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Abstract

We consider moduli fields interacting with thermalized relativistic matter. We deter-

mine the temperature dependence of their damping rate and find that it is dominated

by thermal effects in the high temperature regime, i.e. for temperatures larger than

their mass. For a simple scalar model the damping rate is expressed through the known

matter bulk viscosity. The high temperature damping rate is always smaller than the

Hubble rate, so that thermal effects are not sufficient for solving the cosmological

moduli problem.
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Many theories beyond the Standard Model of particle physics, such as string and

supersymmetric theories, contain directions in field space that have a flat potential in

the supersymmetric limit and couple to other fields only through Planck scale sup-

pressed interactions. If these directions are stabilized by the same mechanism which is

responsible for supersymmetry breaking, a particle whose mass is of the order of a TeV

and a dangerously large lifetime may result. Such fields are often called moduli. If one

of the moduli starts at a value displaced from the minimum of the effective potential, it

will perform coherent oscillations around its minimum. The energy of these oscillations

decreases like the energy density in non-relativistic matter with the expansion of the

Universe, ρ ∝ a−3, while for relativistic matter ρ ∝ a−4. Therefore the moduli may

soon contribute significantly to the total energy density of the Universe.

In the vacuum the decay rate of a moduli field with mass m is of order m3/M2, where

M = 2 × 1018 GeV is the reduced Planck mass [1]. The corresponding long lifetime

τ = Γ−1 ∼ 105 (TeV/m)3 s causes the cosmological moduli problem [1]-[6]. Unless the

initial amplitude of the moduli is very small, they dominate the energy density of the

Universe at some point, spoiling the success of standard big bang nucleosynthesis.

Many solutions to this problem have been suggested. Recently it was pointed out in

Ref. [7] that in the hot early Universe the moduli oscillations could be damped much

more strongly than in the vacuum. It was found that the damping is in fact so strong

that the moduli would adiabatically follow the minimum of the effective potential,

making their relic density harmless for cosmology [7]. In this note we reconsider the

thermal damping of scalar moduli fields. Unfortunately, we cannot confirm the result

of Ref. [7].

A modulus field starts oscillating once the Hubble rate H drops below its mass m,

which happens at the temperature Tosc ∼
√

mM ∼ 1010 GeV
√

m/TeV. The thermal

corrections to the mass have a magnitude <∼T 2/M , which is of the same order as

H if the Universe is radiation-dominated. Thus, unless they come with a very large

coefficient [8], they do not affect the parametric size of Tosc, and they can be neglected

for T ≪ Tosc.

Thermal damping effects can become important if the damping rate becomes larger

than the Hubble rate. In order to see whether this happens, we can neglect the ex-

pansion of the Universe. We consider temperatures T ≫ m, because, as we shall see,

only in this case does thermal damping dominate over the vacuum damping. Then the

matter fields, i.e. fields that have unsuppressed interactions, evolve on time scales of

order T−1, while the modulus field evolves much more slowly.
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To describe the time evolution of this non-equilibrium system, we imagine starting

from thermal equilibrium at t = −∞. For simplicity the zero of the modulus field ϕ

is chosen such that its expectation value at the considered temperature vanishes. To

drive the system out of equilibrium we add the term Lext = jϕ to the Lagrangian,

where j is an external c-number field that vanishes for t → −∞. Then, at some finite

time, j is switched off again. From then on we have an isolated system which is not

in thermal equilibrium. The way the system got out of equilibrium does not matter

because ϕ evolves much more slowly than all other degrees of freedom, since m ≪ T .

On time scales over which ϕ changes, the other fields have long come into thermal

equilibrium and do not remember anything about their past.

As long as 〈ϕ〉 ≪ M one can use the linear approximation to compute the expectation

value of ϕ [9]:

〈ϕ(x)〉 ≃
∫

d4x∆ret(x − x′)j(x′) (1)

with the retarded propagator

∆ret(x − x′) ≡ 〈ϕ(x)ϕ(x′)〉ret ≡ iΘ(t − t′) 〈[ϕ(x), ϕ(x′)]〉
eq

. (2)

Here the expectation value is taken in a thermal ensemble with the initial temperature 3.

The Fourier transform of the retarded propagator has an analytic continuation

∆(p) =
1

−p2 + m2 + Π(p)
(3)

into the upper half of the complex frequency plane such that

∆ret(p) = ∆(p0 + iǫ, p). (4)

We are interested in spatially homogeneous oscillations and can therefore consider an

x-independent j. Without any interaction ϕ would simply oscillate with the frequency

m. With interaction, m2 receives finite temperature corrections given by the real part

of Π. The imaginary part of Π leads to exponential damping of the ϕ oscillations. We

assume that the damping rate is much smaller than the oscillation frequency, which

will be verified a posteriori 4. Then the damping rate is given by

γ = − 1

2mT

Im Π(mT + iǫ, 0), (5)

3The system may get heated by applying the external field, but this effect does not contribute in
the linear approximation.

4Yokoyama [7] finds a damping rate which is much larger than the frequency.
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where mT is the thermally corrected frequency. Since mT is much smaller than all

other relevant energy scales in the problem, we can write

γ ≃ − lim
ω→0

1

2ω
Im Π(ω + iǫ, 0). (6)

This limit exists since Π is real at zero frequency. Therefore, at leading order in m/T ,

the damping rate does not depend on m 5. For large T one can neglect the masses of

the matter particles so that, by dimensional analysis,

γ = f
T 3

M2
, (7)

where f is a function of the (dimensionless) gauge, Yukawa, and scalar couplings. For

T <∼Tosc we have γ <∼mf
√

m/M , which is indeed much smaller than m.

In general the calculation of f is non-trivial. We consider a simple model [7] where

ϕ is coupled to a massless scalar field χ, which mimics a Standard Model field. We will

see that for this case the damping rate can be expressed through the bulk viscosity,

which has been computed elsewhere. The Lagrangian is

L = Lϕ + Lχ + Lϕχ, (8)

with

Lϕ =
1

2
(∂ϕ)2 − m2

2
ϕ2 (9)

Lχ =
1

2
(∂χ)2 − λ

4!
χ4 (10)

Lϕχ =
g2

2M
ϕ (∂χ)2 . (11)

The coupling constant λ is supposed to be reasonably large, so that the field χ is in

thermal equilibrium, but small enough so that perturbation theory can be applied. At

leading order in M−1 the ϕ self-energy can be written as

Π(p0 + iǫ, p) = − g4

4M2

∫

d4xeip·x
〈

(∂χ)2 (x) (∂χ)2 (0)
〉

ret
, (12)

5In Ref. [7] an m-dependent damping rate was obtained. One cause for this discrepancy appears
to be that in going from Eq. (21) to Eq. (22) of Ref. [7] the χ-damping rate Γp has been neglected in
favour of m, even though Γp ≫ m.
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where the 2-point function in Eq. (12) has to be evaluated for M → ∞. In this limit

the operator (∂χ)2 is related to the trace of the energy momentum tensor of χ

T µν ≡ ∂µχ∂νχ − ηµνLχ (13)

through the trace anomaly [11],

T µ
µ = −β(λ)

4λ
(∂χ)2 + · · · . (14)

Here β(λ) = 3λ2/(16π2)+O(λ3) is the β function of the scalar χ4 theory. The ellipsis in

Eq. (14) denotes total derivatives and terms which vanish by the equations of motion,

neither of which contribute to the imaginary part of Π in the limit (6). Combining

Eqs. (6), (12), and (14), we obtain at leading order in λ

γ =
g4

8M2

(8π)4

9λ2
lim
ω→0

1

ω
Im

∫

d4xeiωx0〈T µ
µ(x)T ν

ν(0)〉ret. (15)

The right-hand side is related to the bulk viscosity ζ of a gas of χ particles through

the Kubo relation [12]

ζ =
1

9
lim
ω→0

1

ω
Im

∫

d4xeiωx0〈T µ
µ(x)T ν

ν(0)〉ret. (16)

We thus find that the damping rate of the moduli field ϕ in this model is directly

proportional to the bulk viscosity of the plasma

γ =
g4

8M2

(8π)4

λ2
ζ. (17)

In order to compute ζ even at leading order in λ one has to sum an infinite set of

diagrams [12]. This turns out to be equivalent to solving an appropriate Boltzmann

equation, which accounts for particle-number-changing processes. The result is [13]

ζ =
b

6(32π)4
λ ln2(ξλ)T 3, (18)

where b = 5.5 × 104 and ξ = exp (15ζ(3)/π2) /96 = 0.064736. Then we finally obtain

γ ≃ 4.5 g4 ln2(ξλ)

λ

T 3

M2
(19)

for the ϕ damping rate in the model (8).
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We have thus seen that the damping rate of moduli fields in a thermal environ-

ment is parametrically larger than in the vacuum, when T >∼m. However, it is always

small compared to the Hubble rate. Therefore thermal effects alone cannot solve the

cosmological moduli problem.

Acknowledgements I would like to thank M. Ratz for bringing Ref. [7] to my

attention, W. Buchmüller, S. Huber, and M. Laine for useful comments, and the referee

for pointing out a numerical error in an earlier version of this paper. This work was

supported in part through the DFG funded Graduate School GRK 881.

References

[1] G. D. Coughlan, W. Fischler, E. W. Kolb, S. Raby and G. G. Ross, Cosmological

problems for the Polonyi potential, Phys. Lett. B 131 (1983) 59.

[2] A. S. Goncharov, A. D. Linde and M. I. Vysotsky, Cosmological problems for

spontaneously broken supergravity, Phys. Lett. B 147 (1984) 279.

[3] G. German and G. G. Ross, A cosmological problem for maximally symmetric

supergravity, Phys. Lett. B 172 (1986) 305;

[4] J. R. Ellis, D. V. Nanopoulos and M. Quiros, On the axion, dilaton, Polonyi, grav-

itino and shadow matter problems in supergravity and superstring models, Phys.

Lett. B 174 (1986) 176.

[5] T. Banks, D. B. Kaplan and A. E. Nelson, Cosmological implications of dynamical

supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [arXiv:hep-ph/9308292].

[6] L. Randall and S. D. Thomas, Solving the cosmological moduli problem with weak

scale inflation, Nucl. Phys. B 449 (1995) 229 [arXiv:hep-ph/9407248].

[7] J. Yokoyama, Thermal background can solve the cosmological moduli problem,

arXiv:hep-ph/0601067.

[8] A. D. Linde, Relaxing the cosmological moduli problem, Phys. Rev. D 53 (1996)

4129 [arXiv:hep-th/9601083].

[9] L.D. Landau, E.M. Lifshitz, Statistical Mechanics (Pergamon Press, Oxford, 1980).

5

http://arXiv.org/abs/hep-ph/9308292
http://arXiv.org/abs/hep-ph/9407248
http://arXiv.org/abs/hep-ph/0601067
http://arXiv.org/abs/hep-th/9601083


[10] See, for instance, [12].

[11] J. C. Collins, The energy - momentum tensor revisited, Phys. Rev. D 14 (1976)

1965.

[12] S. Jeon, Hydrodynamic transport coefficients in relativistic scalar field theory,

Phys. Rev. D 52 (1995) 3591 [arXiv:hep-ph/9409250].

[13] S. Jeon and L. G. Yaffe, From quantum field theory to hydrodynamics: trans-

port coefficients and effective kinetic theory, Phys. Rev. D 53 (1996) 5799

[arXiv:hep-ph/9512263].

6

http://arXiv.org/abs/hep-ph/9409250
http://arXiv.org/abs/hep-ph/9512263

