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Abstract

This paper contains a description and detailed computational analysis of a vortex

cleaning system designed to remove radioactive material from the plumes of nuclear rockets.

The proposed system is designed to remove both particulates and radioactive gaseous

material from the plume. A two part computational model is used to examine the system's

ability to remove particulates, and the results indicate that under some conditions, the system

can remove over 99% of the particles in the flow. However, the effectiveness of the system

depends heavily on the size and density of the particles the flow. This paper identifies two

critical parameters which govern the effectiveness of the system and provides the

information necessary to estimate cleaning efficiencies for particles of known sizes and

densities.

A simple steady state analytical solution is also developed to examine the system's

ability to remove gaseous radioactive material. This analysis, while inconclusive, suggests

that the swirl rates necessary to achieve useful efficiencies are too high to be achieved in any

practical manner. Therefore, this system is probably not suitable for use with gaseous

radioactive material.

This paper also concludes that the system can cause negligible specific impulse losses,

though there may be a substantial mass penalty associated with its use.
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Why?

"The known is finite, the unknown infinite; intellectually we stand on an isle in the midst of

an illimitable ocean of inexplicability. Our business in every generation is to reclaim a little

more land, to add something to the extent and solidity of our possessions."

-Thomas Huxley, on the Reception of the Origin of Species (1887)

This thesis is dedicated to the future and to the hope that this research will be a part of it.



Table of Contents

A bstract ........................................................................................................................... 2

Acknowledgements .................................................................................................. 3

Table of Contents .................................................................................................... 5

List of Figures and Tables ................................................... 6

N om enclature ........................................................................................................... 7

1.0 Introduction ....................................................................................................... 9

1.1 General Background .................................................................................. 9

1.2 Description of Proposed Vortex Separation System .................................. 10

1.3 Definition of Parameters ...................................... 12

2.0 Computational Particle Model ...................................................... 14

2.1 O verview ............................................ ..................................................... 14

2.2 Governing Fluid Equations .......................................... ............... 14

2.3 Fluid Boundary Conditions .......................................... ............... 17

2.4 Governing Particle Equations ..................................... ... ............. 23

3.0 Particle Removal Analysis and Results ......................................... ........... 27

3.1 O verview ............................................ ..................................................... 27

3.2.1 Relationship between Efficiency and Skimming Ratio ............. 28

3.2.2 Relationship between Efficiency and ........................................ 29

3.3 Analytical Particle Model and Fundamental Physics ................................ 33

3.3.1 Governing Equations ............................. 33

3.3.2 Discussion ........................................................ 34

3.4 Constant Angle Swirl Results ....................................................................... 38

4.0 Heavy Gas Removal Analysis................................................. 42

4.1 Governing Equations........................................................................... 42

4.2 Steady State Solution to Two-Fluid Equations .................................... . 44

5.0 Limits on System Efficiency .......................................................... 52

6.0 C onclusions ............................................................................................................... 54

7.0 References ................................................... 56

Appendix A: Tabulated Effective Collision Integral for H2 ................. .. . . . . .. .. . . .. . . . . ........ 57

Appendix B: Source Code......................................................................................... 58



List of Figures and Tables

Figure 1.1: Distribution of Fission Products from Uranium Fission Reactions ............ 10

Figure 1.2: Proposed Swirl Based Cleaning System ..................................... 11

Figure 2.1: Computational Grid ........................................................................... 14

Figure 2.2: Mach Number Contour Plot of Solid Body Rotation Plot........................ 22

Figure 2.3: Radial Plot of Pressure vs. Radius for Solid Body Rotation Flow.......... 23

Figure 2.4: Cd vs. Re for a Fully Immersed Sphere ....................................... ..... 26

Figure 3.1: Tangential Velocity Profiles for Swirlers Examined in Study ................. 27

Figure 3.2: 7r' vs. Sr at 10000 rad/second ....................................................................... 28

Figure 3.3: r' vs. Skimming Ratio at 8000 rad/sec ........................................... 29

Figure 3.4: r vs. w and Chamber Length ......................................... ........... 30

Figure 3.5: 1r vs. Dimensionless Frequency................................ ............... 30

Figure 3.6: Simulated Solid Body Rotation Swirl Data................................. 32

Figure 3.7: Analytical Graph of Efficiency vs. 0 and sr ................................... ... 35

Figure 3.8: Force Ratio vs. Tangential Velocity ...................... 36............... 36

Figure 3.9: Particle Tracking Data .............................................................................. 37

Figure 3.10: i"' vs. Sr at 45 degrees turning angle ........................................ ...... 38

Figure 3.11: Efficiency Data for Solid Body Rotation Swirlers ................................ 40

Figure 4.1: Heavy Gas Removal Efficiency vs. Length and Skimming Ratio ........... 48

Figure 4.2: Gas Removal Ratio vs. Length and Skimming Ratio ............................. 49

Table 4.3: Length Ratio vs. Rotation Rate for Gas Removal.............................. 50



Nomenclature

a = Radius of Particulate

c = Local Speed of Sound

d2', d2t = Second Order Damping Coefficient

d44, d4 = Fourth Order Damping Coefficient

lc = Characteristic Length of gas in a Solid Body Rotation Flow

m = Mass of Particulate

ma = Molecular Mass

mab = Reduced Mass

n = Number Density

p = Local Pressure

r = Radial Position

s = Entropy

t = Separation Time

sr = Skimming Ratio

U, u = Magnitude of Fluid Velocity

ur = Flow Radial Velocity

uz = Flow Axial Velocity

us = Fluid Tangential Velocity

vc = Critical Coupling Velocity

z = Axial Position

A = Cross Sectional Area

C = Average Thermal Velocity

Cab = Average Intermolecular Approach Velocity

Cd = Drag Coefficient

Cp = Specific Heat at Constant Pressure

Cv = Specific Heat at Constant Volume

D, E, F = Flux Vectors

Fc = Centrifugal Force on Particulate

FD = Drag Force on Particulate

FDr ,FDz, FDq, = Components of Drag on Particulate

FPr = Radial Pressure Force on Particulate

G = Source Vector

H = Total Enthalpy

Isp = Specific Impulse



J , J. = Riemann Invariants

N = Number of Molecules

P, = Chamber Pressure

R* = Ratio of Chamber Radius to Characteristic Length of Gas

Re = Reynolds's Number

Ro = Radius of Separation Chamber

Rs = Distance from Centerline to Skimmer

T = Temperature

T, = Chamber Temperature

U = Fluid State Vector

V = Fluid Velocity Vector

Q = Vorticity Vector

fz = Axial Component of Vorticity
Q(2,2) = Average Effective Collision Integral

N = Flow Turning Angle

y = Radio of Specific Heats

t = Viscosity

v = Dimensionless Frequency

Vab = Collision Frequency

Tj = Cleaning Efficiency

1' = Radius Based Cleaning Efficiency

'o = Linear Efficiency when sr = 0
0 = Angular Position

p = Density of Fluid

pp = Density of Particle

a = Ratio of Material removed to Hydrogen Removed

o = Fluid Rotation Rate

Dots above variables indicate time derivatives.



1.0 Introduction

1.1 General Background

Nuclear thermal rockets have existed as a concept since the 1950's, and offer a

combination of high thrust and high specific impulse that make them ideal systems for the

transportation of large payloads in a timely manner. In particular, in recent years, the Space

Exploration Initiative has brought a renewed interest in these rockets for use in manned

interplanetary missions. The basic concept behind nuclear thermal propulsion is simple: a

critical mass of Uranium is used to heat hydrogen gas, which is then accelerated out a nozzle

at the rear of the vehicle. The overall performance of the system is largely determined by the

configuration of the Uranium. If the core consists of solid columns of radioactive material,

the system is referred to as a solid core system. If the core is constructed from small spheres

of Uranium with diameters less than 0.5 mm, the system is referred to as a particle bed

system. Both of these systems are expected to have specific impulses in a range from 500 to

1000 sec. A more radical approach proposes the use of gaseous uranium to form a core of

radioactive gas. These gas core systems may have specific impulses over 2000 sec.

Over the past two decades, a great deal of theoretical and experimental work has been

done on these systems and, given the need, solid core rockets could be built and flown within

the decade. However, the presence of radioactive material in these rockets creates very

serious safety and contamination issues if these devices are to be ground tested or used in the

near earth environment. In particular, during the NERVA tests of the 1960's, it was

observed that even solid core rockets can emit highly radioactive hydrogen plumes. These

plumes not only make it difficult and expensive to test these systems, but may contaminate

the area on and around the spacecraft with radioactive material. Unfortunately, there is very

little experimental data available on the composition of these plumes, but judging from what

is available, it seems reasonable to assume that both gaseous and solid radioactive material

will be present in the exhaust plume.' This paper describes a system which would use

artificially induced swirl to remove both types of material from the exhaust plume before it

leaves the rocket nozzle. It outlines the proposed system, describes the analytical and

computational models used to analyze it, and discusses the parameters which govern its

overall effectiveness. This paper includes a detailed description of the system, a list of

significant system parameters, a series of charts showing its theoretical effectiveness, and a

brief discussion of the penalties associated with its use.



1.2 Description of Proposed Vortex Separation System

At the present time, there is very little theoretical or experimental work available on

the composition of nuclear rocket plumes. However, based on the available literature, it

seems reasonable to assume that this material will take on the following forms in solid core

nuclear rockets.

* Gaseous Fission Products, particularly noble gasses like Xenon and Krypton.1

* Solid particulates from condensed metallic fission products.

* Solid particulates resulting from fuel element corrosion (i.e. Carbon or zirconium

carbide).1

In addition, open cycle gas core reactor plumes may contain another major source of

radioactivity in the form of

* Gaseous Uranium fuel which has escaped from the core of the reactor.

In general, it is known that fission reactions produce a variety of products with atomic

masses from 75 to 165 AMU's and scattered in bimodal distribution. The distribution

function is shown in figure 1.1 below.
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Figure 1.1: Distribution of Fission Products from Uranium Fission Reactions 2



While it is probable that some fission products will escape the core and contaminate the

plume, the amount which will escape is unknown. At the present time, only very limited

data is available on the distribution (i.e. type and quantity) of material in nuclear rocket

plumes. Some experimental data is available for gaseous material in solid core plumes, but

none is available on solid particulates and, as of this writing, gas core reactors are still

hypothetical devices. Because of the lack of relevant data, this paper will present models

which are applicable across a wide range of materials, but will not make any general

conclusions about what portion of the total radioactivity that can be removed from the plume.

The basic principle behind swirl based particle separation is a simple one: since the

radioactive material in the plume has a much higher density than hydrogen gas, centrifugal

forces can be used to force it to the outside of the flow where it can be "skimmed" off before

it passes through the nozzle. Such forces can be created by passing the flow through a fixed

vane swirler and creating a vortex in a separation chamber. A diagram of the proposed

system in shown in figure 1.2.

Filter
To Reactor .4-

From Radioactive

Reactor Material

H2 and Radioactive
Material 

H2

z uz  Uo R Rs
r

Fixed Vane Swirler

Figure 1.2: Proposed Swirl Based Cleaning System

Centrifugal separation systems have has been used for decades in chemical processing

and uranium enrichment systems. This particular system, however, is unique because the

flow velocity places severe constraints on the separation time. Under typical conditions, the

hydrogen might leave the combustion chamber at velocities near 1100 m/s (Mz = 0.3).

Therefore, if the separation chamber is a meter in length, the separation time must be on the

order of a millisecond or less if the system is to work effectively.

Once the flow has passed through the separation chamber, its outer portion can

skimmed off and filtered to remove any radioactive material. The non-radioactive portion of

the flow can then be returned to the reactor and reused as a propellant. The result is a

regenerative cleaning scenario which greatly lowers the engine's Isp losses. It should be

noted, however, that the lost mass flow still lowers the thrust of the system. There are



additional performance penalties associated with the mass of the separation chamber, the

filtering system, and their associated cooling systems, but this paper does not examine these

issues. Rather, it deals with the vortex separation process and the ability of this system to

keep radioactive material from escaping out the rocket nozzle. The specifics of the filtering

and cooling process are left for future work.*

While vortex separation could theoretically be used with both solid and gas core

rockets, for this study, it is assumed that the system is coupled to a NERVA class solid core

rocket with a nominal thrust of 300,000 N, a chamber temperature of 2500K, and a chamber

pressure of 29 atm. The system is assumed to be operating in vacuum and to have a throat

radius of 0.119 m and a chamber radius of 0.148 m. The result is an axial velocity of

approximately 1100 m/s (Mz = 0.3) in the separation chamber.

1.3 Definition of Parameters

It is convenient at this point to define several variables which characterize the overall

performance of the system. The effectiveness of a particle removal system can be expressed

in terms of two figures of merit. The overall efficiency of the system, r1, is defined to be

np

N, (1.3-1)

where np is the number of particles removed from the flow and Np is the total number of

particles initially present in the flow. Thus, this parameter represents the fraction of the

radioactive material removed from the flow. It is also possible to define a radius based

efficiency as follows

R o - Rn

Ro (1.3-2)

where Ro is the radius of the cleaning channel and Rn is the initial radius of the inner-most

particle which is skimmed off the flow. All particles which enter the channel with an initial

radius greater than or equal to R1 are skimmed off and all particles with an initial radius less

than R continue out the end of the nozzle. If the particles enter the channel with a uniform

distribution, rl and rl' are related as follows.

* Information on one filtering system designed for use on the ground is available in reference (1), but the

system discussed is not directly applicable to this work.



(1.3-3)

Another useful design parameter is the skimming ratio, sr, which represents the

portion of the total flow radius removed by the particle skimmer. It is defined as

_ Ro - Rs

Ro (1.3-4)

where Ro is the outer radius of the channel and Rs is the radius of the channel after the outer

material has been "skimmed" off (as shown in Figure 1.2). It should be noted that the

skimming ratio is related but not identical to the fraction of the total flow mass removed by

the skimmer.

Finally, because the axial velocity in the separation chamber varies with rotation rate,

it is often useful to express data in terms of separation time rather than directly in terms of

the chamber length. The separation time, t, is obtained by dividing the chamber length by

the mean axial velocity of the flow. It represents the time necessary to obtain a given degree

of particle-flow separation.



2.0 Computational Particle Model

2.1 Overview

As was stated above, it is theoretically possible to use vortex separation to remove

both gaseous and solid radioactive material from the plume before it enters the nozzle. This

paper addresses both these situations, though with different degrees of detail. Solid particle

removal is studied using results from a computational simulation of fluid-particle interactions

in the separation chamber. The gas separation process is examined using a separate

analytical model which is discussed in section four.

In order to model the particle separation process, a two part computational simulation

has been developed to model the motion of particles in a swirling flow. The first part

consists of an invicid flow solver to model the hydrogen in the channel, and the second of a

particle tracking code to track the motion of particles in that flow. The simulation was run

on the 115x30 computational domain shown in figure 2.1 which simulates a constant radius

channel with a choked exit.

0.286

0.214

0. 143

0.071

0.000
0.000 0.120 0.240 0.360 0.480 0.600 0.720 0.840 0.960 1.080 1.200

Figure 2.1: Computational Grid

2.2 Governing Fluid Equations

The computation flow model was based on the governing equations for a steady,

invicid, axisymmetric flow field. These can be written in conservative form as

aU aE aF
+-+-+G = 0

at aZ ar (2.2-1)

Where U, E, F, and G are given by the following expressions:
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P

puz
U = pur

pug (2.2-2)

puz

PUzUr

puzue (2.2-3)

_Tpuz + ypuzV12

PUr

pUzUr
P PU2F= p+pur

PUru9 (2.2-4)

Tpu, +y purlV

PUrpu
r

UzUrP

r

G= .Ppu + pur
r r

2pu,u O  (2.2-5)
r

- pu, + PUrVl2

r

The first entry in each matrix represents the continuity equation, the next three represent

momentum (Euler) equations, and the last the energy equation for a non-conducting ideal

gas. In order to solve the flow field, these equations were transformed from physical

coordinates (x, y) to computational space (4, rl) and solved using MacCormick's predictor-

corrector method. The coordinate transform is carried out using the following procedure. In

steady state, equation (2.2-1) can be written as

aE aF
-+x y= -G
ax ay (2.2-6)



Using the chain rule, the differential terms can be written

aE aE a4 E -a
ax 4 ax al ax

DF _F D4 aF ala _.= +
ay g ay alay

Substituting (2.2-7) into (2.2-6) and rearranging gives

k E +FJ +-L4 -+F -l F = -G
a4 ( x ay) al (ax ayl

In order to implement this equation, it is necessary to calculate the 5 and rl

numerically. Although these values can not be directly calculated, the

X,g,Jand4 can be calculated directly from the grid using finite differences.

values are known, it can be shown that 3

~4_ 1 ay

3x J al1

a4 1 ax

ay J aq

ax J a4
ll_ 1 ax

ay J a4
Where J is the jacobian, i.e.

=x ay By 3x

a4 ll a4 all

(2.2-7)

(2.2-8)

derivatives

values of

Once these

(2.2-9)

(2.2-10)

Eq (2.2-8) was solved using an explicit, time accurate version of MacCormick's finite

difference predictor-corrector scheme. When applied to equation (2.2-8), this method can be

written as the following two step procedure

U( Un  At (E kE At Fn _F)
j.Ak jk A ( jk+l (2.2-11)

Un+ = Un 1 U - At (Ef(' -E 1))] - t- (F) - F I) - AtG1 + D
..k tk k Aj, k  Dk

""~"-E ~k-jk gE; -; )k " "" F! ) -~-l-



Where E' and F' are defined in equation (2.2-8), i.e.

E' = E a4 d +F
ax ay (2.2-12)

F'= E -+F
ax ay

D is a smoothing term consisting of the sum of a second order damping term (D2) and a

fourth order damping term (D4). These terms are given respectively by

D (j.k) =d2 U-,k +2U +Uj+,L +d U,k-1 +2U, + Uj,k+
(2.2-13)

D(j,k) = -d4 j+2,k + Uj-2,k - 4U + Uj-1.k )+6U

-d4 ,k+2 +U-2 -4(U + U ) + 6U
ilji. k -I j,k

It should be noted that these damping terms are implemented in non-con-conservative form and

do not take the grid metrics into account. Therefore, the use of damping leads to small, but

noticeable, errors in mass and momentum conservation.

2.3 Fluid Boundary Conditions

The flow boundary conditions are specified separately along each of four flow

boundaries. The upper and lower boundary conditions are specified by imposing flow

tangency along the upper wall and imposing a no swirl condition at the centerline. The inlet

conditions are specified using a modified Riemann invariant scheme and the outlet

conditions are specified using a simple extrapolation from the interior of the flow. This

section consists of a detailed description of these boundary conditions and the methods used

to implement them.

The boundary conditions at the upper wall are based on the assumption that the flow is

tangent to the wall and that the pressure gradient along the boundary is zero. Because of the

nature of the numerics the actual magnitude of the velocity is relatively unimportant. The

boundary conditions are imposed using a two step scheme which initially sets the axial and

tangential components at the wall equal to the axial and tangential components of the

velocity at the adjacent node, and then adjusts the radial component so that the velocity is

vector is tangent to the wall. The turning angle is determined using the following expression



IV -' " n
~2 - cos- V -'  

(2.3-1)

Where V~' is the z component of the velocity at the node adjacent to the wall. The new wall

velocity vector is then given by

Vi = tan(AO)uz]

u u j (2.3-3)

Where Vj is the velocity vector at the wall node. To maintain zero pressure gradient, the

pressure and density at the wall are set equal to the pressure and density at the cell adjacent

to the wall, i.e.

Pi = P- (2.3-4)
J = pj-i

Tj =

Rpi

These values are then combined with equation (2.2-2) to construct the new state vector.

The centerline boundary condition is based on the assumption that there is no swirl at

the centerline and that core of the flow is in solid body rotation. It is also assumed that the

axial velocity gradient near the centerline is zero. The first two conditions are always true in

the core of a swirling flow and the third condition is a necessary assumption. In general, the

radial pressure gradient in a solid body rotation flow is given by

dP = pu
dr r (2.3-5)

Where co is the core's rotation rate in rad/sec. For small Ar, the pressure at the centerline is

given by

P0 =P, -j/or~ (2.3-6)

Where P1 and rl are the pressure and radial position of the node adjacent to the centerline.

The tangential and radial velocity components are set to zero at the centerline and the axial

velocity at the centerline is set equal to the axial velocity at the adjacent node. The density at

the centerline is set using the following procedure. The enthalpy at the node adjacent to the

centerline is given by



H, = -- +2 (u + u2 + u2)Pi 
(2.3-7)

Since the flow has a constant total enthalpy, the density at the centerline can be written as

PO

o (H, -Yu )(f) (2.3-8)

These values are then combined with equation (2.2-1) to construct the new state vector.

The outlet conditions are relatively simple because the presence of the throat assures

that the flow at the outlet is always supersonic. The outlet boundary conditions are obtained

using a weighted upwind averaging method which can be written as

p' = 2.0p-1 - pi-2

P' = 2.OP'-' - Pi-2
i i-2u = 2.0u -- u

ui = 2.Oi- ui-2  (2.3-9)

ui = 2.0u i' - ui-2

Where the superscripts i, i-1, and i-2 indicate the node at the outlet, the node adjacent to the

outlet in the upstream direction, and the node adjacent to that one, also in the upstream

direction. These quantities are sufficient to calculate the new state vector at the outlet.

The inlet boundary conditions are mostly determined by conditions in the combustion

chamber, but the governing physics is complicated by the presence of subsonic flow. The

inlet flow is assumed to be a constant enthalpy flow with no radial velocity component and a

predetermined swirl velocity profile. In general, conditions at the inlet were set using a

modified form of the Riemann Invariants, J+, J., uo, and s. Because the flow is subsonic, J.

is determined by downstream conditions and can be written as

J- = Uz -z -a = u 7z Y -yRT2
(2.3-10)

The expression for J+ is similar, but not directly useful since the upstream conditions are

determined by chamber conditions and cannot be calculated directly. Instead, it is useful to

look at the flow's total enthalpy, i.e.



H = CT + MV2H=CPT+ +YV (2.3-11)

Since the flow is assumed to have no initial radial velocity, this expression can be written as

H=CT +  (A(u2 +u) (2.3-12)

The total enthalpy is determined by the chamber conditions, so

H = CpT (2.3-13)

Since the swirl velocity is a defined parameter, equations (2.3-10) and (2.3-12) can be

combined to solve for the temperature and the axial velocity at the inlet. Solving equation

(2.3-10) for T gives

T= ( 1)2 (U2 -2uJ_ + j_2)
4YR (2.3-14)

Substituting (2.3-14) into (2.3-12) results in a quadratic with the following solution

2J + I4J2 (4(1+ l))2 2 TU = - - 4+ ()y _ 1)2 y-_)
Uz = 2 + r (2.3-15)

Empirically, it has been determined that the positive sign is the correct sign to use before the

radical in this equation. The entropy of a swirling flow can be calculated using Crocco's

relation, which relates the total enthalpy, entropy, velocity and vorticity as 4

VH = TVs + (u x )
(2.3-16)

For a constant enthalpy flow, this can be expressed as

a- Vs = -U x Q
yR (2.3-17)

Using equation (2.3-12), this can be written as follows for a constant enthalpy flow.

Vs = -C 1 (u x Q)
H-H - (u2 + u ) (2.3-18)



Since the flow field is cylindrical, the vorticity has no radial or tangential component and is

given by
Id
r dr (2.3-19)

As a result, the cross product (u x 0~) is entirely radial, and the entropy gradient can be

simplified to
ds CP2~u8

dr H. -/ 2(u + 0u) (2.3-20)

This integral can be evaluated numerically to give s as a function of radius.

Once s has been calculated, the thermodynamic definition of entropy can be

combined with the equation of state to determine the flow's pressure and density. In

general, the entropy change in an ideal gas is given by

s2- S=C, In 2

(2.3-21)

Where sl, P1, and pl represent reference values. If the entropy at the centerline is designated

as the reference value and assumed to be zero, solving this equation results in the following

expression for the density as a function of entropy.

S Pyo )j - 1) (2.3-22)

Once the density and temperature are known, the pressure can be calculated using the ideal

gas law. The result is a set of four equations, (2.3-14), (2.3-15), (2.3-20), and (2.3-22),

which fully specify the inlet boundary conditions.

The complex nature of the inlet conditions merit some discussion. While these

equations are physically accurate, they also define a fully reflecting boundary condition, so

even small disturbances are reflected back into the flow. In general, this prevents the

numerical scheme from converging in reasonable periods of time because pressure

disturbances in the subsonic section are reflected back and forth between the (choked) throat

and the inlet. Presumably, in a real system, these waves dissipate over time, leaving a steady

flow in the separation chamber. However, in this invicid simulation, these waves propagate

back and forth forever, preventing convergence of the solution. In order to speed



convergence, the first 2000 time steps are calculated using relatively large amounts of second
order damping to dissipate out disturbances. Once the largest disturbances have disappeared,
the second order damping is removed and the solution is allowed to converge with only
fourth order damping present. Even with this procedure, some waves persist in the solution,
and over time, a point is reached where further iterations fail to produce further convergence.
However, because these waves appear to be physical phenomenon and because they are
small, it was decided that their presence did not seriously affect the overall accuracy of the
solution. Therefore, the flows used to compute the final particle separation results contained
small pressure disturbances. These disturbances were small enough that they should not
have affected the particle separation results in any substantial manner.

The final simulation was written in C and run on a Silicon Graphics Iris Indigo with a
IP12 processor running at 33 MHz. Each simulation generally took a four or five hours to
complete, and resulted in flow results that fit general theory. Figures 2.2 and 2.3 show
typical results for a solid body rotation flow with a rotation rate of 10000 rad/sec.
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Figure 2.2: Mach Number Contour Plot of Solid Body Rotation Plot
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Figure 2.3: Radial Plot of Pressure vs. Radius for Solid Body Rotation Flow

As one would expect, figure 2.2 shows that the flow has a high swirl velocity near the wall

and properly chokes at the throat. Figure 2.3 shows the effect of swirl on the radial pressure

gradient. As one would expect, in the inlet area, there is an exponential rise in the pressure

as the radius increases. This occurs because the pressure forces must offset the centrifugal

forces acting on the flow. At the outlet, the pressure drops dramatically and the radial

pressure gradient is radically deformed. This occurs because of the choking condition causes

large variations in the flow's axial velocity profile. These results are all consistent with

simple nozzle theory. In all the results used for this study, mass flow is conserved to within

3%. The remaining variations are due to the use of non conservative damping and the errors

introduced by the reflective inlet boundary condition.

2.4 Governing Particle Equations

The second part of the simulation consists of a particle tracker that is used to post

process the solutions developed by the MacCormick solver. Due to the lack of relevant

experimental data, it is necessary to make several assumptions about the composition of the

radioactive material in the flow. Throughout this study, this material is assumed to consist of

solid, spherical particles distributed uniformly across the flow. These particles are assumed

to be composed of solid graphite or uranium with diameters ranging from 2 to 200 tm; a

range of distributions which corresponds roughly to the distribution of dust particles in a

solid rocket booster.5  This distribution has no particular significance, but seemed a

reasonable assumption. It is also assumed that any particle which reaches the outer wall of

the channel remains in the boundary layer and does not rebound back into the center of the



flow. This implies that any particle caught by a skimmer placed at a given position in the

channel will also be caught by a skimmer placed downstream of that position.

The particle tracker developed for this study simulates the release of a uniform

distribution of spherical particles at the inlet of the chamber and tracks the particles

individually to determine which are caught by the skimmer and which simply pass through

the nozzle. This tracker did not actually model the skimmer itself, but instead took a series

of cross sections at various points in the separation chamber and assumed that any particles

with a radial position, r, greater than the Rs specified by the skimming ratio was caught by

the skimmer. The governing equations for spherical particles in an axisymmetric swirling

flow are

F + FP
m (2.4-1)

r6 + 2i-0 = FD
m (2.4-2)

F
°

m (2.4-3)

Where FD is the drag force on the particle and F' is the force on the particle due to the

presence of pressure gradients. In general, FP is obtained by integrating the pressure across

the surface of each particle. However, using the divergence theorem, it can be shown that for

small particles this integral is approximately given by:

F, = VVP = n ra3 VP
(2.4-4)

Where V is the volume of the particle and VP is the pressure gradient across it. In a constant

area axisymmetric channel, the pressure gradient is entirely radial and is given by

dP _ pu2

dr r (2.4-5)

Combining (2.4-4) and (2.4-5) gives
2

F, =- /a 3 u P
r (2.4-6)



This expression is valid for small particles like the ones modeled in this simulation. An idea

of the relative importance of this term can been obtained by comparing it to the centrifugal

forces on the particle. In general, these centrifugal forces are given by

mu' 2  4 a 3 t2
FC- m _ 3pu

r r (2.4-7)

Where Fc is the magnitude of the centrifugal force and u' is the particle's tangential

velocity. Dividing (2.4-6) by (2.4-7) shows that the ratio of these forces is given by

Fp_ p ut2

FC PP u0  (2.4-8)

In general, because the particles consist of solid material, pp is five or six orders of

magnitude larger than p. As a result, centrifugal forces will dominate the particle's motion in

any situation where u' / u. > 0.01. Therefore, under most conditions, it is possible to

neglect the pressure forces acting on the particle. Nevertheless, for sake of completeness,

this pressure term was included in the computational pressure model.

The drag force on the particle is calculated using the usual expression

FD = 2 pu 2ACd
(2.4-9)

Where the cross sectional area, A, is given by

A = rta
(2.4-10)

and Cd is the drag coefficient for a fully immersed sphere. For 0 < Re < 2.5 x 105, the drag

coefficient is given by the following formula. 4

24 6
C= - + +0.4

Re l+ e (2.4-11)

Where Re is the diameter based Reynolds Number. The values given in this expression is

always within 10% of the experimental, as is shown in figure 2.4 below.
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Figure 2.4: Cd vs. Re for a Fully Immersed Sphere6

The viscosity of H2 is determined using a low order approximation for the viscosity of a pure

gas. The following equation gives the viscosity in units of kg/m/s.7

. = 2.6693 x 10-26 (MTg)
(22,2) (2.4-12)

Where g2(2,2) is the average effective collision integral. This quantity is temperature

dependent and has been recorded for H2 by Vanderslice et al.8 A table of these values is

included in Appendix A. Typical values for 4 at the temperatures encountered in the

simulation range from 2.5 x 10- 5 to 3.8 x 10-5 kg/m/s. Overall, for particles with radii under

100gm, this model should be valid at relative velocities from 0 m/s to over 10000 m/s and at

temperatures up to 15,000 K.

Each run consists of the release of 200 particles at evenly spaced distances from the

centerline (i.e. the first particle if released at r=0, the last one at r=Ro.) In all runs, it is

assumed that the particles enter the chamber with an axial velocity equal to the flow's axial

velocity, but that the particle's tangential velocity is zero.



3.0 Particle Removal Analysis and Results

3.1 Overview

The computational simulation described in section two was used to examine the

effectiveness of two types of fixed vane swirlers over a variety of operating conditions. The

two types of swirlers examined were constant angle and solid body rotation swirlers. In

constant angle swirlers, the swirl velocity is given by

U9 = Uz tan
(3.1-1)

where W represents the flow turning angle. This relation holds everywhere except close to

the centerline, where the swirl velocity is restricted by a no-swirl boundary condition. In

solid body rotation swirlers, the governing equation is

U9 = Qr
(3.1-2)

where Q represents the flow's rotation rate in radians/sec. Figure 3.1 shows plots of u0 vs. r

for both types of swirlers.
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Profiles for Swirlers Examined in Study

The results discussed in section three are based on solid body rotation swirl results. Constant

angle swirlers are discussed below in the section on alternative flow profiles.



3.2 Solid Body Rotation Results

A total of five parameters were varied during the solid body rotation swirl runs: the

chamber length, the particle density, the particle radius, the skimming ratio, and the flow

rotation rate. The particle density was simply varied between two values. These values

corresponded to the density of graphite, 1800 kg/m 3, and Uranium, 18700 kg/m 3. The other

four parameters were varied as follows:

* Chamber Length: 0 to 1 meter.

* Particle Radius: 1 to 100 pm.

* Rotation Rate: 0 to 10000 rad/sec.

* Skimming Ratio: 0 to 0.2

3.2.1 Relationship between Efficiency and Skimming Ratio

The solid body rotation results show several trends which greatly simplify analysis of

the overall system. Figure 3.2 shows a graph of the system's linear efficiency vs. skimming

ratio for a series of different separation times. It shows simulated data for 40 pm graphite

particles in a flow with a rotation rate of 10000 rad/sec, and each point on the graph

represents a simulated data point.
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Figure 3.2: rl' vs. Sr at 10000 rad/second

Figure 3.2 clearly shows the presence of a linear relationship between the skimming ratio and

the linear efficiency. In fact, the linear efficiency results can be approximated using the

following equation

(3.2.1-1)

____ _I~ ~I__ _I I



where T1'o is the linear efficiency for a skimming ratio of zero. The solid lines on the graph

are based on this approximation. Figure 3.3 show a similar graph for 10 tpm particles with a

flow rotation rate of 8000 rad/sec. Again, the points represent simulated data and the solid

lines indicate curve fits calculated from equation (3.2.1-1).
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Figure 3.3: Tr' vs. Skimming Ratio at 8000 rad/sec.

Although the values of ir' have changed, the basic relationship between the linear efficiency

and skimming ratio is preserved, and equation. (3.2.1-1) is still a close approximation to the

simulated data. In fact, an examination of the all the simulated data shows that equation

(3.2.1-1) is valid to within 10% across the entire range of simulated operating conditions and

is generally within 5% of the simulated results. Therefore, equation (3.2.1-1) and a table of

reference linear efficiencies provide all the information necessary to calculate the efficiency

of this system at any skimming ratio. It should be noted that as the overall efficiency rises,

changing the skimming ratio has less and less effect on the system. Therefore, in the

operating ranges of interest to the designer, the choice of skimming ratio has relatively little

effect on the overall efficiency of the system.

3.2.2 Relationship between Efficiency and v

The relationship of greatest interest to the designer is that between the efficiency and

the flow rotation rate. Figure 3.4 shown as graph of efficiency vs. rotation rate for 40 tm

particles at a skimming ratio of zero and with chamber lengths from 0.2 m to 1 m.
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As one would expect, figure 3.4 shows that as the rotation rate increases, a shorter chamber is

required to obtain equivalent levels of cleaning efficiency. The exact relationship between

chamber length and efficiency is obscured by the fact that the axial velocity varies slightly

with rotation rate. It is also useful to plot the efficiency vs. a dimensionless frequency v,

where
V = Ot

(3.2.2-1)

Figure 3.5 shows the same simulated data presented in figure 3.4, but plotted against this

parameter.
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Figure 3.5 is very interesting because it shows that the data from an entire series of runs

collapses down to a single curve when plotted against v. This not only allows one to

summarize the data in a concise plot, but also indicates that v may be one of the critical

dimensionless parameters in this system. Using equation (3.2.1-1) and figure 3.5, a designer

can determine the effectiveness of this system for any skimming ratio, rotation rate, or

chamber length. Therefore, this plot contains all of the information necessary to carry out

design studies and construct an initial design of a vortex cleaning system. Using a family of

these plots, it is possible to summarize the performance of this system across a range of

performance parameters. Figure 3.6 (see next page) shows such a family of plots spanning

the entire range of simulated data for solid body rotation swirlers.
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Figure 3.6 illustrates the fact that the efficiency curves collapse when plotted vs. v for

particles spanning a wide range of sizes and densities. In fact, the only simulated case in

which this collapse does not occur is with the 1 .tm graphite particles, which are "coupled" to

the flow; a condition discussed below in section 3.3.2. Figure 3.6 also indicates that the

effectiveness of the system depends strongly on the composition of the particles in the flow.

For instance, while a 1 m separation chamber operating at 10000 rad/sec would remove

almost 99% of the 1 ptm Uranium particles, it would remove at most 50% of the 20 pm

Uranium particles and becomes even less efficient with larger Uranium particles.

In summary, using results from the computational simulation outlined in section 2, we

have succeeded in identifying two relationships which are of interest to the designer. The

first is the relationship between linear efficiency and skimming ratio defined by equation

(3.2.1-1). This equation not only identifies the linear nature of this relationship, but also

shows that in the high efficiency ranges which are of interest to a designer, the choice of

skimming ratio has relatively little effect on the system efficiency. The second is the

relationship between linear efficiency and skimming ratio. The nature of this relationship is

less clearly defined, but figure 3.6 clearly shows that a relationship exists and that the

simulated data from a variety of conditions will collapse down to a single curve when plotted

against this parameter. This parameter is of critical interest to the designer because it

determines the relationship between the flow rotation rate, the length of the separation

chamber, and the efficiency of the system.

3.3 Analytical Particle Model and Fundamental Physics

3.3.1 Governing Equations

Since the actual distribution of particles in a nuclear rocket will probably span a wider

range of sizes and densities than those examined in section 3.2, it is beneficial to develop a

more general understanding of the relationship between the system efficiency and the size

and composition of the particles in the flow. One way of doing this is to examine a simple

analytical model of the vortex separation process. In general, the presence of drag makes it

impossible to the solve particle equations of motions using analytical methods. However, if

it is assumed that when the particle enters the channel, it is moving at the same axial and

tangential velocity as the fluid, the centrifugal forces on the particle are much larger than the

forces due to particle-fluid interaction. Particles traveling in this regime are said to be

"uncoupled" from the flow. This is in contrast to a particle's whose motion is dominated by

drag and pressure forces which is said to be "coupled" to the flow. Neglecting fluid forces

reduces equations (2.4-1)-(2.4-3) to the following form



i:- r 2 =0
(3.3.1-1)

r6 + 2i-6 = 0
(3.3.1-2)

(3.3.1-3)

Solving equations (3.3.1-1) and (3.3.1-2) analytically results in the following solution

t= 2
(3.3-1-4)

where ro is the particle's initial position and co is its initial angular velocity. Setting r = Rs,

makes this an equation for the time it takes for a particle to move from an initial position ro

to a position where it is caught by the skimmer. t represents the particle separation time and

approaches infinity as rto approaches zero, indicating that particles traveling near the

centerline will never be caught by the skimmer.

3.3.2 Discussion

Equation (3.3.1-4) can also written in terms of the design parameters 1r' and Sr as

1 -sr

1"'= (3.3.2-1)

Equation (3.3.2-1) shows that in an uncoupled flow, there are two fundamental parameters

which determine the system's efficiency: the skimming ratio and the dimensionless

frequency v. For a given value of v, sr and r1' are linearly related with the efficiency ratio

approaching unity as sr approaches unity. This matches the behavior seen in the simulated

data, in particular in equation (3.2.1-1) above. The relationship between v and r' is less

clear. Figure 3.7 shows a graph of this relationship for various values of sr.
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Figure 3.7: Analytical Graph of Efficiency vs. v and sr

Although the shape of these curves is not the same of those seen in Figure 3.6, it is still clear

that higher rotation rates and higher separation times result in higher efficiencies, and that the

parameter governing the effectiveness of the system is the dimensionless frequency, v. This

implies that in some sense, particles in the full simulation act as though they are uncoupled

from the flow. However, since particles in the full simulation enter the chamber with a

tangential velocity of zero, it is also clear that drag forces must play an important role in

determining their motion. The behavior of the actual particles, then, must depend on whether

the particles are coupled or uncoupled from the flow.

Because the pressure forces on the particle tend to be small, the critical parameter

which determines whether a particle is "coupled" or "uncoupled" from the flow is the ratio of

the drag forces to the inertial forces acting on a particle. The magnitude of the centrifugal

forces on a particle are given by the following expression

mue %tap uF -
r r (3.3.2-2)

Using this and expression (2.4-9), it can be shown that the ratio of the centrifugal to the drag

force on a particle in a solid body flow is approximately is given by

F 2 1 a p u2

Fd 3 Cd r pf (rco- u ) 2  (3.3.2-3)

Where (o is the fluid rotation rate. When u0 approaches 0, Fc/Fd approaches 0, drag forces

dominate over any inertial forces, and the particle is strongly coupled to the fluid. However,



as uo approaches rco, Fc/Fd approaches infinity, and the particle is uncoupled from the flow.

In between these extremes, there is a critical velocity, vc, where the ratio Fc/Fd = 1. When

ue is much less than vc, the particle's motion is dominated by drag forces and it is coupled to

the flow. Similarly, when uo is much greater than vc, a particle is uncoupled from the flow

and its motion is independent of the fluid. Every particle enters the flow initially coupled to

the fluid, will eventually uncouple as it experiences tangential acceleration.

Figure 3.8 shows the approximate value of the force ratio Fc/Fd vs. uo for graphite and

uranium particles under conditions similar to those used in the computer simulations. In this

calculation, it is assumed that the fluid density is 0.3 kg/m 3 , the fluid rotation rate is 10000

rad/sec, r = 0. 1 m, and m = 2.4 x 10-5 kg/m/s. Each particle's critical velocity is indicated by

the point at which the curve crosses the solid line.
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As one would expect, figure 3.8 shows that Fc/Fd is zero when uO = 0 and approaches infinity

as ue approaches ro. At intermediate velocities, the relative importance of the two forces

depends on the size and density of the particle being analyzed. Comparing this graph with

figure 3.6 shows that particles with critical velocities in an intermediate range (between 200

and 800 m/s) have relatively high recovery rates, while those at the high and low end of the

range have relatively low ones. The reasons for this correlation are evident in Figure 3.9,

which shows the path followed by three graphite particles which begin at the same position,

but have radii of 1, 10, and 100 ntm respectively.
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Figure 3.9 shows that particles with different critical velocities follow radically different

paths in the separation chamber. The 1 tpm graphite particle, which has a high critical

velocity, remains coupled to the flow down most of the length of the channel and follows a

long, spiral path towards the outside wall. The 100 ptm particle, on the other hand, has a low

critical velocity and uncouples from the flow very quickly. As a result, it travels directly

down the channel, ignoring the influence of the fluid all together. Neither particle moves to

the outside of the flow in a particularly efficient manner. In the first case, although the

particle is quickly accelerated to a high tangential velocity, drag forces dominate its motion

and prevent it from gaining too high a radial velocity. In the second case, the particle

uncouples too quickly and practically never accelerates at all. As a result, the particles which

are separated most efficiently are those with intermediate critical velocities, such that the

particles remain coupled to the fluid long enough to reach a high tangential velocity, and then

uncouple as they travel towards the outside of the channel.

Equation (3.3.2-3), then, defines another parameter which is of critical importance to

the designer. The critical velocity determines the effectiveness of the vortex separation

system and determines which types of particles can and can not be removed by a given

separation geometry. Given specific data on the distribution of particles in a nuclear rocket

plume, equation (3.3.2-3) can be used to determine what portion of the radioactive material

can be removed from the flow. At the present time, however, such data is not available, and

all that can be said with certainty is that vortex separation systems will be most effective on

particles with critical velocities in an intermediate range.



3.4 Constant Angle Swirl Results

Although solid body rotation swirlers are convenient to characterize and study, they

distribute swirl energy in a relatively inefficient manner. In particular, because they create

higher swirl velocities at the outside of the flow, they tend to give the greatest acceleration to

those particles which are already near the outside of the flow. This is inefficient because it is

those particles near the center of the flow which need the greatest acceleration, not those at

the outside. Constant angle swirlers, on the other hand, distribute energy evenly across the

flow, and are therefore better suited for particle removal applications. To simulate constant

angle swirlers, a series of runs were conducted using the constant angle swirl profiles shown

in figure 3.1. Note that there is a core of solid body rotation flow at the center of the vortex.

This core is necessary to meet the centerline no swirl condition. The simulated results were

produced for swirlers with turning angles from 0.0 to 45.0 degrees.

Figure 3.10 is a plot of constant angle rotation data. This data is presented as a plot of

linear efficiency vs. skimming ratio and separation time. This simulated data is for 45 tm

graphite particles at a turning angle of 45 degrees. The solid lines indicate curve fits made

using equation (3.2.1-1).
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Figure 3.10: rl' vs. Sr at 45 degrees turning angle

A comparison of this plot to the equivalent data in Figure 3.2 quickly reveals two interesting

points. The first is that the efficiencies are quite a bit higher than those in Figure 3.2, even

though the maximum flow turning angle represented in Figure 3.2 is over 50 degrees. (this is

the turning angle at the outer wall when the rotation rate is 10000 rad/sec). The second is

that equation (3.2.1-1) no longer fits the simulated data with any great degree of accuracy.

As a result, a table of reference skimming ratios is no longer sufficient to calculate the



system efficiency at any skimming ratio. To fully characterize the system, it is now

necessary to collect data at each individual skimming ratio. Fortunately, however, some

simplification of the data is possible. Figure 3.11 shows six graphs of simulated constant

angle data vs. a dimensionless frequency. In this case, however, the flow rotation rate is not

that of the entire flow, but only of the core solid body rotation region. Notice that although

the system is no longer a solid body rotation system, the basic relationship between rl and v

is still present; data from a variety of runs still collapses down to a single curve. It should be

noted that although the values of v differ, this data was taken over a range of conditions

similar to that covered in figure 3.5 and 3.6.
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Figure 3.11 shows that under most conditions, constant angles swirlers are

considerably more effective than the equivalent solid body rotation swirlers shown in figures

3.5 and 3.6. Under some conditions, constant angle swirlers can easily remove 99% of the

material in the flow, even at moderate turning angles. In addition, although the system is still

most efficiency for particles with intermediate critical velocities, constant angle swirlers are

able to remove a wider distribution of material from the flow than their solid body rotation

equivalents. Therefore, any practical cleaning system is almost certain to be designed around

a constant angle swirl profile or something similar to it. Given further work, it may be

possible to develop more effective flow profiles which will distribute swirl energy more

efficiency across the flow and will enhance the system's efficiency over an even wider

distribution of particle sizes and densities.



4.0 Heavy Gas Removal Analysis

The analysis carried out in section three is designed to examine the effectiveness of

vortex separation systems for the removal of particulates the plume. In principle, however,

this system can also be used to remove gaseous fission products and other heavy gasses from

the plume. This section describes the governing equations for an invicid, axisymmetric flow

of two mixed gasses in steady state, and then examines an analytical solution to these

equations based on Dalton's partial pressure law. It also discusses some of the trade offs

involved in designing gas removal systems, and considers whether they can actually be of

practical value for removing radioactivity from nuclear rocket plumes.

4.1 Governing Equations

The invicid, steady state equations for an axisymmetric flow of two gasses consists of

two sets of five equations. One set of equations is associated with each species, and each set

of equations can be written in non-conservative form as follows 9

Continuity:
8 8 pur

(pu,)+-(pu=) =r z r.1-1)

Axial Momentum:

a(p +pu) 8(puuz) puruz+ + Kab(U Uz)
az ar r (4.1-2)

Radial Momentum:

D(puu) (p+puT) pu pu ,
+ + + Kab(u - ur)

Dz ar r r (4.1-3)
Tangential Momentum:

a(puzu,) + a(puru) 2puu +Kab (u u
az ar r (4.1-4)

General Energy Conservation:

a( PUz ApuzVl2) (y- PU + Y2urVI2) pur + frpurlV 2
+ +r r (4.1-5)

aZ ar r (4.1-5)
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Where u' represents the velocity of the other gas (i.e. for the group of equations modeling the

Hydrogen gas, u' represents the velocity of the fission products). It should be noted that

these equations are very similar to equations (2.2-1) through (2.2-5). The only significant

differences are the extra collision flux term in the momentum equations and the extra

collision flux term in the energy equation. The K(Au) terms represent the change in

momentum density due to collisions between the two gasses. Kab is given by

Kab= namabVab
(4.1-6)

Where the subscript "a" refers to the first gas, and "b" refers to the second gas (i.e. for the

group of equation modeling the hydrogen gas, na represent the number density of the

hydrogen and nb represents of the fission products). mab is the reduced mass, i.e.

mab =m +m-
ab b

(4.1-7)

Vab is the collision cross section and is given by

vab nbCQabab
(4.1-8)

And Cab is the thermal approach velocity. Its value is discussed below. As one would

expect, these terms are symmetric, so the momentum flux out of one gas is the same as the

momentum flux into the other one.

M represents the rate of energy density change due to collisions, and is given by

M=Kb k (T'T) + [(u - u,)2 + (U: - Uz)2 + (U; - )2]+ab [+mm + m' (4.1-9)

uz (u - Uz)+ ur(u - U,) + uo(u' - uu)]

This term is also symmetric.

The thermal approach velocity, Cab, is generally derived from the average thermal

velocities of the two component gasses. The average thermal velocity of each component

gas is given by
- 8kT

nm (4.1-10)



Since the radioactive material in the flow has a molecular mass much larger that of the

hydrogen, the thermal approach velocity is approximately equal to the average thermal

velocity of the hydrogen alone. Therefore, equation (4.1-8) can be written as

Vab nbChQab (4.1-11)

4.2 Steady State Solution to Two-Fluid Equations

In general, it is not possible solve equations (4.1-1) through (4.1-5) analytically.

However, in steady state, it can be shown that the radial momentum equation reduces to a

form of Dalton's partial pressure law. Consider the radial momentum equation, (4.1-3). In

situations where the centrifugal force term dominates over the collision flux term, i.e.

p u >> Kab(ur - ur)
r (4.2-1)

it is possible to neglect the collision flux term. For the fission products, this term can be

written as

Pu; >> Kab (Au)
r (4.2-2)

Where Pu represents the density of the heavy gas. Using equation (4.1-6), this expression

can be written as

munuu >> numuV,,Au
rr (4.2-3)

From equation (4.1-7), it can be shown that if mu >> mh the reduced mass is approximately

equal to mh. Therefore, (4.2-3) can be written as

mu 1 rVuh
2

mh Aur u0  (4.2-4)

This expression merits some discussion. If the separation chamber were of infinite length, as

the flow traveled down the chamber, Aur would gradually approach zero as z approaches

infinity. Eventually, the flow would reach a steady state, where bulk radial velocity of the

two gasses would be equal and the net momentum flux between them would be zero.



Expression (4.2-4) determines how small Aur must be before the gas reaches this steady state

condition. At the pressures and temperatures present in the separation chamber, Vuh is on the

order of 1 x 1011 sec- 1. Therefore, using equation (4.2-4), it can be shown that in a solid

body rotation flow with o = 10000 rad/sec, the momentum flux term can be neglected if

m 1m >> 1 x 107 sec/ m
mh Aur (4.2-5)

Even when the heavy to light gas mass ratio is of order 100, Aur must be of the order of 10-5

m/s before it is technically correct to neglect the collision flux term. Therefore, in a

separation chamber of finite length, it is unlikely that a two gas flow would reach a steady

state. Nevertheless, it is useful to examine the steady state solution because it represents a

limiting case and reveals some of the fundamental tradeoffs involved in building a swirl

based gas removal system.

Under the conditions defined by equation (4.2-5), the radial momentum equation for

each component of a multi gas system is the same as the equation for a single gas, i.e.

d(pu) (pu,u,) + d(pu + p) pu -pu =+ + + 0
t dz dr r (4.2-6)

As long as the channel is of constant radius, there are no velocity variations in the z direction.

Therefore, there is no direct coupling between the axial and radial velocity. In addition, in a

steady state, the radial velocity will be zero, so equation (4.2-6) can be reduced to

dp _ pv
dr r (4.2-7)

Which is simply the equation for the hydrostatic equilibrium of a fluid in centrifugal force

field. Using the fundamental gas dynamics relations

p = nkT p = mn
(4.2-8)

This equation can be written as

dn, = m. vdr
ni kT r (4.2-9)



Where i is an index designating each species of gas. It should be noted that this equation is a

form of Dalton's partial pressure law, which states that in equilibrium, each of the

components of a system of several gasses acts as though the other components are not

present.

In order to integrate this equation, It is necessary to make an assumption about the

flow's tangential velocity distribution. If the flow is in solid body rotation, equation. (4.2-9)

can be written as

dn = mi 02 r
n kT (4.2-10)

This can be integrated to give

n .= ni exp - - 2 r2
k= nT( 2 (4.2-11)

It is interesting to note that it is now possible to define a characteristic length, 1c, as

1 2kT 1
mi m, (4.2-12)

Such that

ni = ni. exp((X 2) (4.2-13)

Ic represents the portion of the outer radius that contains the bulk of the gas in the flow. For

instance, if le = 0.05 m, around 60% of the gas is concentrated in the outer 0.05 m of the

chamber. This result merits some discussion. According to equation (4.2-13), if (lc <<R),

the bulk of the gas will be concentrated near the outer wall of the cylinder in a steep

exponential distribution. If, on the other hand, (lc >>R), the gas will basically be uniformly

distributed throughout the body of the cylinder. A gas's characteristic length is determined

by its molecular mass, its temperature, and its angular rotation rate, but since the flow

temperature is determined by the reactor, the flow rotation rate, ), is the only true parameter

in this expression.

~ I__ _ _I



In order to maximize the separation of the two gasses, it is desirably to design a
channel whose radius is much less than the characteristic length of the fission products (lp)
and much greater than the characteristic length of the hydrogen gas (lh). Fortunately, the

ratio of the atomic masses is high enough that these lengths differ considerably. At

temperatures typical of those found in a solid core nuclear rockets, the hydrogen remains in
diatomic form and has an atomic weight of 2 AMU's. As shown in figure 1.1, fission

products consist of a range of material scattered in a bimodal distribution, and the peaks of

this distribution are at 95 and 140 AMU's. Based on these values, it can be shown that the
ratio of 1p/h is 6.89 at the first peak and 8.37 at the second peak. These ratios are sufficiently
high that is theoretically possible to achieve a high degree of separation between the
hydrogen and the gaseous fission products in the flow.

Equation (4.2-13) can be further integrated to give the number of molecules in any
section of the cylinder. In cylindrical coordinates, the integral can be written as

2 r 2

N= j ni. exp(,) rdrd0
0 0 (4.2-14)

and can be integrated to give

N = 2n [exp(1, )-11 (4.2-15)

Equation (4.2-15) can now be used to calculate the amount of fissile material and hydrogen

removed from the flow. For a fixed skimming ratio, the removal efficiency is given by

exp(RX,)
2 -1

Sexp(RX)2 _ 1 (4.2-16)

Using equation (4.2-16), it is possible to calculate the removal efficiency, T~, as a function
skimming ratio and channel length. Figure 4.1 shown a graph of the efficiency vs. skimming
ratio and R*, where R* is defined as the ratio of the chamber length to the characteristic
length, i.e.

R= Ro
1C (4.2-17)



0.8

0.4 - --------- -

Sr = 0.01
0.2- . x Sr = 0.03

-- t- Sr = 0.05
--- Sr = 0.10

0-
0 1 2 3 4 5 6 7 8

R*

Figure 4.1: Heavy Gas Removal Efficiency vs. Length and Skimming Ratio

As one would expect, figure 4.1 shows that higher values of R* (i.e. higher rotation rates)

produce higher removal efficiencies. It should be noted, however, that these curves apply to

all components of the flow, including the hydrogen. Therefore, while larger values of R* do

result in the removal of more fissile material, they also result in the removal of more

hydrogen propellant. To examine this effect, it is convenient to define another parameter, the

material to propellant removal ratio, as follows:

rip

rlh (4.2-18)

Where rip is the removal efficiency for the fission product and rlh is the removal efficiency

for the hydrogen propellant. Figure 4.2 shows a graph of this removal ratio vs. skimming

ratio and R* for a fission product with a molecular weight of 95gm/mole.
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Figure 4.2: Gas Removal Ratio vs. Length and Skimming Ratio

Figure 4.2 shows for any given skimming ratio, there is a maximum achievable value of a.

Although the removal ratio initially increases with R*, a actually declines as R* approaches

infinity. This occurs because swirl pushes both the fission product and the hydrogen

propellant to the outside of the flow. Initially, increasing the swirl velocity increases the

amount of heavy material collected by the skimmer, but as the rotation rate continues to

increase, there is also an increase in the amount of hydrogen collected by the skimmer. As a

result, the removal ratio decreases as lh approaches Ro. It should also be noted that in

general, a increases as the skimming ratio decreases. This occurs because the fissile

material's distribution curve described by equation (4.2-16) becomes much steeper as Rs

approaches Ro. However, in contrast to this result, figure 4.1 shows that for a given value of

R*, as the skimming ratio decreases, rlf decreases also. Therefore, there is a tradeoff between

the amount of fissile material removed from the flow and propellant lost in removing that

material. Low skimming ratios will limit propellant loss, but remove relatively low amounts

of fissile material, while high skimming ratios remove large amounts of material with a

relatively high performance penalty.

Using equation (4.2-12), it is also possible to estimate the swirl velocity necessary to

achieve a given value of R* for a chamber of a given size. Table 4.1 shows a series of these

results for a separation chamber with the geometry shown in figure 1.2.



Table 4.3: Length Ratio vs. Rotation Rate for Gas Removal

Table 4.3 shows that it is impossible to obtain useful values of R* without using

unreasonably high rotation rates. The conditions which determine the exact limits on the

rotation rate are discussed in section five, but it should be noted that at the relatively high

rotation rate of 10000 rad/sec, a system with a skimming ratio of 0.1 would have an

efficiency of only 20% and would remove almost as much hydrogen as it did fissile material.

To obtain useful values of R*, it is necessary to use rotation rates almost an order of

magnitude larger, in a range where the flow's tangential velocity would exceed its axial

velocity by an order of magnitude or more.

Although Table 4.3 applies only to steady state flows, the magnitude of its results

imply that vortex separation will not be a practical means of removing gaseous radioactive

material. Since the steady state case represents the limiting case as z approaches infinity, it is

reasonable to assume that the efficiencies seen in the separation chamber will be less than or

equal to those shown in figure 4.1, and there is certainly no reason to believe that the flow's

characteristic length will shrink by an order of magnitude. In order to achieve reasonable

steady state efficiencies, it is necessary to exceed reasonable rotation rates by an order of

magnitude; a condition which is clearly not practical, at least not for the system studied in

this paper. In principle, however, if a high enough swirl velocity could be achieved, this

system could be used to remove material from the flow. This topic is discussed in greater

detail in section five below.

Q Ic R*
(rad/sec) (meters)

100 44.66 0.003
500 8.93 0.016
1000 4.47 0.031
2000 2.23 0.063
4000 1.12 0.125
6000 0.74 0.188
10000 0.45 0.313
15000 0.30 0.470
20000 0.22 0.627
30000 0.15 0.940
40000 0.11 1.254
50000 0.09 1.567
60000 0.07 1.881
70000 0.06 2.194
80000 0.06 2.508
90000 0.05 2.821
100000 0.04 3.135



In summary, in a steady state, the invicid radial momentum equation for a mixture of

gas reduces to the form of Dalton's partial pressure law shown in equation (4.2-9). The

conditions under which this assumption is valid are defined by equation (4.2-5) and, in

general, the conditions in the separation chamber do not justify this assumption.

Nevertheless, it is possible to solve equation (4.2-9) analytically, and the results indicate that

in steady state, this system is governed by a characteristic length and that for any given

skimming ratio, there is an optimum length ratio R* which removes the greatest amount of

radioactive material relative to the amount of hydrogen gas removed from the flow.

Unfortunately, the only parameter under the designer's direct control is the swirl velocity Co,

and table 4.3 indicates that any practical device would require swirl velocities well beyond

those which can be achieved in a practical device. Finally, although these results are based

on a steady state solution and are not technically valid in the separation chamber, they still

cast a great deal of doubt on the use of vortex separation to remove gaseous radioactive

material from the flow.



5.0 Limits on System Efficiency

From the results presented to this point, it is clear that higher swirl rates lead to lower

separation times and thus to shorter separation chambers. Therefore, it is generally desirable

to make the swirl rate as high as possible. However, there are practical limits to the amount

of swirl which can be imparted to the flow without causing performance losses. In particular,

an absolute limit is set by the need to avoid vortex breakdown. Vortex breakdown is a

phenomena in which the structure of the swirling flow is suddenly destroyed by a

spontaneous and pronounced retardation of the flow and a divergence of stream surfaces near

the core of the vortex.10 If breakdown were to occur in the separation chamber, it would

destroy the structure of the flow and cause a large drop in its velocity. Breakdown is

generally found in highly swirling flows and in the presence of adverse pressure gradients,

though boundary layer effects can produce breakdown in parallel geometries like the one

proposed for the separation chamber. Although the mechanism by which breakdown occurs

is poorly understood, experimental data indicates that the possibility of vortex breakdown

exists in situations where the flow turning angle is greater than 40 degrees.11 Therefore, for a

chamber with the geometry shown in figure 1.2, the threat of vortex breakdown precludes the

use of solid body rotation rates greater than 6500 rad/sec. and of constant angle turning rates

greater than 40 degrees.

Another practical limit is set by the need to minimize Isp losses. Because energy is

diverted from the axial to the tangential components of the velocity, adding swirl to the flow

lowers its axial velocity. However, as the flow expands down the nozzle, the conservation of

angular momentum causes the transfer of energy back form the swirl velocity into the core of

the flow. This tends to mitigate any losses due to the presence of swirl in the nozzle. To

analyze these losses, the flow solver described in section three was used to model solid body

rotation flows down a nozzle with a 50:1 area ratio. The results showed that even with an

initial swirl rate of 10000 rad/sec, the Isp loss at the exit was still only 0.1%. Since mass

flow was generally preserved to within 2.5% in these simulations, these results show that the

overall Isp losses are on the order of 2% or less (i.e. too small to be resolved by the solver).

This in turn indicates that at the swirl levels of interest, the system Isp losses due to the

presence of swirl are negligible.

Finally, it should be noted that although the filtered hydrogen is returned to the

reactor, the mass flow removed by the skimmer still lowers the thrust of the system. The

thrust loss is proportional to the mass flow removed and is therefore strongly related to the

skimming ratio. The results presented in section three, however, are generally made using

the non-physical skimming ratio of zero. In reality, the skimming ratio would be the smallest



practical value which could actually catch the particles. It is not clear, however, just how

small one could make the skimming ratio, as the factors which would determine would entail

detailed consideration of the boundary layer and are therefore beyond the scope of this study.

It should be noted that equation (4.2-15) shows that for small values of sr, the fraction of the

mass flow removed is approximately twice the skimming ratio This means that a skimming

ratio of 0.01 (a 1.4 mm slot for the geometry shown in figure 1.2) would cause a thrust loss

of 2%. Therefore, a practical particle vortex separation system could easily end up causing

significant thrust losses.



6.0 Conclusions

This paper contains a detailed analysis of a swirl based separation system designed to

remove radioactive material from the plumes of nuclear rockets. This system is designed to

remove radioactive material from the plume before it enters the nozzle, to filter out this

material, and then return the cleaned hydrogen to the reactor where it can be used again as

fuel. A computational analysis and simple analytical model are used to examine the ability

of this system to particulates from the plume, and a steady state analytical solution is used to

examine its ability to remove gaseous radioactive material.

The computation analysis carried out in section three indicates that vortex separation

is able to remove some particles with efficiencies in excess of 99%, but that the effectiveness

of the system depends heavily on the size and densities of the particles in the flow. Due to a

lack of experimental data, it is impossible to simply state whether or not the system is

suitable for use on real nuclear rockets. However, the computational and analytical work

carried out in this paper identifies the critical velocity, vc, as the parameter which determines

the effectiveness with which the system removes a particle of given size and density. Once

experimental data is available, it will be possible to use equation (3.3.2-3) to calculate the

relevant critical velocities and determine the effectiveness of swirl based particle removal

systems. The computational analysis also identified one other parameter of interest to the

designer: the dimensionless frequency, v. The dimensionless frequency is a function of the

critical velocity and determines the relationship between the flow rotation rate and the length

of the separation chamber, and the performance of both constant angle and solid body

rotation systems are governed by these two critical parameters. In addition, there is one other

parameter, the skimming ratio, which determines the thrust losses associated with this

system, but has little direct effect on the system's efficiency. Using these three parameter, it

should be possible to conduct basic design studies on swirl based particle separation systems.

In contrast to these results, section four describes a steady state solution to the invicid,

axisymmetric two gas equations which indicates that vortex separation is probably not a

practical system for removing gaseous material from nuclear rocket plumes. The results

outlined in table 4.3 show that in the steady state, reasonably removal efficiencies can not be

achieved without using swirl velocities an order of magnitude larger than the practical limit.

While this steady state solution does not necessarily apply to this system, since it represents a

limiting case, it is unlikely that considerably better performance can be achieved in the

separation chamber. Therefore, it is unlikely that this system will prove effective for the

removal of gaseous radioactive material from the plume.



In conclusion, the vortex separation system proposed in this paper shows some

promise. While it probably can not be used to remove gaseous material from the plume, it

should be able to remove substantial amounts of the particulates in the plume before they

leave the nozzle. There may, however, be a substantial mass penalty associated with this

system, particularly if it is necessary to remove particles with non-intermediate critical

velocities. Further experimental work is required to verify these computational results and to

determine the size and composition of the radioactive material in actual nuclear rocket

plumes. Once such data is available, the material presented in this paper should provides the

tools necessary to estimate the effectiveness of vortex separation systems.
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Appendix A: Tabulated Effective Collision Integral for H2

This appendix contains the effective collision integral for H2-H2 collisions, as tabulated by

Vanderslice et al. in "High Temperature Transport Properties of Dissociating Hydrogen."

Physics of Fluid, Vol. 5, No. 2, Feb. 1962, pp. 155-64. This shows the value of the integral

in units of 10-20 m2 .

Temperature (K) Q (2.2)
300 7.34
500 6.75
1000 6.00
1500 5.59
2000 5.33
2500 5.02
3000 4.73
3500 4.50
4000 4.29
4500 4.12
5000 3.97
5500 3.83
6000 3.71
6500 3.60
7000 3.50
7500 3.41
8000 3.32
8500 3.24
9000 3.17
9500 3.10

10000 3.03
11000 2.91
12000 2.81
13000 2.71
14000 2.62
15000 2.54



Appendix B: Source Code

This Appendix B contains the source code of the computer program used to model particle-

fluid interactions in the separation chamber. This model actually consists of two distinct

parts: a fluid modeling code to solve the axisymmetric Euler Equations, and a particle

tracking code which acts as a post processor. All codes are written in C and run on a Silicon

Graphics Iris Indigo workstation. The first section is a listing of the fluid modeling code.

This code consists of 9 modules and two header files. These files are named:

main.c: contains the main routine

boundary.c: calculates boundary conditions

damping.c: calculates damping coefficients

init.c: sets up initial flow conditions

integrate.c: calculates fluxes and carries out time integration

io.c: contains input/output routines

memory.c:allocates dynamic memory

metrics.c: calculates grid metrics

time.c: calculates timestep

And the two header files

nozzle.h: contains general header information

globals.h: contains a listing of all global variables



/usr/users/bamf/Programs4/main.c

/* Main for Program Nozzle */

/* Nozzle is an Axisymmetric invicid Euler code based on the *,
/* Macormick predictor-corrector method with fourth order and */

/* Second Order smoothing. */

/* All components are written in C, and the code is in dimensional form */

/* Written by David Oh (bamf) for his master's thesis */

/* August 6, 1992 */

/* This is file main.c */
#define ERRORPLOT 0

#include "nozzle.h"

#include <math.h>
#include <stdio.h>

/* GLOBAL DECLARATIONS *
/* For explaination of variables, see globals.h */

char predictor;

double ftheta,

mdot,

time,

twall;

double dxi2, deta2, dxi4, deta4, dcenterxi2, dcentereta2;

int iter,

nxi, neta; /* number of xi and eta grid cells */

double **d; /* Fourth Order damping term */

double **d2; /* Second Order damping term */

double *hgin, *ugin, *theta;

double **pg, **pgp, **pg0, **r, **tg, **z;

/* For metrics */

double **dxidz, **dxidr, **detadz, **detadr, **xirr, **xizz, **etarr;

double **etazz, **jacobian, **drdeta, **drdxi, **dzdeta, **dzdxi;

vector5 **fl, **f2, **fg;

vector5 **gl, **g2, **gg;
vector5 **sg, **sxg, **syg, **ugp;

vector5 **ug;

/* And one for debugging */

FILE *debuggingoutput;

main()

char fname[40]; /* input file name */

char gridname[40]; /* Grid file name */

char answer[5], continued; /* Answer to "continued?" question */

double grms, normalizedgrms;

int step;

FILE *history;

/* Get relevant information *

printf("\nRun name: ");

scanf ("%s", fname);

printf ("\nGrid name:

scanf ("%s", gridname);

printf ('\nContinued run (y/n)? ");

scanf ("%s", answer);

if (answer[O] == 'y'

continued = TRUE;
else

continued = FALSE;

printf ("\nHow man%- integrations? ");

p.2p.1 Wed May 5 23:12:48 EDT 1993

scanf ('%d", &step);

printf("\nDamping Coeff (one for defaults) %f %f %f %f",

DXI4, DETA4, DXI2, DETA2);

printf("\n Enter in order d4, d2, dcenter2" );

scanf("%lf", &dxi4);

if (dxi4 < 1.0+ EPSILON && dxi4 > 1.0-EPSILON)

dxi4 = DXI4;

dxi2 = DXI2;

deta4 = DETA4;

deta4 = DETA4;

dcenterxi2 = DXI2;

dcentereta2 = DETA2;

else (

scanf("%lf %lf %lf", &deta4, &dxi2, &deta2);

/* READ GRID */
/* Routine in io.c */

getgrid(gridname);

/* This routine in metrics.c */
calculatemetrics();

/* This routine in boundary.c */

calculateWallAngle();

/* Set up initial conditions */

/* This routine is in io.c */

if (continued == TRUE)
getflow (fname);

else

printf("\nInitializing New Flow.');

initializeflow();

/* Some run information, just to help keep runs straight */

printf("\nInlet Swirl: %f", INLETROTATION_RATE);

printf("\n4th Order Damping: %g %g", dxi4, deta4);

printf("\n2nd Order Damping: %g %g", dxi2, deta2);

printf("\nCenterline 2nd Order Damping: %g %g", dcenterxi2, dcentereta2);

history = fopen ("history", "a");

/* Integrate the equations */

for ( ; step >0; --step)

/* This routine contained in integrate.c */

printf('\nIteration: %d of %d ", iter, iter+step);

fprintf(history, "\n%d ", iter);
integrate();

/* This routine in main.c */

calculateError(&grms, &normalizedgrms):

printf ("\n Error: %f, %f", grms, normalizedgrms);

fprintf(history, "%f", normalizedgrms);
iter = iter + 1;

I
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fclose(history);

/* Write output Files */
/* This routine is in io.c */
writeflow. (fname);

calculateError(grms, normalizedgrms)
double *grms, *normalizedgrms;

int i,j;

*grms = 0.0;

*normalizedgrms = 0.0;

for (j = 0; j < neta; ++j)
for (i = 0; i < nxi; ++i)

*grms = *grms + SQ(pg[i][j] -pg0[i][j]);
*normalizedgrms = *normalizedgrms + SQ(pg[i]

/ SQ(pg0[i][j)l);

*grms = sqrt (*grms / (double)(nxi * neta));
*normalizedgrms = sqrt (*grms / (double)(nxi*neta));

p.3
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/* boundary.c *;

/* Uses REFLECTING boundary conditions */

/* Module for program nozzle */
/* Sets the boundary conditions */
/* Being Written 5/15/92 */

#include <math.h>
#include <stdio.h>

#include "nozzle.h"

#include "globals.h"

/* These are C PREPROCESSOR flags that determine what boundary condition */
/* Is used. Note that I've used the preprocessor is such a way that */
/* Setting one of these flags to FALSE means that that entire section */

/* Is not compiled at all. This saves execution time, etc. */

/* Setting a flag to true means that that boundary condition is applied */
/* C stands for "Corrector Step" and P stands for "Predictor Step" so */

/* CENTERLINEC 1 means "apply the centerline boundary condition in the */

/* corrector step */
#define CENTERLINEC 1
#define UPPERWALLC 1

#define OUTLETC 1
#define CENTERLINEP 1

#define UPPERWALLP 1
#define OUTLETP 1

/* These define statements set the inlet conditions */
#define INLETSUBSONICP 1

#define INLETSUPERSONICP 0

#define INLETSUBSONICC 1

#define INLETSUPERSONICC 0
#define INLETMACH 1.18

/* For non-solid body rotation */
#define INLET TANGENTIAL VELOCITY RATIO 0.0

/* Ok; Outlet subsonic conditions */
#define OUTLETSUBSONICP 0
#define OUTLETSUBSONICC 0

/*#define OUTLETTEMPERATURE 2440.21

#define OUTLETMACH 0.35 */

/*#define OUTLETTEMPERATURE 2452.8

#define OUTLETMACH 0.31*,

#define OUTLETMACH 0.3

#define OUTLETTEMPERATURE 2455.79

/*#define OUTLETMACH 0.28
#define OUTLETTEMPERATURE 2461.42 */

/'*#define OUTLETMACH 0.4
#define OUTLETTEMPERATURE 2422.48 *i

/* 1 = no relaxation; 0 = only the old
#define RELAX FACTOR 1.0

#define INLET RELAX FACTOR 1.0

value (no change) *

boundary()
/* Applies those invicid boundary conditions *

/* What fun */
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int i, j;
double a, b, c;
double ainlet; /* Speed of Sound in Inlet */
double newpressure, pressure;
double jminus, jplus, outlettemperature, rhol, tl;
double ur, /* Velocity Components */

utheta,

uznew;

double utot2;

/* Used for relaxed B.C. */

double delta theta, theta2, dot;

double alpha, /* Centerline ratio of p/rho^gamma */

Cp, /* Specific heat at constant Pressure */
Cv, /* Specific hear at constant Volume */
htot, /* Total Enthalpy of Flow */

mach, /* Local Axial Mach Number */

omegaz, /* Axial component of vorticity */

rho, /* Local density */

p
2
, rho2,

s, /* Entropy of Flow */
dsdr, /* Entropy derivative */

sum; /* Running sum for trapizoid integrator */

vector3 normal, tangentialvelocity, velocity;

double velocitymagnitude;

double pnew;

/* Couple of generally useful calculations */

Cp = (GAMMA / (GAMMA-1.0)) * RGAS;

Cv = (1.0 / (GAMMA-1.0)) * RGAS;
htot = CHAMBER_TEMP * Cp;

/* PREDICTOR BOUNDARY CONDITIONS */
if (predictor) {

#if INLETSUBSONICP

/* Inflow Boundary (left boundary) */

/* This applies a constant total pressure and temperature requirement */

/* Mass flow is set by the upstream choked throat */

/* The nomenclature is switched around for convenience; take it out */

/* later if you need more speed */
/* This must be executed before the Upper Wall conditions */

for (j = 0; j < neta; ++j) {
/* Calculate j-minus Riemann Invarient from upstream conditions */

uz = ugp[l][j].b/ugp[l][j].a;

rhol = ugp[l][j].a;
tl = pgp[l][j] / (rhol*RGAS);

jminus= uz-(2.0/(GAMMA-1.0))*sqrt(GAMMA*RGAS*tl);

/* Get swirl profile data *,

swirlProfile(r[0 [j], r[0][neta-l], &omegaz, &utheta);

/* Now calculate the temperature and axial velocity in row 0 */
a = 1.0 + (2.0 / (GAMMA - 1.0));
b = - 2.0 * jminus;

c = SQ(jminus) - (CHAMBER_TEMP*(4.0*GAMMA*RGAS)

/ SQ(GAMMA- 1.0)) + 2.0 * SQ(utheta)/(GAMMA-1.0);
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/* What sign should go before the sqrt is a little unclear. */
uz = (-b + sqrt(b*b - 4.0*a*c))/(2.0*a);
tg[0][j] = (SQ(GAMMA-1.0)/(4.0*GAMMA*RGAS)) *

(SQ(uz)-2.0*jminus*uz+SQ(jminus)) ;

/* Calculate the entropy of the flow */
/* This is going to attempt to be a rather clever trapezoid solver */
if (j == 0) {

mach = uz / sqrt (GAMMA * RGAS * tg[0][j]);
pgp[0][j]= CHAMBER_P/ (pow (1.0+((GAMMA-l.0)/2.0) * SQ(mach),

GAMMA/(GAMMA-1.0))) ;
rho = pgp[0][j] / (RGAS * tg[0][j]);
alpha = pgp[01[j] / pow(rho, GAMMA);
s = 0;
sum = 0;

else {
dsdr = -(Cp*omegaz*utheta) / (htot - 0.5*(SQ(uz)+SQ(utheta))) ;
s = (r[0][j]/(2.0*(double)(j))) * (2.0 * sum + dsdr);
sum += dsdr;

/* Get the pressure and density from the entropy */
rho = pow ( (l.0/alpha)*(htot- 0.5*(SQ(uz)+SQ(utheta)))*

((GAMMA-1.0)/GAMMA) / exp(s/Cv), 1.0/(GAMMA-1.0));
pgp[0][j] = RGAS * rho * tg[0][j];

/* CHECK TO SEE IF MACH NUMBER IS INDEED LESS THAN 1 */
/* IF THE MACH NUMBER IS GREATER THAN 0.9, SET IT TO 0.9 */
ainlet = sqrt(GAMMA*RGAS*tg[0] [j]);
if ( (uz/ainlet) > 0.9) {

printf (
"
Inlet Mach exceeds 1\n");

uz=ainlet * 0.9;
tg[0][j]=CHAMBER_TEMP/(1.0+((GAMMA-1.0)/2.0)*SQ(0.9));
pgp[0][j]= CHAMBER_P/(pow (1.0+((GAMMA-l.0)/2.0) * SQ(0.9),

GAMMA/(GAMMA-1.0)));

/* Calculate the state vector */
if (j != 0) (

rho= pgp[0] [j] / (RGAS*tg[01j][ );
ugp[0][j].a = rho;
ugp[0][j].b = rho*uz;
ugp[0][j].c = 0.0;
ugp[0][j].e = rho * utheta;
utot2 =

(SQ(ugp[0][j].b)+SQ(ugp[0][j .c)+SQ(ugp[0][j] .e))/SQ(ugp[0] [j].a);
ugp[01 [j].d = (1.0/(GAMMA-1.0))*pgp[0] [j] + 0.5*ugp[0] [j].a*utot2;

#endi f

#if INLETSUPERSONICP
/* Predictor Inlet, Supersonic Conditions Only */
/* This sets supersonic inlet conditions which have nothing to do with */
/* Anything from the flow */

for (j = 0; j < neta; ++j)
tg[0][j = CHAMBER TEMP / (1.0 + ((GAMMA-1.0.0)2.0)*SQ(INLETMACH)) ;
pgpl0][j] = CHAMBER P /

pow((l.0 + ((GAMMA-1.0), 2.0)*SQ(INLETMACH)), GAMMA, (GAMMA-1.0));
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rhogb[j] = pgp[0][j] / (RGAS * tg[0][j]);
if (((double) (j) / (double)(neta-l)) < 0.2)

ugp[0][j].e = rhogb[j]*INLETMACH*sqrt(GAMMA*RGAS*tg[0] [j])*
tan (INLET_TANGENTIALVELOCITY_RATIO) *

5.0 * ((double) (j)/(double) (neta-l));
else

ugp[0][j].e = rhogb[j]*INLETMACH*sqrt(GAMMA*RGAS*tg[0][j])*
tan (INLET_TANGENTIALVELOCITYRATIO);

ugp[0][j].a = rhogb[j];
if (j == 0)

pressure = 0.0;
else

pressure = pressure + SQ(ugp[0] [j] .e)/(ugp[0][j] .a*r[0 [j])
* (r[0][j] - r[0][j-1]);

pgp[0][j] = pgp[0][j] + pressure;
ugp[0][j].b = ugp[0][j].a * INLETMACH * sqrt(GAMMA*RGAS*tg[0][j]);
ugp[0][j].c = 0.0;
ugp[0][j].d = (1.0/(GAMMA - 1.0)) * pgp[0][j] +

0.5 * SQ(ugp[0][j].b)/ ugp[0][j].a;

#endif

#if CENTERLINEP
/* Predictor Centerline (bottom) boundary */
/* Applies a symmetry condition, with pressure calculated using */
/* Solid body rotation assumptions */
for (i = 0; i < nxi; ++i)
/* Set 0 radial and tangential velocity */
ugp[i] [0].c = 0.0;
ugp[i][0].e = 0.0;

/* Get pressure from Solid Body Rotation Rules */
pgp[i][0] = pgp[i][1] - 0.5 * ugp[i][1] .a *

SQ(ugp[i] [1] .e/ugp[i] [1] .a);

/* Assume constant energy */
ugp[i][0] .d = ugp[i][] .d;

/* Set constant axial velocity, and calculate density */
ugp[i)[01.a = (2.0 / SQ(ugp[i][1] .b / ugp[i][l].a)) *

(ugp[i][0].d - (1.0/(GAMMA-1.0)) * pgp[i][0]);
ugp[i][0] .b = ugp[i][0].a * (ugp[i] [] .b / ugp[i][1].a);

ugp[i][0].d = (1.0 / (GAMMA-1.0)) * pgp[i][0] +
0.5 * ugp[i][0] .a * SQ(ugp[i] [O].b/ugp[i][01.a);

tg[i][0) = pgp[i] [0] / (ugp[i][0] .a * RGAS);

#endif

#if UPPERWALLP
/* Predictor Upper Wall Boundary */
/* A simple method designed to insure: */
/* 1) Zero Pressure Gradient *
/* 2) Tangential Velocity Vector */
/* Preserving the magnitude of the velocity vector doesn't seem */
/* To work, so I'm going to cut the normal component, as is */

* conventional *,

/* The "x" direction is the axial */

p.4
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/* The "y" direction is radial */
* The "z" direction is tangential, out *

for (i = 1; i < nxi-1; ++i) (
velocity.x = ugp[i] [neta-2].b , ugp[i] [neta-2].a;
velocity.y = 0.0;

velocity.z = 0.0;

normal.x = cos(theta[i]);
normal.y = sin(theta[il);
normal.z = 0.0;

/* Theta2 will is the angle by which the velocity needs to be */
/* turned */
dot = velocity.x * normal.x + velocity.y * normal.y

+ velocity.z * normal.z;

velocitymagnitude = velocity.x;
theta2 = acos(dot/velocity magnitude) ;
theta2 = PI/2.0 - theta2;

velocity.y = tan(theta2) * velocity magnitude;
velocity.z = ugp[i] [neta-2] .e / ugp[i] [neta-2] .a;

/* Construct new State Vector */
ugp[i] [neta-l].a = ugp[i][neta-2].a;
ugp[i][neta-l].b = ugp[i][neta-1] .a * velocity.x;
ugp[i] [neta-l] .c = ugp[i] [neta-l] .a * velocity.y;
ugp[i][neta-l].e = ugp[i][neta-1] .a * velocity.z;
/* relax pressure */
new_pressure = pgp[i] [neta-2] +

(SQ(ugp[i] [neta-2].e)/(ugp[i] [neta-2] .a * r[i] [neta-2]))
*(r[i] [neta-l]-r[i] [neta-2]);

pgp[i] [neta-1] =
((1.0 - RELAXFACTOR) * pgp[i][neta-l]

+ (RELAX_FACTOR * new_pressure)) / 1.0;

ugp[i [neta-l].d = (1.0 / (GAMMA-1.0)) * pgp[i][neta-1] +
0.5 * ugp[i][neta-l].a * (SQ(velocity.x) + SQ(velocity.y) +

SQ(velocity.z)) ;

tg[i] [neta-1] = pgp[i] [neta-1] / (RGAS * ugp[i] [neta-1] .a);

#endif

#if OUTLETP

/* Predictor Outlet Boundary */
/* Conditions assume a supersonic outflow and extrapolate flow */
/* variables values. */
for (j = 0; j < neta; ++ j)
ugp[nxi-l] [j].a = 2.0 * ugp[nxi-2][j].a - ugp[nxi-3][j].a;
ugp[nxi-l][j].b = 2.0 * ugp[nxi-2][j].b - ugp[nxi-3[j].b;

ugp[nxi-l[j] .c = 2.0 * ugp[nxi-2][j].c - ugp[nxi-31][j .c;

ugp[nxi-l][j].e = 2.0 * ugp[nxi-2][j].e - ugp[nxi-3][j].e;
pgp[nxi-1] [j] = 2.0 * pgp[nxi-2] [j] - pgp[nxi-3] [j];

* To keep very strange things from happening *
if (pgp[nxi-l][j] < 0.0)

pgp[nxi-1l] [j] = 0.1;
tg[nxi-l1 [j] = pgp[nxi-l] [j] / (RGAS * ugp[nxi-1] [j].a);

ugp[nxi-l] [j] .d = (1.0 / (GAMMA-1.0)) * pgp[nxi-l] [j] +
0.5 * ((SQ(ugp[nxi-1] [j].b) + SQ(ugp[nxi-1] [j].c) +
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SQ(ugp[nxi-l][j] .e))/ugp[nxi-l][j] .a);

#endi f

#if OUTLETSUBSONICP
/* Predictor Outlet boundary for subsonic flow */
for (j = 0; j < neta; ++j) (
outlettemperature = CHAMBER_TEMP / (1.0 + (GAMMA-1.0)/2.0 *

OUTLETMACH * OUTLETMACH);
jplus = ugp[nxi-2][j].b / ugp[nxi-2][j].a + 2.0 *

sqrt(GAMMA * RGAS * tg[nxi-2][j]) / (GAMMA - 1.0);
jminus = OUTLETMACH * sqrt(GAMMA*RGAS*outlettemperature) - 2.0 *

sqrt(GAMMA*RGAS*outlettemperature) / (GAMMA-1.0);
s = log(pgp[nxi-2][j]) - GAMMA * log(ugp[nxi-2][j].a);
ugp[nxi-l] [j].a = pow((SQ(jplus - jminus)* (GAMMA-1.0) * (GAMMA-1.0)) /

(16.0 * GAMMA * exp(s)),
1.0 / (GAMMA-1.0));

ugp[nxi-l] [j].b = ugp[nxi-l][j].a * 0.5 * (jplus + jminus);
ugp[nxi-l] [j].c = ugp[nxi-l] [j].a * ugp[nxi-2][j].c / ugp[nxi-2][j].a;
ugp[nxi-l][j].e = ugp[nxi-l][j].a * ugp[nxi-2][j].e / ugp[nxi-2][j].a;
ugp[nxi-l][j].d = ugp[nxi-l][j].a * SQ(jplus - jminus) * (GAMMA-1.0) /

(16.0 * GAMMA) + 0.5 * (SQ(ugp[nxi-l] [j].b)
+ SQ(ugp[nxi-1] [j].e)) / ugp[nxi-1][j].a;

pgp[nxi-l] [j] = ugp[nxi-1] [j].a * SQ(jplus - jminus) * (GAMMA-1.0)
* (GAMMA-1.0)/ (16.0 * GAMMA);

#endif

/* Ends "if (predictor)" */

**********************************************************************/

/* Or, deal with the corrector step */
/**********************************************************************/

else
#if INLETSUBSONICC

/* Inflow Boundary (left boundary) */
/* This applies a constant total pressure and temperature requirement */
/* Mass flow is set by the upstream choked throat */
/* The nomenclature is switched around for convenience; take it out */
/* later if you need more speed */

for (j = 0; j < neta; ++j) (
/* Calculate j-minus Riemann Invarient from upstream conditions */
uz = ug[l][j].b/ug[l] [j].a;
rhol = ug[l] [j] .a;
tl = pg[l] [j] / (rhol*RGAS);
jminus= uz-(2.0/(GAMMA-1.0))*sqrt(GAMMA*RGAS*tl);

* Get swirl profile data */
swirlProfile(r[0] [j], r[0][neta-l], &omegaz, &utheta);

* Now calculate the temperature and axial velocity in row 0 */
a = 1.0 + (2.0 , (GAMMA - 1.0));
b = - 2.0 * jminus;
c = SQ(jminus) - (CHAMBERTEMP* (4.0*GAMMIIA*RGAS)

, SQ(GAMMA- 1.0)) + 2.0 * SQ(utheta) / (GAMMA-1.0);

/* What sign should go before the sqrt is a little unclear. *
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uz = (-b + sqrt(b*b - 4.0*a*c))i(2.0*a);

tg[0][j] = (SQ(GAMMA-1.0)/(4.0*GAMMA*RGAS)) *
(SQ(uz)-2.0*jminus*uz+SQ(jminus));

/* Calculate the entropy of the flow */
/* This is going to attempt to be a rather clever trapezoid solver */
if (j == 0) {

mach = uz / sqrt (GAMMA * RGAS * tg[0][j]);
pg[0][j]= CHAMBER P/(pow (1.0+((GAMMA-1.0)/2.0) * SQ(mach),

GAMMA/ (GAMMA-1.0)) ) ;
rho = pg[0][j] / (RGAS * tg[0][j]);
alpha = pg[0][j] / pow(rho, GAMMA);
s = 0;
sum = 0;

else {
dsdr = -(Cp*omegaz*utheta) / (htot - 0.5*(SQ(uz)+SQ(utheta))) ;

s = (r[0][j] / (2.0*(double)(j))) * (2.0 * sum + dsdr);
sum += dsdr;

/* Get the pressure and density from the entropy */
rho = pow ( (l.0/alpha)*(htot- 0.5*(SQ(uz)+SQ(utheta)))*

((GAMMA-1.0)/GAMMA) / exp(s/Cv), 1.0/(GAMMA-1.0));
pg[0] [j] = RGAS * rho * tg[O] [j];

/* CHECK TO SEE IF MACH NUMBER IS INDEED LESS THAN 1
/* IF THE MACH NUMBER IS GREATER THAN 0.9, SET IT TO 0.9 */
ainlet = sqrt(GAMMA*RGAS*tg[0] [j]);
if ( (uz/ainlet) > 0.9) {

printf ("Inlet Mach exceeds 1\n");

uz=ainlet * 0.9;
tg[0] [j]=CHAMBER TEMP/(1.0+((GAMMA-1.0)/2.0) *SQ(0.9));
pg[0][j]= CHAMBER P/(pow (1.0+((GAMMA-1.0)/2.0) * SQ(0.9),

GAMMA/(GAMMA-1.0)));

/* Calculate the state vector
if (j != 0) (

rho= pg[0] [j] / (RGAS*tg[0] [j]);
ug[0][j].a = rho;
ug[0][j].b = rho*uz;
ug[O] [j].c = 0.0;
ug[0][j].e = rho * utheta;
utot2 =

(SQ(ug[0] [j].b)+SQ(ug[0] [j].c)+SQ(ug[O] [j].e))/SQ(ug[0] [j].a);

ug[0] [j].d = (1.0/(GAMMA-1.0))*pg[0] [j] + 0.5*ug[0] [j] .a*utot2;

#endif

#if INLETSUPERSONICC
* Corrector Inlet, Supersonic Conditions Only */

,* This sets supersonic inlet conditions which have nothing to do with */

* Anything from the flow */
for (j = 0; j < neta; ++j)

tg[0][j] = CHAMBERTEMP / (1.0 + ((GAMMA-1.0)2.0)*SQ(INLETMACH));

pg[O] [j] = CHAMBER_P /
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pow((1.0 + ((GAMMA-1.0)/ 2.0)*SQ(INLETMACH)), GAMMA/(GAMMA-1.0));
rhogb[j] = pg[0][j] / (RGAS * tg[0][j]);
ug[0][j].a = rhogb[j];
ug[O] [j].b = ug[0][j].a * INLETMACH * sqrt(GAMMA*RGAS*tg[O][j]);
ug[0][j].c = 0.0;
ug[0][j].d = (1.0/(GAMMA - 1.0)) * pg[0][j] +

0.5 * SQ(ug[0][j].b)/ ug[0][j].a;
if (((double) (j) / (double)(neta-l)) < 0.2)

ug[0][j].e = rhogb[j]*INLETMACH*sqrt(GAMMA*RGAS*tg[0][j])*
tan(INLET_TANGENTIAL_VELOCITY_RATIO) * 5.0 *

((double) (j)/(double) (neta-1));
else

ug[O] [j].e = rhogb[j]*INLETMACH*sqrt(GAMMA*RGAS*tg[0] [j])
*tan(INLETTANGENTIAL_VELOCITYRATIO);

if (j == 0)

pressure = 0.0;
else

pressure = pressure + SQ(ug[0][j].e)/(ug[0][j].a * r[0[j]) *
(r[0][j] - r[0][j-l]);

pg[0] [j] = pg[0] [j] + pressure;

#endif

#if CENTERLINEC
/* Corrector Centerline Boundary */
/* Calculate enthalpy at inlet */
for (i = 0; i < nxi; ++i) (

/* Set 0 radial and tangential velocity */
ug[i][0].c = 0.0;
ug[i][0].e = 0.0;

/* Get pressure from Solid Body Rotation Rules */
/* Use a relaxation technique to cushon the blow */
pg[i][0] = pg[i][1] - 0.5 * ug[i][1] .a * SQ(ug[i][1] .e/ug[i][1] .a);

/* Assume constant energy */
ug[i] [O].d = ug[i] [1].d;

/* Set constant axial velocity, and calculate density */
ug[i] [0].a = (2.0 / SQ(ug[i] [1)].b / ug[i] [11.a)) *

(ug[i] [0].d - (1.0/(GAMMA-1.0)) * pg[i] [0]);

ug[i] [O] .b
ug[i] [O] .d

0.5 * ug[i] [0].a
tg[i] [0] =

#endi f

= ug[i][0].a * (ug[i [1] .b / ug[i][1] .a);
= (1.0 / (GAMMA-1.0)) * pg[i] [0 +
* SQ(ug[i] [0] .b/ug[i] [O].a);
pg[i][0] / (ug[i][0].a * RGAS);

#if UPPERWALLC

/* Corrector Upper Wall Boundary *
/* A simple method designed to insure: */
/* 1) Zero Pressure Gradient *
/* 2) Tangential Velocity Vector *

/* Since keeping the magnitude of the velocity vector doesn't */

/* Seem to work, this code just takes the normal component and*/

/* sets it to zero */
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The "x" direction is the axial */
* The "y" direction is radial *
,* The "z" direction is tangential, out */

for (i = 1; i < nxi-1; ++i) {

velocity.x
velocity.y
velocity.z

= ug[i][neta-2].b / ug[i][neta-2].a;
= 0.0;
= 0.0;

normal.x = cos(theta[i]);
normal.y = sin(theta[i]);
normal.z = 0.0;

dot = velocity.x * normal.x + velocity.y * normal.y
+ velocity.z * normal.z;

velocity magnitude = velocity.x;
theta2 = acos(dot/velocity_magnitude) ;
theta2 = PI/2.0 - theta2;

velocity.y = tan(theta2) * velocity.x;
velocity.z = ug[i][neta-2].e / ug[i][neta-2].a;

/* Construct new State Vector */
ug[i] [neta-1l.a = ug[i] [neta-2] .a;
ug[i][neta-l].b = ug[i] [neta-l].a * velocity.x;
ug[i] [neta-l] .c = ug[i] [neta-l] .a * velocity.y;
ug[i) [neta-l] .e = ug[i] [neta-l] .a * velocity.z;
new_pressure = pg[i] [neta-2] +

(SQ(ug[i][neta-2] .e)/(ug[i][neta-2] .a * rli][neta-2]))
*(r[i] [neta-l]-r[i] [neta-2]);

/* Relax Pressure */

pg[i] [neta-1] = (((1.0 - RELAX_FACTOR) * pg[i] [neta-1])
+ (RELAX_FACTOR * new_pressure));

ug[i] [neta-1].d = (1.0 ,' (GAMMA-1.0)) * pg[i] [neta-l] +

0.5 * ug[i] [neta-l].a * (SQ(velocity.x) + SQ(velocity.y) +
SQ(velocity.z)) ;

tg[i][neta-l] = pg[i][neta-l] / (ug[i][neta-1].a * RGAS);

#endi f

#if CUTLETC
/* Corrector Outlet Boundary */

* Conditions assume a supersonic outflow and extrapolate flow *
/* variables values. */
for (j = 0; j < neta; ++ j)

ug[nxi-l] [j].a = 2.0 * ug[nxi-2] [j] .a - ug[nxi-3] [j].a;

ug[nxi-1l][j).b = 2.0 * ug[nxi-21[j].b - ug[nxi-3][j].b;

ug[nxi-1l][j .c = 2.0 * ug[nxi-2][j].c - ug[nxi-3][j].c;
ug[nxi-l][j].e = 2.0 * ug[nxi-2][j].e - ug[nxi-31[j].e;
pg[nxi-l][j] = 2.0 * pg[nxi-2][j] - pg[nxi-3][j];
* To keep very strange things from happening *,

if (pg[nxi-l] [j] < 0.0)
pg[nxi-l] [j] = 0.1;

tg[nxi-l] [j] = pg[nxi-1] [j] , (RGAS * ug[nxi-l] [j] .a);
ug[nxi-l] [j] .d = (1.0 ; (GAMMA-1.0)) * pg[nxi-1] [j] +

0.5 * ((SQ(ug[nxi-l [j] .b) + SQ1ug[nxi-l1] [j].c) +
SQ(ug[nxi-l1] [j] .e) )ug[nxi-1] [j] .a);
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#endi f

#if OUTLETSUBSONICC
/* Predictor Outlet boundary for subsonic flow */
for (j = 0; j < neta; ++j) (
outlettemperature = CHAMBERTEMP / (1.0 + (GAMMA-1.0)/2.0 *

OUTLETMACH *OUTLETMACH);
jplus = ug[nxi-2] [j].b / ug[nxi-2] [j].a + 2.0 *

sqrt(GAMMA * RGAS * tg[nxi-2] [j]) / (GAMMA - 1.0);
jminus = OUTLETMACH * sqrt(GAMMA*RGAS*outlettemperature) - 2.0 *

sqrt(GAMMA*RGAS*outlettemperature) / (GAMMA-1.0);
s = log(pg[nxi-2] [j]) - GAMMA * log(ug[nxi-2] [j].a);
ug[nxi-l][j].a = pow((SQ(jplus - jminus)* (GAMMA-1.0) * (GAMMA-1.0)) /

(16.0 * GAMMA * exp(s)),
1.0 / (GAMMA-1.0));

ug[nxi-l][j].b = ug[nxi-l][j].a * 0.5 * (jplus + jminus);
ug[nxi-l] [j] .c = ug[nxi-l] [j] .a * ug[nxi-2] [j] .c / ug[nxi-2] [j] .a;
ug[nxi-l][j].e = ug[nxi-l] [j].a * ug[nxi-2][j].e / ug[nxi-2][j].a;
ug[nxi-1l][j].d = ug[nxi-l] [j].a * SQ(jplus - jminus) * (GAMMA-1.0) /

(16.0 * GAMMA) + 0.5 * (SQ(ug[nxi-l] [j].b)
SQ(ug[nxi-l] [j].e)) / ug[nxi-l] [j].a;

pg[nxi-l][j] = ug[nxi-l][j].a * SQ(jplus - jminus) *
(GAIMMA-1.0) * (GAMMA-1.0) / (16.0 * GAMMA);

#endif
/* ends else from if (predictor) */
/* Ends boundary() */

swirlProfile(r, rmax, omegaz, utheta)
/* Returns tangential velocity (utheta) and vorticity (omegaz) at inlet */
double *omegaz, r, rmax, *utheta;

double utheta0;

/* Uncomment for Solid Body Rotation */

*utheta = INLET ROTATIONRATE * r;
*omegaz = 2.0 * INLETROTATION_RATE;

/* Uncomment for Constant Angle Rotation *I
utheta0 = INLET AXIAL VELOCITY * tan(TURNING_ANGLE);
if (r < 0.2 * rmax) (

*utheta = utheta0 * r / (0.2 * rmax);
*omegaz = 10.0 * utheta0;

else
*utheta = utheta0;
*omegaz = utheta0 / r;

calculateWallAngle ()

double delta-r, delta_z, thetal, theta2;
int i;

for (i = 1; i < nxi-l; ++i)
,* Calculate wall angle *,
delta z = .z[i] [neta-l] - z[i-l] [neta-l];
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delta_r = r[i][neta-l] - r[i-1][neta-l];
thetal = atan(delta r / deltaz) - PIi2.0;
delta_z = z[i+ll[neta-l1] - z[i][neta-1];
delta_r = r[i+l] [neta-l] - r[i][neta-1];
theta2 = atan(delta r / delta-z) - PIi2.0;
theta[i] = (thetal + theta2) / 2.0;
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/* damping.c */

/* This module contains any damping/smoothing/artificial vicosity needed */
/* for the terms *
#include <math.h>
#include <stdio.h>
#include "nozzle.h"
#include "globals.h"

/* These flags will let you set some overdamping on the inlet area */
/* This is done in the hopes that it will kill any pressure waves as */
/* They enter the inlet */
#define OVERDAMPING LENGTH 70
#define OVERDAMPING FACTOR 15.0

calculateSecondOrderDamping ()
/* It is not set up to use pressure switches yet */
/* It's not even set up yet, 10/30/92 */

int i, j;
if (dxi2 < EPSILON && deta2 < EPSILON)

else
for (j = 0; j < neta; ++j) I

for (i = 0; i < nxi; ++i)

if (j < 1 11 i < 1 II j > neta-2 i > nxi-2)
d2[i] [j] .a = 0.0;
d2[i] [j].b = 0.0;
d2[i] [j] .c = 0.0;
d2[i] [j] .d = 0.0;
d2[i] [j].e = 0.0;

else {
d2[i][j].a = dxi2 * (ug[i+l][j].a

+ deta2 * (ug[i][j+l].a - 2.0 *
d2[i][j].b = dxi2 * (ug[i+l][j].b

+ deta2 * (ug[i][j+l].b - 2.0 *
d2[i][j].c = dxi2 * (ug[i+l][j].c

+ deta2 * (ug[i][j+l].c - 2.0 *
d2[i][j].d = dxi2 * (ug[i+l][j].d
+ deta2 * (ug[i][j+l].d - 2.0 *

d2[i][j].e = dxi2 * (ug[i+l] [j].e
+ deta2 * (ug[i] [j+l] .e - 2.0 *

- 2.0 * ug[i][j].a +
ug[i] [j] .a + ug[i] [j
- 2.0 * ug[i] [j] .b +
ug[i][j].b + ug[i][j-
- 2.0 * ug[i] [j] .c +
ug[i][j].c + ug[i][j
- 2.0 * ug[i][j].d +
ug[i] [j].d + ug[i][j
- 2.0 * ug[i] [j].e +

ug[i] [j] .e + ug[i] [j-

ug[i-l] [j] .a)
1] .a);
ug[i-l1 [j] .b)
1] .b);

ugli-l1 [j] .c)
1].c);
ug[i-l] [j] .d)
1] .d);
ug[i-l][j].e)
1] .e);
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d[i][j].d = 0.0;
d[i] [j] .e = 0.0;

else if (i < OVERDAMPINGLENGTH) {
d[i][j].a = -deta4* OVERDAMPINGFACTOR *

4.0 * (ug[i+l][j].a + ug[i-l][j].a) +

- dxi4 * OVERDAMPINGFACTOR *
4.0 * (ug[i][j+l].a + ug[i] [j-l].a) +

d[i][j].b = -deta4* OVERDAMPINGFACTOR *
4.0 * (ug[i+l][j].b + ug[i-1][j].b) +

- dxi4 * OVERDAMPINGFACTOR *
4.0 * (ug[i][j+l].b + ug[i][j-l].b) +

d[i][j].c = -deta4* OVERDAMPING_FACTOR *
4.0 * (ug[i+l][j].c + ug[i-1][j].c) +

- dxi4 * OVERDAMPING FACTOR *
4.0 * (ug[i] [j+l] .c + ug[i] [j-l] .c) +

d[i][j] .d = -deta4* OVERDAMPING_FACTOR *
4.0 * (ug[i+l][j].d + ug[i-l][j].d) +

-dxi4 * OVERDAMPING FACTOR *

4.0 * (ug[i][j+l].d + ug[i] [j-l].d) +
d[i][j].e = -deta4* OVERDAMPING_FACTOR *

4.0 * (ug[i+l][j].e + ug[i-1][j].e) +
- dxi4 * OVERDAMPINGFACTOR *

4.0 * (ug[i][j+l].e + ug[i] [j-l] .e) +
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(ug[i+2][j].a + ug[i-21[j].a -
6.0 * ug[i] [j].a)
(ug[i][j+2].a + ug[i][j-2] .a -
6.0 * ug i] [lj .a);
(ug[i+2][j] .b + ug[i-2][j] .b -
6.0 * ug[i][j].b)
(ug[i] [j+2].b + ug[i] [j-2] .b -

6.0 * ug[i][j].b);
(ug[i+2][j].c + ug[i-2][j].c -
6.0 * ug[i][j].c)
(ug[i][j+2].c + ug[i][j-2].c -
6.0 * ug[i][j] .c);
(ug[i+2][j].d + ug[i-2][j] .d -

6.0 * ug[i][j].d)
(ug[i][j+2].d + ug[i][j-2].d -
6.0 * ug[i][j].d);
(ug[i+2][j].e + ug[i-2][j].e -
6.0 * ug[i][j].e)
(ug[i][j+2].e + ug[i] [j-2].e -

6.0 * ug[i] [j] .e);

else (
d[i][j].a = -deta4 * (ug[i+2] [j].a + ug[i-2][j].a -

4.0 * (ug[i+l] [j].a + ug[i-l] [j].a) + 6.0 * ug[i] [j].a)
- dxi4 * (ug[i] [j+2].a + ug[i] [j-2] .a -

4.0 * (ug[i] [j+l] .a + ug[i] [j-l] .a) + 6.0 * ug[i] [j] .a);
d[i] [j] .b = -deta4 * (ug[i+2] [j].b + ug[i-2] [j] .b -

4.0 * (ug[i+l][j].b + ug[i-l] [j].b) + 6.0 * ug[i][j] .b)
- dxi4 * (ug[i][j+2].b + ug[i] [j-2].b -

4.0 * (ug[i][j+l].b + ug[i][j-l].b) + 6.0 * ug[i][j] .b);
d[i][j].c = -deta4 * (ug[i+2][j].c + ug[i-2][j].c -

4.0 * (ug[i+l][j].c + ug[i-1][j].c) + 6.0 * ug[i][j].c)
- dxi4 * (ug[i][j+2].c + ug[i][j-2].c -

4.0 * (ug[i][j+l].c + ug[i][j-l].c) + 6.0 * ug[i][j].c);
d[i][j].d = -deta4 * (ug[i+2] [j .d + ug[i-2] [j].d -

4.0 * (ug[i+l][j].d + ug[i-1] j].d) + 6.0 * ug[i] [j].d)
- dxi4 * (ug[i][j+2].d + ug[i] [j-2].d -

4.0 * (ug[i] [j+l].d + ug[i] [j-l].d) + 6.0 * ug[i][j].d);
d[i] [j] .e = -deta4 * (ugfi+2] [j] .e + ug[i-2] [j] .e -

4.0 * (ug[i+l] [j .e + ug[i-l][j].e) + 6.0 * ug[i][j].e)
- dxi4 * (ug[i)[j+2].e + ug[i][j-2].e -

4.0 * (ug[i] [j+l].e + ug[i][j-l].e) + 6.0 * ug[i][j].e);

calculateFourthOrderDamping()

int i,j;

for (j = 0; j < neta; ++j)
for (i = 0; i < nxi; ++i)

if (j < 2 II i < 2 11 j > neta-3 II i > nxi-3)
d[i] [j].a = 0.0;
d[i] [j] .b = 0.0;
d[i][j].c = 0.0;
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/* init.c */
/* Contains routine for setting initial run conditions */
/* Works 5/13/92 *

#include <math.h>
#include <stdio.h>
#include "nozzle.h"
#include "globals.h"

/* If this flag is true, the initial conditions will turn the flow */
#define TURNFLOW 1

/* This flag determines whether the "turn flow" algorithm is turned on */
'* If it is, then the flow next to the wall is turned to be parallel to */
/* The wall. */

initializeflow()
/* Presently, this is written to give the 1-d solution to the flow equations
/* The flow is then modified to fit the tangent to wall boundary condition
/* And the rest of the flow is smoothed from the wall to the centerline so
/* As to prevent shocks */
/* This solution does NOT initially fulfil the continuity equations */

char subsonic;
double afraction,

area,
centrificalpressure,
deltar, delta z,
diff,
dot,
ftheta0,
mach,
magnitude vtan,
magnitude_v2,
pressure,
rho,
scrap,
swirl-velocity,
thetal, theta2, theta,
utotal2;

int i, j;
vector3 normal, tangential_velocity, velocity;

/* Omit initializing mass fractions */
predictor = TRUE;

/* Set run time counter */
time = 0.0;

/* Initialize inlet densities and velocities */
for (j = 0; j < neta; ++j)

for (i = 0; i < nxi; ++i)
ug[0][j].a = INLETDENSITY;
ug[0][j].b = ug[0][j].a * INLET ZVELOCITY;
ug[0 ][j].c = 0.0;
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area = PI * SQ(r[i] [neta-1l);

/* Iterative Solver */
if (z[i][neta-1] < THROAT_LOCATION)

for (mach =0.05, diff=l.0; diff > 0.0; mach += 0.02)
afraction=(l.0/mach)*pow(((1.0+0.2*SQ(mach))/(1.2)),3.0);
diff = afraction - area/THROAT_AREA;

else
for (mach = 1.0, diff= -1.0; diff < 0.0; mach+=0.02)

afraction = (l.0/mach)*pow(((l.0+0.2*SQ(mach))/(1.2)),3.0);
diff = afraction - area/THROATAREA;

/* End of Iterative Solver */

for (j = 0; j < neta; ++j) {
tg[i][j] = CHAMBERTEMP/(1.0 + 0.2*SQ(mach));
pressure = CHAMBER_P / pow((1.0 + 0.2 * SQ(mach)),3.5);
ug[i][j].a = pressure / (RGAS * tg[i][j]);
ug[i][j].b = ug[i][j].a * mach * sqrt(GAMMA*RGAS*tg[i][j]);
ug[i] [j].c = 0.0;
ug[i] [j].e = 0.0;
utotal2=(SQ(ug[i] [j].b)+SQ(ug[i][j] .c)+SQ(ug[i] [j].e))/SQ(ug[i] [j].a);
ug[i][j].d = (1.0/(GAMMA-1.0))*pg[i] [j]+0.5*ug[i] [j].a*utotal2;
pg[i] [j] = pressure;

for (i = 0; i < nxi; ++i)
for (j = 0; j < neta; ++j)

if (j == 0)
centrificalpressure = 0.0;

else
centrificalpressure = centrifical_pressure
+ SQ(ug[i][j].e)/(ug[i] [j].a * r[i] [j])

* (r[il [j] - r[i] [j-l]);

/* This routine in boundary.c */
swirlProfile(r[i] [j], r[i] [neta-l], &scrap, &swirl_velocity);

/* OK, calculate the pressure */
/* This pressure based on a JxB swirl force model */
/* Where the swirl force ADDS to the total pressure */
centrifical-pressure =

exp(SQ(INLETROTATION_RATE) * SQ(r[i][j]) / (2.0 * RGAS * tg[i][j]));
/* But, to keep things from getting to out of control... */
if (centrifical_pressure > 10.0)

centrificalpressure = 10.0;
pg[i][j] = pg[i][j] * centrificalpressure;
rho = pg[i] [j] / (RGAS * tg[i] [j]);
ug[i][j].b = ug[i][j].b / ug[i][j].a * rho;
ug[i][j].c = ug[i][j] .c / ug[i] [j] .a * rho;
ug[i][j].e = swirl_velocitv * rho;
ug[i] [j).a = rho;
utotal2= (SQ(ug[i] [j].b)+SQ(ug[i] [j]).c)+SQ(ug i] [j].e))/SQ(ug[i] [j].a);
ug[i][j].d = (1.0/i(GAMMA-1.0))*pg[i] [j]+0.5*ug[i] [j].a*utotal2;

/* Set 1-D Nozzle conditions down the nozzle */
for (i = 0; i < nxi; ++i) {
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#if TURNFLOW #endif

/* Ok; Turn the flow vector next to the wall so it is parallel to the */
/* wall and bend all the other vectors in the flow to match, with a linear */
/* tapering of the flow back to parallel at the centerline */
/* For the moment, it will turn the flow vector and maintain its magnitude */
for (i = 1; i < nxi; ++i)

/* Calculate wall angle */
deltaz = z[i][neta-l] - z[i-l][neta-1];
delta_r = r[i][neta-l] - r[i-l][neta-1];
thetal.= atan(delta r / delta z) - PI/2.0;
if (i != (nxi - 1)) {
delta_z = z[i+l] [neta-l] - z[i] [neta-l];
deltar = r[i+l] [neta-1] - r[i] [neta-l];
theta2 = atan(deltar / delta_z) - PIi2.0;
theta = (thetal + theta2) / 2.0;

else
theta = thetal;

for (j = 0; j < neta; ++j)
velocity.x = ug[i][j].b / ug[il[j].a;
velocity.y = ug[i][j].c / ug[i][j].a;
velocity.z = ug[i] [jl.e / ug[i][j].a;

thetal = -(PI/2.0 - ((PI/2.0 + theta) * (double)(j) / (double)(neta-1)));

normal.x = cos(thetal);
normal.y = sin(thetal);
normal.z = 0.0;

dot = velocity.x * normal.x + velocity.y * normal.y

+ velocity.z * normal.z;

normal.x = normal.x * dot;

normal.y = normal.y * dot;

normal.z = normal.z * dot;

tangentialvelocity.x = velocity.x - normal.x;
tangentialvelocity.y = velocity.y - normal.y;
tangential velocity.z = velocity.z - normal.z;

magnitude v2 = sqrt(SQ(velocity.x) + SQ(velocity.y) + SQ(velocity.z));

magnitude_vtan = sqrt(SQ(tangential_velocity.x) +
SQ(tangentialvelocity.y) +
SQ(tangential_velocity.z) )

velocity.x = magnitude v2 * tangentialvelocity.x / magnitude vtan;

velocity.y = magnitude_v2 * tangential velocity.y / magnitude vtan;
velocity.z = magnitude_ v2 * tangential velocity.z / magnitude vtan;

/* Construct new State Vector */

/* Leave the energy and density terms alone *
ug[i][j].b = ug[i][j] .a * velocity.x;
ug[i] [j].c = ug[i] [j].a * velocity.y;
ug[i] [].e = ug[i][j].a * velocity.z;

I
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/* integrate.c */
/* Being Written 5/15/92 */

#include <math.h>
#include <stdio.h>
#include "nozzle.h"
#include "globals.h"

integrate()

double deltatime;
int i,j;

/* Copy current pressures into file for error calculation later and
/* Copy the odl state vectors into the "predictor" matrix */
for (i = 0; i < nxi; ++i) {

for (j = 0; j < neta; ++j)
/* Copy current pressure to error file here */
pg0[i][j] = pg[i)[j];

/* Copy state vectors here */
ugp[i] [j] .a = ug[i][j] .a;
ugp[i][j].b = ug[i] [j].b;
ugp[i] [j] .c = ug(i] [j].c;
ugp[i][j].d = ug[i][j].d;
ugp[i] [j .e = ug[i][j] .e;
pgp[il] [j] = pg[i] [j];

/* Set Predictor Flag */
predictor = TRUE;

/* This routine in time.c */
calculatetimestep(&deltatime);
time += deltatime;

printf("Timestep: %g Run time: %g", deltatime, time);

/* This routine is in this file */
calculateSourceTerm () ;

/* These routines are also in this file */
calculateFluxtermF() ;
calculateFluxtermG() ;

/* No damping is applied in the predictor step */
/* Calculate State Vector */
for (j = 1; j < neta-l; ++j)

for (i = 1; i < nxi-l; ++i)
ugp[i [j] .a = (ug[i][j] .a * jacobian[i][j] -
(fg[i] [j].a+gg[i)[j].a - sg[i][j].a))

/ jacobian[i] [j];
ugp[i][j].b = (ug[i][j].b * jacobian[i][j] -
(fg[i][j].b + gg[i)[j].b - sg[i][j].b))

/ jacobian[i] [j];
ugp[i][j].c = (ug[i][j].c * jacobian[i][j] -
(fg[i][j].c + gg[i][j] .c - sg[i][j].c))

jacobian[i] [j];
ugp[i][j].d = (ug[i [j].d * jacobian[i][j] -
(fg[i][j].d + gg[i][j].d - sg[i][j].d))

deltatime *

deltatime *

deltatime *

deltatime *
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/ jacobian[i][j];
ugp[i[j] .e = (ug[i][j].e * jacobian[i][j] - deltatime *
(fg[i] [j .e + gg[i][j].e - sg[i][j].e))

/ jacobian[i I[j];

/* This routine in this file */
calculateTemperature() ;

/* Apply boundary conditions */
/* This routine located in boundary.c */
boundary () ;

/* do the corrector step */
predictor = FALSE;

/* Calculate Corrector Flux terms and source terms */
calculateFluxtermF() ;
calculateFluxtermG () ;

/* This Routine in damping.c */
calculateSecondOrderDamping() ;

/* This routine also in damping.c */
calculateFourthOrderDamping() ;

/* The will 2nd order damp at the inlet only */
/* inletDamping();*/

/* Calculate State Vector, Corrector Step */
for (j = 1; j < neta-l; ++j)

for (i = 1; i < nxi-l; ++i)
ug(i] [j].a = (0.5 * ((ug[i] [j].a + ugp[i] [j].a) * jacobian[i] [j] -
(deltatime * (fg[i] [j] .a + gg[i] [j].a - sg[i] [j] .a)))

+ 0.5 * (d2[i [j].a + d[i][j].a)) / jacobian[i][j];
ug[i] [j].b = (0.5 * ((ug[i] [j].b + ugp[i] [j].b) * jacobian[i] [j] -
(deltatime * (fg[i][j].b + gg[i][j].b - sg[i][j].b)))
+ 0.5 * (d2[il] [j].b + d[i][j].b)) / jacobian[i][j];

ug[i] [j].c = (0.5 * ((ug[i] [j].c + ugp[i] [j].c) * jacobian[i] [j] -
(deltatime * (fg[i][j].c + gg[i][j].c - sg[i][j].c)))
+ 0.5 * (d2[i] [j].c + d[i][j].c)) / jacobian[i][j];

ug[i] [jI .d = (0.5 * ( (ug[i] [j] .d + ugp[i] [j] .d) * jacobian[i] [j] -
(deltatime * (fg[i] [j].d + gg[i] [j].d - sg[il] [j].d)))
+ 0.5 * (d2[i][j].d + d[i][j].d)) / jacobian[i][j];

ug[i] [j] .e = (0.5 * ( (ug[i] [j].e + ugp[i] [j] .e) * jacobian[il [j] -
(deltatime * (fg[i][j].e + gg[i][j].e - sg[i][j].e)))
+ 0.5 * (d2[i] [j].e + d[i][j].e)) / jacobian[i][j];

calculateTemperature();

boundary();

predictor = TRUE;
time = time + deltatime;
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calculateFluxtermF()
/* depends heavily on the global flag PREDICTOR *

int i, j;

/* Calculate the F[i,j] term (predictor) or f[i-l,j] term (corrector) */
for (j = 1; j < neta-l; ++j)

for (i = 1; i < nxi-1; ++i)

if (predictor) {
fl[i] [j].a = -ug[i] [j] .c * dzdeta[i] [j] + ug[i] [j].b*drdeta[i] [j];
fl[i] [j].b = (pg[i] [j]+(SQ(ug[i] [j].b)/ug[i] [j] .a))*drdeta[i] [j]

- ((ug[i] [j].b*ug[i] [j].c)/ug[i] [j].a) * dzdeta[i] [j];
fl[i][j].c = -(pg[i][j] + SQ(ug[i] j] .c)/ug[i][j].a) * dzdeta[i][j] +

((ug[i] [j .b*ug[i] [j] .c)/ ug[i] [j .a) * drdeta[i] [j];
fl[i] [j].d = (ug[i] [j].d / ug[i] [j].a + RGAS *tg[i] [j]) *

(ugli] [j].b * drdeta[i] [j] - ug[il[j].c * dzdeta[i] [j]);
fl[i] [j].e = -(ug[i] [j].c * ug[i] [j].e/ug[i] [j].a)*dzdeta[i] [j] +

(ug[i] [j] .b * ug[i] [j].e / ug[i)] [j].a) * drdeta[i] [j]

else
fl[i] [j].a=

-ugp[i-l] [j].c * dzdeta[i-l] [j] + ugp[i-l] [j .b*drdeta[i-11 [j];
fl[i] [j].b=

(pgp[i-l] [j]+(SQ(ugp[i-11] [j] .b) iugp[i-1] [j] .a))*drdeta[i-11] [j]
-((ugp[i-11] [j].b*ugp[i-l] [j].c) /ugp[i-ll] [j] .a) * dzdeta[i-l] [j];

fl[i) [j].c=
-(pgp[i-11] [j] + SQ(ugp[i-l] [j].c) /ugp[i-l] [j] .a) * dzdeta[i-1] [j] +

((ugp[i-l] [j].b*ugp[i-l] [j].c)/ ugp i-1] [j] .a) * drdeta[i-1] [j];
fl[i] [j].d=(ugp[i-l] [j].d / ugp[i-1][j].a + RGAS *tg[i-l] [j]) *

(ugp[i-1][j].b * drdeta[i-l] [j] - ugp[i-l][j].c * dzdeta[i-l][j]);
fl[i] [j].e=

- (ugp[i-l] [j].c * ugp[i-l] [j] .e/ugp[i-l] [j] .a)*dzdeta[i-l] [j] +
(ugp[i-l] [j].b * ugp[i-1] [j].e / ugp[i-l] [j].a) * drdeta[i-l] [j];

) /* Ends Else */

/* Calculate the F[i+l][j] term (predictor) or F[i][j] term (corrector) */
for (j = 1; j < neta-l; ++j) C

for (i = 1; i < nxi-l1; ++i) {

if (predictor)

f2[i] [j].a =
-ug[i+l] [j].c * dzdeta[i+l][j] + ug[i+l] [j] .b*drdeta[i+l][j];

f2[i] [j].b =
(pg[i+l] [j]+(SQ(ug[i+l] [j].b)/ug[i+l] [j].a))*drdeta[i+l] [j]

-((ug[i+l][j].b*ug[i+l] [j].c)/ug[i+l][j].a) * dzdeta[i+l][j];
f2[i][j].c =

-(pg[i+l] [j] + SQ(ug[i+l] [j].c)/ug[i+l] [j] .a) * dzdeta[i+l] [j] +
((ug[i+l] [j].b*ug[i+l] [j].c)i ug[i+l] [j] .a) * drdeta[i+l] [j];

f2[i][j].d =
(ug[i+l] [j].d / ug[i+l] [j].a + RGAS *tg[i+l] [j]) *

(ug[i+l] [j] .b * drdeta[i+l] [j] - ug[i+l] [j] .c * dzdeta[i+l] [j]);
f2[i] [j].e =

-(ug[i+l] [j].c * ug[i+l] [j].e ug[i+l] [j] .a)*dzdeta[i+l] [j] +
(ug[i+l] [j] .b * ug[i+l] [j] .e / ug[i+l] [j] .a) * drdeta[i+l] [j];

) /* Ends if *
else (

f2[i][j].a = -ugp i] [j].c * dzdeta[i][j] + ugp[i] [j].b*drdeta[i][j];
f2[i] [j] .b = (pgp[i] [j] +(SQ(ugp[i [j] j .b) ugp[i [j] .a))*drdeta[i] [j]
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-((ugp[i][j] .b*ugp[i] [j].c)/ugp[i][j].a) * dzdeta[i)[j];
f2[i][j].c = -(pgp[i] [j + SQ(ugp[i][j].c)/ugp[i] [j].a) *dzdeta[i][j] +

((ugp[i] [j].b*ugp[i][j].c)/ ugp[i][j].a) * drdeta[i] [j];
f2[i] [j].d = (ugp[i] [j].d / ugp[i] [j].a + RGAS *tg[i] [j]) *

(ugp[i][j].b * drdeta[i] [j] - ugp[i][j].c * dzdeta[i][j]);
f2[i] [j].e = -(ugp[i] [j].c * ugp[i] [j].e/ugp[i] [j].a)*dzdeta[i] [j] +

(ugp[i] [j].b * ugp[i] [j].e / ugp[i] [j].a) * drdeta[i] [j];
/* Ends else loop */

) /* Ends for loops */

/* Calculate Net Flux Vector */

for (j = 1; j < neta-l; ++j)
for (i = 1; i < nxi-l; ++i)

fg[i] [j].a = f2[i] [j].a - fl[i] [j].a;
fg[i] [j].b = f2[i] [j].b - fl[i] [j].b;
fg[i][j].c = f2[i] [j].c - fl[i][j].c;
fg[i] [j].d = f2[i] [j].d - fl[i] [j].d;
fg[i][j].e = f2[i][j].e - fl[i][j].e;

calculateFluxtermG()

int i, j;

/* g[i] [j] term (predictor) or g[i] [j-l] term (corrector) */
if (predictor) (

for (j = 1; j < neta-1; ++j)
for (i = 1; i < nxi-l1; ++i)

gl[i] [j].a = ug i] [j].c * dzdxi[i] [j]-ug[i] [j].b * drdxi[i] [j];
gl[i] [j].b = -(pg[i] [j] + (SQ(ug[i] [j].b)/ug[i] [j].a))*drdxi[i] [j] +

(ug[il] [j].b*ug[i] [j].c/ug[i] [j].a) * dzdxi[i] [j];
gl[i] [j].c = (pg[i] [j] + (SQ(ug[i] [j].c) / ug[i] [j].a)) * dzdxi[i] [j]

(ug[i] [j].b * ug[i][j] .c / ug[i][j].a) * drdxi[i)[j];
gl[i][j .d = (ug[i] [j].d/ug[i][j].a + RGAS* tg[i][j]) *

(-ug[i][j].b * drdxi[i] [j] + ug[i] [j].c * dzdxi[i][j]);
gl[i][j].e = (ug[i][j].c * ug[i][j].e / ug[i][j].a) * dzdxi[i] [j] -

(ug[i][j].b * ug[i][j].e / ug[i][j].a) * drdxi[i][j];

else {
for (j = 1; j < neta-l; ++j)

for ( i = 1; i < nxi-l; ++i)

gl[i] [j].a =
ugp[i][j-l].c * dzdxi[i] [j-l]-ugp[i][j-1].b * drdxi[i] [j-l];

gl[i] [j].b =
-(pgp[i][j-l] + (SQ(ugp[i][j-l] .b)/ugp[i] [j-l].a))*drdxi[i] [j-l] +
(ugp[i] [j-l].b*ugp i] [j-l] .c/ugp[i] [j-l].a) * dzdxi[i] [j-l];

gl[i] [j].c =
(pgp[i][j-l] + (SQ(ugp[i][j- ].c) / ugp[il[j-l].a)) * dzdxi[i][j-l]
(ugp[i] [j-l].b * ugp[i] [j-l].c / ugp[i] [j-l].a) * drdxi[i] [j-l];

gl[i] [j].d =
(ugp[i] [j-l].dugp[i] [j-l].a + RGAS* tg[i][j-1]) *
(-ugp[i][j-l].b * drdxi[i][j-1] + ugp[i][j-l].c * dzdxi[i][j-11]);

gl[i] [j].e =
(ugp[i][j-l] .c * ugp[i][j-l].e / ugp[i][j-l].a) * dzdxi[i][j-1] -
(ugp[i] [j-l] .b * ugp[i] [j-l].e / ugp[i] [j-l].a) * drdxi[i] [j-l];
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/* Calculate G[i] [j+l] term (predictor) or G[i] [j] term (corrector) */
if (predictor) (

for (j = 1; j < neta-l; ++j)
for (i = 1; i < nxi-l; ++i)

g2[i] [j].a =
ugli] [j+l].c * dzdxi[i] [j+l]-ug[i] [j+l].b * drdxi[i] [j+l];

g2[i][j].b =
- (pg[i] [j+l] + (SQ(ug[i] [j+l] .b) /ug[i] [j+l] .a))*drdxi [i] [j+l] +
(ug[i] [j+l] .b*ug[i] [j+l].c/ug[i] [j+l] .a) * dzdxi[i] [j+l];

g2[i] [j].c =
(pg[i] [j+l] + (SQ(ug[i] [j+l].c) / ug[i] [j+l].a)) * dzdxi[i] [j+l] -
(ug[i] [j+l] .b * ug[i] [j+l] .c / ug[i] [j+l] .a) * drdxi[i] [j+l];

g2[i] [j].d =
(ug[i][j+l].d/ug[i] [j+l].a + RGAS * tg[i][j+l]) *
(-ug[i][j+l].b * drdxi[i] [j+l] + ug[i][j+l].c'* dzdxi[i][j+ll);

g2[i][j].e =
(ug[i] [j+l] .c * ug[i] [j+l] .e / ug[il[j+l] .a) * dzdxi[i] [j+l] -
(ug[i] [j+l] .b * ug[i] [j+l] .e / ug[i] [j+l] .a) * drdxi[i] [j+l];

/* Debugging stuff */

j = j;
/* End debugging stuff */

else
for (j = 1; j < neta-l; ++j)

for ( i = 1; i < nxi-l1; ++i)
g2[i] [j].a = ugp[i] [j].c * dzdxi[i] [j]-ugp[i] [j].b * drdxi[i] [j];
g2[i][j].b = -(pgp[i][j] + (SQ(ugp[i][j].b)/ugp[i][j] .a))*drdxi[i] [j] +

(ugp[i] [j].b*ugp[i] [j].c/ugp[i] [j].a) * dzdxi[i] [j];
g2[i][j].c =

(pgp[i] [j] + (SQ(ugp[i] [j .c) / ugp[i][j].a)) * dzdxi[i][j] -
(ugp[i][j].b * ugp[i][j].c / ugp[i][j].a) * drdxi[i][j];

g2[i] [j].d = (ugp[i] [j].d/ugp[i] [j] .a + RGAS* tg[i] [j]) *
(-ugp[i] [j].b * drdxi[i][j] + ugp[i][j].c * dzdxi[i][j]);

g2[i][j].e = (ugp[i] j].c * ugp[i][j].e / ugp[i][j].a) * dzdxi[i][j] -
(ugp[i] [j] .b * ugp[i] [j] .e / ugp[i] [j].a) * drdxi [i] [j];

/* Calculate Net Flux Vector */
for (j = 1; j < neta-l; ++j)

for (i = 1; i < nxi-l1; ++i) (
gg[i] [j].a = g2[i][j].a - gl[i][j].a;
gg[i)] [j .b = g2[i] [j].b - gl[i] [j .b;
gg[i] [j].c = g2[i] [j] .c - gl[i] [j].c;
gg[i] [j].d = g2[i] [j].d - gl[i] [j].d;
gg[i][j].e = g2[i][j].e - gl[i] [j].e;
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int i, j;

/* The source terms in row 0 are NOT calculated so the programs doesn't */
/* Crash when r = 0 */
/* Turn off for debugging */

for (j = 1; j < neta-l; ++j)
for (i = 1; i < nxi-l; ++i)
sg[i] [j].a = -ug[i] [j] .c * jacobian[i] [j] / r[i] [j];
sg[i] [j].b=

-(ug[i] [j].c * (ug[i] [j].b/ug[i] [j].a))*jacobian[i] [j] / r[i] [j];
sg[i][j].c =

-((SQ(ug[i] [j] .c) - SQ(ug[i] [j] .e))/ ug[i] [j] .a) * jacobian[i] [j]/r[i] [j];
sg[i] [j].d = -((ug[i] [j].d+ug[i] [j].a*RGAS*tg[i] [j])*
(ug[i] [j].c/ug[i] [j].a))*jacobian[i] [j] / r[i] [j];
sg[i] [j].e = - 2.0* ((ug[i] [j].c*ug[i] [j].e)/ug[i] [j].a) *

jacobian[i] [j]/r[i] [j];

#if NOSOURCE
/* DEBUG STUFF */
sg[i] [j] .a = 0.0;
sg[i] [j] .b = 0.0;
sg[i] [j] .c = 0.0;
sg[i] [j].d = 0.0;
sg[i) [j].e = 0.0;
/* end debug stuff */

#endif

calculateTemperature()
/* Well, in Scott's code, this is something fancy. I'm just going to read */
/* Off the temperature and not bother to change anything else... */

double pressure;
int i,j;

if (predictor)
for (i = 1; i < nxi-l; ++i)

for (j = 1; j < neta-l; ++j)
pgp[i][j] = (GAMMA-1.0) * (ugp[i] [j].d -

0.5*(SQ(ugp[i][j] .b)+SQ(ugp[i][j] .c)+SQ(ugp[i][j].e))/ugp[i][j].a);
tg[i][j] = pgp[i][j] / (ugp[i] lj].a * RGAS);

else {
for (i = 1; i < nxi-l; ++i)

for (j = 1; j < neta-l; ++j)
pg[i][j] = (GAMMA-1.0) * (ug[i] [j].d -

0.5*(SQ(ug[i] [j].b)+SQ(ug[il] [j] .c)+SQ(ug[i] [j].e))iug[i] [j].a);
tg[i] [j] = pg[i] [j] / (ug[i] [j].a * RGAS);

calculateSourceTerm ()
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/* The io routines for nozzle */
/* Contains the routines getflow(fname) and writefile(fname) and */
/* getgrid(gridname) *,
/* All routines tested and work to SINGLE PRECISION 5/27/92 */
/* The text files simply do NOT save to double precision */

#include <math.h>
#include <stdio.h>
#include "nozzle.h"
#include "globals.h"

#define READASCII 0

getflow(fname)
char fname[];

char binarydatastring[40], statstring[40], ugstring[40];
double scrap[20];
FILE *binarydatafile, *statfile, *ugfile;
int doublesize, i, j, vector5size;

sprintf(binarydatastring, "%s.dat", fname);
binarydatafile = fopen(binarydatastring, "r");
doublesize = sizeof(double);
vector5size = sizeof(vectorS);

fread(&nxi, sizeof(int), 1, binarydatafile);
fread(&neta, sizeof(int),l,binarydatafile);
fread(&time, sizeof (double) ,l,binarydatafile);
fread(&ftheta, sizeof(double),l,binarydatafile);
fread(&iter, sizeof(int), 1, binarydatafile);
fread(scrap, sizeof(double), 8, binarydatafile);
for (i=0; i < nxi; ++i) (

fread (ug[i], vector5size, neta, binarydatafile);
fread (pg[i], doublesize, neta, binarydatafile);

fclose(binarydatafile);

#if READASCII

/* Construct full file names */
sprintf(statstring, "%s.stat", fname);
sprintf(ugstring, "%s.ug", fname);

statfile = fopen(statstring, "r");
ugfile = fopen (ugstring, "r");

if (statfile == NULL II ugfile == NULL)
printf("\n\nUnable to open data files.");
exit();

fscanf(statfile, "%d %d", &nxi, &neta); /* reads number of grid cells */
fscanf(statfile, "%d", &iter);
fscanf(statfile, "%lf", &time);
fscanf(statfile, "%lf", &twall); /* This line is not needed *
fscanf(statfile, "%lf %if", &mdot, &ftheta);

/* Read Inlet conditions */
/* Reads file stat */
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for (j = 0; j < neta; ++j)
fscanf(statfile, "%lf %f"', &hgin[j], &ugin[j]);

/* Read State Vectors */
/* Uses file ug */
for (j = 0; j < neta; ++j)(

for (i = 0; i < nxi; ++i)
fscanf(ugfile, "%lf %if %if %if %if", &(ug[i][j].a), &(ug[i] [j].b),

&(ug [i][j].c), &(ug[i][j].d), &(ug[i][j].e));
fscanf(ugfile, "%lf", &(pg[i][j]));

fclose (statfile);
fclose (ugfile);

#endif

/* Calculate gas temperature */
for (j = 0; j < neta; ++j)

for (i = 0; i < nxi; ++i)
tg[i] [jl=pg[i] [j] /(RGAS * ug[i] [j] .a);

getgrid(gridname)
/* This routine loads the grid and calculates the grid metrics */
/* For the moment, it only loads; 5/12/92 */

char gridname[];

char gridstring[40];
FILE *gridfile;
int i, j;

sprintf(gridstring, "grid.%s", gridname);
gridfile = fopen (gridstring, "r");
if (gridfile == NULL) {
printf ("\nUnable to open grid file...");
exit();

fscanf(gridfile, "%d %d", &nxi, &neta);

/* This routine in memory.c */
allocatememory();

/* Read grid file */
for (j = 0; j < neta; ++j)

for (i = 0; i < nxi; ++i)
fscanf(gridfile, "%lf %1f", &z[i][j], &r[i][j]);

writeflow(fname)
char fname[];

char binarydatastring[40], statstring[40], ugstring[40];
double normalizedgrms, scrap[10];
FILE *binarydatafile, *errorfile, *statfile, *ugfile;
int doublesize, i, j, vector5size;
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printf(*'nWriting Output Files.");

/* First, write the ASCII files */
/* Construct full file names */
sprintf(statstring, "%s.stat', fname);
sprintf(ugstring, "%s.ug", fname);

statfile = fopen(statstring, "w");
ugfile = fopen (ugstring, "w");

if (statfile == NULL II ugfile == NULL)
printf("\n\nUnable to write data files.");
exit();
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for (i = O; i < nxi; ++i)
fprintf(errorfile, "%f %f %f\n", z[i][j], r[i][j],
SQ(pg[i][j]-pg [i][j]));

fclose(errorfile);

fprintf(statfile, "%d\n %d\n", nxi, neta); /* reads number of grid cells */
fprintf(statfile, "%d\n", iter);
fprintf(statfile, "%f\n", time);
fprintf(statfile, "%f\n', twall); /* This line is not needed */
fprintf(statfile, "%f\n %f\n", mdot, ftheta);

/* Write Inlet conditions */
for (j = 0; j < neta; ++j)

fprintf (statfile, "%f\n %f\n", hgin[j], ugin[j]);

/* Write State Vector */
for (j = 0O j < neta; ++j)

for (i = 0; i < nxi; ++i)
fprintf (ugfile, "%f\n %f\n %f\n %f\n %f\n",
ug[i][j].c, ug[i][j].d, ug[i][j].e);

fprintf (ugfile, "%f\n", pg[i][j]);

ug[i][j].a, ug[i] j].b,

/* Close files */
fclose (statfile);
fclose (ugfile);

/* Now write the binary files */
sprintf(binarydatastring, "%s.dat", fname);
binarydatafile = fopen(binarydatastring, "w");
doublesize = sizeof(double);
vector5size = sizeof(vector5);

fwrite(&nxi, sizeof(int), 1, binarydatafile);
fwrite(&neta, sizeof(int),l,binarydatafile);
fwrite(&time, sizeof(double),l,binarydatafile);
fwrite(&ftheta, sizeof(double),l,binarydatafile);
fwrite(&iter, sizeof(int),l,binarydatafile);
fwrite(scrap, sizeof(double), 8, binarydatafile);
for (i=0; i < nxi; ++i) {

fwrite(ug[i], vector5size, neta, binarydatafile);
fwrite(pg[i], doublesize, neta, binarydatafile);

fclose(binarydatafile);

/* Write an errorfile */
errorfile = fopen("errorplot", "w");
fprintf(errorfile, "%d %d\n", nxi, neta);
for (j = 0; j < neta; ++j)
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/* memory.c */
#include <math.h>
#include <stdio.h>
#include "nozzle.h"
#include "globals.h"

allocatememory()
/* This routine actually allocates all the memory */

/* NOTE THAT THERE IS NO ERROR CHECKING HERE; IF THE MACHINE RUNS OUT */

/* OF MEMORY THE PROGRAM CRASHES, NO ANDS IFS ORS or BUTS */

int i, j;

/* Allocate memory */
hgin = (double *) (calloc (neta, sizeof(double)));
ugin = (double *) (calloc (neta, sizeof(double)));
theta = (double *) (calloc (nxi, sizeof(double)));

pg = (double **) (calloc (nxi, sizeof(double *)));
pgO = (double **) (calloc (nxi, sizeof(double *)));
pgp = (double **) (calloc (nxi, sizeof(double *));

tg = (double **) (
r = (double **) (
z = (double **) (
d = (vector5 **)
d2 = (vector5 **)

fl = (vector5 **)
f2 = (vector5 **)

fg = (vector5 **)
gl = (vector5 **)

g2 = (vectorS **)
gg = (vector5 **)
sg = (vectorS **)

sxg = (vector5 **)
syg = (vector5 **)
ug = (vector5 **)

calloc
calloc
calloc
(calloc
(calloc
(calloc
(calloc
(calloc
(calloc
(calloc
(calloc
(calloc
(callo
(callo
(calloc

(nxi, sizeof (double *)
(nxi, sizeof(double *)
(nxi, sizeof(double *)));
(nxi, sizeof(double *)));
(nxi, sizeof(double *)));
(nxi, sizeof(vector5 *)));
(nxi, sizeof(vector5 *)));
(nxi, sizeof(vector5 *)
(nxi, sizeof(vector5 *)));
(nxi, sizeof(vectorS *)))
(nxi, sizeof(vectorS *))
(nxi, sizeof(vector5 *)

c (nxi, sizeof(vector5 *)));
c (nxi, sizeof(vectorS *))
(nxi, sizeof(vector5 *)));
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z[j] = (double *) (calloc(neta, sizeof(double)));
d[j] = (vector5 *) (calloc (neta, sizeof(vector5)));
d2[j] = (vector5 *) (calloc (neta, sizeof(vectorh)));
fl[j] = (vectorS *) (calloc (neta, sizeof(vector5)));
f2[j] = (vectorS *) (calloc (neta, sizeof(vector5)));
fg[j] = (vector5 *) (calloc (neta, sizeof(vector5)));
gl[j] = (vector5 *) (calloc (neta, sizeof(vector5)));
g2[j) = (vector5 *) (calloc (neta, sizeof(vector5)));
gg[j] = (vector5 *) (calloc (neta, sizeof(vector5)));
sg[j] = (vector5 *) (calloc (neta, sizeof(vector5)));
sxg[j] = (vector5 *) (calloc (neta, sizeof(vector5)));
syg[j] = (vector5 *) (calloc (neta, sizeof(vector5)));
ug[j] = (vector5 *) (calloc(neta, sizeof(vector5)));
ugp[j]= (vector5 *) (calloc(neta, sizeof(vector5)));

dxidz[j] = (double *) (calloc (neta, sizeof(double)));
dxidr[j] = (double *) (calloc (neta, sizeof(double)));
detadz[j] = (double *) (calloc (neta, sizeof(double)));
detadr[j] = (double *) (calloc (neta, sizeof(double)));
xirr[j] = (double *) (calloc (neta, sizeof(double)));
xizz[j] = (double *) (calloc (neta, sizeof(double)));
etarr[j] = (double *) (calloc (neta, sizeof(double)));
etazz[j] = (double *) (calloc (neta, sizeof(double)));
jacobian[j] = (double *) (calloc (neta, sizeof(double)));
drdeta[j] = (double *) (calloc (neta, sizeof(double)));
drdxi[j] = (double *) (calloc (neta, sizeof(double)));
dzdeta[j] = (double *) (calloc (neta, sizeof(double)));
dzdxi[j] = (double *) (calloc (neta, sizeof(double)));

ugp = (vectorS **) (calloc (nxi, sizeof(vector5 *
/* Allocate Metrics */

dxidz = (double **) (calloc (nxi, sizeof(double *) );

dxidr = (double **) (calloc (nxi, sizeof(double *)) ;

detadz = (double **) (calloc (nxi, sizeof(double *)));

detadr = (double **) (calloc (nxi, sizeof(double *)));

xirr = (double **) (calloc (nxi, sizeof(double *)))

xizz = (double **) (calloc (nxi, sizeof(double *)));

etarr = (double **) (calloc (nxi, sizeof(double *)) ;

etazz = (double **) (calloc (nxi, sizeof(double *)));

jacobian = (double **) (calloc (nxi, sizeof(double *)));

drdeta = (double **) (calloc (nxi, sizeof(double *)));

drdxi = (double **) (calloc (nxi, sizeof(double *)));

dzdeta = (double **) (calloc (nxi, sizeof(double *)))

dzdxi = (double **) (calloc (nxi, sizeof(double * ));

for (j = O; j < nxi; ++j) {

pg[j] = (double ') (calloc(neta, sizeof(double)));

pg0[j] = (double *) (calloc(neta, sizeof(double));

pgp[j] = (double *) (calloc(neta, sizeof(double));

tg[j] = (double *) calloc (neta, sizeof (double)) ;

r[j] = (double *) (calloc(neta, sizeof (double) ) )
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/* File metrics.c */

/* Contains a routine to calculate grid metrics */
/* UNTESTED; I'm just going to forge ahead.... */

#include <math.h>
#include <stdio.h>
#include "nozzle.h"
#include "globals.h"

calculatemetrics()
/* Calculate the Grid Metrics */

/* Allocate and set up memory */
double **drdnn, **drdxx, **drdxn, **dzdnn, **dzdxx, **dzdxn, **djdeta,

**djdxi;
int i,j;
int netal,nxil;

netal = neta-1;
nxil = nxi-1;

drdnn =
drdxx =
drdxn =
dzdnn =
dzdxx =
dzdxn =
djdeta =
djdxi =

(double **)

(double **)

(double **)

(double **)
(double **)

(double **)
(double **)
(double **)

(calloc (nxi, sizeof(double *)));
(calloc (nxi, sizeof(double *)))
(calloc (nxi, sizeof(double *)));
(calloc (nxi, sizeof(double *)));
(calloc (nxi, sizeof(double *)));
(calloc (nxi, sizeof(double *)));
(calloc (nxi, sizeof(double *)));
(calloc (nxi, sizeof(double *)));

for (j = 0; j < nxi; ++j) (
drdnn[j] = (double *) (calloc (neta, sizeof(double)));
drdxx[j] = (double *) (calloc (neta, sizeof(double)));
drdxn[j] = (double *) (calloc (neta, sizeof(double)));
dzdnn[j] = (double *) (calloc (neta, sizeof(double)));
dzdxx[j] = (double *) (calloc (neta, sizeof(double)));
dzdxn[j] = (double *) (calloc (neta, sizeof(double)));
djdeta[j] = (double *) (calloc (neta, sizeof(double)));
djdxi[j] = (double *) (calloc (neta, sizeof(double)));

for (j = 0; j < neta; ++j)
for (i = 0; i < nxi; ++i)(

if (i == 0 && j == 0) (
dzdxi[i][j]=(z[i+l] [jl-z[i][jl);
dzdeta[i] j]= (z[i] [j+l]-z[i] [j]);
drdxi[i] [j]=(r[i+l] [j]-r[i] [j]);
drdeta[i] [j]=(r[i) [j+l]-r[i] [j]);
drdnn[i] [j]=r[i] [j]-2.0*r[i] [j+l]+r[i] [j+2];
drdxx[i] [j]=r[i] [j]-2.0*r[i+1] [j]+r[i+2 [j];
dzdnn[i) [j]=z[il [j -2.0*z [i] [j+l]+z[i] [j+2]
dzdxx[i] [j]=z[i] [j]-2.0*z[i+l [j]+z[i+2][j];
drdxn[i][j]=(r[i+l] [j+l]-r[i+l] [j]-r[i][j+l]

+r[i] [j]);
dzdxn[i] [j]=(z[i+l] [j+l]-z[i+l] [j]-z[i] [j+l]

+z[i] [j]);

else if (i == 0 && j == netal)
dzdxi[i][j]=(z[i+l] [j]-z[i][jl);
dzdeta[i] [j]= (z [Ii] [j -z[i [j-l]);
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drdxi[i][j]=(r[i+l] [j]-r[i][j]);
drdeta(i][j]=(r[i] [j]-r[i][j-11);
drdnn[i] [j]=r[i][j]-2.0*r[i] [j-l +r[il] [j-2];
drdxx[i] [j]=r[i][jl-2.0*r[i+l] [j]+r[i+2] [j];
dzdnn[i] [j]=z[i] [j]-2.0*z[i] [j-l]+z[il [j-2];
dzdxx[i] j]=z[i] [j]-2.0*z[i+l [j]+z[i+2] [j];
drdxn[i][j]=(r[i+l] [j]-r[i+l] [j-l]-r[i][j]

+r[i] [j-l );
dzdxn[i][jl=(z[i+ll[j]-z[i+l][j-l]-z[i][j]

+z [i] [j-l] );

else if (i == 0 && j < netal && j > 0) (
dzdxi[i [j]=(z[i+l] [j]-z[i][j]);
dzdeta[i][j]=(z[i][j+l]-z[i][j-11)/2.0;
drdxi[i][j]=(r[i+l] [j]-r[i][j]);
drdeta[i] [j]= (r[i][j+l]-r[i] [j-l])/2.0;
drdnn [il] [j=r[il[j+l]-2.0*r[i] [j]+r[i] [j-1l ;
drdxx[i][j]=r[i] [j]-2.0*r[i+l] [j]+r[i+2][j];
dzdnn[i [j]=z[i [j+l]-2.0*z [i] j]+z [i [j-1 ;
dzdxx[i [j]=z[i [j]-2.0*z[i+ll [jl ]+z [i+2] [j];
drdxn[i][j]=0.0*(r[i+l][j+l]-r[i+1 [j-l]-r[i] [j+l]
+r[i] [j-l]);

dzdxn[i] [j]=0.5*(z[i+l] [j+l]-z[i+l] [j-l]-z[i] [j+l]
+z[i] [j-1]);

else if (i == nxil && j == 0) {
dzdxi[i][jl=(z[i] [j]-z[i-l][j]);
dzdeta[i] [j]= (z [i] [j+l]-z[i] [j]);
drdxi [i] [j] =(r[i] [j]-r[i-l] [j );
drdeta[il [j]=(r[i] [j+l]-r[i] [j]);
drdnn[i] [j]=r[i [j]-2.0*r[i] [j+l]+r[i] [j+2];
drdxx[i][j]=r[i][j]-2.0*r[i-11[j]+r[i-2][j];
dzdnn[i] [j]=z[i] [j]-2.0*z[i] [j+l +z[i] [j+2];
dzdxx[i] [j]=z [i][j]-2.0*z [i-1] [j]+z[i-2] [j];
drdxn[il[j]=(r[i][j+l]-r[i] [j]-r[i-l][j+l]

+r[i-l] [j] ) ;
dzdxn[i][j]=(z[il[j+l -z[i][j]-z[i-ll1[j+l]

+z[i-l] [j]);

else if (i == nxil && j == netal)
dzdxi[i][j]=(z[i] [j]-z[i-l][j]);
dzdeta i] [j] =(z[il[j]-z[i][j-l]);
drdxi[il[j]=(r[i] [j]-r[i-l] [j );
drdeta[i] [j]=(r[i][j]-r[i][j-11);
drdnn[i) [j] r[i] [j]-2.0*r[i] [j-l]+rFi] [j-2];
drdxx[i][j]=r i][jl]-2.0*r[i-1) [jl+r[i-2 [j];
dzdnn[i] [j]=z[i] [j]-2.0*z[i] [j-l]+z[i][j-2];
dzdxx[i) [j]=z [i] [j]-2.0*z[i-l- [j]+z[i-2] [j];
drdxn[i [j]=(r[i [j]-r[i][j-l]-r[i-l] [j]

+r[i-1] [j-l]);
dzdxn[i] [j]=(z[i] [j]-z[i] [j-l]-z[i-l] [j]

+z[i-1] [j-1]);

else if (i == nxil && j != netal && j !=0) (
dzdxi[i] [jl=(z[i] [j]-z[i-l] [j]);
dzdeta[i][j]= (z[i] [j+l]-z[i] [j-l])/2.0;
drdxi [il [j]=(r[i] [j]-r[i-11 [jl);
drdeta[i][j]=(r[i] [j+l]-r[i] [j-1] )/2.0;
drdnn[i] [j]=r[i] [j+l]-2.0*r[i) [j]+r[i [j-l];
drdxx[i][j]=r i] [j]-2.0*r[i-l] [j]+r[i-2] [j];
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dzdnn[i][j]=z[i] [j+l]-2.0*z[i] [j]+z[i] [j-1];
dzdxx[i][j]=z[i] [j]-2.0*z[i-l1] [j]+z[i-2][j];
drdxn[i] [j]=O.5*(r[i] [j+l]-r[i] [j-1]-r[i-l] [j+l]

+r[i-11 [j-11);
dzdxn[i] [j]=0.5*(z[i] [j+l]-z[i] [j-l]-z[i-l][j+l]

+z [i-l] [j-l]);

else if (j == 0 && i > 0 && i < nxil) {
dzdxi[i] [j]=(z[i+ll[j]-z[i-1] [j])/2.0;
dzdeta[i] [j]=(z[i] [j+l]-z[i] [j]);
drdxi[il[j]=(r[i+l] j]-r[i-l] [j]) /2.0;
drdeta[i] [j]=(r[i][j+l]-r[i][j]);
drdnn[i] [j]=r[i] [j]-2.0*r[i] [j+l]+r[i] [j+2];
drdxx[i] [j]=r[i+l] [j]-2.0*r[i] [j]+r[i-l] [j];
dzdnn[i] [j]=z[i] [j]-2.0*z[i] [j+l]+z[i][j+2];
dzdxx[i][j]=z[i+l] [j]-2.0*z[i] [j]+z[i-l] [j];
drdxn[i] [j]=0.5*(r[i+l][j+l]-r[i+l] [j]-r[i-l][j+l]

+r[i-11] [j]);
dzdxn[i] [j]=0.5*(z[i+l] [j+l]-z[i+l] [j]-z[i-l] [j+l]
+z[i-l] [j]);

else if (j == netal && i != nxil && i != 0) (
dzdxi[i][j]=(z[i+l] [j]-z[i-1] [j )/2.0;
dzdeta[i] [j]=(z[i][j]-z[i] [j-1]);
drdxi[i][j]=(r[i+l][j]-r[i-l] [j])/2.0;
drdeta[i] [j]-=(r[i] [j]-r[i] [j-l]);
drdnn[i] [j]=r[i] [j]-2.0*r[i] [j-l]+r[i] [j-2];
drdxx[i][j]=r[i+l] [j]-2.0*r[i][j]+r i-11] [j];
dzdnn[i][j]=z[i] [j]-2.0*z[i] [j-l]+z[i] [j-2];
dzdxx[i][j]=z[i+l] [j]-2.0*z[i] [j]+z[i-l][j];
drdxn[i] [j]=0.5*(r[i+l] [j]-r[i+l] [j-l]-r[i-1] [j]
+rli-1] [j-1]);

dzdxn[i] [j]=0.5*(z[i+l] [j]-z[i+l] [j-l]-z[i-1] [j]
+z[i-l] [j-1]);

else
dzdxi[i)[j]=(z[i+l] [j]-z[i-l][j])/2.0;
dzdeta[i] j]= (z[i][j+l] -z[i] [j-11) /2.0;
drdxi[i][j]=(r[i+l] [j]-r[i-l][j])/2.0;
drdeta[i][j]=(r[i][j+l]-r[i][j-1 )/2.0;
drdnn[i] [j]=r[i] [j+l]-2.0*r[i] [j]+r[i] [j-l1;
drdxx[i][j]=r[i+l][j]-2.0*r[i] [j]+r[i-l][j];
dzdnn[i] [j]=z[i] [j+1]-2.0*z[i] [j]+z[i][j- ];
dzdxx[i] [j]=z[i+ll] [j]-2.0*z[i] [j]+z[i-l] [j];
drdxn[i] [j]=0.25*(r[i+l] [j+l]-r[i+l] [j-l]-r[i-1][j+l]

+r[i-l] [j-l1 );
dzdxn[i] [j]=0.25*(z[i+1] [j+l]-z[i+l] [j-l]-z[i-l][j+l]

+z[i-11] [j-l11);

for (j = O; j < neta; ++j)
for (i = O; i < nxi; ++i)

jacobian[i] [j]=dzdxi[i] [j]*drdeta[i] [j];
detadr[i] [j]=dzdxi[i] j]/ jacobian[i] [j];
detadz[i][j]= -drdxi[i][j] jacobian[i][j];
dxidr[i] [j]=O.O;
dxidz[i][j]=drdeta[i [j]' ijacobian[i][j];
djdeta[i] [j]=drdnn[i] [j]*dzdxii] [j] +drdeta [i] [j]*dzdxn[i] [j];
djdxi[i [j]=drdxn[i [j]*dzdxi[i] [j]+drdeta[i] [j]*dzdxx[i] [j];
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/* Calculate the 2nd derivative metrics */
for (j = 1; j < neta-1; ++j)

for (i = 1; i < nxi-1; ++i)
etazz[i][j]= -(dxidz[i] [j]*(drdxx[il [j]+detadz[i] [j]*djdxi[i][j])

+detadz[i][j] * (drdxn[i][j]+detadz[Ci[j]*djdeta[i][j]))
/jacobian[i] [j];

xizz[i] [j]=(dxidz[i] [j]*(drdxn[i] [j]-dxidz[i] [j]*djdxi[il [j])
+detadz [i] [j]*(drdnn[i] [j]-dxidz[i] [j]*djdeta[i] [j]))

/jacobian[i] [j] ;
etarr [i [j]=(dxidr[i] [j]* (dzdxx[i] [j]-detadr[i] [j]*djdxi[i] [j])

+detadr[i] [j]* (dzdxn[i] [j]-detadr[i] [j] *djdeta[i] [j]))
/jacobian[i] [j];

xirr[i] [j]=0.0;

/* Free Memory */
for (j = 1; j < nxi; ++j)

free (drdnn[j]);
free(drdxx[j]);
free(drdxn[j]);
free(dzdnn[j]);
free(dzdxx[j]);
free(dzdxn[j]);
free(djdeta[j]);
free(djdxi[j]);

free (drdnn);
free (drdxx);
free (drdxn);
free(dzdnn);
free(dzdxx) ;
free(dzdxn);
free(djdeta);
free(djdxi);
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/* File time.c */ free (dr);

#include <math.h>
#include <stdio.h>
#include "nozzle.h"
#include "globals.h"

calculatetimestep(deltat)
/* Uses CFL Condition */

/* Appears to work, 5/15/92 */
double *deltat;

double **a, **dz, **dr;
double safety_factor, time;
int i,j;

/* Allocate Memory */
a = (double **) (calloc (nxi, sizeof(double *)));
dz = (double **) (calloc (nxi, sizeof(double *)));
dr = (double **) (calloc (nxi, sizeof(double *)));
for (j = 0; j < nxi; ++j) {

a[j] = (double *) (calloc(neta, sizeof(double)));
dz[j] = (double *) (calloc(neta, sizeof(double)));
dr[j] = (double *) (calloc(neta, sizeof(double)));

safety factor = SAFETY FACTOR;
*deltat = 10000.0;

/* Calculate Derivatives using differencing */
for (j = 1; j < (neta - 1); ++j)

for (i = 1; i < (nxi - 1); ++i)
a[i][j] = sqrt(GAMMA * (pg[i][j] / ug[i][j].a));
dz[i][j] = (z[i+l][j]-z[i-1][j])/2.0;
dr[i][j] = (r[i][j+l]-r[i][j-l])/2.0;

/* Apply CFL Condition */
for (j = 1; j < (neta -1); ++j) (

for (i = 1; i < (nxi -1); ++i)
time=(safety_factor*dz[i][j])/(a[i][j] + fabs(ug[i][j].b/ug[i][j].a));
if (time < *deltat)

*deltat = time;

time=(safety_factor*dr[i][j])/(a[i] [j] + fabs(ug[i] [j].c/ug[i [j].a));
if (time < *deltat)

*deltat = time;

/* Free memory */
for (j = 0; j < nxi; ++j)

free (a[j]);
free (dz[j]);
free (dr[j]);

free (a);
free (dz);
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/* Basic include file for nozzle.c */

/* The axisymmetric, invicid flow navier stokes equation solver */

/* Debugging Flag */
/* Set to true to turn off Source Terms */
#define NOSOURCE 0

/* Inlet Conditions */
/* Presently set for total temperature = 2500 */
#define INLETTEMPERATURE 2358.0
#define INLET DENSITY 0.351

#define INLET Z VELOCITY 2037.5

#define INLET ROTATION RATE 10000.0

/* Timestep Safety Factor */
#define SAFETY FACTOR 0.8

/* Damping Coefficients */
#define DXI2 le-6

#define DETA2 le-6

#define DXI4 0.0

#define DETA4 0.0

/* Moving them lower for the ten thousand case from 8e-7 */

/* For 10000 rad/sec, damping set at 5e-7 */

/* For 5000 rad/sec, I'm moving the damping up to 8e-7 */

/* That didn't work; try moving down to 3e-7

/* Data type for
typedef struct
double x:;
double y;

vector2;

typedef struct

double x;
double y;

double z;
vector3;

typedef struct

double a;
double b;

double c;

double d;
double e;

) vectorS;
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/* For grid.paper, THROATLOCATION = 0.0771 */

/* For grid.paper3 THROAT_AREA = 0.0444 */
/* For grid.paper3 THROAT-LOCATION = 0.600 */
/* for grid.nozzle, THROAT_AREA = 0.0438 */

/* For grid.pipe, THROAT_LOCATION = 1.5764 */
/* for grid.pipe, THROAT_AREA = 0.04445 */

/* For grid.pipe2 and pipe6, THROAT_AREA = 0.0444*/

/* For grid.pipe2 and pipe6, THROATLOCATION = 1.1045 */
#define THROAT AREA 0.0444
#define THROAT LOCATION 1.1045

/* Generic Constants */
#define PI 3.1415926535897932384626
#define TRUE 1

#define FALSE 0
#define EPSILON le-10

#define SQ(X) ((X)*(X))

state vectors */

/* Thermodynamic Constants for H2 */

#define RGAS 4157.3 /* J/kg-K *
#define GAMMA 1.4

/* For NERVA model, CHAMBER_TEMP = 2500.00 *

#define CHAMBER TEMP 2500.0

/* For NERVA model, CHAMBER_P = 3.44e6 *,

#define CHAMBER P 3.44e6

/* Throat Geometry *,,

'* For grid.paper, THROATAREA = 0.04445 *
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extern char predictor;
extern double *hgin,

*theta,
*ugin;

extern double **pg,
**pgp,
**pg0,
**tg;

extern double **r,
**z;

boolean flag for predictoricorrector */
inlet enthalpy */
Upper Wall Angle */
inlet velocity */
Cell pressure */
Predictor pg */
Old Cell Pressures (for Error Calc ) */
Cell temperatures */
Grid points */

extern double dxi2, deta2, /* Second order damping terms */
dxi4, deta4, /* Fourth order damping terms */
dcenterxi2, dcentereta2;

extern double ftheta,
mdot,
time,
twall;

/* For
extern
extern
extern
extern
extern

metrics */
double **dxidz, **d
double **etazz, **j
int nxi, neta;
int iter;
vector5 **d,

**d2,
**fl, **f2,
**fg,
**gl, **g2,
**gg,
**sg,
**sxg,
**syg,
**ug,
**ugp;

xidr, **detadz, **detadr, **xirr, **xizz, **etarr;
acobian, **drdeta, **drdxi, **dzdeta, **dzdxi;

/* number of xi and eta grid cells */

/* Fourth Order Damping Term */
/* Second Order Damping Term */
/* Used in Flux; here for speed purposes */
/* Flux term F */
/* Used in FluxG; here for speed purposes */
/* Flux term G */
/* Source Term */
/* Damping Term */
/* Damping Term */
/* State Vector */
/* Copy of State Vector for Predictor */

/* For debugging */

extern FILE *debuggingoutput;
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This section contains the code used to model the flow of particles. This code is designed to

be used as a post-processor, and takes results from the fluid modeling code as input. It is

based on a differential equations solver from Lawrence Livermore Laboratories called Lsode.

Lsode is written in FORTRAN, and it is not included in this listing. One routine written in

C, called integrate, is called by Lsode on each iteration and is used to calculate the new

values at each time step.

This code consists of five modules and one header file.

particle.c: contains the main routine and the integrate routine

dlsode.f: (not listed) contains the differential equation solver Isode.

io.c: contains input/output routines

memory.c: allocates dynamic memory

vector.c: contains vector manipulation routines

And the header file

particle.h: contains general information
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***********************************************************************/

/* Test Particle Tracking Programs */
/* This takes a fluid data file taken from "nozzle", places a particle */
/* In it, and traces the path of the particle */
/* At present, it only works with certain grid geometries */
/* Uses dlsode, a module written in FORTRAN */
/* By bamf; 7/7/92 ,/

******************************************************************
/* Modified to include pressure forces on the particle, 10/7/92
/* By bamf */
#include <mat*************h.h>**************************************************h.h>
#include <math.h>
#include <stdio.h>
#include "particle.h"

/* Programming Flag; if set to TRUE, particles begin with the flow's swirl
Velocity. If not, they begin with a swirl velocity of 0, but a non-zero
axial velocity */

#define INITIAL SWIRL 0

/* Programming Flag; if set to TRUE particle tracks will be saved also.
in GNUplot format. Be careful using this; it chews up disk space
rapidly. */

#define SAVEPLOT 0

#define DELTAT 0.000005
#define SMALLESTRADIUS le-6
#define LARGEST RADIUS le-4
#define INCREMENTRADIUS ((le-4-le-6)/10)

/* Declaration of Globals */
cylindrical_coord fluid_velocity, **particle_velocity, **particleposition;
double **r, **z; /* The grid */
double **pg, **tg; /* The temperature */
double ftheta, time, **timerecord, mdot;
double particle_radius,

particle_mass,
temperature;

int iter, nxi, neta;
vectorS **ug;

main(argc, argv)
int argc;
char *argv[];

extern void integrate(), jacobian(), Isode_();

/* Flags and Stuff for dlsode() */
int neq = NUMBER OF_EQUATIONS;
double variables[UMBER_OF EQUATIONS];
double time, time2;
int itol = 1;
double atol = le-10, rtol = le-5;
/* rtol was originally le-5 */
,* atol was le-15 */

N* Number of Equations */
/* The Variables */
/* Starting and Ending Time */
/* Random Flag */
/* Error Variables */

int iopt = 0, istate, itask = 1; /* Flags */
int lrw = 20 + 16 * NUMBER_OF_EQUATIONS; /* Length of real work array *,
double rwork[20 + 16 * NUMBER OF EQUATIONS] ;

int liw = 20;
int iwork[20];
int mf = NONSTIFF;
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/* Length of integer work array */
/* Integer Work Array */
/* Type of System Flag */

/* Ok, useful variable declarations */
char answer[30]; /* Dummy answer variable */
char dataname[100], fname[100], gridname[100]; /* File Names */
char multipleparticle, /* Boolean Flag */

particle_found; /* Boolean Flag */
double initial_radius,

initial swirl_velocity,
initialvelocity,
particle_density;

double inlet radius,
particle_alignment angle; /* Initial theta of the line

of released particles */
int endstep[MAX_PARTICLE],

i, j, 1, s, /* Dummies */
gridr, /* The coordinates of the grid */
gridz, /* cell containing the particle */
number_ofparticles, /* # of particles to release */
particle count,
p_count,
step;

/* For analysis purposes */
#include "data.h"

/* Take the inputs either from the command line or the old way */
if (argc > 1) (

readCmdLine(argc, argv, dataname, fname, gridname, &particle-density,
&particle_radius);

printf("\nFluid file: %s", fname);
printf("\nGrid file: %s", gridname);
printf("\nData file: %s", dataname);
printf("\nParticle Density: %f", particledensity);
printf("\nParticle Radius: %f", particle_radius);
multiple particle = TRUE;
number ofparticles = 200;

else (
/* First, get the flow data file information */
printf("\nParticle Tracking Programs, Version 1");
printf(\nWhat is the run file prefix? ");
scanf("%s", fname);
printf('\nWhat is the Grid file suffix? ");
scanf("%s", gridname);
printf("\nWhat is the data file prefix? ");
scanf("%s", dataname);
printf("\nwhat's the particle density? ");
scanf("%lf", &particle_density);
printf("\nWhat's the particle radius? ");

scanf("%lf", &particle radius);
multiple_particle = TRUE;
printf("\nNumber of particles to release: ");
scanf("%d", &number_of_particles);

/* Load the Fluid Data Files */
/* This routine is in io.c */
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getgrid(gridname);
getflow(fname);

/* Allocate memory */

allocateTrajectoryRecords(number_ofparticles);

***** ***************************************************************

for (particle-radius = SMALLEST-RADIUS; particle radius <= LARGEST_RADIUS;

particle-radius = particleradius + INCREMENTRADIUS)

*********************** ******************************************* /

printf('\nFile: %s Radius: %g", fname, particle radius);

/* Clear the particle count array */

for (i = 0; i < lend; ++i)

for (j = 0; j < send; ++j)

particlecaught[i][j] = 0;

particle_mass = particle_density * (4.0/3.0) * PI

* particle radius*particleradius*particleradius;

inletradius = r[0][neta-l];

for(particlecount = 0; particle_count < number of particles;
++particle-count) {

/* Set initial Velocities *
/* These set ur = 0, uz = inlet axial; utheta = 0.0; */
/* First, "find" the particle on the inlet grid */

if (multiple particle)

initialradius =

((double) particle_count(double)number_of_particles) * inlet-radius;

else

initial radius = DEFAULTR;

particle_found = FALSE;

for (j = 0; j < neta && particle_found == FALSE; ++j)
if (r[0][j] > initial_radius)

if (j > 0)

j = j-l; /*(compensates for the j about to be added on)

particlefound = TRUE;

#if PARTICLESWIRL

if (j == neta)

initial velocity = ug[0][j-l].b / ug[0][j-l].a:

initial_swirl velocity = ug[O][j-1].e / ug[0][j-1].a;

else

initial_velocity = ug[0] [j] .b / ug[0] [j] .a;
initial_swirl_velocity = ug[0] [j].e / ug[0] [j] .a;

particle_alignmentangle = 0.0;

#else

if (j==neta) (

initial velocity = ug[0 [j-l].b / ug[0][j-11].a;

initial_swirlvelocity = 0.0;

else {

initial_velocity = ug[0] [j] .b / ug[0] [j-1] .a;
initialswirl_velocity = 0.0;

#endif

variables[0]
variables[l]
variables[2)
variables[3]
variables[4]
variables[5]

= 0.0;

= initial_swirl_velocity;
= initialvelocity;
= initialradius;
= particle_alignment_angle;
= 0.0;

particle velocity[particle_count]
particle_velocity[particlecount]
particlevelocity[particle_count]
particle_position[particle_count]
particle-position[particle_count]
particle_position[particle count]

/* Ur */
/* Utheta */
/* Uz */
/* r */
/* theta */
/* z */

[0].r = variables[0];
[0].theta = variables[l];
[0].z = variables[2];
[0].r = variables[3];
[0].theta = variables[4];
[0].z = variables[5];

timerecord[particle_count][0] = 0.0;
time = 0.0;
time2 = 0.0;

istate = 1;

/* Start Tracking the Particle */
for (step = 0; step < MAX_STEP; ++step)

time2 = time2 + DELTAT;

/* This is a FORTRAN call, so you include the underscore and call */
/* By reference */
isode_(integrate, &neq, variables, &time, &time2, &itol, &rtol, &atol,

&itask, &istate, &iopt, rwork, &irw, iwork, &liw, jacobian,
&mf);

if (istate < 0)
printf("Error: %d", istate);
exit();

/* Record the new position and stuff */
particle_velocity[particlecount][step+l].r = variables[0];
particle_velocity[particlecount] [step+l].theta = variables[l];
particle_velocity[particle_count][step+l].z = variables[2];
particleposition[particle_count][step+l].r = variables[3];
particle position[particle_count][step+l].theta = variables[4];
particleposition[particle_count][step+l].z = variables[5];
timerecord[particle_count][step+l] = time;

/* Check to see if the particle has run off the grid */
particle found = FALSE;
for (i = 1; (i < nxi) && (particlefound == FALSE); ++i)

if (z[i][0] > particle position[particle_count] [step].z)(
gridz = i - 1;
particle found = TRUE;

/* Deal with the case where the particle has run off the grid... *
if (particle found == FALSE)

goto end_tracking;

particle found = FALSE;
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for (j = 1; (j < neta) && (particle found == FALSE); ++j)
if (r[gridz][j] > particleposition[particle_count] [step].r)
gridr = j - 1;
particle found = TRUE;

if (particle_found == FALSE)
goto end tracking;

endtracking:
endstep[particle count] = step;
if (!(particlecount%20))

printf("\nParticle track %d ended at step: %d", particle count,
) /* ends "for (count)" */
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step) ;

/* Save to File */
/* This routine in io.c */
/* saveTrack(endstep, fname, number_of-particles, step); */

/* Saves particle tracks in gnuplot format */
/* It's awfully memory intensive if you use it.... */

#if SAVE PLOT
savePlot(dataname, endstep, number of_particles, particle_radius);

#endif

/* Does a particle removal analysis */
for (p_count = 0; pcount < number of particles;

++p_count) {
/* Reset the length counter for each track */
1 = 0;

/* Start tracking particle */
for (step = 0; step < endstep[pcount]; ++step)

/* First, find the particle */
for (i = 0, particle found=FALSE;

i < nxi && particle found == FALSE; ++i)
if (z[i][0] > particle_position[p count][step].z)

if (i > 0)
i--;

particle_found = TRUE;

/* Then, check and see if it has crossed cut off length */
if (length[l] < particle position[p_count][step].z) (

/* Now check to see if the particle has been caught */
for (s = 0; s < send; ++s) {

if (sratio[s] > (0.0 - EPSILON) &&
(particle_position[p_count] [step].r >=

(r[i] [neta-l] - sratio[s] * r[i] [neta-l])))
++particle_caught [1] [s];

/* Advance to it goes to the next length *
++1;
/* If we've reached the end of the lengths, we can stop counting */
if (length[l] < (0.0+EPSILON))

step = endstep[p_count];

/* Now, at the end of the track, find the particle and see if it left

Or collided with a wall */
for (1 = 1; 1 < lend; ++) {

if (length(l] > particle_position[p_count][endstep[p_count]-l].z) {
/* Since it collided with the wall, assume it got caught in all
/* Slimming ratios */
for (s = 0; s < send; ++s)
++particle_caught [1] [s];

/* Now convert the "particles caught" to eta and true eta */
/* (eta = linear efficiency ratio; trueeta = true efficiency) */
for (1 = 0; 1 < lend; ++1)

for (s = 0; s < send; ++s)
if (sratio[s] >= (0.0-EPSILON) && length[l] > 0.0)

eta[l] [s] =
(double) particlecaught[l] [s] / (double) number ofparticles;

trueeta[l][s] = 1.0 - SQ(I.0 - eta[l][s]);

else (
eta[l1[] = -1.0;
trueeta[l][s] = -1.0;

/* Now we need to write the output file; routine in io.c */
saveData(dataname, eta, lend, length, particle radius, send,
sratio, trueeta);

/*************************************************************

) /* Ends the "particle_radius" loop
***************************************************************

double calculateIntegralCrossSection(temperature)

/* This gets the integral cross section for viscosity calculations */
/* Using a lookup table and linear interpolation */
/* Tested numerically, but not graphically, 6/17/92 */
double temperature;

double omega, omegal, omega2;
double templ, temp2;

/* This is a lookup table */

if (temperature < 300.0) {
omegal = 7.340; omega2 = 6.747;
omega = omegal - (omega2 - omegal

else if (temperature < 500.0) {
omegal = 7.340; omega2 = 6.747;
templ = 300.0; temp2 = 500.0;
omega = omegal + (omega2-omegal)

else if (temperature < 1000.0)
omegal = 6.747, omega2 = 6.002;
templ = 500.0; temp2 = 1000.0;
omega = omegal + (omega2-omegal)

else if (temperature < 1500.0)
omegal = 6.002; omega2 = 5.593;
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/* Temperatures */

* (300.0 - temperature) / 200.0;

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);
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templ = 1000.0, temp2 = 1500.0;
omega = omegal + (omega2-omegal)

else if (temperature < 2000.0)
omegal = 5.593; omega2 = 5.328;
templ = 1500.0; temp2 = 2000.0;
omega = omegal + (omega2-omegal)

else if (temperature < 2500.0) (

omegal = 5.328; omega2 = 5.020;
templ = 2000.0; temp2 = 2500.0;
omega = omegal + (omega2-omegal)

else if (temperature < 3000.0)

omegal = 5.020; omega2 = 4.732;
templ = 2500.0; temp2 = 3000.0;
omega = omegal + (omega2-omegal)

else if (temperature < 3500.0)

omegal = 4.732; omega2 = 4.495;

templ = 3000.0; temp2 = 3500.0;
omega = omegal + (omega2-omegal)

else if (temperature < 4000.0)

omegal = 4.495; omega2 = 4.293;

templ = 3500.0; temp2 = 4000.0;
omega = omegal + (omega2-omegal)

else if (temperature < 4500.0)

omegal = 4.293; omega2 = 4.119;
templ = 4000.0; temp2 = 4500.0;

omega = omegal + (omega2-omegal)

else if (temperature < 5000.0)

omegal = 4.119; omega2 = 3.966;
templ = 4500.0; temp2 = 5000.0;
omega = omegal + (omega2-omegal)

else if (temperature < 5500.0)

omegal = 3.966; omega2 = 3.831;
templ = 5000.0; temp2 = 5500.0;

omega = omegal + (omega2-omegal)

else if (temperature < 6000.0)

omegal = 3.831; omega2 = 3.710;
templ = 5500.0; temp2 = 6000.0;
omega = omegal + (omega2-omegal)

else if (temperature < 6500.0)

omegal = 3.710; omega2 = 3.598;
templ 6000.0; temp2 = 6500.0;
omega = omegal + (omega2-omegal)

else if (temperature < 7000.0)

omegal = 3.598; omega2 = 3.497;

templ 6500.0; temp2 = 7000.0;
omega = omegal + (omega2-omegal)

else if (temperature < 7500.0) (

omegal = 3.497; omega2 = 3.405;

* (temperature-templ) (temp2-templ);

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);

* (temperature-templ) / (temp2-templ);

templ = 7000.0; temp2 = 7500.0;
omega = omegal + (omega2-omegal) * (temperature-templ) / (temp2-templ);

else if (temperature < 8000.0) {
omegal = 3.405; omega2 = 3.320;
templ = 7500.0; temp2 = 8000.0;
omega = omegal + (omega2-omegal) *

else if (temperature < 8500.0)
omegal = 3.320; omega2 = 3.230;
templ = 8000.0; temp2 = 8500.0;
omega = omegal + (omega2-omegal) *

(temperature-templ) / (temp2-templ);

(temperature-templ) / (temp2-templ);

else if (temperature < 9000.0) {
omegal = 3.230; omega2 = 3.166;
templ = 8500.0; temp2 = 9000.0;
omega = omegal + (omega2-omegal) * (temperature-templ) / (temp2-templ);

else if (temperature < 9500.0) (
omegal = 3.166; omega2 = 3.097;
templ = 9000.0; temp2 = 9500.0;
omega = omegal + (omega2-omegal) *

else if (temperature < 10000.0)
omegal = 3.097; omega2 = 3.033;
templ = 9500.0; temp2 1= 0000.0;
omega = omegal + (omega2-omegal) *

else if (temperature < 11000.0)
omegal = 3.033; omega2 = 2.913;
templ = 10000.0; temp2 = 11000.0;
omega = omegal + (omega2-omegal) *

else if (temperature < 12000.0) {
omegal = 2.913; omega2 = 2.806;
templ = 11000.0; temp2 = 12000.0;
omega = omegal + (omega2-omegal) *

else if (temperature < 13000.0) (

omegal = 2.806; omega2 = 2.710;
templ = 12000.0; temp2 = 13000.0;
omega = omegal + (omega2-omegal) *

else if (temperature < 14000.0) {

omegal = 2.710; omega2 = 2.622;
templ = 13000.0; temp2 = 14000.0;
omega = omegal + (omega2-omegal) *

else if (temperature < 15000.0) (

omegal = 2.622; omega2 = 2.542;

templ = 14000.0; temp2 = 15000.0;

omega = omegal + (omega2 = omegal)

else
omegal = 2.622; omega2 = 2.542;

omega = omega2 + (omega2-omegal) *

(temperature-templ) / (temp2-templ);

(temperature-templ) / (temp2-templ);

(temperature-templ) / (temp2-templ);

(temperature-templ) / (temp2-templ);

(temperature-templ) / (temp2-templ);

(temperature-templ) / (temp2-templ);

* (temperature - templ) / (temp2-templ);

(temperature - 15000.0) / 1000.0;

omega = omega * le-20;

return (omega};
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double calculateViscosity(temperature)

/* This calculates the viscosity of H2 gas */
/* Takes only temperature as input */
/* Based on the viscosity formula used by Scott in his thesis */
/* This is the first order approximation for the viscosity of an */
/* ideal gas; numerically all check to order of magnitude 6/17/92 */
double temperature;

double calculateIntegralCrossSection(), omega, viscosity;

omega = calculateIntegralCrossSection(temperature);
viscosity = 2.6693e-26 * sqrt(GAS_MOLECULARWT * temperature) / omega;

return(viscosity);

void integrate(neq, t, y, ydot)
/* This routine is called from the FORTRAN routine d1sode */
/* It calculates and breaks down the drag forces on a sphere and is valid */
/* within 10% for 0 < Re < 2x10^5 */
/* It's relatively computational inefficient at the moment, as there's a */
/* lot of variable renaming that goes on to make it more readable ..... */
/* Under construction, 7/9/92 */
int *neq;

double *t, y[], ydot[];

char particle_found;
cylindricalcoord

drag,
fluid_unit_vector,

in Inertial frame */
particle_v,
relativevelocity,
relative_unitvector;

velocity direction */
int gridr, gridz, i, j;
double

Cd,
drag_force,
fluid_speed,
relative_speed,
Re,
rho,
viscosity;

double calculateViscosity();
extern double dot(), magnitude();

/* Drag Force Vector */
/* Unit vector in the dir. of Fluid flow

/* Particle Velocity Vector */
/* Particle velocity in fluid frame */
/* Inertial unit vector in relative

/* Drag Coeff. */
/* Drag force magnitude */
/* Fluid speed in inertial frame */
/* Particle speed in fluid frame */
/* Flow Reynolds number */
/* Fluid Density */

/* First, find the cell that the particle is in. */

/* Caution: this find routine */
/* Makes the assumption that the grid lines are straight in the y dir. */
particle_found = FALSE;

for (i = 1; (i < nxi) && (particlefound == FALSE); ++i)
if (z[i)[0] > y[5])

gridz = i - 1;

particle found = TRUE;

/* Deal with the case where the particle has run off the grid. */
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/* If the particle is off the grid, give it acceleration = 0 so it */
/* Will continue on its way off the grid... */
if (particlefound == FALSE)
ydot[0] = 0.0;

ydot[l] = 0.0;

ydot[2] = 0.0;
goto end_integration;

particle_found = FALSE;
for (j = 1; (j < neta) && (particle_found == FALSE); ++j)

if (r[gridz][j] > y[3]) 
gridr = j - 1;
particle found = TRUE;

if (particlefound == FALSE)
ydot[0] = 0.0;

ydot[l] = 0.0;
ydot[2] = 0.0;

goto end_integration;

/* Set fluid conditions */
/* This should be changed to interpolate values instead of reading them */
fluid_velocity.r = ug[gridz][gridr].c / ug[gridz][gridr].a;
fluid_velocity.theta = ug[gridz][gridr].e / ug[gridz][gridr].a;
fluid velocity.z = ug[gridz][gridr].b / ug[gridz][gridr].a;
rho = ug[gridz][gridr].a;

temperature = tg[gridz][gridr];
viscosity = calculateViscosity(temperature);

/* Define the particle_v vector */
particlev.r = y[0];
particle_v.theta = y[l];
particle_v.z = y[2];

/* Ok; calculate drag forces */
/* First, we need the flow Reynold's number */
fluidspeed = magnitude(&fluidvelocity);

relativevelocity.r = fluid_velocity.r - particle_v.r;
relative_velocity.theta = fluid_velocity.theta - particle_v.theta;
relativevelocity.z = fluid_velocity.z - particle_v.z;

relative_speed = magnitude(&relativevelocity);
Re = 2.0 * particle_radius * rho * relative_speed / viscosity;

/* Now for the magnitude of the drag forces */
if (Re > EPSILON)
Cd = (24.0 / Re) + 6.0 / (1.0 + sqrt(Re)) + 0.4;

else
Cd = 0.0;

drag_force = 0.5 * rho * SQ(relative_speed) * Cd * PI

* particle radius * particle_radius;

scaleVector(&relative velocity, 1.0/relativespeed, &relative_unit vector);
/* Then multiply by drag */
scaleVector(&relative_unit_vector, drag_force, &drag);

if (y[3] > EPSILON) (
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/* Particle Forces are added here */
ydot[0] = SQ(y[l])/y[3] + drag.r/particle mass -

(4.0/3.0) *PI*SQ(particleradius) *particle_radius*SQ ( [1 ) *
ug[gridz] [gridr].a / (particlemass * y[31);

ydot[l] = drag.theta / particle_mass - y[0]*y[l/y [3];

else
ydot[0] = drag.r / particlemass;
ydot[l] = 0.0;

ydot[2] = drag.z / particlemass;

if (ydot[2] < 0.0)
ydot[2] = ydot[2];

end integration:
ydot[3] = y[0];
if (y[3] > EPSILON)

ydot[4] = y[l] / y[3];
else

ydot[4] = 0.0;
ydot[5] = y[2];

void jacobian ()
/* This routine is called from dlsode */
/* It's a dummy routine; it doesn't do anything */

int j;
j = 0;
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/* io.c */
/* Contains input/output routines for particle */
/* Under construction 6/15/92 *
/* Written by David Oh */

#include <math.h>
#include <stdio.h>
#include "particle.h"
#include "globals.h"

getflow(fname)
/* This routine loads the flow data; works as of 6/16/92 */

char fname[];

char statstring[40], ugstring[40];
FILE *statfile, *ugfile;
int i, j;
double scrap;

/* scrap integer */

/* scrap double */

/* Construct full file names */
sprintf(statstring, "%si%s.stat", FLOWDIRECTORY, fname);
sprintf(ugstring, "%si%s.ug", FLOWDIRECTORY, fname);

statfile = fopen(statstring, "r");
ugfile = fopen (ugstring, "r");

if (statfile == NULL I ugfile == NULL)
printf("\n\nUnable to open data files.");
exit();

fscanf(statfile, "%d %d", &nxi, &neta); /* reads number of grid cells */
fscanf(statfile, "%d", &iter);
fscanf(statfile, "%if", &time);
fscanf(statfile, "%if", &scrap); /* This line is not needed */
fscanf(statfile, "%if %if", &mdot, &ftheta);

/* Read State Vectors */
/* Uses file ug */
for (j = 0; j < neta; ++j){

for (i = 0; i < nxi; ++i)
fscanf(ugfile, "%lf %if %If %if %if", &(ug[i)[j].a), &(ug[i][j].b),

&(ug[i][j] .c), &(ug[i] [j].d), &(ug[i][j].e));
fscanf(ugfile, "%If", &(pg[i] [j ));

/* Calculate gas temperature */
for (j = 0; j < neta; ++j)

for (i = 0; i < nxi; ++i)
tg[i] [j]=pg[i [j]i/(RGAS * ug[i][j].a);

fclose (statfile);
fclose (ugfile);

getgrid(gridname)
/* This routine loads the grid; works as of 6/16/92 */
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char gridname[];

char gridstring[40];
FILE *gridfile;
int i, j;

sprintf(gridstring, "grid.%s", gridname);
gridfile = fopen (gridstring, "r");
if (gridfile == NULL) (
printf ("\nUnable to open grid file...");
exit();

fscanf(gridfile, "%d %d", &nxi, &neta);

/* This routine in memory.c */
allocatememory();

/* Read grid file */
for (j = O; j < neta; ++j)

for (i = 0; i < nxi; ++i)
fscanf(gridfile, "%If %if', &z[i][j], &r[i][j]);

readCmdLine(argc, argv, dataname, fname, gridname, particledensity,
particle radius)
/* This is a command line parser. It reads the unix commandline */
/* This format of the line is: */
/* particle [fluidfile] -G [gridfilename] -D [datafilename]

-d particledensity -r particle radius */
char *argv[], dataname[], fname[], gridname[];
double *particle density, *particle radius;
int argc;

char *s;

if (sscanf (*++argv, "%s", fname) == 0) {
printf("Error reading Fluid File name.");
readerror();

argc--;
while (--argc > 0 && (*++argv)[0]=='-')

s = argv[0] + 1;
switch (*s)
case 'D':

if (sscanf (*++argv,
printf("Error reading Data
readerror() ;

argc--;
break;

case 'G':
if (sscanf (*++argv,

printf("Error reading Grid
readerror() ;

"%s", dataname) == 0) (
file name.");

"%s", gridname) == 0)
file name.");

argc--;

break;
case 'd':

if (sscanf (*++argv, "%If", particle density) == 0) (
printf("Error reading Particle Density.");
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readerror();

argc--;
break;

case 'r':
if (sscant (*++argv, "%if", particleradius) == 0) {

printf("Error reading Particle Radius.");
readerror();

argc--;
break;

readerror()

printf("\nError reading the command line.\n");
exit();

saveData(dataname, eta, lend, length, particleradius, send, sratio, trueeta)
char dataname[];
double **eta, length[], particle radius, sratio[], **trueeta;
int lend, send;
/* Saves the analyzed data file as a text file */
/* Hopefully formatted for conversion to Mac Excel */

char outputstring[50], outputstring2[50];
FILE *output, *output2;
int 1, s;

sprintf(outputstring, "%s/%s.%.0f.data", DATADIRECTORY, dataname,
particle_radius/ile-6);

sprintf(outputstring2, "%s/%s.%.Of.truedata", DATADIRECTORY, dataname,
particle_radius/le-6);

output = fopen(outputstring, "w");
output2 = fopen(outputstring2, "w");

/* Write header */

for (1 = 0; 1 < lend && length[l] > (0.0 + EPSILON); ++)
fprintf(output, " t%.3f", length[ll);
fprintf(output2, "\t%.3f", length[l]);

for (s = 0; s < send && sratio[s] >= (0.0 - EPSILON); ++s)

fprintf(output, " n%.3f t", sratio[s]);
fprintf(output2, "'n%.3f\t", sratio[s] ) ;
for (1 = 0; 1 < lend && length[l] > 0.0; ++1)

fprintf(output, "%.3ft", eta[l][s]);
fprintf(output2, "%.3f\t", trueeta[l][s]);

fclose output);
fclose(output2);

savePlot fname, endstep, number_ofparticles, particle radius)
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char fname[];
double particle_radius;
int number ofparticles, endstep[];

char outputstring[50];
FILE *output;
int i, particle_count;
double x, y, z;

/* Ok; we have to loop thru the particles */
for (particle_count=0;

particlecount<number_ofparticles;++particlecount)(
/* Open data file */
sprintf(outputstring, "%s/%s.%.Of.%d", PLOTDIRECTORY, fname,
particle_radius/le-6, particle_count);
output = fopen(outputstring, "w");
if (output == NULL) (
printf("\nUnable to open plot file.");
exit();

/* Insert a key at the top of the file */
fprintf(output, "#####\n");
fprintf(output, "# Particle Track Gnuplot Data File\n");
fprintf(output, "# X Y Z\n");
fprintf(output, "#####\n");
for (i = 0; i < endstep[particlecount]; ++i)
x = particleposition[particle_count][i].r *
cos (particle_position[particle_count] [i].theta);

y = particleposition[particle_count] [i].r *
sin(particle_position[particle_count] [i].theta);
z = particle position[particle_count][i].z;
fprintf(output, "%f %f %f\n", x, y, z);

/* Different File Format */
/* fprintf(output, "#####\n");

fprintf(output, "# 2-d Gnuplot data file \n");
fprintf(output, "# Run: %s\n", fname);
fprintf(output, "# z r\n");
for (i = 0; i < endstep[particle_count]; ++i)
fprintf(output, "%f %f\n", particleposition[particle_count] [i].z,
particle_position[particle_count] [i].r);

fclose(output);

saveTrack(endstep, fname, numberof_particles, step)
char fname[];
int endstep[], number of particles, step;

char outputstring[50] ;
FILE *output;
int i, particle count = 0;

for (particle count = 5; particle count < 8; ++particle count) {
sprintf(outputstring, "Countdata:particle.%d.%s", particlecount, fname);
output = fopen (outputstring, "w");
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if (output == NULL) (
printf("\nUnable to open output file...");
exit();

fprintf(output, "%d", endstep[particlecount]);
for (i = 0; i < endstep[particle count]; ++i)
fprintf(output, "\n%f", timerecord[i]);
fprintf(output, "\n%f %f %f", particle_position[particle count] [i].r,
particle position[particle_count][i].theta,
particleposition[particle count][i].z);
fprintf(output, "\n%f %f %f", particle velocity[particle count] [i].r,
particle velocity[particlecount][i].theta,
particle velocity[particle count][il.z);

fclose(output);
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/* memory.c */
/* Memory allocation routines for "particle"; written by bamf */
/* Under development 6/16/92 *
#include <math.h>
#include <stdio.h>
#include "particle.h"
#include "globals.h"

allocatememory()
/* This routine actually allocates all the memory */
/* NOTE THAT THERE IS NO ERROR CHECKING HERE; IF THE MACHINE RUNS OUT */
/* OF MEMORY THE PROGRAM CRASHES, NO ANDS IFS ORS or BUTS */

int j;

/* Allocate memory */
pg = (double **) (calloc (nxi, sizeof(double *)));

tg = (double **) (calloc (nxi, sizeof(double *)));
r = (double **) (calloc (nxi, sizeof(double *)));
z = (double **) (calloc (nxi, sizeof(double *)));
ug = (vector5 **) (calloc (nxi, sizeof(vector5 *)));

for (j = 0; j < nxi; ++j) (
pg[j] = (double *) (calloc(neta, sizeof(double)));
tg[j] = (double *) (calloc (neta, sizeof (double)));
r[j] = (double *) (calloc(neta, sizeof(double)));
z[j] = (double *) (calloc(neta, sizeof(double)));
ug[j] = (vector5 *) (calloc(neta, sizeof(vector5)));

allocateTrajectoryRecords(number_of particles)
int number of particles;
/* This routine allocates the particle velocity, time, and

int number of steps;
int j;

position records *

number of steps = MAX STEP;

particleposition = (cylindrical coord **) (calloc(number of particles,
sizeof (cylindricalcoord *)));
particlevelocity = (cylindrical_coord **) (calloc(number of_particles,
sizeof(cylindrical_coord *)));
timerecord = (double **) (calloc (number of particles, sizeof(double *)));

for (j = 0; j < numberof _particles; ++j) (
particle_position[j] = (cylindricalcoord *) (calloc(numberofsteps,

sizeof(cylindricalcoord) ));
particle velocity[j] = (cylindrical coord *) (calloc(numberofsteps,

sizeof (cylindrical coord ));
timerecord[j] = (double *) (calloc(number of steps, sizeof(double)));
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/* Useful vector manipulation routines */
/* To use, you must have the cylindrical coord data type defined */
/* In the program header file. */
/* By bamf */
#include <math.h>
#include <stdio.h>
#include "particle.h"

/*#define SQ(X) ((X)*(X)) */

double dot(a, b)
/* I think this dot product formula is only valid for two similarly oriented */
/* Frames, so be careful using it for cylindrical coord */
cylindrical coord *a, *b;

double dot;

dot = a->r * b->r + a->z * b->z + a->theta * b->theta;
return(dot);

double magnitude(a)
/* Calculates the magnitude of a 3-d vector */
cylindrical coord *a;

double b;

b = sqrt (SQ(a->r) + SQ(a->z) + SQ(a->theta));
return(b);

scaleVector(a, b, c)
/* Multiplies vector a by scalar b and returns the result in c */
cylindrical_coord *a, *c;
double b;

c->r = a->r * b;
c->theta = a->theta * b;
c->z = a->z * b;
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/* This file contains analysis parameters for the program particle.c */
/* It specifies the skimming ratios and cylinder lengths to be analyzed */
/* Negative lengths correspond
/* By bamf, 7 ,24/92 */

char alreadyfound[ll];
double **eta, **trueeta;
double length[ll],

sratio[ll];
int Istart;
int particle_caught[11] [11];

int lend = 11,
send = 11;

to blank fields *

/* Array of booleans; see algorithm for why */

/* Array of cylinder "cut off" lengths */
/* Array of skimming ratios */

/* Record of how many particles are caught */
/* Of form particle caught[length][sratio] */

/* Section Lengths *
length[0] = 0.001;
length[l] = 0.2;
length[2] = 0.4;
length[3] = 0.6;
length[4] = 0.8;
length[5] = 1.0;
length[6] = 0.0;
lengthf7] = 0.0;
length[8] = 0.0;
length[9] = 0.0;
length[10] = 0.0;

/* Skimming ratios */
/* Note that these are local values (i.e. no assumption is made that the */
/* flow is going down a cylinder; it could be moving down a nozzle too */
sratio[0] = 0.0;
sratio[l] = 0.02;
sratio[2] = 0.04;
sratio[3] = 0.06;
sratio[4 = 0.08;
sratio[5] = 0.10;
sratio[6] = 0.125;
sratio[7] = 0.15;
sratio[8] = 0.175;
sratio[9] = 0.20;
sratio[10 = -1.0;

/* Allocate memory for the "eta" and "trueeta" arrays */
/* ("eta" is linear efficiency ratio, "trueeta" is the true efficiency */
eta = (double **) (calloc (lend, sizeof(double *)));
trueeta = (double **) (calloc (lend, sizeof(double *)));

for (1 = 0; 1 < lend; ++I) {
eta[l] = (double *) (calloc (send, sizeof(double)));
trueeta[l] = (double *) (calloc (send, sizeof(double)));

I
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/* This is the header file for particle.c */
/* Directories for reading and writing data */
#define DATADIRECTORY "Countdata2"
#define FLOWDIRECTORY "Flowdata2"
#define PLOTDIRECTCDRY "Plotdata"

/* These are flags for d1sode. They designate the type of system and the */
/* Number of equations in it */
#define NONSTIFF 10

#define STIFF USER FULL JACOBIAN 21
#define STIFF AUTO FULL JACOBIAN 22

#define STIFF USER BANDED JACOBIAN 24
#define STIFFAUTOBANDED JACOBIAN 25
#define NUMBER OF EQUATIONS 6

/* Data type for State Vectors */
typedef struct

double x;
double y;

) vector2;

typedef struct

double x;

double y;

double z;
) vector3;

typedef struct

double r;

double z;
double theta;

) cylindrical_coord;

typedef struct

double a;

double b;
double c;
double d;

double e;

) vector5;

/* Generic Constants */
#define EPSILON le-8

#define PI 3.1415926535897932384626

#define FALSE 0

#define TRUE 1

/* Gas Characteristics *,
#define RGAS 4157.3
#define GAMMA 1.4

#define GAS MOLECULAR WT 2.0
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#define SQ(X) ((X)*(X))

/* J/kg-K */

/* Default particle starting position */
#define DEFAULT THETA 0.1

#define DEFAULT_R 0.1;

#define MAX PARTICLE 300
#define MAX_STEP 400

/* A useful Macro *,

/* Maximum number of time steps */
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