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Abstract

Sensor-networks can today measure physical phenomena at spatial and temporal
scales that were not achievable earlier, and have shown promise in monitoring the
environment, structures, agricultural fields and so on. A key challenge in sensor-
networks is the coordination of four actions across the network: measurement (sens-
ing), communication, motion and computation. The term coverage is applied to the
central question of how well a sensor-network senses some phenomenon to make infer-
ences. More formally, a coverage problem involves finding an arrangement of sensors
that optimizes a coverage metric.

In this thesis we examine coverage in the context of three sensing modalities. The
literature on the topic has thus far focused largely on coverage problems with the first
modality: static event-detection sensors, which detect purely binary events in their
immediate vicinity based on thresholds. However, coverage problems for sensors which
measure physical quantities like temperature, pressure, chemical concentrations, light
intensity and so on in a network configuration have received limited attention in the
literature. We refer to this second modality of sensors as estimation sensors; local
estimates from such sensors can be used to reconstruct a field. Third, there has been
recent interest in deploying sensors on mobile platforms. Mobility has the effect of
increasing the effectiveness of sensing actions. We further classify sensor mobility into
incidental and intentional motion. Incidentally mobile sensors move passively under
the influence of the environment, for instance, a floating sensor drifting in the sea.
We define intentional mobility as the ability to control the location and trajectory of
the sensor, for example by mounting it on a mobile robot.

We build our analysis on a series of cases. We first analyze coverage and connec-
tivity of a network of floating sensors in rivers using simulations and experimental
data, and give guidelines for sensor-network design. Second, we examine intentional
mobility and detection sensors. We examine the problem of covering indoor and out-
door pathways with reconfigurable camera sensor-networks. We propose and validate
an empirical model for detection behavior of cameras. We propose a distributed al-
gorithm for reconfiguring locations of cameras to maximize detection performance.
Finally, we examine more general strategies for the placement of estimation sensors



and ask when and where to take samples in order to estimate an unknown spatio-
temporal field with tolerable estimation errors. We discuss various classes of error-
tolerant sensor arrangements for trigonometric polynomial fields.

Thesis Supervisor: Sanjay E. Sarma
Title: Associate Professor of Mechanical Engineering

Thesis Supervisor: Daniela Rus
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Wireless sensor networks have revolutionized the way we can collect information about

the physical world. Advances in three key technologies, integrated circuits, wireless

communications, and micro and nano-mechanical systems in the last two decades

lead to the advent of cheap, low-power and compact wireless sensors. These sensors

have shown great promise in monitoring urban and natural environments, structures,

agricultural fields, industries, and so on by providing data at spatial and temporal

scales that were not achievable before. For example, in structural monitoring appli-

cations, wireless sensors regularly monitor the health of structures such as buildings

and bridges, and can warn of impending failures. As another example, sensors fixed

at traffic signals combined with sensors on automobiles can provide real-time update

on traffic conditions in urban environments. In each application, sensors provide

real-time mapping of some aspects of the physical world.

Each sensor in a sensor-network embodies three abilities: sensing, communication

and computation. If a sensor is mounted on a mobile agent such as a robot, an animal

or a float in water, it has yet a yet another ability, mobility. In the cost, size and

power-regime of sensors that we consider suitable for sensor-networks applications,

a sensor is heavily constrained in each of its abilities. Sensors have limited battery-

life, memory, computational capacity, and sensing resolution. They are also prone to

failures. Power and adverse mobility patterns heavily limit communication ability.

The main challenge in a sensor-network is the coordination of sensors' limited abilities



across the network for the desired application. However, despite these limitations,

sensor-networks have demonstrated success in quite a few applications. Since its

emergence towards the end of the last century, sensor-networks has been an active

area of research and still in its early stage.

A central question in sensor-networks is how well sensors can sense and map some

physical phenomenon. For example, in structural monitoring applications, we may

ask how many sensors we may need and where we mount them on a structure or how

reliable are the overall inferences about the sensors' measurements. It seems that one

configuration might be better over the other configuration of the sensors in the sense

of sensing quality. The term coverage problems applies to the class of problems that

implicitly tries to address these questions. More formally, a coverage problem involves

formulating an overall coverage metric based on an individual sensor's behavior and

optimizing it over different configurations. This thesis addresses coverage problems

in sensor networks with special emphasis on mobile sensing.

1.1 Problems addressed in this Thesis

The overall coverage metric depends on an individual sensor's sensing behavior, which

in turn depends on the kind of sensors. The literature on coverage problems thus far

has focused on static sensors that detect purely binary events in their immediate

vicinity based on thresholds. It is possible to associate a spatial sensing-performance

fanction with each sensor. For example, some sensors can detect the presence of an

event only within a certain range. The sensing-performance function in this case can

be a step function that is 1 over the circular disc of radius equal to the range and 0 ev-

erywhere else. This model is known as the disc model of coverage in the literature. In

yet another example, some sensors can have an explicit sensing performance-function

in which performance decreases as a function of distance. We call this type of sensors

event-detection sensors. Apart from event-detection sensors, there is another type

of sensors in which sensors measure physical quantities like temperature, pressure,

chemical concentrations, light intensity and so on in a network configuration. We



refer to this type of sensors as estimation sensors. In estimation applications, local

estimates are used to reconstruct the spatio-temporal field of the unknown physical

quantity. Coverage problems for such sensors have received limited attention in the

literature. In this thesis, we address coverage problems for both event-detection and

estimation sensors.

Recently, there has been great interest in deploying sensors on mobile platforms

such as robots, floats in water, animals, and cars. Mobility adds another degree

of freedom in coverage problems. It has the effect of increasing the effectiveness of

sensing actions and can significantly alter the definition of the coverage metric. For

example, the coverage of a mobile sensor with the disc nmodel is the area covered by

the sweeping of the disc. We classify sensor mobility into incidental and intentional

motion. Incidentally mobile sensors move passively under the influence of the en-

vironment, for instance, sensors attached to animals or a floating sensor drifting in

the sea. We refer to a sub-class of incidental motion where sensors move under the

influence of natural forces as natural mobility. We define intentional mobility as the

intentional control of the location and trajectory of the sensor. An example is a sensor

mounted on a mobile robot. This thesis addresses the three categories of coverage

problems at the intersection of both mobility models, incidental and intentional, and

both sensor types, detection and estimation. In summary, the problems we address

are:

1. Naturally mobile event-detection sensors in rivers: We address the cov-

erage of floating sensors moving passively in rivers. We consider event-detection

sensors with the disc model. The disc model is also used to miodel comnluni-

cation between two nodes. Two nodes can communicate with each other if the

distance between them is less than the communication range. We analyze the

connectivity of the moving network.

2. Reconfigurable camera-networks: We examine the problem of covering in-

door and outdoor pathways using a reconfigurable camera-network where cam-

eras are intentionally mobile. We also address the problem of modeling the



detection behavior of an individual camera.

3. Sensor arrangement problem: We introduce the sensor arrangement prob-

lem as a kind of coverage problem for the estimation sensors that provide local

sample values of a field of some physical quantity. The samples can be used

to reconstruct the unknown field. Using the sampling theory and estimation

theory, we formulate the coverage metric as the error in the field reconstruction.

The error is a function of the geometric arrangement of the sensors. The sensor

arrangement problem addresses the question of when and where to take samples

in order to estimate an unknown spatio-temporal field with tolerable estimation

errors.

The table below shows our categorization of the sensors and mobility types, and

the combinations we address.

Table 1.1: Our categorization of sensors and mobility types and the coverage problems
addressed in this thesis

Mobility Types
Incidental Intentional

Event-detection Coverage and connectivity of Reconfiguring a network of
a network of floating sensors cameras to cover pathways
in rivers

Estimation Sensor Arrangement Problem

1.2 Summary of our Contributions

A summary of our contributions for each coverage problem is as follows.

1. Naturally-mobile event-detection sensors in rivers: We analyze coverage

and connectivity under the disc model of a network of floating detection-sensors

moving passively in rivers. Our work appears to be one of the first efforts

to study the impact of natural mobility on coverage and connectivity. We

analyze coverage and connectivity by simulating floating-sensor trajectories in



two situations, 1) an ideal-channel river for which we propose a natural mobility

model based on hydrodynamics literature, 2) a mesh model obtained using GPS

location data for drifting floats in St. Clair River in Michigan at two sites.

We assume that the sensors are initially placed uniformly randomly across the

transverse cross-section of the river. Here is a summary of our observations.

" Coverage: Our choice of the coverage metric is the area swept by the

discs around the floating sensors. We show results on coverage versus time

for different numbers of nodes. We show that if the number of nodes is

large enough, coverage relates to the cross-sectional average of the surface

velocity.

* Connectivity: We measure network-connectivity in terms of the size of

the largest connected cluster (LCC). We divide the river into three zones

(or more depending on the width of the river) and analyze connectivity in

each zone. We observe that connectivity in the central zone sustains for

a long duration whereas connectivity in side zones decreases rapidly over

time.

In each case, we provide analysis of how coverage and connectivity depends on

motion parameters in the limiting sense.

2. Reconfigurable camera-networks: The coverage problem involving detection-

sensors with spatial sensing-performance functions is formulated as the loca-

tional optimization problem in the literature [14], [69], [51]. The Lloyd's descent

algorithm yields a locally optimal solution to the locational optimization prob-

lem. Intentionally mobile sensors can emulate Lloyd's descent in a distributed

way and provide a locally optimal solution to the coverage problem [14]. The

work so far deals with the sensors that exhibit identical behavior everywhere.

We consider a class of sensors for which the sensing-performance function is

location dependent. A camera is an example of such sensors. We formulate

the coverage problem for such sensors as a new type of locational optimization

problem. We propose a modified form of the Lloyd's descent algorithm and



prove that it guarantees convergence to the local optimal solution. As an appli-

cation we consider the problem of covering indoor and outdoor pathways with

a network of intentionally-mobile Cyclops cameras. We propose an empirical

model for the sensing-performance function of the camera, which is location

dependent. We present the simulation and experimental results.

3. Sensor arrangement problem: In this thesis, we restrict our work to the

fields that are modeled as a linear combination of a set of known basis functions.

We assume that the sensor measurements are corrupted with additive noise.

In this setting, the minimum variance unbiased estimator (MVUE) yields the

optimal mean squared error (MSE) for given sample values over all possible

estimators [48]. We choose the MSE corresponding to the MVUE as the error

metric for the sensor arrangement problem.

O(ur approach is to characterize different classes of sensor arrangements and to

understand the circumstances under which the MSE satisfies the error tolerance

limit. We refer to these classes of arrangements as Error Tolerant Arrange-

nment Classes or ETAC's. In this work we discuss different types of ETAC's for

fields that are modeled as 2D trigonometric polynomials: regular grid sensor

arrangements, A-dense sensor arrangements, incrementally constructed sensor

arrangements and random sensor arrangements. With a knowledge of the na-

ture of ETAC's we will have articulated constraints for placing sensors in time

and space; furthermore, by identifying possible sampling locations in advance,

we will also have simplified the planning of the motion of mobile sensors for

that field.

1.3 Structure of this Thesis

In Chapter 2 we provide a brief background on sensor-networks and literature review

on the problems we address. We divide the rest of the thesis into two parts. In Part

I, we discuss two coverage problems related to event-detection sensors. In Part II, we



deal with estimation sensors.

* Part I: In Chapter 3, we discuss the coverage and connectivity problems in a

network of floating sensors in rivers. In Chapter 4, we deal with the problem

of covering indoor and outdoor pathways using a network of reconfigurable

cameras.

* Part II: We address the sensor arrangement problem for the estimation sensors

in this part of the thesis. In Chapter 5, we briefly review the relevant results

from frame theory and nonuniform sampling. In Chapter 6, we formally define

the sensor arrangement problem and outline our approach. We then discuss a

few classes of error-tolerant sensor arrangements for trigonometric polynomials.

In Chapter 7, we formulate a couple of optimization problems related to mobility

of estimation sensors.

We summarize our contributions in Chapter 8 and outline future work.





Chapter 2

Literature Review

There has been a flurry of papers published on sensor networks in the last decade.

Sensor networks have several aspects and providing an overview of these is a mon-

umental task. In this chapter, we attempt to provide a quick overview of sensor

networks and its various aspects, and present a brief review of work related to the

problems we address in this thesis. The chapter is organized as follows:

Organization: In Section 2.1, we provide an overview of sensor networks including

their applications and describe differences with traditional networks. In Section 2.2,

we introduce coverage problems in sensor networks. In the same section, we provide

our categorizations of sensor types and sensor mobility. The problems we address

in this thesis are organized around these categorizations. Subsequently we present a

review of existing literature on the coverage problems addressed in this thesis.

2.1 Sensor Networks

Sensor networks came into prevalence in the 1990's. This was enabled by the con-

vergence of three key technologies: integrated circuits, wireless communications and

micro-electro mechanical systems (MEMS). Advances in each of these areas led to

the development of cheap, low-power and compact sensors, also referred to as sensor

nodes or simply nodes. Each node has one or more sensors along with computation and



communication capabilities. Early papers in this area, e.g., [23], [66], [47] provided

future application scenarios, emphasized the paradigm shift beyond the Internet, put

forward sensor network challenges and proposed early solutions. Since then the area

of sensor networks has been an active area of research with many open questions. [2]

is a comprehensive survey article that discusses applications, factors influencing sen-

sor networks design and contemporary efforts. [89], [67], [50] are examples of books

entirely dedicated to this subject.

2.1.1 What is a sensor network?

A sensor network is formed by a group of autonomous sensor nodes that coordinate

among themselves through networking to apply themselves on a larger sensing task.

Each sensor has an ability to perform low-power signal processing, computation and

low-power wireless networking [66]. These nodes differ significantly from traditional

sensors. In the traditional sensor paradigm, sensors tended to be very precise, expen-

sive, bulky, hence very few in numbers, tethered to the base station using wires and

deployed carefully. Much of the processing is done centrally and there is no protection

against sensor failure. Modern sensors are viewed to be cheap, compact, less precise

but can be deployed in a large numbers. Wireless networking provides the ability for

sensors to coordinate among themselves. Sensors are prone to failures due to power

constraints. These fundamental changes in operational settings have not only opened

up avenues for several potential applications but also need to address new challenges.

A sensor has three key abilities, sensing, communication and computation. There

is a range of open problems in each of these areas as well as at the intersections of

these. Sometimes a sensor has an additional ability, mobility. In some applications,

mobility provides an alternative to having a large number of static sensors, whereas

in some applications, the environment itself is dynamic and makes sensors move.

Examples include sensors moving with water, wind currents, sensors attached to

humans, animals, robots, etc. This opens a new set of challenges. In this thesis, we

mainly address the problems at the intersection of two abilities, sensing and mobility.



2.1.2 Applications

Sensor networks have shown a great promise in monitoring events by providing mea-

surements at scales that was not possible with traditional sensors. This has enabled

a wide range of applications in domains such as military, health, urban and natural

environments, agriculture, industries, civil infrastructures. It is seen as a great tool

to advance research in other scientific communities such as geology, biology, ecol-

ogy. Below we cite a few examples from recent deployments in different application

domains.

* Habitat monitoring: In two deployments, first 32 and then 150 UC Berkeley

sensor motes, known as mica motes were deployed on Great Duck Island, off

Maine coast, to monitor seabird nesting and behavior. Motes formed an ad hoc

network among themselves to upload data every few minutes to a few motes

who had access to the Internet. The data on temperature, humidity and local

images could be remotely seen live on the Internet. For details, we refer readers

to [55] and [75]. More than 100 nodes were deployed as a part of the Extensible

Sensing System (ESS) at the University of California James Reserve in the San

Jacinto Mountains to monitor animal presence. Micro-climate data consisting

of sunlight, temperature, humidity, air pressure was collected above and below

the ground level [76]. Other examples of research efforts related to habitat

monitoring applications are [5] and [65].

* Environmental monitoring: In [19] and [88], the authors consider deployment

of a network of a few static sensors and mobile robotic boats equipped with

sensors in a lake to study growth of micro-organisms. In [88], the authors report

on experimental results in sampling temperature and chlorophyll concentration

levels in a lake. Other examples of research efforts related to environmental

monitoring applications are [1], [65] and [73].

* Structural monitoring: A wireless sensor system called Wisden consisting of vi-

bration sensors was deployed on a seismic test structure to test reliable recovery

of structural vibration data [63], [86].



* Agriculture: 65 nodes were deployed in a wine grape vineyard, for 6 months

to collect with agricultural significance [6]. In vineyard low temperatures can

significantly damage the crop. In the past only a single measurement station

was used although local temperatures vary considerably. The dense multi-hop

sensor network was shown to reliably collect data. In [8], the idea of using

humans, animals operating in the vineyard as data mules carrying sensors was

proposed. The authors, in agricultural settings, suggest the need for carrying

our human-centered research.

* Underwater applications: Water bodies including oceans, rivers and lakes con-

stitute 70% of ocean sampling. Monitoring these systems manually is virtually

impossible [82]. An underwater sensor network platform consisting of static

sensors, Aquaflecks and mobile nodes, Starbug and Amour was developed in

[82] for long-term monitoring of coral reefs and fisheries. Optical and acoustic

networking protocol are presented for underwater communications. A mobile

sensor network consisting of five spray gliders and ten Slocum gliders was de-

ployed in Monterey Bay to collect data based on an adaptive data sampling

strategy [52].

* Traffic monitoring: A traffic surveillance system consisting of a wireless sensor

network and access point was proposed in [11]. Traffic-Dot node proposed in this

system consists of a magnetometer sensor to detect vehicles and MICA2MOTE,

a mote in the family of Berkeley motes. CarTel is a distributed sensor comput-

ing system designed to process data from sensors attached to mobile units such

as automobiles [45]. In addition to the obvious application of road traffic mon-

itoring, CarTel is also seen useful in environmental monitoring using pollution

sensors, civil infrastructure monitoring, geo-imaging.

2.1.3 Differences with Traditional Network Design

Sensor networks were seen as an answer to the question, what next beyond personal

computers and the Internet [47], [23]. Although lessons learnt from the Internet and



mobile network design are applicable, sensor networks present some unique challenges

[23] which demand different design paradigms. We summarize a few of the differences

compared with the traditional network design below [23], [2].

* The sheer number of sensor nodes deployed without any control naturally poses

scalability challenges.

* Sensors are limited in power, computational capacity and memory.

* Sensors are prone to failure.

* Topology of the network keeps changing frequently because of sensor failures or

mobility of nodes.

* Individual sensors may have IDs but the overall interest is in global identifica-

tion.

* Sensor nodes mainly use broadcast communication paradigm as opposed to

point-to-point communications.

These factors influence the design of a sensor network demanding re-thinking of

conventional algorithms.

2.2 Coverage Problems in Sensor Networks

The main challenge in sensor networks is to coordinate four abilities, sensing, corm-

munication, computation and mobility, across the nodes for sensing a phenomenon.

This leads to a flurry of problems pertaining to the individual ability as well as the

combinations of two or more abilities. This thesis mostly focuses on an issue related

to sensing termed as with emphasis on mobile sensors. A central question in sensing

a how well sensor networks can sense a particular phenomenon. This question relates

to the notion of quality of sensing (QoS) and is addressed under a class of problems

called as coverage problems in sensor networks.



Coverage problems are not unique to the field of sensor networks. They arise

frequently in other areas such as theory of computation, computational geometry and

robotics. In theory of computation, set cover and a related vertex cover problems are

examples of coverage problems. Both minimum set cover and vertex cover problems

are NP-hard [74]. In computational geometry, art gallery problems are examples

coverage problem. The classic art gallery problem involves finding the minimum

number of guards and their locations in an art gallery such that every point in the

gallery is guarded by at least one guard [62]. There are a number of variations on

this problem and optimization version of most of these problems are NP-hard [62],

[72], [80] and [22]. In robotics, the problem of mapping and exploring an unknown

environment using mobile robots is a type of coverage problem. In [26], Gage presents

classification of different types of coverage problems in many-robot systems. A typical

coverage problem in sensor networks involves finding a geometric configuration or an

arrangqcment of sensors that guarantees good QoS. More formally, a coverage problem

involves finding an arrangement that optimizes some coverage metric. This metric is

based on behavior of an individual sensor. In this thesis we address coverage problems

in sensor networks with emphasis on mobile sensors. Through the rest of this chapter

we present a detailed literature review related to the coverage problems we address

in this thesis. First, we provide categorization of sensors into two types based on

sensing functionality.

2.2.1 Sensors Classification

Depending on the applications, sensor networks consist of various types of sensors

such as thermal, visual, infra-red, acoustic, seismic [2]. Some sensors' functionality

involves scanning space around them to detect an event of interest whereas some

sensors simply measure physical quantities locally. Based on this observation we

categorize sensors into two types: event detection and estimation. In event detection,

sensors remotely scan the space around them and detect binary events based on

thresholds. In estimation applications, sensors provide a local measure of a physical

quantity like temperature, pressure, chemical concentrations, light intensity and so



011.

Examples of detection sensors include infra-red sensors, cameras, motion-detection

sensors, etc. In such sensors, detection-ability of sensors degrades with distance. In

formulation of coverage problems related to such sensors, different models have been

proposed to characterize behavior of such sensors [83], [85], [15], [44], [49], [64], etc.

The most simple abstraction is a disc model (see [83], [85], [70], etc.) where a detec-

tion sensor can detect an event within certain range or coverage radius. The coverage

problem in this case amounts to providing geometric coverage with discs centered at

sensor-locations. In another abstraction, an analytic model is to characterize spa-

tial performance of a sensor. This is referred to as a sensing performance function

[15]. For example, in [15], a sensing performance function that is inversely propor-

tional to the distance between the sensor and a point is used. The coverage problem

formulation in case of such sensors is more involved.

In case of estimation sensors, measurements provided by sensors can be used to

reconstruct a field. The quality of estimation depends on the number of sensors, sensor

noise and sensors' location. Given the measurement values and their locations, and

sensor-noise characterization, estimation theory can be used to estimate the unknown

field and find the corresponding estimation error. We think of the coverage problem

in case of such sensors as an inverse of the estimation problem. We wish to find an

arrangement of sensors such that the estimation error being the coverage metric is

minimized.

In this thesis, we address coverage problems for both kinds of sensors with em-

phasis on mobile sensors. In the next section, we provide classification of mobility of

sensors.

2.2.2 Mobility classification

Mobility has become an important aspect of sensor networks owing to advances in

robotics, wireless networks and mobile computing. It has lead to a number of chal-

lenging problems pertaining to the other aspects of sensors, sensing, communication

and computing. We focus on sensing among these.



Networks involving static sensors alone have fixed coverage since nodes' locations

are fixed. In some situations, the number of sensors required to provide guaranteed

coverage may be very high and may lead to higher costs. For example, in monitoring

large domains such as oceans and rivers, the numnber of static sensors required for

monitoring may be very high. In such situations, a few mobile sensors may be neces-

sary and effective. Mobility has the effect of multiplying the number of sensors in the

field. Theoretically, a sensor which can move infinitely fast can be at many places at

one time instance. A sensor moving at some finite velocity effectively enables that

single sensor to act like some finite number of sensors in time-space, enabling what

we refer to as multiplicity. We categorize sensor mobility into two types, incidental

and intentional. We define incidental mobility as a situation in which a sensor does

not have control over its motion. In these situations a sensor moves passively under

the influence of the environment (e.g., sensors moving with water currents and nodes

mounted on animals). We define intentional mobility as a situation in which a sensor

has control over its motion and can actively move to a desired location (e.g., nodes

mounted on mobile robots). The advantage of incidental mobility is that neither

power nor control is an issue because nodes move under the influence of the exter-

nal sources. At the same time, coverage depends on the mobility of nodes. On the

other hand, intentional mobility provides control over nodes' location and may lead

to better coverage but requires effective control strategies and perhaps more power.

In this thesis, we address three coverage problems at the intersection of both

mobility types, incidental and intentional and both detection and estimation sensors.

We reproduce below Table 1.1 from Chapter 1, which summarizes our categorizations

and the coverage problems addressed in this thesis. In what follows, we provide

summary of related work on each coverage problem.



Table 2.1: Our categorization of sensors and mobility types and the coverage problems
addressed in this thesis

Mobility Types
Sensor Types .Incidental Intentional
Event-detection Coverage and connectivity of Reconfiguring a network of

a network of floating sensors cameras to cover pathways
in rivers

Estimation Sensor Arrangement Problem

2.3 Detection Sensors with Disc Coverage Model

Floating in Rivers

In the first problem we address in this thesis, we study a network of floating detection-

sensors in rivers. We assume that each sensor has the disc model for its coverage. We

first present motivation and applications of networks of floating sensors in rivers. Then

we present a summary of related work on coverage problems related to sensors with

the disc-coverage model. The disc model is also used to model network connectivity.

According to this model, two nodes can communicate with each other if the distance

between them is less than the communication range. Thus a node is connected to all

the nodes within a disc of radius equal to the communication range. Due to similarity

of the tools used in the analysis of coverage and connectivity for the disc model, in

this thesis we also analyze the connectivity of a network of floating sensors in rivers.

We therefore provide a brief literature review on connectivity as well.

2.3.1 Motivation for the river application

70% of the earth's surface is covered with large water bodies - rivers, lakes and

oceans. These water bodies stretch over several miles and monitoring at these scales

is virtually impossible. However they provide one of the biggest sources of natural

mobility in terms of water currents. Floating sensor networks have the potential

of providing new levels of automation for monitoring spatio-temporal phenomena in

these domains. These include mapping fields of physical quantities such as temper-



ature, salinity, chemical concentrations. This will assist environmental scientists in

localizing sources of groundwater seepage in rivers, waste-water spills, pollutants, high

nitrogen levels, high vegetation levels, etc. that greatly affect the quality of water

[1, 41, 19, 73]. Furthermore there is huge interest in building hydrodynamic models of

rivers in order to understand the effects of contaminants propagation in public water

intakes [1, 42, 43]. In all these applications the function of anchored buoy sensors is

limited in scale and is less capable of collecting sufficient data to detect local events

or to model flow patterns [42, 43]. The deployment of a network of floating sensors

that move with the flow seems to hold great promise by providing more coverage and

flexibility in data collection.

2.3.2 Coverage and connectivity with respect to a disc model

There is a large body of theoretical work in the area of sensor networks that deals

with coverage and connectivity analysis corresponding to the disc model (e.g. [39,

56, 9, 85, 70, 53]). With the exception of [53], the other works deal with static

sensors that are placed uniformly randomly. In case of static sensors, the coverage

requirement is that every point in the region is covered by at least one sensor. The

connectivity requirement for static sensors is that a large fraction of nodes form a

connected graph. In [70], the connectivity model involves another aspect that each

nodes is on and off with certain probability at some time instant. This can account

for node failures. Other possible connectivity requirements include bounded delay to

send information from a node to any other node or k-connectivity where each node

is connected to at least k nodes at any time [85, 70]. In case of mobile nodes, node

position changes over time and it is possible to consider different types of coverage and

connectivity requirements. For instance, connectivity requirement could be persistent

where all nodes remain connected all the time, or recurrent where nodes connect

within bounded delay. Similarly coverage requirements can be persistent or recurrent.

In [53], coverage is analyzed for nodes mobility where the node distribution remains

uniform and stationary. The analysis is equivalent to the static case. The theoretical

ideas in these earlier efforts are rooted in solutions to the occupancy problems [57].



2.4 Intentionally-mobile Detection Sensors with Util-

ity based Coverage

The second coverage problem that we address in this thesis involves covering 1D

pathways (indoor and outdoor) using a network of intentionally-mobile cameras. Our

approach is to model camera as a detection sensor with utility-based coverage. In this

section, we provide a detailed summary of related work on coverage problems related

to intentionally-mobile detection sensors with coverage modeled as a utility function.

First we motivate why such modeling scheme is advantageous over the disc model.

For some detection sensors, the disc model is not an accurate representation of the

coverage model. According to the disc model, sensor's performance or the guarantee

of event detection is same anywhere within the disc and drops to zero beyond the

disc. Often, in practice, sensor's performance diminishes gradually. In that sense the

disc model may heavily be a conservative estimate of the coverage. In such situations

it is often convenient to represent the coverage as a utility or a sensing performance

function. For example, in case of infra-red sensors, the sensing performance function

could be the probability of detection. Of course, the disc model is a special case where

the sensing performance function has step function like behavior.

Given the coverage model for each sensor as a utility function, it is convenient to

think of the overall coverage problem as optimization of some overall utility metric.

This problem can be formulated as a locational optimization problem. There is a

rich body of literature on locational optimization which has applications for problems

such as facility-location [61]. The solution to this problem is based on the general-

ized Voronoi partitioning and the gradient descent approach starting from the initial

configuration. Based on this approach, Cortes et al. proposed a distributed control

and coordination algorithm to obtain an optimal coverage configuration for mobile

sensor networks starting from the initial configuration [13], [15]. Below we briefly

present their locational optimization formulation for the coverage problem and their

algorithm.



2.4.1 Coverage Problem Formulation

Notation presented in this section is mostly adapted from [15]. Let Q be the convex

region that needs to be covered. Let 0 : Q -+ R+ denote the distribution density

function over the domain. Intuitively this function analytically assigns the importance

measure over the domain. Let P - (pl, p, p- - , P) denote the locations of n mobile

sensors. Each sensor has the utility or the sensing performance function that depends

on the distance between the location of the sensor and the point at which this function

is assessed. Let f : R+ -~ R + denote the sensing performance function. Thus the

sensing performance at point q due to the ith sensor located at point pi is given

by f(I q - pill). This function is assumed to be non-increasing with the distance.

This leads to the Voronoi partitioning of domain Q based on the sensor locations

where each partition corresponds to the region of dominance of the sensor in it. Let

V(P) = {V1, V2, . , V} denote the Voronoi partition of P. Then,

Vi= {q E QlIq- pill < Iq-pll, Vj # i}. (2.1)

Each sensor has influence over the region corresponding to its Voronoi partition. The

overall utility can be formulated as the following location optimization function:

'-v(P) = / f(Iq - Pi I)/(q)dq. (2.2)
i= 1 V

The coverage problem is formulated as finding an optimal configuration of the sensors

maximizes the overall utility.

(p - ,) = arg max Hv(P). (2.3)
(P1,P2," ,Pn)

We use a slightly different convention while defining the sensing performance func-

tion above than in [13]. In [13], the sensing performance function is a non-decreasing

function of the distance. The coverage problem is defined as minimization of the

overall utility function.



2.4.2 Distributed Control and Coordination Algorithm

A gradient descent based iterative approach is proposed in [61] to obtain a solution

the above problem. A special case of the sensing performance function is considered in

[13], [15], where f(llq -pi 1) -Iq -pi |2 . In this case, the centroidal Voronoi partion

yields the optimal solution [61], [15]. The centroidal Voronoi partition corresponds to

the situation when every sensor is located at the centroid of its Voronoi partition. We

will explain this in detail now. Consider the ith node. Assume that the location of

its Voronoi neighbors is kept fixed. Suppose that the location of i is varied within its

Voronoi partition such that the overall utility is maximized. Then it can be shown that

the centroid of the Voronoi partition considering O(q) as the mass density ftnction

maximizes the overall utility. Now for the case of centroidal Voronoi partition, each

sensor is at the centroid of its partition no further improving the overall utility.

Corts et al. translated this idea into a distributed control law [15]. They propose

a distributed continuous-time control law for each sensor given by

-j = -k(pi - Cvi), (2.4)

where Cv denotes the centroid of the Voronoi partition of the ith sensor and k de-

notes the constant gain. The convergence of the algorithm is also proved. The authors

also propose the discrete-time asynchronous version of the control law and prove its

convergence. This work initiated a number of variations that involved obstacles, com-

munication constraints, etc. The algorithm in [15] requires global knowledge of the

distribution density function and in that sense the algorithm is not truly distributed.

Schwager et al. considered a model in which the distributed density fiunction is a

linear combination of a finite set of basis functions. Based on this they proposed a

consensus based distributed algorithm that simultaneously learns the density function

and obtains a coverage solution [69]. Recently, Lekein et al. [51] have considered the

case of non-Euclidean distance metrics. Their solution is to map the non-Euclidean

metric to a near-Euclidean metric using transformations known as Cartograms. They

show that convergence of a control algorithm in the transformed Euclidean space



implies convergence in the original non-Euclidean space. The location-dependent

sensing model that we use can be thought of as a non-Euclidean distance metric and

therefore, in terms of objectives, [51] is closest to our work. The key difference is that

in the Cartograins based approach the transformation requires global knowledge of

the distance metric and density function.

In all these works with the exception of [51] each sensor is assumed to have identical

behavior. In our work we assume that the sensing performance function is learnt based

on local observations.

2.5 Coverage for Estimation Sensors

In the third coverage problem, we deal with estimation sensors. An estimation sensor

provides measurements of physical quantities such as temperature, pressure, humidity,

chemnical concentration. These quantities can be represented as a spatio-temporal

fields or signals. Although the goal of a sensor network might be to provide a high

level inference about related physical phenomenon, the central question is estimating

the unknown field. The quality of the estimated field depends on the measurements

provided by the sensors. In this thesis we focus on sensors that provide measurements

at a space-time location at which the sensor is physically located. We refer to these

measurements as point estimates or point samples or simply samples. We refer to the

set of locations of sensors as a sensor arrangement. The quality of the field depends

on the geometric arrangement of the samples as well as the sample values. This idea

leads to the formulation of some coverage metric and the coverage problem is to find

the sensor arrangement that optimizes the coverage metric. We call this problem the

sensor arrangement problem. We ask when and where to take samples in order to

obtain a good estimate of an unknown spatio-temporal field.

Typically sensors provide only approximate measurements of the field. Sources

of error include quantization and sensor noise. Assuming that sensors provide accu-

rate measurements of a field, the sensor arrangement problem is still ill-posed. Given

an ensemble of samples, there can be infinitely many choices of fields or functions



that conform with the sample values. To avoid this, typically assumptions are made

about the space of the field. This involves assuming that the field belongs to a certain

class of functions and the goal is to find the best fit. The most celebrated result of

this type is Shannon's classic result on band-limited signals [71]. In order to sup-

port his seminal work in information theory, Shannon needed a way to transform a

continuous waveform into a sequence of numbers. In his paper [71], Shannon pre-

sented a result that a band-limited signal can be entirely recovered from periodic

samples obtained at the rate higher than the Nyquist rate. This result is known

as Whittaker-Kotel'nikov-Shannon-Nyquist Sampling Theorem or more popularly as

Shannon-Nyquist Sampling Theorem. A 1D continuous-time signal y(t) is a band-

limited signal if its Fourier Transform Y(f) does not contain any frequencies higher

than B, i.e., Y(f) = 0, Vf > B. B is referred to as the bandwidth of the signal. Ac-

cording to the Sampling Theorem, the function can be completely determined from

its sample values at a periodic sequence of points with the period less than or equal

to 1. 2B is referred to as the Nyquist rate (twice the highest frequency). Since the

establishment of this result, a number of classes of fields have been considered and

sampling theories have been developed in the area of signal processing. A detailed

account of this is given in the survey paper [79]. An important class of functions is

shift-invariant functions. A uniform or regular or grid sampling arrangement is the

most widely used sampling arrangement in almost every signal processing applica-

tion. Very few efforts have actually focused on non-uniform or irregular sampling

schemes. In most applications, we actually have control over when and where to take

measurements and the regular sampling scheme leads to computationally efficient re-

construction procedure. However, in sensor networks, we seldom have control over

deployment of the sensor nodes. Sometimes, in sensing spatio-temporal events, uni-

form sampling may be impossible for mobile sensors. In such situations non-uniform

sampling is inevitable. In the area of sensor networks, the importance of dealing with

non-uniform sensor arrangements has been emphasized only recently [28]. We sum-

marize a few research efforts on non-uniform sampling in the area of signal processing

below.



Yen proposed an algebraic method to reconstruct a band-limited signal from non-

uniform samples when the average sampling density is at least the Nyquist rate [87].

However, this method is numerically unstable meaning that small errors in the samples

lead to large errors in the reconstruction. Duffin and Schaeffer first proposed con-

ditions on the sampling pattern under which stable reconstruction of a band-limited

signal is possible [20]. Such a sampling pattern is referred to as a frame. Frames play

an important role in the development of solutions to the sensor arrangement prob-

lemi addressed in this thesis. Therefore, we provide a brief introduction to frames in

Chapter 5. In [34, 35, 37], theoretical and numerical aspects of the reconstruction of

a special type of band-limited signal, a trigonometric polynomial, from non-uniform

samples have been studied. In this case the stable reconstruction is related to 'con-

ditioning' of a certain matrix. In [35], Gr6chenig shows that for A-dense sampling

arrangenments, this matrix is well-conditioned and stable reconstruction is possible.

In the area of sensor networks, there have been a few efforts (e.g., [38, 88, 52, 58,

59]) that deal with the sensor arrangement problem. The sensor arrangement problem

is closely related to optimal experiment design and is also known as the sampling

design problem. In [38], the authors consider the near optimal sensor arrangement

for Gaussian processes. In [88], Zhang and Sukhatme propose an adaptive sampling

approach for a single mobile sensor mounted on a boat in combination with a few

static sensors. The approach is based on the optimal experiment design work. In

[52], the authors consider elliptical motion paths for mobile underwater vehicles and

consider the sensor arrangement problem restricted to these paths. In [58, 59], the

authors consider the sensor arrangement problem for trigonometric polynomials in

the Bayesian estimation framework. They consider the probabilistically generated

sampling arrangements and use the asymptotic analysis techniques to obtain error

tolerance values. In addition to the above work, in [73], the authors use active learning

methods for mobile sensors for adaptive sampling.

Our choice of A-dense arrangements as a class of error tolerant arrangements for

trigonometric polynomial fields is inspired from the work in [35, 37].
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Detection Sensors





Chapter 3

Floating Event-Detection Sensors

in Rivers

In this part of the thesis, we deal with the event-detection sensors. We focus on the

sensors with the disc model in this chapter. We analyze coverage and connectivity

of a network of floating sensors moving passively in rivers using simulations and

experimental data. As far as we know, this work is one of the first few efforts to

understand network properties in the presence of incidental mobility

Organization: In Section 3.1, we examine natural mobility of floating sensors in

rivers. In Section 3.2, we discuss the coverage problem we address and in Section

3.3, we provide approximate analysis. Although the focus of this thesis is coverage,

because of the same model used to model connectivity as well as coverage, we discuss

the connectivity problem and analysis in Sections 3.4 and 3.5. We present results in

Section 3.6.

3.1 Natural mobility of sensors in rivers

As a first step towards studying properties of a network of floating sensors in rivers

we propose a model for natural mobility of floating nodes in rivers. It is necessary to

use a model that captures complexities of the river flow and at the same time allows



for tractable analysis.

Conventionally, hydraulic and environmental engineers study hydrodynamic flow

models of water bodies such as rivers, lakes and oceans. They typically study a

phenomenon called dispersion of tracers such as pollutants, chemical and dye in these

bodies. Dispersion is defined as spreading of tracer particles in a water body under

the combined action of its velocity distribution, and turbulent and molecular diffusion

[77, 78, 24, 25]. It is characterized in terms of dispersion coefficients along different

directions in the flow. These coefficients represent some average metric to capture the

spread of the tracer along different direction. They can be obtained in terms of the

spatio-temporal concentration of the tracer which is given by the advection-diffusion

equation. The advection-diffusion equation is commonly encountered in the study of

transport phenomena and is specified in terms of the mean velocity distribution of

the flow and diffusion coefficients in the lateral, longitudinal and vertical directions.

Unlike the case of a tracer, the number of sensors we expect in a river network is

small (tens or hundreds of nodes). Our goal is to be able use a mobility model that

allows to simulate trajectories of individual sensors as well as network behavior. We

use the Lagrangian particle-tracking approach to describe the motion of individual

nodes. Based on the geographic scales, river flow is turbulent and it is convenient to

describe the motion of fluid elements using random walks. We treat an individual node

as a part of the fluid itself. We propose a stochastic random walk model to describe

the mobility of a node such that the probability density function corresponding to

the walk is the same as the spatio-temporal concentration of a tracer under certain

initial conditions.

As a first step we propose a model for the case of a river with ideal channel

assumptions. This allows us to analyze network behavior under ideal conditions.

Later we propose a model for natural rivers. In both cases we neglect the effects of

wind on the velocity distribution of the flow.



3.1.1 Ideal-channel rivers

An ideal-channel river flows through a channel that is straight, and has constant

lateral cross-section and constant gravitational descent along the direction of the flow.

Figure 3-1 shows the geometry of the channel, the coordinate system we use and the

generalized profile of the cross section of a channel. The cross-section is symmetric

about the center-line and has a generalized parabolic profile as discussed below. The

z and y-axes indicate the vertical and the transverse directions respectively, whereas

the x-axis (not shown in the figure) indicates the longitudinal direction of the flow.

Hydraulic engineers define a geometric parameter called hydraulic radius which is

equal to the ratio of the area of the channel and the wetted perimeter of the channel.

They specify this parameter even in the case of natural rivers to characterize the

flow. A good survey for modeling ideal channel shapes for natural rivers with the

equivalent flow is given in [17]. The generalized parabolic profile of the channel in

termls of the local flow depth is given in [17] as

h(y) 1 (3.1)

where h(y) is the local depth at the corresponding y value, b is half of the surface

width B of the channel, H, is the depth of the channel at the centerline y = 0, and

3 is a parameter which depends on the width-to-depth ratio of the channel.

Figure 3-1: Ideal channel coordinate system and profile. The z-axis and y-axis indicate
the vertical and transverse directions respectively. The x-axis is not shown in the
figure. It comes out of the page and indicates the longitudinal direction of the flow.

As mentioned earlier, our approach to is to propose a stochastic random walk



model for motion of a floating node in a river such that the probability density func-

tion of this walk is a solution to the advection-diffusion equation. This requires

knowledge of the mean velocity distribution and longitudinal, lateral and vertical dif-

fusion coefficients. Since we are dealing with floating sensors in an ideal-channel river,

we make some simplifications. We entirely neglect movements in vertical direction

and make 2D flow assumption. We combine the average surface velocity profile and

longitudinal and lateral diffusion coefficients to define the natural mobility model as

follows:

1. Mean Surface velocity profile: Under ideal channel conditions, the mean surface

flow is in the longitudinal direction. The mean velocity flow in the lateral

direction is zero. The mean depth-averaged velocity profile in the longitudinal

direction for ideal channels with width-to-depth ratio > 10 is described in detail

by [17]. It is given by,

u(y) = ,aU ) , (3.2)

where Uc is the centerline depth-averaged velocity and a is a parameter which

depends on width-to-depth ratio of the channel. Depth-averaged velocity is

typically 0.8 times the surface velocity. Thus, the surface velocity is given by a

similar equation with a modified value of a. Note that the velocity profile u(y)

also has a generalized parabolic shape. It is the highest along the centerline

and decreases towards the side banks of the river.

2. Diffusion coefficients: Turbulent diffusion is a few orders of magnitude larger

than molecular diffusion, which can be neglected. We assume that the longi-

tudinal and lateral diffusion coefficients due to turbulence are of the form, D

= kf (y), where k is a constant that depends on the shear velocity of the flow

and f(y) is a function of local depth h(y). It captures reduction in the diffusion

coefficients towards banks of the river. Details are available in [25, 17]. For

particles that can be treated as fluid elements the value of D varies between

0.1-0.4 m 2/s. For relatively large sensors, these values can be somewhat lower.

We denote the longitudinal and lateral diffusion coefficients by D. and D re-



spectively. We assume that Dx = Do h() and D= D h(y) where Do and

Dyo are constants.

3. Equations of motion: Given the above expressions for the mean velocity profile

and the diffusion coefficients, the advection-diffusion equation for the spatio-

temporal floating-tracer concentration is given by [24],

dct(X, y) ac(x, Y) a2 (Dect(x, y)) d 2 (DYt(x, y))= -u(y) + + (3.3)at ax ax2  y2

where ct(x, y) denotes the concentration. We want the probability density func-

tion corresponding to the random motion of the nodes to mimic this differential

equation. For this reason, we treat the above equation as a Fokker-Planck

equation a set of Ito stochastic differential equations that describe motion of a.

floating sensor [68]. We propose the following mobility model.

dx = u(y)dt + 2 2DxdW1 = u(y)dt + urxdW 1 and (3.4)

dy = dI 2  7,dIV9, (3.5)

where dx and dy indicate the differential increments in x and y coordinates of

the current location of a sensor, dt is the differential increment in time, and

dW1 and dIV 2 indicate differentials of Gaussian white noise. These equations

together provide a simple model for motion of sensors passively moving on the

surface of natural rivers. These equations can be numerically simulated to find

sample trajectories of particles.

3.1.2 Natural rivers

Flow distribution in natural streams is much more complicated. The channel is not

straight and meanders with bends. The cross-section changes everywhere and is

highly asymmetric. The channel geometry can be viewed as small-scale variations

superimposed on large-scale geometries that change very slowly [24]. The velocity



distribution can then also be viewed as small fluctuations superimposed on the top

of mean velocity profile. A few software packages such as EFDC [81] and River2D

[60] enable a user to determine an approximate averaged velocity field in rivers and

lakes using finite element methods based on the depth information and boundary

conditions. These packages also provide averaged solutions to determine dispersion

of tracers. We combine the mean velocity profile information with local longitudinal

and lateral diffusion coefficient values to propose the following mobility model in

natural rivers.

dx = u(x, y)dt + N/2Dx(x, y)dWi = u(x, y)dt + ox(x, y)dWi and (3.6)

dx = v(x, y)dt + 2D.(x, y)dW2 = u(x, y)dt + uy(x, y)dW 2, (3.7)

u(x, y) and v(x, y) denote the local mean longitudinal and lateral surface velocity

values. Dx(x, y) and Dy(x, y) denote the local longitudinal and lateral diffusion co-

efficient values. These values can only be observed experimentally. It is virtually

impossible to know these values at every location and we rely only on rough approx-

imnations.

3.2 Coverage problem

The goal of the coverage problem in rivers is to be able to detect and localize sources

of interesting events along the stream. In this work we assume a disc model for

coverage for the detection sensors, i.e., a sensor is able to detect an event of interest

within its sensing range. This model holds good in the following three situations.

1. Spatial events of interest are marked by local changes in gradients of physical

quantities such as temperature, salinity, pH levels. Depending on the spatial

scales of these changes, the dise coverage model is useful for coarse detection

and localization of the events.

2. Some detection sensors such as sensors for turbidity and conductivity measure



values over a region and we can approximate this region as a disc. An event

of interest in these situations correspond to measurement values above some

threshold.

3. Besides detection sensors, we will show in Chapter 6 in the case of estimation

sensors under certain conditions, a disc model is a good approximation and

leads to mapping of spatial fields of physical quantities such as temperature,

concentrations and pressures within tolerable accuracy [18].

In this work, we focus on coverage properties under only natural motion of nodes.

Under the natural mobility of a node, its coverage corresponds to the region swept

by the coverage disc around the node. The net region covered by all the nodes is

the union of all the individual regions swept. The overall coverage depends on four

factors: 1) the mobility model, 2) the sensing range, 3) the number of nodes, and 4)

the initial distribution of the nodes. A node never moves upstream. This motivates

the definition of our coverage metric. We consider a span of the river of certain length

between two lateral cross-sections. Our coverage metric corresponds to the net region

covered by the sensors as a function of time.

Given the natural mobility model for the river and the sensing range, the choice of

the number of nodes and the initial distribution is critical to guarantee to good cover-

age. We illustrate this with the help of simulations. Figure 3-2 indicates the coverage

of 9 nodes that move according to the mobility model for an ideal-channel river with

the river width of 200m, the centerline depth of 3m, the centerline velocity of 0.25m/s

and constant diffusion coefficient values, D. = 0.01m 2 /s and D = 0.015m 2/s. The

nodes are initially placed uniformly along a cross-section. This suggests that without

careful choices of the parameters, the natural mobility even in ideal-channel rivers

may lead to holes in coverage.



Figure 3-2: Area swept by the coverage-discs of 9 nodes that move according to the
mobility model in an ideal-channel river with the simulation parameters described
above.

3.3 Coverage analysis for an ideal river mobility

In this section, we present coverage analysis for mobility in an ideal-channel river.

Let N denote the number of sensors, each with sensing range r. We consider the span

of the river between river cross-sections at x = 0 and x = L for some constant L. If

B denotes the river width, we analyze coverage of the rectangular region of width B

and length L. The y-coordinates for the banks of the river are -B and ±B. We let

p(t) denote our coverage metric which is defined as the fraction of the area covered

by the sensors as a function of time for given r, N and L.

In our analysis we make the following assumptions.

1. Initially nodes are deployed uniformly randomly and independent of other nodes

along the lateral cross-section, the interval [-B, B], at x = 0.

2. Each node moves independently of other nodes according to the mobility model

in Equations (3.4) and (3.5).

There is a small caveat in this assumption about independent motion: obviously
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if two nodes fall at the same location, they would continue to move along the same

path. However, we assume that strict separation is maintained between two nodes.

Given these assumptions, we can carry out simulations to characterize p(t) for

various values of the parameters. We will present simulation results in Section 3.6.3.

Here we present analytical results in terms of the parameters and draw insights.

3.3.1 Initial deployment

N nodes are distributed uniformly randomly along the segment of length B between

points (0, -B) and (0, -B). As a first step towards guaranteeing coverage, we need to

make sure that this segment itself is covered by the sensing discs around the nodes.

The projection of each sensing disc on this segment is an interval of length 2r. This

leads to the 1D-coverage question of guaranteeing coverage of a segment of length B

with N subsegments, each of length 2r, placed uniformly randomly. This problem is

a simplified version of the extensively studied 2D-coverage problem of covering a unit

square with randomly placed discs of radius r [39], [53], [70], [27], [84], [85]. For the

sake of completeness, we state and prove the following bound on N for the 1D case

based on the results in Lemma 1 of [27] and [57].

Lemma 3.3.1. If N = 0 ([B1 log (f)), then the lateral cross-section of the ideal-

channel river is covered whp.

Proof. We divide the segment B into at least m = [r] subsegments (bins), each of

length at most r. Note that if we can guarantee that each bin contains at least one

node whp, then the entire segment is covered whp. The probability of a node falling

in any one of the bins is '. Let Ai denote an event that the i-th bin contains at least

one node.

ThioP(Ai) = 1 - P(Ac) = 1 - 1- N

The probability of the event that each bin contains at least one node is given by



P(AnA2n ...- nAm). We obtain the following result based on the union bound [57].

P(AnA2n -..nAm) = 1 - P(AcuAu ~.-uAm)
m N

> 1-EP(Ac)=I-m 1-

i= m

Based on the fact, 1 - p < e-P for small p, we obtain,

P(AinA2n -...nA) > 1- me N

Suppose we want the probability of this event to be at least 1 - 6 for some small

constant 6. This means, 6 > me-M, which implies that N > m log m + m log (G).
Thus as long as N = O(m log m), whp each bin contains at least one node. m = [1].

Therefore, N 2 [] log (E) guarantees that the river cross-section is covered whp. O

Henceforth we assume that N is sufficiently large to guarantee initial coverage. Let

uc denote the mean center-line surface velocity of a node in the river. The nodes close

to the bank of the river will have much lower mean velocity than u,. For relatively

smaller values of the sensing radius compared with the river width, uc can serve as a

good estimate to give lower bounds on the coverage. With high probability we can

say that
ucBt

p(t) < (3.8)
L

Next we present two approximate models for the natural mobility of nodes in the

ideal-channel river to analyze coverage.

3.3.2 An approximation: constant longitudinal velocity walk

This is the first order approximation of the mobility model. In the random walk

mobility model, in each time step dt, the longitudinal displacement of the node has

contributions from the mean velocity component, u(y) and a random component. The

mean velocity component is a function of y. U, the laterally-averaged mean surface



velocity is given by

-iB U(y)dy
U = 2 (3.9)B

We make the following two approximations to modify the mobility model.

1. We assume that all the nodes move with the constant longitudinal velocity

component equal to U. We neglect both, the lateral variations in the velocity

and the randomness.

2. We neglect variations in the lateral diffusion coefficient DY and use an average

lateral diffusion coefficient D.

Following these approximations, the new mobility model for each node is given by

dx = Udt and (3.10)

dy = -DdW 2. (3.11)

Although from the networking point of view this approximation is not justified (as

we will discuss in Section 3.5), it is reasonable from the coverage point of view. Con-

sider the case when r is relatively very small and all the nodes are initially periodically

placed at x = 0 to cover the span of the river. In absence of random components

in the mobility model, the coverage p(t) is approximately -- , which is same as the

approximate model as we will show below.

In Section 3.6.3, we will present simulation results to compare coverage results

for this model with the original model. But the approximate model also allows us to

carry out some analysis.

According to the new model, in every time step, the x-coordinate of each node

increases by U and at the end of i time steps all the nodes are floating on the transverse

span of the river at x = Ui. Notice that the y-coordinate of each node changes

according to purely diffusive random process (ignoring the boundary effects). In order

to simplify the analysis further, we discretize time into unit time steps and discretize

the river span from x = 0 to x = L into rectangular grid cells, each of size U x r,



where the step U is along the longitudinal direction and step r is along the lateral

direction. Thus, in the given rectangular span of L x B, there are L x 1 cells.' We

approximate the mobility of nodes as a jump process, where in every time step a node

jumps from one grid cell to another grid cell with some transition probability. The

probability values for these transitions can be evaluated by averaging the probability

density function of the continuous process. We assign an index pair (i, j) to each grid

cell, where i denotes the longitudinal index along the x-direction and j denotes the

lateral index along the y-direction. i = 1,2, ... , L and j = 1, 2, - -- , . The set of

cells with the same longitudinal index value, say i, corresponds to a lateral strip in

the channel. Given this discretized approximate model for the mobility of the nodes,

we can analyze the number of nodes, N required to guarantee full coverage whp.

The motion of N nodes can be viewed as N independent random walks. Let

(Xl, yin) denote the index pair of the grid cell of the n-th node in the beginning

of the the i-th time step. Note that X' = i. Yi' is a discrete random variable

that changes according to the diffusive process. According to the initial deployment,

the nodes are uniformly distributed across the first strip, i.e., Y', Y,2, ... y 1N are

independent and identically (uniformly) distributed discrete random variables. Each

Yi is uniformly chosen from 1, 2, --- , -. Note that Y" is a 1D random walk for which

the uniform distribution is a stationary distribution, i.e., given that Y,~ is uniformly

distributed, Yi for every i is also uniformly distributed. Thus at every time step i

Y1 , . . yiN are independent and identically (uniformly) distributed. Now we can

analyze coverage for this random walk.

If we can guarantee that every grid cell (i, j) in the river span up to x = L is

visited by at least one sensor, then we can guarantee coverage. At the beginning of

the ith time step, all the nodes are in the cells in the ith strip. Let Ai denote an event

that every cell in the ith strip contains at least one node at the beginning of the ith

time step. Guaranteeing high coverage implies that P(A,nA2n ... AL) is sufficiently7

'We drop ceilings for clean notation.



high. Using union bound, we can show that

L

P(AnA2,n . .nA )_ 1 - P(Aic)
i=1

Let m = S. Then based on the proof of Lenuna 3.3.1, P(A ) < e-. Therefore,

L Nr
P(AnA2n .. nAL) 1 - -e B (3.12)

U U

Based on the analysis similar to Lemma 3.3.1, N = O (S log (L)) guarantees

that all the cells are covered with high probability. As long as N is sufficiently large,

in every time step, one strip is covered whp. The coverage metric p(t) then can be

approximated as
UBt

p(tL) . (3.13)

3.4 Connectivity problem

Although the focus of this thesis is on coverage problems, we also deal with the

connectivity problem (a networking issue) in this chapter because the disc model

is also used in literature to model communication. As per this model, two nodes

can communicate with each other only if the distance between them is less than the

communication range. Owing to the same nature of the model, the same tools are

used in the analysis of coverage as well as connectivity. Although the disc model

may not hold satisfactorily in real situations, it is a first step towards understanding

connectivity to the first order in complex situations such as in mobile nodes in rivers.

Also, since we are dealing with the outdoor situation and the line-of-sight is not a

concern, the disc abstraction holds better compared with the indoor situations.

Here we assume that nodes communicate with each other using the multi-hop com-

munication, i.e., every node acts as a switch to forward packets from other nodes. We

say that two nodes are connected if they can communicate directly or via intermediate

nodes acting as switches. How often nodes need to remain connected depends on the



application. In some applications, a node is required to be always connected to a part

of the network. In this case, we can quantify the network connectivity in different

ways, e.g., diameter of the network (maximum number of hops a node encounters in

communicating with some nodes in the network), the size of the largest connected

cluster (LCC) of nodes. However, in some applications nodes need to be connected

only within certain tolerable delay. Such networks are delay-tolerant networks. In

such networks, we can quantify the network connectivity in terms of the maximum

delay.

In the context of sensor-networks in rivers, network connectivity is useful in the

following situations.

1. Both event-detection and estimation sensors, periodically take measurements in

a river to map interesting events. In the wake of the detection of an interesting

event, sometime it is essential to take samples at a faster rate and over a larger

spatial scale to map the events better. This requires that a fraction of nodes to

remain connected in order to be able to quickly diffuse information about the

event and trigger adaptive sampling.

2. It might be expensive to have a GPS device on every node to obtain location

information. Only a few nodes may have GPS devices and others may be using

localization techniques to find their locations.

3. In future applications, nodes may have capability to actively navigate along

with the passive motion. In this case, nodes will have to react to topology

changes, which require network connectivity.

The network connectivity of the floating nodes in rivers depends on: 1) the motion

patterns 2) the communication range 3)the number of nodes and 4) the initial distri-

bution of the nodes. Given the natural mobility model and the communication range,

the choice of the number of nodes and the initial distribution is critical to guarantee

good network connectivity. In this work, we analyze connectivity in ideal-channel

rivers in the ad-hoc network setting. We measure the network connectivity in terms

of the size of the LCC.



3.4.1 Connectivity challenges

As a first step, we perform simulations for the natural mobility model in the ideal

case (Equations 3.4 and 3.5) to observe preliminary results on connectivity.

Figure 3-3 indicates the network connectivity (averaged over 10 simulation runs)

versus time for a network of 50 nodes moving in an ideal-channel river according to the

natural mobility model in Equations (3.4) and (3.5). The nodes are initially placed

uniformly randomly along the transverse cross-section. The communication range of

each node is 75m. The simulation parameters are described in Section 3.6.2. The

river width is 500m, the centerline velocity is 1.1m/s. The connectivity is measured

in terms of the ratio of the size of the LCC and the total number of nodes. We

observe that the connectivity reduces with time, sharply in the beginning and more

gradually with time. This is because of two reasons. First, the river flow dynamics is

such that nodes in the middle portion drift far away compared with the nodes on the

sides. Second, the river domain is unbounded and spread of the nodes distribution

increases over time. This shows that the natural mobility is amenable to the network

connectivity. In the next section, we analyze connectivity in detail to gain insights

about the network design to guarantee connectivity.

3.5 Connectivity analysis for an ideal river mobil-

ity

The initial distribution of the node is uniformly random along the entire transverse

cross-section. We observe that the pdf is the maximum near the center-line and re-

duces gradually towards the bank with a wide spread along the longitudinal direction.

In the connectivity results stated above, the LCC is formed by the nodes close to the

center-line. The nodes near the banks loose connectivity quickly. In order to guar-

antee connectivity over all the nodes, either we need to increase the communication

range or for the given communication range, we need to insert large number of nodes.

Both the options are disadvantageous in terms of the power consumption and cost.



Connectivity vs. Time results for 50 nodes
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Figure 3-3: Connectivity versus time for 50 nodes deployed uniformly randomly along

the transverse cross-section in an ideal-channel river. The communication range of

each nodes is 75m.

Based on this we propose a heuristic. We divide the transverse cross-section into

different zones and analyze connectivity in each zone.

Suppose N nodes are placed initially uniformly-randomly and independently along

a transverse segment of length b at x = 0 as shown in Figure 3-4. Let the random

tuple (X, Yti) denote the x, y location of the ith node. Consider some time instant

T. Let IE[X] = x and E[Y] = y. Also, let Var [X] = Ex and Var[YT] = E,.

Using Chebyshev's inequality [33],

1
P(| Xu - x I > kE ) (3.14)

1
P(JY - py I kE) < k. (3.15)

Thus, with high probability (whp), each node falls in the rectangular region shown

in Figure 3-4 for some k. Next we analyze how many nodes are necessary to guarantee

high level of connectivity among the nodes. We divide the rectangular region of

size 2kExkE, into grid cells, each of size x . The total number of cells are

62
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Figure 3-4: Grid arrangement useful in the analysis of connectivity

4kVr X .4kv . The size R guarantees that if any two adjacent cells contain one

node each, then the two nodes can communicate with each other. Suppose we assign

an index (i, j) to each cell and let Pij indicate the probability that a node falls in

the cell (i, j). Let p = min(ij)pj. Depending on the distribution p could be a very

small number. For now, let us assume that p is not very small. If we make sure that

each grid cell contains at least one node whp, then the network has high connectivity

whp. Based on Lemma 3.3.1, N = O( log )) nodes are necessary to guarantee

connectivity whp. Note that 1 is at least equal to the total number of cells. Thus,

the number of nodes required to guarantee high connectivity depends on Ex and E,.

Note that E. depends on a. (the contribution from the turbulent diffusion coefficient)

as well as the velocity distribution. In fact, it is nothing but the square root of the

longitudinal dispersion coefficient of the flow. Similarly, E, is also the square root of

the lateral dispersion coefficient of the flow.

3.6 Experimental Data and Simulation results

We present coverage and connectivity results in two situations. First, we simulate

sensor trajectories in an ideal-channel river according to the natural mobility model



which we proposed in Section 3.1.1. Second, we simulate sensor trajectories based

on experimental data obtained from another source. In this section, we first describe

set-up for experimental data, then we present coverage and connectivity results.

3.6.1 Experimental Data source

Towards the end of the last century, Michigan Department of Environmental Quality

(MDEQ) Source Water Assessment Program (SWAP), in cooperation the U.S. Ge-

ological Survey (USGS) undertook a project to assess the vulnerability of 13 public

water supplies along the St. Clair-Detroit River Waterway [42, 43]. The purpose

of this assessment was to identify sources of public water intakes in order to pre-

pare emergency responses during contaminant spills. From 3 to 5 October 2000, The

USGS deployed drifting buoys with GPS in St. Clair at 10 reaches to understand

flow patterns and turbulent dispersion characteristics. St. Clair River is a connecting

channel between Lake Huron and Lake St. Clair that forms part of the international

boundary between the United States and Canada [42, 43]. We obtained this data

from the USGS.2 Two kinds of buoys were deployed, spherical and cylindrical.

1. The spherical unit was 16inch in diameter and weighed 451bs. The location data

for each unit was captured every 180s.

2. The cylindrical unit consisted of two cylinders, one PVC pipe of length 9inch

and diameter 3inch mounted on another PVC pipe of length 36inch and diam-

eter 4inch. The unit remained in the vertical position such that the smaller

cylinder remained above water. The smaller cylinder contained the Garmin

GPS unit, the accuracy of which was 49ft. The location data for each unit was

captured every 45s.

Wind affected location of each type of unit; cylindrical unit was less affected than

the spherical one.3 We analyzed the data at different reaches. We present results
2 The author would like to thank David H. Holtschlag of the USGS for readily providing us with

the data.
3 David H. Holtschlag of the USGS informed the author about wind effects in one of the personal

communications.
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Figure 3-5: St. Clair River near Detroit Edison. The snap-shot of the animation is

obtained from the USGS website.

based on the data near two sites, Detroit Edison and Marysville. We describe how

data was gathered and how we process the data.

1. St. Clair River near Detroit Edison: Figure 3-5 shows a snap-shot of the

animated results on the USGS website of the drifting buoy deployments. The

numbers in the chalnnel display the depth information at various locations in

feet. 7 spherical and 6 cylindrical buoys were deployed by a boat across the

river cross-section.

2. St. Clair River near Marysville, Michigan: Figure 3-6 shows a snap-shot

of the animated results on the USGS website of the drifting buoy deployments.

The numbers in the channel display the depth information at various locations

in feet. 7 spherical and 6 cylindrical buoys were deployed by a boat across the

river cross-section, although we could not obtain data for one of the cylindrical
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Figure 3-6: St. Clair River near Marysville. The snap-shot of the animation is
obtained from the USGS website.

buoys.

3. Data processing and the mesh model construction: The data was cap-

tured in both the cases for about an hour. We cleaned initial data and analyzed

the location data for the first 40 minutes of the deployment. We converted the

latitude and longitude readings from the GPS into the Universal Transverse

Mercator (UTM) System [21] to obtain the cartesian coordinates. We obtained

the coordinates for the river banks using the Google maps. In order to approx-

imately construct the velocity field over the domain, we first approximately

calculate the velocity at the GPS location points using the GPS data between

the two consecutive samples. We then construct a mesh model using the Delau-

nay triangulation method, where the velocity at a point is evaluated using the

linear interpolation of the velocities at the vertices of the triangle than contains

the point. Figure 3-7 and Figure 3-8 show the mesh model near Edison and



Figure 3-7: The velocity field using the mesh model for Detroit Edison site.

Marysville respectively. The colors represent the magnitude of the velocity at

each point. Note that the velocity at the banks of the river is non-zero in some

cases as an artifact of the triangulation. We make sure that this does not affect

the simulations of the particle trajectories.

4. Velocity profile: Figure 3-9 and Figure 3-10 show the surface-velocity profile

(magnitude of the velocity) along the transverse cross-section near the initial

deployment at both the sites. At both the sites, the river width is nearly 500m.

The average velocity for the case of Detroit Edison site using the mesh model

was U = 0.9084m/s. The maximum velocity was around 1.2m/s. For the case

of Marysville, U = 0.8854m/s and the maximum velocity was around 1.07m/s.

In both the cases, we observed that the standard deviation of the velocity of

the buoys in the central zone locally varied between 0.04--0.08 m 2 /s.



Figure 3-8: The velocity field using the mesh model for Marysville site
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Figure 3-9: Edison velocity profile
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Figure 3-10: Marysville velocity profile

0

3.6.2 Simulation settings

We also simulate sensor-trajectories in an ideal-channel river to analyze coverage and

connectivity. In order to have a fair comparison, we choose parameters of the ideal-

channel river closely matching the previous two experimental settings. We choose the

river width B = 500m, the center-line velocity Uc = 1.1m/s, the center-line depth

H = 15m, the longitudinal turbulent-diffusion coefficient s2%/ = 0.04m/x/, the

turbulent-diffusion coefficient 2 , = 0.04m/vs. Based on this, we choose / = 3.5.

The average velocity is U = 0.911m/s. We simulate trajectories for 4000s.

3.6.3 Coverage results

We measure coverage in terms of the area covered by the discs around the sensors

scaled by a constant. In our simulations, we choose the coverage range for each

node to be 20m and scale the area covered with a constant area of 1200000m 2 such

that the coverage metric is a number between 0 and 1. Figures 3-11, 3-12 and 3-

13 show average coverage versus time plots for 20, 30, 40 and 50 nodes initially

placed uniformly randomly along the transverse cross-section of the river. Coverage is

averaged over 10 simulation runs. The coverage is evaluated every 100s and averaged

over 10 simulation runs. The standard deviation is also shown at alternate points. In
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Figure 3-11: Coverage results for the natural mobility in the ideal-channel river for

sensors with coverage radius = 20m

each plot, we also show UBt versus time, i.e., the average coverage corresponding to

the approximate model where the longitudinal velocity component is always U. This

coverage curve is shown in red color in all the plots.

We summarize our observations based on these plots as follows:

1. In all the three situations, the coverage of the network increases with the number

of nodes at any given instant of time.

2. As the number of nodes increases, the coverage curve approaches the coverage

curve corresponding to the average velocity (UBt vs. time). In fact, it is

interesting to note that this holds even for the two mesh models based on

experimental data. As we see in Figures 3-5 and 3-6, the river has changing

width and curvature. Despite these changes, U calculated at one cross-section

holds as a good measure for quantifying coverage as long as the number of nodes
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Figure 3-12: Coverage results for the mesh model of St. Clair River at Edison for
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are sufficient.

3. The increment in the coverage with the number of nodes is marginal beyond

some point, i.e., for given time T, the coverage does not increase beyond UBT

even if we add additional nodes. For example, in St. Clair River near Marysville,

the coverage up to 2000s is almost the same for 40 or 50 nodes.

3.6.4 Connectivity results

We present connectivity results in the ad-hoc network setting. In all the results pre-

sented here, we assume that the communication range was 75m. As described earlier,

we measure connectivity in terms of the ratio of the size of the largest connected

cluster (LCC) and the total number of nodes deployed. We divide the river along

the lateral direction into three zones, a central and two side zones and analyze con-

nectivity in each zone by deploying nodes initially uniformly randomly only in one

zone. In each case, the river width is about 500m. We divide the lateral cross-section

into three zones each of length 166m and deploy nodes uniformly randomly in each

zone initially. Below we present the results for each zone. As before we sinmulate

node trajectories for the ideal-channel river with settings described earlier and for

the two mesh models. We deploy 10, 15, 20 and 25 nodes in each zone and observe

connectivity. In the case of two mesh models, we average results over 5 simulation

runs whereas in the ideal river case, we average results over 10 simulation runs. In

each case, we show standard deviations on the plots.

1. Central zone: Figures 3-14, 3-15 and 3-16 show the connectivity results for

the central zone in the ideal river, and St. Clair River near Detroit Edison and

Marysville. We observe that connectivity is 100% in most of the cases. Thus,

the network is guaranteed to sustain connectivity over a long period.

2. Side zone 1: Figures 3-17, 3-18 and 3-19 show the connectivity results for one

of the side zones in the ideal river, and St. Clair River near Detroit Edison and

Marysville. Unlike the case of central zone, the connectivity reduces significantly
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Figure 3-15: Connectivity vs. Time for nodes with communication range 75,m in St.

Clair River near Detroit Edison in the central zone
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Figure 3-17: Connectivity vs. Time for nodes with communication range 75m in the

ideal river in the side zone

over time. In fact, after 1500s the connectivity drops below 50% in each case.

The connectivity, however, improves as the number of nodes increase as observed

up to 1000s for different number of nodes.

3. Side zone 2: Figures 3-20 and 3-21 show the connectivity results for the other

side zone in St. Clair River near Detroit Edison and Marysville. Near Detroit

Edison, the connectivity trend is same as that for the side zone 1. However,

near Marysville, the connectivity is almost like the central zone as the number

of nodes increase. This is explained by the velocity profile. Observe that in the

mesh model in Figure 3-8, the velocity values are almost the same in one size

zone. This is due to the fact that the channel is asymmetric. In Figure 3-6,

we notice that on the left hand side of the channel, the depth reduces much

gradually whereas on the other side the channel depth reduces sharply. This
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Figure 3-18: Connectivity vs. Time for nodes with communication range 75m in St.
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Figure 3-20: Connectivity vs. Time for nodes with communication range 75m in St.
Clair River near Detroit Edison in the other side zone

example illustrates that the formation of cluster will depend on the velocity

field.
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Chapter 4

Reconfigurable Camera Sensor

Networks

In this chapter, we address the second coverage problem which deals with intentionally

mobile detection sensors. We formulate a coverage problem for detection sensors with

location-dependent sensing performance function. We propose a distributed coverage

algorithm with guaranteed convergence. As an application, we address the problem

of covering loopy indoor and outdoor pathways with a network of mobile cameras.

Based on our experiments, we propose an empirical sensing performance function

to characterize detection behavior of a camera. We present results of our coverage

algorithm for indoor and outdoor deployments.

Organization: In Section 4.1, we formulate coverage problem for sensors with loca-

tion dependent sensing performance function. In Section 4.2, we propose a distributed

coverage algorithm and prove its convergence. In Section 4.3, we discuss modeling

of a sensing performance function for a camera and present results on indoor and

outdoor camera deployments.



4.1 Coverage Problem Formulation

In Section 2.4, we introduced the coverage-problem formulation as in [15] for detection

sensors with associated sensing performance function. We build on the notation used

in [15] to define our coverage problem. Let Q denote the bounded convex domain

in IR. We seek to cover Q using n mobile sensors. Let 0 : Q --* R denote the

scalar density function. It captures the importance of covering a particular location.

Let P1, p, P2 , Pn denote the current locations of n sensors. We assume a location-

dependent sensing model for each sensor, i.e., the sensing performance at point q for

the ith sensor not only depends on IIq-p II but also on the location, pi itself. Here, I1-1

denotes the Euclidean norm. We denote the sensing performance function for sensor i

at point q by f(I Iq - i I, Pi), where f : R + x Q -+ R. Note that we explicitly indicate

tile dependence of the performance function on the sensor location. The performance

function naturally induces a generalized Voronoi partition of Q. Each sensor has its

own dominance region, i.e., its Voronoi cell where the sensing performance is better

than that for any other sensor. More formally, if 1W4 denotes the dominance region

for the it h sensor, then

Wi = {q Q I f(q- piI,pi) f(jq9 - pi,pj), Vj i}. (4.1)

Now we define our coverage metric or net utility function as follows:

?-(p1,p2,.. ,p,) = (q)f ( q p)f( i - I, pi)dq (4.2)
i=1 Wi

The utility function is the sum of the sensing performance function of each sen-

sor over its dominance region including the weighing density function. We refer to

fw, (q)f f(I Iq - pil , pi)dq as the utility of the ith sensor. We formulate the coverage

problem as finding the optimal set of locations of the sensors that maximizes the net

utility.

(p, p~ ,p) = arg max 7H(P). (4.3)
(pl,P2,"" ,Pn,)



Note that it is possible to formulate other metrics such as maximizing the mini-

mum over the utility functions of all the sensors, as suggested in the literature, e.g.,

[15]. We would like to note that in the common literature [15] the coverage objective

function is known as the locational optimization function and the coverage problem is

formulated as the minimization problem. In the spirit of the application we consider

in this paper, we formulate the problem as the maximization problem.

4.1.1 Partial derivative of the overall utility function

We note that the result about the partial derivative of the net utility function based

on the divergence theorem [15] generalizes easily to our case. We use the divergence

theorem in the proof of our result [13].

Theorem 4.1.1. [13] Let V = V(x) C Q be a region that depends smoothly on real

parameter x E R. V has a well-defined closed boundary oV(x) for all x. Let O(q) be

the density function over Q. Then

d (x) (q) f(jq - yl , y)dq = (xn(q))(q)f f(lq - y 1, y)dq,

where (., -) denotes the dot-product and n(q) denotes the normal vector along dV(x).

We modify the above result for a special case as follows:

Lemma 4.1.2. Let V = V(x) C Q be a region that depends smoothly on real param-

eter x E R. V has a well-defined closed boundary &V(x) for all x. Let ¢(q) be the

density function over Q. Then

d IV (q)f(,q - x,,x)dq = JV (q) af(xJxJx)dq
dx v(x) v(X) a

+ (q, n(q))(q)f ( q - x , x)dq.

Theorem 4.1.3. The partial derivative of the net utility function with respect to the



position of the i-th sensor is given by,

S (q) q p ) dq (4.4)

Proof. Below we sketch the steps of the proof. We refer readers to [13] for details. Let

Pjl, Pj, ... ,Pjk be pl's generalized Voronoi neighbors. Let Aidj be the Voronoi cell

boundary between i and neighbor ji. Note that the following two normal directions

are in opposite directions. njj,(q) = -nji(q). Then

pi -P + 1 j IkI

Based on Theorem 4.1.1 and Lemma 4.1.2, and the definition of the generalized

Voronoi diagrams, we obtain the desired result.

4.2 Distributed coverage control

We propose a distributed coverage control algorithm that is based on iterative local

sub-gradient method.

4.2.1 Control Law for each sensor

Let pj(n) be the position of the i-th sensor after n updates. We state the control law

for the position update of the i-th sensor to pi(n + 1). The local control law involves

searching for the local optimal solution. During the time the i-th sensor updates

its position from, our coverage algorithm does not allow the simultaneous update at

the Voronoi neighbors of the i-th sensor. Given that the positions of the Voronoi

neighbors are fixed, the net utility N and the local gradient, are just the functions

of pi. We state the control law as follows.



pi(n + 1) = pf ,where, pi = arg max 7-(-- -,pi, ) (4.5)
Pi E Wi

Essentially, the control law involves local search over the Voronoi partition W for

the optimal solution p* by solving the constrained optimization problem. If pi does

not lie on the boundary of Wi, then it is the root of equation g(pi) = 0 for some

function g. Since the search involves finding the optimal location just for one sensor,

it is computationally tractable. We state the following lemma about the increase in

the net utility after every pose update.

Lemma 4.2.1. The control law for an individual sensor in Equation 4.5 guarantees

that the net utility increases after the position update of the sensor.

Implementation of the above control law requires the exact knowledge of the sens-

ing performance function f(l q - pi , p) for each sensor i and the density function

q(q). Later we show in our case study of camera sensor network that f( I q - pi , pi)

can be estimated on the fly using measurements. We also note that [69] shows that

the global knowledge of €(q) is not required.

4.2.2 Distributed Coverage Algorithm

Below we state the coverage algorithm that runs at each node. We assume discrete

time steps, 1, 2, - - -. The algorithm involves the implementation of the local control

law that we described in the previous section. A node updates its position only if its

Voronoi neighbors are not updating their positions.

Algorithm 1 Coverage algorithm at the i-th sensor: Let pi denote its position. Let
Vi denote the set of its Voronoi neighbors.

t : Update Vi
t+1: Check if any j E Vi is updating its position
t+2: if yes, wait for random duration of time and repeat the above steps
t+2: if no, schedule position update at t+3 and broadcast over V
t+3: start moving to optimal pi as obtained using Equation 4.5
t+k: After the move, wait for random duration before the next update



4.2.3 Convergence

Theorem 4.2.2. The distributed coverage algorithm at each sensor as described in

Algorithm 4.2.2 converges, as the number of position updates tends to infinity.

The proof follows from the fact that the net coverage utility is bounded and by

lemma 4.2.1, it increases monotonically with each iteration of the algorithm.

The algorithm yields a local optimal solution to the coverage problem.

4.3 Deployment of Cyclops camera networks

In this section, we discuss implementation issues and results of our algorithm for the

coverage problem using Cyclops camera sensors.1 The Cyclops camera sensor consists

of a CMOS imager with CIF image capability and an internal image processor unit for

image interpretation and analysis. It couples with a Mote and periodically captures

images (Figure 4-1). Our objective is to cover loopy environments such as indoor

corridors or outdoor pathways such that an intruder object can be detected. We

show that this problem can be mapped into a suitable coverage problem. We first

propose a model for the sensing performance function of a camera.

Figure 4-1: Cyclops camera with an attached Mica2 Mote

1We do not consider any network related issues here.



4.3.1 Sensing Performance Function

Our choice of the sensing performance function of a camera is related the perfor-

mance of the object detection algorithm that is based on background subtraction.

Foreground object detection using background subtraction has been used extensively

in video surveillance applications due to ease of implementation and effectiveness.

This method has low resource requirements in terms of memory and computation

and is therefore well suited for low complexity camera sensor networks. According

to this method, the cyclops camera periodically captures images and maintains a

moving average background model of the environment. A foreground model is also

constructed as the absolute difference of the instantaneous image and the constructed

background. The resulting foreground images are then are passed through a lumi-

nance and size filter, which identifies clusters of pixels that have a considerable change

in illumination. Figure 4-3(a) shows a cyclops camera set up in a corridor in a build-

ing. Figure 4-3(b) and 4-3(c) show the background model and the instantaneous

image obtained by placing a white board at some distance. The foreground images

as the difference between the two images is shown in Figure 4-3(d). The detectability

of the object depends on the number of pixels identified after passing the foreground

model through the filter - larger the number of pixels, better the detection proba-

bility. We therefore use the number of pixels identified as the sensing performance

function for each camera sensor. Note that the number of pixels detected is also a

function of distance between the camera and the object. The further away the object

is, the lower the number of pixels detected will be.

object

Figure 4-2: Perspective projection model



(a) (b) (c)

Figure 4-3: Illustration of pixels on target not detected. (a) background image (b)
original image and (c) foreground image. In the foreground image, some of the pixels
in the target board are black. These are the pixels that are similar to the background
and are therefore not detected by the camera.

Suppose a rectangular object of dimension h x w placed at a distance d on the

camera's central axis exactly facing the camera. Consider an ideal scenario in which

every point on the object differs significantly in its illumination characteristics from

the background image. Then, according to a perspective projection camera model,
the number of pixels, m, detected by the camera is approximately given by:

f -h - w resolution h -wm _. = k k resolution
d2  sensor area d2

where f is the focal length and k is a constant. Figure 4-2 shows the perspective

projection model. Thus, the number of pixels detected is inversely proportional to

square of the distance between the camera and the object. We indeed observed

this relationship in practice when we experimented with a white board of dimension

3ft x 2ft placed at different distances in front of a cyclops camera that was placed in

a well-lit corridor. Figure 4-4.1(a) shows the experimental set-up and Figure 4-4.2(a)

shows the number of pixels identified using the background subtraction algorithm as

a function of distance between the camera and the white board. We indeed observe

the trend that the number of pixels are inversely proportional to the squared distance.

However these situations are rare in the environments where the lighting conditions

and the object properties are far from the ideal situation. In practice, the number of

pixels detected by the camera deviates from this ideal model because some pixels on



the object have the same texture as that of the background and go undetected. This is

illustrated in fig 4-3 where the target is a white rectangular board. In the foreground

image, the pixels in white are the ones that are detected. Some of the pixels on the

board have intensities close to their corresponding pixels in the background.

This indicates that the sensing performance function of a camera depends not

only on the distance but also on the location of the camera itself. This very behavior

motivates the definition of the coverage problem we address. We restrict ourselves

to coverage of narrow pathways reducing the problem to coverage of 1D loops. We

conducted a series of experiments both indoors and outdoors to extract the sensing

performance function of a camera. We placed a white/black rectangular board in

front of a camera along its central axis at increments of 5 feet to obtain the number

of pixels detected. Based on several data sets we observed that the following empirical

model for the sensing performance function best fits the data.

f x - qx)= x) (4.6)fk2(X)+ I 2

Here x denotes the location of the camera and q denotes the sensing performance,

i.e., the number of pixels detected at location q. Note the dependence on the location

of x via functions k (x) and k2(x). Figure 4-4 shows the best fit and the corresponding

values of k1 and k2 for indoor and an outdoor instances. Note that the sensing

performance function is not exact; it corresponds to the best fit with the data.

4.3.2 Coverage Algorithm for 1D loop

In this section, we discuss the coverage problem formulation and algorithm for cov-

ering a loopy pathway using the cyclops cameras. We assume that the pathway is

narrow enough so that we formulate the problem as a 1D coverage problem. We as-

sume that each sensor is a bi-directional camera obtained by combining two cyclops

camera modules aligned along the same axis. Thus each sensor can see on its left and

right directions on the loop. The sensing performance function along each direction

takes the form of Equation 4.6 with possibly different parameter values. For now we
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assume that the pathway is a smooth curve that can be parametrized with a single

parameter and does not contain any sharp corners, i.e., at any location the curva-

ture of the loop is very large compared with the local detection range of the camera

assuming that the sensor is always aligned on the loop such that its central axis is

always tangential to the loop. Let n be the number of cameras and let P1,P2, P2," , Pn

denote their locations on the loop in the order such that pi is between Pi-i_1 and pi+l.

Further, let Pn+l = pi. Let fl(llp - qjl,pi) and f,(llpH - ql,p) be the left and the

right sensing performance functions respectively of the i-th camera located at pi. We

assume that both f, and f, have the empirical form described in Equation 4.6:

S- ,(pi) (4.7)
k2l(Pi) + l pi - qj 2

kl , (pi)fr(I p - q1, ) kir(pi) - 2 (4.8)
k2r(pi) + Ipi - q1

Because the problem is ID, the region of dominance of any sensor corresponds

to a segment on the loop. We further assume that the region of dominance of the i-

sensor strictly belongs to the interval (pi-1, Pi+I). In other words, there are no abrupt

changes in the sensing behavior over the domain such that each sensor contributes to

the net utility function. Let [4l, ri] be the dominance range of the i-th sensor. Thus,

1i4 (p- 1,pi) and ri E (pi,pi ). According to the definition of the dominance region,

f (I IP - li 1, pi) = fr(I Ipi- i - 1l 1,p- 1) and,

fr(IlPi - riI, ,Pi) = fA(IHPi+m - ri 11,pi+m).

Using the above notation, the net utility function in 4.2 assuming uniform density

function (O(q) = 1) can be expressed in the following form for the case of 1D loop.

n P p p r

-(pl, P2,-" P.) = 1 i - q 1,pi)dq + fr(Ip, - q j,pi)} (4.9)



4.4 Simulation Results

4.4.1 Simulation Environment

We ran simulations in MATLAB to test the convergence and resulting coverage of

our distributed control law. The path is a 1D loop that can have sharp corners and

obstacles that cause the sensing performance function to vary abruptly. The sensors

start at randomly chosen initial positions and in each iteration of the algorithm, they

update their position according to Equation 4.5 using a constrained optimization

routine in MATLAB. We assume that sensors are localized and adjacent sensors on

the path can communicate with each other. The simulation converges when the no

sensor changes its position. We test for different models of ki(x) and k2 (x), different

shapes of the path, and different number of sensors.

4.4.2 Global knowledge of sensor performance function

We first consider the ideal scenario where sensors have perfect knowledge of the sens-

ing performance function. In practice, the sensors will estimate the performance

function based on observed data the performance of the coverage algorithm will de-

pend on the accuracy of this estimation. Figure 4-5 shows the performance of the

algorithm for three different sensing performance functions. In each case, the sensors

start at random initial locations. As expected, for constant parameter values (Fig-

ure 4-5.1(a)), the sensors converge to a uniform distribution(Figure 4-5.1(b)). When

the parameters have significant variations (Figure 4-5.2(a), 4-5.3(a)), the distribution

if non-uniform (Figure 4-5.2(b), 4-5.3(b)). Sensors try to move to positions where

the value of ki is large and k2 is small so that their local utility is maximized. Note

that in each case the global coverage utility increases monotonically even though the

position updates at each sensor are local. This is in agreement with Theorem 4.2.

To study the impact of the network size on the algorithm performance, varied the

network size from 5 to 100. For each network size, we repeated the simulation 50

times starting with a different random initial position each time. The coverage utility
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increases exponentially and eventually saturates (Figure 4-6(a)) since as the number

of sensors increases, the marginal utility of each additional sensor decreases and tends

to zero. The variation in utility is very small indicating that the initial locations do

not impact the final coverage. The convergence time initially increases with the num-

ber of sensors and then stops increasing (Figure 4-6(b)) proving that the algorithm

is scalable. The large deviations indicate that unlike coverage, the convergence time

varies significantly with the initial sensor locations.

4.4.3 Occlusions

Occlusions can occur due to obstacles in the path or sharp corners. Since the camera

cannot see through an occlusion, occlusions cause an abrupt drop in the sensing

performance function. Equations 4.7, 4.8 can be modified as follows to account for

occlusions.

k (p, ) if q is not occluded from pi
fl(lI - qll,pi) = k2LipU (4.10)

0, otherwise

',(pi2) if q is not occluded from pi
f(llpi - qjjpi) = k2)+piI (4.11)

0, otherwise

Because the sensing function takes on a constant value for points beyond an oc-

clusion, it is possible that the equations f (I Ii - li , Pi) = fr(I IPi-1 - li 1, Pi-1) and,

fr (lPi - ri, pi) = fl(I i+1 - ri , Pi+l) that define the dominance region have many

solutions. This will happen, for example, when adjacent sensors have two or more

obstacles between them. For such cases, we define the dominance region boundary

to be the position of its closest occlusion, i.e., if the value of the sensing function of

a camera is zero at a point q then q is considered not covered by the camera and will

not belong to its dominance region. Notice that with this definition, the dominance

regions may not form a partition of the path and there could be segments of the path

that do not belong to any sensor's dominance region. However, since these segments



have zero coverage utility for all the sensors, and the rest of the path is partitioned

according to the Voronoi property, this definition of dominance regions is an optimal

assignment of points on the path to sensors.

With these new definitions for performance function and dominance regions, we

can apply the control law in equation 4.5 and Theorem 4.2 guarantees convergence.

However, with this control law, sensors adjacent to occlusions will not cross the

occlusions because they only pick new positions within their dominance regions. To

further improve the coverage utility, we introduce ain additional switching step where

sensors can cross obstacles if the local utility gained by doing so is more than the

utility gain of the optimal location within its dominance region. While computing

the switching utility, we account for change in the dominance regions and the utility

of the neighboring sensors. Note that the local utility of every other sensor remains

unchanged.

Figure 4-7.1 shows the result of the algorithm on a loop of length 250 feet with 3

obstacles. The parameters vary as sine functions. Figure 4-7.1(b) shows the positions

of the obstacles (black squares) and final positions of the sensors (red circles). As

expected the coverage obtained here is less than Figure 4-5.2(a) where there are no

occlusions. Figure 4-7.2 shows an example on a rectangular path with 4 sharp corners

that cause occlusions. In both cases, the utility increases monotonically with each

iteration and the algorithm converges. We can generalize this approach to deal with

more complex pathways with multiple junctions so at a sensor adjacent to a junction

reasons about the coverage gain in each of the branches that meet at the junction.

4.4.4 Online estimation of sensor performance function

In the coverage algorithm in the previous section we assumed that each sensor has

global knowledge of the sensing performance function f ( I i - q I, pi). This permits a

sensor to take the best step according to Equation 4.5. However in practice this is not

possible. Specifically, in the case of camera sensors, functions kil(x) and k2(x) are not

globally known. This necessitates modification of the current coverage algorithm. We

assume that at every step of the algorithm, a camera learns its sensing performance
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function, i.e., the empirical values of ki and k2.

In the simulations shown in Figure 4-8, each sensor builds piecewise linear models

of kl and k2 based on data from its neighboring sensors and its current data. To

improve the estimation in the first iteration, we assume that sensors share data over

multiple hops. We observe that the utility sometimes decreases because of erroneous

estimation (Figure 4-8(c)). But even with this very simple estimation, the coverage

utility is close to the case when global knowledge was assumed.

(a) indoor (b) outdoor

Figure 4-9: Cyclops setup

20



4.4.5 Cyclops Experiments and Results

We conducted a series of controlled experiments with cyclops cameras to gather sev-

eral images in two different environmental settings - indoor and outdoor. We used

interpolation techniques on the gathered data to reconstruct the sensing performance

functions in these settings and tested the performance of our coverage algorithm for

these pseudo-real functions.

1) a rectangular corridor in an building with controlled lighting (figure 4-9(a))

and 2) a rectangular pathway surrounded by trees with uncontrolled lighting (figure

4-9(b)). For each of these settings, we picked sample positions for the camera and for

each location, we estimated the sensing performance function (k and k2) by placing

a target at different distances from the camera.

4.4.6 Indoor experiments

Corridors of buildings provide an ideal playground for testing our coverage algorithms

with cyclops cameras. We performed experiments under controlled lighting conditions

in a rectangular corridor of which the central axis rectangle is of size 90ft x 30ft. The

corridor is 5ft wide and Figure 4-9(a) shows a cyclops camera set up along the length

of the corridor. At every 20ft along the lengthwise central axis of the corridor, we

placed a cyclops camera and captured on both sides the images of the corridor which

serve as background models. We also captured images of a white or black board of

dimension 3ft x 2ft placed along the central line kept at every 5ft from the camera

up to 25ft. These images serve as foreground models. Since the width of the corridor

is 30ft, along the width-wise central axis, we placed a camera at the middle point and

captured images on both sides in the similar fashion. We used these images to fit the

sensing performance function to obtain the values of kl and k2 at various locations.

Along the entire corridor, we obtained 22 pairs of values of kl and k2. We interpolate

spline functions through these values of k, and k2 to estimate the pseudo-real global

sensing performance function. Figure 4-10(a) shows ki(x) and k2(x) along the entire

length of the corridor. We use this form to test our coverage algorithm.

100



In our simulations, we placed k sensors initially uniformly randomly. simulations
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4.4.7 Outdoor experiments

We conducted a similar experiment as in the indoor case around an outdoor rectan-

gular pathway surrounded by trees without any control over lighting conditions. The

pathway was of size a x b and Figure 4-9(b) shows a picture of a cyclops camera set

up along the pathway. We captured background images and foreground images at n

locations around the pathway in both directions. We observed that the lighting con-

ditions in the outdoor setting change rapidly and because of this effect we collected
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data at relatively a few spots. Based on these images, we estimated the values of kI

and k2 at the sampling points. We interpolate spline functions through these values

to obtain the sensing performance function over the domain and Figure 4-11(a) shows

this model. We use this model to test our coverage algorithm.

4.4.8 Dynamic Environments

All the experiments we conducted involved manual positioning of the cameras and

the test boards and was very time consuming. Unlike the indoor environments, the

lighting conditions in outdoor environments change rapidly relative the time scale of

collecting all the measurements. However we believe that with some degree of au-

tomation, our coverage algorithm can easily implemented in dynamic environments

that demand frequent reconfiguration of the sensor positions. In particular, we imag-

ine that the cyclops cameras and the testing board be mounted on mobile platforms

that will have localization ability. The images can be processed on board to estimate

the sensing performance function at the current location. By means of wireless com-

munication the sensors can implement distributed coverage algorithm. We restricted

our work to a simple pixel detection algorithm. It is possible to implement other kinds

of algorithms to improve the local sensing performance functions, but our coverage

algorithm still holds in this scenario.
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Part II

Estimation Sensors

105



106



Chapter 5

Frame Theory and Non-uniform

Sampling

In this part of the thesis, we deal with the case of estimation sensors. Estimation

sensors provide local measurements of a physical quantity such as temperature, pres-

sure, light intensity and chemical concentration. These measurements can be used

to estimate the unknown field. The quality of the estimated field depends on the

arrangement of the sensors. Based on the sampling and the estimation theory, we

define and address the coverage problem as the sensor arrangement problem in this

part of thesis. We ask the question: when and where to place sensors to guarantee

that the estimation error is less than the tolerance value. Our approach is to find

classes of sensor arrangements that are error tolerant.

The sensor arrangement problem and our approach are closely related to frame

theory, and non-uniform sampling theory and function reconstruction. In this chapter,

we review relevant results from the literature and in the next chapter, we address the

sensor arrangement problem.

Organization: A frame is a generalization of a basis. In Section 5.1, we explain the

notion of a basis of a vector space for comparison. In Section 5.2, we introduce frames

and their properties, tight frames which form a special subclass of frames and frame

algorithms. In Section 5.3, we describe the relationship between a pseudo-inverse of
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a frame and linear estimation theory via results proved in [30]. In Section 5.4, we

present relevant results from non-uniform sampling theory and show the relationship

between frame theory and non-uniform sampling theory via results showed in [3].

5.1 Basis

The notion of a basis of a vector space is fundamental in linear algebra. A basis of a

finite-dimensional vector space is defined as follows.

Definition 5.1.1. Let V be a finite-dimensional vector space. A sequence {ek =1l in

V is a basis for V if it satisfied the following two conditions [10].

1. V = span{ek}kEl and

2. {ek}jkl is linearly independent, i.e., if =I ckek = 0 for some scalar Ck s,

then ck = 0 for all k = 1, 2, - , M.

Thus every element in V can be represented uniquely as a linear combination

of ek's. An important class of basis set is an orthonormal basis. {ekM 1 is an

orthonormal basis if

1 if k= j
(ek, ej) = kj = , (5.1)

0 if k j

where (-, ) stands for the inner product. An element f E V can be represented in

terms of the orthonormal basis as

M
f = E(f, ek)ek. (5.2)

k=1

One of the main problems with an orthonormal basis is its lack of flexibility. In

analysis, it is often necessary to find an orthonormal basis with desired additional

properties. Despite much effort, the problem of finding an orthonormal basis with

additional properties is generally difficult [40].
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5.2 Frames

A frame is a suitable alternative to an orthonormal basis. The second condition in

the definition of a basis is relaxed in frames. In that sense a frame is a basis with

additional elements [16], [10]. The notion of frames was first introduced by Duffin and

Schaeffer [20] in 1952 in the context of non-harmonic Fourier series. Non-harmonic

Fourier series involves expansion of periodic functions in complex exponentials of the

form ej A t , where An = 27rn. The connection between frames and discretized wavelet

functions was first observed in 1985 [16]. In this section we discuss frame fundamen-

tals, tight frames which is an important class of frames, and frame algorithms.

5.2.1 Frame Fundamentals

The introduction to frames and the related results presented in this section is adapted

from [16] and [30].

Let 'H denote a Hilbert space with norm II "| and inner product (-, .).

Definition 5.2.1. [16] A family of functions {k}kEJ in a Hilbert space RH is called

a frame if there exists A > 0 and B < oo such that, for all f E 'H,

All fl 2 < E (f, k) 2 < B[f/[[2 . (5.3)
keJ

A and B are referred to as frame bounds.

In this thesis, we will deal with finite dimensional frames in C', where M < 00

and C is the space of complex numbers. Let 4 = {Ok ikN= be a set of M-dimensional

vectors #k E CM . Let each Ok be a column vector. Thus, D is a frame if there exist

the frame bounds A > 0 and B < oo such that

N

Alla||2 < j(a, Ok)[ 2 < Bllal 2, for all a E C M .  (5.4)
k=1

In CM , I I denotes the Euclidean norm and (., ) denotes the usual dot product.

The lower bound in Equation (5.4) requires that Ck's span CM because otherwise we
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will be able to choose a vector in CM that is orthogonal to each 'k and this violates

the lower-bound inequality in the definition. So a frame will always have N > M.

The ratio V is referred to as the redundancy of the frame. Note that one can always

choose E , k 2 to be the frame upper bound B. Therefore, any finite set of

vectors in Cm that spans CM is a frame.

Definition 5.2.2. A frame is a uniform frame if each I4kl = 1.

The finite dimensional frame 4 in CM can be associated with an operator F in a

matrix form, referred to as a frame operator. F is constructed as,

2

44
(5.5)

Thus F is an N x M matrix. It does not matter in what order we stack 0*. It is

a linear operator because it maps a vector in CM to a vector in CN as follows:

(Fa)k = (a,k), for k = 1,2,-- ,N. (5.6)

In terms of the frame operator F, the frame inequalities in 5.4 can be written as

a*AIMa < a*F*Fa < a*BIMa, for all a E CM. (5.7)

Here IM is an identity matrix of size M x M. The above inequality is usually

written in the short form as

AIM < F*F < BIM. (5.8)

Frames have an interesting property that is important from the viewpoint of this

thesis.

Lemma 5.2.3. Union of two frames is also a frame.
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Proof. Let 4 and F be two frames with the corresponding frame operators F and G.

Let A1 and B1 be the frame bounds for frame Q(. Let A 2 and B2 be the frame bounds

for frame F. Therefore,

AIaI < F*F < BilM and

A2IM < G*G < B21M.

Let IF be a frame constructed by union of P and F. Let P be the corresponding frame

operator obtained as P = . It is easy to verify
G

(A, + A2)IM < P*P < (Bi + B2)IM.

Thus, the union of two frames is also a frame and the frame bounds of the new frame

is sum of the frame bounds of the two original frames. Oi

Note that the redundancy of the frame obtained by the union of two frames is at

least 2 [30]. We note an interesting property of the eigenvalues of a frame.

Lemma 5.2.4. [30] For any frame operator F with the frame bounds A and B, the

eigenvalues of F*F lie in the interval [A, B].

This can be easily observed by considering a to be an eigenvector of F*F in

Equation (5.7). The above lemma implies that F*F is a positive definite matrix.

Also note that the condition number of F*F, which is the ratio of the highest and

the lowest eigenvalues of F*F, is bounded by B. Because all of its eigenvalues are

positive, F*F is invertible. Therefore, the following inequalities hold.

B-'1IM (F*F) - 1 < A-1IM (5.9)

Definition 5.2.5. For the frame 4 = { gkk=1, the dual frame 4 = { k} 1 is defined

as

k (F*F) - 1 k, for k = 1, 2,., N. (5.10)
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Let F be the frame operator corresponding to the dual frame 1. From (5.5),

(5.11)

Note that k = 0 (F*F)- 1. Therefore,

F= F (F*F) -1 . (5.12)

Furthermore, F*F = (F*F)- 1. Equation (5.9) implies that B - 1 and A- ' are the lower

and the upper bounds respectively for the dual frame 4. We note a useful property

of the eigenvalues of a frame.

Lemma 5.2.6. [30] The sum of the eigenvalues of F*F equals the sum of the lengths

of the frame vectors. For a uniform, frame, this implies that the sum of the eigenvalues

is N.

Proof. The sum of the eigenvalues of F*F is its trace. Using the basic properties of

the trace and the definition of F in Equation (5.5),

N N

tr(F*F) = tr(FF*) = 1 kk = 10k 112 .

k=1 k=1

5.2.2 Tight Frames

Tight frames constitute an important class of frames. They are of special relevance

in this thesis.

Definition 5.2.7. [10] If the two frame bounds are equal, A = B, we call the frame

a tight frame.
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The definition implies that F*F = AIM = BIA. Note that the frame vectors of

a tight frame need not be orthogonal. F is constructed by stacking row vectors O*.

F*F = AIM implies that the columns of F are orthogonal. F can be thought as made

up of the first M columns of an N x N matrix with orthogonal columns. We note a

useful property of the eigenvalues of a tight frame below.

Lemma 5.2.8. /30] For a tight frame, F*F has eigenvalue A with multiplicity M. If

the tight frame is also uniform, A = r.

Like an orthogonal basis a tight frame allows for weighted linear representation of

an unknown vector.

Lemma 5.2.9. [10] Every element f E Cm can be represented in terms of a tight

frame = ki N=1
N

f A (Ok, f )Ok. (5.13)
k=1

The above result can be easily verified. Equation (5.13) is similar to Equation

(5.2) except the factor '. However, note that a frame that is tight need not be an

orthogonal basis. We present a classic example from [16].

Consider the space C2 . Consider a frame with elements 1 = 0 ~

2 , 3 . Frame operator F is given by
2 -2

0 1

2 2V4- :1
2 2

F*F = I2. But note that Ok'S are not orthogonal to each other.

Tight frames have an interesting property that under the geometric transformia-

tions such as rigid rotations and reflections of the entire frame, and negations of some

of the frame vectors, the new frame is still tight [30]. Consider a tight frame 4I with

the frame operator F. The rotation and reflection operations can be represented using
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a unitary matrix, say U. The negating of a frame vector can be represented using a

scaling factor +1. Thus a frame vector Ok gets transformed into

Yk = akUCk, fork = 1, 2, -- , N, (5.14)

where 9k = 1l. The new frame operator G can be represented as

G = EFU*, whereE = diag(a, 2, '... , N). (5.15)

U*U = IM, F*F = AIM and E*E = IN. Now it is easy to verify that

G*G = AIM. (5.16)

A uniform tight frame is bundled with all possible frames obtained through these

transformations to form an equivalence class in [30]. We refer interested readers to

[30] for further properties of the equivalence class.

Lemma 5.2.10. Union of two tight frames is also a tight frame.

Proof. The proof is similar to the proof of Lemma 5.2.3. O

The above lemma plays an important role in the next chapter of the thesis. Next

we bring this subsection to a closure by stating an important result from [30]. The

result is about tightness of randomly chosen frames.

Theorem 5.2.11. [31],[30] Let {fN}= M be a sequence of frames in JRM such that

4N is generated by choosing N vectors independently and uniformly randomly on the

unit sphere in RM. Let FN be the frame operator corresponding to DN. Then in the

mean squared sense,

FFN - Ilm elementwiseas N - oo.
N refer interested readers to the original papers for the proof.

We refer interested readers to the original papers for the proof.
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5.2.3 Frame Algorithms

One of the main virtues of frames is that they allow for overcompleteness. Many

frames have a property that even after deleting a few of their elements, a frame still

remains a frame. This is pivotal in communications. In communication applications,

an unknown vector can be encoded using a frame and transmitted. Encoding simply

involves projecting the vector on each element in the frame. The projection coeffi-

cients are then transmitted through channels which are noisy and may cause erasures

of some of the coefficients. Since frames allow for redundancy, the unknown vector

can still be recovered using the remaining coefficients using the corresponding frame

elements. This brings us to the question of how to recover a vector from frame pro-

jections. One approach is to find a pseudo-inverse of the frame operator which we

will discuss in the next subsection. This could be computationally expensive for large

matrix dimensions. Researchers have come up with iterative numerical algorithms

that are computationally effective [10]. One such classical algorithm is the frame

algorithm.

Theorem 5.2.12. [10] Let 4 = { Nk 1 be a frame in a finite-dimensional space V

with frame bounds A and B. Given a E V, define the sequence {Yk}ko in V as

2
70 = , k = -1 + A+ S (a- yk), (5.17)

where operator S is given by Sg = EN (j, g) . Then

Ila - l < (B-A) k

SB+A Ia.

We refer interested readers [10] for a proof of the above lemma. The ratio (B) <

1 and as k -, oo, -y --+ a. Note that the algorithm depends on the knowledge of the

frame bounds. The rate of convergence, (B-A) also depends on the frame bounds. If

B is much larger than A, then the convergence rate might be slower [10]. Grochenig

proposed two new methods to obtain faster convergence rates, Chebyshev method and

conjugate gradient method. The Chebyshev method requires knowledge of the frame
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bounds but guarantees faster convergence rate when B is much larger than A, whereas

the conjugate gradient method works without the knowledge of the frame bounds.

We refer interested readers to [10] for the details.

5.3 Pseudo-inverse and Linear Estimation

In the previous section we briefly discussed the iterative numerical procedures to

recover an unknown vector a from its projection using a frame. Another approach

is to use pseudo-inverse. This also known as Moore-Penrose generalized inverse [30],

[10]. Let F be a frame operator corresponding to frame 4 = fk}I in an M

dimensional space V. The pseudo-inverse of F is given by

Ft = (F*F)-lF. (5.18)

The frame condition ensures that the inverse of F*F exists. We can easily verify

that FtF = IM. Thus, Ft(Fa) = a. However the pseudo-inverse is not the only

possible inverse of the frame operator. We refer readers to [30] on how to find an

inverse matrix using the singular value decomposition. But the pseudo-inverse has a

remarkable property over the other inverses. It eliminates the contribution from the

errors that are orthogonal to the range of the frame operator. Let a be a vector that

is encoded using frame operator F to f = Fa. In many applications, f is not known

precisely (e.g., because of quantization, modeling errors, noise) and instead f = f + e

is known. e denotes the error. Let A denote the vector that is recovered using noisy

projections. ct = Ftf. Instead of using the pseudo-inverse we can also use any other

inverse. However the pseudo-inverse eliminates any influence of e that is orthogonal

to the range of F. Ftf is the orthogonal projection of f onto the range of F [30]. In

that sense the pseudo-inverse is the linear reconstruction method that minimizes the

least squared error, IJ - f112 [29].

In the absence of any knowledge of the errors in the projection coefficients, the

pseudo-inverse is the best one can use in the linear estimation method. It turns out
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that this is also true when the errors are stochastic in nature with zero mean and the

covariance matrix being a scaled identity matrix. Let e be such that E [e] = 0 and

Q = E [eTe] = a 2 IN. Again, let a be the vector encoded using the frame operator

F. Let f = Fa. Let f = f + e be the noisy measurement. Let A be the decoded vector

using the pseudo-inverse of the frame operator and the noisy measurement; A = Ftf.

Based on the linear estimation theory [54], [48], the pseudo-inverse yields the solutions

that minimizes the mean squared error (MSE) over all possible linear reconstruction

procedures. We will discuss this in much more detail in the next chapter. The mean

squared error for the pseudo-inverse based solution is given by,

1 2 a2M 1

MSE = yia - al 2 = trace(F*F) - 1}  (5.19)
k=1

where Ak's denote the eigenvalues of F*F. Consider a set of all uniform frames,

each of size N. Recall that for each such uniform frame, each diagonal element of

F*F is N and the trace value is N. Thus the sum of the eigenvalues is fixed over

all such frames. The above characterization of MSE in terms of the inverse of the

eigenvalues of F*F leads to the following theorem.

Theorem 5.3.1. Over all uniform frames, each of size N, the MSE is minimum if

and only if the frame is tight.

We refer interested readers to [30] for further details. The main idea behind the

proof is that the sum of the eigenvalues of F*F is fixed for all the uniform frames

of size N. The sum of the inverse eigenvalues is minimized if all the eigenvalues are

equal. Based on Lemma 5.2.8, this is true if and only if the frame is tight.

Based on Lemma 5.2.4, each eigenvalue lies within the interval [A, B]. Hence, for

each k, B - 1 < - A -1 . The consequences of this are summarized in the following

theorem.

Theorem 5.3.2. [30] For the pseudo-inverse based linear reconstruction with error

e satisfying E [e] = 0 and Q = E [eTe] = U2IN, the mean squared error is bounded

above and below as

B-lo2 < MSE < A-U 2. (5.20)
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For a uniform frame, using Theorem 5.3.1,

< MSE < A-la 2. (5.21)
N

For a uniform tight frame,

MSE = r2 = (5.22)
N r

The above two theorems have important consequences in the next chapter.

5.4 Non-Uniform Sampling

In this section, we discuss relevant work on function reconstruction from non-uniform

samples and its connection with frame theory. The material presented here is inspired

from [3] and [37]. Our approach to address the sensor arrangement problem involves

finding a set of sensor arrangements, which guarantees that the estimation error for

each arrangement is less than certain error tolerance. Such arrangements are often

non-uniform. Naturally, the sensor arrangement problem and our approach have a

connection with function reconstruction from non-uniform samples.

In their survey-cum-research paper, Aldroubi and Grochenig address the sampling

problem which deals with reconstructing an unknown function f from its discrete

samples at various locations. Clearly, the problem is not well-defined as given the

function values at discrete points, there are infinite possibilities for the choice of

such function. Therefore, it is assumed that the unknown function f belongs to a

certain class of functions. The first goal of the sampling problem is to find a set of

conditions on the sampling set, under which it is possible to reconstruct the function

uniquely and stably. The second goal of the sampling problem is to develop explicit

reconstruction schemes. Aldroubi and Grochenig deal with the sampling problem for

a special class of functions known as shift-invariant spaces. They present a unified

framework for uniform and non-uniform sampling and reconstruction of function in

shift-invariant spaces by bringing together other areas such as wavelet theory, frame
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theory, reproducing kernel Hilbert spaces, approximation theory, amalgam spaces and

sampling. A detailed discussion is beyond the scope of this thesis. We present a

subset of results in this paper modified in the context of our work.

Consider M orthonormal basis functions 0 1(x), 2(x), , M(x) in 1D, where

each Oi : D -+ C and D is the sampling domain in 1D. We consider the sampling

problem over the space of functions that are obtained by a linear combination of these

basis functions. We denote this space of functions by F. Thus, an unknown function

f(x) can be represented as:

M

f(x) = E ajoj(x). (5.23)
j=1

The sampling problem deals with the question of reconstructing f(x) using N discrete

samples taken at x 1, 2, ... , N, where N > M. Given the set of basis functions, the

problem really concerns finding N unknown coefficients, al, a2 ,- • , aM. This problem

is actually related to solving a set of linear equations and can be represented in the

matrix notation as follows:

1(X2) 2(X21) ...' M(Xl)

01(x2) 02(X 2 ) .' kM(X2)

01(X1) q2(X) ... 4M(X1)

al

a 2

aM

and (5.24)

f = Va. (5.25)

In the above compact matrix equation, f denote the vector of samples values. a

denotes the vector of unknown coefficients. V is the rectangular matrix consisting of

the values of the basis functions at the sample points. In the literature, V is known

as the Vandermonde matrix [37]. Note that it is a rectangular matrix of size N x M.

In principle, f(x) can be retrieved using M samples alone. However, in reality, due

to finite precision the elements of the Vandermonde matrix as well as the vector

of sample values are truncated and we can retrieve f(x) only approximately. This
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leads the question of stable reconstruction of the function. Aldroubi and Gr6chenig

address this question in their paper for the space of shift-invariant functions with

several generalizations [3]. We discuss the implications of their results for the above

class of functions.

Definition 5.4.1. A set of sampling xl, x2 . , X N is stable for the space of functions

.F as defined above, if there exist positive constants c and C independent of f such

that the following inequalities hold.

N

cIIfl 2 < If(x_)1 2 < Cllf112  (5.26)
i=1

II ' denotes the norm of the function.

Note that in the original paper [3], the above definition is generalized to weighted

norms. For the specific case of functions from class F we consider here, the above

inequalities for a stable set of sampling get translated as follows:

cI a 2 < a*V*Va < C| a| 2 forevery a. (5.27)

The above inequalities remind us of the inequalities involving frame bounds c and

C as in Equation 5.7. The Vandermonde matrix V can be seen as a frame operator.

We sum up the equivalence of above definition and frames in the following theorem.

Theorem 5.4.2. The following statements are equivalent.

1. x1 , x 2,' .. , XN is a stable set of sampling for the space of functions F formed by

the linear combinations of the M orthonormal basis functions € 1(x), 2 (X), " , (X)

as discussed above. N > M.

2. There exist positive constants c and C such that the following inequalities in-

volving these constants, and the Vandermonde matrix V (Equations 5.24 and

5.25) are satisfied for every a.

clIa|2 < a*V*Va < CI a| 2 forevery a. (5.28)

120



3. The Vandermonde matrix V is a frame operator and thus, the columns of V*

form a frame with frame constants c and C.

Again, note that in [3] Aldroubi and Grochenig show the equivalence of different

terminologies such as reproducing kernel Hilbert space, frames and stable sampling

sets in non-uniform sampling for a much more generalized classes of functions. We

refer interested readers to the original paper [3]. We merely state the specialized result

since we will show another equivalence to a terminology in the context of the sensor

arrangement problem in the next chapter. The implication of the above result is that

the frame algorithms we discussed earlier in Subsection 5.2.3 apply in this case as

well. Thus iterative numerical algorithms are readily available for the reconstruction

of function from non-uniform stable sampling set. Similarly, the solution based on

the pseudo-inverse of the frame operator, the Vandermnonde matrix in this case, can

also be used.
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Chapter 6

Error Tolerant Arrangements of

Estimation Sensors

In this chapter, we define and address the Sensor Arrangement Problem. As we have

seen earlier, it is a type of coverage problem that we have defined for estimation

sensors. Estimation sensors provide local measurements of a scalar field such as

temperature, pressure, or chemical concentrations, which can be used to estimate the

field. The quality of the estimation depends on geometric arrangements of sensors

in space and time. This motivates the sensor arrangement problem. We ask the

question of when and where to arrange sensors in order to guarantee estimation

error less than certain tolerance. The problem of characterizing the space of all such

feasible arrangements is hard. Therefore, our approach is to define classes of sensor

arrangements and find conditions under which they are error tolerant. In this chapter,

we consider fields that are modeled as trigonometric polynomials. We discuss various

error tolerant arrangements for these fields. We first motivate and define the sensor

arrangement problem.

6.1 Sensor Arrangement Problem

Let us review some basic notions that we already defined in Chapter 2. Estimation

sensors provide measurements of physical quantities such as temperature, hunmidity,
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pressure, or chemical concentrations. These quantities are governed by underlying

physical phenomena. They can be represented as spatio-temporal fields or signals.

The central question in coordinated sensing is to estimate an unknown field from the

measurements before making any inferences. We refer to the field value at a particular

space-time coordinate as a point estimate or a point sample or simply a sample. We

contrast point sampling sensors with sensors that provide an aggregate measure over

the local region, which we do not consider in this thesis. Sample values that sensors

provide are approximate due to, among other causes, quantization effects and sensor

noise. In this setting, the quality of the estimated field depends on the ensemble of

the sample values that are queried. These values depend on the arrangements of the

space-time coordinates at which the samples are taken. We refer to this geometric

arrangement as a sensor arrangement. The quality of the estimated field is a function

of the sensor arrangement. This observation motivates the definition of the Sensor

Arrangement Problem - when and where to take samples in order to guarantee good

estimate of an unknown field.

The sensor arrangement problem is an inverse problem. The forward problem

of estimating a field given the noisy sample values for a given sensor arrangement

is widely addressed in many areas of science and engineering. However the inverse

problem, i.e., understanding where to take samples, is seldom addressed. We formu-

late the sensor arrangement problem based on the linear estimation framework. Here

is a summary of our approach.

We assume that an unknown field to be estimated is represented as a linear com-

bination of a set of basis functions. We further assume that the sample values which

the estimation sensors provide involve random additive noise. In this setting, ac-

cording to linear estimation theory, [54, 48], the estimation error is a function of the

sensor arrangement. Any solution to the sensor arrangement problem belongs to the

space of sensor arrangements each of which provides a good estimate of the field, i.e.,

guarantees that the estimation error is less than the error tolerance. However charac-

terizing this space is difficult. Instead, our approach consists of considering different

classes of sensor arrangements such that for each class, any of its sensor arrangement
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ensures that the estimation error is always less than the error tolerance. We refer to

these classes as Error Tolerant Arrangement Classes or ETAC's. We say that each

instance of an arrangement from an ETAC is error tolerant. ETAC's are suitably

characterized feasible solution spaces to the sensor arrangement problem. They are

also convenient when we study mobile sensor networks. We will briefly discuss this

issue in the next chapter.

We will now provide formal description of the problem and discuss our approach.

6.1.1 Field Model

Modeling an unknown process (a spatio-temporal field in our case) is at the heart

of many engineering problems. There are a number of ways in which an unknown

spatio-temporal field can be modeled. Some examples include specifying differential

equations, linear representation in terms of a basis functions, Reproducing Kernel

Hilbert Spaces (R.KHS) in machine learning and stochastic modeling. In this thesis,

we represent the field as a linear combination of a finite set of basis functions known a

priori. This approach is commonly used in the area of signal processing and machine

learning, and it is closely linked with the field of model-order 'reduction. The underly-

ing idea is that analytically, any process can be represented as a linear conmbination of

a set of infinitely many basis functions of a particular type. In practice, only finitely

many of these functions play a dominant role and need to be used in modeling. This

allows for tractable computations.

Let f (x) : Q - IR indicate an unknown spatio-temporal scalar field on a bounded

domain Q. Let Q C IRa. Let 4 = { 1 (x), 0 2 (X), ' } be a set of linearly independent

basis functions where 4 k(x) : Q ~C. Any set of basis functions can be converted

into a set of orthonormal basis functions using the Gram-Schmidt procedure [54].

Therefore without loss of generality we assume that ck's form a cornplete set of

orthonormal basis functions.
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Definition 6.1.1. A set of functions { 1, 02," , } is an orthonormal basis if

Q k(x)(x)dx = 6 k1, k,l = 1,2,-.. (6.1)

where 6 k1 indicates the Kronecker Delta function.

As a consequence of these assumptions, f(x) can be uniquely represented as

00oo

f(x) = akk(x) (6.2)
k=1

where a'ks E C form a set of unknown coefficients. The problem of estimating f(x)

reduces to determining possibly infinitely many ak's, which is computationally in-

tractable. For reasons we have listed before it is practical to limit the analysis to a

finite set of basis functions that have a significant contribution. This leads to only

an approximate representation of the field. In this work, we assume that the field is

represented as
M

f(x) = a kk(x). (6.3)
k=1

Note that f is only an approximation of the real field f. In fact, f is the or-

thogonal projection of f on to the space spanned by the set of M basis functions,

{01(x), 02 (x),... 2 (x)}. We assume that Ok's are renumbered so that without loss

of generality, important M basis functions are considered. The approximation error

in the field representation is given by

00

(x) = f(x)- f(x) akk(x). (6.4)
k=M+1

The L2 norm of the error over the entire domain is given by

00oo

f - 2ill= ak2. (6.5)
k=M+l

The above equation indicates that more the number of basis functions incorporated
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in the field representation, smaller the norm of the error. But at the same time a

greater number of basis flmetions makes computations more expensive. This leads to

a trade-off between accuracy and computation time. In sensing, a larger number of

basis functions also demands more samples, which is also expensive.

In the above representation, we assume that Ok's are known a priori. The field is

determined by unknown ak's. We assume that ak's constitute a set of M unknown

but fixed parameters of the field. There is no prior knowledge about them and they

can be completely arbitrary. In statistical signal processing, ak's are assumed to have

some known probabilistic prior. We would like to emphasize that in this situation

also it is possible to proceed with our framework with relevant modifications.

6.1.2 Measurement Model and Matrix Representations

Each sensor takes a sample value at a particular location at any given time. These

measurements have several sources of error of which two important ones are quan-

tization and sensor noise. These are particularly important in inexpensive sensors

and are hard to quantify. There are two models popular in literature to model the

quantization errors for sample values placed at uniform intervals [30].

1. Additive White Gaussian Noise (AWGN): Quantization error at any location is

a zero-mean Gaussian random variable with constant variance a2.

2. Uniformly random noise: Quantization error at any location is a zero-mean

uniformly distributed random variable over interval [- , ]. Thus it has variance

value equal to 62

In addition to quantization effects there could be noise in the measurement due to

thermal or radiation effects. We use an additive noise model to capture the effects of

both the types of errors.

We assume that measurement y(x) has the following form.

y(x) = f(x) + r(x) (6.6)
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where -r(x) denotes noise. We refer to x as a sensor location or sampling location.

For the moment we assume that location errors are minimal. We measure field values

at N different sampling locations, where N > M. Let y denote the field value at

locations xi, where i = 1, 2, ..- , n. Thus, we have N data pairs (yi, xi). Recall that

we used only an approximate model f of f. Thus,

y(x) = f(x) + (x) + r(x) (6.7)

where ((x) is the source of modeling error. We combine two errors into E(x)

((x) + r(x). This leads to the following model.

y(x) = f (x) + (x) (6.8)

Under these settings, the problem of estimating the unknown field is now reduced to

estimating ak's as a function of N data pairs (yj, xi). We use the following notation:

Y1

Y2
y= . , e=

YN

v(x) =

Ck(X 1)

kZk (X2)

k(XN)

al

a2

am

\aM

ST (X)
vT(x2)

V T (X2 Z 1 Z2 -.. Z M  •

vT(xN)

Further, let X = {xI, x2 ,. * , x,} be the set of N sampling locations. We refer

to X as a sensor arrangement. y is referred to as an observation vector and V

as an observation matrix. Using the above notation, we can express f(x) and the
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measurement data as:

f(x) = vT (x) -a (6.9)

y = Va + e (6.10)

We assume that the noise vector e has zero mean, and its covariance matrix

Q = E[eTe] is known and is positive definite.

6.1.3 Linear Reconstruction

Given the setting in (6.10), the problem of finding a good estimate A of a has been

studied extensively in the literature on linear estimation [54],[48]. A variety of error

metrics that capture the difference between d and a and the estimators that minimize

these metrics have been discussed. In this paper, we consider the minimum var iance

unbiased estimator (MVUE). MVUE is based on zero bias, i.e., E [A - a] = 0, and

mininmizes the Mean Squared Error (MSE).

1m
MSE = E [ A- a 2]= E [(ak-ak)2] (6.11)

k=1

According to the Gauss-Markov theorem [54], [48], the optimal estimate a is given by:

S=- (V*Q-lv)- V*Qly (6.12)

and the corresponding MSE is given by:

1 1
MSE = ME [(a - a)(A - a) T ] = (V*Q- V)-I (6.13)

Here V* denotes the transpose of the complex conjugate of V. Thus, the value of

the minimum MSE is given by:

1 1
min E [ i- a 2] trace(V*Q-zV)- (6.14)

Given X and y in this setting, the expression in Equation (6.14) is the minimum
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MSE one can achieve [48].

6.1.4 Sensor Arrangement Problem

The error covariance and the optimal MSE corresponding to the MVUE as in (6.13)

and (6.14) are functions of the sensor arrangement X alone and are independent of the

observation vector. Through the rest of the chapter, we denote the MSE correspond-

ing to the MVUE as Err(X) to capture its dependence on the sensor arrangement X.

Thus,
1

Err(X) = trace(V*Q-'V)- (6.15)
M

We refer to Err(X) as the error metric. We say that the field estimate A is good if

the error metric Err(X) is less than a certain error tolerance value.

Definition 6.1.2. We formally define the sensor arrangement problem as follows:

Find X s.t. Err(X) < O (6.16)

where e denotes a certain tolerance value and we refer to it as error tolerance.

Thus, the sensor arrangement problem involves finding a sensor arrangement that

guarantees that the error metric is less than the error tolerance. Such an arrangement

is referred to as an error tolerant arrangement with respect to the given error toler-

ance. Note that the solution to the sensor arrangement problem need not be unique.

It is also possible to define the optimal sensor arrangement problem as finding the

sensor arrangement that yields the optimal value of the error metric for a given num-

ber of samples. The sensor arrangement problem can be defined in a similar way

for other settings that involve different types of fields, measurement models and the

corresponding estimators.

6.1.5 Relevance to non-uniform sampling and frame theory

In Chapter 5, we discussed how a set of sampling is related to a frame. In this

subsection, we show how the notion of an error tolerant arrangement is equivalent to
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these two notions in one special case when the noise covariance Q is equal to u21.

Theorem 6.1.3. The following three statements are equivalent.

1. X = {xl, X2, . ,xi is a set of sampling with lower bound A and upper bound

B.

2. D = {v(xl),v, V(X 2) ,V(XN)} is a frame with lower bound A and upper bound

B.

3. If the noise covariance Q - a2I, then X is an error tolerant arrangenent with

respect to error tolerance a2

Proof. The equivalence of the first two statements was already shown in Theorem

5.4.2. If Q = 02I, then Err(X) = MSE = trace(V*V)-1. In Chapter 5, in

Theorem 5.3.2 [30], we showed that the MSE can be bounded in terms of the frame

bounds as

B- 2 < MSE < A- 1U2 . (6.17)

2

Thus, Err(X) is guaranteed to be bounded above by - Hence X is an error tolerant

arrangement with respect to error tolerance :. E

Thus, the frame bounds A and B translate into the following bounds on the error

metric for the special case of Q = 2 1.

-2 a2< Err(X) < (6.18)
B- A

A relatively loose lower bound (A) of a frame only guarantees a higher error tol-

erance value for the corresponding error tolerant arrangement. In the perspective

of frame theory described in Chapter 5, weak frame bounds are sufficient because

iterative frame algorithms exist to recover an unknown vector from frame projections

at relatively quick convergence rates even for weak bounds. However from the per-

spective of the sensor arrangement problem, better knowledge of the frame bound
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will guarantee an arrangement with lower error tolerance. In other words, our appli-

cation demands tighter bounds than are necessary in the areas where frame theory is

typically invoked.

6.2 Our Approach: Error Tolerant Arrangement

Classes (ETAC's)

Suppose S(O) denotes the set of all feasible solutions to the sensor arrangement

problem in (6.16). Ideally we would like to characterize the space S(E), which would

allow us to formulate an optimization problem over the space S(O). For instance, in

case of intentionally mobile sensors, we can imagine a motion planning problem that

involves touring sampling locations corresponding to a sensor arrangement in S(O)

such that the energy spent in motion is minimal. On the other hand, in the incidental

motion of sensors, we can pose a problem to verify whether a particular mobility

model guarantees motion paths that conform with a solution in S(E). Unfortunately

characterizing S(O) is complicated by the highly non-linear nature of the error metric.

In order to deal with this problem, we follow a reverse approach. We define so called

the Error Tolerant Arrangement Classes (ETAC's) for sampling. We say that a

class of sensor arrangements where each arrangement satisfies certain properties is an

ETAC if every sensor arrangement in that class guarantees that the corresponding

error metric value is less than the error tolerance. More formally,

Definition 6.2.1. Let XA denote a set of sensor arrangements characterized by cer-

tain properties A. We say that XA is an Error Tolerant Arrangement Class or an

ETAC ifV X E XA, Err(X) < O, where E is a certain error tolerance.

Note that it is likely to be easier to analyze a motion planning problem over the

ETAC space because it is more explicitly defined than S(O). This approach is fairly

general because it allows us to deal with different kinds of classes. For instance, in the

case of intentionally mobile sensors, it is easier to plan motion that is characterized

by certain properties. This will allow us to define an appropriate XA and identify
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conditions under which it is an ETAC. Similarly, incidental motion itself may lead to

a certain XA and we can analyze conditions under which it is an ETAC.

6.3 ETAC's for Trigonometric Polynomials

Numerous choices such as splines, wavelets, sinc functions and radial basis functions

exist to model a spatio-temporal field. Here we limit our analysis to fields that

are modeled as trigonometric polynomials. A trigonometric polynomial is simply a

truncation of the Fourier series representation up to a certain finite number of terms.

It serves as a good approximation for most smoothly varying physical processes.

The trigonometric polynomial is a popular choice of basis functions while solving

partial differential equations for various physical phenomena. We first formally define

the sensor arrangement for trigonometric polynomial fields, and then follow with a

discussion on different types of ETAC's. We mostly restrict our discussion to 1D and

2D fields, though the analysis directly extends to higher dimensional fields.

6.3.1 Trigonometric polynomials

First will discuss a 1D trigonometric polynomial. Let f : [0, 1] - IR be a scalar

field in 1D. We assume that the domain is scaled to [0, 1]. f(x) is represented as a

trigonometric polynomial with complex exponential basis functions as follows:

+M e27jikx

f(x) = a(k) (6.19)
k=-M

Each basis function is of the form e2
,jkx and there are 2M + 1 basis function in total.

a(k)'s correspond to the unknown complex coefficients. Note that the basis functions

form an orthogonal set, i.e.,

[1 6e2 xkx e27 jlx 6 k1

Idx - (6.20)
o 2M + 1 V/2M + 1 2M + (

where 6kl denotes the Kronecker delta.
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A 2D scalar field f(x, y) is defined in a similar fashion: f : [0, 1] x [0, 1] -+ R.

f (x, y) is represented as a trigonometric polynomial as follows:

+M +M 27rj(kx+1y)

f(x, ) = a(k, 1) 2M+ 1 (6.21)
k=-M 1=-M

Each basis function is of the form e
2

,j(kx+ly) In total there are (2M + 1)2 complex2M+1

exponential basis functions and (2M + 1)2 unknown complex coefficients, a(k, 1).

Again, the basis functions form an orthogonal set, i.e.,

j1 f1 e 2 xj(kx±+ ly ) e2j(mx+ny)dxdy (kl(m,n) (6.22)

0  0  2M + 1 2M 1 (2M + 1)2 (.)

where 6(k,,)(,,) is the Kronecker delta is defined as:

6(k,1)(m,n) = 1 iff k =m and I = n

= 0 otherwise.

As discussed in the previous section, we assume that the measurement model

involves additive random noise. In this work, we exclusively deal with additive zero-

mean random noise with noise covariance of the form a 2 1. Thus our measurement

model is:

z(x, y) = f(x, y) + E(x,y) (6.23)

where z(x, y) is a field measurement value at location (x, y), and E(x,y) is random noise

with E[(x,y)] = 0 and E[Exy)] = j2. We further assume that noise values at any

two locations are independent and identically distributed random variables. We will

briefly discuss the validity of this assumption later.

Suppose we take N samples at points (x1, yl), (x2, y2), , (X , YN). Let X denote

the sensor arrangement of these sampling locations. We denote field values at the

corresponding locations by z', 2 ,- , z N and we denote the observation vector by z.

We arrange unknown coefficients a(k, 1)'s as a vector a. Using the vector and matrix
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notation that we defined earlier, we can represent N samples in terms of the following

system of linear equations.

z = Va + e (6.24)

Note that each column of V can be indexed

unknown coefficient a(k, 1). Let V(k,1) denote

1
V(k,1) = 1)2

(21M1+ 1) 2

by the pair (k, 1) corresponding to the

this (oluhnn. Thus,

e2j(kX+1 lyl)

e 2 rj(kx2+y2)

e27rJ (kxN +y N )

Based on our assumption, E[e] = 0 and E[eeT] = -2I,

identity matrix. Let i indicate the estimate of a obtained

Gauss-Markov theorem implies the following:

(6.25)

where I is the N x N

using the MVUE. The

= (V*V) lV*z

E [(A - a)(A - a)T] = U2 (V*V)-1

1
Err(X) = MSE = E [ A

(2M + 1)2
22

- a 2] = 0 t r ac e{ (V *V ) - } .
(21 + 1)2

(6.26)

(6.27)

(6.28)

Let T = V*V. Thus,

2
Err(X)= trace{T - '} (6.29)

(2M +1)2

T is a matrix of size (2M + 1)2 x (2M + 1)2 . Each element of T is given by the dot

product of two columns of V and can be indexed by the indices of those two columns.

Thus,

2  N

Tkl,mn = V*k,l)V(m,n) = (2M + 1) 2  e-27j[(k-m)xi+(1-n)yi
(2 + 1)2 S0i--l

where k,l m,n = -M,-M + 1,.-. ,0,1,.. , +M (6.30)
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Note that T has a special structure. Each element of T just depends on k, 1, m, n.

Such a matrix is called a block Toeplitz matrix.

Lemma 6.3.1. The error metric in (6.28) is invariant to the translation of the sensor

arrangement. Suppose we translate each point in X by s = (Ax, Ay) along the x and

y axes and let X + s denote the new arrangement after mapping all the points to

[0, 1] x [0, 1]. Note that a trigonometric polynomial f(x, y) is a periodic function and

the sampling domain [0, 11] x [0, 1] corresponds to one period. Thus .for any point (x, y)

outside this domain, it is always possible to find an equivalent point in [0, 1] x [0, 1].

Then,

Err(X + s) = Err(X) (6.31)

This invariance of the error metric to the translation of a sensor arrangement

allows us to rearrange the sensor arrangement such that one of the sampling loca-

tions is always at (0, 0). In the remaining subsections, we discuss different classes

of error tolerant arrangements for trigonometric polynomials under the i.i.d. noise

assumption.

6.4 Regular Sensor Arrangements

Regular sampling is undoubtedly the simplest sensor arrangement to specify and

analyze. The only information that we need to specify a regular arrangement is the

period or the spacing between neighboring samples. In this subsection, we discuss 2D

arrangements and bring out non-trivial features not observed in 1D. First we consider

the case when the sampling period is the same along x as well as the y-direction. Next

we discuss the case when the sampling periods along x and y direction are different.

Finally we will consider a special form of regular sampling line-regular sampling.

In each case, we will show that the error metric value is inversely proportional to the

number of samples as long as regularity of distribution is maintained.
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6.4.1 Regular arrangement with the same period along each

axis

Suppose we take samples at points of an N x N 2D Cartesian grid with grid spacing

£. Figure 6-1(a) shows an example where 16 samples are arranged along 4 x 4 grid

points. We assume that the origin of the lattice is at (0, 0) because the error metric is

translation invariant. We can easily evaluate the error metric value for this sampling

scheme.

Lemma 6.4.1. Let f(x, y) be a 2D trigonometric polynomial as in (6.21). We have

the regular sampling arrangement Xre, of Nx N samples with the sampling peri od -

along each direction. Let the measurement model be as in (6.23), which gives a system

of linear equations (6.2 4). Let N2 > (2M + 1)2. Then,

Err(Xreg) = 2(2 + 1)2 (6.32)
N2

Proof. The (x, y) coordinates of the sampling locations are given by (, 4), where

i1 , i2 = 0, 1, .. , N - 1. Let Te S9 be the corresponding block Toeplitz matrix. Note

that each diagonal element of T' 9 is simply .+i)2. A non-diagonal element of Te

is given by,

N-1 N-i

1 S -  k m. 1 nkmn (2M + 1)2 -2( + ), k m
i( 1 =0 i2=0

N-1 N-1
1 e-2 12k-m) -2xj(l-n)

(2M + 1)2 S e-(k (-
ii=0 i2=0

Using the geometric series summation formula for each of the above expressions, we

can show:

T g = 0, k n m, I n

Thus, T re M+ ) 2 I, where I is the identity matrix of size (2M + 1)2 x (2M + 1)2
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Therefore,

2 (2M + 1)2Err(Xreg) = (2M + 1 )2trace((T eg - ) = 2(2M + 1)2

(2 M + 1)2 N2

O

We now prove that this regular arrangement yields the optimal value of the error

metric for a given number of samples. First we prove a lower bound on the error

metric for any sensor arrangement.

Theorem 6.4.2. Let f(x, y) be a 2D trigonometric polynomial as in (6.21). Let the

measurement model be as in (6.23), which gives a system of linear equations (6.24).

For any sensing arrangement X with. K sampling locations, the error metric is lower

bounded as follows:
S2 (2M + 1)2

Err(X)> K (6.33)EK

Proof. We provide two alternate proofs for this result.

Proof 1: Note that each diagonal element of T is just K

K
TkI,kI = V(*k,JV(k,l) = (2M + 1)2 '

T is a Hermitian matrix. Hence all its eigenvalues are real [29]. In addition, T is a

block Toeplitz matrix and hence it is positive definite [37]. Let A1, A2 ... , A (2M+1)2

denote the eigenvalues of T. Note that A>O0. We have the following relations.

(2M+1)2

trace(T)= Ai = K
i=1

2 2 (2M+1)2 1
Err(X) (2M= trace(T - ) - (2M 1)

(2M + 1)2 (2M + 1)2 i=1 A

Since all Ai's are positive, we use the Arithmetic Mean - Harmonic Mean inequality
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to obtain the following result:

( 2 M1 + )2 AXi (2M + 1)2

(2M + 1)2 - E(2M+1)2 1

Using the above inequality and the previous two equations,

(2M+)12 )1 (2M + 1)4

i=1 A - K

Err(X) 2 (2M + 1)2

K

Thus we have a lower bound on the value of error metric for any sensor arrangement

X of size K.

Proof 2: This proof directly follows from the statement of Theorem 5.3.2 in the

previous chapter. In our representation of a trigonometric polynomial, basis func-

tions are scaled such that each column of V* form a uniform frame. According to

Theorem 5.3.2, MSE > ua 2 (2M+1)2 Hence the bound on the error metric follows. [K

From Lemma 6.4.1 and the above theorem, we see that the regular sampling

arrangement yields the error metric value that is a lower bound for any sampling

arrangement with the same number of samples. We summarize this observation as

the following key theorem.

Theorem 6.4.3. Let f(x, y) be a 2D trigonometric polynomial as in (6.21). We

have the regular sampling arrangement Xreg of N x N samples with the sampling pe-

riod I along each direction. Let the measurement model be as in (6.23), which gives

a system of linear equations (6.24). Let N 2 > (2M + 1)2. Then the regular sam-

pling arrangement yields the optimal value of the error metric over all possible sensor

arrangements consisting of N xN sampling locations.

nin Err(X) = a2 (2M + 1)2 (6.34)
x N 2
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An alternative line of reasoning comes from Theorem 5.3.2 in the previous chapter.

Note that the regular sensor arrangement leads to a uniform tight frame and hence,

yields the optimal error.

With the above result, it is easy to find conditions under which the class of regular

sensor arrangements is an ETAC. Let 6 denote the error tolerance. We know that
E2(2M±1) 2  

2(2M_1_2
Err(Xreg) = N 2  . We find the smallest No such that the inequality N2(2M+2 <

holds. Then, for any N > No, the error is always less that 6. Thus, for any given E
we can find conditions under which the regular arrangements form an ETAC.

II I
I

I I-.... •~--- - - - - - -
I I
I

S I I
I I- - -6 - - -o- - -e - - -
I II I

I I

I

I

II

I I

Figure 6-1: (a) Regular sampling with the same period along both axes (b) Regular
sampling with different periods along each axis (c) Line-regular sampling

6.4.2 Regular sensor arrangement with different sampling

periods along each direction

In this section the second case of 2D regular sampling arrangement in which samples

are place regularly with different periods along each direction. We assume that N1 x

N2 samples are regularly placed with the periods 1 along the x-axis and - along

the y-axis. Figure 6-1(b) shows an example of this type of arrangement where 12

samples are arranged with different periods, 1 and 1, along x and y-axis. We assume

that N1 > 2M + 1 and N2  2M + 1. In this case also, we show that over all

possible sampling arrangements of N1 x N2 samples this regular arrangement yields

the minimum estimation error.

Theorem 6.4.4. Let f(x, y) be a 2D trigonometric polynomial as in (6.21). We

have the regular sampling arrangement Xre of N1 x N2 samples with the sampling
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periods - along the x-axis and N along the y-axis. Let the measurement model be

as in (6.23), which gives a system of linear equations (6.24). Let N1 > 2M + 1 and

N2 > 2M + 1. Then the regular sampling arrangement yields the optimal value of

the error metric over all possible sensor arrangements consisting of N x N2 sampling

locations.

mmin Err(X) = a2 (2M + 1)2 (6.35)
x N xN 2

Proof. According to Theorem 6.4.2, over all possible arrangements of N1 x N2 sam-

pling locations, the minimum estimation error that is possible to achieve is a 2 (2M+1)
2

Along the lines of the proof of Lemmnna 6.4.1, it is possible to show using simple cal-

culations that the regular sampling arrangement considered in this theorem indeed

yields this estimation error. In fact, this regular sampling arrangement also leads to

a uniform tight frame. Thus, by Theorem 5.3.2 in the previous chapter, the regular

arrangement yields the optimal estimation error. O

With the above theorem, it is easy to find conditions under which this class of

regular sensor arrangements is an ETAC. Let 0 denote the error tolerance. It is

possible to achieve the estimation error of 2(2M+1)2 using a regular arragement ofN1 xN 2 using a regular arrangement of

N1 x N2 samples, where N1 > 2M + 1 and N2 > 2M + 1. We can find the smallest

N, x N2 such that the inequality 2 < 0 holds. Then, for any regular sampling

arrangement of size N3 x N4 , where N3 > N1 and N4 > N2, the estimation error is

always less that . Thus, for any given O we can find conditions under which this

class of regular arrangements form an ETAC. Note that in the previous subsection

we considered the number of samples that is strictly a squared number. In this

case, that is not necessary, hence providing us more flexibility in order to meet the

error-tolerance condition.

6.4.3 Line-regular sensor arrangement

In this section, we consider another class of regular arrangements. The two classes

we discussed earlier are commonplace. But in both the cases, the number of samples

had to be a special type of number, a perfect square greater than (2M + 1)2 as in
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the first case, or a product of two integers (each greater than or equal to 2M + 1)

as in the second case. But what if the choice of the number of samples is neither of

these types? Does there exist a regular sampling arrangement that still achieves the

lower bound on the estimation error as seen in Theorem 6.4.2? The answer is yes.

In this section, we discuss a special type of regular arrangement, which we call as a

line-regular sensor arrangement, precisely achieves this.

We now describe a procedure for constructing a line-regular sensor arrangement.

In the square domain [0, 1] x [0, 1], we place N lines parallel to x-axis periodically

with period . We assume that N > 2M + 1. Along each horizontal line we place a

few samples regularly. Let Ki denote the number of samples placed uniformly with

period along the ith horizontal line which has y = -, where i = 1, 2,.. N. We

assume that each Ki > 2M + 1. Thus, the total number of samples is K = - Ki.

Note that K > (2M + 1)2. Figure 6-1(c) shows an example of a line-regular sampling

arrangement of 14 samples. In the following lemma, we evaluate the estimation error

corresponding to the line-regular sensor arrangement.

Lemma 6.4.5. Let f(x, y) be a 2D trigonometric polynomial as in (6.21). We have

a line-regular sampling arrangement Xline-reg of K samples constructed according to

the procedure described above. Let the measurement model be as in (6.23), which gives

a system of linear equations (6.24). Then,

(2M + 1)2
Err(Xine-reg) = 02 K (6.36)

Proof. Let (, , y,,) be the coordinate of the nth sampling location along the mth

horizontal line, where m = 1, 2, -. , N and n = 1, 2, .. , K,. According to our

placement strategy, Xmn = - and yi . Let Tline-reg be the corresponding

block Toeplitz matrix for this sampling arrangement. An element T lie-reg of Tline-reg
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is given by,

line-reg __ 1 N Km'

Tkl,stre (2M 1+ 1)2 E E e [(k-s) +(1-t) ]

m=1 n=1

N K127ej(1-t) _-2_2j(k-s),-'
(2M + 1)2 E 2j(t E 2 K)

m----1 n-I

Using the geometric series summation formula for each of the above expressions, we

can show that T zine-reg = (2Mi)2I, where I is the identity matrix of size (2M + 1)2 x

(2M + 1)2. Therefore,

o_ (2M + 1)2
Err(Xline-reg) = trace((Tline- reg ) - ) = 2 ( 2 M  + 1 2

(2M + 1)2 K

Based on the above lemma and Theorem 6.4.2, we see that the line-regular sam-

pling achieves the minimal estimation error.

Theorem 6.4.6. Let f(x, y) be a 2D trigonometric polynomial as in (6.21). We have

a line-regular sampling arrangement Xline-reg of K samples constructed according to

the procedure described above. Let the measurement model be as in (6.23), which gives

a system of linear equations (6.24). Let N1 > 2M + 1 and N2 > 2M + 1. Then the

line-regular sampling arrangement yields the optimal value of the error metric over

all possible sensor arrangements consisting of K sampling locations.

min Err(X) = 2 (2M + 1)2 (6.37)
x K

With the above theorem, it is easy to find conditions under which a class of line-

regular sensor arrangements is an ETAC. Let 0 denote the error tolerance. We can

find the smallest K such that the inequality ' 2(2M+1) 2 < 1 holds. Then, for any line-

regular sensor arrangement of size K according to the construction procedure above,

the estimation error is always less that 0. Thus, for any given 0 we can find conditions

under which this class of regular arrangements form an ETAC. In comparison with
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the two types of regular sensor arrangements discussed earlier, line-regular sampling

arrangements do not impose any conditions on how the number of samples should be

and provide maximum flexibility in terms of the choice of the number of samples for

the given error tolerance.

6.5 A-dense Sensor Arrangement

A-dense sensor arrangements have been studied in the context of the stable recon-

struction of band limited signals using non-uniform sampling in the context of the

numerical issues involved there [35], [37].

Definition 6.5.1. Let X denote a sensor arrangement in [0, 1] x [0, 1]. We say that

X is A-dense if for any point (x, y) E [0, 1] x [0, 1], there exists some (xi, yi) E X

such that max{Ix - xil, ly - yij} < A, i.e., the L. distance between (x, y) and (xi, Yi)

is at most A. Intuitively, within a square of size 2A, i.e., an L,-disc of radius A,

placed anywhere in [0, 1] x [0, 1], there is at least one sampling location. We refer

to a collection of all A-dense sensor arrangements as the class of A-dense sensor

arrangements.

It can be observed that if X is A-dense, then it is also A'-dense for any A' >

A. However a A'-dense arrangement need not be A-dense. Furthermore, the L,

distance between any two nearest neighbor sampling locations from a A-dense sensor

arrangement is at most 2A. Intuitively, a A-dense arrangement does not contain a

square hole of size larger than 2A. Based on this geometric interpretation, we can

conclude that any A-dense arrangement contains at least 1 sampling points.

We find the conditions on A under which the A-dense arrangements form an

ETAC. Let O be the error tolerance. In the previous section, we found the conditions

under which uniform arrangements form an ETAC. Suppose we place Nx N samples

uniformly to form the sensor arrangement Xreg as in the previous section. Let N

be the smallest integer such that Err(Xreg) < E. Note that Xu is in fact ig-dense

and Err(Xeg) 2(2M+1)
2 Loosely speaking, Xreg is the tightest among all the -

dense arrangements since it needs the smallest number of samples than any other
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arrangement in this class. Based on several simulation runs, we make the following

conjecture.

Conjecture 6.5.2. Let X be a 1N-dense sensor arrangement, where N is the smallest

integer such that (2M1)2  . Then Err(X) < O. Thus, the class of 1-dense

sensor arrangements is an ETAC with respect to the error tolerance 0.

1
N' = [(2 (6.38)

a 2(2M + 1)2Err(X) < (2M 1)2 (6.39)
- N'

a2(2M + 1)2 a 2(2M + 1)2
< Err(X) < (6.40)N - N'

Thus, the uniform arrangement with Nx N samples is also the tightest in terms

of the error because it represents the upper bound on the estimation error for any

'-dense arrangement. We observed this over several simulation runs though we have

not been able to prove the claim.

The class of A-dense sensor arrangements has a connection with the geometric

coverage problem of covering the domain with L,-discs (square discs) of radius A.

Note that any A-dense sensor arrangement is a valid solution to the coverage prob-

lem because if we locate a square of size 2A centered at each sampling location of a

A-dense arrangement, then by the definition the entire domain [0, 1] x [0, 1] is guaran-

teed to be covered by these L, discs. Furthermore, if we imagine a few mobile square

shaped robots of size 2A tour through the sites of a A-dense arrangement, then the

entire domain is swept by these robots. Note that the tour involves only transla-

tional motion of the robots (no rotations) according to the definition of a A-dense

arrangement.

145



6.6 Incrementally Constructed Sensor Arrangements

Independent of the previous two ETAC's, we propose an approach to construct an

error-tolerant arrangement from a given initial arrangement. This approach is inspired

from an active learning method in the machine learning literature [46]. As the name

suggests we incrementally add chosen sampling sites to the already existing sensor

arrangement one by one such that the estimation error is reduced at every step until

the error is less than the error tolerance value. At this point the sensor arrangement is

error tolerant. We propose a heuristic to construct such an arrangement. In this sense,

this approach does not exactly lead to an ETAC, but it given a way to construct an

error-tolerant arrangement from a given initial arrangement. A set of arrangements

obtained from various initial sensor arrangements is particularly useful for the case

of intentionally mobile sensors. Suppose (2M + 1)2 points are already chosen in

the sensor arrangement. These might be obtained by placing a few static sensors

or measurements available from a few mobile sensors. Suppose we need to make a

few additional measurements to guarantee that the error metric is within the error

tolerance. In this case, the class of incrementally constructed sensor arrangements

allows us to find a set of additional measurements.

Let X, denote a sensor arrangement of n points. Suppose we wish to add a

sampling location to X, such that the estimation error is further reduced. Let T,

denote a Toeplitz matrix corresponding to X,. T, = V*V. Suppose we add the

sampling location (xs+l,yy+l) to obtain X,+1 and let T+1 be the new Toeplitz

matrix. We add a new observation to the already existing system of linear equations

as in (6.24), we add a new row to V,. Let v denote the column vector corresponding

to all the basis function values at (xn+l, Yn+1). Thus,

Tn+ = T + vvT (6.41)

where v denotes the complex conjugate of v. T- 1 can be expressed in the closed
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form as follows [46]:

1
T = T1- 1 + vTT-19 T }v{TI} (6.42)

Hence,
VT T1T-1VvTTlTnl (6.43)

trace(T4+1) = trace(T-') - 1 n (6.43)
n+ n 1 + VTT-1 V

Therefore,
V T1T-1 -
1 + TT (6.44)

Since Tn is positive definite and Hermitian, the second term in the above equa-

tion is always positive and this shows that any extra sample reduces the estimation

error. We consider the following optimization problem of finding the (x+l, Yn+l) that

reduces the estimation error the most.

VTT -1(
(x +1, Y*+I) = arg max n n (6.45)

(Xn+l,yn+I) 1 + vTT1V

s.t. (X+, y+l) [0,1] xE [0,1] x [0, 1]

The constrained optimization problem above is highly nonlinear and has many

local maxima. Figure 6-2 shows a regular arrangement of 8 x 8 points except one

missing sample in the center. Clearly, if we add the missing sample, we achieve

the global optimum. We evaluated the value of Err(X) numerically as a function of

location that is added to the current arrangement. Figure 6-3 shows Err(X) as a

function of (x, y). Note that there are many local optima. Moreover, the reduction in

the estimation error for the missing sample location from the uniform arrangement

is significantly higher than that for any other location. In our numerical simulations,

we observed that different initial choices lead to different local optima when we solve

the above constrained optimization problem. Thus the choice of initial guess to the

optimization solver is crucial.

In order to get around these local effects, we propose an approach to calculate

initial guesses to the optimization solver using a heuristic based on Voronoi diagrams

of sampling locations. Figure 6-4 shows the Voronoi diagram for a set of randomly
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0 0.2 0.4 0.6 0.8 1

Figure 6-2: M = 3, cr2 = 1; samples
grid, except one sample is missing.

0.82

0.81,

0.8.

0.79,

0.78,

0.77,

1

are uniformly placed at points of a regular 8 x 8

0.8

0.6

0.4 0.8

02 0.4
0.2

y 0 0

Figure 6-3: For the arrangement shown in Figure 6-2, Err(X) is shown as a function
of (x, y) where (x, y) is added to the already existing arrangement of samples. There
are many local optima. The estimation error is reduced the most when the sample is
placed at the missing sample site.
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Figure 6-4: Voronoi diagram for a set of points randomly placed in 2D domain. This
Voronoi diagram conforms with the toroidal nature of the sampling domain.
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placed sampling locations in 2D generated using MATLAB. Note that the Voronoi

diagram conforms with the toroidal assumption of the domain. The underlying idea

of our heuristic is that we find the Voronoi cell that has the maximum area and choose

the farthest vertex of that cell from the source point as the initial solution. This is

inspired by the insights from regular and A-dense sampling which indicate that large

holes are best avoided. Intuitively a large Voronoi cell indicates a large hole between

sensor locations. As mentioned before, we assume toroidal topology of the domain

[0, 1] x [0, 1]. Hence we consider Voronoi diagrams on a torus rather than on a plane.

We summarize our approach in the form of an algorithm as follows.

Algorithm 2 A heuristic based on Voronoi diagrams to find an initial guess for the
optimization problem in (6.45)

1: Input: X, a sensor arrangement
2: Output: Initial guess (xo, Yo)
3: Draw Voronoi diagram of points in X
4: Find the Voronoi cell P of the maximum area and its source (x, y)
5: Choose the vertex of P which is farthest from (x, y) as (xo, yo)

Once we determine an initial guess at any step, we find the next sample and add

it to the existing arrangement. At each step the estimation error is reduced and we

continue until it is less than the tolerance error. At this point the arrangement is

error tolerant. It is worth noting that this procedure yields results that depend very

much on the initial set.

Numerical example: Let M = 3 and a2 = 1. We chose 64 sampling sites ran-

domnly. They are shown in Figure 6-5. We use the nonlinear constrained optimization

module of MATLAB to solve the optimization problem at each stage. We compare

three schemes of adaptive sampling by adding 10 samples to the arrangement in each

case. In the first scheme, we follow the brute force search method to find the global

optima that yields the lowest estimation error. In the second scheme, we use our

heuristic in Algorithm 2 to find an initial guess at each stage. In the third scheme,

we choose initial guess randomly. In Figure 6-6, we show how Err(X) behaves as a

function of any point (x, y) in the domain. We observe that for the first extra sample,

our heuristic gives global optima. The figure also indicates that there are many local
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optima and usually the larger reduction in the estimation error occurs when a new

sample is placed in the region of large gaps. In Figure 6-7, we compare the estimation

error for 10 additional samples for these different schemes. The brute force search

method yields the lowest estimation error at each stage. However it is extremely time

consuming. Our heuristic approach yielded the estimation error always less than the

random guess at each stage. Moreover it is easy to implement and the error is close

to the brute force search method.

• Initial points
m Brute force search *
* Our heuristic

0 t

3*

0.6 0.7 0.8 0.9

Figure 6-5: 64 sample sites are randomly chosen. 10 additional sample points obtained

using the brute force search method and our heuristic are shown along with the initial

randomly chosen sites.

6.7 Random Sensor Arrangements

So far we discussed sensor arrangements that can be described in deterministic terms.

In this section, we discuss random sensor arrangements where sampling locations are
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Brute Force Search with resolution 0.01: Err(X) = 4.7295, new sample at (0.83, 0.14)
Voronoi based heuristic search: Err(X) = 4.7286, new sample at (0.8336.0.1386)

5.

4.,

Figure 6-6: For the arrangement shown in Figure 6-5, Err(X) is shown as a function of
(x, y) where (x, y) is added to the already existing sensor arrangement. The resolution
between consecutive points is 0.01. There are many local optima,.
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Comparison of different sequential sampling schemes

64 65 66 67 68 69 70 71 72 73 74

Number of samples

Figure 6-7: Comparison of the estimation error values for three different schemes of
incremental sampling: (1) the brute force search method for global minima at each
step carried at resolution of 0.01 (2) our heuristic based on Voronoi diagrams to choose
initial point for optimum search at each step (3) random selection of an initial point
for optimum search at each step.
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selected according to some random distribution. Randomness leads to only proba-

bilistic guarantees on the estimation error. We describe classes of random sensor

arrangements that are error tolerant with high probability.

Randoln sensor arrangements have some advantages over deterministic sensor ar-

rangements. First, analyzing optimnal error tolerance values or the worst-case error

estimate for a class of deterministic sensor arrangement is sometimes hard (as ob-

served in the A-dense case above). In contrast, probabilistic estimates are usually

easier to derive as we will see. Second, the probabilistic approach adapts to fields

consisting of basis functions of different types like splines, radial, etc. Third, ran-

do sensor arrangements are important from the perspective of incidental as well as

intentional motion. Sometime incidental motion can be easily described in terms of

random walks of nodes and this leads to instances of sensor arrangements according

to some probability distribution. In the case of intentionally mobile sensors, it might

be easy to program nodes to take samples at random sampling locations. In both

these situations it is important to identify conditions under which the arrangements

are error tolerant with high probability. Finally, probabilistic methods can be applied

to situations where the exact location of the sensor is not known. It is often infeasible

to instrument a sensors, e.g. in a river, with GPS-like location devices because of cost

and technical issues. Our approach is inspired by recent work [4], [36] on learning of

trigonometric polynonmials from random samples. This work analyzes issues related

to numerical analysis using probabilistic techniques; it primarily discusses guarantees

on the condition nuniber for random sampling schemes. We use their results and

their techniques to analyze error tolerance guarantees for two types of random sensor

arrangements.

6.7.1 Sensor arrangement with one randomly placed sample

per grid cell

Among all possible random sensor arrangement, the simplest is uniformly random

arrangement where sampling locations are placed uniform randomly over the entire
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domain. We indeed discuss this in the next subsection. Uniformly random sensor

arrangement sometimes leads to a case when samples form isolated clusters leaving

large holes in the domain. The particular sensor arrangement we study in this sub-

section prohibits formation of such clusters and evenly spreads samples across the

space. In this arrangement, we divide the sampling domain into grid cells and impose

a constraint that in every grid cell a sampling location is chosen uniformly randomnly.

For example, consider the case of 1D trigonometric polynomial with domain [0, 1] and

suppose there are N sampling locations. Then in our sensor arrangement we divide

[0, 1] into N equal intervals, each of length ' and in each interval we place a sampling

location uniformly randomly. This enforces a condition that two neighboring samples

are at most 2 distance apart. This fact implies that the sensor arrangement thus

obtained is k-dense and allows for direct comparison with the A-dense error tolerant

arrangements we discussed earlier. below shows this sensor arrangement pictorially.

Now we analyze the error metric for this arrangement. We restrict our discussion to

ID field, however the analysis can easily be extended to higher dimensions.

Suppose we take N samples in [0, 1] according to the random sampling scheme

we described to get a sensor arrangement X = {f 1, 2,... , XN}. Without loss of

generality let us assume that xi's are arranged in increasing order. Further, let us

assume that xi is chosen uniformly randomly in the interval [+ -1 i - 1], where

1, 2, . , N. Note that the length of each interval is . Thus, the probability

density function of xi is a constant equal to N, and E[xi] = and Var[X k -

Further, note that
2

max xi+ - xi < - (6.46)
i=1,2,...,N N

Thus X is a k-dense arrangement as described above. Owing to our sampling scheme,

the block Toeplitz matrix T is a random matrix. Let Tkl denote an element in the

kth row and Ith column. Let Xk. e2 r- 2M1k Thus,

N 27rj(l-k)x "  N

Tkl = e2  1 (6.47)
i=1 i=1
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X'l's are independent complex random variables.

variance.

E[X, 1]

Xk, has the following mean and

- 6+2 e2rj(1-k)x
J 2Ndx

2M + 1

2 7rj( -k) sin( (1-k)

2M + 1 r(l-k)
N

e2 j(1-k) si k)
2M + 1 N

(6.48)

(6.49)

(6.50)

E[Re (X,)] =

E[Im (X"j)] -

cos(2 7j(l - k)* )

sin(27j(1 - k)-)

2M + 1

c7(l - k) and
N

(6.51)

(6.52)

where Re and Im denote real and imaginary parts of a complex number.

Var [X,]i = E[(Xki - E[Xki])(Xk' - E[XJ,])]

SE[XkiX 1] - E[X 1 ]E[Xk,]

1 _ (iI1C2 -F(I k)
(2M + 1)2 [- i (w( k)) 1

Note that the variance of X is independent of i.

Tkl has the following mean and variance.

N

E[Tk, ] = E[X 1 ]
i=1

N e2r (1-k) .

2M + 1 sine
i= 1

( (1i- k)
- 6ki

2M11+ 1

- sinc (i2 ( k))]Var[Tk ] =
i= 1

N
E[T] = 2M 1.

2M+1I

Let C denote the largest eigenvalue of a positive definite square Imatrix C. Then
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Therefore,

(6.56)

(6.57)

(6.58)

VarN[X]
(2 M I,+ 1)2 2



[29],
xC x

CII = max T . (6.59)x XTX

First we analyze T - 2lII for the random sensor arrangement X. The tech-

niques used below are borrowed from the ones in [36], Theorem 3.6. A more general

result is proved in [36], Theorem 3.6 for general random sensor arrangements. We

produce the result specifically for our sampling scheme. Note that our proof involves

initial steps different than the proof of [36], Theorem 3.6 improving the constants.

We specifically highlight these steps in the proof.

Before plunging into the analysis of | T - 2 1i1 , we state the following useful

lemmas.

Lemma 6.7.1. (Bernstein's inequality [7]) Let y1, 2, , y, be n independent real

random variables with zero mean and Var[yi] = o?. Each random variable is bounded

so that Yi < Mi. Let, M = max AM and cr2 E= E 1 Ua. Then,

P yi > e < 2exp - +. 2 ) (6.60)

Lemma 6.7.2. Let yl, y2, ,Yn be n random variables. Then,

P Eyi > c <EP (Yi >C) .
i=1 

i= 1

Proof. Let A denote an event that E y, > c. Let Ai denote an event that y 2 -

Then A C A 1UA 2U -. UA,,. Then by union bound [57], P(A) < E', P(Ai). Hence

the result follows. O

Lemma 6.7.3. The following bounds hold.

2
Re (X) - E[Re (Xk)] 2M1 + 1 (6.61)

2
Im (XjL) - E[Im (X. 1)] < 2 + (.62)k-2M1 + 16.2
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Proof. We prove the first bound. The second bound follows similarly.

Re (X(k) - E[Re (Xk,)]
cos(2wj(1 - k)x)

2Mi + 1

< cos(2j(l - k)x)
- 2M+l1

cos(2rcj(1 - k) ) s ((l - k)
2M1+1 N

cos(27rj(1 - k)) sin (1 - k)
+ 2s+1 N

< +
- 2M1 1 2M+1 2M+1

We state the following equalities without showing the calculations

iVar[Re(X1 )]
i=1

N

N
2(2M + 1)2

sin2 ( 7(IN k))]

sinc2 (l (N k)

Note that each variance above is half the variance of Tkl as shown in (6.57).

Theorem 6.7.4. Gershgorin Circle Theorem [29] Let A be a complex square

matrix of size N x N. If X- 1AX = D + F, where D is a diagonal matrix with

diagonal entries di, d 2 , - , dN and F has zero diagonal entries, then

A(A) C Ui ,Di, (6.65)

where D = {z E C : z - di < E" 1 Ifijl

The above theorem is useful in matrix perturbation theory [29]. Each Di is a disc

of radius EN, fijl centered at di. The theorem says that each eigenvalue of A lies

in at least some Di.
EN e2j(1- k)

T is a Toeplitz matrix. Tkl =1 2M(1 ) Tkl essentially depends on (I - k).

Let us denote Tkl by simply T(1-k) just for the following discussion in this subsection.

We prove the following bound.

158

(6.63)

Var [Im(X)] N -
2 (2M + 1)2 1
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Lemma 6.7.5.
M 2M

maxE Tkll52EITmI+ E TmI. (6.66)
1,l k m=1 m=M+1

Proof. T has the following structure.

/ .
T' T 1  T2 - T2M

T-1 To T 1 ... T2M-1

T_2 T 1 To ... T2M-2

T , T 1. ' .. T T

Note that the first row and the last row of the matrix together contain all the elements

of T. Also note that Tkl = IT(-k)I = T(k-1) = ITkL. Based on these observations,

the result of the lemma follows. O

Now we prove the following theorem about IT - & III for our random sensor

arrangement.

Theorem 6.7.6. Consider a 1D trigonometric polynomial field. Let X = {x 2, 2,.' , XN}

be a sensor arrangement in [0, 1] such that xi's are arranged in increasing order

and each xi is chosen uniformly randomly in the interval [- ' + 1], where

i = 1,2, ... , N. N > (2M + 1). Let T be the corresponding block Toeplitz matrix.

Then,

IP (IT 2M + I 2 M + 1 > 1- (6.67)

where,

4(2M + 1) exp 
2

4(2M + 1)2 1 - sinc2  7r2 +1))] + 2v/(2M + 1))

(6.68)

Proof. Consider the event JIT - I2M+1 2 e. We will show that the probability

of this event is exponentially small. The diagonal elements of matrix T - 2N I are2 M+1T
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zero. Gershgorin Circle Theorem implies the following.

N
IT - II < max Tkl.

2M + 1 - ,#k

P T 11 > N1- 2M+N2M+1 - 2M+1
< P nmax I Tk > N

l, 2M + 16)

SPy2 Tm= + 2M 2M+ 1) (Lemma 6.7.5)
m=1 m=A+1

- ( Af12- ) +
m=l 2i

2M /

S (Tm (2MN+ 1)2 ) (Lemma 6.7.2)
m=rM+1 2

2MN

m=l 3(2 1)2)

Note thaft Tm2 = Re2(Tm)+I 2 (Tm). Therefore, Tm > d implies either IRe(Tm)I >

or I(T) d. Therefore,

N
22 (2M+1)2 +

2 N
-2 2(M 1)2

P Re(Tk) N 1)2( (2M 1)2)
IP ~ N

=P Re(X) > 3\2 (M 1)2)
i1 (2M + 1)

N
- (Re(X) - E[Re(Xk) ) (2M 1)

(From Equation 6.56)
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Applying Lemma 6.7.1, Lemma 6.7.3 and Equation (6.63),

P (i Re(Tm)i >
N

23(2M + 1)2

2 exp K
2 exp

< 2 exp

N

2 2 (2M+1)
2

2N [1 - sinc 2 (- 21 2 N
2(2M+1) 2  N /J 3 2M+1 3(2M+1)2

N 2

(2M + 1)2 [1- sinC2 (7 )] + 2v2(2M + 1),6

Nc2

S(2M + 1)2 1 - Si 2 (+l + 2(2M + 1)c
\LIIT I N -DlCI 2~~

A similar result follows for the imaginary part. This implies,

N

2M+III - 2M+1 ) - ,

NE2

(2M + 1)2 [1 - sinc2
N l + 2 f(2M +

This leads to the final result. O

Thus, the probability of the largest eigenvalue of T - I being too large is

exponentially small for sufficiently large values of N. Let us analyze conditions on N

under which the probability is sufficiently small. Let 6 be this small fixed probability

and let 6 > 4(2M + 1)exp (

2
N >-

S2

log (2M + 1

(M+) [ 2  + Then
21( 2 M + 1)2 2 ) +2V(2M+1)c "

9
-(2M
2

+ 1)2 1
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This ninplies,

N> max{(2M+1) 2 log 2M 1) sinc 2  (2 + )1 (2  + 1) log (2M 1

(6.69)

Typically, for constant values of e and 6, the first term dominates and the number of

saimples required is,

N > C(2M + 1)2 log(2MI + 1) (6.70)

where C is a constant that depends on 6 and e.

Now we prove results about error tolerance of this arrangement. The above theo-

rein about a bound on T - ' III implies the following theorem.

Theorem 6.7.7. Consider a 1D trigonometric polynomial field. Let X = {, x 2, N ,

be a sensor arrangement in [0,1] such that xi's are arranged in increasing order

and each xi is chosen uniform)y randomly in the interval [ i , + where

i-- 1,2, --. , N. N > (2M + 1). Let T be the corresponding block Toeplitz matrix.

Then with probability at least 1 - V,

N N
(1 - 0) < Ai(T) < (1 + e)fori = 1, 2, ... ,2M + 1, (6.71)

2M+1 - 2M+1

wherec psi is given by Equation (6.68) and Ai(T) denotes the ith eigenvalue of T.

Proof. The result follows from the previous theorem and Theorem 8.1.5 in [29]. O

The bounds on the individual eigenvalues allows to calculate bounds on the error

metric value given by the sensor arrangement.

Theorem 6.7.8. Consider ID trigonometric polynomial field. Let X = {Xl, X2 ,. " , X N}

be a sensor arrangement in [0, 1] such that xi's are arranged in increasing order

and each xi is chosen uniformly randomly in the interval [ - , N+ ], where

i = 1, 2, N. N > (2M + 1). Then with probability at least 1 - ,

o2 2M+1 <Err(X) < 2 2 M  
(6.72)

N(1 + E) - N(1 - E)
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where ? is given by Equation (6.68). Since there are N samples, the lower bound can

be improved based on Theorem 6.4.3.

a 2 2M + < Err(X) < a 2 2 M  + 1(6.73)N - N(1 -) (6.73))

The above theorem allows us to compare the bounds with A-dense sensor arrange-

ments. Recall that the random sensor arrangement of N samples we study in this

subsection is in fact a 2 -dense arrangement. Let Y be a 2-dense arrangement with

N samples. Based on Theorem 6.4.3 and Conjecture 6.5.2, we obtain the following

bounds for a Err(Y).

022 < Err(X) 2 2 M + 1 (6.74)
N - N

The random sensor arrangement guarantees tighter error tolerance value, albeit prob-

abilistically.

6.7.2 Uniformly random sensor arrangement

Uniformly random sensor arrangement is the simplest type of random sensor ar-

rangements. Again, we deal with 1D trigonometric polynomials as in the previous

section. We assume that N samples are placed uniformly randomly over the do-

main [0, 1]. As in the previous section, we can carry out moment analysis to get

similar error bounds in this case as well. In the previous section, we noted that

N = O((2M + 1)2 log(2M + 1)) samples are required to achieve error bounds whp.

However, in [36], the authors proved a better bound, N = O((2M + 1) log(2M + 1))

using techniques in compressed sensing. The sensor arrangement in the previous sec-

tion definitely seems superior over the uniform sensor arrangement because it leads

evenly-spread samples. However, so far we have not been able to prove a better

bound on the number of samples and are currently working on it. In this section, we

reproduce the result in [36] on the uniformly random sensor arrangement.

Lemma 6.7.9. [36] Consider a 1D trigonometric polynomial field. Let X = {x 1, x2, . . , XN}
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be a sensor arrangement in [0, 1] such that xi 's are chosen uniformly randomly in the

interval [0, 1], where i = 1, 2, - - , N. N > (2M + 1). Let T be the corresponding

block Toeplitz matrix. Choose 0 < E < 1, 0 < a < 62, and V) > 0. If

L a

3(2M + 1)]

then with probability at least 1 - -,

N
2M 1(1- ) < Ain(T) < Arna(T)2M + 1

3(2M + I)e 2M + 2
N > 2 n + 2

62 L 4 - ln(e - 1)] .

We translate above result into a theorem pertinent to error-tolerant arrangements.

Theorem 6.7.10. [36] Considcr a 1D trigonometric polynomial field. Let X =

{xi, x2, ' '' .N} be a sensor a'rrangement in [0, 1] such that x 's are chosen uniformly

randomly in the interval [0, 1], where i = 1, 2, - , N. N > (2M + 1). Let T be the

corresponding block Toeplitz matrix. Choose 0 < C < 1, 0 < a < 62 , and 4, > 0. If

aN

3(2M + 1)]
> In I

I (a
2M + 1

#(1 - a)

then with probability at least 1 - 4,

2M+ 1
o2+1 < Err(X)

N(1 + ) -

2 2M+1
N(1 -E)

Since there are N samples, the lower bound can be improved based on Theorem 6.4.3.

22 < Err(X)N -
2 2M+

N(1 - c)

In comparison with Theorem 6.7.8, the above theorem suggests that for N =

O((2M + 1) log(2M + 1)) it is possible to achieve similar bounds on the error metric
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2If we choose, a'= 6-e

N
< 2M+(1
- 2M+1

(6.76)

(6.77)

(6.78)

(6.79)

e2 -l(~ 1 I
E 2



whp. This indeed is a tighter bound on the number of samples required. We are

currently working on using proof techniques used in [36] to improve the results in the

previous subsection.

6.8 On the i.i.d. noise assumption

Throughout our treatment of trigonometric polynomials, we assumed that measure-

ment noise at any location is an independent and identically distributed random

variable. In this section, we touch upon this topic. We discuss implications and

validity of this assumption.

Recall that we used e to denote the vector of measurement noise. We assumed,

regardless of the locations of measurement, that E[e] = 0 and E[eTe] = 2I1. Consider

the problem of sampling a trigonometric polynomial in ID over the domain [0, 1] using

N samples. The i.i.d. noise assumption leads to the following formulation for the

error metric for a given arrangement X.

Err(X) = 1 )trace{T- } (6.80)

where,

1
Tk,l - -27j(k-)xi

(2 M + 1) .

where k, = -M,-M + 1,--- ,0, 1,--- ,+M

Now consider a situation in which we take samples only over the domain [0, 6].

Moreover assume that we follow regular sampling strategy over this interval. Thus,

1 N

(2M + 1) (
i= 1

Suppose we keep 6 fixed and let the number of samples increase to a large numbler.

In that case we will be able to approximate the above summation using the following
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integral.

1 e-27f(k-1) 6Tk e-2N rj(k-l)xdx (6.82)S(2M+1) N (2M + 1) 6 (6.82)

The integral in the above equation evaluates a value which is a function of 6. Thus,

N
T - C(6) (6.83)

(2M + 1)

where C(6) is a constant matrix of size (2M + 1) x (2M + 1) and a function of 6.

Thus, the error metric will approximate to the following:

-2

Err(X) -trace{C-1(6)}. (6.84)
N

For a given 6 and M, the quantity trace{ C-1 (6) is fixed. Thus, the error metric

is inversely proportional to N. By arbitrarily increasing N, we can make the error

arbitrarily small. This will have deep implications on the sampling problem, and in

turn on the mobile sampling probleml. If we make 6 very small but constant, and

increase the number of samples to a very large value, the error metric will still be

very small. In other words, by sampling over a tiny interval itself, we will be able

to reconstruct the entire function. For the mobile saimpling problem, this will mean

that the miobile node will have to travel over a very small distance and spend less

energy in motion. This seems too good to be true in reality. There is a caveat

in the above argument. Measurenment error is not a pure i.i.d. random variable!

We assumed that the measurement error stems from two sources, quantization and

sensor noise. Even if we assume that sensor noise is i.i.d., quantization will introduce

correlations between measurement errors at two nearby locations. In fact, even sensor

noise could be correlated at nearby locations. Correlations will prevent us from

making the error metric arbitrarily small by mere over-sampIling. At the first place,

we not be able to use Equation 6.29. We will have to resort to Equation 6.15 to

calculate the error metric with the knowledge of the noise correlation matrix. It is

very hard to characterize quantization and sensor noise effects. The i.i.d. assumption
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for quantization error allows for much more tractable analysis [30]. It is also shown to

be a good approximation at high resolution for uniform sampling of smooth functions.

We refer interested readers to [32] for an extensive survey on quantization. Based on

this, we can perhaps impose a, constraint on the minimum distance between two

neighboring samples is not too small. Currently we are working on simulations to

evaluate the validity of the i.i.d. assumption for quantization errors for different

sampling schemes. Note that, we have not discussed anything about the modeling

errors, i.e. errors introduced due to band-limited assumption. Some of the above

discuss applies for this case and it is a topic of our future research.
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Chapter 7

On Mobility of Point Estimation

Sensors

In this chapter, we discuss a couple of problems that are related to motion planning

over the classes of error-tolerant arrangements to minimize energy costs in motion.

In the previous chapter we introduced the sensor arrangement problem for esti-

mation sensors, where our goal is to decide when and where to take samples such that

the error in function estimation is less than a certain error tolerance level. We noted

that characterizing the space all such arrangements is hard. Instead we defined the

notion of an ETAC (class of error-tolerant arrangements) where every arrangement

is error-tolerant and satisfies a set of properties that defines the class. We discussed

a few types of deterministic as well as random ETACs for trigonometric polynomi-

als. For instance, we discussed regular sensor arrangements and discussed conditions

under which a subset of these form an ETAC. Similarly, we discussed A-dense sensor

arrangements and discussed conditions on A such that a A-dense arrangement is an

ETAC. In case of random sensor arrangements, we discussed arrangements that are

error-tolerant with high probability. When we discussed the notion of an ETAC, we

mentioned that we will be able to overlay motion-related problems over ETACs. In

this thesis, we emphasized on two types of mobility, incidental (where nodes move

under the influence of the environment) and intentional (where nodes have control

over where they move). In this chapter, we argue that motion-planning problems
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for either type of mobile sensors can be overlay-ed on ETACs. We discuss this via a

few example problems. Our intent here is not to discuss a detailed solution to any

particular type of motion-related problem but highlight that there is a rich class of

problems that can be addressed through the notion of ETACs.

7.1 A few motion-related problems overlay-ed on

ETACs

In this section, we discuss a few problems related to intentional as well as incidental

mobility of sensors overlay-ed on the space of error-tolerant arrangements. First we

deal with A-dense arrangements and later with random sensor arrangements.

7.1.1 A-dense sensor arrangements

In the previous chapter we defined A-dense arrangement as the one where any L,-

disc with A radius placed anywhere in the domain contains at least one sample. In

other words, L,-discs of radius A centered at all the sampling sites should overlap the

entire domain. Another interpretation is that there should not be a large hole in the

sampling domain. In the previous chapter, based on our conjecture 6.5.2, we discussed

conditions under which a A-dense arrangement is error-tolerant. In this section, we

discuss problems related to mobility of the nodes that can be overlay-ed on the space

of error-tolerant A-dense arrangements. We deal with fields that are stationary with

respect to time or changing very slowly with time. In other words, the field is only

spatial and does not change with time. We can easily extend the problems below

along the temporal dimension. But the solutions to the problems involving temporal

dimension need to account for the fact that time always moves forward! Below we

discuss problems related to intentional as well as incidental mobility overlay-ed on the

space of A-dense distributions. In each of these problems, we assume a trigonometric

polynomial model for the unknown field as described in the previous chapter. We

further assume that we can characterize errors due to modeling, quantization and
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sensor noise as additive independent and identically distributed Gaussian random

variables. Based on the required error-tolerance, we can find the value of A.

Problem 1: The first problem concerns intentionally miobile sensors. Consider

a scenario in which we want to map an unknown field using sensors mounted on

intentionally mobile nodes. There maybe a few static sensor nodes already deployed

in the domain. A possible objective of this sensor network could be to reconstruct the

unknown field with tolerable estimation error using the static as well as the mobile

sensors with minimum energy spent by the mobile nodes. A possible example of

this scenario is discussed in [88]. In this paper, the authors consider the problem of

sampling temperature and chlorophyll concentration fields in lakes using a network

of a few static sensors and one sensor mounted on a mobile robotic boat capable of

intentional motion.

Our approach to deal with the above problem is to overlay the mobility problem on

the space of A-dense arrangements. Energy spent by a mobile node will have different

characterizations depending on the application. A simple metric can be the distance

traveled by a mobile node. A more detailed characterization could be in terms of the

velocities, accelerations, decelerations, etc. of a mobile node. A special case of this

problem is related to the traviteling salesman problem [12]. In this problem a network

of cities is given with distances connecting theim. The goal of a salesman is to find a

minimum-distance tour starting from a particular city such that he visits every city

in the network and returns to the starting city [12]. Consider a scenario in which we

have just one mobile node and no static sensors. Suppose we consider only A-dense

sensor arrangements. For a given A-dense arrangement, the minimum-energy tour of

the mobile node is the traveling salesman tour. The solution to the original sampling

problem involves finding a A-dense arrangement for the given error-tolerance, which

leads to the shortest tour. Unfortunately, the traveling salesman problem and its

variations have been shown to be NP-hard and one can hope for only an approximate

solution. The other versions of the sampling problem including multiple mobile nodes

in combination with static sensors is even more complicated.
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Problem 2: This problem concerns intentionally mobile sensors with a limited

ability to move.1 Consider a sensor network implementation in which each sensor,

although intentionally mobile, has a limited ability to move and remains static for the

most part. Assume that the number of sensors deployed is sufficiently large. Consider

a situation in which the distribution of the sensors does not meet the necessary

conditions to form a A-dense arrangement and perhaps is not error-tolerant. This

situation could very well occur in practice when the sensors are randomly deployed

initially. Also, in some situations sensors may slowly drift under the influence of

external effects (e.g. wind currents, water currents) during their operation. In these

cases, sensors need to reconfigure themselves to form a A-dense arrangement. The

question we pose is how sensors should coordinate and reconfigure themselves to form

a A-dense arrangement such that minimum energy is spent in reconfiguration.

Problem 3: This problem concerns incidentally mobile sensors. These sensors do

not have control over where they move because they move under the influence of the

external sources. Thus, energy is not an issue. However, the question is how these

sensors should be deployed initially and how often they should collect the samples

to obtain a A-dense arrangement. Given the incidental mobility model of nodes, the

design question would be to find the number of nodes to be deployed, their initial

distribution and their sampling strategies to guarantee a A-dense arrangement of

samples. In Chapter 6, we showed that a A-dense arrangement guarantees that Lo

coverage-discs around each sample cover the entire domain. Thus, coverage-discs

around incidentally mobile sensors sweep the entire domain. In Chapter 3 we dealt

with this situation when we discussed a coverage problem for floating event-detection

sensors in rivers. We imposed the coverage constraint that the area swept by the

coverage-discs around each floating sensor should not contain any holes.

1This problems was suggested by Prof. Gaurav Sukhatme at the University of Southern California
during our discussion.
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7.1.2 Random sensor arrangements

In Chapter 6, we discussed two types of randoln sensor arrangements for trigono-

metric polynomials. In random arrangements, samples are taken from a probabilistic

distribution. Hence we can guarantee error-tolerance only in the probabilistic sense.

Here we describe a problem related to incidental mobility as overlay-ed on the space

of random sensor arrangements.

Sometimes, incidental mobility of a node is modeled stochastically. For instance,

in Chapter 3, we modeled natural mobility of floating nodes in a river as a stochastic

differential equation. This leads to random arrangements of samples which depend

on the initial deployment, the incidental mobility model and the sampling strategy.

For a given incidental mobility model, we ask the question: what should be the initial

deployment of the nodes and the sampling strategy for each node in order to guarantee

error tolerance with high probability?

We believe that there is a space of rich problems at the intersection of mobility

and sampling. In this chapter, we attempted to d(iscuss a only few problems related.

We are currently working on some of these problems.
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Chapter 8

Conclusions and Future Work

In this thesis, we considered coverage problems at the intersection of two sensing

modalities, event-detection and estimation, and two mobility types, intentional and

incidental. We summarize our conclusions on the problems we addressed here.

8.1 Conclusions

* We analyzed coverage and connectivity of a network of naturally-mobile event-

detection sensors in rivers using simulations on 1) a mobility model for an idea

river, and 2) a mesh model based on experimental data in real rivers. We

showed that sufficient number of nodes covering the transverse cross-section of

the river guarantee that no large holes are left in the region covered by sensors.

We also showed that connectivity of sensors in the ad-hoc network settings in

the central zone of the river is sustained for long periods.

* In case of reconfigurable camera networks, we showed that detection behav-

ior of the camera depends on the surrounding conditions and is thus location

dependent. We formulated a new type of locational optimization problem for

sensors with location-dependent sensing performance function. We propose a

distributed algorithm to obtain a coverage solutions. We present results of the

algorithm in camera networks in indoor and outdoor pathways.
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We addressed the sensor arrangement problem for point estimation sensors -

when and where to sample in order to guarantee that the estimation error is less

than a pre-specified tolerance limit. We discussed a few deterministic and ran-

dom classes of error-tolerant sensor arrangements for trigonometric polynomial

fields.

8.2 Future Work

In future, we would like to extend our work in the following directions.

* In this thesis we considered river geometries that changed slowly. In some

regions, river however meander and have sharp bends. In future we would like

to incorporate effects of such geometries on the natural mobility and understand

its impact on the network properties.

* Besides rivers, oceans and lakes are the biggest sources of natural mobility. We

plan to analyze network properties in these domains.

* In reconfigurable camera networks, we considered pathways with just one loop.

In future we would like to extend our work for pathways with multiple loops.

Another interesting question relates to the minimum number of sensors required

for such classes of sensors to guarantee minimum coverage.

* In case of estimation sensors, we considered various classes of error-tolerant

sensor arrangements for trigonometric polynomial fields. In future we want to

examine fields with other kinds of basis functions. We also plan to study how

underlying physics of the process affects modeling of the field and geometries

of sensor arrangements.
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