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Abstract

A strategy for the parallel generation of unstructured meshes is proposed. A

distributed unstructured mesh generation environment is presented and this is cou-

pled with a time dependent compressible Navier-Stokes equations solver. The mesh

generation schemes developed in the serial context are extended for parallel execution.

Dynamic load-balancing and mesh migration are incorporated to ensure even work dis-

tribution and for refinement analysis. Anisotropic mesh refinement is also incorporated

for flow analysis involving anisotropic gradients. The flow solver is linked to the mesh

generation environment as a test of the parallel mesh generation capabilities for flow

analysis and several well defined test cases are modeled for comparison to experimental

results.
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Chapter 1

Introduction

1.1 Overview

Unstructured mesh methods for computational fluid dynamics have experienced a rapid

growth over recent years and, for the computation of inviscid flows, have achieved a

considerable level of maturity. As a result, a number of systems incorporating automatic

mesh generators and flow solvers have been built which are currently being used in a

semi-production mode by industry and research establishments [21, 25, 40]. The main

advantage of the unstructured mesh approach is that, for complex geometries, it allows

to significantly reduce the time period associated with the CFD analysis cycle. This

feature is especially valuable during the early stages of design of aircraft when a large

number of options needs to be analyzed.

The reasons for distributed mesh generation are twofold. The first one is to re-

duce the computational times required for mesh generation. Currently, the serial mesh

generator within the unstructured mesh system FELISA [25] generates grids at an ap-

proximate constant rate of 3 million elements per hour on a high end workstation. It

is conceivable that for the large grids required for viscous turbulent flow analysis, mesh

generation may become a problem. More important however, are the memory require-

ments. At present, the size of a computation is determined by the ability to generate

the grid on a serial machine. For large applications, the memory requirements can be a



problem. For instance, the generation of an unstructured grid containing 8 million cells

requires a serial machine with 512Mb of core memory using the FELISA system [25] .

Once generated, this grid needs to be partitioned and sent to the parallel processors to

carry out the flow solution. Hence, a strategy capable of generating a grid in parallel

mode and such that when the grid generation process is finished, the grid is already

partitioned and in place for the flow solution, is necessary.

This thesis addresses the development of a parallel unstructured mesh generator

designed to operate on parallel MIMD machines with distributed memory. Serial mesh

generation is a prerequisite to any form of parallel mesh generation since this is essen-

tially mesh generation on a single processor. The serial mesh generation algorithms

are detailed in chapter 2 and these deal with the algorithms, data structures and mesh

representation. Chapter 3 deals with the extension of isotropic mesh generation to

anisotropic mesh generation for analysis involving anisotropic gradients. Parallel sys-

tems based on architecture and memory organization is discussed in chapter 4. This

chapter also discusses the programming model adopted for the purpose of parallel mesh

generation. The development of a parallel mesh generation system is discussed in chap-

ter 5 and this deals with the topics of mesh migration, load balancing and the parallel

extension of the serial mesh generation algorithms. The results of the serial and par-

allel mesh generation systems are presented in chapter 6. The mesh generation system

can only be truly tested under an actual CFD application and the formulation of an

explicit 2D compressible Navier-Stokes equation solver is presented in chapter 7. The

results for several test configurations is presented in this chapter with conclusions and

recommendations for future work in chapter 8.



Chapter 2

Mesh Generation Algorithms

2.1 Preliminaries

A general description of a computational mesh in Rd may be given as a set of unique

global coordinate vertices, {xi I i = 1..M} along with some form of connectivity in-

formation regarding this set of points. Computational grids can be broadly subdivided

into two major classes: structured and unstructured although mixed or hybrid grids also

exist. Structured meshes in general do not require the connectivity information as this

may be deduced from the point set distribution. Unstructured meshes require this con-

nectivity due to the lack of a logical structure to the point set distribution. This may be

thought of in the sense that the number of connectivity paths meeting at a point varies

from point to point. The meshes considered here will be such that the connectivity

information associated with any given grid satisfies the following constraints.

* The connectivity information is contained in a set of closed polyhedral elements

k which span the domain.

* Any given pair of polyhedral elements in Rd may share up to n global points.

* Any given set of (d-1) points which are coplanar and form an element face can be

shared by at most two elements. In the case of boundary faces, these are shared by

exactly one element for external boundaries and possibly two elements for internal



boundaries.

Given this set of constraints, we observe that the polyhedral elements (tfk) have been

defined in a way such that for any given domain fl, the elements satisfy

S= U nk (2.1)
k

which implies that the elements are non-overlapping and tile the entire domain. The

polyhedral elements considered for grid generation are triangles in 2D and tetrahedra

in 3D.

2.1.1 Delaunay Triangulation

A triangulation of a given set of points in Rd may be effected by means of Dirichlet

tessellation. The Dirichlet tessellation of a point set {xi} is defined as the pattern of

convex regions {Vi} which is formed by assigning to each point xi, a region Vi which

represents the space closer to point xi than any other point. These regions satisfy the

property

V { = x: x - x < Ix- xjl} Vj i (2.2)

The resultant convex polyhedra are called Voronoi regions and cover the entire

domain. The Delaunay triangulation of a point set is then formed by considering any

point pair with a common Voronoi boundary segment and joining them together. This

results in a triangulation of the convex hull of the point set {xi} and is also referred to

as the dual of the Voronoi diagram of the point set.

If Delaunay triangulation is considered in R2 , we observe that since each line seg-

ment of the Voronol diagram is equidistant from the two points it separates, then each



vertex of the Voronoi diagram must be equidistant from the three nodes which form the

Delaunay triangle that encloses the vertex. This is to say that the vertices of the Voronoi

diagram are the circumcenters of the Delaunay triangles. In R3 , this translates to the

vertices of the Voronoi diagram being the circumcenters of the Delaunay tetrahedra.

The Delaunay triangulation satisfies a number of properties in R2 not all of which

have extensions to R3 . These include

1. Completeness. The Delaunay triangulation covers the convex hull of all points.

2. Uniqueness. The Delaunay triangulation is unique except for degeneracies such

as 4 or more cocircular points (in R 2 ) and 5 or more cospherical points (in R3).

3. Circumcircle/ Circumsphere criteria. A triangulation of N points is Delaunay if

and only if every circle passing through the three vertices of a triangle in 2D

(sphere passing through the four vertices of a tetrahedra in 3D) does not contain

any other point.

4. Edge circle property. A triangulation of N points in 2D is Delaunay if and only

if there exists some circle passing through the endpoints of every edge which is

point-free. This can be extended to 3D for element faces.

5. Equiangularity property. The Delaunay triangulation of a given set of points max-

imizes the minimum angle of the triangulation. Hence the Delaunay triangulation

is also called the MaxMin triangulation. This only holds in R2 .

6. Minimum Containment Circle(Sphere). The Delaunay triangulation minimizes

the maximum containment circle(sphere) over the entire triangulation. The con-

tainment circle(sphere) is defined as the smallest circle(sphere) enclosing the ver-

tices of a triangle(tetrahedron).



7. Nearest neighbor property. An edge formed by connecting a vertex to the nearest

neighbor is always an edge of the Delaunay triangulation.

8. Minimal roughness. Given an arbitrary set of data fi defined on the vertices of

the mesh such that fi varies as a piecewise linear function over the elements. For

every possible triangulation, the Delaunay triangulation minimizes the functional

I = J Vf.Vfd (2.3)

2.1.2 Constrained Delaunay Triangulation

For a given point set {xi I i = 1..M}, the boundary of the Delaunay triangulation of

the point set is the convex hull of the point set. However, if the Delaunay triangu-

lation of a point set with respect to a prescribed set of fixed edges which bounds the

domain is considered, this is referred to as a Constrained Delaunay triangulation. This

prescribed set of edges may represent the domain boundary or interior boundaries. In

most practical applications, we will be interested in constrained triangulations.

2.2 Delaunay Triangulation Algorithms

For the purposes of mesh generation, Incremental Insertion algorithms are considered.

These algorithms are designed in such a way that given a point set, the points are

considered in sequence and inserted into the triangulation in such a way as to ensure

that the grid is always locally Delaunay. Due to the localized nature of these algorithms,

global Delaunay cannot always be guaranteed. Several incremental insertion strategies

exist such as the Bowyer algorithm [1] and Randomized algorithms [30]. However for

the purpose of computational simplicity, we consider only the Watson algorithm [12]



and the Green-Sibson algorithm [43]. These are outlined in 2D but are extendable to

3D.

2.2.1 Watson Point Insertion Algorithm

The Watson point insertion strategy is based on the circumcircle property of the De-

launay triangulation. Given a point Q to be inserted into the current triangulation, the

root element is defined as any element whose circumcircle contains the point. From the

root element, a Breadth First Search (BFS) is performed to locate all elements whose

circumcircle contains the given point. The BFS is a tree search which is accomplished

by checking the neighbors of all the currently identified elements which violate the cir-

cumcircle test and considering only those elements which have not been tested. This

may be done recursively or with the help of supporting data structure and is always

guaranteed to terminate. This generated set of elements is always independent of the

element selected as root. This search method is particularly suited to constrained tri-

angulations where an element may not be visible to the point Q due to a prescribed

edge. For constrained triangulations however, one required modification is to make sure

that the root element is on the "same" side of the prescribed edge as the point Q by

testing if the centroid of the root element is on the "same" side as Q. Deletion of the

set of elements which violate the circumcircle condition results in a polygonal cavity

surrounding the point Q. This cavity is then retriangulated by connecting the point Q

to the vertices of the polygonal cavity. This guarantees that the triangulation is always

locally Delaunay around the point Q. The implementation steps of the algorithm are

listed below.

1. Insert new point Q into existing point set.



2. Locate root element with circumcircle containing point.

3. Perform tree search to obtain element set which violates circumcircle property.

4. Construct polygonal cavity edges and delete element set.

5. Connect cavity vertices to point Q and update Delaunay data structure.

This is the most general form of implementation for a given point set. In the process

of mesh generation with constrained Delaunay triangulation, due consideration must be

given to boundary violations also. Hence new points which are to be inserted into the

triangulation are only inserted if there are no boundary or proximity violations with

respect to the identified element set associated with the point Q. Proximity violations

as defined in this context means that the new point Q may not be closer to any existing

vertex than some specified tolerance.

Figure 2.1: Watson Point Insertion Strategy



2.2.2 Green-Sibson Point Insertion Algorithm

The Green-Sibson point insertion strategy is based on the circumcircle property of

the Delaunay triangulation. The difference is that local edge transformations (edge

swapping) are employed to reconfigure the triangulation. Given the point Q to be

inserted into the triangulation, the root element is defined as the element that encloses

the point Q. Upon the location of the root element, three new edges and elements

are created by connecting Q to the vertices of the root element and deleting the root

element. If the point lies on an edge, the edge is deleted and four edges are created

connecting the point Q to the vertices of the quadrilateral formed. For the purpose

of computational simplicity in mesh generation, if the point lies on an edge, then it

is moved by small AL along the normal to the edge into the root element. Based on

Q 2

(a) (b)
1 1 4

Figure 2.2: Edge Swapping with Forward Propagation

the circumcircle criteria, the newly created edges will be Delaunay. However, some

of the original edges have now been rendered invalid and such, all edges which are

termed suspect must be located. This is done by considering a "suspect" edge as the

diagonal of the quadrilateral formed from the two adjacent elements. The circumcircle



test is applied to either of the adjacent elements such that if the fourth point of the

quadrilateral is interior to the circumcircle, then the edge is swapped. This creates two

more "suspect" edges which need to be tested. The process terminates when all the

"suspect" edges pass the circumcircle test. The nature of the Delaunay triangulation

guarantees that any edges swapped incident to Q will be final edges of the Delaunay

triangulation. This implies that forward propagation [55] need be considered as depicted

in figure 2.2. This may be done recursively or with the help of a stack data structure.

The implementation of the algorithm is listed below.

1. Insert new point Q into existing point set.

2. Locate root element which encloses point.

3. Insert point and connect to surrounding vertices.

4. Identify "suspect" edges.

5. Perform edge swapping on "suspect" edges failing circumcircle test and identify

new "suspect" edges.

6. If new "suspect" edges, go to Step 4.

As mentioned before, the problems associated with constrained Delaunay triangulation

must also be considered with this method.

2.2.3 Alternative Point Insertion Algorithms

The primary point insertion algorithms implemented are as described above. However, it

is sometimes necessary to generate non-Delaunay triangulations based on other criteria.



To this effect, we consider a modification of the Green-Sibson algorithm such that the

circumcircle test is replaced by other criteria. Possible options are

1. Minimization of mazimum angle. This is referred to as a MinMax triangulation

and considers the maximum angle for both the unswapped and swapped edge

configuration. If the maximum angle for the swapped configuration is less than

that of the unswapped configuration, the edge is swapped.

2. Minimization of skewness. This is referred to as a MinSkew triangulation which

attempts to minimize the skew parameter for an element. The skewness parameter

as defined by Marcum [13] is proportional to the element area divided by the

circumcenter radius squared in 2D and to the element volume divided by the

circumcenter radius cubed in 3D.

2.3 Implementation Issues

A number of issues need to be addressed for the implementation of the mesh generation

algorithms outlined above. These are directly related to the problems associated with

mesh control, data structure formats and geometric searching.

2.3.1 Mesh Control

Mesh control mechanisms must be included in mesh generation implementations to allow

for control over the spatial distribution of points such that a grid of the desired density

is produced. This can be accomplished by means of a background mesh and a source

distribution.



Background mesh

A background mesh, implemented as tetrahedral elements in both 2D and 3D, is pro-

vided such that desired mesh spacings are specified at the vertices of the elements. The

background mesh must cover the entire domain and is defined such that the mesh spac-

ing (or element size distribution) at any point in the domain interior is computed by

linear interpolation on the background element which encloses the point. This provides

a convenient method of specifying linearly varying or constant mesh spacings over the

entire domain.

Source distribution

For complex geometries, specification of a background mesh can lead to a large number

of background elements. This can be remedied by specifying sources at specific regions

in the computational domain.

26-1 --------------

Xc D
Figure 2.3: Source Element

The mesh spacings for the sources are then defined as an isotropic spatial distribution



which is a function of the distance from a given point to the source. The functional

form of the mesh spacing specified by a point source is given by

61
6(x) =

lepresented by

where the mesh parameters are represented by

if x < zX

if x > xc

1. x,: Distance over which mesh spacing is constant.

2. 6 1: Constant mesh spacing over distance x,.

3. D: Distance at which mesh spacing doubles.

P

x

S

Point

(2.4)

S %

TriangleLine

Figure 2.4: Point, Line and Triangle Sources

The sources may take the form of point, line or triangle sources as depicted in figure

2.4. The mesh spacing is defined for line and triangle sources as the spacing based on

the closest point on the line segment or triangle This point is chosen as a point source

with the mesh parameters x,, 61 and D linearly interpolated from the nodal values on

the line or triangle source. Hence for any given point in the computational domain, the

spacing is given as the minimum spacing defined by all the source spacings and that

specified by the background mesh.



2.3.2 Data Structures

The choice of data structures to be employed in the mesh generation implementation

plays an important role due to the nature of the algorithms. Efficient, compact and

well structured data types are to be used to ensure fast execution. Some of the data

structures as presented in L6hner [46] and Morgan [29] were implemented. The primary

data structures involved include

1. Boundary Information: The constrained Delaunay triangulation involves a

prescribed set of boundary edges. The information regarding a boundary edge

is stored in a data structure termed a front segment which is to be distinguished

from the front in regards to the Advancing Front Method for mesh generation e.g

[25]. A front segment contains the information regarding the vertex identification

indices (VID) of the boundary edge vertices, the attached element and any other

marker information regarding the edge.

2. Element Adjacency: Element adjacency or neighbor information is also stored

and explicitly updated. This involves increased memory usage but greatly reduces

computation time. For a given front segment attached to an element, the element

adjacency is modified to take this into account.

3. Dynamic Heaps: Several point creation algorithms used to determine the coor-

dinate of the next generated point make use of some geometric property (such as

the circumcircle radius or element area) of the current elements to generate the

point. This usually involves some sort of sorting of the elements to find the seed

element from which the point is to be generated. The Heap Sort algorithm [11, 50]

was chosen due to the Q(log N) efficiency for insertion and deletion operations.



2.3.3 Geometric Searching

The problem of determining the members of a set of n points or elements in Rd which lie

inside a prescribed subregion or satisfy some proximity criteria is known as geometric

searching. Several algorithms involving O(log N) operations have been put forward

[24, 23, 33] to solve this problem and other equivalent problems. The selected algorithm

is the Alternating Digital Tree (ADT) algorithm which is an extension of the binary

tree search methods. It provides for a fast and efficient method to perform geometric

searches as presented in [22]. Examples of the use of ADT include point, edge and face

proximity searches and root element location as in the case of the Green-Sibson point

insertion algorithm.

2.4 Mesh Generation Process

Before the actual mesh generation can proceed, a preprocessing stage is necessary.

Hence, the mesh generation process is divided into two phases with the preprocessor

phase separate and taking place independent of the actual mesh generation.

2.4.1 Preprocessing

The mesh generation procedure begins with a geometric description of the computational

domain f2 based on CAD/CAGD geometric models. The bounding curves and surfaces

of the domain are modeled by creating a geometric description based on Ferguson cubic

splines and bicubic patches [18]. The curve segments are discretized based on the mesh

spacing specified by the background mesh from which the surfaces are created. The

point creation schemes which are to be considered require an initial triangulation of the



computational domain. This is performed as described in [55].

2.4.2 Interior Point Creation

The mesh generation aspect involves the actual determination and creation of mesh ver-

tex coordinates. This is a sequential procedure for the generation of new points in the

domain based on some geometric property of the current triangulation and subsequent

insertion based on the constraint imposed by the physical boundary edges. Several

schemes have been put forward and are currently implemented in the literature. These

include such algorithms as the Advancing Front Algorithm [25] and Circumcenter Al-

gorithm [41]. In this work, three different algorithms have been implemented and these

are outlined briefly below.

Rebay

This algorithm as proposed by Rebay [53] is a variant of the Advancing Front algorithm

which combines aspects of the Advancing Front algorithm with those of the Bowyer

point insertion algorithm. The algorithm considers the division of the created elements

into two groups which are tagged accepted and unaccepted. The accepted elements

consist of those whose circumradii is less than a factor multiple (Rebay Factor Rf) of

the desired element size defined as the mesh spacing at the circumcenter of the element.

The algorithm proceeds by considering the maximal non-accepted element, defined as

the element with the largest circumradius, which is adjacent to an accepted element as

shown in figure 2.5.

The Voronoi segment which joins the circumcenters of the two elements is perpen-

dicular to the common face between the two elements. The new point X is then inserted



on the Voronoi segment in the interval between the midpoint M of the common face

and the circumcenter C of the non-accepted element. In the 2D context, let p be half

the length of the common edge PQ and q be the length of CM. Given the desired

circumcircle radius fM and defining

R = min max(fM, p), 2- (2.5)

Rebay's algorithm inserts the new point X on the interval between M and C at a distance

of

d = R + (R2 - p2) (2.6)

It is proven by Baker [54] that in 2D, the elements in the interior tend to equilateral

triangles with possible distortions on the boundary.

C S

/* - Unaccepted
Element

P 4

Accepted
Element

Figure 2.5: Rebay Point Insertion Algorithm

Circumcenter Algorithm

This is a relatively fast and inexpensive algorithm which has been reported by Chew [42]

and Ruppert [26]. The algorithm considers the maximal element defined as above and



generates the new point X at the circumcenter of the element. Chew proved that the

elements generated by this algorithm have a minimum bound of 300 except for boundary

effects.

Centroid Algorithm

This is another relatively fast and inexpensive algorithm reported by Weatherhill [41]

which also considers the maximal element defined as above and generates the new point

at the centroid of the element.

All the above considered point generation algorithms allow for a constrained trian-

gulation with respect to the domain boundary edges. A common feature between them

is that they consider the maximal element. This implies that the elements need to be

sorted. This is the reason why a heap sort algorithm was implemented with supporting

dynamic heap data structure. The mesh generation process simply consists of point

creation and insertion until there are no more elements in the dynamic heap to con-

sider. The facilitation of the entire mesh generation process may be done by having

each point creation algorithm define a specified set of functions which will be invoked

during execution such that any of the given algorithms may be chosen at will. This is

implemented by currently defining a data structure of functions as in Appendix A. This

function set is sufficient within the serial mesh generation context to provide enough

functionality for any of the point creation algorithms.

Mesh generation systems for unstructured grid must be able to deal with the above

mentioned issues. One issue which has not been mentioned is support for meshes gen-

erated on non-manifold models. In a non-manifold representation, the surface area

around a given point on a surface might not be flat in the sense that the neighborhood



of the point need not be a simple two dimensional disk. An example of such a mesh is

shown in figure 2.6.

Figure 2.6: Non-manifold mesh example



Chapter 3

Anisotropic Grid Generation Extension

This chapter discusses the extension of the presented isotropic mesh generation al-

gorithms to anisotropic meshes. Such meshes are required for many applications such

as the computation of viscous flows which exhibit anisotropic gradients. The quality

of the mesh in the regions of sharp gradients has to be such that the solution features

are resolved. This may be done by increased refinement in the desired regions in an

isotropic manner but this leads to a large number of elements. An alternative is to

consider stretched triangulations in these regions as shown in figure 3.1 used for viscous

flow calculation about a flat plate.

Figure 3.1: Viscous Flat Plate Mesh



3.1 Anisotropic Refinement

Anisotropic grids are produced by refining an existing initially isotropic grid [55]. This

is based on the Steiner triangulation which is defined as any triangulation that adds

additional points to an existing triangulation to improve some measure of grid quality.

The stretching or refinement criteria is based on the minimum Euclidean distance S

from the interior vertices of the elements to the boundary segments which have been

marked for refinement as depicted in figure 3.2.
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Figure 3.2: Anisotropic Refinement Parameters

For each boundary curve which has been marked for refinement, two parameters

o0 and r9 which represent the minimum spacing and the geometric growth ratio are

specified. A dynamic heap structure is maintained which sorts the "active" elements

according to the minimum Euclidean distance of their vertices. An active element is
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defined as one which has at least one vertex from which a new point can be generated.

For each vertex in the triangulation, a unit vector - from the closest point on the

closest boundary segment to the vertex is computed. The element measure chosen

which determines if an element is active or not is based on the maximum dimension of

the element projected along the vector s at the vertices of the element. For each vertex

on an element, consider the element edges attached to that vertex. If the projection

of any of the edge vectors along the unit vector ' associated with that vertex is larger

than the specified spacing at the vertex, then the element is classified as active.

The candidate Steiner points associated with an active element are obtained at the

vertices which correspond to the maximum and minimum Euclidean distances Smax and

Smi, for the element. At the maximal vertex, a new point Xma, is inserted at a distance

dma,, along the unit normal Sa,, associated with the vertex and away from the closest

boundary segment point. At the minimal vertex, a new point Xmin is inserted at a

distance dmi, along the unit normal smin associated with the vertex and towards from

the closest boundary segment point. This is as depicted in figure 3.3. The generation

distances are chosen such that positions of the new points coincide with the points at

which a point would have been created based on the geometric growth associated with

the boundary segment such that the new points are created in uniform layers over the

boundary segment. The procedure follows the following form

1. Given the current active element, the distances Smin and Sm,, for the element

and 60 and rg for the closest boundary segment are obtained.

2. Generate distances based on the geometric growth sequence

gn = gn- 1 + 6org"'- (3.1)



until

fl-I
n - Smin > Gfborg ' - 1 (3.2)

where Gf represents a growth limiter factor usually taken to be 0.5.

3. Generate set of N distances di based on geometric growth starting from gf until

the condition below is satisfied.

Smax - di < Gfborgi +f - 1  (3.3)

The distances dma, and dmin are computed from these N generated distances using

dmin = di

dmax

d

fi

g
Smin

= Smax - Smin - dN

(3.4)

(3.5)
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Figure 3.3: Anisotropic Point Creation

The candidate Steiner points are inserted into the triangulation only if there exists

J



no other point in the triangulation which lies at a distance closer than the generation

distance (dmax or dmin) associated with that point. The proximity query is performed

by making use of the ADT structure of the current element set. The refinement is

guaranteed to converge since a point is reached for all the elements such that either

every element is refined or the geometric growth thickness at any point is greater than

the mesh spacing at that point. Figures 3.4 and 3.5 show a mesh generated about a

5 element Boeing 737 airfoil by this strategy in which the minimum wall spacing was

specified at 0.001% of the chord length.

3.2 Wake Path Generation

In viscous flow computations about airfoils, the wake path which is created by the airfoil

is a region of interest. To properly resolve this region, the above technique may also be

applied to create a stretched triangulation of the wake path.

To perform this, an initial guess must be made for the shape of the path. It should

be noted that the procedure described here takes place in the preprocessing stage of the

mesh generation. The wake path is initially modeled by making use of Ferguson cubic

splines and discretized based on the background mesh. The discrete points on the wake

path are inserted into the boundary triangulation. After insertion, the wake segments

are treated as physical boundaries for subsequent constrained triangulation. After the

isotropic mesh is generated, the Steiner triangulation proceeds as described above.

Figures 3.6 and 3.7 show the effect of wake path generation. The figures show

a generated mesh about a NACA-0012 airfoil with both wake path generation and

boundary refinement.



Figure 3.4: Viscous Mesh Generation on 737 Airfoil

Figure 3.5: Trailing Edge Closeup of 737 Airfoil



Figure 3.6: Wake Path Generation on NACA-0012 Airfoil

Figure 3.7: Trailing Edge Closeup of NACA-0012 Airfoil



Chapter 4

Parallel Systems and Model Overview

4.1 Parallel Systems

The last few years have witnessed a marked shift in the scale and complexity of problems

which have been simulated numerically. This is due in part to the increased technology

which has enabled significant advances in both computer software and hardware. How-

ever, despite these improvements, numerous problems exist today which cannot still be

solved with conventional uniprocessor computers. This is where supercomputers and

parallel machines come into play and provide a chance at actually solving some of these

problems.

The architectural classification of modern parallel systems falls into two major classes

based on instruction execution and data stream handling.

4.1.1 SIMD architecture

The SIMD acronym stands for Single Instruction, Multiple Data and describes systems

which are composed of a large number of (simple) processing units, ranging from 1K up

to 64K, such that all may execute the same instruction on different data in lock step.

Hence, a single instruction manipulates several data items in parallel. Examples of such

systems include the MasPar MP-2 and the CPP DAP Gamma. It should be noted that



the SIMD architecture was once quite successful and is quickly disappearing. This is

due in part to applications relevant to this type of architecture such as image processing,

which is characterized by highly structured data sets and data access patterns.

Another subclass of SIMD systems are Vector processors and these incorporate

special hardware or vector units which perform operations on arrays of similar data in

a pipelined manner. These vector units can deliver results with a rate of one, two - and

in special cases - three per internal clock cycle. Hence, from the programmer's point of

view, vector processors operate on data in an SIMD fashion when executing in vector

mode. Some examples of these systems in use include the Cray Y-MP, C90, J916 and

T90 series and the Convex C-series.

4.1.2 MIMD architecture

The MIMD acronym stands for Multiple Instruction, Multiple Data and describes sys-

tems composed of (relatively) few number of processors executing different instructions

independently, each on an independent localized data set. In general, the incorporated

hardware and software for these systems are highly optimized so that the processors

can cooperate efficiently. Examples of such systems include the Cray T3D and the IBM

SP2. The majority of modern parallel systems fall under this class. The full specifica-

tions and descriptions of current and some past systems may be found in [57]. Parallel

systems, in particular the MIMD based systems, may also be classified based on the

organization of memory.



4.1.3 Shared Memory Systems

Shared memory systems are characterized by all the processors having access to a com-

mon global memory. Hence it is possible to have all the processors operating on the

same common array, though care has to be taken to prevent accidental overwrites. As

discussed in [57], the major architectural problem is that of connection of the proces-

sors to global memory (or memory modules) and to each other. As more processors

are added, the collective bandwidth to the memory should ideally scale linearly with

the number of processors, Np. Unfortunately, full interconnectivity is expensive, requir-

ing O(Np2 ) connections. Hence a number of creative alternative networks have been

developed as shown in figure 4.1.
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Figure 4.1: Possible connectivities for Shared Memory MIMD systems

The crossbar network makes use of exactly N 2 connections and f network makes

use of Np log2 Np connections, while a central bus represents only one connection. Due



to the limited capacity of the interconnection network, share memory parallel computers

are not very scalable to a large number of processors. The 0 network topology is made

use of in such commercial systems as the IBM SP2.

4.1.4 Distributed Memory Systems

Distributed memory MIMD system consist of a processor set {P I i = 1..Np} each with

its own local memory interconnected by a communication network. The combination

of a processor and its local memory is often defined as a processor node such that each

processor node is actually an independent machine. The communication between the

processor nodes may only be performed by message passing over the communication

network. The communication network for distributed memory systems is also of im-

portance. Full interconnectivity is not a feasible option, hence the processor nodes are

arranged in some interconnection topology.

Hypercube Topology

The hypercube

nCUBE series.

d= 1

topology is a popular choice and is incorporated in such systems as the

The hypercube topology as shown in figure 4.2

d=2

d=3 d=4

Figure 4.2: 1D, 2D, 3D and 4D hypercube connectivity

has the nice feature such that for N, = 2d processor nodes, the maximum number



of links between any two nodes (network diameter) is d. Hence, the diameter grows

logarithmically with the number of nodes. Also, several other topologies such as rings,

trees, 2-D and 3-D meshes may be mapped unto the hypercube topology since these are

all subsets of the hypercube topology.

Torus Topology

The torus or mesh topology is implemented on such systems as the Cray T3D and the

3D analog is shown in figure 4.3

Figure 4.3: 3D torus connectivity

The torus topology for a given dimension essentially consists of a periodic processor

array which exhibits "wrapping". The rationale behind this is that most large-scale

physical simulations can be mapped effectively on this topology and that a richer inter-

connection structure hardly pays off.



Multi-Stage Topology

Multi-stage networks such as the ft network shown in figure 4.1 are characterized by

small numbers of processor nodes connected in clusters with each cluster connected

to other clusters at several levels. It is thus possible to connect a large number of

processor nodes through only a few switching stages. Multi-stage networks have the

advantage that the bisection bandwidth can scale linearly with the number of processors

while maintaining a fixed number of communication links per processor. The bisection

bandwidth of a distributed memory system is defined as the bandwidth available on

all communication links that connect one half of the system (- processors) with the

second half.

The major advantage of distributed memory systems over shared memory systems

is that the architecture suffers less from the scalability problem associated with the

connectivity bandwidth. However, the major disadvantage is that the communication

overhead incurred in message passing is significantly higher. Another problem may

occur if the system is not heterogeneous (i.e the individual CPUs are not identical) such

that mismatch in communication and computation speeds may occur.

Due to the clear overall advantages of the distributed memory model and the MIMD

architecture, this was the choice for the programming model for the implementation of

the parallel grid generation system. A general comparison based on performance of

several benchmarking tests on several distributed memory MIMD systems is given by

Bokhari [52].



4.2 Distributed memory programming model

The distributed memory programming or message passing model is characterized by each

processor node having its own local memory. Hence data which resides off-processor can

only be accessed by having the processor on which the data resides send the data across

the network. The implemented programming model is SPMD (Single Program, Multiple

Data) in which one program is executed across all the processors executing on different

parts of the same data set. This implies that the data must be distributed across the

processor set. This partitioning is the basis of the parallel grid definition.

Implementation of message passing systems implies the existence of a communication

library. The basic operation of the communication routines is data passing between ar-

bitrary processor nodes and possibly the ability to check for the existence of messages in

the message buffer. Higher level operations involve global operations such as broadcast-

ing in which one processor node sends the same message to all other nodes, global sum,

global minimum and global maximum of distributed data, and also global synchroniza-

tion between a subset or possibly all of the nodes. In general, most distributed MIMD

systems come with a native communication library usually written in C or FORTRAN

such as on the IBM SP2 (MPL) or the nCUBE (NCUBE). A number of commercial

efforts have been made to develop machine independent communication libraries and

these include PVM [59], MPI [14], PARMACS [45] and CHARM [31].

The program structure is based on a message driven slave/master paradigm which

allows for a highly concurrent implementation of the procedures involved. Other than

the two operations of dynamic load balancing and work allocation, the slave processors

are relatively independent of the master processor. Hence this model does not present

a bottleneck. Based on the design philosophy of portability to distributed memory



MIMD systems, a communications library to provide a common interface for message

passing has been developed for several major systems and is still undergoing additions.

This library contains a base set of standard parallel communications routines which are

outlined in Appendix B. This set of routines provide a minimal base of functions which

enable a standard interface to parallel communication. Due to the peculiar nature of

the distributed system, the parallel send and receive routines are blocking as opposed to

non-blocking. A blocking operation does not return control to the processor until the

message has been fully sent or received. However, options exist for specifying a non-

blocking mode. Currently, this library has been implemented for the nCUBE and IBM

SP2 native communication libraries as well as for the PVM and MPI message passing

libraries.

Routines for operations which need to take place in a global fashion are also provided.

These routines include

* Element location which involves the location of the element and subdomain tuple

which encloses a point or satisfies some sort of geometric criterion.

* Point location which involves the location of the point and subdomain tuple which

satisfies some sort of geometric criterion, possibly with respect to other points.

* Global identifier tag creation for elements and points.



Chapter 5

Parallel Automatic Mesh Generation

5.1 Introduction

This section introduces the parallel implementation of the mesh generation algorithms

described previously. In general, efficient parallel algorithms require a balance of work

between the processors while maintaining interprocessor communication to a minimum.

A major key to determining and distributing the work load is based on the knowledge

of the nature of the type of analysis being performed. Parallel adaptive finite element

analysis [9, 7, 35] is thus significantly affected due to imbalance in the work load after

adaptivity unless load balancing is performed. Parallel mesh generation is much more

difficult to control since the only knowledge available at the beginning of the process is

the initial structure of the geometric model which has little or no relationship to the work

required to generate the mesh. This lack of ability to predict the work load during the

meshing process leads to the selection of the parallel mesh generation implementation.

The parallel mesh generation algorithms are an extension of the serial algorithms

which are executed when operating in parallel mode. The mesh generation process is

based on a cycle of point insertion and load balancing operations. Points are inserted

within each subdomain until a prescribed number of elements have been generated. The

mesh is then balanced to ensure a better distribution of the work load.



5.2 Previous Efforts

The current literature on aspects of mesh generation in parallel is sparse and this in-

dicates that this is a relatively new field which has not been explored. Early attempts

at parallel mesh generation include Weatherhill [39], Lihner et al [47] and Saxena et

al [34]. Weatherhill implemented what is essentially a "stitching" technique whereby

the subdomains are meshed individually on separate processors and cosmetic surgery is

performed on the processor interfaces. Lhner et al [47] parallelized a 2-D advancing

front procedure which starts from a pre-triangulated boundary. The approach is also

similar to Weatherhill [39] in that the domain is partitioned among the processors and

the interior of the subdomains is meshed independently. The inter-subdomain regions

are then meshed using a coloring technique to avoid conflicts. Saxena et al [34] imple-

ment a parallel Recursive Spatial Decomposition (RSD) scheme which discretizes the

computational model into a set of octree cells. Interior and boundary cells are meshed

by either using templates or element extraction (removal) schemes in parallel such that

the octant level meshes require no communication between the octants.

Software systems which include compiler primitives such as on the Thinking Ma-

chines CM2 and runtime systems such as the PARTI primitives [27] were earlier designed

for generating communication primitives for mesh references. Hence opportunities for

parallelization are recognized in the code and automatically created.

Distributed software systems have also been developed which implement the man-

agement of distributed meshes in such operations as load balancing and mesh adaptivity.

These include the Distributed Irregular Mesh Environment (DIME) project by Williams

[51] and the Tiling system by Devine [28]. However to date, a more general attempt at

parallel unstructured mesh generation has been made by Shephard et al [10, 36]. Shep-



hard et al discuss the development of a parallel three-dimensional mesh generator [10]

which is later coupled to an adaptive refinement system and a parallel mesh database

based on the serial SCOREC mesh database into the distributed mesh environment,

Parallel Mesh Database (PMDB) [36]. PMDB hence incorporates mesh generation,

adaptive refinement, element migration and dynamic load-balancing which are four of

the defining characteristics of any fully operational distributed mesh environment. The

parallel mesh generator described by Shephard et al is an octree-based mesh gener-

ator [37, 61, 38] in which a variable level octree is used to bound the computational

domain from which mesh generation takes place. Full data spectrum for all geometric

entities are stored in this implementation and hence may be very expensive in terms of

computational resources.

The development of a functional 2-D parallel unstructured mesh system is now

discussed. The design philosophy of the system is based on

1. Independent interior mesh generation with in-process interprocessor communica-

tion for processor boundary exchange.

2. Portability to distributed memory MIMD parallel system.

3. Scalability to any number of processors. Speedup considerations are however not

as important as ability to generate grids more massive previously attempted.

4. Minimal data structure to enable maximal memory capacity but with ability to

create necessary data as needed.

5. Provision of a dynamic load balancing routine to ensure even distribution of work.

6. Ability to generate massive meshes of order 10 million elements.



5.3 Requirements

5.3.1 Data Structure

The distributed mesh needs to be defined for implementation of parallel mesh gener-

ation. Implicit to this discussion is the assumption that subdomains bear a one-to-one

mapping to processors such that their usage is interchangeable. For the element set

{ i,j {{j = 1..Ne'}, i = 1..Np}} where Nei represents the number of local elements in

subdomain i and Np is the number of subdomains, the mesh is partitioned across pro-

cessors such that each element belongs to a single processor. Interprocessor information

is dealt with by having edges common to two adjacent subdomains shared (duplicated).

This is not considered wasteful since for typical meshes considered, the surface area to

volume ratio are usually quite small. The mesh generation procedures operate on this

model of distributed grid representation.
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Figure 5.1: Interprocessor Front Segment

The concept of edge and point sharing is embodied in the processor front segment



data structure which is defined for each shared interprocessor edge and duplicated on

each sharing subdomain. This is depicted in the 2-D context in figure 5.1. For a given

interprocessor interface shared by two processors as shown in figure 5.1, the associated

processor front segment on each sharing subdomain contains information regarding

1. The remote processor Unique Identifier (UID).

2. The remote identifier of the remote processor front segment.

3. The local vertex identifiers of the local front segment vertices, and the correspond-

ing remote vertex identifiers of the remote front segment vertices.

This is incorporated into a modified front boundary structure described in chapter

2. From the interprocessor front segments, a list of all neighbouring subdomains is

extracted such that local and global subdomain graphs may be created.

5.4 Parallel Grid Generation

5.4.1 Element Migration

Element migration is an essential aspect of parallel grid generation as it is provides the

mechanism for the load balancing and element request procedures to be discussed. Ele-

ment migration consists of the transfer of all information regarding a subset of elements

(fl) between arbitrary processors such that the global mesh properties are still valid.

As depicted in figure 5.2, the element migration philosophy involves the transfer of

boundary, topological and geometric information about the elements to be transferred.

The process of element migration from one processor node to another node is carried



out in three stages. The first stage involves verification that the elements to be migrated

can actually be transferred to the destination processor. This requires that a front lock

must be made on all other processors (excluding the sender and receiver) on all the front

segments which will be affected by the migration. The second stage involves the transfer

of mesh entities between the sender and receiver. The third stage involves the shared

information update of front segments attached to the migrated elements on affected

processors which share these front segments with the receiver. In this last stage, the

receiver processor also issues appropriate messages to unlock the locked front segments

on the remote processors which were originally locked by the sender. The migration

procedure is outlined in Appendix C and explained in detail below.

Figure 5.2: Element Migration Philosophy



1. Lock Verification

This stage is actually a preliminary stage which is carried out independently of the actual

mesh migration. The reason for lock validation is due to the fact that each processor has

a local copy of all front segments shared by other processors. A situation which involves

a simultaneous transfer of adjacent elements in different subdomains cannot guarantee

the proper update of the shared information. Front locks prevent such occurrences and

if the proper locks cannot be made, the element migration routine cannot be invoked.

2. Data Transfer

This stage is involved in the actual transfer of mesh entity information between the

sender and receiver processors. The basic idea behind this is to pack the raw element

data into message packets which can be easily decoded and unpacked on the receiver

end. This involves packing vertex identifiers, neighbor adjacency, vertex coordinate and

front information about the transferred mesh entities.

The first step is to create a hash table to be able to quickly determine if a given

element is in Qm. This will be used in the process of packing the neighbor information.

Next, the vertex ids of the element vertices in f'm which are shared by the receiver

are assigned the remote vertex ids. For a given vertex, this is done by checking the

processor front segments attached to the elements in f' for the remote processor UID.

If the UID matches the receiver UID, the vertices of all the elements to be transferred

which share this vertex are assigned the remote vertex id associated with this vertex.

This is performed by a fast BFS algorithm. In the case of a vertex V as exemplified

in figure 5.3, care must be taken. Assuming elements el and e2 are to be migrated

from subdomains A to C in the given context, vertex V poses a problem since the



proper information regarding the remote vertex id of the vertex can only be obtained

from the processor front segments attached to element e3 . Hence, in the case of any

boundary vertex (where boundary is defined in both the sense of front segments and

elements which currently neighbor fm and are not to be migrated), a quick O(log N)

ADT tree search is performed on the list of processor front segments. This justifies the

maintainance of a list of all the boundary vertices of Qm as well as the assigned vertex

ids as this stage progresses.

Elements To L Domain A
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From A to C Domain B

Domain C

Vertex V

Figure 5.3: Element Migration Example

The element set Om may be fragmented in the sense that there may exist at least

one element of Qm which does not have a neighbor in Om. In order to remedy this

situation, the elements are packed by making use of a hybrid BFS/Greedy algorithm

which picks the first element in Qm which has not been packed as a seed element to

generate a subset of contiguous elements fc m .

The final step is performed to extract and pack the neighbor adjacency information

of the elements in flc m . A quick check of the neighboring elements is performed for all

elements {ei) in Qc m . For any given element in Qm, three cases may arise for any of



the elements {en} adjacent to {ei} which are

1. Neighbor is in receiver domain:

This implies a processor front segment is attached to the element. The element

neighbor is set to the remote front segment id in the receiver domain.

2. Neighbor is neither in sender nor receiver domain:

This also implies a processor front segment is attached to the element. A valid

front segment is created and packed.

3. Neighbor is in sender domain:

Two cases arise here which can be easily determined by means of the afore men-

tioned hash table.

(a) en EC m:

The element neighbor is simply set to en.

(b) en V nm:

A valid front segment is created regarding this newly created interface since

this constitutes a processor boundary after the migration is complete.

The packed data is then sent to the receiver and since no further reference will be made

to the migrated mesh entities, these are immediately deleted by the sender. The sender

then receives the completed front information from the receiver about any newly created

front segment between the sender and the receiver.

The receiver receives, unpacks and decodes the raw data regarding the migrated

mesh elements. The vertex coordinates are first unpacked and in the case of a non-

manifold configuration of the migrated elements, a check must be made to ensure that

the coordinates are not duplicated on the boundary. This is performed by an Q(log



N) ADT tree search on the list of processor front segments. Even though this is the

currently implemented procedure, future optimizations will include a faster and less

expensive operation for determining this condition. Any duplicated point is simply

assigned the vertex id of the matching point while the non-duplicated ones are added

on to the coordinate list. The elements are then unpacked with the vertex ids set to the

proper local ids and then added on to the element list. Finally the front segments are

unpacked with the information contained in them set to the proper local and remote

values. The last decoding to be performed is the adjacency data on the elements.

3. Remote Update

To complete the procedure, an update needs to be made on all subdomains which

contain processor front segments affected by the migration. The necessary information

regarding data such as the local vertex ids, remote processor and remote front segment

ids are packed and sent to the affected processors.

5.4.2 Load Balancing

The dynamically evolving nature of the unstructured mesh during the mesh genera-

tion process creates a load imbalance among the processors such that it is critical to

maintain some level of balance in the work load. This is done by means of partitioning

and dynamic redistribution of the elements. The current methods to achieving this for

unstructured meshes generally fall into three main categories.

(1) Recursive Bisection (RB): This class of techniques involves recursive subdivision

of the mesh into two submeshes. This implies that the number of subdomains must

be an integral power of 2 i.e Np = 2'. Coordinate RB techniques are based on the



bisection of the element set based on some property of the spatial coordinates. To pre-

serve good surface-to-volume ratios (low communication overhead), a cyclic change of

coordinates is usually employed. If the axis of bisection is Cartesian, then this is called

Orthogonal RB [20, 15, 60]. If the axes are chosen to be along the principal axis of

the moment of inertia matrix, then this is called Inertial or Moment RB. Spectral RB

techniques exploits the properties of the Laplacian Matriz L of the mesh connectivity

graph and bisects the mesh according to the eigenvector corresponding to the smallest

non-zero eigenvalue of the Laplacian £ [4]. Cuthill-McKee RB method involves renum-

bering the elements in a subdomain using the Cuthill-McKee bandwidth minimization

algorithm based on the dual of the mesh graph [16] and dividing the elements by choos-

ing the separator at the median of the ordering.

(2) Probabilistic Methods: These techniques are the least popular choice for mesh parti-

tioning. Simulated annealing attempts to achieve optimal load balancing by randomly

assigning elements to domains in order to achieve some local minima [15]. Other ex-

amples include genetic algorithms. These methods are in general very expensive and

require many iterations.

(3) Iterative Local Migration: This class of techniques involves the exchange of ele-

ments based on subdomain adjacency [28] or processor adjacency [17] to improve the

load balance and/or communication overhead. These methods are particularly suited to

dynamically evolving meshes which change incrementally. This allows for incremental

balancing operations which can result in few elements being transferred.

Some disadvantages of the common implementations of the RB techniques are that

the entire mesh resides on a single processor on which the partitioning is done and also,

after the new load allocation is achieved, a global reordering of data is required. Also,

one disadvantage of iterative local migration techniques is that several iterations may be

required to regain global balance and hence elements may reach their final destination



after many local transfers rather than directly. The proposed algorithm for the dynamic

load balancing of the evolving mesh is a geometry-based procedure. This is based on

a modified Coordinate Bisection algorithm. The developed algorithm has the crucial

property that the destination of the elements are predetermined such that migration

iterations are not required. This results in substantial reductions in the time for load

balancing to a given tolerance. The algorithm is also such that the partition separators

for a given load balance at level n are usually reasonably close to those at level (n-1) for

a small evolution of the grid. This results in fewer elements transferred and consequently

reduces the load balance time.
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Figure 5.4: Linear 1D Load Balance System

The partitioning of the domain into subdomain blocks is done using planes per-

pendicular to the cartesian axes. Processor assignment of the elements is based on

the element centroid coordinates. The partition separators are obtained by iteratively

solving a linear system of equations derived from a spring analogy. In the 2D context,

each block is represented as two linear springs in the x and y directions such that in

each direction, the "spring constant" is proportional to the ratio between the number



of elements in the block and block dimension along that direction.

Consider the 1D system depicted in figure 5.4 which shows the computational domain

divided into blocks with respect to one axis. The defining parameters are

1. xi, xi: i th partition coordinate before and after relaxation.

2. n e , n,,ve: number of elements in block i and expected average number of elements

per block.

3. Ki, Ki: i th block stiffness and inter-block stiffness coefficients.

4. NB: Number of blocks.

An analysis of this linear system using propagation along the axis and taking into

consideration the relative motion of the partitions results in the iterative procedure

outlined in Appendix D to determine the partition locations. The procedure is executed

in parallel by the master processor and the slave processors by initially creating the

partition locations based on either an even element distribution assumption or making

use of the previous partition locations on the master processor. The master then goes

into a loop in which iterative sweeps in the X and Y axes are performed. At the

beginning of the loop, the current partition locations are communicated to the slaves

such that for all processor blocks which are represented by these partitions, the number

of local elements within each block is computed by the slaves. This counting operation

is based on the centroid location of each local element. Earlier attempts at making use

of the number of local vertices contained in the blocks was made but experience showed

that cleaner partitions occur based on the centroid. The next step in the loop is the

axis sweep. At this point, it is necessary to define another term called a band which is

simply the space between any two adjacent partitions along a given axis direction. This



may be thought of by dividing the computational domain into blocks by partition planes

in the y-z plane into X bands. Y bands are then created by dividing a given X band

into smaller blocks by partition planes in the x-z plane. Let n,B and nyB represent

the number of bands along the X and Y axes respectively such that Np = n ,BnyB and

let GNe be the global sum of the number of elements across all domains. The required

average number of elements for a band in X (B,[i]) or Y (By[i, j]) is computed from

GN
B, [i] = (5.1)

By[i,j] = (5.2)
T B 

.y

B

Currently in the 2D context, the implementation on the choice of n,B and ny B is

done to ensure that they are as close to each other as possible. This is essentially the

same as making the processor block array as topologically close to a square as possible.

Sweeps are made in the X and then Y directions to determine the new coordinates for

the partitions. For a sweep in X, the band "spring constants" {Ki I i = 1..nxB} are

computed from the number of elements in each X band and the partition spacings in

X. For a given displacement of a band, the number of elements in the adjacent band

changes such that some measure of this needs to be added to the number of elements

in the adjacent band. This is done by making use of inter-band "spring constants"

{K Ii = 1..n,B}. Several options are open as to the computation of these values and

tested forms include

1. Average: Ki = 2

2. Absolute Minimumn Ki = MIN(Ki, Ki- 1 )

3. Absolute Maximum: Ki = MAX(Ki, Ki- 1 )

4. Weighted Minimum: K = K+



K 2 +Ki_j
2

5. Weighted Maximum: Ki = K+K

It was found that in general, the weighted maximum form gave the best results.

Next, testing must be done to determine if a band contains the required average number

of elements. If a band contains the specified number of elements to within a prescribed

tolerance, the band is fixed if and only all bands behind or ahead are already fixed

(exceptions are the end bands). This implies that convergence of the partition locations

occurs from the boundaries into the interior. The positional variation algorithm in

Appendix D is then applied to all non-fixed bands while sweeping along the positive

X axis. For the sweep along the Y axis, only Y bands located in a fixed X band are

actually operated on.

This algorithm thus described provides a relatively fast incremental mechanism

which is fitting to the evolving nature of the parallel mesh generation process. The

fact that the old partition locations are used as the initial conditions helps in the con-

vergence rate of the algorithm. Also, the provision of a prescribed tolerance for the

number of elements within the bands means that full convergence does not necessarily

have to be obtained while in the process of grid generation. This algorithm is in some

respects similar to the "Strip" partitioning algorithm developed by Vidwans et al [58].

A pathological case which is not dealt with easily by this method is a mesh which

contains regions of densely clustered elements. The implicit assumption that the number

of elements varies "relatively" smoothly such that linear springs could be considered

breaks down. In this case, the iterative procedure leads to an oscillatory solution which

may require an unreasonable number of iterations to converge. This was dealt with

by introducing band limiters which limit the minimum and maximum displacements

for a partition. Hence for a sweep, say in X, the band limiters are applied to the first



non-fixed band because this band provides the base for the partition displacements.

Assuming the lower and upper bounds for a given band i are xiL and xi U respectively,

U _ axxi+a2x1. xi _ xi : xi = C1+C2

2. xiL: x i a3i+aX

where al, a2, a3 and a4 are chosen such that a 2 > a, and a4 a 3 to provide weighting

towards the bounds. After each update when the actual number of elements within the

bands has been determined, the lower and upper bounds are set accordingly.

Upon the final determination of the partition locations, the final processor desti-

nation of the each element is assigned after which a migration schedule is set up to

redistribute the elements. The actual simultaneous transfer of elements between the

processors poses a unique problem which is directly related to the shared data formula-

tion as described in the section on element migration. This implies that some ordering

must be set up between the processors in order to maintain mesh consistency. This task

is controlled by the master. The first step is the creation of an element transfer graph

for the slaves such that an (i, j) entry is the number of elements to be transferred be-

tween processors i and j. This determines the possibility of element migration between

any two processors. The slave processors create a list of all processor front segments

attached to the elements to be migrated such that for each affected subdomain, the

corresponding front segment list for that subdomain is communicated to the processor.

For each received front segment id, a check is made on the front segment to test if the

attached element is to be migrated. If the element is to be migrated and the UID of the

remote processor across the front segment is numerically less than the processor UID,

the front segment will be locked which means that it will not be transferred under any

circumstance until a message to unlock the front segment is received. The last stage of



the migration schedule is a message driven loop on both the master and slave processors.

Master Processor Schedule

In addition to the transfer graph matrix, the master processor maintains a matrix of

the state of each processor relative to the others such that an (i, j) entry determines

if elements were actually transferred between processors i and j. The master also

maintains a status list which at any given time determines if the processor is idle and

free for migration or in the process of migration as either a sender or a receiver. The

master processor then enters into a scheduling loop in which the transfer of elements

between the processors is determined. The processors which are ready for migration are

determined and notified with the UID of a processor ready to receive from them. This

is done for a given idle processor i such that for any other idle processor j, the (i,j)

entry of the transfer graph must be non-zero. In this case, if the transfer state between

these two processors is True, then processor j is designated as a receiver for processor

i. If the relative state is False, then the next idle processor with a relative state of True

is selected. Provided that an (i,j) pair is determined, a RECV message is written to

processor j and a SEND message is written to processor i. The status of processor i is

upgraded to a send status while that of processor j is upgraded to a receive status. A

polling for messages from any slave processor is then made such that if a message exists

from a slave, it must be of one of the three following types which are

1. STATE: This means that the relative state of the slave has changed with respect

to another processor. The UID of the other processor is read and the transfer

state matrix is updated.



2. SEND: This is a handshake signal after the node PA has transferred elements to

another processor. The UID of this other processor (PB) is read as well as the

number of elements left to transfer from PA to PB. The transfer status of PA

is reduced to idle and if the relative state between these two processors did not

change based on the number of element left to transfer and the transfer graph

entry, the relative state matrix (PA, PB) entry is set to False else it is set to True.

The transfer graph (PA, PB) entry is then updated.

3. RECV: This is received from any processor PA which has just received elements.

The list of processors affected by the migration is read and each processor is

notified of possible incoming front updates after which the status of processor PA

is reduced to idle.

Slave Processor Schedule

This consists of a polling loop from both the master and other peer processors. A

message from the master may be one of three types which are

1. SEND: The UID of the receiver processor is read and from the given list of elements

to be migrated to the sender, the subset which can actually be transferred is

extracted. This subset is determined by checking if any front segment attached to

any element in the set has been locked. If there exists any processor front segment

which has not been locked, is attached to any of the elements and satisfies the

conditions that

* The remote processor UID is numerically greater than the processor UID.

* The remote element across the front segment is to be transferred.



then the remote front segment id is added to a list which represents a list of remote

front segments to be unlocked. The element subset is transferred and the remote

front segment ids are communicated to the receiver for unlocking.

2. RECV: The UID of the sender processor is read and elements are received. The

list of processors affected by the migration isthen communicated to the master.

The remote front segment ids described above are then received and for each

affected processor, the corresponding subset of front segment ids to be unlocked

is communicated.

3. FRONT: This is a signal from the master that there might be possible incoming

data regarding an update in the front information.

A peer message from any other slave processor can only be of type UNLOCK from

which the list of front segments to be unlocked are read. For each remote processor in

the list of unlocked processor front segments, the relative state between the processor

and the remote processor has changed such that this is communicated to the master.

This essentially means that the processor now has a set of elements which it can migrate

to any of these remote processors.

This concludes the entire load balancing procedure and it is seen that this provides a

relatively simple and quick way of obtaining a partitioning of the computational domain.

It is apparent that the quality of the partitioning may not be as good as perhaps Spectral

RB. However, the motivation in mind was to obtain an algorithm which provides quick

load balancing with scaling.



5.4.3 Element Request

The described point insertion procedures in chapter 2 (Watson and Green-Sibson) need

to be modified to take into account the nature of the parallel mesh generation process.

This involves the inclusion of a procedure to obtain the global element set which will be

affected by the insertion of a newly created point [12, 43]. This is required for completion

of the point insertion algorithms in order to guarantee the mesh is locally Delaunay. The

initiator of the request may be either granted or denied remote elements by any affected

processor based on the existence of an overlap between any remote topological entity in

use and the requested elements. As a means to accomplishing this, the modification of

the base set of functions described in chapter 2 for facilitation of the mesh generation

process is necessary and this is reflected in Appendix A.

Given an initial set of local elements (ji') affected by a newly created point, the first

step in any of the modified point insertion algorithms is the determination of wether

remote elements might be required. This is done by searching for any processor front

segments attached to Rf;. If any of these front segments has been locked by any other

remote processor, the request is automatically denied. A denied request is treated by

reducing the seed element which was popped off the dynamic heap to the base state as

described in chapter 2 and placing the element in a denial queue. If there are no attached

processor front segments, no request can be made and the point insertion continues as

in the serial context. At this stage, the two point insertion algorithms differ in the way

the request is handled and this is described in detail below. As a means of notation, let

P' represent the request processor and {P I i = 1..N,} represent the set of processors

from which the request is made.



Modified Watson Algorithm

The request algorithm for the Watson point insertion method is initiated by compiling

the list of remote processors which are to be contacted {P I i = 1..N} and then

communicating to these processors, the coordinates of the new point. The request

processor then enters a loop waiting for messages from peer processors.

A : Request Processor
B:
C : Affected Processors

D D:

0-4, New
A Point

B C

Figure 5.5: Remote Element Request Configuration Example

On any processor Pi in the request processor set, the coordinates of the newly created

point are read and the request function (ElementRequest) described before is invoked.

The algorithm behind the request function is an ADT tree search on the local element

tree of all elements {t} which satisfy the circumcircle criterion. This is to be preferred

to locating a seed element which satisfies the circumcircle criterion and performing a

BFS search for the affected elements. As depicted in figure 5.5, consider processor B

as a member of {P I i = 1..N,.} such that two elements need to be transferred to

processor A. If either of the two elements is identified as a seed element, a BFS search



will fail to detect the other. Thus, a complete ADT tree search is necessary to deal with

fragmentation.

The next step in the process is to determine if there exists any overlap between

any topological entitiy in use and {t}. If this is the case, then the request processor

(P') is denied. The next step is to request a lock on all processor front segments

attached to {t} excluding the processor front segments which are shared by Pr. This

is as described in the section under element migration. In the case that any of these

front segments have been locked by another processor, the request processor (P') is

automatically denied. If any remote processor could not grant the front locks perhaps

due to the fact that they may have been locked by another processor, then the request

processor (P') must be denied. In this case, all front locks which were actually granted

by other processors must be unlocked by communicating a front unlock message to these

processors as well as the front segments which must have been locked locally.

If all the front locks were granted, {fIt} is migrated to the request processor and the

granted front locks which are characteristically remote front segment id and remote pro-

cessor UID tuples are then transferred to the request processor. The request processor

receives the remote elements and concatenates them to {CQJ} to form a final element set

{ f'}. The boundaries of this transferred element set is checked for attached processor

front segments such that if a processor from which a request has not been made lies

across this front segment, a request is then made. This is depicted in figure 5.5 where

processor B migrates the necessary affected elements but affected remote elements also

exist in subdomain D. The transferred front locks are also received such that after any

remote front update may have been made, the remote front segments associated with

these front locks are then unlocked. The request processor (Pr) continues to poll until

all affected processors have been accounted for.



The final element set {If'} so created may not represent the true set of elements

which are affected by the newly created point. This may happen as depicted in figure

5.6 in which processor A makes a request from processor B for the new point. Due

to the way in which the request is handled in which an ADT tree search is done, this

results in elements B 1 and B 2 migrated. The physical boundary separating element B 1

from subdomain A is part of the constrained triangulation and so this element cannot

be a member of the set of elements affected by the new point. Hence, the proper set of

elements must be recreated using the BFS algorithm described in chapter 2 using the

original seed element. The Watson algorithm simply continues from this point as in the

serial context.

- Physical
Boundary

New
Point

Figure 5.6: Constrained Triangulation Violation

Modified Green-Sibson Algorithm

The request algorithm for the Green-Sibson point insertion method is initiated by com-

piling the list of front segments {Fi'} attached to the initial element set {flR}. These

front segments are stored and a marker index is created for each one to determine if the

front segment is active. An active front segment is defined to be a candidate for forward

propagation as described in chapter 2 under the Green-Sibson point insertion algorithm.



As described before, any existing lock on any of these front segments automatically ter-

minates the request process and the request processor is denied. The front segments are

initially made active after which a loop is entered. The design philosophy behind this

algorithm differs from the Watson request algorithm in the sense that processors are

contacted individually instead of broadcasting to all the affected processors. Due to the

propagative nature of the Green-Sibson algorithm, it is necessary to ensure that a given

request can be satisfied at all. This gives rise to the idea that the affected processors

are contacted individually.

The identification of a candidate processor is made by considering the first active

front segment encountered in {F7}. For the corresponding remote processor across the

front segment, all active front segments which are shared by the same processor are

extracted and made inactive. The coordinates of the newly created point as well as the

remote ids of the extracted front segments are communicated to the remote processor.

The handling of the request from the point of view of the remote processor is similar

to that based on the Watson request algorithm. The point coordinates as well as the

front segment ids (local with respect to the remote processor) are read and if any of

the specified front segments are locked, then the request processor is denied. For each

of these front segments, the set of elements affected by the new point based on forward

propagation from the element to which the front segment is attached is obtained. The

union is made of these sets to obtain the complete list of elements {fIt} affected by the

point. As described in chapter 2, the criterion for determining if an element is affected

by a point does not necessarily have to be based on the circumcircle criterion.

The next step is to determine the topological entity overlap condition as described

before. The handling of the overlap condition differs from the Watson request algorithm

due again to the propagative nature of the Green-Sibson algorithm. As the affected



global element set grows during forward propagation, it is envisioned that when the

overlap condition between the sets {f t} and {fli'} of the affected remote processor is

violated, then some kind of compromise must be reached between the request processor

and the affected remote processor. This compromise is chosen such that if the UID of

the request processor is the numerical minimum of the corresponding UIDs of both pro-

cessors, then the request processor will be granted the request. If the overlap violation

is due to element intersection i.e

{t} n{fli  0 (5.3)

then the remote processor must be denied since it no longer possesses the elements

required to complete the point insertion. Also, if the seed element which generated

{fi'} on the remote processor is a member of {ft}, then this must also be taken into

account because this element would later have to be reduced to base state due to the

denial. Since it no longer exists locally, it cannot be reduced. Front lock requests are

then made from all processors (excluding the request processor) for all front segments

attached to {fOt} as described before. If the locks are granted, the elements are migrated

to the request processor and the front locks are also transferred to the request processor.

If not, the same procedure for this case as described previously is performed.

The loop mentioned with respect to the request processor now consists of message

testing from any peer processor. Requests from other processors are handled such

that if the UID of the remote requesting processor is numerically less than that of the

current request processor, then the request is handled. This strategy however can cause

a deadlock for a unique configuration termed a cyclic ring deadlock (CRD). Consider

figure 5.7 which depicts a request sequence created by a set of processors. Under normal

circumstances, this ring will be broken if the processor with UID 3 receives the request

message from the processor with UID 1 before that with UID 4. In the case where this



is reversed, processor 3 only "sees" the request message from processor 4 such that the

linear chain between processors 1 through 4 will not be broken. This scenario may be

corrected by actually checking for request messages from all processors with UIDs which

are numerically less that the request processor UID.

A - B A requests from B

1 2 3 4

Figure 5.7: Cyclic Ring Deadlock

The request processor receives the remote elements and concatenates them to {f i}

to form a final element set {ff'}. The boundaries of this transferred element set is

checked for attached processor front segments such that if the remote processor across

the segment is not the processor from which the elements were just received then these

front segments are added to the set {Fi'} and tagged active. In the case of a local

configuration as depicted in figure 5.8, the remote processor transfers the requested

elements. However element E in the subdomain associated with the request processor

is adjacent to the one of these elements and is not in the element set {fr}. Assuming

that this element actually satisfies the criteria for inclusion in {ff'} due to forward

propagation, this implies that forward propagation must be applied to this element

to obtain any elements which need to be included in {f'}. All possibly attached

processor fronts are extracted and included in {Fi'} and tagged active. The polling

loop is terminated when either all the members of {Fi'} are inactive or the request was



denied. The Green-Sibson algorithm simply continues from this point as in the serial

context.

F Request Processor

SRemote Processor

New
Point

Figure 5.8: Green-Sibson Element Configuration Exception

5.4.4 Procedure

The mesh generation procedure in the parallel mode is initialized in as in the serial

mode. The preprocessing stage begins with a CAD/CAGD description of boundary

from which the boundary is discretized according to the background mesh and trian-

gulated as described in chapter 2. This initial triangulation needs to be partitioned

and two approaches have been tested. In the first one, the initial boundary triangula-

tion is partitioned using the Greedy algorithm [6, 5]. This is preferred to coordinate

bisection methods or the load balancing algorithm described for the initial boundary

triangulation. The second approach is to have the entire initial boundary mesh reside

on one processor such that after several points have been inserted, a load balancing is

performed to distribute the mesh across all the processors. It was found that due to

the fact that the initial elements are rather slender such that the insertion of a new



point affects a large number of elements, many requests and denials take place initially

for the first approach. Hence the second approach is preferable. Figure 5.9 depicts the

operation for the slave processors in which the slaves are allocated work by the master

in element blocks. The slave operation then goes into a point insertion mode where new

points and elements are created until a specified number of elements have been created

for the given cycle. The currently implemented form for the total number of elements

after a given cycle n is empirically given by a power law

GNe(n + 1) = CoNp[C 1 ]n + GNe(n) (5.4)

When the given number of elements has been created, load balancing is performed. Let

the total number of processor fronts be represented by GNpf. The implemented element

tolerance within each domain is given empirically by

AEtol = 2 GN (5.5)

The cycle is repeated as in figure 5.9 until the entire mesh is complete.



Figure 5.9: Slave Processor Operation
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Chapter 6

Grid Generation Results

This chapter is devoted to an analysis of the different phases of the parallel mesh gener-

ation. The presentation of the mesh generation results will be based on mesh migration,

load balancing and mesh generation timings. Mesh statistics such as grid quality are

not discussed as these have been discussed extensively in the literature [42, 53, 41, 55].

The current platform used for parallel computation is the IBM SP2 situated in M.I.T

which consists of 12 processor nodes with approximately 96 Mb of core memory each.

6.1 Mesh Migration Results

The performance of the mesh migration algorithm was tested by considering the through-

put i.e number of elements transferred as a function of CPU time. This was done with

two processors by initially creating the mesh on one processor completely. Several ran-

domly chosen elements are then migrated to the second processor to give an approximate

simulation of actual conditions during mesh generation. The remaining elements on the

first processor are then migrated completely to the second processor and the CPU time

required for this second migration is obtained. Table 6.1 gives a tabular representation

of the results. The test was run three times to take into account network fluctuations

and user contention. Both average and rms deviations based on three separate runs

are shown in table 6.1. Comparison is also made for both the MPI and PVM message



passing libraries. Based on the raw data, the expected trend of an approximate linear

variation is seen and this is better represented in figure 6.1. An interesting feature of
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Figure 6.1: Mesh Migration Throughput

figure 6.1 is the unexpected dips which occur in the transfer times. This would normally

not be expected but based on the analysis of Bokhari [52] for the IBM SP2, the time

taken for a data packet to be sent over the network is sensitive to the size of the data

packet. This would explain the inflections in the plot. For this same test, Shephard et

al [36] obtain an average throughput of about 640 elements per second. This is to be

compared with the current figures which average around 5000 elements per second.
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Elements Total CPU Time (secs) Total CPU Time (secs)

MPI PVM

0.07172 ± 0.00007

0.15401 ± 0.00016

0.41141 ± 0.00110

0.74668 ± 0.00084

1.61619 ± 0.00127

2.14673 ± 0.00046

2.16303 ± 0.00909

3.36195 ± 0.00114

6.49787 ± 0.00369

5.01537 ± 0.21958

7.36107 ± 0.05521

8.70766 ± 0.16631

12.25635 + 0.05215

17.37797 ± 0.00624

15.77546 ± 0.00322

0.08683 + 0.00373

0.16265 + 0.00012

0.42495 ± 0.00536

0.76976 + 0.00106

1.65675 ± 0.00131

2.19074 ± 0.00177

2.22293 ± 0.00172

3.45860 ± 0.00598

6.64235 ± 0.00369

4.73825 ± 0.00063

7.28208 ± 0.00286

8.28938 ± 0.00268

11.94889 ± 0.00746

16.08902 ± 0.60615

13.86933 ± 0.00361

Table 6.1: Mesh Migration Throughput
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6.2 Load Balancing Results

Benchmarking of the load balancing algorithm is done by generating a mesh on

one processor, random assignment and migration of elements to subdomains followed

by load balancing. It should be noted that random distribution represents the worst-

case scenario for the load balancing algorithm since this affects the time required for

the migration of the elements to the destination processors. Figure 6.2a shows the

CPU time required to balance 50000 randomly distributed elements as a function of

the number of processors and figure 6.2b shows the CPU time required to balance

randomly distributed elements on 8 processors as a function of the number of elements.

The total CPU times depicted have been decomposed into processor assignment times

and element migration times. Figure 6.2a shows the expected trend of a decrease in

the load balancing time with the number of processors and indicates scalability. The

magnitude of the slope could perhaps be explained by noting that as the number of

processors increase, the total communication length also increases. Hence, even though

the average number of elements per processor decreases, this is offset by the increased

communication. The load balancing algorithm however appears to be slightly sensitive

to the subdomain partitioning as indicated by the 5 processor (1 x 5) and 10 processor

(2 x 5) data points of figure 6.2a. The low times required for the two processor case

may be explained by noting that the migration algorithm simplifies considerably when

only two processors are involved.
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6.3 Mesh Generation Results

The above described algorithms are incorporated into a parallel mesh generation

code and the performance obtained for a typical case is depicted in figure 6.3(a-d). This

example uses the Green/Sibson point insertion and the Rebay point creation algorithms.

Figures 6.3a and 6.3c show the mesh generation timings based on average and maximum

processor CPU times respectively as a function of the number of processors for 1 million

elements without a final fine-resolution load balance. Figures 6.3b and 6.3d show the

mesh generation timings based on average and maximum CPU times respectively for 1

million elements with a final fine-resolution load balance. The total CPU times have

been decomposed into meshing, load balance, element request and polling times. The

latter makes reference to the time the processor is idle waiting for messages. All figures

show the expected trend for the total generation times and show linear scaling for the

actual time spent in mesh generation. As seen from the figures, the time for actual

mesh generation decreases with the number of processors but the load balancing time

increases with the number of processors. Hence some optimal processor size (element

granularity) exists which minimizes the total mesh generation time for a fixed number

of elements.

Figures 6.4(a-d) show a 4 processor example of load balancing during the process

of mesh generation. Figures 6.4a and 6.4b depict an intermediate stage in the mesh

generation about a NACA-0012 airfoil before and after load balancing respectively.

Figures 6.4c and 6.4d show the final grid before and after load balancing respectively.
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Chapter 7

CFD Application

7.1 Preamble

The recent rapid developments of solution algorithms in the field of computational fluid

mechanics means that it is now possible to attempt the numerical solution of a wide

range of practical problems such that coupled with the power of parallel computers

should allow for simulations on scales previously impossible.

The numerical solution of the Navier-Stokes equations should provide an accurate

prediction of the location and strength of shock waves as well as provide an accurate rep-

resentation of the physical flow conditions. The current implemented solution method

makes use of the finite volume formulation of Jameson et al [3] that uses a Runge-Kutta

multistep time marching scheme which has been shown to be second order accurate in

space and fourth order accurate in time for RK4. The efficiency of the method is en-

hanced by artificial damping/dissipation to provide stability and resolution in shock

regions. One major problem in solving flow problems over complex geometries is the

generation of smoothly varying meshes about body configurations to enable flow variable

computations with sufficient accuracy. The current implementation used to solve this is

the use of unstructured grids which allow great flexibility in fitting complex geometries.



7.2 Governing Equations

The flow variables to be determined are the pressure, density, Cartesian velocity com-

ponents, total energy and total enthalpy denoted by p, p, u, v, E and H, respectively.

The conservative form of the compressible Navier-Stokes equations is given by

au aG 0
t +  +  = 0 (7.1)

dt Be: By

F

Finviscid

Ginviscid

f viscous

- inviscid + Fviscous

= inviscid + Gviscous

= [p, pu, pv, pE]

= PU PU2 + p, pu, puH

= PuI PUVI Pu2 + p, pvH T

('

viscous

\-- UTy

0

- TX!,

- vr'y + qx

0

- Tyx

-YY

- v7,yy + qy,

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

Based on the assumption of a Newtonian fluid coupled with the Stokes assumption

2 l u v\
S312 - ) (7.9)

3 O aBy

Try = a + 8 (7.10)

2 2 Ov Ou\
2yy 3 P(2 y '(7.11)

y. = T, (7.12)



The heat fluxes q~ and qy are expressed as

where

1. u : Reference viscosity.

2. C, : Specific heat at constant pressure.

3. C, : Specific heat at constant volume.

4. Pr : Prandtl number.

5. T : Temperature.

6. 7 : Ratio of Cp to C,.

Closure to the above system of equations is provided by the perfect gas relations

E
(7- 1)p

1
2

+ v 2) (7.17)

H = E + '- (7.18)
P

7.3 Non-Dimensionalization

Non- dimensionalization of the Navier-Stokes equations [8] is done with respect to

1. LR : Reference length.

OT
qx = -K O

idz

qy = -KO

cy
K = p C P

Pr

(7.13)

(7.14)

(7.15)

(7.16)
(7 - 1)pC,



2. UR : Reference velocity.

3. PR : Reference density.

4. 'R : Reference viscosity.

such that

Z* (7.19)
LR

* (7.20)
UR
tUR

t* = (7.21)
LR

p* (7.22)
PRU 2 R

T* = TC (7.23)U2R

P* = (7.24)
LR

7* = (7.25)
PRU 2 R

q = qR -(7.26)
pRU2R

p* P (7.27)
PR

The Navier-Stokes equations retain the same form with the introduction of the

following auxilary equations

*xx 1 [22 au* 49v*

, * = u* + * (7.29)

rx -Re \Oy* z* y*

r = 1 2 (2 O (7.30)

7y.* = * (7.31)

** =T*
qx I r 0* (7.32)

PrRe Ox*

y -PrRe Oy* (7.33)
PrRe y*



T* = - p (7.34)

pULRe pUL (7.35)

7.4 Spatial Discretization

The unstructured grid for the domain discretization is based on the distributed mesh

which has been constructed in parallel as described in chapter 5. Consideration of a

finite volume formulation of the Navier-Stokes equations results in

tU (F G\

k d I+ + d = 0 (7.36)

By considering the semi-discrete form of the above equation and applying Gauss's di-

vergence law to the second integral

/dU d=
jdUd +f (Fn, + Gn)dI' 0 (7.37)

n dt an

7.4.1 Interior Nodes

Considering the control volume flo in figure 7.1 at the cell vertex 0 comprised of all the

triangles sharing vertex 0, application of the mean value theorem results in

dU
odt + F [(P + ~nG,) 1 = 0 (7.38)

F3  = -(F + FI+1 ) (7.39)
2
1

G = (GI + GI+1 ) (7.40)

* [n j , nyj]T : Unit normal to edge j

* P : Length of edge j



* F, G : Average fluxes over edge j

I+1

O j-1

I-1

Figure 7.1: Interior Node Control Volume

Grouping terms on the RHS gives

dto + + n-13) + G ± n 3l)] = 0 (7.41)

Hence weights may be defined for an edge i to be

wi 1 (nj-j- + n li) (7.42)

WY =__ n 1j-l + nyjl) (7.43)

The weight vector (wi, wyi) is normal to the line segment (I-1,I+1) with a modulus

proportional to the length of (I-1,I+1) as depicted in figure 7.2. The final form of the

discretization is thus

odU + (w,'Fi + CGI) 0 (7.44)

where the sum is taken over all the edges which share node O. It may be verified that

for an interior node O connected to node I along edge i,

Wi = 0 (7.45)
i



(Wx ,Wy )

I-1

Figure 7.2: Edge Weight Vector

yi= 0 (7.46)

(w , ,y')o = -(W, y')Io (7.47)

The scheme may thus be written as

dU
no- d + [wx (F + Fo) + w (GI + Go) = 0 (7.48)

where the term in brackets represents the flux contribution from node I to equation

O. Due to the antisymmetry condition above, the flux contribution from node O to

equation I along edge i will be

- [wi (FI + Fo) + w, (GI + Go)]

Hence flux contributions may be computed by looping over the edges of the grid, com-

puting the edge flux and sending the flux to node 0 and the negative of the flux to

node I.



O

Figure 7.3: Boundary Point Control Volume

7.4.2 Boundary Nodes

The current definition for the control volume does not apply to boundary points since

the volume is not closed. To obtain closure, we consider the boundary edges as part

of the control volume boundary as depicted in figure 7.3. Considering the new control

volume Qo comprised of edges {O, I, I+1, ..., J, O}

dU + zit (F + Fi+) + I i' (GI + GI,+1)]no + (F Go2w ]

+ (F + Fo)nxl + (G +Go) nyl
2 2 - 0Jo

+ (Fo + F)nl + (G (Go + GI) lo =0

To compute the contribution from node I to node O, we write

-1F (nil i + n. ' i ' ) + GI (nI i +nyili

F [(nili + ni'l) + nil ] + GI l  i + n i ' l i ' ) + ln i l

By defining w,i and wu, for boundary edges as

w; = 1nili + -na,i i
4 2



w i = nili + ny i'li

the scheme may be written as

dU
o dt + (w,'Fi + w7Gr)

1 1
+ nili (F + 2Fo) + 4nyili(G 1 + 2Go)

1 1
+ -n,/"P (Fj + 2Fo) + n,/P (Gj + 2Go) = 04 4

By defining new weights for boundary edges only

-i 1
S n 1, (7.49)

x 1
z-z= -4 tit (7.50)

the scheme may now be written for boundary nodes as

o + (wiF + wiGI) + [ (F + 2Fo) + (Gi+ 2Go) = 0
i i

It may be shown that for a boundary node 0

0w' + 3 fv-w = 0 (7.51)

w!±i + 35 zi = 0 (7.52)

S) = -(,, )Jo (7.53)

Hence the scheme may be rewritten as

dU
o- + [w' (FI + Fo) + (GI + Go)] + [i (FI+ Fo) + -(G, + 5Go) =0

i i

This consists of the sum of a symmetric and an antisymmetric part. Hence the flux

update for the nodes on a boundary edge involves sending the positive and negative

antisymmetric flux to the two nodes on the edge plus the addition of the symmetric

flux to both nodes. The derivative terms are computed simply by the use of the edge



weights. To compute ( for example,

Jn OU = JonU d S

OU = Un,,dS

Oxf UndS

aU 1 iOU UndS

This simply reduces to a summation over the interior and boundary edges which share

the given point and computing flux values for the gradients based on the weights.

7.5 Artificial Dissipation

Most discrete approximations to the Navier-Stokes equations require some form of in-

corporated artificial dissipation to overcome two major problems.

1. Dissipation of high wave number oscillations which lead to numerical instability.

2. Shock capturing where it is needed to suppress/limit overshoot.

In order to accomplish this, the fluxes are modified to include second and fourth order

dissipative terms of the form

dU
±odt + Flux = Do (7.54)

Do [V2 S(UI - Uo) - V4(UI - 3U + - Uo,)] (7.55)

where 0' and I' are extrapolated points on edge O-I and v 2 and v4 are the second

and fourth order artificial viscosity coefficients. Let a' be the local coordinate vector

from node 0 to node I. Then the following relationships hold

P = Uo + 2 (V U. (7.56)

Uo = U - 2 (vi0o.) (7.57)



The variable Sp is an edge based pressure switch which is computed as the maximum of

the pressure switches computed at nodes 0 and I. The functional form for Sp is given

by

Sp I PI- 2Po + Po, (758)
(1- ) ( PI - Po I + JPo - PoI) + E(PI + 2Po + Po,)

This was the most successful form for the pressure switch as it properly accounted

for strong shocks. This construction of the pressure switch ensures that 0 < Sp _ 1,

with Sp r 1 in the vicinity of discontinuities and Sp r 0 in smooth regions of the flow.

A better estimate of the (-) term may be obtained by replacing it with the maximum

eigenvalue of the Roe matrix [44] such that

no [( ul + cl ]e (7.59)

* un : Evaluated normal velocity to edge

* c: Local sound speed

* 1: Length of edge

7.6 Temporal Discretization

The explicit time-marching was implemented by means of a general multistep Runge-

Kutta scheme with frozen smoothing which involves only one evaluation of the artificial

dissipation per iteration used in all the stages of the multistep. This is done for the

sake of computational efficiency. For an N stage scheme

Uo = Un

U" = Un - E Fluso - Do
N -0 .



U" Un - Fluz - Do

Uin = nJ, Flu' i- Do)

Un+1 = U

The local timestep Atj employed at each node with control volume area tj is computed

according to an energy stability analysis by [32] and [49] using the relation

Al f'C S (7.60)

where the summation is taken over all edges+ which sh+ DAXre node j and

where the summation is taken over all edges which share node j and

* CFL : Courant number

* Sf : Safety factor - 0.9

* c: Local sound speed

a Ie : Length of edge

* D : Diffusion factor

7.7 Boundary Conditions

For the computations involved, four different types of boundary conditions were specified

as described below.

f 2



7.7.1 Wall Boundary Conditions

Due to viscous interactions on a wall, the no-slip condition must be satisfied such that

u = v = 0. Also, if a thermally insulated wall is assumed, then the condition T = 0

must also be satisfied.

7.7.2 Symmetry Boundary Conditions

On a line of symmetry, the only condition needed to be satisfied is U.9 = 0 where "."

represents the scalar product.

7.7.3 Farfield Boundary Conditions

The farfield boundary conditions are described in [3] and [2], and outlined here briefly.

On these boundaries, one wants to minimize the reflection of outgoing disturbances such

that the use of Riemann Invariants is applicable. The Riemann Invariants are defined

by

2c
rl = J+ = un + (7.61)7-1

2c
r2 = J- = un (7.62)

7-1

r3 = v = Ut (7.63)

r4 = s = In(p) - ln(p) (7.64)

* un : Normal velocity component to boundary tangent.

* ut : Tangential velocity component to boundary normal.

* c : Local sound speed.
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If the flow is subsonic at infinity, there will be three incoming characteristics (rl,

r3, r4)where there is an inflow across the boundary and one outgoing characteristic

(r2) corresponding to the possibility of escaping acoustic waves. Where there is an

outflow, on the other hand, there will be three outgoing characteristics (rl, r3, r4) and

one incoming characteristic (r2). Hence according to the theory of Kreiss [19], three

conditions may therefore be specified at the inflow and one at the outflow, while the

remaining conditions are determined by the solution. If the flow is supersonic at infinity,

all characteristics will be incoming at the inflow and outgoing at the outflow. Hence

four infinity conditions are specified at the inflow and the outflow is left untouched.

7.7.4 Boundary Layer Boundary Conditions

This is a special boundary condition applied to a boundary layer such that the static

pressure was specified as p = poo, while p , u and v were extrapolated from inside the

domain.

7.8 Parallelization

The parallelization of the code is built around the distributed mesh as described in

chapter 5. The implementation is based on the construction of a single layer halo of

elements on the processor boundaries of the subdomains as in [56]. This is depicted in

figure 7.4. The single layer halo is necessary to perform first order reconstruction of

the solution in the vicinity of the processor boundaries. Parallelization is achieved by

considering two aspects of the CFD algorithm outlined above.
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7.8.1 Edge Weight Parallelization

The weights associated with the edges which lie on the processor boundaries need to

be modified due to the fact that update of the flow variables on the vertices shared by

remote processors needs to be done to ensure that the values at these local vertices cor-

respond to the correct values on the corresponding global vertices. The edge weights are

computed as described previously for non-processor boundary edges. For the processor

boundary edges, each processor sharing that edge receives exactly half the associated

edge weight values. Hence, computations involving processor boundary edges are done

properly since each of the two sharing processors across the face will contribute exactly

half the required value for the edge.

7.8.2 Parallel Variable Update

The update of a given variable defined on the vertices of the grid as mentioned above

may be done only if the mapping between a given local boundary vertex and the tuple

consisting of the set of processors and the remote vertex ids which share that boundary

vertex (i.e the set of all remote boundary vertices which have the same global identifier)

is known. Hence, an update of vertex based variables may be done by simply communi-

cating the local contribution to the remote processors sharing the processor boundary

vertices. This shared vertex mapping (F,(vi)) is provided by the parallel unstructured

mesh library on request.

Variable update is done by broadcasting the local contribution of the shared vertices

to the affected remote processors along with the remote vertex ids of these vertices in

the corresponding remote subdomain. Each received contribution is simply added to the

corresponding local vertex value. Variable updates are required for five main procedures
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which are

1. Viscous and inviscid flux updates.

2. Flow variable gradient updates.

3. Artificial dissipation updates.

4. Control volume computation.

5. Local and global timestep updates.

Halo

Processor
Interface

Shared
Vertex

Figure 7.4: Single Layer Halo

7.9 Results

Two examples are included to illustrate the performance of the parallel CFD scheme

described above. Both examples are based on steady state solutions and were selected

to depict the different ranges of fluid dynamics.
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The first example considered is supersonic inviscid flow over a 4% bump with a

free stream Mach number of 1.4 as described by Ni [48]. The simulation was done on

4 processors with a grid consisting of 50000 elements. The Mach number contours are

shown in figure 7.5 and these compare with those reported by Ni. However, the greater

resolution of the grid resolved flow details which Ni missed such as the Mach reflection

of the shock off the top wall as well as the intersection of this reflected shock with the

shock formed at the trailing edge of the bump.

Figure 7.5: Mach Number Contours for Supersonic Bump

The second test case considered is the classic viscous flow over a flat plate for

which analytic results exist. The free stream Mach number selected was 0.1 so that the

flow could be considered to be essentially incompressible. The simulation was done on

2 processors with a grid consisting of 19000 elements. Anisotropic mesh refinement was

employed to resolve the mesh in the regions of the boundary layer. The Mach number

contours are as shown in figure 7.6 and these show Blasius boundary layer profile.

Theoretical values of the displacement thickness 6 and momentum thickness 6* can

be calculated using the Blasius solution for incompressible flow over a flat plate. The
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expressions are

5x

1.72x
* -

(7.65)

(7.66)

For the case considered, Re = 1000 and x = 1.0 at the outflow, we obtain 6 = 0.1581

and * = 0.05439. The numercal results obtained for this case are 6 = 0.1597 and

* = 0.05513. These results are in close agreement to the theoretical values with the

discrepancies attributable to compressibility and streamline thickening effects.

-=-

Figure 7.6: Mach Number Contours for Flat Plate
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Chapter 8

Conclusions

An approach to parallel unstructured 2D mesh generation has been developed for

operation on distributed memory MIMD computers. The developed algorithms include

parallelization of the point insertion schemes with the inclusion of element migration

and dynamic load balancing to ensure even work load distribution. The algorithms

have been implemented on an IBM SP2 system but are easily portable to other plat-

forms supporting standard communication libraries. Scalability of the mesh generation

algorithm has been illustrated based on timings for different processor and mesh sizes.

An algorithm for extension of the isotropic mesh generation to anisotropic mesh re-

finement has been incorporated for analysis involving anisotropic gradients. An explicit

finite volume solver has also developed for parallel solution of the unsteady Navier-Stokes

equations.

The algorithms have been developed for 2D and will be extended to 3D to model

practical applications. Current efforts are now focused on improving several aspects of

the parallel mesh generation system such as inclusion of adaptive refinement capabilities

as well as development of a more sophisticated load balancing strategy. Recommenda-

tions for improvement of the developed flow solver include conversion of the scheme

from explicit to implicit with inclusion of GMRES. Also turbulence modeling needs to

be included to be able to deal with high speed turbulent flows.
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Appendix A

Mesh Generation Function Set

Serial Context

1. InsertPoint: Determines which point insertion algorithm to employ. The current

choices are between Watson and Green-Sibson.

2. InitElement: Initializes a given set of elements by performing any preprocessing

procedures and determines the subset which qualifies to be put on the dynamic

heap.

3. StatElement: Actual function which determines if a given element belongs to

the dynamic heap.

4. CreatePoint: Pops the head of the dynamic heap and creates a new point based

on the geometrical properties of the popped element.

5. CheckBound: Determines boundary/geometric violations of a newly created

point with respect to a set of elements.

6. ReduceElement: Reduces a set of elements to base state by deleting the elements

from the dynamic heap and dereferencing any other associated data.

7. GetElementSet: Obtains the set of elements affected by a newly created point

based on a seed element parameter. This is used in conjunction with the point

insertion algorithms to determine the element set associated with a new point to
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be inserted.

Parallel Extension

8. ElementRequest: Determines the set of elements which need to be migrated to

a requesting processor based on some geometric object communicated from the

request processor.

9. ElementQueue: In the case where the request cannot be completed due to a

denial from a remote processor, the seed element is placed on a denial queue for

later insertion attempts.
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Appendix B

Parallel Communication Function Set

1. ReadFromNode (message, tag, node):

Receive a message with given message tag from specified node.

2. ReadFromAnyNode (message, tag, node):

Receive any message with given message tag from any node.

3. WriteToNode (message, tag, node):

Send a message with given message tag to

4. ReadFromMaster (message, tag):

Receive a message with given message tag

specified node.

from master node.

5. WriteToMaster (message, tag):

Send a message with given message tag to master node.

6. PollFromNode (tag, node):

Test for any message with message

7. PollFromAnyNode (tag):

Test for any message with message

tag from specified node.

tag from any node.

8. MultiCast (message, tag):

Broadcast message with message tag to slave nodes.

9. ParallelSum (variable):

Perform a parallel sum over all slave nodes.
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10. ParallelMin (variable):

Perform a parallel minimum over all slave nodes.

11. ParallelMax (variable):

Perform a parallel maximum over all slave nodes.

12. ParallelSync ():

Perform a synchronization over all slave nodes.
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Appendix C

Element Migration Algorithm

subroutine MigrateElements(m, Pd)

input : 0 m : Element set to be migrated.

Pd : Destination processor

begin
Sender to Receiver

1. Secure lock on processor fronts associated with 2' from affected processors.

2. Set remote vertex ids of boundary points to be transferred and shared by receiver.

3. Pack element entities to be transferred into element, vertex coordinate and front

groups. Front group automatically contains migrated boundary.

4. Delete all references to the migrated entities, send packed submesh and receive

front update information from receiver.

Receiver from Sender

5. Receive and unpack packed submesh. Set proper local vertex ids on points which

may have been duplicated on boundary as in the case of non-manifold mesh.

6. Insert unpacked submesh into local mesh.

7. Update fronts on affected processors and unlock remote locked fronts.

Affected from Receiver

8. Receive front update and unlock information. Update front.



Appendix D

Partition Location Algorithm

subroutine

input :

SolvePartition({xi I i=O..NB}, nave)

{xi}: Initial partition coordinates.

nave : Average block element count

Xo = Xo

begin

For i 1 to (NB-1)

{

eAni-1 = Ki- (xi-, --- 1)ni e  - ne + Anil
e

S= i-1 + n v (xi - i- 1 )
ni

e

end
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