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Abstract

Constrained control problems are ubiquitous. Since we cannot escape them, the only
alternative is to develop "sound" methodologies for dealing with them. That is,
we must provide methods that have specific guarantees as dictated by the problem,
otherwise we cannot say with certainty that our control decision will result in a stable
or safe system. In particular, two different, but related, constrained control areas are
investigated. The first is the problem of Linear Time Invariant systems subject to
nonlinear actuators. That is, actuators that have symmetric or asymmetric position
constraints and possibly rate constraints. The second problem is the detection and
resolution of aircraft conflicts. Both problems are very pressing in their own distinct
ways. For the first problem a nonlinear state feedback methodology is developed that
has guaranteed constraint satisfaction and global asymptotic stability. This is brought
about by scheduling the gain to avoid saturation at all times, and is accomplished
through a set of nested invariant ellipsoids that for each gain approximate the maximal
invariant set. A comparison to sub-controllable sets and an application to the F/A-18
are given. The second problem is approached through a two phase method. Firstly,
aircraft conflicts are detected by performing a worst case analysis of the situation
through Linear Matrix Inequality feasibility problems. Once this is completed the
resolution problem is approached by formulation as a convex optimization problem.
The resulting strategy is highly combinatorial in its complexity. A possible solution
to this problem is attempted by formulation of a lower bound obtained by convex
optimization techniques.
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Notation

R, Rk R m x n

R+

R+

I+

Ik
MT

TrM

M>O

M>O

M>NM > 0M > N0

M1/2

max(M)

diag(M)

diag(...)

M(a, 3)

The real numbers, real k-vectors, real m x n matrices.

The nonnegative real numbers.

The positive real numbers.

The nonnegative integers.

The k x k identity matrix.

Transpose of a matrix M: (MT) j Mi.

Trace of M E Rnn, i.e., ZEn 1 Mii.

M is symmetric and positive semidefinite, i.e., M = MT and

zTMz > 0 for all z C R n .

M is symmetric and positive definite, i.e., M = MT

and zTMz > 0 for all nonzero z E R n .

M and N are symmetric and M - N > 0.

For M > 0, M 1/ 2 is the unique Z = ZT such that Z > 0, Z 2 = M.

The maximum element of the matrix M.

Square matrix formed from the diagonal elements of M,

i.e., diag(M)ii = Mi., and diag(M)j = 0 for j # i.

Block-diagonal matrix formed from the arguments.

The submatrix formed by the elements of the rows indexed by a

and the elements of the columns indexed by 3. For example,

123

4 5 6 ({1,3},{1,2,3}) = 1 2 3

7 89789



ellipsoidal set defined as E(M, ac) x E R " XTMX < oK .

ellipsoidal set defined as S(M, a, a) {x E Rn(x - a)TM(x- a) < a}.

ellipsoidal set defined as E-'(M, a) {x E Rn(x - a)TM-(x - a) < 1}.

hyperslab defined as 7-W(c) x E Rn: cTx < 1}.

hyperplanes defined as P(c) = {x E Rn : c'Tx = 1}.

standard n-dimensional Euclidean norm, i.e. x I = XTX.

S(M, a)

S (M, oa, a)

8-1(M, a)

P1(c)
P(C)|
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The

The

The

The
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Chapter 1

Introduction

Constrained control problems are ubiquitous. Whether it is the mechanical limitations

of an actuator, or the amount of cash that a company has available for investment

in a new venture, the control of any dynamic system will always involve real physical

constraints on the states and inputs that must be considered. Sometimes, these

constraints may be weak, in that, for all intensive purposes they can be ignored.

However, in many cases they are severe and disregarding them in a control decision

or design could easily lead to disaster. The point is that since they cannot be avoided,

sound methodologies must be developed to deal with them. The point of departure for

this thesis will be the constrained control of Linear Time Invariant (LTI) systems. In

particular, systems that have nonlinear actuators or systems that have more general

state and control constraints.

One of the most typical input constraints for LTI systems results from nonlinear

actuators. Indeed, all actuators are nonlinear since they are unable to respond to an

input above a certain level. These are hard constraints because the actuator simply

does not respond if the constraint is violated. Fig. 1-1 shows a typical model of

an actuator that has linear dynamics, position saturation, and rate limiting; which

could be used to represent the servo that drives an aircraft control surface. The

actual control input u will be a linear function of the commanded input u, only when

uc is within the saturation and rate limit bounds. However, when the actuator is

driven above the saturation or rate limit within a feedback loop the performance can



uc LINEAR u

ACTUATOR ----

DYNAMICS

SATURATION RATE LIMITER

Figure 1-1: Nonlinear Actuator Model

be radically reduced, and the system could possibly be driven unstable. One such

problem, that applies to pure saturation only, is know as integrator windup, where an

integrator in the control loop builds up to a value greater than the saturation limit

of the actuator. When the integrator finally begins to unwind the resulting control

signal can become badly out of phase and result in severe oscillations, see pg. 79 in

[76] for a brief discussion. It has also been observed that multiple saturations change

the direction of the controls resulting in improper plant inversion [35]. Even more

recently is the identification that actuator rate saturation poses a severe problem to

modern combat aircraft. High performance aircraft are constantly pushing the limits

of available performance. The phase lag induced by rate limiting has been shown

to produce a significant tendency for Pilot Induced Oscillations (PIOs) [36, 29]. Yet

another nonlinear actuator problem occurs when the position saturation limits are

non-symmetric. This problem is present in a large number of actuation problems, yet

few techniques have been developed that directly take asymmetric constraints into

account. In response to these problems a wealth of techniques and methodologies

have been put forward, and recently much renewed interest has taken place, see for

example the recent journal [4].

Another important problem that can be cast in the constrained control of LTI sys-

tems category is aircraft conflict detection and resolution. The definition of an aircraft

conflict is quite simple. Given a portion of airspace, a conflict between two aircraft

is declared when their predicted positions are such that both a specified horizontal

and vertical separation parameter are infringed [30]. The separation parameters rep-



resent a desired safety margin which cannot be violated. Even before the conflict

can be resolved it must be detected by analyzing the situation. Once the analysis

technique has declared a conflict the resolution problem is to determine trajectories,

for all aircraft involved, that will eliminate the threat of a collision. Thus we have a

combined detection and resolution problem and the two are inseparable. Although

the detection/resolution problem is quite simple in formulation, its solution is ex-

tremely difficult due to the combinatorial nature of the problem. For two aircraft

the situation is well understood, and analytical detection and resolution methods

exist [56, 42]. However, the worst case number of computations needed in the con-

flict detection problem grows with the square of the number of aircraft [69]. Even

more significant, the worst case number of computations in the resolution problem

can grow as two to the square of the number of aircraft [18]. Motivation to provide

new methodologies for dealing with this situation has been increasing. Most recently,

under the concept of Free Flight, rigid airway structures and other constraints on

aircraft trajectories will be greatly reduced [3]. Aircraft will be allowed to plan their

own trajectories in order to optimize a range of flight variables. The resulting flex-

ibility will require more sophisticated automated conflict detection and resolution.

In particular both pilots and ground controllers, with the aid of automated systems,

will be responsible for predicting and avoiding collisions. It is easy to see why such a

problem is really a constrained control problem. In resolving a conflict there are really

only two possibilities. Conflicts can be solved horizontally by issuing each aircraft a

turn maneuver, or vertically by specifying climb and descent rates. It must therefore

be taken into account that the aircraft have limits on rates of turn and climb [41].

Indeed, this is similar to the nonlinear actuator in that there are hard constraints

on aircraft maneuverability. Furthermore, it follows that the condition that any two

aircraft not violate a given separation parameter is a state constraint. Underlying

this is the absolute necessity for safety. Human lives are at risk, and thus resolution

methods must provide guarantees of safety. All of this poses a challenging constrained

control problem.

We usually use the term admissible when referring to system states and control



inputs that satisfy the problem statement. Thus the problem of constrained control

can be succinctly defined as selecting the best (in some pre-defined sense) possible

admissible control such that the state constraints are never violated (i.e. the state

is always admissible). Clearly, both of the problems described above fall into this

description. Furthermore, we are really implicitly describing an optimization prob-

lem. The term best implies that we will choose some performance index that is to be

maximized. As we will see, one of the difficulties that follows from this is the repre-

sentation of the admissible sets. Our approach will be one of convex approximation,

that is defining all admissible sets in terms of convex ones.

In this thesis we will bring to light two methodologies for solving the constrained

control problems described above. The first is a closed loop feedback control for deal-

ing with nonlinear actuators. The second is a more general method for control that

is motivated by and presented through the aircraft conflict detection and resolution

problem. Underlying the two methods are two crucial goals. First, we desire numeri-

cally efficient methods. By numerically efficient we mean that the methods must have

guaranteed solution times and are possibly implementable in real time. Secondly, is

the desire to provide as many guarantees on the solution in terms of stability and

performance (i.e. optimality). As stated, one of the tools we will make large use of to

aid in this pursuit will be convex optimization. In short, convex optimization is any

optimization problem for which the objective and constraints are convex functions.

There are many benefits that arise from using convex optimization. An important

one is the fact that any locally optimal solution is guaranteed to be globally optimal.

Also, convex optimization problems have guaranteed computational solution times

[54].

1.1 Background and Previous Results

This section briefly details some of the more important results relating to this thesis.

For convenience it will be divided into two groups, the first dealing with LTI systems

and nonlinear actuators, and the second dealing with the issue of aircraft conflict



resolution.

1.1.1 Linear Systems with Pointwise-in-Time Constraints

The term "Pointwise-in-Time Constraints" was introduced by E. G. Gilbert at the

1992 American Control Conference [25]. This is not to say that pointwise-in-time

constraints are anything new. Indeed, Engineers have long understood that real

systems possess many physical constraints. The nonlinear actuator presented above

certainly classifies as a pointwise-in-time constraint and represents one of the most

actively researched types. In particular, most of the research revolves around the base

problem, that is, nonlinear actuators with position constraints only.

Some of the earliest and most practical design methods for nonlinear actuators

are the so called 'anti-windup' schemes, where the control input is adjusted, usually

by some gain, so that saturation is avoided and performance is improved. This is still

a very active area of research, see [6, 40] for example. A large part of the recent work

to develop theory and control designs that solve these problems relies on Lyapunov

stability theory. This is not without reason. Lyapunov stability theory provides a

simple and powerful way to deal with nonlinear systems and forms the basis for much

of the research in that field. It has also become extremely useful in linear system

theory for the stability and robustness analysis of linear systems in the presence of

plant uncertainty and parameter variation. The work of McConley et. al. is a good

example of some of the recent control synthesis work using control Lyapunov functions

to provide robust stability for nonlinear systems [48].

An important theoretical result was the discovery and proof that, in general, global

asymptotic stabilization of input constrained systems cannot be achieved by means of

saturated linear control laws [21, 72]. These results were then extended to show that

global stabilization can be achieved by a combination of nested saturations resulting

in a nonlinear feedback law [74, 71]. It is important to note that these results do

not preclude the use of saturated linear feedback laws. Indeed, the low-and-high gain

controller presented in [61] establishes the notion of semi-global stabilization. That

is, the region of stabilization can be made arbitrarily large by reducing the gain of the



controller. This work has been extended to cover several classes of problems, including

global stability, as presented in [32]. Implicit and explicit in much of the research on

constrained control is the use of positively invariant sets for the synthesis of both linear

and nonlinear feedback laws A saturated linear controller for continuous and discrete

time systems was designed using an ellipsoidal approximation of the maximal invariant

set in [28]. This work was advanced to discrete time systems with polyhedral control

and state constraints where a linear variable structure controller was synthesized [27].

The global stabilization of an n-fold integrator using a saturated linear controller

was discussed in [33]. The existence of positively invariant polyhedral sets and linear

controllers for discrete and continuous time systems were established in [79, 9]. Based

on the existence result, it was then shown that the maximal regions of attraction could

be arbitrarily approximated by polyhedral sets [26]. Following the work on computing

maximal invariant sets were controllers designed for continuous time systems [11, 12,

10]. A method for computing a nonlinear state feedback controller based on off-

line computation was proposed in [47]. Robust constrained control schemes for the

rejection of disturbances have been posed in [73, 49]. A model predictive control

that has characteristics similar to the methodology that will be discussed here was

presented in [39]. All of these methods, in some way, have a commonality with the

approach that will be presented here.

The issue of nonlinear actuators with rate saturation is very recent. Several of the

established techniques have been extended to this problem in [43, 45, 44, 46, 34, 62, 8].

Highly practical methods have also been proposed for dealing with rate limiting via

software limiters in [31, 60].

Some of the earliest control synthesis work using positively invariant sets was

centered around finding a "controllability function" that directly provided a Lyapunov

function guaranteeing stability and boundedness of the controls [23, 38]. This work

was advanced through the context of reachable and controllable sets to provide further

nonlinear control schemes for bounded control and is based on the method of ellipsoids

[17, 37, 70]. Indeed, this research is some of the most closely related to what will be

presented here.



1.1.2 Conflict Detection and Resolution

Unlike their pointwise-in-time counter parts, algorithms to deal with anti-collision

problems for air transportation have been studied with far less of a concern for guar-

antees on performance and computational running times. An extensive survey of

existing conflict detection and resolution methodologies has recently been compiled

in [42]. Additionally, the recent report by Krozel, Peters, and Hunter provides an

introduction to the problem and presents a detailed analysis of the use of optimal

control type problems for conflict resolution [41]. Many authors have brought many

tools to bare. In [85] the author uses the concept of symmetrical force fields, devel-

oped originally for robots, to present a self-organizing (the aircraft resolve conflicts

without any communication or negotiation) conflict resolution methodology. Another

self-organizational approach is the 'Pilot Algorithm' presented in [19]. The use of

powerful genetic algorithms has been used to address large scale problems with many

constraints [18]. Variational calculus techniques have been applied in [67] to sequence

aircraft arrivals at airports. Monte-Carlo methods have been used to develop statisti-

cal conflict alerting logic for free flight and closely spaced parallel approaches [84, 16].

An innovative approach based on hybrid control systems technology was proposed in

[75]. Other interesting attempts at optimal resolution strategies have been researched

in [20, 50, 80]. Coupled with this research is the necessity for safety and efficiency in

the newly proposed Free Flight environment stated in the RTCA report [3].

1.2 Outline

The outline of this thesis is as follows.

Chapter 2 first presents some background knowledge on Convex Optimization

and Lyapunov stability theory that will be needed in this thesis. In addition the

four constrained control problems that will be investigated are formulated with some

limited discussion.

Chapter 3 presents a nonlinear state feedback control methodology that is used

to solve the first three constrained control problems. Several examples are given



to demonstrate the method. The chapter closes with a comparison to the field of

reachable sets and with an application of the methodology to a nonlinear simulator

of the F/A-18 HARV.

Chapter 4 presents a methodology for aircraft conflict detection and resolution

that can be used to solve constrained control problems with quite general state and

control constraints.

Finally Chapter 5 presents the conclusions and suggestions for future research.



Chapter 2

Preliminaries and Problem

Statement

In this chapter we present some preliminaries needed for the developments that follow

along with statements of the problems that will be investigated. Two primary tools

will be needed, that of convex optimization and Lyapunov stability. We will present

only a brief overview of the properties of each that are important here.

2.1 Convex Optimization and LMIs

Convex optimization is a very general term that applies to optimization problems in

the standard form:
minimize fo(x) (2.1)

subject to fi(x) < 0, i - 1,..., m,

where the objective fo(x) and the constraints fi(x) are convex functions (see [58] for

a definition of convex functions). The fundamental property of convex optimization

is that any locally optimal point is also globally optimal [15]. In other words if we can

solve (2.1) then we are guaranteed to obtain the best possible solution. Both linear

programming and convex quadratic programming are classes of convex optimization

problems. In the development that follows we will be concerned with two important

types of convex optimization problems known as semidefinite programming (SDP)



and determinant maximization (MAXDET) problems. The SDP problem is really a

subset of the more general MAXDET problem which can be formulated as

minimize cTx + log det G(x) - 1  (2.2)(2.2)
subject to G(x) > 0, F(x) > 0,

where x C R' is the optimization variable. Furthermore, the functions G R -

Rx1, and F : R --+ R mxm are defined as

n

G(x) Go + ZxzGi
in1 (2.3)

F (x) Fo + xiFi,
i=1

where Gi = G and Fi = FT for i = 1,... , m. Now since the inequality signs in

(2.2) denote matrix inequalities, and from (2.3) these inequalities depend affinely on

the variable x, we refer to them as Linear Matrix Inequalities (LMIs). If the set

of variables x that cause the matrix inequality to be satisfied is non-empty, then a

matrix inequality is referred to as feasible. We will encounter problems in which the

variables are matrices. In this case we will not write out the LMI explicitly in the

form F(x) > 0, but instead make it clear which matrices are the variables.

When the log function is removed from (2.2) we have the standard form of an

SDP:

minimize cTx
(2.4)

subject to F(x) > 0.

In addition to being convex these problems are solvable in polynomial time. That

is, the computational time is proportional to some polynomial that is a function of

the number of problem variables and constraints. Of importance is the number of

problems that can be cast in this form. The recent book by Boyd et. al. presents a

detailed list of system and control theory problems that can be formulated as LMIs

and solved via SDP and MAXDET problems [14]. In addition, there exist several

software packages that solve problems of this type [22, 77, 83].



2.1.1 Schur Complements

One of the more useful properties of LMIs is the ability to also write convex matrix

inequalities that are quadratic in a variable as an LMI. These nonlinear, yet convex,

inequalities can be converted to LMI form using Schur complements. In particular, a

variable x exists such that

[ Q(x) S(x) 1>0, (2.5)Q W > 0, (2.5)
S(x)T  R(x)

if and only if

R(x) > 0, Q(x) - S(x)R(x)-S(x) T > 0, (2.6)

where Q(x) = Q(x)T, R(x) = R(x)T, and S(x) depend affinely on x.

An example is that we will see in the sequel is the constraint c(x)TP(x)-lc(x) <

1, P(x) > 0, where c(x) E R n and P(x) = P(x)T E R n ×n. This constraint is useful

for representing geometric constraints on the matrix P, and can be expressed as the

LMI
P(x) c(x)

(X) (X) > 0. (2.7)
c(x)T 1

2.1.2 Duality and the Quadratically Constrained Quadratic

Program

An important concept in convex optimization is that of duality. The basic idea is to

take into account the constraints in (2.1) by augmenting the objective function with

a weighted sum of the constraint functions. To this end we define the Lagrangian as

m

L(x, A) = fo(x) + A fi(x), (2.8)
i= 1

where Ai > 0, i = 1,..., m, is the Lagrange multiplier or dual variable associated

with the constraint fi(x) < 0. For A E R m the dual function g(A) is the minimum



value of the Lagrangian over x and can be written as

g(A) = inf L(x, A) = inf fo(x) + E A fi(x) . (2.9)X x ( i=1

Note that this is now an unconstrained minimization problem and we say that A is

dual feasible if g(A) > -oc. The important property of the dual function (2.9) is that

it provides a lower bound on the solution to the convex optimization problem (2.1).

That is, given that p* is the optimal value of the problem (2.1) we have

g(A) < p* (2.10)

for any A > 0 [15]. Naturally we are left with the question, what is the best possible

lower bound we can obtain? This can be answered by solving the convex optimization

problem

maximize g(A) (2.11)

subject to A > 0.

This problem is usually referred to as the dual problem associated with the primal

problem (2.1). Also note that the dual problem is convex even when the primal

problem is not. This is due to the fact that g(A) is always concave. Let the optimal

value of the dual problem be denoted by d*. We already know that

d* < p*.

This property is called weak duality. Under certain conditions it is possible to obtain

strong duality in that

d* = p*.

There are many results that establish conditions on fo,... , fm under which strong

duality holds. One of these is known as Slater's condition which asserts that strong

duality holds if the problem (2.1) is strictly feasible, i.e. there exists an x such that

fi(x) < 0, i = 1, ... ,m. [15].



The Quadratically Constrained Quadratic Program

In particular we will require the use of the nonconvex Quadratically Constrained

Quadratic Program (QCQP):

minimize xTP ox + 2qox + ro (2.12)
Tp 0 (2.12)

subject to xTPix + 2qx + ri < 0, i = 1,..., n,

where Pi = pT. Thus we are considering a possibly nonconvex problem because the Pi

are indefinite. In an equivalent derivation to that above we can form the Lagrangian

via a method that is known as the S-procedure [14]. This gives

n

L(x, A) = xTPox + 2qox + ro + Ai(xTPix + 2q x + r()i01 
(2.13)

SxTP(A)x + 2q(A)TX + r(A),

where,

P(A) P0 + AP 1 +-... +AnPn

q (A) = qo + 1 q1 +- -+ Anqn (2.14)

r(A) = ro + Airl +... + Anrn-

From this we obtain the dual function

A) = -q(A)TP(A)tq(A) + r(A) if P(A) > 0 (2.15)
g(A) = infL(x, (2.15)

x -0o otherwise,

where (.)t is the pseudo-inverse defined by

(I - P(A)P(A)t)q(A) = 0.

We know that the function g(A) has the property that for any given A its value is less

than or equal to the optimal value of the QCQP. Thus, a lower bound for the QCQP



can be found by solving the dual problem ([78]):

maximize - q(A)TP(A)tq(A)+ r() (2.16)

subject to A > 0.

Slater's condition, described above, states that if the objective and constraints are

strictly convex then strong duality holds. In the nonconvex case there are still cases

where strong duality holds. For example, if there is only one constraint, or if there

are two constraints and x is a complex variable [14].

By the use of Schur complements we can convert the QCQP dual problem into

the LMI formulation:

maximize 7y
-P(A) q(A)]

subject to (A) (A) < 0 (2.17)

A>0.

Note that this removes the pseudo inverse of P(A). We will use this particular for-

mulation in Chapter 4 to obtain a lower bound on the aircraft conflict resolution

problem.

2.2 Lyapunov Stability Theory and Invariant Sets

In addition to the tools of convex optimization we will also need to use some of the

basic results from the well known field of Lyapunov stability theory. We will not

provide proofs for any of the theorems in this section since they can all be obtained

from [68] or many other books on linear and nonlinear systems. In order to determine

if a system is stable we must first define what stability is. The classic definition of

Lyapunov stability is well known and defined as follows.

Definition 2.1 ([68]) The equilibrium state x = 0 is said to be stable if, for any

R > 0, there exists r > 0, such that if |x(0)l < r, then I|x(t)| < R for all t > 0.



Often though this definition of stability is not strong enough, since it does not

imply that the state converges to the origin. Thus we provide the stronger notion of

asymptotic stability.

Definition 2.2 ([68]) An equilibrium point 0 is asymptotically stable if it is stable,

and if in addition there exists some r > 0 such that jx(0) < r implies that x(t) -4 0

as t -+ 00.

If either of these notions holds for any initial condition then the system is said to

be globally stable or globally asymptotically stable.

Most of the power of Lyapunov stability theory revolves around what is often called

Lyapunov's Direct Method. Essentially it consists of finding an energy function that

can be used to determine the stability of the system. Using such a function the global

asymptotic stability can be formulated in the following theorem.

Theorem 2.1 ([68]) Assume that there exists a scalar function V of the state x,

with continuous first order derivatives such that

* V(x) is positive definite

* V(x) is negative definite

* V(x) -+ 0 as lx -+ 0

then the equilibrium at the origin is globally asymptotically stable.

The function V(x) is referred to as a Lyapunov function if it satisfies the conditions

of Theorem 2.1. Lyapunov functions play an essential role in the analysis of nonlinear

systems.

Another powerful notion of stability that follows from these definitions is the

concept of invariant sets.

Definition 2.3 ([68]) A non-empty subset Q of R n is invariant for a dynamic sys-

tem if every trajectory which starts from a point in Q stays in Q for all future time.



The notion of invariant sets is useful in many applications not the least of which

is constrained control. It is easy to see that a bounded invariant set places limits on

the state of the system. Thus if we know the relation between the admissible controls

and the corresponding invariant sets it is possible to provide a guaranteed solution to

the constrained control problem. Much of the effort evolves around computing these

invariant sets given certain constraints on the input. A very useful theorem in this

endeavor is based on linear systems. First, consider the Linear Time Invariant (LTI)

system in the standard form

S= Ax + Bu, x(0) = xo, (2.18)

where x E R' is the state and u E R m is the control input.

Theorem 2.2 (Adapted from [68]) The system (2.18) with state feedback, u =

Kx, is asymptotically stable if and only if there exists a symmetric positive definite

matrix P such that

(A + BK)Tp + P(A + BK) < 0. (2.19)

Equivalently by multiplying either side by P-1 = F

F(A + BK)T + (A + BK)F < 0. (2.20)

Furthermore, the sets, $(P,a), E- 1 (F, a) are invariant under the control u for any

aER+.

Essentially this theorem says that asymptotic stability of the system (2.18) under

a state feedback control is equivalent to the existence of a matrix P that satisfies

(2.19). Clearly, the sufficiency follows from using V = xTPx as a Lyapunov function

for the closed loop system. Also, note that the conditions (2.19,2.20) are LMIs in the

variables P and F.



2.3 Constrained Control Problems

In this section we present the constrained control problems that will be solved in

the following development. Throughout what follows we will be considering the LTI

system (2.18). The first problem represents the system (2.18) subject only to position

saturation. This forms the fundamental, or base, problem around which a consider-

able amount of research has been performed. The approach given here will be to find

a nonlinear state feedback that globally asymptotically stabilizes the system.

Problem 1 Nonlinear State Feedback with Position Limits (NSFP)

Consider the system (2.18) with the position constraints

Iuil < ui, i - 1, ... .,m . (2.21)

Compute a nonlinear control law, u = K(x)x, such that the equilibrium (x - 0) of

the closed-loop system in the presence of (2.21) is globally asymptotically stable.

Note that the ui are not necessarily equal. However, it is always possible to

normalize these values to unity by defining

Cs = diag( i,..., u r,

and using the input substitution,

B = BCs.

This does not mean that we are ignoring the possibility of a system, such as an aircraft,

that has multiple actuators with multiple bounds. We have simply transferred the

information into the B matrix and we will see in the next chapter how the possibly

unequal values of the i are taken into account.



Problem 2 Nonlinear State Feedback with Asymmetric Position Limits (NSFAP)

Consider the system (2.18) with the position constraints

ul < ui < ui, i= 1,...,m. (2.22)

Compute a nonlinear control law, u = K(x)x + uf, such that the equilibrium of the

closed-loop system in the presence of (2.22) is globally asymptotically stable.

Asymmetric control problems such as this usually arise from two possible situa-

tions. The first is an asymmetric actuator that does not provide the same control

power in both directions. The second is the desire to regulate about some non-zero

set point that requires a non-zero control input. In essence these problems are equiv-

alent and one can be converted into the other. For example, consider the problem

of regulating about some reference state x*. Obviously for this to be possible there

must exist a u* such that

Ax* + Bu* = 0.

The addition of u* to u transforms the symmetric controls (2.21) into the asymmetric

controls (2.22). We will use such an interpretation in the reverse direction to solve the

NSFAP problem. That is, in solving the NSFAP problem we will use the knowledge

that an asymmetric control can imply a reference state.

As with the NSFP problem we can always normalize the constraints such that

ii- ui = 2 by defining

Ca = diag((ai - u.)/2,..., (Ui, - _)/2)

and using the input substitution,

B =BCa.

In the last of the nonlinear actuator problems we have the addition of actuator

rate constraints, but without any asymmetry.



Problem 3 Nonlinear State Feedback with Position and Rate Limits (NSFPR)

Consider the system (2.18) with the position and rate constraints

ul (2.23)

lil < i1i, i= 1,..., m .

Compute a nonlinear control law, u = K(x)x, such that the equilibrium of the closed-

loop system in the presence of (2.23) is globally asymptotically stable.

Finally, we have the fourth problem motivated by the aircraft conflict detection

and resolution problem.

Problem 4 Control Decisions in the presence of General Constraints (CDGC)

Consider the system (2.18) subject to the state and control constraints

x(t) E QS, u E QC, (2.24)

where Q, and Q, are given sets. Compute the command u such that the constraints

(2.24) are satisfied.

This composes by far the most general of the four problems. In fact, it may

not always be possible to solve this problem, nor will we attempt to exactly solve

it. However, we will present a methodology for dealing with problems of this type

through the example of aircraft conflict detection and resolution.

2.3.1 Asymptotic null controllability with bounded controls

As with normal linear system theory we need to define a notion of controllability

for systems with bounded inputs. In the literature this is known as asymptotic null

controllability with bounded controls.

Definition 2.4 ([71]) The system (2.18) is asymptotically null controllable with bounded

controls (ANCBC) if for every x E R' there exists an open-loop control that steers x

to the origin in the limit as t -+ c and satisfies u(t) < 1 for all t.



It has been shown in [64] that the ANCBC property is equivalent to the algebraic

conditions.

1. [A, B] is stabilizable.

2. all eigenvalues of A are located in the closed left half plane.

For the nonlinear actuator problems this will be the standard assumption.

Assumption 2.1 ([44, 64]) The open loop system is asymptotically null controllable

with bounded controls.

Essentially, Assumption 2.1 will allow us to achieve global asymptotic stability.

The problem for unstable systems is that for large initial conditions it often requires

a large amount of control to stabilize the system, thus global stability with a bounded

control is not possible. For critically stable systems only an infinitesimal control, in

principle, is needed to stabilize the system.

In order to ensure that the solution to the Linear Quadratic Regulator problem

is positive definite we will require the following.

Assumption 2.2 The pair [A, Q1/2] is observable, where Q = QT > 0.

Using these assumptions we are now ready to solve the first three constrained

control problems.



Chapter 3

Nonlinear State Feedback for

Constrained Control

In this chapter we present a methodology that can be used to solve Problems 1 to 3.

First, consider the simple linear state feedback control u = Kx. The set of all initial

conditions that do not violate the normalized control constraints (2.21) is

L(K) f W7(kT), (3.1)
ze{1,..m}

where ki is the ith row of the gain matrix K (W7 is the hyperslab defined in the

notation) [28]. Associated with £(K) is the largest invariant set contained in £(K)

given by

M(K)= n ((e(A+BK)t) -Y (K)). (3.2)
te [0 o)

However, M(K) is not easy to deal with since it can be hard to compute and difficult

to represent. Fortunately, the knowledge of Theorem 2.19 provides us with an imme-

diate approximation. In other words, if we can compute a matrix P that satisfies the

Lyapunov inequality (2.19) the best the best possible approximation is the set



Figure 3-1: The Sets C, M, and N"

where ca = 1/ max(diag(KP- 1 K T )) is found by solving a simple optimization prob-

lem. The sets £(K), MA(K), and N are shown schematically in Fig. 3-1 for a second

order system.

We can now use this knowledge to build a globally stabilizing bounded control.

The basic idea is quite straight forward. It is to use low gains, corresponding to a large

M(K), when far from the equilibrium to avoid control saturation, and progressively

higher gains, corresponding to a smaller and smaller M(K), as the state becomes

closer to the equilibrium. This idea follows quite intuitively from noting that the

control u is a gain-state product Kx. For each K we can use an invariant ellipsoidal

approximation to the region M (K) to guarantee stability and control boundedness.

In other words the gain is scheduled to avoid saturation at all times. The challenge

arises in finding a computationally efficient manner in which to compute K and P for

the best possible performance. The method of choice in this exposition is the Linear

Quadratic Regulator (LQR). There are numerous reasons for this choice.

* Solution is optimal with respect to a meaningful quadratic cost.

* Multiloop control design.

* Computationally very cheap (Indeed, it is a convex optimization problem).



. Excellent gain and phase margins.

* Production of a natural Lyapunov function.

The standard LQR problem is to minimize the quadratic performance index

J = (xTQx + uTRu)dt. (3.3)
0

The solution to this problem is found in the matrix P of the Algebraic Riccati Equa-

tion (ARE)

ATP + PA - PBR-BTP + Q = 0, (3.4)

and the associated gain matrix, K = -R-BTP. The properties of the solution

matrix P depend, in general, on the assumptions made about the dynamic system

involved. We will be interested in the case where the system is ANCBC, and the

properties of the Riccati equation are yielded by the following lemma.

Lemma 3.1 Let Assumptions 2.1 and 2.2 hold. Take R = rIm, where r e R+. Then

there exists a unique positive definite solution P(r) to the ARE with the following

properties

1. The matrix A + BK is stable or Hurwitz.

2. P(r) is continuously differentiable with respect to r and

dP(r) > 0, for any r.
dr

3. lim P(r) = 0.
r--0

4. P(r) is an analytic function of r.

5. The function V = xTP(r)x, for any r, is a Lyapunov function for the system

(2.18) with state feedback u = Kx.

Proof: The proof of items 1-3 follows directly from Lemma 3.1 and Remark

3.2 in [32]. The proof of item 4 is from Theorem 4.1 in [57]. Finally, by direct



computation the function V = xTp(r)x satisfies the conditions of Theorem 2.1 for

any r.

3.1 Position Constraints

The methodology presented in the previous section can be used to solve the NSFP

problem by means of the following theorem. An almost identical result was first

proven by Wredenhagen and Belanger [81]. The result presented here was first re-

ported in [53].

Theorem 3.1 Let Assumptions 2.1 and 2.2 hold. Take R = rIm, where r E R+.

Then the control
BTP(r)

U -- X1

r

with P(r) the solution to (3.4), and for any time t

r(x(t)) = min r : x(t) c 8(P(r), a(r)),

where

a(r) = 1/max(diag(K(r)P- 1 (r)K T (r))) ((3.5)
= 1/max(diag(BT P(r)B/r 2)),

solves Problem 1.

In order to simplify the proof we need to establish some important properties of

a(r) that have not been discussed previously. First note that a(r) can also be written

as

a(r) = 1/ max (bTP(r)bi/r2), (3.6)
i=l,...,m

where bi is the ith column of the B matrix.

Lemma 3.2 ac(r) is a continuous function of r. Furthermore, let i* be the column

number that achieves the maximum in (3.6) (note that it need not be unique). Then

either the maximum is achieved by one value of i*, for all r, or the value of i* changes

only a finite number of times.



Proof: The proof is in two parts.

a) a is continuous: First note that P(r) is a continuous and unique function of r

from Lemma 3.1. Then a(r) is continuous by virtue of the fact that the maximum

function is continuous and a composition of continuous functions is continuous [59].

b) finite switchings: Let r take values on the nonempty bounded interval [ri r2],

where r2 > r1 > 0. Consider two columns of the B matrix, bi and bj. Assume

that bTP(r)bi = bT P(r)bj for an infinite number of values of r e [ri r2]. Thus by

the Bolzano-Weierstrass theorem there exists a limit point r*. Now, because P(r)

is an analytic function of r from Lemma 3.1, Theorem 10.8 in [66] tells us that

bTp(r)bi = bTP(r)bj over the whole interval r c r1 r2]. Thus if i* switches between

two values an infinite number of times the maximum is achieved by both bi and bj

over the whole interval of r. This can be extended to any arbitrarily large nonempty

bounded interval of r and any number of possible maximizers.

Clearly, the only other possibility is that the value of i* switches only a finite

number of times, and thus the lemma is proven.

We are now ready to prove Theorem 3.1.

Proof: [Theorem 3.1] The proof consists of three parts. Showing that there

exists an invariant ellipsoid for each value of r, that these ellipsoids are nested, and

that the outer ellipsoid can be made arbitrarily large.

a) Invariance: From item 5 of Lemma 3.1 we have that V = xTP(r)x is a Lyapunov

function for any r. Clearly, we can use Theorem 2.2 to show that the ellipsoid

(P(r), a(r)) is invariant and any trajectory that starts there will not violate the

constraints because of the scaling (3.5).

b) Nesting: A necessary and sufficient condition for nesting is ([81, 53])

dP(r) < 0 (3.7)
dr -

where

P(r)PM)= .(r) (3.8)



Taking the derivative of (3.4) with respect to r and collecting terms gives

PBBTP
AdP + dPAt + r2 dr = 0, (3.9)

where A = A BBTP(r . Now consider the case where there is one maximizer b of
r

the function (3.6). Taking the derivative of P(r) with respect to r yields

S dP bTdPbP P
dP(r) d(bPb) r2 + 2P 2(bTPb) H dr. (3.10)

From (3.9) we can write

dP(r) ATTPBBTP

dr o r eAcldT, (3.11)

and from (3.4) P satisfies

00 A T PBBP eA .
P (r) = eA CC Q)CIT Atd7. (3.12)

Substituting (3.11) and (3.12) into (3.10) we eventually obtain (after some manipu-

lation)

dP(r)
[o) eATrQeAcldT p

+bT eA TQeAcdTb- dr.
O 03

(3.13)

Thus the condition (3.7) is satisfied for the case of one maximizer b. Now, P5(r) is

a continuous function of r, that has a decreasing derivative over a finite number of

intervals of r from Lemma 3.2. Thus P(r) is a decreasing function of r over any

interval

c) Global Stability: Under Assumption 2.1 it clearly takes only an infinitesimally

small gain to asymptotically stabilize the system. Thus the gain vector K(r) can be

made arbitrarily small and global stability can always be guaranteed [81].

Thus for any value of x0 there exists a bounded control via the value of r defined

by the ellipsoid 8(P(r), ao(r)) such that the trajectory will always move in towards the



next inner ellipsoid. Furthermore, it is important to note that although the function

V = xTP(r)x is a quadratic Lyapunov function for each particular value of r, the

function V(r) = xTP(r)x over all r is a non-quadratic Lyapunov function. Indeed,

the function V(r) can be used to establish global asymptotic stability.

U

This result deserves several comments. For each value of r we arrive at a matrix

P(r), and thus a gain K(r). The scaling (3.5) provides us with the best ellipsoidal

approximation to the region M(K), in terms of P(r). The proof of stability in

Theorem 3.1 hinges on showing that the set of ellipsoids

Q = {$(P(r), a(r)) :r E R+} (3.14)

is nested, i.e.,

£(F(r1 ),a(r1 )) C 8(P(r2), a(r 2 )) for any ri < r 2.

Indeed, this is brought about by scaling (3.5). This nesting property binds the con-

struction together. Each ellipsoid defines an invariant region under which the controls

are guaranteed not to saturate. Furthermore, the system state will always move to-

wards the next inner ellipsoid guaranteeing a stable system and allowing the controller

gain to be steadily increased to improve performance. A schematic of this is shown

in Fig. 3-2.

Although this construction is continuous in the parameter r, in practice, only a

finite number of ellipsoids are used. The most straightforward and efficient way to

do this is to choose a geometric sequence

R=- {r R+:r= rrmax/A , i E {0,...,N}}, (3.15)

where rmax E R+, N E 1+, (A - 1) E R+. The value of rmax must be chosen such

that all expected initial conditions will be in the set Q generated by R. The other

two parameters N and A can be chosen, as desired, to obtain an even distribution of
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Figure 3-2: Nested Ellipsoids

ellipsoids.

Also, note that the control constraints (2.21) have been normalized to unity as dis-

cussed in Section 2.3. This is the most significant difference between the construction

of Theorem 3.1 and the results in [81]. The Piecewise-linear Linear Quadratic (PLC)

control law developed in [81] uses an iteration function to adjust the elements of the

R matrix so that tangency between each ellipsoid and the control planes P(k (r)) is

guaranteed. By tangency we mean that the set P(kT (r))n (P(r), a(r)) is non-empty

for any r and i.

Instead of choosing the values for r, the PLC law is constructed by choosing

values of the parameter p for S(P, p). The control weighting matrix is chosen as

R = diag(e) = diag( 1,... . 2), -i > 0. Then for a given p, c is chosen such that

Iui 1 bTpx <

(K1)x=l



where bi is the ith column of the B matrix. It is shown in [81] that for any initial

value of E the iteration function

n+1

where
4)(E) I ¢ (r,.., n(O)]T,

and

l =-bTPb,

converges to a unique value. An initial value po is selected to contain the initial

conditions and successive ellipsoids are generated by a reduction factor Ap. However,

this does result in an added computational burden because for each ellipsoid in the

set a series of iterations must be performed. A simple yet effective way around all of

this is to use the gain margin of the LQR ([63]) to guarantee tangency. In particular

each gain vector can be scaled as

() = k (r)
a(r)ki(r)P-1 (r)kT (r)

if
1ki(r) > -ki()
2

which is the gain margin of the LQR. Indeed, this is always the case since the control

gains are always increased by this scaling. In a number of simulations this construc-

tion always resulted in nearly identical overall performance to the iteration function

method. For example, a comparison was performed between the PLC and the High

Performance Bounded (HPB) method presented here for the PUMA 560 Robot ex-

ample given in [81]. In that example the authors use the state energy

J = xTQx dt
0O



as a performance measure. With the PLC simulation parameters

N = 100, Po = 1043, Ap - .94

the control law achieved a value of JPLc = 324. A controller was constructed for this

example using the method described here with the parameters

N - 100, rmax 9000, A- 1.05.

The state energy was calculated as JHPB = 334 indicating a difference of approxi-

mately 3%.

3.1.1 An Academic Example

In this section we will present a simple example that illustrates the High Performance

Bounded (HPB) method described above. Consider the double integrator system

0 1 0
A = B = . (3.16)

0 0 1

The control law construction parameters in (3.15) were chosen as

rmax =100, A = 1.3, N = 100,

and the state weighting matrix was chosen as

Q = diag(1, 0).

The ellipsoids are shown in Fig. 3-3 and the system states and control are shown for

an initial condition of xo = [2 0]T in Fig. 3-4.

Note that the control effort is highly nonlinear when the state approaches the

origin. The proximity to the origin allows for a high gain to be used resulting in a

sharp convergence, with no overshoot. Also, the control is inherently rough due to the



Figure 3-3: Nested Ellipsoids for Double Integrator
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switchings that occur when the trajectory crosses from one ellipsoid to another. This

can be reduced by adding more ellipsoids, but this results in a higher computation

and storage burden. Indeed, the choice of the number of ellipsoids to use is somewhat

subjective. As noted in [81] most of the advantage of the controller can be achieved

through as few as five ellipsoids. It was also shown in [82] that an interpolation

function can be used to smooth the control. The interpolation function has the

additional advantage that it can be used to reduce the number of ellipsoids by taking

a more spread out distribution, i.e., an increased A.

For a second order system such as this it is even possible to analytically compute

the solution to the Riccati equation and the resulting gain as,

P (r) = '2r1/ I

V V/-2P
3 / 4

K (r) - [r- 1/ 2 v/ - 1/4] (3.17)

v/2r - I T v2-3/4
P(r) [ ~ 1  

\~-/Vr-3/4  2r-1/2

3.1.2 Limit Properties of Invariant Ellipsoids

An important consideration for the control methodology, from the standpoint of sta-

bility, is the limit properties of Q. In the proof of Theorem 3.1 we have seen that

global stability is guaranteed because the ellipsoids can be made arbitrarily large, i.e.,

lim S(P(r), a (r)) = R ' .
T -- OO

This is provided by Assumption 2.1 that guarantees the system is globally control-

lable. For unstable systems it is not possible to obtain global stability and the outer

most ellipsoid will approach a limiting shape, as in Fig. 3-5 for an unstable pendulum.

In the converse direction it is important that as r -± 0 the ellipsoids, corresponding

to the increasingly aggressive gains K(r), uniformly decrease to the origin. If this

were not the situation one could imagine a case where the gains become increasingly

large and the state is not driven to the equilibrium. The following lemma asserts a
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condition under which the ellipsoids must uniformly collapse to the equilibrium.

Lemma 3.3 Let Assumption 2.1 and 2.2 hold. If the state weighting matrix, Q,

is positive definite then the largest diameter, in the standard Euclidian sense, of

(P(r),a(r)) approaches zero as r approaches zero.

Proof: By Contradiction.

Assume that Q > 0 and the largest diameter, in the Euclidian sense, of S(P(r), a(r))

does not approach zero as r goes to zero. Then it follows that there exists an x* such

that fx*| > 0 and

X* n E(P (r), a (r)).

Indeed, consider any infinite sequence oc > r, > r2 > ... rn > ... , where limn--oo rn=

0. Then, by the hypothesis, there exists a sequence x1 ,X 2,..---,Xn,... such that

x, c S(P(r),a(ri)), and |xl > m = 0 (1 = 1,...,n,...). Now, the first el-

lipsoid S(P(r),a(r1 )) covers a bounded domain because P(ri) > 0 and oc > rl.

Thus, the set of all xz is bounded above and below, that is there exists M and m

such that, M > { 11,XI,X2  - -, X. n , .} > m = 0. It follows from the Bolzano-

Weierstrass theorem that we can find a subsequence r,(1), r,(2), - - a(), • . such that



X,(1), X-( 2 ), ( . Xo(l),... in the limit tends towards some x* where

x* E n e(P(r,()), a(re(l))),
lE[1,00c)

and |x* > m. From the definition of a(r) in (3.5) we obtain

x*T P(r)x*bTP(r)bi * T r bP(r)bi
X P(r) x' P ( r ) x * max < 1

-- i r2 - I (3.18)

for any r and i, where bi is the ith column of the B matrix. It follows that for any

value of i and r that

(P~b )2(P-x*)2 < r 2,(P 5bi 2 2

and by the Cauchy-Schwarz inequality

x*T PbibTPx* < r 2

Finally, from (3.4) we have

x
*T (ATP + PA)x* -

x*T PBBTPx*

r
+ x*T Q* = 0,

which is equivalent to

*T (AT + PA)x*- x* Pb bTPx*
x (A A~x*- En

Therefore

x*T (ATp + PA)z* + x*TQX* < mr.

Now from the continuity of a in Lemma 3.2 as r --± 0, P(r) --+ 0 and thus

X *TQx* < 0.

However, the initial assumption was Q > 0 and since x* > m we have a contra-

diction and the diameter of the ellipsoids must go to zero along all axes for Q > 0.

± x*T Q * = 0.



This provides the important corollary.

Corollary 3.1 Let the assumptions of Lemma 3.3 hold. Consider the sequence

{ri, r2, . . . n, .. .}

with ri > rj for i < j, and limn_, 0 rn = 0. Then the corresponding gains

{K(rl), K(r2), ... , K(rn), . .}

will drive the state closer and closer to the origin. That is

lim sup |x(t)J -+ 0, as r -* 0.
t-+00

Even though in practice only a finite number of ellipsoids is used this property

is still important to the control methodology. Indeed, it guarantees that the system

state can be driven arbitrarily close to the equilibrium.

3.2 Asymmetric Controls

The simplest way to solve the asymmetric control problem is to once again make the

position constraints symmetrical by using

ui = i| = min{|uil, uiZ}, i = 1,..., m,

and reconstructing the controller accordingly. Obviously, this ignores a possibly large

region of usable control that could result in poor convergence properties. In [82]

the authors resolve the asymmetric control problem by independently scaling the

gains, K(r), to meet the position constraints in the two half-spaces of the ellipsoid

corresponding to K(r)x < 0 and K(r)x > 0.

The following is a generalization of the method presented in [65]. Note that the



position constraints (2.22) can be normalized, as discussed in Section 2.3, such that

ua - -= 2, i = 1, . . , m. Now define the new set of controls vi such that,

ui = vi + ni, i = 1, . . ., m,

where,

= (+ii + J/2.

Thus, the asymmetrical bounds (2.22) on u are equivalent to the symmetrical bounds

on v:

- 1 _ vi < , i = 1,. .. ,m. (3.19)

The problem is not as simple as creating a symmetrical controller for v as in the

previous section. The difficulty lies in the fact that we have added a feedforward

input to the control that will drive the system to a state that is not the origin. What

we have done is to reduce the problem to a control that is symmetrical about an

induced trim point

= -A-'B,

where i = [ii, ... iim]T, that is obtained by setting . = 0 and u = in (2.18), However,

we desire to return to the origin, x = 0. Note that this can be accomplished by first

leading the trajectory to i and then progressively driving it to the origin along the

set of points

a(7) = -A-BifLy, 7 E [1 0],

where each a(7y) is a trim point of the system. For each a(7y) the control constraints

on a can be satisfied by using invariant ellipsoids of the form 8(P(r), ac(r)72 a(Y)),

where 7y is a scaling factor that reduces the size of each ellipsoid to satisfy the control

constraints and maintain nesting. Note that this will automatically result in an

ellipsoid of zero volume centered at the origin. Essentially we are using the trim

space,

Xe = {x E R' : x = -A- 1 Bfiy, and 7 E [1 0]},



where 7 parameterizes the set, to control the system. Note that we can establish an

ellipsoidal bound on Xe by considering

rmin = min r : Xe C E(P(rmin), a(rmin),a(1)),

and this value can be found by solving the equation

a(rmin) = iijTBTA - T(r m in )A - 1 Bi .

In other words rmin defines the ellipsoid that is a tight bound on the trim space.

Note that explicit in this development is the assumption that the A matrix is

non-singular. This is a limitation of the construction that follows. In certain cases

where the A matrix is singular this problem can be avoided by removing the integrator

state. However, in cases where this is not possible the method presented here cannot

be used. Given that the A matrix is non-singular the following provides a construction

under which the asymmetric control problem can be solved.

Theorem 3.2 Let Assumptions 2.1 and 2.2 hold, and assume rank(A) = n. Con-

sider the control u = v + ii with,

v = -K(r)2 + ii(7y - 1), 7 [1 0], (3.20)

where 2 = x - a(7y), with K(r) the solution to (3.4) for r E R+. Let

i minr : x(t) E S(P(r), a(r),a(1)) if x E S(P(r+in),(min),a(1))
rr(x(t)) +in for x E E(P(r+in), a(r+ in),a(1)),

(3.21)

where rmin+ is any value of r > rmin. Define,

S1 r >rmi

y(r) = mn (3.22)
min 'x E F(P(rm+in), a(r+ )Y 2, ay)) r +

Then the control solves problem 2.mi n
Then the control u solves problem 2.



Proof: The proof consists of showing that the ellipsoid E(P(r), a(r)-2 , a(-Y)) is

invariant for all r and 7, the control constraints are satisfied, and the ellipsoids are

nested.

a) Invariance: Note that V = Tp(r) is a Lyapunov function for the system

(2.18) under the control (3.20) that guarantees the point x = a(7Y) is asymptotically

stable.

b) Constraint Satisfaction: Indeed,

subject to

is

Vmaxi = - V (r ki(r)P(r)kf (r) + ii( - 1).

Consider the only two possible cases,

1. a (r) = 1/(ki(r(r)r)kf(r)) for which the maximum is

Vmaxi =- i -+- 7(1 + ii.) - 1,

due to the fact that Iii < 1 and E [1 0].

2. ca(r) $ 1/(ki(r)P(r)kT (r)), but

/kiPkTa =3 < 1

and,

IVmaxi = I- i + Y( + iii) < 1.

Thus, vvi 1 and since u = -K(r)1 + 7yi we will always have,

u1i < -U i<- i = 1 ... m.

maxvi = -ki(r)2 + ii(- - 1), i = 1,...,m



c) Nesting: First, the ellipsoids 8(P(r), a(r), a(1)) D E(P(r+in), a(r+in), a(1))

for r > rmin are all centered around a(1), and the original nesting property ap-

plies. Now the the following shows that for r = rmin, (P(rmi), A(rmin)71, a) C

'(P(rmin), a(rmin)72, a), if 71 < 'y2. Consider the ellipsoids,

S(P, '72, ai (yi)), i = 1,2, (3.23)

where = P/ao(rmin).

Using the linear transformation T: x -+ y defined by, y - 1 / 2 x (3.23) becomes,

S (P, 'yr, ci),

where c = p 1/2 aj. A necessary and sufficient condition for E(P, '1, ci) C (P, 7, c2),

and likewise for (f,72 a,) C E(P5 , 7Y, a 2 ), (because the transformation is linear) is,

(c-CI+ (2 -- CC) 1 < 72. (3.24)
C2 - C1l

Letting z = c2 - Cl and expanding (3.24) we obtain,

(z Tz + 2(z z)1/2/ 1 + <71/2 <72

Substituting ci = - 1/2A-Biyi into the above

(P(72 71)2 + 2 p(7y2 -71 y) 2 71 + )1/2  72

where p = BTBTA-TPA-IBi. Simplifying this we obtain

[ (7l - 72) + 72 71-

Which is satisfied if and only if V- < 1. Now note that p = 1 corresponds to

the ellipsoid, E(P(rmin), a(rmin),a(1)), that contains the trim space Xe and p < 1

corresponds to r > rmin. Thus nesting property can be maintained by holding r = r +
min
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Figure 3-6: Asymmetric Ellipsoids for Spring Mass System

constant for ellipsoids in the trim space and -y can be chosen as any value on the

interval [1 0]. Furthermore, it is easy to see that the origin will always be contained

in the interior of every ellipsoid. This is the reason we take r > rmin.

Thus a trajectory starting in any ellipsoid will proceed towards the next inner

ellipsoid and asymptotic stability and boundedness is guaranteed for all time. N

The introduction of the induced trim point allows the regulation of a system with

asymmetric input bounds to be accomplished by the introduction of a progressive

feedforward gain. Trajectories starting far from the origin are first guided towards the

induced trim point, d. Then once the trajectory enters the ellipsoid that contains the

trim space it is then led progressively towards the origin. The obvious disadvantage

is that there is a minimum value of the control weight, r, that can be used. Several

methods were attempted to remove this constraint by using trim points that were

functions of r, but it seems that it is difficult to maintain nesting and the control

constraints at the same time. We will now give a simple example of this construction.

3.2.1 Example of Asymmetric Control

Consider the second order spring mass system

A = , B = (3.25)
-0.1 0 1

54



Example I APLC HPB/AC I
1 30s 21.6s
2 17.8s 12.2s

Table 3.1: 3% Settling Times for Asymmetric Control Examples

with the asymmetric input bounds

ui = -1.9, iii = 0.1.

The value for rmin was computed as 106. Note that the control limits imply a value of

i = -0.9, and the equivalent problem is that of regulating about the reference point

z* = 9. The control law construction parameters were chosen as

rmax = 400, A = 1.1, N = 100,

and the state weighting matrix was chosen as

Q = diag(1, 1).

Fig. 3-6 shows the asymmetric ellipsoids for this particular example. Fig. 3-7 and

3-8 show the states and control for the two initial conditions x0 = [5 0]T and x0 =

[-20 0]T. The solid line represents the HPB with Asymmetric Constraints (HPB/AC).

The dashed line is the performance of the Asymmetric PLC (APLC) controller in [82],

shown for comparison. The performance of the two constructions is quite different

in nature. The gain scaled controller seems to use the control effort more efficiently,

but has a long convergence to the origin. Conversely the asymmetric controller has a

large amount of overshoot in Fig. 3-7, but has better convergence properties in both

cases. This is reflected in the times to settle to within 3% of the initial value that are

shown in Table 3.1.
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3.3 Position and Rate Constraints

3.3.1 LQR Based Solution

The process of adding symmetric rate constraints to the methodology begins by aug-

menting the state with the control as

X A B 0x= , A= , B= (3.26)

u 0 0 Im

This leads to the differential equation for the augmented system,

ic = Ax + Bit, x(0) = xo. (3.27)

The advantage to this formulation is that the problem has been placed in a structure

similar to the NSFP. The control rate now appears as the system input, and the

original control is now a state of the system. Thus, the constrained control and

control rate problem can be seen as satisfying a control position constraint (formerly

the rate constraint), and state constraint (formerly the control constraint) for the

system (3.27). Following the introduction to this chapter we are now interested in

the set

u(K) = £(K) n (C),

where

0
C = (3.28)

Im

represents the normalized control or state constraints. Again, U(K) represents the set

of initial conditions for which the position and rate constraints will not be violated.

Further, we have the maximal invariant set for a given K as

V(K) = n ((e(A+BK)ty-Il) . (3.29)
te[O 0o)



The approach given here will be to approximate the set V(K) by means of an invariant

ellipsoid within the framework of the methodology of Section 3.1. First we need a

series of definitions.

For the system (3.27) we define the augmented Riccati equation arising from (3.3)

(with R = rIm) as
PBBTPATP + PA - + Q = 0, (3.30)

r

with the P and Q matrices partitioned as

P 1 P 12 1 F Q11 0 (331)P = , Q = (3.31)
pT P22 0 Q22

such that P 1 E Rxf, P 12 C R m , p 2 2 E Rmxm, Q11 Rxn, and Q22 E Rmxm

We will also define here the inverse of the P matrix

M11 M 12M = P-1 = M T  (3.32)[ 12 M22

which satisfies the Riccati equation

BB T

AM + MAT - -BB + MQM = 0. (3.33)r

It will be necessary, in the following development, to have the constraints (2.23)

normalized to +1. Indeed, this can be accomplished, in all cases, by means of an

input substitution and a state transformation. The input substitution

l i

lUii

normalizes the rate constraints. From this the input matrix B becomes

0
Bs = 1 (3.34)



where D = diag(ui,..., um). The state transformation

T = In 0 (3.35)
0 IF

where T = diag(1/ii,..., 1/uim), normalizes the position constraints. Combining

the two transformations gives

A BT - 1

AT = TAT - 1 = B 1 (3.36)
0 0

0

BTs = TBs = . (3.37)

Thus, the system (3.27) can be transformed to an equivalent system with the

position and rate constraints normalized as

lui < 1, it 1, i= 1,... ,m. (3.38)

In the following, the subscripts of the transformed matrices will be dropped for no-

tational convenience. The following theorem establishes a construction by which the

normalized system can be globally asymptotically stabilized by means of a nonlinear

state feedback.

Theorem 3.3 Let Assumptions 2.1 and 2.2 hold. Assume that Qi = A > 0 and

Q22 (r) = rIm, where A e Rnxn. Then the control

S= BTP(r) x,
r

with P(r) the solution to (3.30) for r E R+, and

r(x(t)) = minr : z(t) E $(P(r),a(r)), Vt,



with

a(r) = 1/max(diag(K(r)P- 1 (r)K T (r))) ((3.39)
= 1/ max(diag(B T P(r)B/r 2)),

solves Problem 3.

Proof: The proof consists of two parts. The first part is very similar to that

of Theorem 3.1 and shows that there still exists a set of nested invariant ellipsoids

for asymptotic stability. The second part shows that both the position and rate

constraint can be satisfied for all time.

a) Invariance and Nesting: Note that

V = xTP(r)x,

for any r, is a Lyapunov function for the closed loop system that is strictly decreasing

along all trajectories. That is, once the trajectory enters S(P(r),a(r)) it will stay

there for all time. The nesting of the ellipsoids is then sufficient to prove that any

trajectory starting in the set will asymptotically approach the equilibrium. The

condition for nesting is ([81, 53])

dP < 0, (3.40)
dr

where
P (r)P(r ) = P(r) (3.41)

and a(r) is defined by (3.39). It will now be shown that

dQ(r)_
Q(r) - d(r) r> 0 (3.42)dr

is a sufficient condition for the ellipsoids to be nested, and that this is indeed satisfied

by the construction of Theorem 3.3. Taking the derivative of (3.30) with respect to r



and collecting terms gives

PBBTP
Ac T d P + dPAcl + r2 dr + dQ = 0,

T2
(3.43)

where Acl = A - BBTp(r) Let b be the maximizer. Taking the derivative of P(r)

with respect to r

dP
dP(r) (bTPb) r2

bd2b - 2(bTPb)r3dr.
r 2 r

From (3.43) we can write

dP(r) f000
eAclTT (PBBTP

r2
dQ )+ -i7) eAcl r , (34

and from (3.30) P satisfies

P(r) = eA c lT' PBB P
r

+ Q) eAcldT.

Substituting (3.45) and (3.46) into (3.44) we eventually obtain (after some manipu-

lation)

A l T( dQ T P
eA T(Q - r dQ)eAcl'dT T

dr H

dQ
dr

(3.47)

)eAcldb] dr.T3 P

Thus, from (3.40), and the argument of Theorem 3.1 a sufficient condition for nesting

is
dQ(r)

Q(r) - d r > 0.
dr -

Now by assumption

- dQ(r)
dr

A 0

0 0
> 0, (3.48)

and thus the nesting condition is satisfied via the same argument in Theorem 3.1.

Global asymptotic stability for any admissible initial condition also follows from an

argument similar to that in Theorem 3.1.

(3.44)

(3.46)

dP(r) = [j0

+ 'T eAcl T(Q

(3.45)



b) Constraint Satisfaction: The second part of the proof is to show that the

position and rate constraints are satisfied. Indeed, the rate constraint is satisfied

immediately from the scaling (3.41). The position constraint can be defined by the

orthogonal slabs W(ci) where ci is the ith column of the matrix C in (3.28). The

ellipsoid S(P(r), a(r)) will be contained within the slabs W(ci), i= 1,... ,m, if and

only if

diag(C'P-l(r)C) < Im.

This is equivalent to
I

diag(C'P- 1 (r)C) < m
a

and by definition of the block structure of P(r) and M(r) this is equivalent to

diag(M 22 (r)) - max diag (ITP 22 (r)4 Im, (3.49)

and
#2 2

diag(M 22 (r)) < max(diag(P 22(r))) r 2  (3.50)

The next step is to show that (3.50) is satisfied by the construction outlined in

Theorem 3.3. Indeed, according to the block structure of (3.31) and (3.32), the Riccati

equation (3.33) can be written block by block to give

xF2(I2
_ _ _ +2 T

r M12M12 + M22r = O,r

and

2 p42 TM22 2 - M 12 M 1 2 .

Therefore

M22 - r2 (3.51)

At this point note the following Lemma, adapted from Lemma 7.5 in [55].

Lemma 3.4 Suppose that X E Rmx m , Y c R mx m , with X = XT > 0, and Y =

yT > 0. Let n be a positive integer. Then there exists matrices X 2 c Rnx m , X e



Rxn such that X 1 = XT, and

X1 X2

1. > 0 (3.52)
XT X

- -1

[XiX 2
2. X X2 ? (3.53)

X T  X ? Y

if and only if X - Y-1 > 0, and rank(X - Y- 1) < n.

Since P(r) is positive definite we get

P22() > M 1 (r

Combining this with (3.51) we obtain

P22 (r)q,24 2

M122(r) 2

and

diag(M 22(r)) < diag(P 22 (r)) r2

by virtue of the fact that for A > 0, B > 0, A < B implies diag(A) < diag(B).

Thus the condition (3.50) is satisfied. This guarantees that the position constraint is

always satisfied. Thus stability and boundedness of the position and rate constraints

is guaranteed and the theorem is proven. 0

This construction is equivalent to modifying the original LQR cost (3.3) to include

the control rate as

J = j (xTQIIx + ruTU + riTit)dt. (3.54)
0

Implicit in all of this is the fact that the position and rate bounds are normalized

to ±1. It is not immediately obvious why this normalization is necessary. Indeed,

consider the case where one of the control inputs has one value for its position limit

and another for its rate limit. The fundamental property of the construction is that



the control and control rate planes become parallel as r -+ oc. If they are not

normalized there will be no way to satisfy both simultaneously. It is also important

to note that among the class of functions Q22(r) arblm the choice of Q22 (r) = rTim is

optimal. Indeed, it can be seen immediately that the nesting condition (3.42) requires

b < 1. Furthermore, the condition (3.50) implies that b > 1 and a > 1. Now note

that for a > 1 the rate planes will fail to become aligned with the position constraint.

The following provides a simple example to illustrate the method developed in

this section.

Single Integrator Example

In order to visualize the construction of Section 3.3 in two dimensions a controller

will be synthesized for the single state system

A = 0, B =I , u <, < 1. (3.55)

This leads to the augmented form

01 0
A = , B (3.56)

0 0 1

The ellipsoidal set, shown in Fig. 3-9 for rmax = 50000, is quite clearly contained

within the position constraint +1 for all values of r. More importantly, note that the

rate plane is almost tangent to the position constraint. Following the discussion above,

if the control and control rate are not penalized at the same value either the position

constraint will be violated, or the construction will be unnecessarily conservative.

Unfortunately, it turns out this construction does not yield very good performance.

An example of the performance for the initial condition x = [10 0]T is shown in Fig.

3-10 for the single integrator system. The regulation time for the HPB with Rate

Constraints (HPB/RC) is long, and both the control and control rate are very under
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Figure 3-9: Invariant Ellipsoid Set for Single Integrator

utilized. Indeed, the time optimal controller is given by:

-sign(x0) 0 < t < 1

u = 0 1 < t < x0  . (3.57)

sign(xo) xo < t < xo + 1

For the initial condition x = [10 0 ]T the minimum time to reach the origin is t = 11s,

substantially faster than that shown in Fig. 3-10.

Limit Properties of State Constrained Ellipsoids

A serious question is the limit properties of the construction in Theorem 3.3. As

r -+ oc the control rate hyperplane approaches K = [0 1]. Then, given that the

system is ANCBC the region of invariance will approach an infinite slab. In the

converse direction we have

Lemma 3.5 Let Assumption 2.1 and 2.2 hold. If the state weighting matrix, Q11,

is positive definite then the largest diameter, in the standard Euclidian sense, of

E(Pil(r), a(r)) approaches zero as r approaches zero.

Proof: Following the proof of Lemma 3.3 we assume that Q11 is positive definite

and the diameter of S(Pl (r), a(r)) does not go to zero. This implies that there exists
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Figure 3-10: Performance of Single State System

an x* = [x*T0 ]T that is contained in the union of the ellipsoids S(P(r), a(r)) over all

r. We can then show that this leads to a contradiction and that the largest diameter

of (PII(r), o(r)) must go to zero.

In other words, this implies that we still have state convergence, but not necessarily

convergence of the control. Indeed, we do not want the control to be limited at any

point, but we do want the state to always be driven closer and closer to the origin. It

should then be apparent that in order to obtain the best performance the ellipsoids

should have very little rotation and always contain as much of the control state axes

as possible. There is very little flexibility over the shape of the matrix P(r), and the

consequence is that the resulting controllers based on this construction seem to be

conservative. However it is possible to recover the performance of this construction

by using Linear Matrix Inequalities (LMIs).

3.3.2 Performance Enhancements via LMIs

The construction of Theorem 3.3 does not meet one of the primary objectives, namely,

performance. The geometric constraints are satisfied, but the region of stabilization

generated is highly conservative. In other words for a given value of r the ellipsoid

generated by the Riccati equation solution matrix P(r) does not yield a good ap-



proximation to the set V(K). Nevertheless, the characteristics of the gains, K(r), are

what allow the simultaneous satisfaction of the position and rate constraints. Due

to the excellent robustness properties of the Linear Quadratic Regulator it is likely

that for a fixed value of r there exists a larger region over which the system can be

stabilized, than the region generated by the construction in Theorem 3.3. Thus, for

any given r, and hence K(r), the objective is to increase the region of stability as

much as possible by solving an LMI problem. In other words we want to use the

knowledge of Theorem 2.2 to obtain a better P(r) or r(r).

Formulation of an LMI problem consists of choosing the desired objective and

constraints. The position and rate constraints are easily described by following linear

inequalities in 1(r)

diag(C Tr(r)C) < Im, (3.58)

diag(K(r)r(r)KT (r)) < I,

where
0

C = (3.59)
Im

For rl > r2 , ri C R the nesting condition is ([81])

r(r 1 ) - r(r 2 ) > 0. (3.60)

We then desire to solve an LMI problem for each value of r. Thus, where as all

of the previous constructions were continuous in r, r(r) will only be valid where it

can be computed. A straightforward and logical objective would be to maximize the

volume of F(r). This yields the LMI problem

maximize log det F(r)

subject to (3.58,3.60),

which is a determinant maximization problem.

Maximizing the volume of r(r) does not necessarily yield the best performance.

As was observed from the simple example above, one would expect that the ellipsoids



should, ideally, have one axis perpendicular to each of the position constraints in

order to allow for the maximum possible control effort. Indeed, we wish to add

some parameters into the optimization that will allow us to adjust the shape of

the ellipsoids. From the perspective of performance there are really two points of

interest. The first is the degree to which each ellipsoid is tangent to the control rate

hyperplanes, where by degree of tangency we mean the

min x - y : x e P(kT(r)), y c F(P(r), a(r)),

that is, the smallest distance from the ellipsoid boundary to the hyperplane. The

second is the degree of tangency with the the point c., where ci is the ith column of

the C matrix. The former of the two can be accomplished by means of the constraint

A <diag(K(r)F(r)K T (r))

where A is a diagonal matrix variable for which the Tr(A) needs to be maximized.

The second objective can be accomplished by forcing the ellipsoid as close as possible

to the points ci. This constraint can be represented as

cTFr-l(r)ci <_ 6i, i-- 1,.. mn

where the 65i are variables to be minimized. This constraint is not linear in F, but we

note that using the example in Section 2.1.1 this is equivalent to

r(r) ci > 0, 
(3.61)

by use of Schur complements.

All of this is summarized in the following construction algorithm.

Algorithm 1

1. Select a value for rmax (defines the outer most ellipsoid), the desired number of



ellipsoids N, and A. Let 1 denote the ellipsoid number. Set 1 = 1 and r, = rmax.

2. Solve for K(r) from (3.30) with Q(r) as in Theorem 1.

3. Solve the following LMI problem.
m

maximize: log det F(r1 ) + aTr(A) - 6 i
i=1

subject to:
A>0

J >0F(r) cZ > 0, 1= 1,...,m

A < diag(K(r)rg(r)K T (r)) Im

diag(CT F(r)C) < Im

AciF(ri) + F(rl)AcIT < 0

where Acl = (A+ BK(r)), and a and / are tunable parameters that reflect the

desired trade off between ellipsoid volume and satisfaction of the position and

rate constraints.

4. Set r+1 =

5. Add the nesting constraint,

F(r,1_1) - r(r 1) > 0

to the the LMI in step 3, let 1 = 1 + 1, and repeat from step 2 until 1 = N.

It is important to note that, in practice, rmax must be chosen quite large because

lower values imply rate planes that are not tangent with the position constraints

which can prematurely confine the above algorithm. Indeed, this is the reason the

nesting constraint is not added prematurely. The following illustrates an example of

this construction to the single state system described above.
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Figure 3-11: LMI Invariant Ellipsoid Set for Single Integrator

Single State System with LMI Enhancements

The algorithm of the previous section can be easily applied to the single state system

(3.56). All of the LMI problems were solved with the software package [83]. Com-

putational times were quite fast for this example, and a set of 50 ellipsoids took no

more than a few minutes (real time) to calculate on a SUN SPARC 5 workstation.

It is clear from Fig. 3-11 that the invariant set now covers a much larger region than

Fig. 3-9, for the same value of rmax = 50000. The value of a = 10, and 3 = 1

were selected by trial and error, but simulations showed that the construction is not

very sensitive to changes in these values. The performance, shown in Fig. 3-12, has

been drastically improved to the point where the convergence time is approximately

t = 13.3s and is within a few seconds of the time optimal controller which yields the

optimal value t = 11s.

3.4 Comparison with Reachable Sets

3.4.1 Sub-Reachable Sets

An important concept in systems and control theory is that of reachable sets. For each

initial condition x0 E X0 C R n , there will exist multiple trajectories corresponding to
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Figure 3-12: Performance of Single State system with LMI Enhancements

different control inputs. As expected, we will only be dealing with reachable sets for

constrained systems. Consider the set of all possible end points of x(t) at some time

tf > 0. We now provide the following definition.

Definition 3.1 ([17]) The set of all endpoints of x(t) at t = tf of all trajectories of

the system (2.18) with u C U C R m , under the initial condition xo G Xo is called the

reachable set and denoted by R(tf, Xo).

Reachable sets play a very fundamental role in control theory and a large number

of basic control problems can be formulated in terms of them. Consider the problem

of time optimal control. That is, given an initial condition x0 E X0, we must find

an admissible control a such that the system reaches a certain set K in the shortest

possible time. In terms of reachable sets, the problem is to find the minimal time T

such that the intersection between the reachable set and K is non-empty, i.e.,

VN n-R(T, X0 ) # 0

where 0 is the empty set. A good list of control problems that can be formulated in

terms of reachable sets is given in [17].



As is often the case, it is impractical to analytically compute the reachable set

for a system of more than second or third order. This leaves us with approximating

them. Many methods exist for such approximation. We will be interested in a partic-

ularly interesting approximation known as the method of ellipsoids, first introduced

by Chernousko. A extensive presentation of this method is the recent book [17].

In particular, consider the system (2.18) subject to the ellipsoidal input constraint

UE -(U 0)

(note that we are using the inverse ellipsoid 8-1 here that has a different representa-

tion, see the notation) and the initial conditions

zo -1 (Qo, ao).

Consider now the problem of obtaining estimates on the reachable set by means of

sub-reachable and super-reachable ellipsoids. That is, we desire to find two ellipsoids

6-'(Q-, a-) and $-'(Q+, a+ ) such that we have upper and lower geometrical bounds

on the reachable set:

46-'(Q-, a-) C TR(tf) E-'(Qo, ao)) C,6-I(Q+,a+).

For control applications we will only be interested in the sub-reachable or inner ap-

proximation of the reachable set. The reason for this will become obvious in the

following development. Chernousko showed that the differential equation for the

maximal volume sub-reachable ellipsoidal approximation is

Q- - AQ- + Q-AT + 2(Q-)l/ 2 [(Q-)l/ 2BUBT(Q-)1/21/2(Q-)1/2 (3.62)(3.62)
Q-(0) = Qo

and

i& = Aa, a(O) = ao.



This is a very useful equation, since it allows us to take any dynamical system with

some set of initial conditions and admissible controls, and directly compute an ap-

proximation to the sub-reachable set via a differential equation. This knowledge can

be directly applied to construction of a bounded feedback controller, and for that we

define the dual to reachable sets known as controllable sets.

Definition 3.2 The set of all points x such that the trajectories of the system (2.18)

can be asymptotically stabilized to the origin with u C U C R m in some finite time T

is called the controllable set and denoted by C(T, U)

In [37] Komarov showed that a family of sub-controllable sets for the NSFP prob-

lem is generated by - (Q(T), 0) where Q(T) is the solution to the differential equation

dQ(T) = -AQ - QA T + 2Q1/2[Q1/2BUBTQ1/2]1/2Q 1/ 2  (3.63)
dr

which is exactly the same as (3.62) with the system dynamics in reverse time (A =

-A). This makes perfect sense, since we are now interested in controlling the system

instead of analyzing it. From (3.63) we can define the minimal-time differentiable

function T(x)

T(x) = inf{T > 0 : x E S-(Q(T), 0)

which due to the nature of the approximation is always larger than the time-optimal

function Tm(x), that is Tm(x) < T(x) [37]. Furthermore, the function T(x) = 7- is

implicitly defined by the ellipsoids for each T by solving the equation

xTQ-I(T(x))x = 1.

Finally, Komarov showed that the following control law solves the NSFP problem:

Bu = K(x)x (3.64)

K(x) =- -F(Q(T(x)))Q - 1(T(x))

where F(Q) = Q1/2[Q1/2BUBTQ1/2]1/2Q 1/ 2.



Figure 3-13: Sub-Controllable Set for Double Integrator

Notice the large number of similarities between this method and the one presented

in the previous sections. Essentially, this is a sub-time-optimal nonlinear feedback

controller whose gain is scheduled according to the state. The inner approximation

is used to guarantee that the control constraints will not be violated. The most

important difference between this controller and the one developed in Section 3.1

is that the control (3.64) guarantees convergence in finite time. As was noted in

[70] the ellipsoids F-1(Q(r), 0) form a nested invariant set in the same way as the

construction in Theorem 3.1. The sub-controllable set and performance for the control

(3.64) are shown in Figs. 3-13 and 3-14. This allows us to perform a comparison

with the HPB controller in Fig. 3-4. Not surprising is the fact that the optimal

ellipsoids do provide better performance. Indeed they comprise the maximal sub-

optimal ellipsoids. However, to this authors knowledge, this approximation has not

been extended to asymmetric and rate constrained systems.

3.4.2 Extension to Controllable Sets with State Constraints

The method described above is not capable of taking into account constraints on the

system state. Indeed, this is the case when considering actuator rate constraints.

Here, we will propose a preliminary method for accomplishing this through calculat-
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Figure 3-14: Performance for Sub-Controllable Set Controller

ing the maximal volume ellipsoid contained in the intersection of an ellipsoid and a

hyperplane. We do this with the idea of using (3.63) to evolve the ellipsoids until

they touch the state constraint, and then at each time 7- take an approximation of

the intersection of the two. It is important to note that this is a somewhat heuristic

method that may not be the best possible. We will discuss this at the end of this

section.

Consider the ellipsoid E- 1(Q, 0) and the hyperplane 7-W(c). We desire to find an

approximation of the intersection of these two sets, that is, find Q such that

-1 (Q, 0) C E- 1 (Q, 0) n W-(c). (3.65)

Note that the intersection will always be non-empty, provided that 7-(c) has non-zero

volume. Indeed there are two cases. The first and easiest case occurs when ccT < Q-1

and thus Q = Q. The second case requires the use of two transformations to turn the

problem into one we can deal with. The first transformation defined by x = Q1/2

turns the ellipsoid into a ball and the hyperplane into

-(Q 112c).



The second transformation is a rotation so that the normal of the hyperplane becomes

parallel to one of the axes of the ball. Indeed there always exists a matrix V such

that VTV = VV T = I and VTQ1/ 2CCTQ1/ 2V= A where A is a diagonal matrix that

has zero eigenvalues along all directions except the one corresponding to the normal

of the hyperplane 7-(c), i.e.,

1
A- ' = diag(... I..).

We can now define the maximum volume ellipsoid contained in the intersection as

D=I+ A
12

where 7 = cTQc and thus,

Q = Q1/ 2VDVTQ1/2 Q + 2 - QccTQ.

Thus, we can arrive at a two stage differential equation for the evolution of the

ellipsoids. Let T' be the time at which 7 = cTQc = 1 (7 = 1 indicates that the

ellipsoid and state constraint are touching), and let Q(0) = 0.

1. For T < T',

dQ = -AQ - QAT + 2Q 1/ 2 [Q1/ 2 BUBTQ1/ 211/2Q1/2 (3.66)
dT

2. For - > T'

dQ '('7-2) 1-1 +
d = Q 7 3 QCCTQ + (Q ICTQ + QCCTQ I) (3.67)dT 7 7

where (-)' denotes the derivative with respect to T and Q' is given by

dQ' -AQ - QAT + 2Q 1/ 2 Q 1/ 2BUB TQ1/ 211/2Q1/2, (3.68)
d-

and Q)(T') = Q(T').
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Figure 3-15: Sub-Controllable Set for State Constrained System

This is a two stage differential equation, and because of this it is no longer possible

to guarantee the nesting condition at the time 7'. A set of ellipsoids generated by this

method are shown in Fig. 3-15. The resulting performance for an initial condition

xo = [5 0]T is shown in Fig. 3-16. We can see immediately that the performance is

worse than the HPB/RC with LMI enhancements shown in Fig. 3-12 (Note that the

initial condition here is half of that in Fig. 3-12). The performance is somewhat com-

parable with that in Fig. 3-10, but simulations showed that the time to convergence

degrades much faster the further the initial condition is from the origin. This comes

from the very slow growth of the sub-controllable set, which is visible in Fig. 3-15,

because each ellipsoid is separated by a constant value of 7. In fact this is the major

difficulty in adapting the sub-controllable set methods to state constrained systems.

It is not easy to evolve the ellipsoids such that a good approximation to the actual

controllable set is achieved. The problem becomes even less obvious for asymmetric

systems.

3.5 Application to the F/A-18 HARV

In this section we apply the HPB (High Performance Bounded) and the HPB/RC

(High Performance Bounded with Rate Constraints) methodologies developed in Sec-
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Figure 3-17: F/A-18 HARV Nonlinear Model



tion 3.1 and Section 3.3 respectively, to the lateral directional control of the F/A-18

HARV (High Alpha Research Vehicle). For this purpose a nonlinear simulator, devel-

oped by M.I.T. and NASA Dryden, of the F/A-18 HARV was used [52]. The simulator

structure is pictured in Fig. 3-17 and is implemented as a SIMULINK program. The

aerodynamic model is comprised of aerodynamic tables covering a wide range of angle

of attack, mach numbers, and altitudes. At each time step 91 interpolation tables

are used to calculate the contribution to the aerodynamic coefficients resulting from

all the surfaces of the airplane, the flexibility terms, and the longitudinal and lateral

stability derivatives. The surface model represents the actuators in terms of different

linear models, up to fourth order, and includes rate and position saturation limits.

3.5.1 Controller Design

A single flight point design was performed for a flight condition of Mach, M = 0.7,

and altitude, h = 20000ft. The linear model used for this flight condition was,

-2.3142 0.5305 -15.5763 0

-0.0160 -0.1287 3.0081 0
Aiat = (3.69)

0.0490 -0.9980 -0.1703 0.0440

1.0000 0.0491 0 0

23.3987 21.4133 3.2993

-0.1644 0.3313 -1.9836
Biat -- (3.70)

-0.0069 -0.0153 0.0380

0 0 0

The states are the, roll rate, yaw rate, sideslip, and bank angle; x = [p r / ]T. The

controls are the aileron, stabilator, and rudder; u = [6a 6s 6 r]T. The F/A-18 HARV

has symmetrical actuator rate limits and non-symmetrical position limits. However q

is so close to begin an integrator state that the asymmetric formulation of Section 3.2

cannot be used for this system. Thus we will only perform a design for the HPB and

HPB/RC, and for each actuator the smallest of the two position bounds was selected.



The position and rate limits were chosen as

6a I< 25deg, 16a 100 deg/s,

|1s < 10.5 deg, 16,1 < 40deg/s,

16rl < 30deg, 6 r < 82deg/s.

The standard control law for the F/A-18 HARV longitudinal dynamics was main-

tained in order to keep the longitudinal states at acceptable levels. The standard HPB

methodology was then used to generate a lateral directional controller to replace the

standard lateral directional controller.

In general, the HPB methodology, because it is based on the LQR, is not amenable

to tracking/servo problems. This can be overcome by means of an optimal tracking

formulation as in [45]. However, this requires that the input be known before hand.

A recent application of the LQR to an actual Flight Control System is the X-31,

where the tracking problem is overcome by addition of a variable feedforward gain

[7]. Indeed, the issue of tracking is an important one. In the example that follows we

will avoid dealing directly with this issue by commanding only the bank angle state

which acts as an integrator to achieve zero steady state error.

The controller parameters for the standard HPB were chosen as

rmax = 6000, A = 1.05,

N = 150, Q = diag([0 5 7 1]).

Finally the HPB/RC method was applied to create a controller with the parameters

used in algorithm 1 as

rmax = le6, A = 1.3, N = 40,

Q11 = diag([0 5 7 1]), a = 10, /3 = 10.

Computational times for the standard HPB are extremely quick. The HPB/RC



Controller I P.O. 3% Settling Times

STNDRD 34 3.7s
HPB 21 3.4s

HPB/RC 38 3.9s

Table 3.2: Performance for F/A-18 HARV Example

computational times are longer, with a set of 40 ellipsoids requiring 10-15 min-

utes to compute on a SUN SPARC 5 workstation. All three control laws (F/A-18

STNDRD,HPB,HPB/RC) were then tested for a single side turn, ¢ = 0, +90, 0, us-

ing maximum roll rate command in the stability roll axis. When the bank angle

reaches +90 the roll stick is reversed to full negative roll rate until the bank angle

returns to 0. Fig. 3-18 shows the responses of the lateral states for all three controllers

and Fig. 3-19 shows the control positions and rates (Dash/Dot:STNDRD Dash:HPB

Solid:HPB/RC). The standard HPB provides the best response in terms of time to

complete the maneuver, due to the high gains near the equilibrium that improve the

settling times.

The percentage overshoot and time to settle to within 3% of the achieved bank

angle are shown in Table 3.2. The sideslip and yaw rate for the HPB/RC, most

likely, reach unacceptable levels. This is, in part, due to the difficulty of tuning the

controller, and the limited design iterations that were performed.

It is important to note that both the HPB and HPB/RC are general design meth-

ods, where as the standard F/A-18 control law is a custom designed controller. A

very pressing question in flight control law design is the benefit of such general design

methods. As we have seen here it is difficult to obtain parallel or better performance

with a particular general design method, let alone consider all of the multifarious

aspects of a flight control system design. In fact, fixed structure methods show much

promise for future control law designs [51]. The 'role' of general design methods is

still difficult to place. Indeed, it is difficult to directly compare a method with guar-

antees to one without. These guarantees are what make such a method attractive,

and possibly useful for a wide range of applications.
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Chapter 4

Conflict Detection and Resolution

In this chapter we will present a methodology for solving problems like the CDGC

problem. The difficulty in solving the CDGC problem lies in the generality of the

constraints. Quite obviously they may be non-convex sets. However, for many prob-

lems of interest, it is not unlikely that they will possess some structure. Fitting with

the theme of this thesis the approach here will be one of approximation. That is,

how closely can we approximate the true constraints by ones that are more amenable

to convex optimization. If the constraints are non-convex then we hope for a way

to formulate them as quadratics so that the QCQP can be used to obtain a lower

bound on the solution. In stronger cases where the constraints can be approximated

by convex functions, representable as LMIs, we will use semidefinite programming

to solve the problem. To summarize, we will not present an explicit solution to the

CDGC problem since it is too general to solve. Instead we will illustrate the approach

through a real world problem, namely aircraft conflict detection and resolution.

The motivation and demands of the aircraft conflict detection and resolution prob-

lem are clear. Both the increasing amount of air traffic and the possibility of removing

rigid airway structures in favor of Free Flight will place tremendous demands on the

human air traffic controllers. It is unlikely that they will be able to handle the de-

mands of the future without some form of automation. Safety is of critical importance

both by the nature of the problem, and the commitment to increasing the safety of air

travel. Thus, any automated system that detects and resolves conflicts must provide



guarantees on separation distances and computational times.

4.1 Conflict Detection

The aircraft conflict problem was discussed in the introduction. Usually a conflict is

discussed in aircraft pairs. For each pair we define one aircraft as the host aircraft

and the other as the intruder. It will become clear in what follows that the matter

of which aircraft is the host and which is the intruder is merely one of definition.

The intruder aircraft must not violate a separation parameter, which defines a radius

around the host aircraft. A conflict is declared when this separation parameter is

predicted to be less than a prescribed value. Obviously it is quite possible to have

multiple aircraft conflicts, where several aircraft have conflicts with at least one other

aircraft. A recent study has shown that six aircraft conflicts occur quite frequently

under increased traffic conditions [1]. This is where the problem becomes highly

combinatorial and thus complex.

Given the safety requirements of the problem we will be interested in providing

guaranteed lower bounds on the miss distance of an aircraft pair. This characteristic

is similar to the approaches in [5, 75]. Indeed, this "worst-case" approach appears

to be compatible with the way Air Traffic Controllers and Pilots make decisions [2].

Consequently, this approach has a useful reachable set formulation. Given two aircraft

with uncertainties in their velocities and thus positions, the detection problem is to

determine if the reachable sets at some time have a non-empty intersection. That is,

for each time T we desire to check if,

RI(T, Xo) n 2 (T, Xo) 0,

where R 1 and 1 2 are the reachable sets of the two aircraft that evolve according to

the velocities and their uncertainties.

We will consider three two-dimensional conflict detection cases from which more

complicated scenarios can be analyzed. We will take the nominal model for each



Figure 4-1: Uncertainties in the Velocities

aircraft i as

pi(t) = Pio + Viot, (4.1)

where Pio , vio R 2 are the initial position and nominal velocity respectively. Since

we will often be dealing with the relative co-ordinates of two aircraft we also define

pi (t) pj - pi, vij = vj - vi,

and,

Pijo =Po - Pio, Vijo Vjo - Vio.

The simplest form of conflict detection, for the case where the aircraft do not

change course and there are no uncertainties, can be accomplished by calculating the

minimum miss distance for an aircraft pair (i,j) as

dijo= 
l ijo 2 1- if poT Vijo < 0

otherwise

However, even though uncertainties can be incorporated into this equation, it

rapidly becomes difficult to use as the detection problems become more complex.

Thus we attempt to propose a more flexible method based on LMI feasibility problems.

(4.2)



Define the perturbed version of the nominal model (4.1) for two aircraft as

pi(t) = pio + vit, i = 1, 2. (4.3)

where vi is the uncertain velocity that lies in some range around the nominal. To begin

with we will take uncertainties in the velocities vio corresponding to an increasing cross

track uncertainty. In other words each aircraft is allowed to drift to either side of

its nominal track without any acceleration. Mathematically, the vio must lie in the

intersection of the ball

vi - vio 2 2
i , i = 1, 2, (4.4)

where Av1, is the uncertainty, and the circle

1 vi 2 = Vio 2, i = 1,2. (4.5)

For each time t this describes an increasing arc of possible aircraft positions as shown

in Fig. 4-1. To determine if a conflict will occur over some time interval 0 < t < tmax

we must check the condition

mmin mo0 , (4.6)

where mmin is the point of closest approach and m0 is the specified separation param-

eter. Using the perturbed model (4.3) this is true if and only if

P12(t) 2  m m Vt <_ tmax. (4.7)

We will now perform some manipulations to get the problem into an LMI format.

In so doing, we will obtain an approximation of the reachable set that is always

larger than the actual, that is, a super-reachable set. This allows us to say with

certainty whether or not a collision will occur, because we are using a conservative

approximation.



Substituting (4.3) into (4.7) yields,

Jp2o - Po0 + (v2 - v')t1 2 > mo.

z(t) = t(v 2 - Vl),

Defining

and substituting into (4.8) gives

P2o -p 10 + z1 2 > m.

Now note the following proven in [14].

Lemma 4.1 The equality (4.9) is equivalent to

twTAw = ZTAw

and

zT Bz twTBz

where,

W - (v 2 - Vl)

for any A, B E R 2x 2.

The result of this lemma is to effectively convert the equality (4.9) into a quadratic

relation. Now it is desired to check that (4.10) holds whenever the constraints (4.4,4.5)

hold. A method for accomplishing this is by using a variant of the Lagrange multiplier

technique, known as the S-procedure [14]. This provides the following feasibility

problem.

Feasiblity Problem 4.1 There is no collision between the aircraft pair (4.3), (i.e.

mmin > ioo) for 0 < t < tmax, if there exists A, B, Ai > 0, yi for i = 1, 2 such that

_P2o -p+ 0 zl 2 _ 2

(4.8)

(4.9)

(4.10)



2

- {(A2i V V' 2) + -Vi2 
-

i=1

-2zTAw + 2twTAw - 2zTBz + 2twTBz > 0

for any time 0 < t < tmax and any v1 , v2 . Furthermore, the above inequality is feasible

for any time 0 < t < tmax if it is feasible for t = 0 and t = tmax simultaneously.

Note that the original problem has been reduced to checking the feasibility of

two LMIs in the variables A, B, Ai, 'i. Indeed, it is because of the convexity of these

LMIs that we need only check the two end points of the time interval to guarantee

that the LMI will also be satisfied for any time in between. The method of adjoining

constraints using multipliers inherently introduces some conservatism. The amount

of conservatism is often difficult to estimate, but with careful formulation it can often

be made very small.

As an example, consider the problem where two aircraft are on a convergent course

and it is desired to find the maximum allowable value of the bearing uncertainty. For

this simulation we chose two aircraft with the following initial conditions and nominal

velocities

Pi = [0 0] P2 = [5 0 0 ]Tnmi (4.11)

vi = (250/V-)[1 1]Tknts v2 =(150/V')[-1 1]rknts.

The time interval to search over was chosen as tmax = 0.5hrs, which was large enough

to capture any possible collision. The radius of the protected zone was chosen as m0 =

5nmi. Iterating on the bearing uncertainty yielded a lower bound of 0 = 8.30, where

0 is the half-angle of the uncertainty envelope in Fig. 4-1. This value corresponds to

the following uncertainties in velocity:

Av1 = 36.2knts (4.12)

AV2 = 21.7knts,

via the simple relationship,

Av = 2( vio 2)(1 - cos(0)). (4.13)



Figure 4-2: Uncertain Switch Time

In order to validate this result a Monte Carlo simulation was run with the uncertainties

(4.12) as inputs to try and find the actual value of the minimum miss distance. The

smallest value found was mmin = 5.01nmi at t = 0.171hrs indicating that there is

approximately 0.2% conservatism for this particular example.

The situation in Case 1 can be directly extended to the scenario when one of

the aircraft may change its nominal trajectory at some unspecified time t1 < tmax.

A schematic of this is shown in Fig. 4-2. It is possible that the second, or new,

nominal trajectory could start at any point along the arc specified by the switch time

t1 . Additionally we will allow the new trajectory to have an uncertainty independent

of the initial trajectory. The equations of the trajectories (4.3) are thus modified to

include a second possible velocity for aircraft 1 as,

px(t) = Pl 0 + vltl + v 2  (4.14)
1 1 1 t2(4.14)

P2 (t) 2 + 1 (t +t 2)

and we now have three uncertain velocities. As stated, the time of the switch t1 is

uncertain but after the switch occurs the new nominal covers the remainder of the

time interval. Thus, we must search over the range

0 < t1 + t 2 < tmax, (4.15)



to determine if a conflict is possible,

In keeping with the uncertainty model (4.4,4.5) we have

v11 - vi 2 < aS- o - v
V 112 = v0 f 2, i = 1, 2

vg 2 = Ivo 2.

Now make the definitions,

zi (t) = t (v - vi), i = 1, 2 (4.17)

which using Lemma 4.1 are equivalent to

tiwT Aiwi = zAiwi,

for any A,, and

zT Bzi = tiwT Bizi,

for any Bi, where,
wi = (v1 _ v).

Once again we use the S-procedure to arrive at the following feasibility problem.

Feasiblity Problem 4.2 There is no collision between the aircraft pair (4.3), (i.e.

mmin o) for 0 O< t < tmax if there exists A,, Bi, i = 1, 2; Ai > 0, -i for i = 1,..., 3

such that

fP2o -p P - 1 2 2 _ T 2

2

+Y (t vf 2 -,I~ 11 loi11

-A {I -- vI - vlo f 2) + _(fll 2 - o 2}

2

-2zyAiw + 2tw[ Aiw - 2zi Biz + 2t[ Bi z > 0
i= 1

for any time 0 < t < tmax and any , v v 1. Furthermore, the above inequality is fea-

sible for any time 0 < tl +t2 < tmax if it isfeasible for (t1 , t 2 ) E { (0, 0), (0, tmax), (tmax, 0)}

(4.16)



Figure 4-3: Uncertain Acceleration

As an example, let us take the case where two aircraft are initially on a parallel

course 100 nmi apart with one aircraft proceeding slightly faster:

Pi = [100 0]Tnmi P2 = [0 0]T (4.18)

v1 = [0 240]Tknts vI = [0 200]Tknts.

At some point in a lhr time interval the first aircraft makes a heading change and

decreases speed such that a conflict may become a possibility, that is,

v = [-40 120]Tknts.

Given that there is a 50 uncertainty in the bearings of the two aircraft it is desired

to find the closest distance of approach. Iterating on the LMI feasibility problem

given above, a lower bound on the minimum miss distance was mmin= 4 0nmi. The

result of a corresponding Monte Carlo simulation after 500000 iterations was 51nmi.

This would seem to indicate a conservatism of approximately 22% for this example.

However, due to the additional complexity of this problem it is hard to determine

how accurate the results of the Monte Carlo simulation are.

In the next case we allow for both cross-track and along-track fluctuations, that

is, in addition to the velocity uncertainties (4.4,4.5) both aircraft will also be allowed

to accelerate. Geometrically this leads to a situation where the trajectory at any



time t lies on the intersection of an arc and a ball. For illustration purposes Fig. 4-3

represents the situation where only acceleration uncertainties exist. The perturbed

equations of motion must be modified to include an acceleration term as

pi(t) = pio + vit + ait 2/2, i = 1, 2. (4.19)

where a, is allowed acceleration. We allow for the previous velocity uncertainties

(4.4,4.5) and the uncertainty in acceleration as

lai 2 < 2 i = 1 2.

Define

z t F(a2 - a)/2 (4.20)
Z2 V 2 - VI + ZI

Which is equivalent to

twTAw = z T Aw,

for any A, and

z T B z = twTBz,

for any B, where,

w= (a2- 1/2 (4.21)
V2 - V 1 + Z1

Feasiblity Problem 4.3 There is no collision between the aircraft pair (4.19), (i.e.

mmin > mo) for 0 < t < tmax, if there exists A, B, Ai > 0 for i = 1,..., 4 and -y for

i = 1, 2 such that

JP2o - Plo + Z 2 _ 2

2

- {A2(dAi - vi - V 2) + y i ( - 2 io 1)
i= 1

2

- Ai+2 (A2i - ai 2 )
i=1-

-2zTAw + 2twTAw - 2zTBz + 2twTBz > 0



y z tsw

Figure 4-4: 3-Dimensional Case

for any time 0 < t < tmax and an vy V, v2 , a1 , a2. Furthermore, the above inequality is

feasible for any time 0 < t< tmax if it is feasible for t = 0 and t = tmax simultaneously.

In this example consider the situation where one aircraft is flying on a course

perpendicular to the other:

Pi = [0 0]T P2 = [150 125]Tnmi (4.22)

vi = [0 250]Tknts v2 = [-250 0]Tknts.

Given that the uncertainty in the acceleration of each aircraft is

Aal = Aa2 -- 15nmi/s 2

the task is to determine what the minimum miss distance will be. For the purposes

of this example, only acceleration uncertainties were allowed, i.e. A, = 0. Iterations

based on the LMI feasibility problem yielded a value for the lower bound on the miss

distance of mmin = 13.2nmi. The result of the corresponding Monte Carlo simulation

was mmin = 13.3nmi, indicating a conservatism of about .8%.

4.2 3-Dimensional Case

The three cases described above provide a basic set from which a wide range of

problems can then be formulated and solved. Here we will present a scenario where



motion in all three dimensions must be taken into account. Consider the problem

shown in Fig. 4-4 where one aircraft is on a straight and level flight path. The second

aircraft is descending into a possible conflict and is told to by the ATC to make a

change in its descent rate at some time t = ts,. Now, given that the descending

aircraft can make a descent rate change some time before or after ts,, and that there

is some possible delay in the switch At,, it is desired to determine whether a conflict

will occur. This is a well known situation for which TCAS encounters difficulty [2].

Following the methodology described above the equations of motion for this case can

be formulated as

pI(t) = Pi0 + v1(tI + t 2 + t 3 )

hi (t) =-- h 10 + ut + t 2 + u3t 3
1 1 1(4.23)

p2 (t) = P20 + v(tl + t2 + t3)

h2 (t) h20 + U(t 1 + t 2 + t3),

where the h, and uY represent the vertical positions and velocities. The uncertainties

in the horizontal velocities will be represented as (4.4,4.4). The vertical velocity

uncertainties will simply be allowed to range over some interval

Iu - Ui)1(I-Uo) 2 _ A 2 , i= 1,...,3,

2

The protected airspace will be represented as a cylinder in the z axis [30]. This miss

distance constraint can be described in the LMI format by saying that, V t < tmax

IP12( 2  _

holds whenever

(h 2 (t)- h 1 (t)) 2 < (m) 2 ,



where m' y and mz are the radius of the protected zone in the x - y plane and the

height of the cylinder respectively. We make the following definitions,

1 1
zi(t) ti ' i= 1, .. ,3, (4.24)

z2i -U J

which are equivalent to

tiw Aiwi = z Aiwi,

for any Ai, and

z Bzi = tiw Bizi,

for any Bi, where,

wl (t)=,i= ,...,3. (4.25)

At this point it is useful to observe that the problem can be broken into two phases.

The first phase being before the determined switch ts, which is accompanied by one

uncertain switch, and the second phase being the time after the switch, which is also

accompanied by one uncertain switch. This leads to the following two "time regions"

0 _< t + t 2 _ tsw + Atsw, witht 3 = 0, (4.26)

and

tS <_ tl + t2 <_ tsw + Atsw, with 0 < t1 + t2 + t 3 _ tmax. (4.27)

Essentially this requires us to first check three LMIs for phase one and eight LMIs

for phase two in order to solve this problem. This is summarized in the following.

Feasiblity Problem 4.4 There is no collision (ie. mmin >_ Mo), for 0 <_ t <_ tmax,

if there exists Aj, B fori = 1,...,3, Ai > 0 fori = 1,...,7 and y for i = 1,2 such

that

1P20 - P + Zll + z1 2 + 13 2_ 02

-A (m)- h2 0 -h + Z21 + Z22 + 23



2

- A lv1  -V l112) + _y,(IvI1 2 - vI 112)}

3
(A I - z4 U,0 H2) A7 ('A21 -l~ _u U- 112 )i+3 U1 ol 22 72 2

z=1

3

-2z Ai w + 2tiw Aiw - 2zi Bizi + 2twT Bizi > 0
i=1

for any times for any times tl, t 2 andt 3 subject to (4.26) and (4.27) and any v, v1 , u, U , U3  .

Furthermore, the above inequality is feasible for any times tl, t 2 andt 3 subject to (4.26)

and (4.27) if it is feasible for (tlI, t 2 , t3 ) E {(0, 0, 0), (0, tmax, 0), (tmax, 0, 0)} (phase 1)

and for(tl, t 2, t3) E {(t, 0,0), (ts+Ats, 0, 0),(0, ts7, 0), (0, tw+Atsw, 0),(tsw, 0, tmax-

tSW) ,(tsw+tAs, 0, tmax-tsw-tAsw), (0, tsw, tmax-tsw),(0, tsw+Atsw, tmax -tsw-Atw) }

(phase 2).

Consider a straightforward example of the above where the aircraft motion is

confined to the x - z plane. The two aircraft are given the initial positions

Pi = [4 0 ]T P2 = [-3 0]T (4.28)

hi = 2.5 h2 = 0,

where the units have been dropped for convenience. The first aircraft is on a descent

that could cause a conflict with the second aircraft which is on a straight and level

course. The first aircraft is told to level out at tw = 3. There is a possible delay

AtS = .1 and the first aircraft is allowed an uncertain change in its nominal vertical

velocity after t5 ,. The problem is searched over the time interval tmax = 10. The

nominal velocities were set as

vI = [-1 0]T vI = [1 0]T
IL U2 

(4.29)u = -. 5, 1 = 0, u~ = -. 2 ul = 0

Given that there is a 50 horizontal bearing uncertainty in each aircraft it is desired

to find the maximum allowable uncertainty in the vertical velocity given that the



protected cylinder has its parameters set as,

Y = 0.5, m = 0.1.

Iterating on the vertical velocity uncertainty yielded a lower bound A3 = 0.1. Several

attempts at using Monte Carlo methods to validate this result were made, but it was

difficult to obtain a consistent result with any level of confidence. Thus at this time

it is difficult to estimate the conservatism associated with the result of this example.

Indeed, in general, the Monte Carlo simulations worked well only for the more simple

cases with few variables and small uncertainty levels.

4.3 Conflict Resolution

Once the detection stage has been completed each aircraft involved in the conflict must

be issued a resolving command. We will need to make some simplifying assumptions

in the approach to be given, and these are as the follows.

1. All aircraft travel in straight lines.

2. There is no uncertainty in position or

3. All motion occurs only in the horizontal plane

4. All aircraft turns occur instantaneously without loss of speed, etc.

5. All aircraft co-operate in resolving conflicts

The validity of each of these assumptions requires some discussion. Assumption

1 is not that limiting since aircraft would always prefer to fly straight and level

at all times. That is, we expect each aircraft to be on a straight and level flight

path before the conflict resolution begins. Assumption 2 seems unrealistic, but it is

possible to absorb uncertainties in aircraft trajectories into the separation parameters.

Assumption 3 is only limiting in that we choose not to resolve conflicts by climbing

or descending. In other words, it is a limitation of our algorithm, not of the model.



Assumption 4 is an approximation the validity of which has been discussed in [5, 18].

In practice we expect there to be some delay in the time it takes for an aircraft

to acquire a new heading. However, this can be overcome by a continual update

of the resolution command, or the addition of margins to the separation parameters.

Furthermore, we will impose constraints in the resolution algorithm that will limit the

range of velocities that can be commanded. Finally, Assumption 5 is quite reasonable

for commercial aircraft, since they will all be equipped with the same electronics and

working under the guidance of an traffic controller.

Given these assumptions, we will use the nominal model (4.1). Now with the

change in focus we re-define the vector vio to be the desired velocity, i.e. the velocity

vector that each aircraft would like to have. The vector vi now becomes the decision

or control input and this is what we desire to compute. We have already seen that the

closest point of approach between any aircraft pairing (i, j) is given by (4.2). Thus,

it is logical that we should start with trying to build a conflict resolution algorithm

around the constraint

21 (,T oij)2 2
Pio 11 2 > 2 (4.30)II V i j . 1 2 -- 1 '

where dij is the separation parameter, and vij is the decision or control variable.

Unfortunately this constraint is not convex. Fig. 4-5 shows two aircraft engaged in a

conflict in relative co-ordinates. The region marked with solid lines specifies all the v

for which a conflict will occur. The unmarked, or admissible region, is specified by the

constraint (4.30). Aside from not being convex the constraint (4.30) also has another

important feature. This is the fact that it will not allow for conflicts in the past.

That is, the trajectories of two aircraft that are heading away from each other will

not necessarily satisfy (4.30) and this is reflected by the region marked with dashed

lines. This does not pose a serious problem for two reasons. First, the detection stage

is used to determine the possible conflicts, thus aircraft whose trajectories have past

conflicts will be removed from the resolution problem. Secondly, we will show how

this can also be removed by an alternate formulation.



clockwise

intruder
counter clockwise

Figure 4-5: Relative Motion and Admissible Regions

Regardless, the admissible region can be observed to represent two connected

convex regions (connected at the center of the intruder aircraft). Physically these

correspond to the two possible crossing patterns for any aircraft pair. These are the

cases when the aircraft cross each other clockwise (each pilot sees the other drift

from left to right), or counter clockwise (each pilot sees the other aircraft drift from

right to left). Thus, our first attempt will be to formulate the convex constraints

corresponding to these two admissible regions.

The inequality (4.30) can be converted to a more convenient from by means of

the standard vector identity

(a x b)2 ab1 2 - (a Tb)2

to obtain

vT  v i < |7, (4.31)

where
PT

7 = det i , (4.32)

and the sign of 7y represents the crossing direction, positive for counter-clockwise

(CCW) and negative for clockwise (CW). We can now use Schur complements to



write this as an LMI. Assume ' > 0, then we can write

> 0. 
(4.33)

vii 7I

Thus, using the constraint (4.33) in a resolution algorithm would always force the

ijth pairing to cross CCW, corresponding to the lower cone in Fig. 4-5. Likewise we

can write the LMI for the opposite direction by simply changing the sign of the LMI.

The problem of allowing for conflicts that happened in the past can be remedied

by writing (4.30) as two linear constraints. Indeed, defining the angle between viy

and -pijo to be 0, (4.30) reduces to

di?
cos 0 < 1 - and sin 0 > 2 (4.34)

where 0 E [-r/2 7r/2]. Thus we arrive at the two half spaces,

ccwiy > 0 (4.35)

and
T

iTcwvj > 0 (4.36)

where

1 ccw = Fpj, Itcw = pi2J,

and
2 d

pij 2  V p l
1 1d2 - 1 - (4-37)

The two constraints (4.35,4.36) independently represent the CW and CCW solu-

tions. Thus the admissible region is now defined by two half-spaces. Clearly, these

constraints are also LMIs, but they also suggest a possible Linear Programming for-

mulation that we will neglect to discuss here.
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Figure 4-6: Constraints on Aircraft Velocities

The next step is to formulate the constraints on the decision vector vi. As stated

in the assumptions we desire the aircraft to travel at constant velocities. In keeping

with the turning model we must impose constraints on the allowable velocity range.

However, the constant velocity constraint

T T
Nvi v vio

is nonconvex. Once again we are left with the problem of approximation. A simple

and practical solution, that limits the velocity and the turning radius is pictured in

Fig. 4-6. That is, we will bound the decision vector by a half-moon shape specified

by the following constraints:

V T i < V T iovi T Voi o T0  (4.38)

av vio < V Vo

where the parameter a specifies both the allowable decrease in velocity and the max-

imum heading change

0 max = arccos(a).

For example, allowing for a 10% speed variation, a = .9, gives Omax = 25.80. The

assumption of a 10% speed variation is quite valid in practice for both the Boeing

727 and McDonnell Douglas MD-11.

To complete the resolution algorithm we require an objective function. Indeed,

a simple objective that is linear and makes good practical sense is to maximize the

projection of the decision vector on to the nominal velocity vector. Thus given n
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aircraft we have the following conflict resolution algorithm, formulated as a convex

optimization problem.

n

maximize v vio
i= 1

subject to one of (4.35), (4.36) for each pair ij and (4.38) (4.39)

i = 1,...,n-1, j= i + 1,...,n

The choice of which constraints, (4.35) or (4.36), to use must be decided upon

before hand. Clearly, unless we have some knowledge that suggests what crossing
n(n-1)

patterns to use we must check 2 2 permutations. Obviously, this is prohibitive for

more than four aircraft (n = 5 implies 1024 permutations). What we really need is

some way to reduce the complexity of the problem. As we have seen, the problem

of choosing between the possible crossing patterns is nonconvex. However, using

the knowledge of Chapter 2 we know that the we may compute a lower bound by

formulating the problem as a QCQP and solving the dual optimization problem.

4.4 Computation of the Lower Bound

Notice that the constraints (4.30,4.38) and the objective in (4.39) can all be rep-

resented as quadratic functions in the variables vi. We can use the constraints

(4.30,4.38) on the basis that past conflicts can be removed by means of a detection

algorithm. Thus, this implies the conflict resolution with non-directional constraint

(4.30) can be formulated as a QCQP. From this, as we described in Section 2.1.2, a

lower bound can be computed by solving the problem (2.17).

Let, x - [vTvT... v]T be the variable. We can then formulate the P(A),q(A),

and r(A) as follows. The objective appears as

Po = 0

q0  = - T T ... .T (4.40)
SVlo02o Vnor0 - 0
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We can then formulate the n(n - 1)/2 matrices that correspond to (4.30) as

S (d? -- PPij) I + PijPT -(d2 - pTpij)I - PijPT

1j+(i-1)n-i(i+1)/2Y, M) = 3[ (d2 - P Tpij )I_ -~ TiP (d2% - pTpi3 ) I + Pj~ T

qj+(i-1)n-i(i+1)/2 = 0

rj+(i-1)n-i(i+1)/2 = 0, i = 1,..., n - 1, j = i + 1,..., n,
(4.41)

where 1 = {i, i + 1, j, j + 1}, m = {i, i + 1, j, j + 1}, and any un-assigned elements are

zero. Next are the 2n velocity constraint matrices (4.38) formulated as

Pn(n-1)/2+1+i(i + 1}, {ji + 1}) = I

qn(n-1)/2+1+i = 0 (4.42)

Tn(n-1)/2+1+i = -1 ,io ..

and

Pn(n-1)/2+1l+n+i - 0

qn(nl-1)/ 2 +1+n+i({i, i + 1}, {1,2}) = - vio (4.43)

rn(n-1)/2+1+n+i - Z . ,io 1...n.

As stated, solving the problem (2.17) provides a lower bound, -* < J PT, where

-* is the optimal obtained from the solution to (2.17) and JOPT is the optimal value

obtained from the minimum of all the possible permutations. Without saying any-

thing further we can immediately see a possible savings in computation time. As

we search through the permutations we will have a gauge of how close we are to the

optimal. Indeed, if -* = JoPT, then we will know that the optimal has been achieved.

However, the worst case is still 2 n(n- 1)/2 . What we really desire is for the lower bound

to somehow always provide a solution, thus, reducing the problem to the solution of

only one convex optimization problem. This may not be possible but some recent

research has shown promise. In [13] the authors showed that computation of the lower

bound stability margin of the Popov criterion can be used to compute a good upper

bound by looking into the null space of the constraint matrix at the optimal. In the

spirit of this result, we now assert the following.
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Lemma 4.2 Assume y7* = J*PT and there exists a dual optimal A* and primal op-

timal x*. Then there exists a vector v* = Ix*T 1]T that is a null eigenvector of the

matrix
-P(A*)
q(A*)T

q(A*)
7 - r(A*)

(4.44)

Proof: By virtue of the fact that strong duality holds, we have,

x *T Po* + 2qoTx * + ro < x* Pox * + 2qTox * + ro
n

+ A* ( Pix* + 2q T*

i= 1

and thus,

A(x* T Px* + 2qT * + r) > 0.

Since A* is dual feasible, A* > 0 and x* is primal feasible we have

n

A (xP* Pg+ 2q X* + ri) < 0.
i=1

Thus,
n

AZ (* T P * + 2qTX* + r) = 0.
i=1

Now because of strong duality we also have,

x*T Pox* + 2qox* + ro = *

and further,

x* Pox* + 2qo'x* + ro
i= 1 T

Pix* + 2qx* + ri) =

and

E1
p(A*) q(*)

r(A*) - Y] 1
= 0

and thus, by a simple manipulation, v* is a null eigenvector for (4.44).

104

(4.45)
+ r2)

(4.46)



Thus we can infer that when the lower bound is tight there will exist a null

eigenvector that is the solution to the original problem. This also implies that if the

null eigenvector is unique than the lower bound is a tight one [13]. For our problem

the following question quickly arises. How often is the bound tight? Or the somewhat

equivalent question, how often is there only one null eigenvector, and when there is

does it yield the optimal solution? It is difficult to obtain precise answers to these

questions. Indeed, we must rely on some statistical analysis at this point to provide

enlightenment. In the following we will give an example of some of the statistical

techniques that could be used to provide a better understanding of the lower bound.

Given there are n aircraft, the solution matrix has exactly 2n + 1 eigenvalues. Let

pi be the ith eigenvalue of the matrix

-P(A*) q(A*) (4.47)
I I ,(4.47)

q(A*)T y- r(A*)

where A* is the value of A at the best lower bound obtainable. Define the following

function,
n(n-1)/2

-Y() Z (jpi -<6)
i

which is a measure of the number of eigenvalues below a certain value 6. This function

cannot be exactly computed, but we can approximate it via statistical methods. For

example, Fig. 4-7 shows a plot of

#of times y(6 ) = 1
N

where N = 1000 is the number of trials, for the case of 2,4, and 8 aircraft. The data

was created by generating aircraft trajectories with the random distribution

I (pijo)k < 5 (4.48)

|(vi _o)k < 2, k = 1,... ,2,

where (')k is the kth element. The separation parameter and speed variation were
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deltaFigure 4-7: Frequency of Null Eigenvector

chosen as

dij = ,and a = .9.

All simulations were performed with the software package [24], which is a front end

parser for [77]. As should be expected the frequency of the null eigenvector decreases

as 6 increases. Logically we would like to know for each value of 6 what percentage

of the cases does the null eigenvector provide the optimal solution.

In answer to this question we must again use some form of statistical method. For

example, a set of 100 trials with four aircraft was generated with the same simulation

parameters above. An example of one of these four aircraft conflicts is shown in Fig.

4-8. The actual minimum was found by computing each of the 64 permutations.

Table 4.1 shows, for each value of 6 the percentage of times that the function Y7 = 1,

and what percentage that null eigenvector yielded the optimal solution. Thus we

can see that as the level of 6 is decreased we have less of a chance of extracting the

optimal. This makes perfect sense, since the lower the value of 6 the more likely there

is another eigenvalue close to zero that has not been taken into account.

What then can be said about cases where more than one null eigenvector exists.

Consider the case where there are two null eigenvectors, vi = [Xl t,]T and v2

[xT t 2 ]T, where x4 E R 2,, and the vi correspond to eigenvalues below a certain value

6. A reasonable place to start is to look at the linear combination of v1 and v2 . As
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6 y = 1 % Exact Solution%

le-3 66 100
le-4 74 88
le-5 83 80

Table 4.1: Null Eigenvector Solution Percentages

Figure 4-8: Example of a 4 Aircraft Conflict
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Figure 4-9: Null Space Parameterization

we know from the formulation of the QCQP we require that tl + t2 = 1 in order

for the linear combination to be a possible solution. Thus we can parameterize the

combination as

S= + X2, (4.49)
1 - ti t2

where t2 is allowed to range over some interval. A schematic of this is shown in Fig. 4-

9 for a three aircraft symmetrical case. What we hope for is that the parameterization

somehow indicates where the optimal solution lies. For example, for each value of t 2

we could look at the crossing direction that is implied, by computing (4.32) for each

aircraft pair. This could then be input into the algorithm (4.39) to determine if it is

feasible. This process would have to be continued in a line search manner to find a

solution. Fig. 4-9 which is based on an actual test case indicates that the solution is

either all CW or all CCW by noting the direction of the arrows. Indeed these are the

two optimal solutions for this case.

These types of analysis methods based on the lower bound require a much further

investigation than what is given here. We have simply attempted to provide an

overview of some of the techniques that might be employed to reduce the complexity

of the original problem.
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Chapter 5

Conclusions and

Recommendations

The goal of this thesis has been to provide two practically useful methodologies for

two very significant constrained control problems. Underlying this was the need to

provide guaranteed solution methods that are computationally efficient with good

performance.

5.1 Nonlinear Control for Nonlinear Actuators

The first problem was the control of Linear Time Invariant systems subject to non-

linear actuators. Three different nonlinear actuator problems were considered. In

summary these are systems subject to actuator position constraints, systems sub-

ject to asymmetric actuator position constraints, and systems subject to actuator

position and rate constraints. The methodology developed was a nonlinear state

feedback control scheduled according to the state to avoid saturation at all times.

This is accomplished by using a set of nested invariant ellipsoids, that for each value

of the nonlinear gain, approximate the maximal invariant region. By construction,

the method provides guaranteed control boundedness and stability. Several simple

examples were given to demonstrate the methods along with a comparison to sub-

controllable sets and a more significant application to a nonlinear simulator of the
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F/A-18 HARV. Through out all of this, computational efficiency was obtained because

everything was formulated as a convex optimization problem, implying guaranteed

computational times.

The asymmetric and position/rate constraint problems proved to be extremely

challenging ones. In short, it rapidly becomes difficult to maintain a high level of

performance while providing guarantees. The added complexity of the constraints

increases the difficulty of approximating the associated maximal invariant regions.

In the case of position and rate constrained actuators this was remedied by using

a convex optimization algorithm to increase the region of attraction for each value

of the nonlinear gain. The concept of sub-controllable sets is particularly attractive

because of their optimality, that is, they can provide finite time convergence and

good performance. However, it is a challenging problem to extend them beyond the

application to position constraints only. In this case, the problem is obtaining the

best possible approximation to the actual controllable set.

Several questions and areas for further research exist. The immediate question is

whether the methods presented here can be improved upon. In other words are there

additional developments that will allow for better approximations of the maximal

invariant sets. Is a performance enhancement like the one used for the position/rate

constraint problem possible for the asymmetric problem? This ties in directly with

the discussion on sub-controllable sets. That is, how do we obtain a differential equa-

tion for the evolution of state constrained sub-controllable sets? How do we construct

an asymmetric controller based on sub-controllable sets? In the development of the

asymmetric controller invertibility of the A matrix was assumed. Can this restriction

be removed in certain cases, or all together? A further issue is the role of general-

ized design methods such as the one presented here. The application to the F/A-18

HARV shows the method is capable of comparison with the existing F/A-18 HARV

control law. But what is the best use of the knowledge we have obtained? Does it

represent a method usable for control systems design, or is it something like a fast

prototyping tool? Because of its guarantees could it provide a backup, or redundant

control system? Finally, real time implementation of optimal control strategies re-
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quires guaranteed bounds on solution times. There is the possibility that the methods

presented here could be used to bound the number of optimization steps needed to

solve a receding horizon optimal control problem.

5.2 Convex Optimization for Aircraft Conflict De-

tection and Resolution

The second methodology applies to systems subject to more general state and control

constraints. In essence it is the same as the first methodology. In other words the

idea is always to approximate the admissible regions by convex sets. The selection

of a control strategy can then be formulated as a convex optimization problem. This

is presented through the aircraft conflict detection and resolution problem. It is an

extremely important one that has even more of a requirement for guarantees than the

nonlinear actuator problem. This is due to the fact the human lives are at risk and

failure is unacceptable. The problem is approached from a two phase point of view.

First conflicts are detected by means of a worst case analysis. This is accomplished

through Linear Matrix Inequality feasibility problems, that provide a guaranteed in-

dication of a conflict. Once this has been performed a conflict resolution method is

proposed that can solve multiple aircraft conflicts. Unfortunately, the method be-

comes very complex for more than 3 or 4 aircraft because a "crossing-direction" must

be specified for each aircraft pair. A possible solution to this problem is presented

by formulation of the lower bound optimization problem and an examination of the

null space of the resulting solution matrix. This does show promise for reducing the

problem complexity. Again, computational times are guaranteed in all of this due to

the convex optimization formulations.

Again, there are a wide variety of questions and avenues for research. First, is

the more thorough investigation of the lower bound. The notion that somehow the

lower bound optimization problem "knows" the best solution is irresistible. It is a

challenging problem to determine if this is or is not true. Both a better theoretical and
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statistical study need to be done here. Beyond this are the daunting implementation

issues. These are several, including most importantly, guaranteed safety and the

ability for real time computation.

A final question that combines much of this discussion is: How do we continue to

increase or maintain guarantees while simultaneously delivering performance?
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