parts are relatively straight using the method above

and are within the angle error e of their expected orientations, 41 and q2.2 If both of the

sections are of acceptable orientation and straightness, it then makes sure that the ratio

of the lengths of the two sections, r is within a certain range, or that row5 r< rhigh. If this

is so, then the mark interpreter returns the calculated cusp as the check mark's location.

1 Because we are using a discrete representation of the data, our model of the stroke can be viewed as a linear

piecewise approximation of what was actually drawn. Using this approximation, we can calculate exactly what

percent of the length of each stroke is going in the general direction of overall stroke.

2 This assumes the check is perfectly upright. To allow for a check of arbitrary orientation, we could use a method

called extended circular images (Horn 1986). However, checks are almost always drawn close to upright, so such

an orientation-blind system is unnecessary, at least for the canonical example that involves checks.

3. Shading. Previously, we viewed shading as consisting of three distinct methods.

Completely and partially filled-in areas, however, can both be translated using the same

method, so only two interpretation techniques are required.

a) Completely and Partially Filled-In Areas. When a user completely or partially fills in

an area, strokes mostly consist of many cusps and self-intersections, and are

extremely long. Strokes that do not fill this requirement and that are still part of the

shading mark take up relatively little space compared to the strokes that are longer.

They also are generally drawn by the user to beautify the image and smooth the

image, so they are situated near the edges and are highly redundant with previously

drawn strokes, and therefore are less relevant. We thus can still get a very good

idea of the shaded region by looking only at the long strokes with many cusps and

self-intersections. The mark interpreter identifies all strokes with at least c cusps, s

self-intersections, and P length. To find the shaded region, the mark interpreter

finds the outermost boundary of each one of these strokes, and fills in the region.

Filling in this region will in effect cover the entire area in the representation,

whereas it might not have been covered in the hand-drawn ink.

Figure 13: Running the shading detection algorithm returns even the blank regions
within each stroke that were not actually filled in.

b) Shading By Parallel Lines. The process the interpreter uses to translate parallel line

shading into a region is illustrated in Figure 14. (a) The mark interpreter first isolates

all the strokes that are relatively straight and measures their slopes. (b) Then, it

creates a graph in which each stroke is represented by a vertex. If two strokes have

similar slopes then it creates an edge between the two vertices which represent

those two strokes with edge weight equal to the distance between the two strokes.

If the edge weight is greater than a certain value dl, then it is not included. (c) On

the resulting graph, it isolates individual connected subgraphs, and runs Kruskal's

algorithm to find minimum spanning trees for each subgraph (Cormen et al. 2001).

(d) It then constructs almost-trapezoids by connecting the endpoints of all pairs of

strokes whose representative vertices are connected by an edge in the minimum

spanning trees, and adds the interior of each trapezoid to be part of the region that

is said to be selected by the shading.

4. Encirclement. To translate an encirclement mark, the mark interpreter must find single-

stroke or multiple-stroke loops and return the region or regions that they form the

boundary of. To do this, the mark interpreter uses a method called proximity linking

(Mahoney and Fromherz 2002), which creates a link between two strokes if an endpoint

on one stroke is within distance d2 of an endpoint on another stroke. Assuming that the

resulting graph is not complex, we can quickly find the loops that maximize the area

encircled, and select those loops as the boundaries of the regions to be returned.3 To

bias the interpretation to find single-stroke loops, we can choose to enforce a constraint

that if a stroke is linked to itself during proximity linking, it must be part of its own loop.

This constraint also speeds up the mark interpreter if there are many single-stroke loops

in an answer.

5.2 Aggregation of Marks

After student answers are interpreted and the locations and regions of marks are saved to the

database, the aggregator can retrieve the information and begin to group the student answers

into bins based on the interpretation of instructor answers. At this stage, we are left with only

two kinds of data with which to work, locations and regions.

1. Locations. The simplest way of aggregating locations is by finding the nearest neighbor.

Since locations are represented as ordered pairs, the aggregator measures every

student answer's distance from every instructor answer, and places each student

answer in the same bin as the instructor answer that is closest to it. In effect, each bin

3 This can get slow very quickly, though, since the runtime can be worse than exponential in the number of strokes

if they are drawn in such a way that there are many links and many possible ways to create loops. If d2 is chosen in

such a way that limits the number of links created by proximity linking, then this problem can be alleviated.

corresponds to a region on a Voronoi diagram of the instructor answers, and all student

answers in the bin fall within that region. This visualization is shown in Figure 15. If

there are multiple locations marked within the same answer, the aggregator enforces

the rule that a student answer can only go in a bin with an instructor answer if the two

answers have the same number of locations. In this case, it finds a set of pairings

between locations in student answers and locations in prospective instructor answers

such that the sum of the distances between all pairs in the set is the minimum over all

possible pairings. To allow for student answers that were not foreseen by an instructor,

the aggregator also enforces a maximum distance threshold dioc on each student answer

such that if a student answer is farther away from every instructor answer than that

threshold, it is placed in a miscellaneous bin.

Figure 15: An example Voronoi diagram for aggregation of locations.
Black dots can represent the locations of instructor answers;
white lines can represent the boundaries of the answer bins.

2. Regions. Similarity between regions can be evaluated by observing the overlap

between the student answer and instructor answer. We can juxtapose these answers

together directly on top of each other like a Venn diagram, as shown below in Figure 16.

Call the region selected by the student S, and the region selected by the instructor N. If

36

both the areas that are in S and N alone are small compared to the area that is both S

and N-that is, their ratios are lower than some constants rs and r,,-then the

aggregator can place the student answer in the same bin as the instructor answer. If a

student answer fits these criteria for multiple instructor answers, then the aggregator

places it in the instructor answer for which an average of the two ratios is smallest.

5.3 Intermediate Representation of Regions

The interpreter returns a list of selected locations or regions to be inputted to the aggregator.

Locations are represented as ordered pairs, whereas regions are represented as matrices of

Booleans. This grid matrix corresponds to every possible combination of ordered pair in the

box, and with the size of units used in the CLP, is fine enough such that student submissions can

be over 6000 units tall and 10000 units wide. Even if the internal representation of a region of

this size is simply a matrix of 1-bit values where a cell is true if the corresponding square unit is

part of a selected region, then not only will the database quickly run out of disk space, but the

Figure 16: An example showing an instructor answer N and a student answer S for
encirclement. N is shown in light red, and S is shown in light blue, while their

overlap is shown in dark blue. It is the comparison of overlapping area to non-
overlapping areas that determines the similarity between N and S.

wireless ad-hoc network will be flooded with data and begin to drop packets. A method to

compress region data, then, was developed to address this problem.

First of all, the units used for the rest of CLP were much too fine for something like hand

drawn images which are prone to great variability and can be drawn quite carelessly. Therefore,

it was permissible to downsample the resulting matrix by a factor of 10. Even in doing so,

though, the matrix was still quite large. For most Boolean matrices representing regions,

however, the nature of selection of regions makes the matrices have true and false values

clumped together; because there are only two values, we can instead represent these matrices

by reshaping each matrix into a long array, and then making another array that has a value of

true when there is a transition between the two values in the original array. This new

representation should be sparse, allowing us to further condense the array by simply keeping

the indices where the array has value true. Using this method, we can transform a large non-

sparse matrix into a short list of values and save space at the expense of the time needed to

compress and decompress each region matrix. An illustration of this method is shown below.

000000
0 0 1 1 1 0 (a) original Boolean matrix
0 1 1 1 1 1 representation
111111

010000
000000

4 (b) conversion to array
000000001110 011 ...

4 (c) sparse transition array
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 ...

8 11 13 29 31 32 (d) fully compressed list

Figure 17: The steps taken in compressing a large Boolean matrix representing a
selected region. The original matrix is converted to an array; a new transition

array is calculated; and the transition array is compressed into a list of positions.

38

6 Testing

Our methods used to interpret and aggregate marks required many instances of threshold

values. Choosing an appropriate threshold value is crucial to getting the maximum accuracy in

each individual algorithm; therefore, the next step in implementing the CLP mark extension was

to find the best threshold values. The values could easily be gathered empirically by running

the system on a set of test data, each time changing one threshold value: by observing which

threshold value resulted in the best accuracy in aggregated data, we can find the most

appropriate threshold value for each case.

Our test data, consisting of both student and instructor answers, needed to effectively

and accurately reflect the canonical examples discussed in Section 4. The IAT was used to

create a presentation of 7 exercises (one for each canonical example) with many possible

answers. For each exercise, 5 different instructor answers were given, and 11 people gave

three student responses each, for a total of 33 student responses. These ink responses were

then interpreted and aggregated using the methods described above, first using approximate

guesses for each mentioned constant. After determining the accuracy values, the constant was

changed a small step in one direction and the experiment repeated. By using a "human

performed" moderated gradient descent over each threshold value with the target of a high

accuracy, we were able to achieve good results.

The following two tables show the accuracy values received after three iterations. The

first table separates test data by the canonical mark type represented in the exercises, while

the second table separates test data simply by the mark type that was employed to give an

39

answer. The final accuracy is the percentage of test data that was correctly classified at the end

of aggregation after three iterations were completed.

Canonical example Type(s) of mark allowed Final accuracy value

Survey checks, X marks 100%

Odd one out X marks 100%

Countries on a map shading, encirclement 78%

Parts of the brain shading, encirclement 43%

Highlighting text shading 91%

Multiple choice encirclement 100%

Environment diagrams encirclement 64%

The table in Appendix A shows initial value guesses, step sizes, and

threshold mentioned.

final values for each

Type of mark Final accuracy value

check 100%

X mark 100%

completely filled shading 82%

partially filled shading 76%

parallel line shading 68%

one-stroke encirclement 100%

multiple-stroke encirclement 42%

7 Discussion and Future Work

In this section, we summarize and discuss issues, improvements, and extensions to our mark

understanding system.

7.1 Improving Accuracy of Interpretation and Aggregation

To increase the accuracy of mark interpretation and aggregation, we would employ a

larger test set than used in this study and continue with the threshold-setting process. We

would aim for 90% accuracy across all types, as we deemed this value sufficient to give

instructors and students meaningful feedback data (that is, 10% error is small enough such that

it should not change the shape of the overall histogram of summary data). If this value could

not be reached by adjusting thresholds, then adjustments must be made to the actual

interpretation and aggregation algorithms.

The accuracy results, shown in Section 6, have some occurrences of 100% accuracy,

while this cannot be guaranteed to be true in general. This result illustrates a problem with the

testing methodology previously described in Section 6. With only a sample size of 11 people

giving a total of at least 33 answers, it is entirely possible that an accuracy of 100% could result.

For checks, there was a whole range of values for the orientation angles I1 and 42 over which

there was 100% accuracy. This phenomenon can be attributed to the little variation in the way

that these answers were drawn, perhaps because the test subjects drew the checks extremely

carefully. With a large value for the allowed angle error 8, these test student answers were all

easily accepted as checks for a wide range of values for 1 and 42. Therefore, it was hard to tell

what the correct threshold values would be because there were no border-line cases among

41

the student answers to be classified. These border-line cases are extremely important for

finding good and exact values for threshold constants; therefore, the constants found during

the testing may not apply to a different group of less carefully drawn examples.

Another factor in testing that might have contributed to a bias in accuracy results was

that the instructor answers used for this test were extremely distinct because they were all

drawn by the same person. This bias may be good for all presentations created by that same

person and can be extended in the future to allow for "instructor calibration" to further bias

aggregation results. It however does not give generally applicable values for application

thresholds. For example, let us assume that one instructor often colors outside the lines of a

pre-delineated background region while shading, while another does not bother to shade all

the way to the edges of the region, but only the middle portion. Both these kinds of errors can

change the optimal values of the region overlap thresholds rs and r,, greatly. To get around this

problem, we could require instructors to create instructor answers in a standard, more rigid

and careful fashion. A more desirable option would be to allow calibration of internal

aggregator threshold values on a per-instructor basis.

In addition, our testing was insufficient to produce estimates for dioo row, and rhigh, so

they are not included in Appendix A. This insufficiency stems from all answers lacking marks

that are not expected by the instructor and ink strokes that are not part of any mark but were

accidentally left on the slide. In true cases of exercises, these mistakes should appear with

some degree of frequency; however, during the test, the care with which the test subjects

completed the exercises and submitted slides meant that insufficient "miss" data was collected.

Similar problems occurred with p, c, s, e, dl, d2, and doc, in that the threshold was only

approached from one side, causing an inability to tell if resulting threshold values were underfit

or overfit. There was, for example, no way to find a "good" value for dl because there were no

parallel lines that were not part of the shading mark. Therefore, the final value for di is simply

the maximum distance seen on a minimum spanning tree of the parallel lines for the set of

student answers, even though this might be generally quite long if "distractor" lines were

present.

One final way to improve threshold values is to change the method by which they are

obtained. First of all, the method described in Section 6 was executed three times, and should

actually be done over even more iterations because the choice of thresholds may not be

independent. For example, the optimal value for the angle error 0 may depend on the value

used for the central intersection angle 4x for an X mark. Over many iterations, the parameters

may converge to local extrema. The main reason multiple iterations were not done is because

they are time-consuming to do by hand. Therefore, future research in this area may benefit

greatly from having an automated method for doing gradient descent.

Another way to improve accuracy is to change the values that are taken into

consideration by the mark interpreter and aggregator in processing the data. For instance, one

might look for a minimum intersection angle and a maximum intersection angle for an X, or

look at the actual directions of the two strokes used to make an X. Another property is that

proper threshold values might change with the size of the overall mark; for example, a check in

a large box may have a smaller head-to-tail length ratio than a check in a small one. Also, there

exist other, less common ways of shading which were not covered by this thesis; examples are

shown in Figure 18. To tackle these problems, more values will have to be taken into account

for thresholding. Finding which values are most relevant for the purposes of interpretation and

aggregation of marks may be hypothesized, implemented, and tested, as was done in this thesis;

on the other hand, they can also be done automatically, using a support vector machine or

other kinds of machine learning techniques, which would make the interpreter and aggregator

easier to change and extend in the future.

7.2 Expanding the Scope and Reach of CLP

So far, we have focused on implementing marking functionality in CLP that is sufficient

for supporting seven canonical examples, as described in Section 4. In reality, however, these

canonical examples need to be adjusted and expanded before being widely applicable to

different domains that use slightly different types of exercises. An immediate way solution

would be to simply add more types of expected marks and implement new interpretation and

aggregation methods, in a process similar to that described in previous sections, or by using

another system such as LADDER or Reverse Graphics as mentioned before. For a few more

mark types, this approach may be enough; as the number of mark types grows, however, this

approach may prove unwieldy and tedious and will require other methods of automating more

of the process.

Figure 18: Alternate ways of shading unimplemented in the current version of the

mark interpreter: (1) individual straight lines that may not necessarily be parallel;

(2) a large stroke of highlighter used to roughly shade in a thin area;

and (3) a zigzag pattern with no intersections.

As concluded in Section 2, the greatest obstacle to tackling the mark understanding

problem lies in the complexity and variation in both the marks and the context in which these

marks are placed. Although we were able to sidestep the context variation problem in CLP, we

see that even for the moderately simple set of marks presented in Section 4, a rather complex

interpreter is needed to successfully interpret them. Before CLP's mark understanding

component can be considered more than a prototype, an extremely varied and complex set of

expected marks would be needed.

The need for a larger set of marks is extra incentive to use machine learning to aid in the

design of an interpreter and aggregator, allowing new kinds of marks to be quickly added. (Tay

and Koile 2008) posits that for alphanumeric inputs, an approach using machine learning may

even eliminate the need to make assumptions about expected type. For marking, however, this

question remains to be answered. A major drawback, of course, to machine learning, is that a

very large test data set must be compiled. In some cases, this data set may be as unwieldy as

reasoning about each individual case and hard-coding a solution, depending on how

complicated each kind of mark and corresponding exercise is. (Mahoney and Fromherz 2002)

suggests certain research areas which could lead to a solution to this problem by finding a way

to incrementally build accurate models of contextual information and not rely on large data

sets of sample answers.

Future versions of CLP with many different kinds of marks for many different kinds of

specialized exercises may require different kinds of instructor answers than the current

architecture of CLP supports. In Section 2 we explored the importance of having an adequate

representation such that contextual analysis can be done, and in Section 4 we decided that an

instructor answer that was the same as a student answer, as well some a priori knowledge

about the expected type of the mark, should for our purposes provide enough contextual

information for aggregation to proceed. Figure 19, however, shows that this conclusion is

clearly not always true, as the boundaries generated by the instructor answers do not

necessarily correspond to the true boundaries. For aggregating selected regions, this problem

can be manifested in the environment diagram example as there is no change in what an

answer means no matter how much blank space or extraneous material is included in the

selected region. Thus, to successfully find the right boundaries in this example, an instructor

would have to enter a model of the actual background data into the IAT to be used by the

aggregator. Under this new paradigm, an instructor would have to select not only by the type

of mark that was expected, but also by the type of the problem being presented-in this case

"selection of pre-delineated regions by locators" would be the expected type. This information

can be very useful in the aggregation stage, as selecting a pre-delineated region will generally

result in less variation among student answers than one in the case where regions are not pre-

delineated at all. Since this distinction was not made in this version, accuracy results suffered.

Figure 19: Voronoi diagram showing boundaries generated
by the aggregator in maroon, and actual boundaries on the background image

in light gray. Discrepancies between these boundaries mean that
the aggregator will misclassify student answers.

-- -- B

This example shows the growing need in CLP for an instructor to input image semantics

to improve accuracy results. Accuracy values differ, for example, among different kinds of

canonical examples, as well as between different types of expected marks. Therefore, while in

this version of CLP the interpreter and aggregator only have explicit a priori knowledge about

the kind of mark expected, it would be of great help to know the type of the in-class exercise

itself: there is a big difference, after all, between the one-stroke encirclement of a delineated or

somewhat delineated region seen in a multiple choice question or selection of countries on a

map and the totally non-delineated regions seen selecting regions of the brain or of oddly

shaped regions as seen in environment diagrams. At the same time, improved semantics can

lead to better ways to reason about regions; for example, an aggregator with a sufficient

semantic model of background information can omit blank space in encircled areas, or discount

shading outside the lines of pre-delineated regions, which were the two main problems

encountered during testing, and which resulted in rather low accuracy values. This disparity

between different types of exercises using the same type of mark can be allayed in future

versions by allowing more distinction between different exercise types, exemplified by different

canonical examples.

Another complex example illustrates that a semantic model for the background image is

necessary in some circumstances. Consider an example in which a student is shown a picture of

many different kinds of coins and is asked to select a combination of coins that will add up to a

certain amount of money, as shown below in Figure 20. In this example, which was used in a

second grade class, there are many different student answers selecting many different

combinations of locations that would semantically amount to the same thing. In this case, an

aggregator without this kind of understanding and which classified based on location of marks

alone would fail to present the instructor with meaningful data. The kind of expected type for

this mark is somewhat unclear, however, and being able to classify exercises such as this one

may itself prove an interesting research topic.

17. You need 78 cents to buy a popsicle.
Draw a RED X on each coin you could use to get 78 cents.

What's a different way to pay?
Draw a BLUE X on different coins that add up to 78 cents.

Figure 20: Example where semantic representation is extremely important
as multiple combinations of X marks should be grouped together

by the aggregator as having the same meaning.

One could foresee that increased complexity in dealing with different types of

backgrounds could lead to a situation in which the instructor generating the presentation

becomes so overwhelmed by classification of models and inputting model data that usage of

CLP would become a hassle. While the inputting problem could be solved by having different

kinds of information about each stroke inputted in different fashions, such as changing the

color or pen tip type to indicate a special property of the stroke, the instructor is still tasked

with understanding a perhaps very intricate set of requirements and specifications to be able to

classify the model being input. To alleviate this problem, a system could be devised that uses

image recognition (or sketch recognition) methods to try to automatically decipher what the

background image. At this point, however, CLP's marking component would exit the realm of

marking and become a layered recognition and modeling problem, which currently, while being

the subject of extensive research, does not yet have a solution that can reliably serve the needs

of CLP (i.e. off-line processing, no student training or verification of interpretation results).

Overall, the approach taken in this thesis demonstrates a kind of paradox about marking.

Marking lies in the gray area between a simple sketch recognition problem and a layered sketch

recognition problem, as the problem of understanding the background image is tempered by a

priori knowledge, which, in CLP, is provided by the instructor. With this principle in mind, we

have provided a good foundation for further research into the nature of mark understanding

and its applications both within and outside CLP.

8 References

Abelson, H. and Sussman, G.J. Structure and Interpretation of Computer Programs, Second Edition.
Cambridge, MA: MIT Press, 1996.

Anderson, R., Anderson, R., McDowell, L., and Simon, B. Use of Classroom Presenter in Engineering
Courses. In Proceedings of ASEE/IEEE Frontiers in Education Conference, 2005.

Anderson, R., Anderson, R., Simon, B., Wolfman, S., VanDeGrift, T., and Yasuhara, K. Experiences with a
Tablet-PC-Based Lecture Presentation System in Computer Science Courses. In SIGCSE, 2004.

Anderson, R., Anderson, R., VanDeGrift, T., Wolfman, S., and Yasuhara, K. Promoting Interaction in
Large Classes with Computer-Mediated Feedback. CSCL, 2003.

Chevalier, K. Interpretation of Box-and-Pointer Diagrams in Classroom Learning Partner. Massachusetts
Institute of Technology EECS M.Eng. Thesis, 2007.

Conroy, K., Levin, D., and Guimbretibre, F. ProofRite: A Paper-Augmented Word Processor. Submitted
to UIST, 2004.

Cormen, T., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms, second edition. Cambridge,
MA: MIT Press and McGraw Hill, 2001.

Duncan, D. Clickers in the Classroom: How to Enhance Science Teaching Using Classroom Response
Systems. San Francisco, CA: Addison Wesley, 2005.

Hammond, T., and Davis, R. LADDER, a sketching language for user interface developers. Elsevier,
Computers & Graphics 29, 2005.

Horn, B. P. K. Robot Vision. Cambridge, MA: MIT Press, 1986.

Jarrett, R., and Su, P. Building Tablet PC Applications. Redmond, WA: Microsoft Press, 2003.

Koile, K., Chevalier, K., Low, C., Pal, S., Rogal, A., Singer, D., Sorensen, J., Tay, K. S., and Wu, K. (2007a)
Supporting Pen-Based Classroom Interaction: New Findings and Functionality for Classroom
Learning Partner. In Proceedings of First International Workshop on Pen-Based Learning
Technologies, 2007.

Koile, K., Chevalier, K., Rbeiz, M., Rogal, A., Singer, D., Sorensen, J., Smith, A., Tay, K. S., and Wu, K.
(2007b) Supporting Feedback and Assessment of Digital Ink Answers to In-Class Exercises. In
Proceedings of IAAI, 2007.

Koile, K., and Singer, D. (2006a) Improving Learning in CS1 with Tablet-PC-based In-Class Assessment. In
Proceedings of ICER, 2006.

Koile, K., and Singer, D. (2006b) Development of a Tablet-PC-based System to Increase Instructor-
Student Classroom Interactions and Student Learning. The Impact of Pen-based Technology on
Education; Vignettes, Evaluations, and Future Directions, ed. Berque, D., Gray J., and Reed, R.

Purdue University Press, 2006.

Mahoney, J. V., and Fromherz, M. P. J. Three main concerns in sketch recognition and an approach to
addressing them. In Proceedings of AAAI Spring Symposium on Sketch Understanding, 2002.

Pal, S. Aggregation of Sketched Box and Pointer Diagrams in Classroom Learning Partner. 2007.

Rao, S. Visual Routines and Attention. Massachusetts Institute of Technology EECS Ph.D. Thesis, 1998.

Rbeiz, M. Semantic Representation of Digital Ink in the Classroom Learning Partner. Massachusetts
Institute of Technology EECS M.Eng. Thesis, 2006.

Rice, S. V., Jenkins, F. R., and Nartker, T. A. The Fifth Annual Test of OCR Accuracy. Las Vegas:
Information Science Research Institute, 1996.

Rodriguez, J.A., S~nchez, G., and Llad6s, J. Automatic interpretation of proofreading sketches. In
Proceedings of EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, 2006.

Signer, B., and Norrie, M.C. PaperPoint: a paper-based presentation and interactive paper prototyping
tool. In Proceedings of TEl, 2007.

Smith, A. Aggregation of Student Answers in a Classroom Setting. Massachusetts Institute of
Technology EECS M.Eng. Thesis, 2006.

Tay, K. S. Massachusetts of Technology EECS M.Eng. Thesis to be completed, 2008.

Tay, K. S., Koile, K. Improving Digital Ink Interpretation through Expected Type Prediction and Dynamic
Dispatch. Submitted to AAAI, 2008.

http://www.anoto.com/. Accessed on January 1, 2008.

Appendix A

The following table shows the various threshold values discussed and information about them.
Initial values were set before the first iteration. The final values were obtained after doing
three iterations of the data using the method described in Section 6. All angle or orientation
values are in radians.

Description Initial value Step size Final value

0 permissible angle error 0.3927 0.0087 0.8901

x expected X intersection angle 1.571 0.0087 1.571

p straightness percentage threshold 80% .5% 74%

(1 check first part expected orientation 5.236 0.0087 4.939

(i2 check second part expected orientation 0.7854 0.0087 0.8552

r1ow check length ratio low threshold 0 .01 .21

rhigh check length ratio high threshold 1 .01 .73

c minimum cusps for shading strokes 5 1 13

minimum self-intersections
s 5 1 7

for shading strokes

e minimum length for shading strokes 1000 50 26150

dl maximum edge weight for parallel shading 1000 50 1750

d2 proximity linking threshold 1000 10 470

djoc maximum Voronoi diagram cell radius 1500 10 2140

maximum ratio of area in S alone
rs .1 .005 .265

to area in both S and N

maximum ratio of area in N alone
rto .1 .005 .085

to area in both S and N

