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Abstract

Undergraduate students at M.I.T. typically utilize three resources when selecting
subjects: course specific evaluations, faculty advisors, and peers. While these resources
have distinct advantages, they are all limited in scope. The ClassRank web application
has been developed to bridge the gap between these resources by providing a simple
institute-wide system for undergraduate students to evaluate and rate subjects. The
application also provides a solid platform to build new tools utilizing subject evaluation
data. To extend the initial core functionality of the ClassRank system, a rating-based
subject recommendation algorithm was added to offer students an unbiased perspective
on potential subjects of interest. Developed as a Ruby on Rails plugin and then
integrated into ClassRank, the recommendation algorithm analyzes subject ratings and
provides personalized suggestions to students about subjects that would likely fit their
interests and educational goals. The ClassRank web application and recommendation
algorithm will provide the M.I.T. undergraduate student body with a unique and
invaluable resource for subject selection.
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1 Introduction

Currently it is very difficult for M.I.T. undergraduate students to accurately judge the

subjects in which they are considering enrollment. As a result, students rarely have the

luxury of selecting subjects by teaching style or difficulty level. Selecting appropriate

classes is especially important for M.I.T. students. Requirements for many degree

programs are strict and lengthy; therefore, students rarely have the scheduling flexibility

to recover from more than one or two inappropriate subject choices.

Limited resources and guidance result in most students selecting subjects based on

compatibility with their schedules. This is especially true for classes satisfying broad

General Institute Requirements (HASS-D or HASS-CI) outside of a student's degree

program. Even for those subjects specifically required by a degree program, comparing

different teaching methods provides a student the ability to optimize their learning

experience.

Traditionally, students utilize three resources to choose subjects.

1. Underground Guides - Providing historical course specific subject evaluations.

2. Faculty Advisors - Providing personal recommendations from past experience.

3. Peer Network - Providing personal recommendations and historical evaluations.



While all of these resources provide tremendous value to students, information provided

by each is limited in scope:

1. Underground guides offer historical peer evaluations; however, current systems

lack ability to form evaluations into personal recommendations and are limited to

specific courses.

2. Faculty advisors, while able to offer personalized recommendations, typically

have only knowledge of subjects in their specific field of interest and often lack

the "undergraduate experience" necessary to provide accurate assessments of

work load, teaching style, and other comparative measures.

3. A student's peer network can offer both evaluations and recommendations for

subjects from a wide verity of academic disciplines; still, a student's network of

fellow undergrads is usually limited in size and, therefore, limited in use.

The ClassRank web application aims to bridge the gap between these resources by

providing a simple web-based system for M.I.T. undergraduate students to evaluate and

rate subjects. The application will aggregate a large historical database of subject

evaluations to aid current students in the discovery of subjects which fit their style of

learning, personal interests, and educational goals.

ClassRank's database of subject ratings contains valuable information derived from

correlations between individual evaluations. Through analyzing and generalizing the

preferences of students, a recommendation algorithm can easily deduce subjects of

interest to a particular individual student. As preference algorithms and recommendation

systems have become very widespread in application, there are many possible methods of



constructing such predictions. A number of very intuitive suggestion algorithms have

been conceived as research into the area has spread, providing accurate predictions at a

very low computational overhead. Utilizing a preference algorithm to generate

personalized subject recommendations for students greatly enhances ClassRank's utility

and, hopefully, will serve as a catalyst for the system's adoption.

1.1 Research Goals

The goal of this research is to:

1. Implement ClassRank, a web application for M.I.T. undergraduate students to

evaluate subjects through a simple set of ratings;

2. Create a reusable Ruby on Rails recommendation plugin; and,

3. Integrate the plugin into ClassRank in order to provide students with personalized

subject recommendations.

Through accomplishing these goals, ClassRank will demonstrate the power of new web

technologies, even in an unconventional application, by complimenting the traditional

resources used by students with unique and unbiased subject recommendations based on

a large historical dataset.

1.2 Outline

The following section provides a brief discussion of the ClassRank web application,

including its motivation, architecture, supporting technology, and design. Section 3 goes

into detail about integrating a recommendation algorithm into ClassRank, including and

the key factors behind choosing an algorithm and building it into a Ruby on Rails



recommendation plugin. This includes a brief overview of common collaborative

filtering techniques and an extensive discussion of slope one predicators. In addition, the

section documents the implementation of the recommendation plugin and its integration

into ClassRank. Section 4 goes on to discuss the results and final product of the research.

To conclude, Sections 5 and 6 summarize the overall contribution of the research and

suggests a number of future enhancements to both ClassRank and the recommendation

algorithm.



2 The ClassRank Web Application

ClassRank is a web application for M.I.T. undergraduate students, first conceived as an

advanced undergraduate project in the spring of 2007. The initial ClassRank

infrastructure allows students to browse and post subject evaluation data.

The design of ClassRank and data collected through subject evaluations serve as a solid

platform to enhance and expand the functionality of the system. Initially, ClassRank will

integrate a recommendation algorithm that compares subject evaluations and provides

personal recommendations to students, discussed in Section 3.

2.1 Motivation

The ClassRank web application aims to educate M.I.T. students about subjects that

directly align with their interests and personal preferences. Currently, it is very difficult

for students to accurately assess the various aspects of subjects in which they are

considering enrollment. In addition, no institute-wide subject evaluation tools exist,

making it very difficult to aggregate necessary data. To aid students with the subject

selection process, ClassRank provides tools to browse the aggregate subject evaluations

from a large historical peer network and enables students to utilize this data in order to

draw conclusions about subjects of interest.

2.2 MVC Architecture

A natural architecture for database-backed web applications compartmentalizes

functionality into three discrete components: models to represent data, views to construct

the user interface, and controllers to coordinate underlying logic. This pattern, known as



Model-View-Controller (MVC), naturally decouples an application's functionality. As a

result, changes to a single component of a MVC application typically require little or no

modification to the others. The MVC architecture can greatly simplify integration of

large user interface or data storage changes into existing applications, as the underlying

implementation of individual components can change drastically with little effect on the

rest of a system. Untangling the model, view, and controller components of an

application greatly helps to control the complexity of large-scale applications.

2.2.1 Models

The state of a MVC application is maintained through models. Models represent data

records, both temporary and persistent, and ensure the data being represented is valid.

Models also provide logic to translate raw data into more a meaningful form for the

application to display. In addition, models are responsible for the specific mechanisms

used to store and retrieve data. Typically, models will utilize a database as the

underlying storage mechanism to record persistent data.

2.2.2 Views

Views generate a user interface for MVC applications, presenting the data from models in

a specific format and layout. As MVC decouples the views and models, implementing

multiple interfaces is trivial. Typically, views also capture user interaction and notify the

application of events.

2.2.3 Controllers

Controllers respond to events and trigger specific actions that interact with models and

present resulting views. Within the MVC architecture, controllers are responsible for
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handling the exchange of information between the model and view components and

ultimately define the functionality of the application.

2.2.4 Application Flow

Applications with MVC architectures cycle through a simple pattern of use.

1. Initially an event, most likely requested by a user through the application's

interface, triggers an action within a controller.

2. Then the controller's action interacts with models, generating information

necessary to satisfy the request.

3. Next, the controller's action invokes a view, passing along the information it has

gathered.

4. Finally, the updated view, in the context of the resulting information, is presented

to the user and the application waits to receive the next request.

This application flow matches the general behavior of common web services: receive a

request for a page and respond to the browser with HTML. For web applications, which

generate information dynamically before presentation, an MVC framework provides a

well designed architecture to isolate complexity.

Although ClassRank will initially be a relatively small system, an MVC design will

ensure the application can serve as a solid platform for future expansion. In addition,

new web application frameworks have abstracted MVC principles so successfully that

even small systems can be built with greater efficiency.



2.3 Supporting Technology

The ClassRank web application is implemented on top of the open-source Ruby on Rails

web framework. Rails provides a robust platform for ClassRank ensuring the application

is well designed, easily extendable, and efficiently developed.

2.3.1 Benefits

Rails is written on top of Ruby, a very dynamic object-oriented scripting language, and

aims to increase the speed and ease of web application development. In large part, Rails

achieves this goal through organizing applications into a strict MVC structure.

Additionally, Rails provides:

* A built-in development web server and build system;

* Integration of robust Asynchronous JavaScript and XML (Ajax) libraries;

* Integrated testing;

* Powerful database abstraction; and,

* Support for plugins that allow developers to easily isolate and distribute

extensions to the framework's functionality.

The structure and design of Ruby on Rails ensures that web applications are developed as

efficiently as possible and comply with agile development principles. As a result, Rails

significantly decreases both the amount of time and amount of code necessary to build

web applications with rich user interfaces and powerful functionality.



2.3.2 Fundamental Design Principles

While Ruby on Rails takes many measures to accelerate development of database-backed

web applications, the entire framework is designed to comply with two key concepts:

Don't Repeat Yourself (DRY) and Convention over Configuration.

* DRY: Rails allows developers to isolate and abstract functionality very

efficiently, preventing duplication. Duplicated source code can be inconsistent,

hard to change, and difficult to test. Localizing functionality also decreases the

amount of source code in the application.

* Convention over Configuration: Rather than relying on developers to manually

specify every configuration detail, Rails requires action only for behavior which

differs from the standardized conventions. Through these assumptions, Rails

seamlessly connects the application's models, views, and controllers without

unnecessary setup, greatly simplifying the development process. As an

application develops and advanced configuration is needed, the default behavior

can be easily changed from the default value.

Ruby on Rails successfully translates the concepts of DRY and Convention over

Configuration into a lightweight and efficient web application framework.

2.3.3 Plugin Support

Ruby on Rails provides a plugin system to extend the core functionality of the

framework. Plugins allow code for specific functionality to be implemented within a

self-contained architecture. As a result, plugins allow developers to distribute and reuse

pre-built code, keeping the Rails framework as light as possible while providing support
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for cutting-edge functionality. Further, plugins enhance the reliability of applications by

isolating potential problems and protecting code from unintended changes.

The plugin capabilities of Rails provide an optimal platform for the implementation of

ClassRank's recommendation functionality.

2.4 Design Overview

2.4.1 Data Models

ClassRank is supported by a simple set of underlying data models representing semesters,

courses, subjects, students, and subject evaluations, shown in Figure 1. Dependencies

between models are represented by arrows and attribute names and types are contained

within the box of each model.

Figure 1: Overview of ClassRank models and attributes.

Read-Only Models

The Course, Semester, Subject Number, and Subject models are responsible for

information that students are not allowed to directly modify.
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The Course model contains two fields, a name (i.e. Electrical Engineering and Computer

Science) and a number (i.e. 6) of an M.I.T. course. Both fields are stored in the

ClassRank database as strings to accommodate course numbers includng letters (i.e.

21W, CMS). Course data is pre-populated into the ClassRank system through a Rails

database migration that creates models by parsing a list of courses formatted as comma

separated values.

The Semester model stores two pieces of information about each semester: the session, a

string, and the year, an integer. Before a new record is created, the Semester model

validates that the session be either spring or fall. New semesters are created

automatically if the Semester model determines from the current month and year that the

current semester has changed.

The Subject Number model joins courses and subjects, as one subject can have many

subject numbers under different M.I.T. courses. The Subject Number model contains a

string for the number of a subject for a particular course. For example, the number stored

in the Subject Number model for 6.001 would be 001, as the course's number ("6" in this

case) can be derived through the model's associated Course model.

Finally, the Subject model stores the name and description of a subject. Additionally, the

model is associated with at least one Subject Number model. Similar to semesters,

subjects are populated through ClassRank's database migrations, which load a file of

subjects (represented as comma separated values) and create new Subject models.



Student Model

The Student model represents information about the students utilizing ClassRank. The

model contains the login and name of a student, as well as the date the student first

accessed ClassRank.

Subject Evaluation Model

The Subject Evaluation model stores evaluations submitted by students. Evaluations

contain four subjective ratings corresponding to a student's opinion of the subject as a

whole, as well as the subject's material, workload, and difficulty. In addition, the Subject

Evaluation model allows students to store general comments about a subject. To keep

track of the subject, the semester it was taken, and the student providing the evaluation,

the model also associates itself to a Subject model, Semester model, and Student model.

The Subject Evaluation model also validates each evaluation to ensure that the ratings fall

within a specific range, within 1 and 200, and that comments are not too long.

2.4.2 Controllers and Actions

The core functionality of ClassRank is defined by three controllers: the Students

controller, the Subject Evaluations controller, and the Subjects controller, shown in

Figure 2. All of ClassRank's controllers inherit functionality from the Application

controller, which implements core actions to authenticate and authorize students before

executing an action in any of ClassRank's controllers. The specific actions available to

students are listed within the box of each controller.



Figure 2: Overview of ClassRank controllers and actions.

Students Controller

The Students controller is responsible for creating records for new users of the system. If

a student is accessing ClassRank for the first time, the Students controller will create a

new Student model to represent them, and forward the student along to the subject

evaluations controller.

Subject Evaluations Controller

The Subject Evaluations controller is responsible for adding, viewing, and deleting

subject evaluations. Additionally, the Subject Evaluations controller provides an action

to search for subjects and evaluations by subject number.

Subjects Controller

The Subjects controller implements one action to display information about a subject,

including a list of all its evaluations.



2.4.3 User Interface

ClassRank was designed to have a simple and intuitive user interface. The user interface

provides a number of conveniences for students.

* Ajax pagination of long lists of data - ClassRank provides pagination for lengthy

data sets without requiring page reloads, only updating the portion of the page

containing the listed information.

* Auto-complete textboxes for subject number queries - Students can type subject

numbers and instantly view a list of matching subjects, avoiding the potential

frustration of not exactly matching the number of a result without sacrificing any

accuracy.

Screenshots of the ClassRank interface are included in Appendix A.

2.5 Deployment Details

ClassRank is designed to be deployed on the Web Script Service maintained by the

M.I.T. Student Information Processing Board (SIPB). ClassRank authenticates and

retrieves login information from students by utilizing M.I.T. personal certificates. This

eliminates the requirement for a self-contained user authentication system and ensures

that only current students can access the application.

Populating ClassRank with subject records is accomplished through the use of database

migrations built into Ruby on Rails. Information about each subject, recorded as comma

separated values and contained in an input file, is loaded into the database after it is



created. Ideally, future revisions of ClassRank will automate the collection of subject

data and update the database accordingly.





3 Incorporating Subject Recommendations

Unlike current M.I.T. subject evaluation systems, ClassRank provides a platform to

implement tools which utilize the subject evaluation data collected by the system. As

subject evaluations attempt to quantize student's opinions, they are very similar to the

product ratings provided by users on many e-commerce websites. Just as these websites

utilize reviews to suggest products to customers, ClassRank could utilize evaluations and

ratings to suggest subjects to students. Therefore, as a natural first enhancement to

ClassRank, functionality to provide students with subject recommendations was

integrated into the system.

3.1 Design and Development Procedure

In order to provide subject recommendations to students, a recommendation algorithm

was implemented by:

1. Researching and choosing a collaborative filtering recommendation algorithm;

2. Creating a Ruby on Rails plugin to provide recommendations for a generalized

usage scenario;

3. Integrating the plugin into the existing ClassRank application; and,

4. Updating the ClassRank user interface for use of the new functionality.

Rather than conducting significant changes to the ClassRank infrastructure, utilizing the

plugin capabilities of Ruby on Rails allows for recommendation functionality to be

isolated and encapsulated in a separate package. In addition, developing a plugin allows

the recommendation functionality to easily be reused in other applications. Plugin



development also ensures that the algorithm is created in as general a scope as possible,

abstracting the underlying environment-specific implementation problems from the

design of the prediction engine.

3.2 Recommendation Algorithms

Recommendation and preference algorithms have become a commonplace on the

internet. Heavily utilized on e-commerce websites, such as Amazon.com and Netflix,

recommendation algorithms serve millions of internet users with product

recommendations and suggestions daily (Linden, Smith, & York, 2003). Additionally,

many heavily trafficked online social networks and tools revolve around delivering useful

and interesting personalized content to users through preference algorithms (Kautz,

Selman, & Shah, 1997). A variety of collaborative filtering algorithms provide the basis

behind most modern recommendation systems in practice.

Collaborative filtering algorithms come in many different flavors, largely customized for

each application, but all revolving around a fundamental principle: those who have

agreed in the past will agree in the future. Without this basic assumption, aggregated

data both actively volunteered by users and passively collected through browsing patterns

would be useless in the prediction of unknown preferences. In collaborative filtering

systems, users collaborate through offering their own data to the greater network. In

exchange, users receive more accurate personalized recommendations and improve the

overall quality and utility of the recommendation system.

In the past decade, collaborative filtering algorithms have been the topic of much

research. Efficiency has been one area of focus, leading to the formalization of constant
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time collaborative filtering algorithms (Goldberg, Roeder, Gupta, & Perkins, 2001).

Additionally hybridized recommendation algorithms have been formed, combining

techniques in collaborative filtering, webpage ranking methodology, and traditional

neural networks to dramatically improve accuracy of results and performance (Teow &

Katabi, 2006). Modifications to traditional collaborative filtering methods are very

widespread and many more varieties are publicly available. The appropriate and most

accurate algorithm depends entirely on the application and its requirements.

3.2.1 Algorithm Requirements

Several criteria were used to choose an appropriate collaborative filtering algorithm.

* Ease of implementation and maintenance - The algorithm should be intuitive,

enabling the average engineer to fully understand its inner workings.

* Quickness and efficiency - The algorithm should be able to produce

recommendations for a user almost instantaneously.

* Initial prediction requirements - The algorithm should be able to generate useful

recommendations for users with few ratings.

* Accuracy of recommendations - The algorithm should produce relatively accurate

recommendations, but not at the sacrifice of simplicity or speed.

While numerous collaborative filtering algorithms exist, few actually satisfy all four of

the above requirements. Many algorithms are very quick and accurate, but too complex

to be intuitively understood. Additionally, many utilize the basic fundamentals of linear

algebra, but are slow or require large amounts of data to form accurate recommendations.



However, there is a family of extremely powerful and accurate prediction algorithms

grounded through intuition and computationally inexpensive.

3.2.2 Slope One Collaborative Filtering Algorithms

Slope one prediction algorithms are interesting candidates for real-world prediction

systems, operating on an intuitive assumption of popularity differentials between pairs of

items. Slope one schemes pre-compute the difference between the ratings of two items to

quantify how much one item is preferred to another.

Slope one predictors take a general linear form: f(x) = x + b. The family of algorithms

assumes the predictor's slope is one, estimating only the popularity differential (the

predictor's intercept b) to predict the user's rating of a new item. The slope one schemes

estimate the predictor's intercept as the average popularity differential of two items.

Essentially, the schemes take the average difference between the ratings of the item Y,

whose rating we would like to predict, and the ratings of another item X, whose rating we

know. Therefore, to predict a user's rating for an item Y, the popularity differential

between item Y and an item X, previously rated by the user, is added to the user's rating

for item X.

To provide a quantitative example of the intuition behind slope one algorithms, consider

two users, A and B, and two items, X and Y. Suppose user A has supplied ratings of 1 and

2.5 for items X and Y respectively, as shown in Figure 3. User B, however, has only

supplied a single rating of 2 for item X. It is clear from this situation that item X is rated

more than item Y by 2 - 1 = 1.5 points. From this information and the rating of item X



from user B, it is natural to predict that the unknown rating of user B for item Y will be

2 + 1.5 = 3.5 points.

Item X Item Y
User A 1 2.5
User B 2 ?

Figure 3: User ratings for prediction example.

Slope one algorithms differ in how they form an overall prediction of an item's rating

from the aggregate predictions formed using the average popularity differentials of the

item and all other items that the user has rated. The Basic Slope One algorithm simply

forms a single prediction by averaging the predicted ratings that it computes for each of

the user's rated items. A more accurate approach, the Weighted Slope One algorithm

takes the weighted average of the predicted ratings, ensuring that individual predictions

with more robust popularity differentials have a greater influence over the final value.

As slope one algorithms generate a prediction of a user's rating for an item, forming

recommendations requires that predictions be generated for all of a user's unrated items.

Items with the highest predicted ratings would form the recommendation for the user.

A performance assessment of slope one algorithms demonstrates the power of the

schemes in comparison to other common collaborative filtering algorithms (Lemire &

Maclachlan, 2005). The research tested a set of standardized benchmarks using two test

datasets from EachMovie and Movielens. EachMovie, a dataset maintained by Compaq

Research, and Movielens, a similar dataset from the Grouplens Research Group at the

University of Minnesota, present large volumes of historical data collected from movie

rating websites. Benchmarks were conducted on a training set of 50,000 ratings and a



test set of over 100,000 ratings. The team computed the All But One Mean Average

Error (MAE) on predicted ratings from three slope one algorithms, as well as two simple

collaborative filtering schemes (Per-User Average and Bias from Mean) and two more

advanced techniques (Adjusted Cosine Item-Based and Pearson). The analysis indicates

that slope one algorithms are much more accurate than simple techniques and are very

competitive with much more complex collaborative filtering schemes (Figure 4).

Scheme EachMovie Movielens
Bi-Polar Slope One 0.194 0.188

Weighted Slope One 0.198 0.188
Slope One 0.200 0.188

Bias From Mean 0.203 0.191
Per User Average 0.231 0.208

Adjusted Cosine Item-Based 0.209 0.198
Pearson 0.194 0.190

Figure 4: MAE performance comparison of collaborative filtering schemes.

The intuitive nature, quick performance, and accuracy of slope one algorithms satisfy the

project's criteria perfectly. In addition, slope one schemes require only a small subset of

ratings from initial users in order to generate useful predictions. While the simplicity of

slope one predictors could potentially lead to less accurate results, it also allows for

developers to easily understand the system and comfortably integrate future changes to

enhance accuracy.

3.3 Building a Recommendation Plugin

A Weighted Slope One collaborative filtering algorithm was implemented within a Ruby

on Rails plugin. Designed to extend the functionality of a model which handles item

ratings, the recommendation plugin defines five class variables and implements five class

methods in order to provide suggestions. Of the class variables, three are used simply to



store configuration information for the plugin while the other two serve as persistent data

structures necessary for generating predictions. Four class methods of the

recommendation plugin are responsible for updating these core data structures, while a

single method utilizes this information to generate recommendations for a given user.

3.3.1 Design and Underlying Assumptions

The recommendation plugin is designed to extend the functionality of models which store

rating information. The plugin operates under the assumption that it extends the

functionality of a model, which stores a rating for an item provided by a user. The rating

is assumed to be a field within the model and the item and user are assumed to be

associated with the model through standard Ruby on Rails conventions (Figure 5).

Figure 5: Supporting model structure assumed by the recommendation plugin.

The plugin contains a set of default assumptions for how to access the ratings field and

information about the associated models, but allows custom values to be declared for the

names of the rating, user, and item models as well as the name of the integer field storing

item ratings.



To ease integration into complex systems, the recommendation plugin does not require

any modification to the data storage mechanism. While the plugin does require persistent

information to generate recommendations quickly, this data is computed when the web

application is started, stored in memory, and updated only by necessity when ratings are

created, updated, or destroyed. This capability is the direct result of utilizing a slope one

scheme.

3.3.2 Class Variables

The recommendation plugin uses five class variables: three to store configuration

information and two to store necessary prediction data.

The three configuration variables store:

1. The rating attribute of the model to predict;

2. The name of the associated model for the items being rated; and,

3. The name of the associated model for the users rating the items.

These three attributes provide enough configuration information for the recommendation

algorithm to have an understanding of the environment that it is operating in, generally

described in Figure 5.

The remaining two class variables store the information necessary to generate

predictions. Both variables take the same form: matrices with both a row and column for

every item in the system. Therefore, each cell of the matrices is correlated with two

items: one associated with the row of the cell and the other associated with the column of

the cell.



The Differential Ratings Matrix

The first of these item-to-item matrices, the differential ratings matrix, stores the total

difference of all ratings between two items. In other words, for each user that has rated a

set of two items, the difference between the ratings for these two items is summed and

stored in the cell associated with the pair of items.

As there are actually two cells in the differential matrix associated with any pair of items,

the upper right triangle of the matrix is symmetrical to the negative of the bottom left

triangle. In addition, diagonal of the matrix represents the rating differential between an

item and itself, which is always zero.

The Frequency Matrix

The second item-to-item matrix used by the recommendation plugin is the frequency

matrix. The frequency matrix stores the number of differentials computed for a pair of

items. Stated simply, the frequency matrix can be thought of as the number of users who

have provided ratings for two items, represented by the row and column of the matrix.

Similarly to the differential ratings matrix, there are two cells of the frequency matrix for

any pair of unique items. Thus, the frequency matrix is naturally symmetric. Further, the

values on the diagonal of the frequency matrix, cells which reference two instances of the

same item, represent the total number of users whohave rated the item.

3.3.3 Class Methods

The recommendation plugin uses five class methods: four to update the differential

ratings and frequency matrices and one to generate predictions for a given user.



Update Methods

Four class methods update the differential ratings matrix and the frequency matrix. The

four methods handle updating the matrices under specific circumstances, including:

1. Initial construction of the differential ratings and frequencies;

2. Updating the differential ratings and frequencies when a user adds a rating for a

new item;

3. Updating the differential ratings when a user modifies the existing rating for an

item to a new value; and,

4. Updating the differential ratings and frequencies when a user destroys the rating

for an item.

At the application's startup, the recommendation plugin automatically runs the method to

create the initial matrices. To ensure that the matrices are kept up to date with the current

state of the ratings database, the recommendation algorithm observes when ratings are

created, modified, or destroyed and executes the appropriate action in order to update the

matrices to the current state of the database.

Recommendation Method

A single method utilizes the differential ratings and frequency matrices to generate

predictions for a given user, applying the Weighted Slope One algorithm. Initially, the

method generates an array of predicted ratings for every unrated items utilizing the

equation in Figure 6. The equation states that the prediction for an unknown item uj is

found by summing the scaled predictions from every item ui in the set of rated items I and

dividing by the total frequency of ui and each ui.



u() = diff (ui, uj) + freq(ui, uj) x rating(ui)

Z) EI freq(ui, uj)

Figure 6: Prediction equation used by the recommendation function.

The recommendation function then sorts the unrated items from highest predicted rating

to lowest and returns the resulting list of items and predicted ratings. The ordered list of

items corresponds to the recommendations for the user, sorted from best to worst.

3.4 Integration into ClassRank

In order to implement the recommendation plugin into ClassRank, the Subject Evaluation

model was updated to include the functionality. After the model could generate subject

recommendations utilizing the plugin, ClassRank's interface was updated to allow

qualified students to utilize the functionality.

3.4.1 Updating the Subject Evaluation model

Integrating the recommendation plugin into the Subject Evaluation model is

accomplished through a single declaration. The declaration initializes the plugin and

passes along all necessary configuration information. The Subject Evaluation model

serves as the Rating model for the plugin, while the Subject model represents the

associated items and the Student model corresponds to associated users, shown in Figure

5. As the recommendation plugin supports predictions for only a single rating, the

overall rating provided in the subject evaluation forms the basis behind ClassRank's

recommendations, representing the rating field for the plugin.



3.4.2 Providing a Subject Recommendation Interface

A new controller was added to ClassRank in order to construct an interface for student's

to access subject recommendations. The Subject Recommendations controller has only a

single responsibility: display the list of subject recommendations for the student currently

logged into ClassRank. If a student has evaluated at least three subjects, a link is

presented to generate and view recommended subjects. No option is presented to

students who have evaluated less than three subjects, as recommendations are likely to be

inaccurate and inappropriate with such a limited training set of data.

A screenshot of ClassRank's recommendation interface is included in Appendix A.



4 Results and Discussion

Throughout the course of this research three major milestones were accomplished:

1. The ClassRank web application was conceptualized and fully developed,

providing a simple web-based system for M.I.T. undergraduate students to

evaluate subjects through a basic set of ratings and browse the past evaluations of

subjects;

2. A reusable Ruby on Rails plugin was created to extend the functionality of a

model to form personalized item recommendations to users; and,

3. The recommendation plugin was successfully integrated into the ClassRank

system with the addition of an interface for students to browse subject

recommendations.

Through accomplishing these goals, ClassRank demonstrates the power of new web

frameworks, intuitive collaborative filtering algorithms, and agile development practices.

Ideally, ClassRank will compliment the traditional resources used by students to select

subjects with unique and unbiased subject recommendations based on a large historical

dataset.

4.1 ClassRank

ClassRank was designed to serve as a solid platform for future enhancements and

upgrades. Unlike the current web-based subject evaluation tools available to M.I.T.

students, ClassRank stores just enough data to ensure utility to students and extend the

platform with unique value-added tools. ClassRank's design adheres to the MVC



framework and utilizes Ruby on Rails to force agile development practices. As a result,

developers unfamiliar with ClassRank will easily be able to gain a full understanding of

the application and easily continue to enhance the system's core functionality.

4.2 Recommendation Plugin

In a sea of potential candidates, the Weighted Slope One collaborative filtering algorithm

perfectly satisfied the following four criteria:

* The algorithm was easy to implement and grounded on intuition, enabling

developers to easily understand the functionality and inner workings of the

recommendation plugin;

* The algorithm is able to produce recommendations for a user very quickly,

updating the data used to generate predictions only when needed and forming

real-time predictions without heavy computation;

* The algorithm is able to generate useful and accurate recommendations for users

with few ratings; and,

* The algorithm is known to produce very accurate recommendations, competitive

with much more complex and intricate predictions schemes.

As a result of choosing the Weighted Slope One algorithm, encapsulating

recommendation functionality within a Ruby on Rails plugin was straight forward. The

plugin fully encapsulates and isolates the recommendation functionality from the

underlying application, requires little configuration, has no external dependencies, and

assumes it is being deployed in a very general environment to ensure compatibility with a

wide variety of systems.



4.3 Prediction Accuracy

Unfortunately, it is extremely difficult to judge the accuracy of recommendations without

an extensive amount of real usage data and feedback. Therefore, the accuracy of subject

recommendations will be unknown until ClassRank has received a significant amount of

use and user feedback. Still, the intuition behind the Slope One algorithm suggests that

recommendations will be innately accurate to some degree.

Integrating a generalized test and benchmarking suite into the recommendation plugin

would be a very valuable enhancement and is detailed further in Section 6.

4.4 Integration of Subject Recommendation into ClassRank

The design of the recommendation plugin allowed subject recommendation to be easily

integrated into the core ClassRank infrastructure. Therefore, only a single line of code

was necessary in order to generate subject recommendations. To provide an interface for

users to view these recommendations an additional controller was added to ClassRank.

The ease of the integration process demonstrates the power and efficiency of the Ruby on

Rails web framework and its underlying plugin capabilities.

4.5 Future Deployment

While ClassRank is fully functional, additional work still needs to be completed before

the tool is released to the student body. Before a production version of the application is

deployed, a number of enhancements are necessary to ensure the system can function

with little or no maintenance for extended periods of time.



Additionally, after the tool is deployed, it must be marketed to the student body and

attract a significant number of subject evaluations before accurate recommendations can

be provided to students. This task will require significant planning and flawless

execution. As existing subject evaluation tools become web-based, it will become harder

and harder to convince students to complete additional evaluations.

As a short term solution, importing subject evaluation data from existing tools into the

ClassRank system would provide some incentive for students to utilize the application, as

it would aggregate this data from multiple courses into a central location. While

recommendations could not be constructed from this existing data, the functionality could

be included at a later time as students begin to utilize ClassRank when researching

subjects and, hopefully, begin to evaluate subjects on the platform as well.

Future work to the ClassRank web application is discussed in detail in Section 6.



5 Conclusion

In conclusion, ClassRank demonstrates a powerful new way for students to receive input

on potential subjects of interest. Through combining subject evaluations over a large

historical timeframe, the tool will supplement the traditional resources that students

utilize to select subjects: course specific evaluations, faculty advisors, and peers.

In large part, ClassRank's utility will be derived from its subject recommendation

capabilities, provided through a Ruby on Rails plugin. As the design of the

recommendation plugin is very modular, enhancing the plugin to provide increased

accuracy or respond to user feedback is straightforward and guaranteed not to negatively

affect the underlying ClassRank application.

After some additional work to the application's deployment infrastructure and a

campaign to market the tool to the student body, ClassRank will provide students with a

unique and invaluable resource to utilize when selecting subjects.





6 Future Work

As ClassRank was developed as an initial prototype, before the application can be

deployed to the student body, additional enhancements and fixes are required. The

recommendation plugin also presents many interesting opportunities for future expansion

and growth.

6.1 Deploying ClassRank

Before the ClassRank system can be deployed to the student body, work needs to be

completed in four areas: marketing, data population, long-term deployment issues, and

testing.

6.1.1 Marketing to Student Body

In order to attract students to ClassRank, the tool must be marketed effectively to

undergraduate students. Initially, this may be difficult, as other course-specific subject

evaluations have moved onto web platforms and students may be reluctant or

unmotivated to evaluate subjects multiple times. In addition, subject recommendations

will be of little utility with a small initial dataset and unlikely to drive students towards

the application.

Work needs to be completed to determine the best way to attract students to ClassRank,

either by pre-populating subject evaluation data in some way or introducing new

functionality that will attract users without requiring more than a small dataset. In many

ways, this problem will be much more challenging than the technical hurdles presented

throughout ClassRank's development.



6.1.2 Populating Subject Information

Currently, subject information is loaded into ClassRank through parsing a manually

created CSV (Comma Separated Value) file. If ClassRank is to dynamically exist within

the M.I.T. environment, it must have a system to update the subjects within ClassRank in

a completely automated fashion. One solution might be to scrape the current subject

listings on M.I.T.'s webpage at the beginning of each term. Ideally, ClassRank should

automatically update subject listings, requiring as little maintenence as possible.

6.1.3 Long Term Deployment

Significant work is needed to prepare ClassRank for long-term deployment. Potential

issues could arise as past and present students could have the same Kerberos

identification, which would result in the current student receiving a list of evaluations by

a past student. In addition, ClassRank should verify the current user is, in fact, an

undergraduate student, as currently it authorizes any member of the M.I.T. community

with a valid certificate.

6.1.4 Testing

Finally, ClassRank could utilize the built in test capabilities of Ruby on Rails much more

extensively to ensure that the platform remains stable during future upgrades. Extensive

testing is necessary to ensure the production release of ClassRank remains at a very high

quality.



6.2 Recommendation Plugin

There are a number of ways in which to enhance the functionality of the recommendation

plugin. In general, most areas would adapt the current algorithm to be much more

dynamic.

6.2.1 Receiving and Adopting to User Feedback

Implementing a feedback system into the recommendation plugin would be extremely

valuable. This could be done in a number of ways, the easiest allowing users to exclude

some unrated items from their recommendations or to disregard some rated items from

factoring into their recommendations.

Much more complex systems could also be designed into the plugin, perhaps taking

feedback on the effectiveness of the algorithms recommendations. The plugin could then

use this user feedback to optimize the prediction algorithm on an individual basis.

6.2.2 Abstracting Recommendation Functionality

Many variants of slope one prediction schemes exist, all relying on the same underlying

data structures implemented in the plugin. Slope One algorithms differ only in how they

form the predicted rating of an item for a user, therefore allowing the recommendation

plugin to implement alternative schemes by rewriting the single function of the plugin

that returns recommendations.

These enhancements could be taken a step further and provide an abstraction for the

recommendation method altogether. Generalizing this portion of the recommendation

functionality would allow new algorithms to be easily added to and utilized by the plugin.



Developers could then swap between multiple recommendation engines by simply

passing a configuration option to the plugin

6.2.3 Testing Accuracy

Another area of possible work would be designing a test suite for the recommendation

plugin. One possible implementation might have the plugin automatically divide the data

into training and test sets and provide an interface to view the accuracy of the predictions.

This would allow systems utilizing the recommendation plugin to view the accuracy of

the algorithm on real-data from their systems.
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Appendix A: ClassRank Screenshots

When first accessing ClassRank, students are presented with a list of their past

evaluations (Figure 7).

Your Subject Evaluations

Figure 7: ClassRank screenshot of student evaluations.

7.02: Introduction to Experimentat BioLogy and Communicat
ii





To create a new evaluation, students submit a simple form with four ratings and a short

comment for completed subject (Figure 8).

New S - S

Figure 8: ClassRank screenshot of new evaluation.





Recommendations are presented to students as a list of subjects. ClassRank also displays

the predicted rating of the student for each subject (Figure 9).

7.013/7.015/7.012: Introductory BioLoy
Predicted overall rating.
Predicted overall rating.

Figure 9: ClassRank screenshot of subject recommendations.

15.535: Business Anaysis Using FinanciaL Statements
Predicted overall rating.


