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Abstract

We briefly review the Standard Model of the particle physics focussing on the gauge

hierachy problem and the naturalness problem regarding the stabilization of the light

Higgs mass. We list the alternative models which address the hierachy problem in

addition to conventional Supersymmetric models and Composite models. They include

extra dimensional models and Little Higgs models.

We investigate the production of heavy WH at the linear e+e− collider at high centre-

of-mass energies at 3 and 5 TeV using the Littlest Higgs model where the global group

is SU(5)/SO(5). In certain region of the parameter space, the heavy boson induced

signals could be distinguishable from the Standard Model background.

Based on tree-level open-string scattering amplitudes in the low string-scale scenario,

we derive the massless fermion scattering amplitudes. The amplitudes are required to

reproduce those of the Standard Model at tree level in the low energy limit. We then

obtain four-fermion contact interactions by expanding in inverse powers of the string

scale and explore the constraints on the string scale from low energy data. The Chan-

Paton factors and the string scale are treated as free parameters. We find that data from

the neutral and charged current processes at HERA, Drell-Yan process at the Tevatron,

and from LEP-II put lower bounds on the string scale MS, for typical values of the

Chan-Paton factors, in the range MS ≥ 0.9 − 1.3 TeV, comparable to Tevatron bounds

on Z ′ and W ′ masses.

We consider the low-energy stringy corrections to the 4-fermion scattering at the lin-

ear e+e− collider at the 500-GeV centre-of-mass energy. The signals look similar to the
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contributions from the Kaluza-Klein (KK) graviton exchange but could be distinguish-

able if there is sufficient number of events. Theoretically, the stringy signals contain

both spin 1 and 2 corrections while the KK contains only spin 2.

We calculate the tree-level open-string amplitudes for the scattering of four massless

particles with diphoton final states. These amplitudes are required to reproduce those

of standard model at the tree level in the low energy limit. After low energy stringy

corrections, we found that they have similar form to the same processes induced by

exchange of the Kaluza-Klein (KK) excitations of graviton in ADD scenario. Using this

similarity, we apply constraints on the KK mass scale MD to the string scale MS. The

results are consistent with constraints from the 4-fermion scattering, about 0.6 − 0.9

TeV.

We construct tree-level four-particle open-string amplitudes relevant to dilepton and

diphoton production at hadron colliders. We expand the amplitudes into string reso-

nance (SR) contributions and compare the total cross-section through the first SR with

the Z ′ search at the Tevatron. We establish a current lower bound based on the CDF

Run I results on the string scale to be about 1.1 − 2.1 TeV, and it can be improved to

about 1.5 − 3 TeV with 2 fb−1. At the LHC, we investigate the properties of signals

induced by string resonances in dilepton and diphoton processes. We demonstrate the

unique aspects of SR-induced signals distinguishable from other new physics, such as

the angular distributions and forward-backward asymmetry. A 95% C.L. lower bound

can be reached at the LHC for MS > 8.2− 10 TeV with an integrated luminosity of 300

fb−1. We emphasize the generic features and profound implications of the amplitude

construction.

We discuss the stringy gauge “singlet” interaction induced by stringy dynamics for
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scattering of n > 3 particles. Existence of this stringy interaction could lead to stringent

bound on the string scale in the braneworld scenario when it is subject to experimental

constraints on proton decay.

We discuss IR limit of four-fermion scattering amplitudes in braneworld models in-

cluding intersecting-branes and SUSY SU(5) GUT version of it. With certain com-

pactification where instanton effect is negligible, grand unification condition in D6-D6

intersecting-branes scenario subject to experimental constraint on proton decay pro-

vides possibility for upper limit on the string scale, MS, through relationship between

the string coupling, gs, and the string scale. We discuss how IR divergence is related

to number of twisted fields we have to introduce into intersection region and how it

can change IR behaviour of tree-level amplitudes in various intersecting-branes models.

Using number of twisted fields, we identify some intersecting-branes models whose tree-

level amplitudes are purely stringy in nature and automatically proportional to gs/M
2
S

at low energy. They are consequently suppressed by the string scale. For comparison, we

also derive limit on the lower bound of the string scale from experimental constraint on

proton decay induced from purely stringy contribution in the coincident-branes model,

the limit is about 105 TeV.
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Chapter 1

Introduction

There are four fundamental interactions that exhibit themselves at the energies we can

observe up to date, around 100 GeV. They are electromagnetism, weak, strong and grav-

itational interactions. The first three interactions can be formulated in terms of quantum

gauge theories while the gravity is described successfully only at the classical level, the

Einstein’s General Relativity Theory. Electromagnetic, strong, and gravitational inter-

actions are transmitted by massless particles, namely photon, gluon and graviton. The

weak interaction is transmitted by massive vector bosons, the Z and W . The vector

gauge bosons have spin 1 and the graviton has spin 2. The high-energy dependence of

the three gauge interactions is proved to be characterized by finite number of parameters

including the cut-off scale (i.e. renormalisability in the effective field-theory viewpoint)

and the finite quantum predictions are guaranteed.

On the contrary, the “renormalisability” that was proved in the quantum gauge

interactions cannot be extended to the spin-2 interaction that gives Einstein theory of

gravitation as the classical limit. The failure of quantum gravity to give finite prediction

at the quantum level suggests the need for radical changes in the framework of the
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quantization scheme. It should be emphasized that this is the problem of the formalism

at the most fundamental level. The Grand Unification of the gauge interactions (GUT)

will not induce “miracle” to solve the problem of the quantum gravity.

The idea of replacing the point particle with the finite-size object was originated in

strong interaction but proved to be the most promising candidate for the finite quantum

theory of gravitation as well as the gauge interactions. This is the strongest motivation

of why we should consider string theoretic framework as a serious candidate of the

fundamental quantum interactions, it provides for the first time, the consistent way to

quantize gravity with finite number of degrees of freedom in the unifying picture with

the other gauge interactions.

At the less fundamental level even within the quantum gauge theoretic formalism,

there exist the phenomenological problems. One is the hierachy problem, namely the

enormous mass gap between the electroweak scale (100 GeV) and the UV scale which

could be the GUT scale (1016 GeV) or the Planck scale (1018 GeV). This actually leads

to the naturalness/fine-tuning problem of the parameters in the SM in order to suppress

the 1-loop contribution to the Higgs mass.

We will start with the brief review of the Standard Model (SM). Then we will discuss

the alternative models which address the hierachy/naturalness problem in the Standard

Model.



3

1.1 The Standard Model (SM)

The Gauge Sector

In the context of the renormalizable quantum gauge theoretic formalism, almost all

of the essential experimental facts can be explained consistently in the most straight

forward way by the following Lagrangian [1, 2],

L = LEW + LQCD (1.1)

with

LEW = iψ̄γµDµψ − 1

4
Wµν · Wµν −

1

4
BµνBµν + LΦ (1.2)

LΦ = |DµΦ|2 − µ2|Φ|2 − λ|Φ|4 + LY ukawa (1.3)

LQCD = iψ̄aγ
µDab

µ ψb −
1

4
Gµν

a Ga
µν (1.4)

where

Wµν = ∂µWν − ∂νWµ − gWµ × Wν (1.5)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − igf abcGµbGνc (1.6)

Dµ = ∂µ + igWµ · T + ig′
1

2
BµY (1.7)

Dab
µ = ∂µδ

ab + igsGµ · Tab
s . (1.8)

T(Ts) are the generators of SU(2)L(SU(3)c), the electroweak (EW) and quantum chro-

modynamics (QCD) gauge group. The flavor indices are suppressed. The color indices

are suppressed in the electroweak interaction and expressed as a, b, etc. in the QCD La-

grangian. The fermions are all in the fundamental representation and the gauge bosons
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T T3
1
2
Y Q

νeL
1
2

1
2

−1
2

0

eL
1
2

−1
2

−1
2

−1

uL
1
2

1
2

1
6

2
3

dL
1
2

−1
2

1
6

−1
3

eR 0 0 −1 −1

uR 0 0 2
3

2
3

dR 0 0 −1
3

−1
3

Table 1.1: The weak quantum numbers of the first-generation fermions in the Standard

Model

are in the adjoint representation of the SM gauge group SU(3)c×SU(2)L×U(1)Y . While

the electroweak eigenstates of the fermions are the mixing of the mass eigenstates, the

QCD eigenstates are assumed simply to be the mass eigenstates through the definition of

“kinematical masses” which are generated through the vev (vacuum expectation value)

of the color-singlet scalar doublets in the conventional SM Higgs mechanism.
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The Fermion-Higgs Sector and the EW breaking

The SM fermions have chiral interactions due to the SU(2)L × U(1)Y gauge charges.

The chiral leptons (quarks) can be expressed by the weak doublets and singlets as

ψj
L =









νj
L(uj

L)

`jL(dj
L)









(1.9)

ψj
R = νj

R(uj
R) and `jR(dj

R) (1.10)

After the spontaneous symmetry breaking SU(2)L × U(1)Y → U(1)em with only QED

symmetry remained in the vacuum, the masses of fermions are generated by the vev v

of the SU(2)L scalar doublets

Φ =









φ+

φ0









(1.11)

= exp

(

iζ(x) ·T
v
√

2

)









0

(v +H(x))/
√

2









, (1.12)

through the Yukawa coupling

LY ukawa = −
√

2

v

[

Md
ijψ

di
R Φ†ψj

L +Mu
ijψ

ui
R (iτ2Φ

∗)†ψj
L

]

+ h.c. (1.13)

where the real field ζ1(x), ζ2(x), ζ3(x) and H(x) have zero vev. ψu(d) refers to the u(d)-

type quark and neutrino (lepton). Mu(d) is the mass matrix of u(d)-type quark and

neutrino (lepton). The spacetime dependent phase of the scalar fields in Eqn. (1.12)

can be absorbed into the redefined fields and the three Goldstone bosons ζ1(x), ζ2(x),

and ζ3(x) will appear “eaten” by the three gauge bosons W+,W−, and Z through the

term |DµΦ|2. The new EW fields in the unitary gauge after the symmetry breaking are

defined by the effective Lagrangian

LEW = LKE − m

v
Hψ̄ψ + Lem + Lneutral + Lcharged + LHiggs (1.14)
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T T3
1
2
Y Q

φ+ 1
2

1
2

1
2

1

φ0 1
2

−1
2

1
2

0

Table 1.2: The weak quantum numbers of the complex scalars in the Standard Model

with

Lem = −eQψ̄γµψAµ (1.15)

Lneutral = − g

cos θW
ψαγ

µgαψαZµ (1.16)

Lcharged = − g√
2
ψi

Lγ
µ(T+W+

µ + T−W−
µ )ψi

L (1.17)

LHiggs =
1

4
g2W+W−(v +H)2 +

1

8

g2

cos2 θW
ZZ(v +H)2 − V (1.18)

and

V =
µ2

2
(v +H)2 +

λ

4
(v +H)4, (1.19)

where gα = T3 − Q sin2 θW ,−Q sin2 θW for α = L,R, and tan θW = g′/g. θW is the

Weinberg angle, representing the mixing between B and W 3 to form the photon A =

B cos θW +W 3 sin θW , and the Z = −B sin θW +W 3 cos θW . W± = (W 1 ∓ iW 2)/
√

2 are

the charged gauge bosons from the mixing of the original W 1,2.

In this “unitary gauge” where unitarity is manifest only by the physical fields, the

three gauge bosons will therefore become massive with masses given by MW = gv/2

and MZ = gg′v/(2e) = MW/ cos θW . The single massless gauge boson remaining is

identified as photon which couples to fermions with charge Q = T3 + Y/2 and therefore

the couplings are related by 1/g2 + 1/g′2 = 1/e2.
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It is important to note that there are two essential processes in deriving the final

effective Lagrangian that we call the SM. First we mix W 3 and B with a fixed mixing

angle θW , the mixing process. Then we break the EW symmetry “spontaneously” by

Higgs mechanism to ensure its renormalizability, the symmetry breaking process. The

Lagrangian still have all of the original symmetry while the vacuum has only U(1)em

at low energy. In most extensions of the SM, e.g. technicolor, Little Higgs or Higgsless

models, while the mixing process remains unchanged, the symmetry breaking part gets

modified or altered by other means.

1.1.1 Quark Flavour Mixing in the SM

There are three generations of fermions which have exactly the same gauge interactions

to the gauge bosons. Each copy has exactly the same gauge charges and the only

difference between them is the mass. Generically, the weak eigenstates in Eqn. (1.16,

1.17) are related to the mass eigenstates by the mixing unitary matrices,

ui = Uiqq for q = u, c, t (1.20)

di = Diq′q
′ for q′ = d, s, b (1.21)

for both doublets and singlets. It turns out that the interaction involving singlets (right-

handed fermions) and the neutral current are in the same form with the mass eigenstates

replacing the weak states, no mixing effect is observable. The mixing becomes observable

only in the charged current interaction as V = U †
LDL,

Lcharged = − g√
2

(

qLγ
µW+

µ Vqq′q
′
L + q′LV

∗
q′qγ

µW−
µ qL

)

. (1.22)

Therefore the mixing effectively appears as the mixing of (d, s, b) → (d′, s′, b′) through

the matrix Vqq′.
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1.1.2 Global Symmetries of the SM

The SM has accidental (and thus global) symmetries. Baryon (U(1)B) and lepton

(U(1)L) numbers are the most obvious ones, separately conserved in each generation.

They are the relic of the original global flavour symmetry U(3)5 broken by the Yukawa

coupling. U(1)B and U(1)L are anomalous but U(1)B−L is not and thus can be gauged in

some extension of the SM [3, 4]. In extension of the SM with Majorana mass term of the

neutrino, the sterile (gauge singlet) right-handed neutrino NR can induce a high mass

and provide a natural “seesaw” mechanism to give a very small left-handed neutrino νL

mass. The Majorana mass term violates the lepton number explicitly and we are left

with two Majorana fermions νL and NR per generation.

In the EW breaking Higgs sector, the SM has the “custodial” (global) symmetry

SU(2)L+R in the hypercharge-decoupling limit g′ → 0. This custodial symmetry is the

relic of the approximate (since g′ is not exactly zero) global symmetry SU(2)L×SU(2)R

before the scalar doublets get the vev. After the symmetry breaking, the three Goldstone

bosons are eaten and become the longitudinal components of Z and W±. The Z and

W± form an SU(2)L+R triplet and therefore MZ = MW in the g′ → 0 limit. In terms of

the parameter ρ = M 2
W/M

2
Z cos2 θW , the custodial symmetry SU(2)L+R implies that the

one-loop radiative correction from the Higgs to the masses of the gauge bosons must be

proportional to g′2, and thus suppressed. In the MS scheme, the 1-loop Higgs radiative

correction to the ρ parameter is

ρ̂ ≈ 1 − 11GFM
2
Z sin2 θW

24
√

2π2
ln
m2

h

M2
Z

(1.23)

This contribution provides us the estimation of the bound on the Higgs mass from

the EW precision measurements of the masses of the gauge bosons. Additionally, the
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Parameter Value SM value

mt[GeV] 176.1 ± 7.4 176.9 ± 4.0

MW [GeV] 80.454 ± 0.059 80.390 ± 0.018

MZ [GeV] 91.1876 ± 0.0021 91.1874 ± 0.0021

ΓZ[GeV] 2.4952 ± 0.0023 2.4972 ± 0.0012

Γ(had)[GeV] 1.7444 ± 0.0020 1.7435 ± 0.0011

Γ(inv)[MeV] 499.0 ± 1.5 501.81 ± 0.13

Γ(`+`−)[MeV] 83.984 ± 0.086 84.024 ± 0.025

Table 1.3: Some important global best fit values of the EW parameters from the precision

measurements [15]

similar relation from the heavy fermion loop correction which is the dominant radiative

contribution leads to the estimation of the top quark mass from the EW precision data

before the discovery of the top quark at the Fermilab.

EW precision measurements show that the value of ρ parameter is very close to

1 [2]. Custodial symmetry is actually proven to be sufficient to produce ρ = 1 at the

leading order and therefore it is well motivated that any physics responsible for the

EW symmetry breaking (conventional Higgs mechanism or new physics models) should

possess custodial symmetry in the Higgs sector as an approximate symmetry (become

exact when g′ → 0).
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Some EW parameters best fit values are given in Table 1.3. In the on-shell scheme,

the value of xW ≡ sin2 θW = 0.22280 ± 0.00035 and αs(MZ) = 0.1213 ± 0.0018. The

corresponding 95% CL upper limit on the Higgs mass is MH < 246 GeV.
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Chapter 2

Models of Physics beyond the

Standard Model

The SM is successful in explaining most of the experimental data in particle physics up

to date. If we assume the EW sector remains perturbative to energies higher than 1

TeV and beyond, we need the SM Higgs to be light, few hundreds GeV. The light Higgs

will restore unitarity of the tree-level scattering involving massive EW gauge bosons at

the energy around TeV scale by cancelling the contributions from the eaten Goldstone

bosons from the spontaneous symmetry breaking. However, SM cannot explain, in a

natural way, the stability of light Higgs mass under rediative corrections from within

the SM particle content. The contributions from the one-loop diagrams to the Higgs

mass are

− 3

8π2
λ2

t Λ
2 from the top (2.1)

1

16π2
g2Λ2 from the gauge boson (2.2)

1

16π2
λ2Λ2 from the Higgs (2.3)
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where λt is the top Yukawa coupling and Λ is the UV cut-off of the loop integral. For

the corrections from these contributions to be less than one-tenth of the tree-level Higgs

mass (or the contribution itself to be less than 10 times of the physical Higgs mass), the

new physics scale Λ is expected to be around 2 TeV [5].

There are models which address the hierachy/naturalness problem of the SM’s pa-

rameters. In 4 dimensions, there are supersymmetric extension of the SM, the composite

models, the Little Higgs models, etc. Recently there is the class of models with extra

dimensions.

2.1 SUSY models

Supersymmetry (SUSY) is the generalized spacetime symmetries of quantum field theory

that transforms fermion to boson and vice versa. The basic consequence is that there

is the same number of bosons and fermions and that the masses of the fermion-boson

superpartners are the same if SUSY is an exact symmetry. Phenomenological facts imply

that SUSY must be broken or else we would see the degeneracy of masses of fermions

and bosons in the SM. The TeV-scale SUSY could induce the loop contributions to

the Higgs mass from the TeV-scale superpartners which have the opposite signs to the

ones from the SM. The net quadratic dependence of the cut-off scale of the 1-loop mass

corrections will be suppressed and the Higgs mass is stabilized without the need for the

fine tuning.

The minimal supersymmetric extension of the SM (MSSM) is the model where there

is one superpartner for each SM particle, and TWO hypercharge Y = ±1 Higgs dou-

blets and their partners. This Higgs structure is the minimal one without anomaly in
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the SUSY framework. The requirement of the analyticity of the superpotential which

generates the Yukawa couplings forces us to have one Higgs supermultiplet for u and d

type quarks separately. This requirement does not exist in the SM inwhich we have only

one Higgs doublet.

MSSM with the R-parity, R = (−1)3(B−L)+2S , provides a way to prevent too-fast

proton decay and to give a candidate for cold dark matter (CDM). The SM particles

are R-even states and the superpartners are R-odd ones. The lightest supersymmetric

particle (LSP) is therefore stable and can be serve as a CDM candidate.

There are 3-4 approaches to break SUSY apart from the conventional spontaneous

breaking within MSSM content which has been proved to be very difficult (if not im-

possible). They are gravity-mediated, gauge-mediated, anomaly-mediated, and gaugino-

mediated SUSY breaking scenarios. All of these have the “hidden” sector consisting

of particles which are singlet (neutral) under the SM gauge groups where the SUSY is

broken. The broken SUSY is mediated to the “visible” MSSM sector by various means.

In gravity-mediated scenario, SUSY breaking is mediated to visible sector by gravi-

tational interaction [6, 7]. SUSY will be gauged to be local symmetry and there is the

superpartner state of graviton with spin 3/2 called gravitino. In gauge-mediate scenario,

there is additional “messenger” sector which is charged under the SM groups [8, 9].

The messengers will couple directly with the hidden sector and generate its own broken

SUSY spectrum. The breaking then is mediated to the visible MSSM sector by virtual

exchange of the messengers.

The braneworld-inspired SUSY breaking scenarios, the anomaly-mediated[10] and

gaugino-mediated [11], postulate two branes separately located in the extra dimension.

The MSSM particles are more localized to one brane and the SUSY breaking sector is
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localized on the other. The messengers in both scenarios are the field propagating in the

bulk of the extra dimension. Finally, there is a scenario where SUSY appears broken in

4 dimension by the boundary conditions of the MSSM fields in the 5th dimension [12,

13] (Scherk-Schwarz mechanism [14]).

2.2 Composite models and strong EW at TeV scale

Quarks and leptons could be made of constituents tightly bound together. At low energy,

the effects of the compositeness are characterized by higher dimensional operators being

suppressed by the inverse powers of the composite scale Λ, the cut-off scale. The effective

dominant chiral-invariant Lagrangian is of the contact form between 4 fermions that

reads [15]

L =
g2

2Λ2
ηαβ(ψαγµψα)(ψ′

βγ
µψ′

β), (2.4)

where α, β = L,R, the chirality of the fermion. This kind of interaction is induced

by the constituent exchange and thus appears as dimension 6 operator at low energy.

We also expect to see excited states of the SM’s fermions such as excited electron and

quarks.

In the composite model, color triplet and antitriplet constituents can pair up to form

a color singlet which we can identify with leptons. In this case, there is the color octet

partners of the leptons, and they can interact via the Lagrangian

L =
gs

2Λ

(

¯̀a
8σ

µνF a
µνηα`α + h.c.

)

, (2.5)
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where a is the color index and gs is the strong coupling.

In order to resolve the hierachy problem, Λ should be about few TeVs. The current

lower bounds on the contact interact [15] from the LEP are actually about 3 TeV. The

constraints get much stronger when analyzed as global fit with the low energy atomic

parity violation experiment, about few tens of TeV.

2.3 The extra dimensional models

The major scenarios are large extra dimension (ADD [16] scenario), curved extra dimen-

sion (RS [17] scenario), and braneworld scenario. There is overlapping between different

scenarios such as the branes models with large compactified extra dimensions or with

curved extra dimensions. There is also universal extra dimension model (UED) where

all of the SM particles have Kaluza-Klein (KK) states and the compactification scale

is of a TeV scale [18]. UED can be embedded in the braneworld model where the SM

particles are open-string states confined to stack of D4-branes (for 1 extra dimensional

UED) wrapping TeV−1-size extra dimension. In this sense, braneworld models contain

most of the extra dimensional scenarios as the high string-scale limits. The only direct

phenomenologically unique aspect of braneworld models is the stringy dynamics of the

scattering that we will investigate in the most detailed in the subsequent chapters.

The ADD Scenario

The ADD scenario assumes graviton propagating freely in the bulk of 4 + n dimension

while the SM particles are confined to the subspace of 4 dimensional spacetime. In

this way, it identifies the UV cut-off scale to be the quantum gravity scale, MD, which
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could be as low as few TeVs in this “fixed-brane” scenario. By integrating out the extra

dimensional degrees of freedom from the 4 + n Einstein-Hilbert action

S =
∫

d4xdny
√
− detG

[

1

2
M2+n

D R
]

(2.6)

to obtain the 4 dimensional effective action

S4D =
∫

d4x
√

− detG4

[

1

2
M2

P lR4

]

. (2.7)

We have the relationship

M2
P l = VnM

2+n
D (2.8)

where Vn is the volume of the compactified extra dimensional space. The large numerical

value of the Planck scale can be accounted by the large numerical value of the volume

of the compactified space, and the genuine quantum gravity scale MD could be of TeV

scale. An example is when n = 2, V ' (200µm)n, MD could be about 10 TeV. The

enormous mass gap between the EW scale and UV scale vanishes, and it is possible to

have the quantum gravity scale to be as low as few TeVs.

The RS Scenario

For the RS scenario, the extra dimension is a curved interval (the whole bulk is AdS5

geometry) with 2 branes as boundaries, one is our low energy universe and the other will

show up at the Planck scale and hence named “Planck brane”. The spacetime metric is

ds2 = e−2kyηµνdx
µdxν − dy2 (2.9)

where y ∈ [0, πR] is the coordinate of the 5th dimension. The dependence of the warp

factor multiplying to the 4d line element shows that the geometry is non-factorizable.
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The quantum gravity scale MD is related to MP l by

M2
P l =

M3
D

k
(1 − e−2kRπ). (2.10)

The values of k andMD are assumed to be of order ofMP l, satisfying the above condition.

In the simplest models with k/MP l < 0.1, kR ' 10, the effective scale at the second brane

at y = πR is of TeV scale. The graviton field is assumed to be concentrated at the y = 0

brane and the SM particles can be localized at the second brane with the physical scale

Λ ≡ MP le
−kRπ ∼ 1 TeV. Since k ∼ 1018 GeV, R becomes very small.

The bulk graviton KK states have mass mn = xnΛk/MP l, where xn are the the roots

of the first-order Bessel function J1. Effectively, while the zero-mode graviton coupling is

suppressed by the Planck scale, the KK gravitons coupling is suppressed by the physical

scale Λ which is of order of TeV.

The Braneworld Scenario

String theory allows the existence of the Dp-branes where the open string ends. p is the

number of spatial dimensions of the brane and the world volume of the Dp-brane is a

1 + p dimensional spacetime. We can identify the SM particles to be open-string states

naturally confined to the subspace of the Dbranes and graviton is the spin-2 closed-string

state that can propagate freely in the bulk spacetime. The weakness of gravity, with

respect to the gauge interactions of the SM particles, follows from a simple fact that

graviton propagates in higher dimensional space than the SM particles. The quantum

gravity scale and the string scale MS again can be as low as order of TeV and rich

phenomenology is within reach.

The gauge symmetry of the open-string states can be realized by the Chan-Paton
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method [19]. Namely, we attach the additional degrees of freedom to the ends of the

open string. These degrees of freedom can be represented by matrices due to the fact

that open string has two ends. The amplitudes of the open string scattering depend

only on the trace of these Chan-Paton matrices and therefore there exists the symmetry

of transformation acting on these Chan-Paton matrices, i.e. the transformation which

leaves the trace invariant. The symmetry group could be U(N) or SO(N) and remark-

ably it will be promoted to “local” gauge symmetry through the construction of vertex

operator and 3-point amplitudes [20].

Since all of the string models provide field theory limits when E/MS → 0, it is

hard to find a way to uniquely “prove” the validity of the string theory by means of

the symmetries aspect and the particle spectrum. The most direct stringy effect is the

stringy dynamics of the amplitudes, the existence of the string resonances (SR). We will

investigate the stringy signals induced by the stringy dynamics in Chapter 4,5, and 6.

2.4 The Little Higgs models

In a class of model where Higgs is identified with the pseudo-Goldstone boson generated

from the global symmetries breaking, if the symmetries are broken by two or more gauge

couplings (collective breaking), then the Higgs mass is free from the quadratic dependence

of the cut-off scale at the 1-loop level. This class of models is called the Little Higgs

models (LH).

Generically, LH has a number of global symmetries that guarantee the masslessness

of the Higgs. These symmetries are broken by the gauge, Yukawa and scalar couplings

but the Higgs mass is still protected to be massless by the remaining global symmetries in
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each breaking term. The small Higgs mass is induced at multi-loop level when there are

two or more of symmetry-breaking terms involved, what-so-called “collective breaking”.

The Higgs now become the pseudo-Goldstone boson.

The symmetry breaking in the LH is again assumed to occur around f = 1 TeV and

the scatterings of the theory remain perturbative until the cut-off scale 4πf at about 10

TeV. There are one-loop contributions to the Higgs mass via the extra vector-like new

top quark, heavy gauge bosons, and heavy scalar that cancel the one-loop contributions

from the top quark, EW gauge bosons, and the Higgs in the SM. The quartic self-

coupling of the little Higgs is generated by the gauge and Yukawa interactions and the

negative mass squared term is generated by the top Yukawa term. This will trigger the

symmetry breaking. The signals induced by these extra particles are expected to show

up around the TeV scale and we will investigate one possible channel to discover the

heavy gauge bosons predicted in the LH in Chapter 3.
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Chapter 3

Phenomenology of the Littlest Higgs

model

The Little Higgs models [21] provide an alternative way to stabilize the light Higgs mass.

In contrast to SUSY models, the Little Higgs models impose extra particles with the

same statistics to cancel the leading 1-loop corrections to the Higgs mass. There is a

number of Little Higgs models [22, 23] with different embedding of SM into larger group

structure. The essential ingredients are

• Higgs is identified as Goldstone boson generated from spontaneous symmetry

breaking of larger global symmetry realized non-linearly.

• Higgs gets mass by “collective” radiative symmetry breaking and becomes a pseudo-

Goldstone boson. This mass is protected by global symmetry and stabilized up to

the cut-off scale around 10 TeV or so.

• mass corrections to the Higgs from top and gauge bosons loops are also suppressed

by cancellation of leading logarithmic terms with the contributions from extra
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“vector-like” top quark and heavy gauge bosons.

In the explicit model of ref. [23, 24], the global SU(5) symmetry with a locally gauged

subgroup [SU(2)1 × U(1)1] × [SU(2)2 × U(1)2] is broken into SO(5) with a remaining

diagonally gauged SU(2)L × U(1)Y via a vev of order f . The 14 massless Goldstone

bosons are 10, 30, complex 2± 1

2

, and complex 3±1 with respect to the remaining SU(2)L×

U(1)Y . The hypercharge neutrals become the longitudinal components of the gauge

bosons. These gauge bosons therefore have masses of the order of f . The complex

triplet gets a vev < iφ0 >= v′ while the doublet gets a vev < h0 >= v/
√

2.

The masses of the light and heavy gauge bosons in the Littlest Higgs model are [24]

M2
W±

L

= m2
W

[

1 − v2

f 2

(

1

6
+

1

4
(c2 − s2)2

)

+ 4
v′2

v2

]

, (3.1)

M2
W±

H

= m2
W

(

f 2

s2c2v2
− 1

)

, (3.2)

M2
AL

= 0, (3.3)

M2
ZL

= m2
Z

[

1 − v2

f 2

(

1

6
+

1

4
(c2 − s2)2 +

5

4
(c′2 − s′2)2

)

+ 8
v′2

v2

]

, (3.4)

M2
AH

= m2
ZxW

(

f 2

5s′2c′2v2
− 1 +

xHc
2
W

4s2c2xW

)

, (3.5)

M2
ZH

= m2
Z

(

f 2

s2c2v2
− 1 − xHxW

4s′2c′2c2W

)

, (3.6)

where mW = gv/2, mZ = gv/(2cW ) are the SM limits. xH characterizes heavy bosons

mixing and is given by

xH =
5

2
gg′

scs′c′(c2s′2 + s2c′2)

5g2s′2c′2 − g′2s2c2
. (3.7)

The couplings are related by

g = g1s = g2c, g
′ = g′1s

′ = g′2c
′, (3.8)
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s =
g2

√

g2
1 + g2

2

, s′ =
g′2

√

g′21 + g′22
. (3.9)

where gi and g′i (i = 1, 2) are the couplings of the two copies of SU(2) and U(1).

3.1 WWH production at the Linear e+e− Collider

Existence of the heavy SU(2) gauge bosons ZH and WH is one of the main predictions

of the Little Higgs models. The masses of ZH and WH should be within about a few

TeV in order to solve the hierachy problem.

At an e+e− linear collider, if the center of mass (C.M.) energy can be set at the mass of

the vector resonance, one would be able to reach a substantial production cross section

and perform precision studies for the property of the particle. Above the resonance

threshold, the dominant production for the heavy gauge bosons is through WWH final

state. For concreteness, we consider the Littlest Higgs model as in ref. [24]. Fixing

MWH
= 1 TeV, we plot the total cross section for WWH production for MWH

= 1 and

2 TeV versus C.M. energy in Fig. 3.1 by solid curves. For a fixed value of MWH
, the

cross section scales as cot2 θ, and the change for cot θ = 1/2 and 2 are indicated by a

vertical bar. For comparison, we also include some relevant SM processes of W +W−,

WWZ, and WWH. We see that the signal cross section for WWH final state is large

and asymptotically decreases to the level of W+W−.

In Fig. 3.2, we show the total cross-section versus MWH
at the CLIC energies, 3 and 5

TeV, for cot θ = 1. The cross section grows when the mass increases due to the less and

less severe propagator suppression 1/(s−MZH
)2, until it is cut off due to the threshold

kinematics.

Generically, the mass and coupling of WH depends on cot θ, the mixing parameter
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Figure 3.1: Total cross section for e+e− → WWH production versus center of mass

energy Ecm for MWH
= 1 and 2 TeV (solid curves). Both charge states W±W∓

H have

been included. Some relevant SM processes have been also included for comparison

(dashed curves).
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Figure 3.2: Total cross section for e+e− → WWH production versus its mass MWH
at

the CLIC energies ECM = 3 and 5 TeV. Both charge states W±W∓
H have been included.

between the SM and new gauge groups SUL(2) and SUH(2). Keeping the mass fixed at

1 TeV, we can explore the total cross section with respect to cot θ as shown in Fig. 3.3.

Once WH is produced, it can decay to SM particles, either into fermion pairs or

WZ, WH. The branching fractions are given with respect to the mixing parameter

cot θ as in Fig. 3.4. The decay channels to fermions are dominant, asymptotically 1/4 for

the three generations of leptons or one generation of quarks, for most of the parameter

space. For small value of cot θ < 0.4, WH → WH,WZ decay modes become more

important, comparable to fermionic channels as shown in Fig. 3.4. The production rate

for the signal is still quite sizable once above the kinematical threshold, and are likely

above the SM backgrounds.

In summary, once above the kinematical threshold, the heavy gauge boson production
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Figure 3.3: Total cross section for e+e− → WWH production versus gauge coupling

mixing parameter cot θ for MWH
= 1 TeV.

at the CLIC energies can be substantial. The threshold behavior can determine its mass

accurately, and the cross section rate will measure the coupling strength cot θ.
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Figure 3.4: Branching fractions for WH decay to SM particles.
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Chapter 4

Low-Energy Stringy Corrections to

the SM

4.1 Bounds on Four-Fermion Contact Interactions

Induced by String Resonances

String theory, spoken or unspoken, is generally assumed to be the underpinning of the

low scale gravity ideas [16, 17] explored theoretically and experimentally in recent years.

A number of examples of ambitious “top-down” models of string realizations of low

scale gravity ideas have been advanced, aiming at consistently achieving the connection

to Standard Model (SM) physics from higher mass scales in certain D-brane scenarios

[25]. As yet a fully realistic model like the SM has not been constructed. On the other

hand, one could take a more phenomenological approach, from the “bottom up”. One of

the recent endeavors is to obtain the SM tree-level amplitudes at low energies [26, 27, 28]

based on open-string amplitudes [29, 20]. This approach assures the correct low energy
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phenomenology as given by the SM, yet captures one of the essential features of string

theory, namely the string resonances, in a relatively model-independent way. The basic

assumptions in this approach are that the fundamental string scale MS is at the order

of one TeV, and that the dominant contributions to the low energy processes are due

to the exchange of string resonances. Earlier work on phenomenological studies dealt

with QED from the MZ scale to the first few string resonances [26], or neutrino inclusive

processes far above the string scale to explore the effects from cosmic neutrinos [27, 28].

Phenomenologically, this string-amplitude approach complements the low-scale gravity

calculations based on expansions in Kaluza-Klein modes [30], which are argued to be

higher orders in string-coupling expansion [25, 26].

The purpose of this section is to expand this effort to model both neutral and charged

current interactions at energies below the string scale.

Data from HERA experiments at DESY, with lepton-parton center of mass (CM)

energies receiving a good fraction of the full 320 GeV, the highest energy available in

laboratory experiments for deep inelastic scattering, provides one interesting testing

ground for low-scale string model ideas. Similarly LEP-II, with CM energies up to 200

GeV provide another reasonably sensitive probe of the low energy limit of our string-

resonance amplitudes. The full CM energy is available to excite string effects in this

case. At the Tevatron, though the parton-parton collisions get typically only a modest

fraction of the 1.8 − 2 TeV available in the pp CM energy, there is still sensitivity to

0.5 − 1 TeV scale physics.

The good agreement between all of the data from the facilities just mentioned and

the SM allows bounds to be set on the mass scale of all kinds of new physics effects. For

example, leptoquark states are one such effect, and perturbative string resonances can
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carry the same quantum numbers as the lepto-quarks in some channels [27, 28]. At the

parton level, much of the kinematical range is low enough to justify keeping the lowest

order terms in an expansion in inverse string scale. This allows a direct comparison of

amplitudes with the existing limits on new physics contact interactions [31, 32, 33, 34].

These observations that a comprehensive bound can be applied to a wide class of string-

resonance models motivate the work we present here. We hope that exploration of the

constraints imposed on the model parameters by the agreement between data and the

SM will ultimately shed light on the way string theory signals could emerge as laboratory

energies rise above the currently available regime.

In Section 4.1.1, we summarize the construction of neutral and charged current in-

teractions for SM light fermions based on open-string scattering amplitudes. We then in

Sec. 4.1.2 take the low-energy expansion by expanding the string amplitudes in powers

of the inverse string scale evaluated at typical kinematic points to obtain the effective

four-fermion contact-like interactions. We check that the approximation is good in the

kinematic ranges we use. Comparing with the current limits on these interactions, we

derive bounds on the string scale MS . We conclude in Sec. 4.1.3.

4.1.1 Open String Tree Graph Amplitudes

In weakly-coupled string theory with a low string-scale, one generically expects the string

amplitude corrections to the standard model processes to dominate over the graviton

corrections, which enter at one loop and are parameterically suppressed by an extra

factor of g2, a gauge coupling squared [25, 26, 20]. At energies well below MS, the stringy

corrections can be systematically taken into account by the low-energy expansion of the

string amplitudes in terms of s/M 2
S.
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We assume that the tree-level string amplitudes represent the scattering of massless

SM particles, as the zero string modes. The first attempt at exploring the low-scale string

amplitudes was made to construct a string toy model of QED of electrons and photons

[26]. The SM is embedded in a type IIB string theory whose 10-dimensional space has six

dimensions compactified on a torus with common period 2πR. There are N coincident

D3-branes, on which open strings may end, that lie in the 4 extended dimensions. The

extra symmetry of the massless string modes are eliminated by (unspecified) orbifold

projection. The paper applies the results to Bhaba scattering and then adds several

prescriptions to include some simple processes e+e− → Z0 → e+e− and qq̄ → g∗ → 2

jets, where g∗ represents a string resonance excitation of the gluon. However, this toy

model does not attempt to be fully realistic in terms of the SM particle spectrum and

their interactions.

Our construction of the tree graph amplitude follows the same pattern as that out-

lined in [27] and in [28]. The result is a model containing the SM on the 3-branes and

no unacceptable (i.e., unobserved) low energy degrees of freedom. This is accomplished

by allowing the group theoretical Chan-Paton factors as free parameters. The masses of

gauge bosons W and Z must be introduced by hand, since the string amplitude describes

massless particle scattering and we are not consistently modeling the breaking of gauge

invariance. Though all the standard model gauge couplings are assumed to unify to a

single value at the string scale in this simple construction, we use the physical values

of the SM electroweak couplings since we restrict ourselves here to energies below the

string scale.

We begin with the general form for a four-fermion amplitude for open strings in such

a braneworld framework. The parton level Mandelstam variables are denoted by s, t,
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and u. The physical scattering process will be identified as f1 + f2 → f3 + f4. The s, t

and u-channels are labeled (1,2), (1,4) and (1,3), respectively. The ordered amplitude

with the convention that all momenta are directed inward reads [20, 35, 36]:

Astring(s, t, u) = ig2
[

t ψ1γ
µψ2ψ3γµψ4 − s ψ1γ

µψ4ψ3γµψ2

]

×
[

1

st
S(s, t)[T (1234) + T (4321)] + (1 ↔ 4, s↔ u) + (1 ↔ 2, t↔ u)

]

.

where the function S(x, y) is similar to a Veneziano amplitude [37], and is defined by

S(x, y) =
Γ(1 − α′x)Γ(1 − α′y)

Γ(1 − α′x− α′y)
, (4.1)

where the Regge slope parameter α′ = M−2
S . In the limit MS � √

s, S → 1 and the low

energy gauge theory expression for the amplitude is regained, as we show below. The

factors T (1234) + T (4321) and their 1 ↔ 4 and 1 ↔ 2 counterparts are proportional to

the Chan-Paton factors [19] and involve traces over the group representation matrices,

λ, of the fermions at the four vertices. For example, T (1234) ∝ Tr(λ1λ2λ3λ4) with

normalization Tr(λaλb) = δab in the adjoint representation of U(n). Typically, with our

normalization, the Chan-Paton factors are in the range of −4 to 4 for a general U(n)

group. The above general expression serves as the basis for calculating all of the specific

helicity and internal quantum number possibilities in the case that the states 3 and 4

have outgoing momenta.

Charged Current Processes

The charged current (CC) string model amplitude in the weak coupling regime receives

no contribution from the graviton at one loop. In this sense it is perhaps conceptu-

ally cleaner than the neutral current (NC) case [27, 28], where the graviton exchange is

contained in the one loop amplitude [26]. At energies above the string scale, the extra
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power of s/M 2
S in the graviton contribution compensates for the Yang-Mills gauge cou-

pling suppression of the loop amplitude compared to the tree graphs; there the strong

gravity dynamics and the string resonance dynamics become comparable. Though we

are focusing on the low energy region, where graviton exchange is suppressed, the CC

amplitude construction is simpler than that of the NC because there are fewer processes

and only one gauge coupling to consider. For this reason we discuss the CC case first in

some detail, and then turn to the NC case.

For definitiveness, taking all helicities for the in and out states left-handed (denoted

by L), we find the string tree amplitude:

ACC
string(LL) = ig2

[

S(s, t)
s

t
T1234 + S(u, t)(−s

t
− s

u
)T1324 + S(s, u)

s

u
T1243

]

,

where we have further simplified notation by introducing T1234 = T (1234)+T (4321) and

so forth. The corresponding standard model electroweak (EW) tree amplitude is

ACC
EW = ig2 s

t−M2
W

. (4.2)

here and henceforth, g is identified with the SU(2)L gauge coupling. We require that

the charged-current in t-channel contain the W boson as its zero mode and that there

is no exotic (leptoquark) zero mode in the u-channel. In order to remove the unwanted

zero-mode pole, we must require

T1243 = T1324 ≡ T. (4.3)

The low energy gauge theory limit should reproduce the W -pole in the t-channel in tree

approximation to the string amplitude. Using Eq. (4.3) and matching the coefficient of

the 1/t pole to the SM result of Eq. (4.2), we identify

T1234 = 1 + T (4.4)
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The tree-level result for the amplitude for LL → LL after removing the exotic zero-

mode pole in the u-channel and identifying the zero-mode pole in the t-channel as the

W -boson, is

ACC
string(LL) = ig2T

s

ut
f(s, t, u) + ig2 s

t−M2
W

S(s, t), (4.5)

where

f(s, t, u) ≡ uS(s, t) + sS(u, t) + tS(s, u). (4.6)

In the limit MS � √
s, we have

S(s, t) ≈ 1 − π2

6

st

M4
S

and f(s, t, u) ≈ −π
2

2

stu

M4
S

. (4.7)

The SM tree amplitude is reproduced in the limit s/M 2
S → 0. For later convenience we

define V (s, t, u) via Eq. (4.5) by

ACC
string(LL) = ig2 s

t−M2
W

V (s, t, u). (4.8)

The above results are also applicable to right-handed anti-fermion scattering R R→

R R. The other helicity combinations including anti-leptons and anti-quarks can be

worked out by appropriate crossing. For instance, for the scattering of a left-handed

lepton and a right-handed anti-quark LR → LR , or right-handed anti-lepton on left-

handed quark RL → RL, the s ↔ u and 2 ↔ 3 crossed amplitude applies. The

amplitudes for this process read

ACC
string(LR) = ACC

string(RL) = ig2

[

S(s, t)
u2

st
T1234 + S(t, u)

u

t
T1324 + S(s, u)

u

s
T1243

]

= ACC
string(LL)(s ↔ u) = ig2 u

t−M2
W

V (s, t, u), (4.9)

where the generic label T is not distinguished from that in the LL case above, to avoid

clutter in the notation. These expressions are the analogs of those written down for the
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NC neutrino case in [27] and [28], which we expand for the full range of NC cases in the

next subsection.

Neutral Current Processes

The open string perturbative amplitude construction for 2 → 2 NC scattering follows

exactly the same pattern as described above in the charged current case. The neutral

current case involves 4-fermion amplitudes as well as 2-lepton plus 2-gluon external line

amplitudes [28]. We find that in the low energy realm the gluon amplitudes contribute

negligibly to the constraints. Therefore, we confine ourselves to the 4-fermion construc-

tion, again identifying zero-mode poles in the t-channel with γ and Z-exchange. As

before, we require that the Chan-Paton factors are constrained to cancel the exotic zero

modes in the other channels. To introduce the SM factors, we adopt the device that

fermion labels in the Chan-Paton factors are the guide to constructing the low energy

limit. This is because the λ’s of the external legs depend on the SU(2)⊗U(1) embedding

in a larger (unifying) group, and the Chan-Paton traces over λ’s are linked to the quan-

tum numbers of the s, t and u-channels. The connection between the string amplitude

zero mode poles and the SM poles, in keeping with this philosophy, is described next.

We consider separately the low energy matching for 2 → 2 amplitudes for (1) all

left-handed (L) or all right-handed (R); and (2) LR → LR and RL→ RL.

(1). `αqα → `αqα; α = L,R

The string and SM electroweak tree amplitudes for the like-helicity combinations are

ANC
string(αα) = ig2

(

S(s, t)
s

t
T1234 + S(t, u)

s2

ut
T1324 + S(u, s)

s

u
T1243

)

ANC
EW (αα) = 2ie2 s

t

(

QqQ` +
t

t−M2
Z

g`
αg

q
α

s2
W c

2
W

)

(4.10)
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where Qq,` are the electric charge of quark and lepton; sW = sin θW , cW = cos θW .

Matching with e = g sin θW gives

T1243 = T1324 ≡ T (4.11)

T1234 = T + 2s2
W

(

QqQ` +
t

t−M2
Z

g`
αg

q
α

s2
W c

2
W

)

, (4.12)

which guarantees that there is no zero-mode exotic u-channel pole and that the SM tree

amplitude is recovered in the limit S(s, t) = S(t, u) = S(s, u) → 1 where s � M 2
S. Our

modified string amplitude now reads

ANC
string(αα) = ig2T

s

ut
f(s, t, u) + 2ig2s2

WS(s, t)
s

t

(

QqQ` +
t

t−M2
Z

g`
αg

q
α

s2
W c

2
W

)

, (4.13)

where f(s, t, u) was defined in Eq. (4.7). Our convention for the SM neutral-current

couplings is

gf
L = T3f −Qf sin2 θW , gf

R = −Qf sin2 θW . (4.14)

We have adopted the shorthand that all parameters proportional to Chan-Paton

factors are designated by the single symbol T . In fact, in our study of the low en-

ergy constraints on the models in the following section, we will make the simplifying

assumption that the factors are all equal.

(2). `αqβ → `αqβ; α, β = L,R; α 6= β

The string and SM electroweak tree amplitudes are

ANC
string(αβ) = ig2

(

S(s, t)
u2

st
T1234 + S(t, u)

u

t
T1324 + S(u, s)

u

s
T1243

)

ANC
EW (αβ) = 2ie2u

t

(

QqQ` +
t

t−M2
Z

g`
αg

q
β

s2
W c

2
W

)

. (4.15)
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Again, matching with e = g sin θW gives

T1243 = T1234 ≡ T (4.16)

T1324 = T + 2s2
W

(

QqQ` +
t

t−M2
Z

g`
αg

q
α

s2
W c

2
W

)

. (4.17)

The final string amplitude reads

ANC
string(αβ) = ig2T

u

st
f(s, t, u) + 2ig2s2

WS(t, u)
u

t

(

QqQ` +
t

t−M2
Z

g`
αg

q
β

s2
W c

2
W

)

. (4.18)

This is s↔ u crossing from Eq. (4.13).

To obtain other amplitudes involving anti-fermions, it is a matter of simple crossing.

For example, for Drell-Yan process qq̄ → ` ¯̀, we simply have s↔ t crossing of the above

formulas in Eqs. (4.13) and (4.18).

The amplitudes we have constructed are particularly convenient for comparing to

the contact interaction amplitudes analyzed and constrained by data in the literature

[32, 33]. We turn next to this comparison, deriving constraints on MS in the process.

4.1.2 Linking String amplitudes to Contact Interactions

In this section, we convert constraints on contact interactions to constraints on the string

scale MS for given T values. In order to compare to data at low energies, we express

string deviation from SM electroweak amplitude by 4αβ (α, β = L,R), namely

Astring(αβ) = AEW (αβ) + 4αβ. (4.19)

Using Eq. (4.7), we find for like-helicity fermion scattering (αα) = LL and RR

4αα ' −π
2

6

st

M4
S

AEW (αα) − iT g2π
2

2

s2

M4
S

, (4.20)
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where T is the generic parametrized Chan-Paton factor corresponding to the particular

process. For unlike-helicity combinations in the neutral current case, 4αβ = 4αα(s ↔

u),

The reduced amplitudes for contact interactions from physics beyond the SM are

conventionally parameterized as [31, 32, 33, 34]

4M `q
αβ = η`q

αβ = ε
4π

Λ2
`q

. (4.21)

The cutoff Λ`q is the mass scale at which new physics sets in. It presumably corresponds

to the mass of the heavy strongly interacting particles that mediate the new interaction

and it is referred as the “compositeness scale”. The sign factor ε = ±1 allows for

constructive or destructive interference between the contact interaction and the SM

amplitudes. Typically, in the fit to a given class of interactions, it is designated Λ± to

distinguish between fit values obtained with ε = ±1.

The relations between the string contribution and the reduced amplitude parameter-

ization can be found to be, for like-helicity fermion scattering,

4Mαα =
4αα

i2s
' −π

2

12
g2 s

M4
S

(F + 3T ). (4.22)

For unlike-helicity fermion scattering, 4Mαβ = 4Mαα(s↔ u). For a Drell-Yan process,

which invloves with anti-fermions, we have s↔ t from Eq. (4.22). The factor F includes

the information for chiral couplings and it is

F =























t
t−M2

W

for charged current,

2s2
W

(

QqQ` + t
t−M2

Z

g`
αgq

β

s2

W
c2
W

)

for neutral current `q.

(4.23)

It is interesting to note that the leading stringy corrections to the SM amplitudes as

in Eq. (4.20) enter at dimension-8, while the standard parameterization for four-fermion
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contact interactions as in Eq. (4.21) is of dimension-6. Due to this additional energy-

dependent suppression factor s/M 2
S, the constraints obtained from low energy data on

MS will thus be weaker than that on Λ`q.

In certain more complicated brane-world models, for example intersecting D-branes

[38], there are corrections at dimension-6 from Kaluza-Klein excitations, winding modes

as well as string oscillators. They lead to stronger limit on the lower bound of the string

scale, about 2 − 3 TeV [38].

Validity of the Approximate Amplitudes

With the above set up, we are in position to extract bounds on the string scale from the

values of parameters of contact interactions. A global fit of contact interactions to all

of the data discussed above plus the low energy data from neutral current and charged

current process, including atomic parity violation, is also reported in [32]. The low

energy data dominate these global constraints. As noted earlier, the s/M 2
S dependence

of our string amplitudes severely suppresses stringy effects at very low energies and the

low energy data are insensitive to the string scale. We will thus mainly make use of the

data at highest energies available like in HERA, Tevatron and LEP-II.

Our expansion of the factors S(x, y), where x, y = s, t or u, should be valid if bounds

on MS are found to be well above the kinematical region covered by the data. How

close can the scale be to the kinematical range of the data before the approximate

expansion becomes unreliable? We address this question by computing the CC cross

section e−p → ν + X with the full amplitudes and with the approximated amplitudes.

The differential DIS cross section, in terms of the functions V in ACC
string(LL) in Eq. (4.8)
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and V in ACC
string(LR) in Eq. (4.9), reads

d2σ

dxdQ2
=
dσSM

dQ2
[(u(x,Q2) + c(x,Q2))V 2 + (1 − y)2(d(x,Q2) + s(x,Q2))V

2
], (4.24)

where dσSM/dQ2 is the SM W -exchange Born term differential cross section. In the

course of this study, we can probe as well the simple constraint on the model that

follows from the measured total cross section [39, 40, 41], namely

σ(Q2 > 200 GeV2) = 66.7
+3.2
−2.9 pb,

at ECM = 318 GeV, the ep C.M. energy. The ZEUS collaboration quotes the value

σ(Q2 > 200 GeV2) = 69.0
+1.6
−1.3 pb

as the SM expectation using its NLO QCD fit. For example, with T = 1 one finds the

experimental 95% CL limit

MS ≥ 0.45 TeV, (4.25)

whether one uses the full or the approximate amplitude. In general the approximate

cross-sections agree with the complete calculation to 3 figures until MS ' ECM , where

one finds differences of the order of a percent. For example, with T = 1 and MS =

320 GeV, the full and approximate cross sections are 85.2 pb and 82.8 pb, while with

T = −1 the cross sections are 62.2 pb and 62.5 pb. The approximation is evidently quite

good so long as MS > ECM , since the lowest Regge resonance slips into the physical

region when MS ≤ ECM and should, in principle, be represented by a resonant form

with finite width. However,the vanishing of the structure functions as x→ 1 minimizes

the impact of the nearby resonance on the DIS cross section as MS → ECM from above.
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Evaluation of Lower Limits on MS

Focusing on the chiral amplitudes ALL, which enter in both the NC and CC processes,

we combine Eqs. (4.21) and (4.22) to express the constraint on MS at a given T value

and Λ bound value as

MS > [−π
2

12

g2s

η
(F + 3T )]

1

4 for DIS at HERA. (4.26)

For the DY process at the Tevatron and e+e− annihilations at LEP-II, we have s ↔ t

in Eq. (4.26).

In Table I we show the lower bounds on MS that follow from the corresponding best

fit values of η from the HERA NC data, the Drell-Yan data from Tevatron and the

hadronic cross section from LEP-II quoted in [32]. These values follow from our NC

analysis above. In the table we also use the NC data with the SU(2) relation between

the CC and NC amplitudes, namely

4MLL(CC) = 4M ed
LL −4M eu

LL,

to give corresponding limits on the CC amplitudes. These are not independent con-

straints, of course, but simply show the impact of the data in the CC sector. We also

include the direct CC bound on MS obtained in the preceding subsection from HERA

data and the DY bound obtained by CDF at the Tevatron on the CC qqeν compositeness

scale [42], with the corresponding MS bound. When translating the existing constraints

on ηαβ to MS, we need to take into account the different energy-dependence as noted

earlier. In computing the values of the bounds in Table I, we use the rule of thumb that

the average parton energy fraction is 〈x〉 ' 1/3, so the direct channel HERA parton

CM energy squared is s ' E2
CM/3 ≈ (0.18 TeV)2. At the Tevatron, where the total CM
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HERA NC Drell-Yan LEP

η (TeV−2) MS (TeV)/T η MS/T η MS/T

ηeu
LL −1.18

+0.53
−0.56 0.34/+ 1 −0.19

+0.24
−0.21 0.85/+ 1 −0.22

+0.086
−0.084 0.32/0

0.50/− 1

ηed
LL 1.53

+1.59
−1.35 0.29/− 1 0.88

+0.58
−0.73 0.34/0 0.26

+0.095
−0.098 0.29/0

0.57/+ 1 0.48/+ 1

0.73/− 1

ηCC 2.71
+1.67
−1.46 0.26/− 1 1.07

+0.62
−0.76 0.41/0 0.48

+0.13
−0.13 0.33/0

0.58/+ 1 0.45/+ 1

0.73/− 1

HERA σCC : 0.45/+ 1 (CDF) 0.80 0.53/0

0.75/+ 1

Table 4.1: Lower bounds on the string scale MS from contact interaction parameters, at a

95% CL. The Chan-Paton factor T has been taken as ±1 as indicated.
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energy was 1.8 TeV, our nominal parton CM energy squared is s ' E2
CM/9 = (0.6 TeV)2.

For the momentum transfer squared we take Q2 = s/2.

In the following subsections we explain the entries in the table.

HERA NC

Limits on the deviation from SM predictions for processes at HERA lead to correspond-

ing bounds on string parameter. From Table IV of [32], the limits on 4MLL = η`q
LL,

provided separately for eeuu and eedd, are given. At 2σ level (or 95% CL), we have the

lower bound ηeu
LL = −2.3/TeV2. We apply the weak isospin constraint that the eeuu and

eedd amplitudes have opposite sign, which implies the upper bound ηed
LL = 4.7/TeV2.

In order to obtain a lower bound on string scale MS, we need the correct sign of 4M

from our string expression corresponding to each limit on value of η. Consequently, in

the eeuu case, the gauge factor (F + 3T ) ≥ 0 is required. In the eedd case, the require-

ment is (F + 3T ) ≤ 0. With typical values s = (0.18 TeV)2, t/(t −M2
Z) ' 1/2 and

T = +1 (−1), we find the bounds 0.34 (0.29) TeV as shown in the table. We should

comment here that, the typical bounds on masses of leptoquark resonances at HERA

are in the range 0.25− 0.29 TeV [41], roughly compatible with bounds from our contact

interaction analysis. Slightly higher values of |T | produce higher bounds on MS. For

example, with T = −2, the value is 0.35 TeV for eedd. Clearly larger absolute values of

T correspond to larger bounds on MS, limited only by the requirement that the effective

coupling constants remain perturbative, consistent with our string amplitude construc-

tion. From Eq. (4.26), we see that MS ∝ (F + 3T )1/4, or roughly proportional to T 1/4.

This is also the case for DY processes at the Tevatron and e+e− annihilation at LEP-II.
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Drell-Yan at the Tevatron

We follow the same pattern as described above, now using s↔ t of Eq. (4.22), for limits

from DY processes at the Tevatron. For typical values we find the strongest bounds

on string scale are 0.85, 0.73 TeV for modest values T = +1,−1 for eeuu and eedd

respectively. An independent search for deviations from the SM in the DY channel qqνl

at CDF [42], cited in [33], yields a 95% CL upper bound of 0.8/TeV2 on the value of ηCC .

The corresponding limits on MS are independent of those derived from the eedd case.

Searches for W ′ and Z ′ resonances at the Tevatron yield bounds similar to the larger

of the bounds just quoted, namely in the range 0.75 − 0.85 TeV [42]. As in the case

of leptoquark resonance searches at HERA, the bounds on the W ′and Z ′ masses at the

Tevatron are roughly consistent with the contact interaction bounds we just described.

Larger DY bounds rise to 0.86 TeV and 1.04 TeV when the T values are doubled to ±2,

indicating that increasing the magnitude of T has a marked effect on MS . In Fig. 1 we

show the plot of the lower bound on MS vs. the Chan-Paton parameter T in the range

1 ≤ |T | ≤ 4 for the eeuu and eedd cases, which give representative largest lower bounds

on MS for a given T value. In any case, it is fair to say that the resonant bounds and

the contact interaction bounds are complementary ways to probe for string physics at

the TeV scale.

LEP-II

The LEP-II results are from the lowest nominal energy, but have the advantage that

all of the CM energy can go directly into producing new physics. For LEP-II, we use

s = (0.2 TeV)2 with t ' −s/2. We only consider cross-section for hadron production as

stated in [31, 32]. Limits are as listed in Table I. The limits tend to be stronger than in
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Figure 4.1: Relationship between Chan-Paton parameters and lower bounds of the string

scale MS from the DY process at the Tevatron. T is positive and negative for eeuu and eedd

respectively. The region under the curves is excluded at 95% CL.

the DIS at HERA case, since the values of η′s and their uncertainties are significantly

smaller and the CM energy is slightly larger than the characteristic value used in our

HERA analysis. A consistent but somewhat weaker limit is given in Ref. [26] with

MS ≥ 0.41 TeV.

4.1.3 Summary and Conclusions

Combining the low energy limit of string amplitudes for NC and CC processes, we find

that bounds on the string scale can be obtained that complement and extend previous

analyses. In particular, we extend previous models to cover all neutral current phe-

nomena and, for the first time, offer a model of charged current amplitudes in a string

resonance framework. The essence of the approach we adopt is that of Ref. [27]. The low
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energy limit of each string amplitude reproduces the corresponding SM amplitude. This

leaves only a limited number of Chan-Paton factors unspecified, and these are treated as

free parameters whose values are related by requiring consistency with the perturbative

construction of the string amplitudes. In the absence of new physics signals, they are

constrained by the agreement between the SM and the data for a given string scale.

More generally, the parameter space consists of the string scale MS and a limited num-

ber of free dimensionless parameters denoted generically by T . We refer to this as a

“bottom up” approach to probing the string aspect of braneworld.

We have focused in this paper on the match between the low energy limit of the

open-string four-fermion amplitudes at typical kinematical region and the constraints

on contact interaction parameters determined by data from HERA, Tevatron and LEP-

II. The bounds on the string mass scale are comparable in every case to those found

in specific models or from leptoquark and W ′ and Z ′ searches at HERA and Tevatron.

This is no surprise, since the accelerator energy and the precision of the measurements

dictate the accessible scale in searches for new physics. It is also no surprise that the

highest energy data provide the highest values of the lower bound on new physics. The

Drell-Yan processes at the Tevatron lead to our strongest constraints, namely

MS ≥























0.9 TeV for |T | = 1,

1.3 TeV for |T | = 4,

(4.27)

as shown in Fig. 1 for the eeuu case.

The relationship between string scale MS and Quantum Gravity scale M is model-

dependent [25, 26]. However, MS < M quite generally, so the bound on MS applies to

M as well. In one simple case of D-brane scenario, the string scale and the quantum
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gravity scale in the weakly coupled string sector are related by [26]

M

MS
=

k

g1/2
(4.28)

where the model-dependent factor k is of order 1. Taking the value k = 1 and the SU(2)

gauge coupling at the weak scale for illustration, we obtain from Eqs. (4.27) and (4.28)

a conservative bound on the gravity scale

M ≥























1.1 TeV for |T | = 1,

1.6 TeV for |T | = 4

(4.29)

from the Drell-Yan analysis of the Tevatron data. This estimate of the range of values of

the scale of gravity in large extra dimensions is competitive with the current accelerator

search values and the value from the specific model of Ref. [26]. But again we advise

caution because of the model dependence of our estimate.

We conclude that a TeV string scale can measurably modify weak current amplitudes

even well below the string scale. The corresponding limits on this scale and the scale of

gravity are quite interesting and worth further exploration. Including these considera-

tions in the interpretation of future data will add an extra dimension, or more, to the

search for new physics at the TeV scale.

4.2 TeV-Scale Stringy Signals at Linear e+e− Col-

lider

In this section, we will investigate the low-energy effects induced by the TeV-scale string

resonances in the EW tree-level e+e− scattering at Ecm = 500 GeV. Using the same
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matching technique, the stringy extended amplitudes are

A(`α ¯̀
β → qαq̄β) = ig2

L

(

t

s
FααS(s, t) + T

t

us
f(s, t, u)

)

(4.30)

where α, β = L,R, the helicity of the fermion and antifermion. For `α ¯̀
β → qβ q̄α, the

amplitude is t↔ u and Fαα → Fαβ of the above. Using the low-energy approximation

S(s, t) ' 1 − π2

6
(
st

M4
S

) (4.31)

f(s, t, u) ' −π
2

2
(
stu

M4
S

), (4.32)

the above amplitude becomes

A(`α ¯̀
β → qαq̄β) ' ig2

L

(

t

s
Fαα − π2

6
(Fαα + 3T )

t2

M4
S

)

. (4.33)

Again, for `α ¯̀
β → qβ q̄α, the amplitude is t↔ u and Fαα → Fαβ of the above. From these

approximated formula, the angular distributions and the angular Left-Right asymmetry

can be computed as in Figure 4.2-4.7.

As we will see in the following section, the low-energy stringy corrections in the

processes involving two vector bosons are only from spin-2 states due to Yang’s theorem

and therefore the similarity between the stringy corrections and the Kaluza-Klein (KK)

graviton exchange [57] in the low-energy limit is guaranteed. For the 4-fermion cases,

the higher-spin stringy corrections contain both spin-1 and spin-2 as we can see from

the angular decomposition of t2 in Eqn. (4.33) into the Wigner functions d1
1,−1(cos θ =

1 + 2t/s) and d2
1,−1(cos θ).

In the coincident-branes scenario, the KK contributions are argued to be suppressed

by the string coupling [26] and therefore we expect to see the stringy low-energy effects

before the KK’s.
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Figure 4.2: Normalized angular distribution for u-type quark final states

Figure 4.3: Normalized angular distribution for d-type quark final states
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Figure 4.4: Normalized angular distribution for µ-type quark final states

Figure 4.5: Angular Left-Right Asymmetry for u-type quark final states
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Figure 4.6: Angular Left-Right Asymmetry for d-type quark final states

Figure 4.7: Angular Left-Right Asymmetry for µ-type quark final states
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4.3 Similarity between Kaluza-Klein and

Open-String Low-Energy Amplitudes

Scatterings in TeV-scale string scenarios have been proved to be phenomenologically

viable. In these models [16, 26, 27, 81, 78, 17], gravity is naturally weakened due to

freedom to propagate into extra dimensional direction in the bulk while standard model

particles are identified as open string whose ends are confined to D-branes, usually as-

sumed to be 3 dimensional. Since string theory requires ten dimensional spacetime and

we have experimental limit on size of extra dimension R < 200 µm[61], compactification

is an inevitable. Boundary conditions of compactified dimensions discretize momenta

perpendicular to brane and give rise to discrete spectrum of Kaluza-Klein(KK) excita-

tions. Each standard model particle can be assigned to have a corresponding KK tower

of states with the same 4 dimensional quantum numbers and masses roughly propor-

tional to the inverse of size of the compactified radii of extra dimensions. Parallel to

the brane, i.e. our matter universe, scattering of standard model particles is calculated

as the open-string scattering amplitude[26, 27, 28, 81] with string coupling gs identi-

fied as g2
Y M . As we approach higher energy, stringy behaviour of open-string scattering

become visible, specifically contribution from string resonances(SR) become significant.

We can calculate deviations from typical standard model amplitudes and put constraints

on string scale, MS, using experimental data from particle accelerators[26, 81].

In conventional Kaluza-Klein models where only graviton has KK modes being de-

composed into spin-2,1, and 0[62], there are corrections to standard model amplitudes

due to the exchange of graviton and KK excitations. Each mode of the KK contribution

is suppressed by the Planck mass, MP l. These KK-states interact only weakly ∼ 1/M 2
P l
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with particles on the brane. However, eventhough each KK exchange is suppressed by

the Planck mass, when we sum over the tower of states from 1/R to MD, the total

contribution adds up to ∼ 1/M 4
D which could be in the range of the TeV-scale without

being ruled out by previous experiments. This opens up possibility that there is an

unobserved tower of KK-states with mass ∼ 1/R spanned in low energy ranging from

less than 1 eV upto some cut off scale MD.

In this section, we will show that in certain processes; such as diphoton production,

there is remarkable similarity between amplitudes from SR and KK exchanges in both

the angular distribution and the energy dependence aspects. Since SR amplitudes are

calculated from the scattering of open strings on the brane while the KK amplitudes are

extra-dimensional corrections from the bulk components of gravitons, their similarity is

therefore something of curious nature. It also suggests that we might as well find two

copies of similar contributions in the form of dimension-8 operator in future colliders for

diphoton production processes.

4.3.1 Open-string amplitudes for diphoton production

processes

Since all the relevant diphoton processes of KK model in ADD scenario have been calcu-

lated in ref. [63], we will calculate only open-string amplitudes for diphoton production.

One of the processes which is of importance in an open-string model is scattering of

two photons into two photons(4-photon scattering). There are two reasons for special

interest in this process. First, the amplitude vanishes at the tree-level in standard QED;

it is a 1-loop effect and thus is very weak. Secondly, since photon is identified with

the U(1) sector of any open-string models, its Chan-Paton matrix is always diagonal
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and unique. Therefore the Chan-Paton factors(trace of four Chan-Paton matrices) can

never be zero. This results in a universal form for the non-vanishing 4-photon scattering

amplitude in open-string models with only one undetermined parameter, the string scale

MS. Constraints on the string scale from 4-photon scattering is therefore a definite and

universal condition applicable to every model in braneworld scenario.

We will consider 4 possible initial 2-particle states that give diphoton final state,

namely, γγ, qq̄, gg and ` ¯̀.

4-photon scattering

The open-string tree-level amplitudes for 4-photon scattering can be expressed generi-

cally [26, 47, 49](see also Appendix) for each helicity combination as:

(1). γαγα → γαγα; α = L,R

Astring = ig2T
s

ut
f(s, t, u) (4.34)

where T ≡ T1234 = T1324 = T1243 are Chan-Paton factors and f(s, t, u) ≡ uS(s, t) +

sS(t, u)+ tS(u, s); is (s, t, u)-symmetric function which vanishes in the low energy limit.

(2). γαγβ → γαγβ; α, β = L,R; α 6= β

Astring = ig2T
t

us
f(s, t, u) (4.35)

where T ≡ T1234 = T1324 = T1243 are again Chan-Paton factors. For γαγβ → γβγα(α 6=

β), we simply exchange t↔ u in the second case. Note that Chan-Paton factors for all

helicity combinations are the same because the trace of a product of diagonal matrices

does not depend on the ordering. Due to its Abelian nature, the massless photon is al-

ways represented by diagonal commuting(with respect to each other) matrices. In the low
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energy approximation (s, t, u�M 2
S;S(s, t) ≈ 1 − π2st/6M4

S, f(s, t, u) ≈ −π2stu/2M4
S),

these amplitudes give

Σ̄|Astring|2 =
1

8
(π2Tg2)2 s

4 + t4 + u4

M8
S

(4.36)

We will identify the coupling g with the QED coupling, e, since photon is associated

with QED by definition.

Diphoton Production at the Tevatron

There are contributions from quark-antiquark and gluon-gluon initial states. First we

consider quark-antiquark amplitudes:

(1). qαq̄β → γαγβ; α, β = L,R; α 6= β = L,R

Astring = ig2



T1234

√
ut

s
+ T1324

√

t

u
+ T1243

t

s

√

t

u



 (4.37)

AQED = 2ie2Q2
q

√

t

u
(4.38)

Matching with g = e gives;

T1234 = T1243 ≡ T (4.39)

T1324 = T + 2Q2
q (4.40)

Astring = ie2T
1

s

√

t

u
f(s, t, u) + 2ie2Q2

q

√

t

u
S(t, u) (4.41)

(2). qαq̄β → γβγα; α, β = L,R; α 6= β = L,R

This is just t ↔ u of the first case. Note that because two photons are Abelian to

each other, Chan-Paton parameters, T , in both cases are exactly the same. With the

same low-energy approximation as in 4-photon case, writing Astring = AQED + Acor, we

have
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Σ̄|Astring|2 =
1

3
(
1

4
)
(

Σ|AQED|2 − 2Σ|AQED||Acor| + Σ|Acor|2
)

(4.42)

where

Σ|Acor|2 =
e4

4
(
π4

9
)(Q2

q +
3

2
T )2(

s4

M8
S

)(1 − cos4 θ) (4.43)

−2Σ|AQED||Acor| = −4e4(
π2

3
)(Q2

q +
3

2
T )Q2

q(
s2

M4
S

)(1 + cos2 θ) (4.44)

Σ|AQED|2 = 16e4Q4
q(

1 + cos2 θ

1 − cos2 θ
) (4.45)

with u/s = −1
2
(1 + cos θ), t/s = − 1

2
(1 − cos θ). We have also assume that all T ’s are

color-blind and they are the same for every pair of quark-antiquark.

Now we turn to gg → γγ. Since the final state is color-neutral, the initial gluons

must be a color singlet and therefore they must have opposite helicity.

(1). gαgβ → γαγβ with α, β = L,R, α 6= β.

Astring = ig2T
t

us
f(s, t, u) (4.46)

(2). gαgβ → γβγα with α, β = L,R, α 6= β.

Astring = ig2T
u

ts
f(s, t, u)(t↔ u of above) (4.47)

We assume that Chan-Paton factors are independent of the helicity of initial gluons

i.e. tr(tLg t
L
g ) = tr(tLg t

R
g ) = tr(tRg t

R
g ). This is equivalent to the statement that the interac-

tion is non-chiral. In this non-chiral case, all Chan-Paton factors are the same T . These

amplitudes then give

Σ̄|Astring|2 =
g4π4T 2

64
(
s4

M8
S

)
1

8
(1 + 6 cos2 θ + cos4 θ) (4.48)
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The question of which coupling g should be identified with now arises. In standard model,

the interaction is achieved by tree-level graviton exchange(∼ 1/M 2
P l) and through gauge

interactions at one-loop level(∼ ααs). However, we are modelling stringy corrections to

QED coupling and therefore we set g = e. Strange as it looks from the viewpoint of field

theory considering there is no corresponding vertices to begin with, this is allowed in a

string theoretic framework if T 6= 0. Scattering amplitude of this kind could be of the

same order of magnitude as the 4-photon scattering. According to our expressions above,

they are 1/M 4
S-suppressed in low energy limit and they become larger as we approach

MS. At the Tevatron, these contributions from gg → γγ would be of negligible size

due to the low luminosity of gluons in the parton distribution functions of proton and

antiproton [81].

Scattering of Dilepton into Diphoton

This is the same as qq̄ initial state with Q2
q = 1. We will start off our comparison between

open-string and Kaluza-Klein expressions by focussing on the electron-positron initial

state. We can see the similarity between open-string, Eq. (4.43-4.44), and Kaluza-Klein

cross-section formula, Eq. (9) of ref. [63]. By making the identification

M4
D

F
=

M4
S

−π2

3
α(Q2

q + 3T
2

)
(4.49)

=
Λ4

+

2α
(4.50)

where F = log(M 2
D/s), 2/(n − 2) for n = 2, n > 2 when n is the number of extra

dimensions. MD is mass cutoff in Kaluza-Klein model[62], and Λ+ is the Drell’s QED

cutoff. Following statistical analysis of Cheung’s [63], for example, at OPAL(
√
s = 189
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GeV), Λ+ > 345 GeV, we have

MS > 0.33 − 0.59 TeV for T = (−1) − (−4). (4.51)

Note that the same data gives MD > 0.98 TeV for n = 4(number of extra dimensions).

Considering the fact that MD is related to the quantum gravity scale which is larger

than string scale, MS, generically, this result is consistent. The similarity between open-

string and Kaluza-Klein amplitudes in this case is nevertheless not surprising as the first

correction to the e+e− → γγ is generated by a unique dimension-8 operator [26]. We

therefore expect the same similarity in qq̄ → γγ between Kaluza-Klein and open-string

amplitudes and we will see that this is the case.

4.3.2 Comparison between open-string and Kaluza-Klein am-

plitudes

Exactly the same identification, Eq. (4.49) works in qq̄ → γγ scattering. To translate the

statistical analysis of Cheung’s[63], we assume Q2
q ≈ 1/2 to be the same for all quarks.

For Tevatron Run II, n = 4(MD > 1.43 TeV)

MS ' (0.40 − 0.61)MD for T = (−1) − (−4) (4.52)

MS > 0.57 − 0.87 TeV for T = (−1) − (−4) (4.53)

This limit is consistent with the limit from dilepton production in [81].

Next we turn to the 4-boson cases, namely gg → γγ and γγ → γγ. In gg → γγ,

Eq. (10) of ref. [63] has exactly the same energy-dependence and angular distribution as

Eq. (4.48) for the open-string case, the correspondence is

F

M4
D

= ±
π2

2
Tα

M4
S

(4.54)
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For the 4-photon scattering, comparing Eq. (6.18) with Eq. (5) of [63], we have the

correspondence

F

M4
D

= ±
π2

4
Tα

M4
S

(4.55)

The scattering of 2 photons into 2 photons is forbidden at tree-level of QED. The first

non-zero QED-contribution comes from one-loop fermion scattering. In open-string mod-

els, however, the tree-level QED-strength string-amplitudes are generically non-zero.

Assignment of a diagonal matrix to the photon is unique and the trace of the product

of four matrices is non-vanishing in any U(n) and therefore the amplitude does exists

at tree-level. The low value of these tree-level amplitudes, Eq. (4.34-4.35), is a result of

s, t, u symmetry in open-string amplitude.

In this aspect, 4-photon scattering is special; any open-string model gives a non-zero

tree-level(' α) amplitude for the process and the cross-section increases with energy.

Moreover, the background from α2-terms in QED is reduced as energy increases (Fig.

1 of [63]) in the energy range we can probe in current and future colliders. Limits on

lower bound of string scale MS obtained from 4-photon scattering would be universal

for every open-string model and it would be used as the standard normalization for the

value of Chan-Paton parameters.

4.3.3 Understanding string-KK Similarity in Diphoton produc-

tion

The open-string amplitudes we use are the formula for scattering of 4 particles through

gauge bosons exchange extended to string scattering by Veneziano extension(i.e. multi-

plying the corresponding channel by S(s, t), S(t, u) and S(u, s)). For massless external
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particles, the amplitudes are factorized into three distinct helicity combinations. Each

one approaches different field-theory limits in low energy corresponding to 1/s, 1/t and

1/u gauge-boson propagators[49]. In other words, the 0th resonance of the formula cor-

responds to gauge-boson(spin-1) exchange in field theory expansion. String correction

comes in as exchange of higher spin states as we see from

S(s, t) ' 1 − π2

6
(
st

M4
S

) (4.56)

where string correction is the 2nd term in the expression. Additional power of t in the

numerator of the correction term brings an additional spin state to the intermediate

state. In this case, there is spin-2 exchange in addition to the spin-1(gauge boson)

exchange due to the correction term. Notably, S(t, u) brings in 1 and 2 additional spins

since u = −s− t and ut = −st− t2 and we will end up with spin-1,2 and 3 exchange in

the amplitude containing single S(t, u) term.

From the above general argument, we analyze the diphoton production processes.

To illustrate important point, we first consider the 4-photon scattering. As we see from

Eq. (4.34-4.35), at low energy, the first-order amplitudes are proportional to s/t, s/u

and u/s, u/t(they add up to zero in each helicity case at the leading order before string

corrections) and therefore appear to have spin-1 exchange contributions. However Yang’s

theorem[64] implies that these contributions actually are spin-0 components of gauge

boson exchange as we can see easily from explicitly writing down tree-level Feynman

diagrams. Therefore the string corrections add spin exchange up to spin-2 for each

helicity combination, proportional to s2, t2 and u2 respectively. After the corrections,

Yang’s theorem again prevents spin-1 exchange after the string corrections and we are

left with only spin-2 exchange(since the original spin-0 scattering vanishes without string

corrections).
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The same argument applies to other processes with diphoton final state, they start

with only spin-0 exchange before string corrections and end up with spin-2 exchange

and original SM-exchange(processes such as qq̄, e+e− → γγ have non-vanishing SM part

that remains) after string corrections. Low-energy open-string corrections of amplitudes

for diphoton production thus are spin-2 exchange in nature. On the other hand, KK

corrections in conventional KK model[62] are naturally spin-2 exchange. It was shown

by Feynman, Kraichnan, and Weinberg[65] that Lorentz-invariant CPT-preserved spin-2

exchange interaction is unique and similarity between open-string and Kaluza-Klein in

diphoton production is a manifestation of this. The only difference between them is

the strengths of couplings. Gravitational(KK) is much weaker than SR-extended QED

interaction due to different spaces of propagation. Summation over KK tower amplifies

KK contribution to somewhat the same scale as SR contribution. In some regions

of parameter space, we therefore expect to have two copies of dimension-8 operators

correcting standard model amplitudes. The scale could be as low as 1 TeV due to

previous estimations[26, 81] and our current results.

4.3.4 Conclusions

Tree-level open-string scattering amplitudes of various diphoton production processes

have been calculated with unspecified Chan-Paton parameters. With the assumption of

nonchiral interaction, we found remarkably similar forms(for both energy dependence

and angular distribution) between low energy open-string scattering amplitudes and

diphoton production amplitudes via graviton exchange in Kaluza-Klein model regardless

of the fact that one is confined to D3brane and the other propagates freely in the bulk.

Applying the low energy constraints on mass scale of one model to another is therefore
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allowed and we extract some constraints on string scale MS from constraints on MD

in KK model. We found an agreement(somewhat weaker) with other constraints on

MS from the 4-fermion processes[81], about 0.6 − 0.9 TeV. Also we emphasize that the

4-photon interaction is unique and universal in every open-string model as well as it is

phenomenologically clean from SM background.

Caution thus has to be made when doing new physics analysis on diphoton pro-

duction. There could be two copies of exactly the same form of corrections to SM

amplitudes, one from SR(low E) and one from KK(tower of states). In some cases

of low-scale string scenario with large compatified extra dimension, the SR corrections

to SM amplitudes will be dominant and they will show up first since KK-graviton ex-

change is more suppressed by higher power of coupling[26]. KK-graviton exchange will

also show up as smaller contributions with exactly the same angular distribution and

energy dependence at a somewhat higher scale(MD > MS). However, it is also possible

that the string scenario is of much higher scale or not valid at all, in which case we

might find only one copy of corrections to SM diphoton amplitudes coming from con-

ventional field theoretic KK exchange. In the intermediate kinematic region(100 GeV

< E < MS ,MD), we need cross-check from other channels like the 4-fermion scatter-

ing to distinguish between signals from SR and signals from KK models. As we go to

higher energy(E > MS), since we can investigate the resonances directly, the detailed

energy and angular distributions at the resonances will determine whether it is SR or

KK exchange with more certainty[66].
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Chapter 5

TeV-Scale String Resonances at

Hadron Colliders

String theory [43] remains to be the leading candidate to incorporate gravity into a

unified quantum framework of the elementary particle interactions. The string scale

(MS) is naturally close to the quantum gravity scale MPl ≈ 1019 GeV, or to a grand

unification (GUT) scale MGUT ≈ 1017 GeV [44]. It has been argued recently that the

fundamental string scale can be much lower [45]. With the existence of large effective

volume of extra dimensions beyond four, the fundamental quantum gravity scale may

be as low as a TeV. This is thought to have provided an alternative approach to the

hierarchy problem [16, 17], namely the large gap between the electroweak scale O(100

GeV) and the Planck scale of MPl. What is extremely interesting is that these scenarios

would lead to very rich phenomenology at low energies in particle physics [25, 30, 26]

and astroparticle physics [46, 27, 28] that may be observable in the next generation of

experiments.
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One generic feature of string models is the appearance of string resonances (SR)

in scattering of particles in the energy region above the string scale. The scattering

amplitudes are of the form of the Veneziano amplitudes [43, 47, 26], which may develop

simple poles. In the s-channel, the poles occur at
√
s =

√
nMS (n = 1, 2, ...) with

degeneracy for different angular momentum states. It has been argued [25, 26] that

the scattering involving gravitons (closed strings) is perturbatively suppressed by higher

power of string coupling with respect to the open-string scatterings which therefore are

the dominant phenomena at energies near and above the string scale.

In this section, we consider the possibility of producing the string resonances of a

TeV-scale mass and studying their properties at colliders. We adopt the simplest open-

string model in the D-brane scenario [47, 26]. It is assumed that all standard model

(SM) particles are identified as open strings confined to a D3-brane universe, while a

graviton is a closed string propagating freely in the bulk. For a given string realization

of the SM, one should be able to calculate the open-string scattering amplitudes, in

particular the Chan-Paton factors [19] that are determined by the group structure of

the particle representations and their interactions. Unfortunately, there is no fully sat-

isfactory construction of the SM from string theory and we are thus led to parameterize

our ignorance. We demand that our stringy amplitudes reproduce the SM amplitudes

at low energies. The zero-modes of the scattering amplitudes are all identified as the

massless SM particles and no new exotic states of the zero-modes are present. By taking

Chan-Paton factors to be free parameters, a non-trivial stringy extension of the SM

amplitudes to a higher energy region is accomplished by a unique matching between

stringy amplitudes and those of the SM at low energies.
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In fact, this scheme has been exploited in some earlier works. These include possi-

ble low-energy effects from the string amplitudes on four-fermion interactions [81], and

searching for signals in cosmic neutrino interactions [27, 28]. In this paper, we explore

the search and detailed study of their properties for these string resonances at hadron

colliders such as the Fermilab Tevatron and the CERN Large Hadron Collider (LHC).

In the string models, we expect a series of resonances with a predicted mass relation

√
nMS (n = 1, 2, ...). Moreover, the angular distributions of the SR signals in parton-

parton c.m. frame present distinctive shapes in dileptonic and diphotonic channels due

to the angular momentum decomposition. Rather small forward-backward asymmetry is

another feature of the model. These are all very unique and remarkably specific in con-

trast to signals from other sources of new physics. It is found that the LHC experiments

may be sensitive to a string scale of MS ∼ 8 TeV.

The rest of the section is organized as follows. We first construct tree-level open-

string scattering amplitudes for the dileptonic and diphotonic production processes in

Sec. 5.0.5, which reproduce the SM amplitudes at low energies and extend to include

string resonances. In Sec. 5.0.6, string resonance approximation is discussed and each

string resonance is expanded into partial waves to see their angular momentum states.

Using the Z ′ constraints at the Tevatron, lower bounds on the string scale are obtained

in Sec. IV. The analysis at the LHC is carried out in Sec. V. We summarize in Sec. VI our

results and emphasize the generic features and profound implications of the amplitude

construction. The complete expressions for the scattering amplitudes and the decay

widths are given in two appendices.
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5.0.5 Construction of open-string amplitudes

The 4-point tree-level open-string amplitudes can be expressed generically [43, 47, 26]

Astring = S(s, t) A1234 T1234 + S(t, u) A1324 T1324 + S(u, s) A1243 T1243 (5.1)

where (1, 2, 3, 4) represents external massless particles with incoming momenta. Aijkl

are kinematic parts for SU(N) amplitudes [49], which are given in Appendix A. The

Mandelstam variables at parton level are denoted by s, t and u. For physical process

(12 → 34), the s, t and u-channels are labeled by (1,2), (1,4) and (1,3), respectively.

Tijkl are the Chan-Paton factors and in the usual construction,

T1234 = tr(λ1λ2λ3λ4) + tr(λ4λ3λ2λ1). (5.2)

Following Ref. [49], we adopt the normalization of tr(λaλb) = δab. Since a complete string

model construction for the electroweak interaction of the standard model is unavailable,

we will assume that these Chan-Paton factors are free parameters and Tijkl is typically

in range of −4 to 4. S(s, t) is essentially the Veneziano amplitude

S(s, t) =
Γ(1 − α′s)Γ(1 − α′t)

Γ(1 − α′s− α′t)
(5.3)

where the Regge slope α′ = M−2
S , and the amplitude approaches unity as either s/M 2

S

or t/M2
S → 0.

Of special interests for this article are the 2 → 2 processes that may lead to clear

experimental signatures at the Tevatron and LHC. We thus concentrate on two clean

channels: the Drell-Yan (DY) dilepton production (` ¯̀) and the diphoton production

(γγ), from qq̄ annihilation and possibly gluon-gluon fusion. In this section, we explicitly

construct the string amplitudes for these production processes.
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Dilepton Production

At hadron colliders, the 2 → 2 dilepton production processes are qq̄, gg → ` ¯̀. The

tree-level process for gg → ` ¯̀ is absent in the SM. In the massless limit of the fermions,

we label their helicities by the chirality α, β = L,R. For the process with initial state

qq̄, we have two cases depending on the helicity combination of the final state leptons.

The non-vanishing amplitudes are those for α 6= β. The external particle ordering is

(12 → 34).

(A1). qq̄ annihilation qαq̄β → `α ¯̀
β :

With the notation as in Appendix A, this process belongs to a type of f±f∓f∓f±,

with ± denoting the helicity of the particle with respect to incoming momentum. Our

construction thus leads to the physical amplitude

Astring(qαq̄β → `α ¯̀
β) = ig2

[

T1234S(s, t)
t

s
+ T1324S(t, u)

t

u
+ T1243S(u, s)

t2

us

]

. (5.4)

The corresponding standard model amplitude is via the electroweak interaction,

ASM = ig2
L

t

s
Fαα, (5.5)

where the photon and Z contributions are given by

Fαβ = 2Q`Qqxw +
s

s−m2
Z

2g`
αg

q
β

1 − xw
. (5.6)

Here xw = sin2 θW and the SU(2)L coupling gL = e/ sin θW . The neutral current cou-

plings are gf
L = T3f −Qfxw, g

f
R = −Qfxw.

The crucial assumption for our approach is to demand the string expression Eq. (6.15)

to reproduce the standard model amplitude in the low-energy limit when s/M 2
S → 0.

This can be achieved by identifying the string coupling with the gauge coupling g = gL,
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and matching the Chan-Paton factors Tijkl as

T1243 = T1324 ≡ T ; T1234 = T + Fαα. (5.7)

We then obtain the full result

Astring(qαq̄β → `α ¯̀
β) = ig2

LS(s, t)
t

s
Fαα + ig2

LT
t

us
f(s, t, u), (5.8)

f(s, t, u) = uS(s, t) + sS(t, u) + tS(u, s). (5.9)

For simplicity, we will take the Chan-Paton parameter T to be positive and 0 ≤ T ≤ 4.

Taking T to be negative will not change our numerical results appreciably.

A few interesting features are worthwhile commenting. First, we see that the string

amplitude Eq. (6.18) consists of two terms: one proportional to the SM result multiplied

by a Veneziano amplitude S(s, t); the other purely with string origin proportional to an

unknown Chan-Paton parameter T . In the low-energy limit s � M 2
S, f(s, t, u) →

s + t + u = 0, reproducing the SM result regardless of T . This implies that T cannot

be determined unless one specifies the detailed embedding of the SM to some more

generalized group structure in a string setup. The seemingly disturbing fact is that one

of the Chan-Paton factors T1234 must be made dependent upon the Z-pole, rather than

pure gauge couplings. This reflects our ignorance of treating the electroweak symmetry

breaking in our approach.

As for the other helicity combination qαq̄β → `β ¯̀
α, it belongs to the class of f±f∓f±f∓.

We apply the same methods as stated above and find the crossing relation t ↔ u and

an index interchange in the F factor,

Astring(qαq̄β → `β ¯̀
α) = ig2

LS(s, u)
u

s
Fβα + ig2

LT
u

ts
f(s, t, u). (5.10)

with T ≡ T1234 = T1324.
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(A2). Gluon fusion gαgβ → `α ¯̀
β :

In our open-string model, there is the possibility of dilepton production via two initial

state gluons. This amplitude vanishes at tree-level in the standard model, but could be

non-zero in the open-string model if the gluons and leptons belong to some larger gauge

group in which the Chan-Paton trace is non-vanishing. The amplitude belongs to a type

of g±g∓f∓f± according to Appendix A. With T ≡ T1234 = T1324 = T1243, the result reads

Astring(gαgβ → `α ¯̀
β) = ig2

LT
1

s

√

t

u
f(s, t, u), (5.11)

where T may be different for each helicity combination of external particles. In fact,

there exists an intrinsic ambiguity for the string coupling identification since there are

both strong interaction and electroweak interaction involved simultaneously. Coupling

identification for this subprocess would not be determined without an explicit string

model construction. This problem is beyond the scope of this article. To be conservative,

we have identified the string coupling with the weak coupling gL.

For gαgβ → `β ¯̀
α, we have t↔ u of the above expression.

Diphoton Production

Another clean signal in addition to dilepton production at hadron colliders is the dipho-

ton final state. We therefore construct the string amplitudes for diphoton processes in

this section. We again label the helicities by α, β, and as in the dileptonic processses,

the non-vanishing amplitudes are those with α 6= β.

(B1). qq̄ annihilation qαq̄β → γαγβ :

Using the kinematic amplitudes for fermions and gauge bosons f∓f±g±g∓ as given

in Appendix A and the matching techniques between the string and SM amplitudes
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described in the previous section, we obtain the following open-string amplitudes for

T ≡ T1234 = T1243,

Astring(qαq̄β → γαγβ) = 2ie2Q2
q

√

t

u
S(t, u) + ie2T

1

s

√

t

u
f(s, t, u), (5.12)

which correctly reproduce SM amplitudes at low energies, given by the first term. For

the other helicity combination γβγα, the amplitude can be obtained by t↔ u.

(B2). Gluon fusion gαgβ → γαγβ :

Identifying this process with g±g∓g∓g±, one has

Astring(gαgβ → γαγβ) = ie2T
t

us
f(s, t, u). (5.13)

with T ≡ T1234 = T1324 = T1243. Note that this amplitude is of purely stringy origin.

There exists the same ambiguity for the string coupling identification as in gg → ` ¯̀. To

be conservative, we have matched the string coupling with the electromagnetic interac-

tions.

For the other helicity combination γβγα, the amplitude can be obtained by t↔ u.

5.0.6 String Resonances and Partial Waves Expansion

The factor Γ(1 − s/M 2
S) in the Veneziano amplitude develops simple poles at s =

nM2
S (n = 1, 2, 3...), implying resonant states with masses

√
nMS . At energies near

the string scale, string resonances thus become dominating. One can perform a resonant

expansion,

S(s, t) ≈
∞
∑

n=1

t( t
M2

S

+ 1)...( t
M2

S

+ n− 1)

(n− 1)!(s− nM 2
S)

. (5.14)

Thus, by neglecting S(t, u) which does not contain s-channel poles,

f(s, t, u) = uS(s, t) + sS(t, u) + tS(u, s)



70

≈ 2
∞
∑

n=odd

ut( t
M2

S

+ 1)...( t
M2

S

+ n− 1)

(n− 1)!(s− nM 2
S)

. (5.15)

It is a remarkable result that this purely stringy function f(s, t, u) has only odd-n SRs

due to the crossing symmetry between t and u. It represents the stringy effects of spin-

excitations along the string worldsheet, which are suppressed at low energy. These are

the generic features of stringy effects we wish to explore at the high energy experiments.

String Resonances in Dileptonic and Diphotonic Amplitudes

The open-string amplitude construction for Drell-Yan processes predicts the existence of

exotic intermediate states such as leptoquarks in the u-channel and higher spin bosonic

excitations in the s-channel as string resonances. Due to the limited c.m. energy accessi-

ble at collider experiments, we need to keep only the first few resonances. Applying the

general results of Eqs. (5.14) and (6.32) to the dilepton string amplitudes, we obtain the

amplitude formula for the first two resonances, with θ defined as angle between initial

quark and final anti-lepton in the parton c.m. frame,

ASR(qαq̄β) ≈



































ig2
L

(1−cos θ)2

4

[

s
s−M2

S

(Fαα + 2T ) + s
s−2M2

S

Fαα cos θ
]

for `α ¯̀
β

ig2
L

(1+cos θ)2

4

[

s
s−M2

S

(Fβα + 2T ) − s
s−2M2

S

Fβα cos θ
]

for `β ¯̀
α.

The full amplitude then will appear as a sum

A ≈ ASM + ASR. (5.16)

A few remarks on the amplitudes are in order. Firstly, even we set free Chan-Paton

parameter T to zero, there are still contributions from string resonances. This can

be seen from the Veneziano factor multiplying to the SM term in the string formula.
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Significant differences from the standard model cross sections can be expected if the

string scale is accessible at future colliders. Second, the amplitude for the first (odd-n)

string resonance depends on the Chan-Paton parameter T , while the second (even-n)

resonance does not. The even resonances are completely determined by the gauge factors

F in the standard model.

In the string model, there is a possible contribution from gluon fusion to lepton pairs,

as seen in Eq. (5.11). Near the string resonance, we have

ASR(gαgβ) ≈ ig2
LT

s

s−M2
S

1 ∓ cos θ

2
sin θ, (5.17)

where the sign “ − ” corresponds to gαgβ → `α ¯̀
β, and “ + ” to `β ¯̀

α with α 6= β.

There are only odd-n string resonances from this gluon contribution. This is generic

for any processes if the standard model amplitude vanishes at tree-level. It is always

proportional to the function f(s, t, u) which vanishes in the low energy limit, which only

has odd-n resonances. As a comparison, for processes with the non-vanishing amplitudes

in standard model at tree-level, their open-string amplitude will most likely contain both

odd- and even-n SRs.

The only exception is when the stringy correction piece multiplying to the standard

model amplitude is S(t, u) which does not contain SR pole in the s-channel. This occurs

naturally when the zero-mode (SM) tree-level exchange is in t or u but not in the s

channel. We can see from the list in Appendix A that A1324, to be multiplied with

S(t, u) in the full amplitude expression, never contain s-channel pole. This is consistent

with the physical picture that SR is the spin excitation of the zero-mode intermediate

state. If the zero-mode (SM) intermediate state does not exist, then there will not exist

SR interacting with the same gauge charges. An example of this kind of processes is

qq̄ → γγ which we can see from Eq. (5.12). For diphoton production, there are thus
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only odd-n string resonances. The first SR (n = 1) for both processes are

ASR(qαq̄β → γαγβ) = ie2T
s

s−M2
S

1 − cos θ

2
sin θ, (5.18)

ASR(gαgβ → γαγβ) = 2ie2T
s

s−M2
S

(1 − cos θ)2

4
. (5.19)

The expressions for opposite helicity combinations (γβγα) are given by θ → π − θ.

Observe that SR coupling is proportional to T which is completely undetermined. We

will include these n = 1 resonances and ignore those of n = 3 in our LHC analysis for

the diphoton signals.

Partial Waves Expansion of String Resonances

There is degeneracy of states with different angular momenta at each SR as can be seen

from the dependence on different powers of t for each n in Eq. (5.14). Generically, any

amplitude A(s, t) can be expanded in terms of the Wigner functions dj
mm′(cos θ) [15] as

A(s, t) = 16π
∞
∑

j=M

(2j + 1)aj(s)d
j
mm′(cos θ) (5.20)

where M = max(|m|, |m′|), and aj(s) are the partial wave amplitudes corresponding to

a definite angular momentum state j.

For our purpose, we expand the SR amplitudes for each mass eigenstate of a given

n by the Wigner functions as in Table 5.1.

It becomes clear that the different angular momentum states will lead to very dis-

tinctive angular distributions of the final state leptons for the SR signals and may serve

as important indicators in exploring the resonance properties. To regularize the poles,

the decay widths have been included. The coefficients αj
n, decay widths Γj

n, and the

relevant Wigner functions are given in Appendix B.



73

5.0.7 Bounds on the String Scale from the Tevatron

At the Fermilab Tevatron, the clean channels of dileptons and diphotons have been

actively searched for. The CDF collaboration has been searching for a Z ′ gauge boson

in the dilepton channel and a lower bound MZ′ > 690 GeV had been set based on their

Run I data [50] for a neutral gauge boson with SM-like couplings. Similar results were

obtained by the D0 collaboration [51]. The non-existence of a signal put an upper bound

on the production cross section and can thus be translated to stringent constraints on

the string scale.

Using CTEQ5L parton distribution functions [52] , we estimate the total cross-

sections for the string resonance signatures at various string scales with T = 1 − 4.

Since there is degeneracy of state with different angular momenta at the same mass,

we use partial wave expansion to split each SR pole. We regulate the resonance pole

by including the decay width of each angular momentum state separately. The detailed

treatment for the width calculation is given in Appendix B. For instance, for MS = 1

TeV, n = 1 and T = 1, the widths of SR in the Drell-Yan process are 240 (48) GeV

for j = 1 (2), while the width of SR in gg → ` ¯̀ is 19 GeV with the only j = 2 state.

When we compare with Tevatron data on their Z ′ search, we need only the first SR, the

lightest state (including the angular momentum degeneracy).

In Figure 5.1, we present the total cross section for the DY process (` = e, µ) via the

SR versus its mass MS, for different values of the Chan-Paton parameter T = 0 − 4 as

shown by the solid curves. Both contributions from qq̄ and gg are taken into account.

To extract the lower bound on the string scale, we have simulated the experimental

acceptance cuts on the invariant mass of the lepton pair, transverse momentum of the
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Figure 5.1: Total cross section for the DY process (` = e, µ) via the SR versus its mass

MS, for different values of T = 0 − 4 (the solid curves). Detector acceptance cuts of

Eq. (5.21) have been imposed. The horizontal dashed lines show the 95% C.L. upper

bound on σ(Z ′)B(Z ′ → ``) for integrated luminosities 110 pb−1, 1 fb−1 and 2 fb−1,

respectively.

leptons, and their rapidity to be

M(``) > 50 GeV, pT (`) > 18 GeV, |y`| < 2.4. (5.21)

We extrapolate CDF result [50] of 110 pb−1 on the Z ′ mass bound at 95% C.L. through

dilepton production to a higher mass scale to obtain an upper bound on the produc-

tion cross section, as shown by the horizontal dashed lines, corresponding to different

integrated luminosities, 110 pb−1, 1 fb−1 and 2 fb−1, respectively. The intersections be-

tween the top horizontal line from the extrapolated data and the curves calculated for

string resonances are located at 1.1− 2.1 TeV for T = 1− 4, and thus yield the current
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lower bound on MS. This gives a stronger bound for the string scale than that based

on a contact interaction analysis [81]. A bound obtained from the diphoton final state

is weaker than that from the DY process, and we will not present it here.

In the near future with an integrated luminosity of 2 fb−1 at the Tevatron, one should

be able to extend the search to MS ∼ 1.5−3 TeV for T = 1−4, as indicated in Fig. 5.1.

It is interesting to note that even for T = 0, one still has some sensitivity at the Tevatron,

reaching MS ∼ 1 TeV.

5.0.8 String Resonances at the LHC

At the LHC, operating at Ecm = 14 TeV with an expected luminosity of 300 fb−1, could

produce a sufficiently large number of events induced by SRs with masses of several

TeV. We will first present various aspects of dilepton and diphoton SR-induced signals

in comparison with the expected SM backgrounds. Then we will proceed to set the

lower bound on the string scale if we do not see any SR-induced signals at the LHC. For

illustration, we take a fixed string scale of MS = 2 TeV and T = 1. All of the processes

are calculated with the minimal acceptance cuts on the final state particles of leptons

and photons

pT > 20 GeV, |y| < 2.4. (5.22)

To be more realistic in generating the resonant structure, we smear the particle energies

according the electromagnetic calorimeter response with a Gaussian distribution

∆E

E
=

5%
√

E/GeV
⊕ 1%. (5.23)
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Figure 5.2: Invariant mass distributions for DY dilepton production at the LHC, for

the continuum SM expectation and the SR contributions with MS = 2 TeV and T = 1:

qq̄ + gg (top curve) and gg only (dashed). The vertical bar at the n = 1 SR peak

indicates the enhancement for T = 4.
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The resonance signals

In Figure 5.2, we present the invariant mass distributions of the DY dileptons for the

SM background expectation and the string resonances, including both qq̄ and gg con-

tributions as labeled. At low energies, the stringy amplitudes reproduce SM results as

expected. At higher energies, the resonant structure in the invariant mass distribution

can be very pronounced. The dilepton processes have both even- and odd-n SRs, with

masses MS,
√

2MS for n = 1, 2. Recall that the second SR is independent of the Chan-

Paton parameter T , in contrast to the first SR which is dependent on T . To illustrate

this effect, we have also depicted the peak height for the choice of T = 4. Therefore,

the number of events around the first SR (the cross section) will determine the Chan-

Paton parameter T , while the number of events around the second SR will be predicted

essentially by the SM couplings. Moreover, the mass of the second string resonance

is remarkably predicted to be
√

2MS, fixed with respect to the first resonance. These

essential aspects of SR signals allow us to distinguish this unique model from other new

physics. The scale on the right-hand side gives the number of events per bin for an

integrated luminosity of 300 fb−1.

The differential cross-sections for diphoton production are shown in Fig. 5.3 for the

SM background and the string resonant contribution. The diphoton processes have only

odd-n SRs and thus the peak is at MS for n = 1. The contribution from gg → γγ is

again separately shown for comparison (dashed curve). Although it would just double

the diphoton signals at the peak of SR by including the gg channel, we have pointed out

earlier that the string coupling identification to e is ambiguous.
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Figure 5.3: Invariant mass distributions for diphoton production at the LHC, for the

continuum SM expectation and the SR contributions with MS = 2 TeV and T = 1:

qq̄ + gg (top curve) and gg only (dashed). The vertical bar at the n = 1 SR peak

indicates the enhancement for T = 4.
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Figure 5.4: Normalized theoretical angular distributions of string resonances with spin

1, 2, and 3 in the DY channel pp→ `+`−X.

Angular distributions

As already seen from Table 5.1, there are interesting mass-degeneracies with different

angular momentum states. This will lead to distinctive angular distributions when the

pair invariant mass is close to the string resonance. It is thus tempting to explore how

this unique aspect could be studied.

We first tabulate the angular dependence for the processes with given n, j values in

Table 5.2. As always, the angle θ is defined in the ` ¯̀ or γγ rest frame with respect to

the beam direction. It is indeed interesting to see the drastic differences of the angular

distributions for different processes. For instance, there is a degeneracy of spin 1 and

2 at the first SR in dileptonic processes. Spin-2 contributions to dileptonic processes

have two possible sources with totally different angular distributions. One is from SR

of qq̄ initial state and another is from SR of gg one as illustrated in Fig. 5.4 by the
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Figure 5.5: Normalized theoretical angular distributions of string resonances with only

spin-2 in pp→ γγX.

dashed curves. Here, the contribution of spin-2 SR from qq̄ is one-ninth of the spin-1

contribution of the same process while the contribution from gg is directly proportional

to the Chan-Paton parameter T . These two contributions of spin-2 exchange could

change the angular distribution significantly from the conventional “Z ′” exchange that

we would encounter in many extensions of the SM [53, 54, 55]. It is obvious that this

unique angular distribution is also distinguishable from new-physics models with only

spin-2 exchange such as Kaluza-Klein graviton [56]. For diphoton processes, there is

only spin-2 SR from both qq̄ and gg initial states, as shown in Fig. 5.5.

In Figure 5.6, the predicted angular distributions (normalized to unity) of dileptonic

signals are presented with the choice of T = 1 for both qq̄ and gg initial states, for

two different mass eigenstates n = 1, 2. The events are selected not only by imposing

the acceptance cuts of Eq. (5.22), but also by choosing the invariant mass around the
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Figure 5.6: Normalized angular distributions for n = 1 (solid) and n = 2 (dashed) string

resonances in the DY channel pp→ `+`−X with appropriate cuts of Eq. (5.22).

resonance mass

√
nMS − 2Γn < M <

√
nMS + 2Γn. (5.24)

We see from the figure that the distribution for n = 1 is less pronounced near cos θ ∼ ±1

than that for n = 2. The eventual drop is due to the acceptance cuts. One could imagine

to fit the observed distributions in Fig. 5.6 by the combination of the functions listed

in Table 5.2 to test the model prediction. Similar distribution for the γγ final state is

shown in Fig. 5.7, where the total contribution of qq̄ + gg (the solid curve) and that for

qq̄ only (the dashed curve) are compared at T = 1 for both processes.

The Forward-Backward asymmetry

For parton-level subprocess qq̄ → ` ¯̀, forward-backward asymmetry is defined as

Aq`
FB =

NF −NB

NF +NB
(5.25)
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Figure 5.7: Normalized angular distributions for n = 1 string resonance in the diphoton

channel pp → γγX with appropriate cuts of Eq. (5.22). The solid curve represents the

total contribution of qq̄ + gg and the dashed curve is for qq̄ only.

where NF (B) is the number of events with final lepton moving into the forward (back-

ward) direction. At pp colliders, the annihilation process is from the valence quarks and

the sea antiquarks. Therefore, the produced intermediate resonant state will most likely

move along the direction of the initial valence quark due to its higher fraction of mo-

mentum [54]. With respect to one particular boost direction of the final dilepton, we can

consequently extract information of the forward-backward asymmetry of the subprocess.

In our open-string model, the asymmetry is given, for s� m2
Z , by

Aq`
FB =

(

30

32

)

(Gq
LL)2 + (Gq

RR)2 − (Gq
LR)2 − (Gq

RL)2

(Gq
LL)2 + (Gq

RR)2 + (Gq
LR)2 + (Gq

RL)2
(5.26)
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=































−0.176 (−0.039) for q = u, T = 1 (4)

0.140 (0.037) for q = d, T = 1 (4)

(5.27)

where Gq
αβ = Fαβ + 2T , the interaction factor of the fermions defined in Sec. 5.0.5. This

asymmetry is inherited from the SM part, Fαβ, in the amplitudes. The value of Aq`
FB

for SM with s � m2
Z is 0.61 (0.64) for u (d) quark. The asymmetry is diluted by the

symmetric SR contribution since typically T > Fαβ. The forward-backward asymmetry

is hardly visible when T = 4. This also can be viewed as another feature to distinguish

the SR from the other states like Z ′ which normally yields larger asymmetry [54].

The reach on the string scale

For the unfortunate possibility that we do not detect any signals with SR properties,

the absence of signals implies certain bound on the string scale MS and Chan-Paton

parameters T . We present the sensitivity reach at 95% C.L. in Fig. 5.8 as a function of

the integrated luminosity at the LHC. The results are obtained by assuming the Gaussian

statistics and by demanding S/
√
S +B > 3, where the signal rate is estimated in the

dilepton-mass window [MS − 2Γ1,MS + 2Γ1] at the first SR. The lower bound on the

string scale could reach MS > 8.2 − 10 TeV for T = 1 − 4 at a luminosity of 300 fb−1.

5.0.9 Summary and Conclusions

We have constructed tree-level open-string amplitudes for dilepton and diphoton pro-

cesses. The massless SM particles are identified as the stringy zero-modes. For a given

2 → 2 scattering process, by demanding the open-string amplitudes reproduce the SM
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Figure 5.8: Sensitivity reach at 95% C.L. of MS at various luminosities at the LHC.

ones at low energies, the amplitudes can be casted into a generic form

Astring ∼ ASM(s, t, u) · S(s, t, u) + Tf(s, t, u) · g(s, t, u), (5.28)

where ASM is the SM amplitude, S(s, t, u) = S(s, t), S(s, u) or S(t, u) the Veneziano

amplitudes, T the undetermined Chan-Paton parameter, f(s, t, u) a kinematical function

given in Eq. (5.9), and g(s, t, u) some process-dependent kinematical function. The

amplitudes have the following general features:

• By construction, they reproduce the standard model amplitudes at low energies

s�M2
S, since S(s, t) → 1 and f(s, t, u) → 0, and thus fixing the string couplings

with respect to the SM gauge couplings.

• The Veneziano amplitude S(s, t) and f(s, t, u) develop stringy resonances at ener-

gies
√
s =

√
nMS (n = 1, 2, ...).
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• S(s, t) leads to both even- and odd-n resonances, while f(s, t, u) yields only odd-n

SRs. Thus, the even-n resonances are completely fixed by the SM interactions,

independent of the unknown factor T .

• For the standard model processes that either vanish at tree-level (such as gg → γγ),

or do not contain s-channel exchange (such as qq̄ → γγ), there will be no SRs which

couple with SM charges as in the first term of Eq. (5.28). Yet, there can still be

SR contributions from purely stringy effects, directly proportional to T , given in

the second term of the equation.

We would like to emphasize the profound implication of our amplitude construc-

tion and the generic structure of Eq. (5.28). The basic assumption of this work is to

take the tree-level open-string scattering amplitudes of Eq. (6.11) as the description of

leading new physics beyond the SM near the TeV threshold. As long as one accepts

this approach and demands the amplitudes to reproduce the SM counterparts at low

energies, Eq. (5.28) would be the natural consequence. There are essentially only two

unknown parameters: the string scale MS and the Chan-Paton parameter T . This con-

struction should be generic for any leading-order 2 → 2 processes of massless SM particle

scattering, and thus be applicable for further phenomenological studies.

We have calculated numerically the total cross-section of DY through the first string

resonance and compared with the CDF data for Z ′ production. We establish the current

lower bound of the string scale at about 1.1−2.1 TeV which is stronger than limits from

the contact-interaction analysis [81]. The bound from Tevatron can be improved to

1.5 − 3 TeV with an integrated luminosity of 2 fb−1.

At the CERN LHC, with the high luminosity expected and much larger center-of-

mass energy, SR-induced signals for MS <∼ 8 TeV can be substantial and a large number
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of events is predicted around the SR in dilepton and diphoton processes regardless of the

value of the Chan-Paton parameters T . The second string resonance with a mass
√

2MS

may be observed in the dilepton channel as well. Distinctive angular distributions and

the forward-backward asymmetry may serve as indicators to distinguish the SR from

other new physics. For a larger value of MS, SR signals become weaker and we may

establish the sensitivity on the lower bound of the string scale for T = 1 − 4 to be

MS > 8.2 − 10 TeV at 95% C.L. with a luminosity of 300 fb−1.

5.0.10 Appendix

kinematic table

Consider a tree-level scattering of four massless gauge bosons in SU(N) gauge theory,

with all momenta incoming. The only non-vanishing amplitudes are those with two

positive and two negative helicities. There are six of them, each as a sum of three

terms of independent permutations. The general formula for one permutation is given

in Ref. [49] as

A1234 = ig2 〈IJ〉4
〈12〉〈23〉〈34〉〈41〉, (5.29)

where I, J label the two gauge bosons with negative helicities. Obviously, the above

amplitude is invariant if I, J are for the positive helicity gauge bosons. 〈pq〉 is the spinor

product defined by

〈pq〉 ≡ Ψ−(p)Ψ+(q) (5.30)

and |〈pq〉|2 = 2p · q. The order of 〈XY 〉 in the denominator is cyclic of 1234. For

processes involving fermions, the supersymmetric relation of Eq. (4.9) in [49] can been
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applied. The expressions for four fermions (ffff) are exactly the same as those for

four gauge bosons (gggg) for each corresponding helicity and particle permutation. The

amplitudes for processes with two bosons and two fermions vanish when the two fermions

(or bosons) have the same helicity. A useful list of the amplitudes relevant to our

scattering amplitude construction in the text is given as follows, where the superscripts

indicate the helicities with respect to the incoming momenta.

g±g∓g∓g±/f±f∓f∓f± :A1234 = ig2 〈14〉2

〈12〉2
, A1324 = ig2 〈14〉2

〈13〉2
, A1243 = ig2 〈14〉4

〈12〉2〈13〉2

g±g∓g±g∓/f±f∓f±f∓ :A1234 = ig2 〈13〉4

〈12〉2〈14〉2
, A1324 = ig2 〈13〉2

〈14〉2
, A1243 = ig2 〈13〉2

〈12〉2

g±g∓f∓f±/f∓f±g±g∓ :A1234 = ig2 〈13〉〈14〉
〈12〉2

, A1324 = ig2 〈14〉
〈13〉

, A1243 = ig2 〈14〉3

〈13〉〈12〉2

Expressions for other helicity combinations can be achieved by properly crossing two

particle momenta, or by cyclic permutation under which Eq. (5.29) is invariant. In doing

so, some identities may be useful:

• Aijkl = Alkji; Aijkl = Ailkj;

• invariant under the sign change (++ ↔ −−).
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calculation of decay widths

The partial decay width of SR with a mass m =
√
nMS and angular momentum j to a

final state ` ¯̀ can be written generically as

Γj
n =

1

2m

1

2j + 1

∫

dPS2|A(Xj
n → `¯̀)|2. (5.31)

The two-body phase space element is dPS2 = dΩ/8, and the decay matrix element

squared can be related to the scattering amplitude by

|A(Xj
n → `3 ¯̀

4)|2 = (s−m2)|Aj
n(`1 ¯̀

2 → `3 ¯̀
4)| with p1 = p3, p2 = p4. (5.32)

With the help of partial wave expansion in terms of the Wigner functions dj
mm′ as

discussed in Sec. 5.0.6, we have

Aj
n(`α ¯̀

β → `α ¯̀
β) = ig2Gαα

s αj
n d

j
1,−1

s−m2
. (5.33)

where

G =























F + 2T for odd n,

F for even n,

(5.34)

with F and T given in text. The coefficient αj
n satisfies normalization condition

∑n+1
j=1 |αj

n| =

1. The final expression for decay width of the SR is therefore

Γj
n =

g2

16π

√
nMS

2j + 1
Gαα |αj

n| (5.35)

This expression can be easily generalized to other elastic processes. As for the case of

diphoton production, the gauge coupling factor G = T after absorbing the 1/2 factor for

identical particles, and the coupling g2/16π = α/4, instead of α/4xw as in the dilepton

case. It should also be noted that even we do have a non-vanishing SM part in the
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qq̄γγ channel, there is no corresponding contribution from an SR and consequently to

the width of diphoton processes.

For completeness, in Table 5.3 we provide the expansion coefficients in Eq. (5.33),

and the relevant Wigner functions are

d1
1,−1 =

1 − cos θ

2
(5.36)

d2
1,−1 =

1 − cos θ

2
(2 cos θ + 1) (5.37)

d3
1,−1 =

1

4

(

1 − cos θ

2

)

(15 cos2 θ + 10 cos θ − 1) (5.38)

d2
2,−1 = − sin θ

(

1 − cos θ

2

)

(5.39)

d2
2,−2 =

(

1 − cos θ

2

)2

(5.40)

with dj
1,1(x) = (−1)j−1dj

1,−1(−x) and d2
2,m(x) = d2

2,−m(−x)(m = 1, 2).

Numerically, the total widths for each processes when T = 1 are

Γ1,2
1 (qq̄`¯̀) = 240, 48 GeV

(

MS

TeV

)

, (5.41)

Γ1,2,3
2 (qq̄`¯̀) = 46, 26, 5.8 GeV

(

MS

TeV

)

, (5.42)

Γ2
1(gg`

¯̀) = 19 GeV
(

MS

TeV

)

, (5.43)

Γ2
1(qq̄γγ) = 3.9 GeV

(

MS

TeV

)

, (5.44)

Γ2
1(ggγγ) = 3.5 GeV

(

MS

TeV

)

. (5.45)

where we have included all necessary decay modes into related final states for each

resonance. For instance, the width Γ(qq̄` ¯̀) includes the partial decay widths of SR into

charged leptons, neutrinos, and quarks. Partial decay modes into massive bosons such

as the Higgs and W±, Z are not included.
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Table 5.1:

DY dilepton pairs

An=1
SR (qαq̄β → `α ¯̀

β) ig2
L(Fαα + 2T )

2
∑

j=1

s αj
1 d

j
1,−1

s−M2
S + iΓj

1MS

An=1
SR (qαq̄β → `β ¯̀

α) ig2
L(Fβα + 2T )

2
∑

j=1

s αj
1 d

j
1,1

s−M2
S + iΓj

1MS

An=2
SR (qαq̄β → `α ¯̀

β) ig2
L Fαα

3
∑

j=1

s αj
1 d

j
1,−1

s− 2M2
S + iΓj

2

√
2MS

An=2
SR (qαq̄β → `β ¯̀

α) ig2
L Fβα

3
∑

j=1

s αj
1 d

j
1,1

s− 2M2
S + iΓj

2

√
2MS

An=1
SR (gαgβ → `α ¯̀

β, `β ¯̀
α) ig2

LT
s d2

2,∓1

s−M2
S + iΓ1MS

Diphoton final state

An=1
SR (qαq̄β → γαγβ, γβγα) ie2T

s d2
2,∓1

s−M2
S + iΓ1MS

An=1
SR (gαgβ → γαγβ, γβγα) 2ie2T

s d2
2,∓2

s−M2
S + iΓ1MS
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Table 5.2:

process angular dependence

qq̄ → `¯̀

n = 1, j = 1 (d1
1,−1)

2 + (d1
1,1)

2 ∝ 1 + cos2 θ

j = 2 (d2
1,−1)

2 + (d2
1,1)

2 ∝ 1 − 3 cos2 θ + 4 cos4 θ

n = 2, j = 1 (d1
1,−1)

2 + (d1
1,1)

2 ∝ 1 + cos2 θ

j = 2 (d2
1,−1)

2 + (d2
1,1)

2 ∝ 1 − 3 cos2 θ + 4 cos4 θ

j = 3 (d3
1,−1)

2 + (d3
1,1)

2 ∝ 1 + 111 cos2 θ

−305 cos4 θ + 225 cos6 θ

gg → `¯̀

n = 1, j = 2 (d2
2,−1)

2 + (d2
2,1)

2 ∝ 1 − cos4 θ

qq̄ → γγ

n = 1, j = 2 (d2
2,−1)

2 + (d2
2,1)

2 ∝ 1 − cos4 θ

gg → γγ

n = 1, j = 2 (d2
2,−2)

2 + (d2
2,2)

2 ∝ 1 + 6 cos2 θ + cos4 θ
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n j = 1 2 3

qq̄`¯̀ 1 3/4 ∓1/4 0

2 −9/20 ±5/12 −2/15

qq̄γγ 1 0 −1 0

2 0 0 0

gg`¯̀ 1 0 −1 0

2 0 0 0

ggγγ 1 0 1 0

2 0 0 0

Table 5.3: Coefficients αj
n of partial wave expansion in each processes. Upper (lower) sign in

qq̄`¯̀ corresponds to scattering of quark into lepton with like (opposite) helicity.
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Chapter 6

Stringy Interaction and Low-Energy

Effects in Braneworld Models

6.1 Stringy Gauge “Singlet” Interaction

One embedding of U(1)em into U(2) in coincident-branes model was investigated by

Cullen, Perelstein, and Peskin [26]. All tree-level QED amplitudes for e+, e−, and γ are

reproduced with the identification

t+ =









0 1

0 0









, t− =









0 0

1 0









, t3 =
1√
2









1 0

0 −1









. (6.1)

where t−, t+, and t3 is the Chan-Paton matrix of e−L , e
+
L , and Aµ respectively. The choice

satisfies the 3-point relations

[t±, t3] ∝ ∓t±, [t+, t−] ∝ t3 (6.2)

and therefore is reproducing the 3-point QED vertex in the field theory limit (where

E/MS � 1). Remarkably, this choice of Chan-Paton matrices lead to the non-vanishing
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tree-level open-string scattering γγ → γγ[26, 67], e.g.

A(γRγR → γRγR) = ie2 s

ut
f(s, t, u) (6.3)

This is due to the non-vanishing trace, tr(t3t3t3t3), appearing in the 2 → 2 tree-

level open-string formula. This “stringy” interaction becomes vanishing at low energy,

E/MS � 1, due to the on-shell condition s + t + u = 0. Interestingly, while stringy

3-point correlation (∝ tr([t3, t3]t3)) between three photons vanishes in this choice of

Chan-Paton matrices, the stringy 4-point (and more generically n(> 3)-point) corre-

lation is not zero at higher energies. This is the first example of the gauge “singlet”

(uncharged) interaction induced by stringy dynamics which becomes non-negligible at

higher energies.

When we embed the low-energy group into the larger group, the states which are

represented by diagonal Chan-Paton matrices (more generically anything that commutes

with the matrices assigned to the gauge boson states) always appear as “uncharged” or

“singlet” under the low-energy group (it could be confusing for fundamental U(1) where

everything is singlet, in such case, we embed U(1) into larger group, e.g. 2×2 matrix as

mentioned above and below where everything is represented by non-singlet). This is due

to the fact that the 3-point amplitude is vanishing. Those states, even appear as singlets

with respect to the low-energy group, could actually be part of other representations

at higher energies. In this sense, the quotation of “singlet” is meant to be interpreted

as states appearing to be uncharged under low-energy group but actually are part of

non-trivial representations at higher energies.

Any diagonal matrices commuting with this t3 represent the uncharged QED “sin-

glet” particle with vanishing 3-point QED vertex. These “singlet” components of the

particles, however, can have the stringy interaction mentioned above as we can see from
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the following assignment

t+ =









ε 1

0 ε









, t− =









ε 0

1 ε









, t3 =
1√
2









1 0

0 −1









. (6.4)

where we have added diagonal components to the fermions. This choice of Chan-Paton

matrices give the following set of amplitudes

A(e−α e
+
β → e−α e

+
β ) = 2ie2S(s, u)

t2

us
+ 4ie2 t

us
f(s, t, u)(ε4 + 2ε2) (6.5)

A(e−α e
+
β → e−β e

+
α ) = 2ie2S(s, u)

u

s
+ 4ie2 u

ts
f(s, t, u)(ε4 + 2ε2) (6.6)

A(e−α e
+
β → γαγβ) = −2ie2S(t, u)

√

t

u
+ ie2

1

s

√

t

u
f(s, t, u)(2ε2 + 1) (6.7)

Remarkably, the amplitudes are in the form we encountered in the parametrised approach

with the undetermined Chan-Paton parameters T identified as 4(ε4 + 2ε2) and 2ε2 + 1.

They reproduce the SM amplitudes at low energies and the T can be related to ε. It is

important to note that in the limit ε → 0, the only remaining stringy gauge “singlet”

interaction is in e−e+ → γγ process, characterized by the f(s, t, u) term. In this limit,

the amplitudes are identical to those of ref. [26] as expected.

We might worry about the fact that this new assignment involves non-traceless ma-

trices and consequently do not satisfy the first relation in Eqn. (6.2). Nevertheless, since

we never directly observe the 3-particle process containing only the QED vertex, this is

not required phenomenologically as long as we can reproduce all of the observable 2 → 2

processes at low energies correctly.

Another more generic traceless U(2) assignment is

t+ =
1

1 + ε2









−ε 1

−ε2 ε









, t− =
1

1 + ε2









−ε −ε2

1 ε









, (6.8)
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t3 = (
1√
2
)
1 − ε2

1 + ε2









1 2ε
1−ε2

2ε
1−ε2

−1









. (6.9)

This choice satisfies both relations in Eqn. (6.2). Interestingly, the QED amplitudes from

this assignment turns out to be independent of the parameter ε, and they are identical

to those of the Eqn. (6.1) as in ref. [26]( i.e. Eqn. (6.5)-(6.7) with ε = 0). For the

traceless class of matrix assignment that satisfy Eqn. (6.2), there is the parameterisation

invariance of the trace of the Chan-Paton matrices and the amplitudes are invariant. In

this choice of Chan-Paton matrices, the Chan-Paton parameter T vanish in the 4-fermion

cases while remain non-vanishing in the processes involving photons.

This parameterisation invariance is nothing but the parametric realization of the

symmetry SO(2) ⊂ SU(2) acting on the Chan-Paton matrices as we can see that the

transformation t → U †tU for UU † = 1 leaves the trace of the product of t’s invariant

and thus the amplitudes. If we start with the choice of t’s from Eqn. (6.1) and set

U =









cos ε sin ε

− sin ε cos ε









(6.10)

then with cos ε ' 1, sin ε ' ε, the choice of Eqn. (6.8-6.9) is derived upto the normalizing

factors.

Another possibility to realize the stringy interaction for all SM particles is to ex-

tend SM group to SM × U(1), containing extra U(1) underwhich the SM particles are

uncharged (“singlet”). In this way, all of the scattering involving SM particles will natu-

rally contain the purely stringy gauge “singlet” interaction proportional to f(s, t, u). It

is also reasonable to assume the SM-singlet right-handed (sterile) neutrino, NR, to have

the same kind of purely stringy scattering as investigated in ref. [27, 28]. Additionally,

ref. [68] considers U(1) gaugino stringy scattering in the same fashion.
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In coincident-branes model that we are considering, the low-energy approximation of

the stringy interaction is of dimension 8, ∼ (E4/M4
S). There is a number of interesting

phenomenological consequences from this stringy gauge interaction. One possibility is to

obtain the bound on the string scale MS and the Chan-Paton parameter T from the ex-

perimental constraints on the rare processes such as proton decay and flavour-changing-

neutral-current (FCNC) by considering the process being induced by the stringy (gauge

“singlet”) interaction [69].

The limit on the lower bound of the string scale from proton decay could be as high

as 105 TeV for T = 1 (see the next section). The bound on MS is proportional to T 1/4

and thus is not sensitive to the value of T (the bound becomes about 104 TeV when

T = 10−4 and not significantly different for T > 1).

6.2 Remarks on Limits on the String Scale in

Braneworld Scenario

Proton decay has been an important issue which provides stringent test to various GUT

models. Conventional SU(5) GUT, even being the simplest model, was ruled out by

severe experimental limit on proton lifetime as well as its original SUSY version[70,

71](SGUT). This is due to the dimension 5 proton decay in the SU(5) SGUT model.

However, in models with extra dimensions, there are new ways to prevent proton decay

e.g. by assuming nontrivial boundary condition on extra-dimensional components of

fields[72, 73]. Proton decay through dangerous dimension 5 operator could also be

suppressed by the use of appropriate discrete symmetries[74]. The leading contribution

of proton decay is then of dimension 6 contact form being suppressed by the square
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of the mass scale. With these developments, SGUT SU(5) can be modified to survive

experimental limit on proton lifetime.

For SGUT SU(5) in intersecting-branes models, symmetry is more naturally broken

by discrete Wilson lines[75]. This is different from symmetry breaking mechanism in

conventional 4-dimensional GUT. We achieve gauge couplings unification by extra di-

mensional unification and it does not correspond, in general, to 4 dimensional GUT.

Threshold corrections in RGE in extra dimensional models contains extra contribution

from massive Kaluza-Klein states. This brings in dependence on geometrical factors,

L(Q), as well as volume of compactified manifold, VQ. They play the role of MGUT in

the running of gauge couplings[76]. In this sense, MGUT does not have any meaning in

extra-dimensional unification but a parameter to keep track of unification expressed in

4 dimensional GUT language.

In this section, we will first discuss results from ref. [77] on tree-level amplitudes in

SUSY SU(5) intersecting-branes model and the possibility of getting limit on the upper

bound of the string scale in this D6-D6 model and proceed to discuss generic properties

of quantum part of amplitudes in braneworld scenario in relation to number of twisted

fields we introduce into the models. Then we consider IR-correction to quantum part

of amplitudes from classical-solutions contribution of the path integral, i.e. instanton

contribution. Quantum and classical contributions are discussed separately in order to

emphasize unique characteristics of each one of them. Phenomenology of braneworld

scenario involves combination of effects from both local quantum behaviour and global

classical contributions determined by compactification. In this way we can discuss some

possibilities that give purely stringy low energy amplitudes which do not have field theory

correspondence. One example of such processes could be proton decay as discussed in
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ref. [77]. Finally for comparison to ”top-down” approach, we calculate proton decay

in ”bottom-up” coincident branes model using certain choices of Chan-Paton factors to

kinematically suppress the amplitude[28]. Estimated limit on lower bound of the string

scale in this case is remarkably high.

6.2.1 IR-amplitudes in Intersecting-branes Models

Generically, branes with any dimensionalities can intersect or be coincident. There are

a number of semi-realistic models of intersecting-branes with equal dimensionality[78]

and therefore we will focus more on this case. For completeness, we will also comment

on IR behaviour of intersecting-branes with different dimensionalities such as D3-D7

configuration. Finally we show that in certain situations, IR limit of string amplitudes

in intersecting-branes scenario can be purely stringy with no standard model correspon-

dence and they are automatically suppressed by the string scale.

Intersecting-branes with Equal Dimensionality and Proton Decay

As in ref.[77], we will consider dimension-6 channel of proton decay assuming dimension-5

channel is suppressed by some means such as discrete symmetries[74]. In intersecting-

branes model with particular SU(5)-group structure, leading contribution to proton

decay is purely stringy [77]. This is a dimension-6 operator proportional to string cou-

pling gs and α′ = 1/M2
S. The formula for quantum amplitude of processes such as

p→ π0e+L from ref. [77] is

A(1, 2, 3, 4) = iπ
gs

M2
S

I(θ1, θ2, θ3)ū1γ
µu2ū3γµu4T1234 (6.11)
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where

I(θ1, θ2, θ3) =
∫ 1

0

dx

x1+α′s(1 − x)1+α′t

3
∏

i=1

√
sin πθi

[F (θi, 1 − θi; 1; x)F (θi, 1 − θi; 1; 1 − x)]1/2
,

(6.12)

θi are SU(3) parameters relating 3 complex coordinates representing transverse direc-

tions to 1 + 3 dimensional intersection region and T1234 is corresponding Chan-Paton

factor in SU(5). F (x) ≡ F (θ, 1 − θ; 1, x) is hypergeometric function. Dependence on

F (x) comes from correlation function of four bosonic twisted fields

< σ+(0)σ−(x)σ+(1)σ−(∞) > ∼
√

sin πθ
[x(1 − x)]−2∆σ

[F (x)F (1 − x)]1/2
(6.13)

with ∆σ = θ(1 − θ)/2. As x → 0,

F (x) → 1, F (1 − x) → 1

π
sin πθ ln(

δ

x
) (6.14)

where δ is some function of θ given in ref.[82]. This asymptotic behaviour determines

convergency of x-integration in the s-channel limit.

In this setup, there is relationship between string parameters (gs,MS, L(Q)) and field

theory GUT parameters (αGUT ,MGUT ) as in Eq. (50) of [77],

gs =
αGUTL(Q)M3

S

(2π)3M3
GUT

(6.15)

where L(Q) = 4q sin2(5πw/q), Ray-Singer torsion, contains information on geometry

of the compactified 3-manifold Q = S3/Zq[77, 76]. This relationship relates gs to MS

through numerical values of 4 dimensional αGUT ,MGUT . Substitute this into Eq. (6.11),

we have

Astring = i
αGUTMS

2(2π)2M3
GUT

(L(Q)IT1234)ū1γ
µu2ū3γµu4 (6.16)
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I(s, t→ 0) is in [7, 11.5] range, L(Q) ranges from less than 1 to about order of 10. With

minimal choice that produces standard model gauges, L(Q) = 8[77]. Using numerical

values of 4-dimensional SU(5) SGUT(i.e. unification condition), αGUT ' 0.04,MGUT '

2 × 1016 GeV leading to proton lifetime τGUT ' 1.6 × 1036 years[71], and experimental

limit on proton lifetime, τ > 4.4 × 1033 years[79], we have inequality

τstring

τGUT
=

∣

∣

∣

∣

∣

AGUT

Astring

∣

∣

∣

∣

∣

2

>
(

4.4

1.6

)

× 10−3 (6.17)

leading to

MS < 118MGUT ' 2.4 × 1018 GeV (6.18)

where we have approximated I ' 10.

There is also constraint from perturbative condition, gs < 1, using again Eq. (6.15)

with same set of numerical values, we have MS < 9.2MGUT ' 1.8 × 1017 GeV. Grand

unification and perturbative conditions together put limit on upper bound of string scale

above which perturbative viewpoint breaks down. Any SGUT(with D6-D6 configura-

tion) string theories with larger MS would have to interact strongly and we need to

consider proton decay in dual pictures. The value of the upper bound of string scale,

(6.18), is outside the perturbative constraint and therefore it is unfortunately inconclu-

sive. However, it is interesting that this upper limit on string scale does exist only in this

D6-D6 model, if we have sufficiently more severe bound on proton decay in the future

experiments, it would lead inevitably to limit on the upper bound of the string scale.

An important aspect of this low-energy amplitude is the fact that it does not contain

any 1/s(Mandelstam’s variable) pole like in conventional field theory amplitudes. Rather

it is proportional to gs/M
2
S, we interpret this as a purely stringy effect which appears

as contact interaction in field theory. The advantage is it can suppress proton decay
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amplitude to be of the order of the string scale and therefore smallness is explained

without the need of massive bosons exchange of the order of SGUT scale. Remarkably,

experimental limit on proton lifetime results in limit on UPPER bound of string scale

in contrast to conventional SGUT cases where limit on lower bound of X, Y bosons is

derived. Grand unification requirement in SGUT SU(5) D6-D6 model relates string

coupling to string scale and as a consequence, put limit on upper bound of the string

scale.

This result can be understood to be originated from difference between ”top-down”

and ”bottom-up” approaches to string theory. In top-down approach, we start with

string parameters (gs,MS) and geometrical details of compactification and we try to

derive low energy parameters such as gY M , g1, g2, g3, Yukawa coupling, mixing angles

and so on. With unification assumption, gs is tied to MS and geometrical factors and not

a free parameter in the model. Experimental constraint from proton decay then results

in upper bound on MS. On the contrary, focussing mainly on kinematic extension of

field-theory amplitudes to contain string resonances effect, bottom-up[80, 26, 27, 28, 81]

approach simply fixes gs = g2
Y M . Without assuming unification, there is no particular

relationship between gs and MS. This, in a traditional way, finally provides lower bound

on the string scale when subject to experimental constraints[26, 81].

On the other hand, there seems to be disadvantage considering the need to have 1/s

IR-divergence in order to reproduce field theory results at low energy[81]. We need the

correct IR limit of string amplitudes which contain the 0th mode pole as gauge boson

exchange. Intersecting-branes amplitudes actually provide 1/s pole in IR limit when we

consider only one complex coordinate and one twisted field contribution together with

classical contribution from two branes wrapping the same torus T 2[82, 83]. Difference
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from the present case is due to differing number of twisted fields in the quantum part of

the amplitude and the classical contribution of string winding modes which we will see

later. There are 3 sets of twisted-field(from 3 complex coordinates) correlation function,

Eq. (6.13), in the D6-D6 intersecting-branes model we are considering and they provide

kinematic IR-regularisation to the amplitude[77]. We can find critical number of twisted-

field correlation functions above which IR divergence will be regularised by considering

low energy expression for kinematic part of quantum amplitude containing ` twisted

fields

∫ a

0

dx

x
(− ln x)−`/2 =

2 − `

2
(− ln x)1−`/2|a0 for ` 6= 2 (6.19)

= −∞ for ` = 2 (6.20)

where a ε (0, 1) is some small number, ` is number of correlation functions of twisted

fields. This is the same as Eq. (22) in [77] when generalised to ` twisted fields. The

integration converges when ` ≥ 3 and therefore critical number of twisted fields is 3. At

least 3 twisted fields are required to regulate IR behaviour and this implies that we need

to twist boundary condition of string in 3 complex coordinates of the model. This is the

case with D6-D6 setup.

Using analytic continuation from negative s to s ≥ 0 like in usual Veneziano ampli-

tude, we get some information on how the poles look like at s = 0 and consequently at

s = nM2
S .

∫ a

0
dx

(− ln x)−`/2

xα′s+1
=

∫ ∞

− lna
du u−`/2eα′su (6.21)

=
Γ(1 − `

2
,−α′s ln a)

s1−`/2
(α′)`/2−1 (6.22)

where incomplete Gamma function Γ(x, y) ≡ ∫∞
y e−uux−1du. Notably for ` = 2, it gives

∼ (ln s) pole as s → 0. At ` = 0, we have normal gauge boson exchange 1/s pole. For
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` > 0, twisted fields modify pole by power of `/2. At ` ≥ 3, amplitude is regulated.

Behaviour of all other poles at s = nM 2
S for each value of ` are given by analytic

continuation from pole at s = 0 we have here.

In Dp-Dp intersecting-branes(3 < p < 6) with 1+3 dimensional intersection region,

we need to change boundary condition of interbrane-attached string in p − 3 complex

dimensions. Therefore we need to introduce p− 3 twisted fields into each vertex opera-

tor(NS sector). Since the number of twisted fields is always less than 3, the amplitudes

have IR divergences(not necessarily corresponding to gauge boson exchange) given by

Eq. (6.22). In D5-D5, since ` = 5 − 3 = 2, quantum amplitude gives (ln s) divergence.

In D4-D4, ` = 1 and we thus have fractional pole 1/s1/2. In these models, we do not

have purely stringy amplitudes, gs/M
2
S, as leading order as in D6-D6 case. However,

from Eq. (6.22), there are string resonance terms analytically continued from s = 0

region. At low energy, these terms gsα
′`/2/(s − nM2

S)1−`/2 ' gs/nM
2
S. Therefore there

could be gs/M
2
S contact term in the amplitude regardless of the number of twisted fields

3 > ` > 0.

Another curious aspect of amplitudes in SGUT intersecting-branes models is the

factor α
−1/3
GUT enhancement comparing to 4 dimensional GUT amplitudes[77]. We will

see that this is the effect from compactification and it depends on how we achieve 1+3

world from 10 dimensional space. Consider the parameters relation, Eq. (6.15) could be

generalized to Dp-Dp case,

gs ∼ αGUT

(

Mp−3
S

Mp−3
GUT

)

(6.23)

ignoring geometry factor. This leads to

gs

M2
S

∼ g1+2/(3−p)
s





α
2/(p−3)
GUT

M2
GUT



 (6.24)
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which has enhancement factor α
(5−p)/(p−3)
GUT comparing to 4 dimensional GUT amplitude

∼ αGUT/M
2
GUT . Interestingly, this factor disappears at p = 5 along with dependence of

amplitude on gs. Since low energy limit of purely stringy part of tree-level amplitudes

always appear as gs/M
2
s contact interaction form, we can conclude that stringy effect

always appears with this enhancement(or dehancement) factor α
(5−p)/(p−3)
GUT . We can

interpret the factor as a result from certain choice of compactification which gives our

1+3 dimensional matter universe. Projected onto 4 dimensional field theory, fractional

power of coupling αGUT could as well be interpreted as ”non-perturbative” characteristic

of the amplitudes. Observe also that coincident-branes limit p = 3 gives conventional

”bottom-up” gs ∼ αGUT identification and relationship between gs and MS remarkably

disappears. There is consistency between top-down and bottom-up approaches.

Intersecting-branes with Different Dimensionalities

We can obtain 1 + 3 intersection region from other combinations of intersecting-branes

with differing dimensionalities. An example of D3-D7 system has been calculated [38]

and there is IR pole in the amplitude coming from instanton contributions cancelling

effect of twisted fields as we will see later in section C. Here we will focus only on

quantum part of the amplitude and according to previous argument, we will show that

IR behaviour is finite.

Using again correlation function of four bosonic twisted fields, Eq. (6.13), we reach

at the same Eq. (6.20) as a check for IR behaviour of the amplitude. Since there are

` = 4 twisted fields in a vertex operator in order to change four boundary conditions

of D7 to D3 which is larger than critical number of twisted fields (namely 3), therefore

quantum part of four-fermion amplitude is finite and thus proportional to gs/M
2
S in low



106

energy limit(from Eq. (6.22)).

6.2.2 Classical Contributions to String Amplitudes

In path integral calculation of string scattering amplitude, the action is divided into

quantum and classical contributions and they are factorized from one another. Physi-

cally, quantum part depends only on local behaviour of quantum theory while classical

part contains information of global geometry which constrains classical solutions of the

system. While classical contribution of path integral of field on sphere is constant and

can be absorbed into string coupling(since there is no winding modes), classical contri-

bution of field on nontrivial compactified manifold like torus contains various topological

contributions from winding states. We need these information to be manifest in order

to extract correct low energy behaviour of string scattering amplitude.

The simplest nontrivial case in which classical contribution has been calculated is T 2

torus with two branes wrapping specified by wrapping numbers (n1, m1) and (n2, m2)[82,

83]. Following ref.[83], the classical contribution of the path integral is

∑

r1,r2

exp−sin(πθ)

2πα′

[

F (1 − x)

F (x)
(r1L1)

2 +
F (x)

F (1 − x)
(r2L2)

2

]

(6.25)

In the x→ 0 limit(s-channel limit), the exponential contribution from L1 lattice is zero

except the zero mode, r1 = 0 while the contribution from L2 lattice becomes constant

for each r2. With respect to one r2 winding state, the contribution is just constant and

low energy behaviour is thus governed totally by quantum part of the amplitude. This

would be the case if the winding states summation
∑

r2
is somehow truncated at finite

terms.
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However, we can use Poisson resummation to make some low energy behaviour man-

ifest which can be seen explicitly in the Poisson resummation formula.

∑

n

exp(−πan2) =

√

1

a

∑

m

exp(−π
a
m2) (6.26)

The pole at a = 0 arises on the left-handed side as an infinite sum of various instantons

but not being manifest in each term. The right-handed side manifests this pole as

the volume factor in the upfront. This pole becomes visible at low energy in this new

”vacuum” choice after the Poisson resummation. This resummation leads to

∑

r1,m2

√

√

√

√

2π2α′F (1 − x)

L2
2 sin(πθ)F (x)

exp−F (1 − x)

F (x)

[

sin(πθ)

2πα′
(r1L1)

2 +
2π3α′

sin(πθ)
(
m2

L2

)2

]

(6.27)

for classical partition function. The exponential of F (1 − x)/F (x) reduces to power of

x as x→ 0.

exp−F (1 − x)

F (x)
[...] ∼

(

δ

x

)−[...] sin(πθ)/π

(6.28)

This power of 1/x shift the 1/s pole as we can see from

[...]
sin(πθ)

π
= r2

1

(

M2
S

M2
1

)

+ α′(m2M2)
2 (6.29)

where M2
1 = 2π2/L2

1 sin2(πθ),M2
2 = 2π2/L2

2 are corresponding KK masses. With respect

to L2, the resonances appear at s = (m2M2)
2. With respect to L1, the resonances appear

at s = r2
1M

4
S/M

2
1 . These are the usual KK and winding corrections which are not

unexpected. We can see that in the instanton-decoupled limit MS �Mc(Mc = 1/L1 or

1/L2), the r1 6= 0 contribution is very suppressed since the poles are at very high energies

while the contribution from M2 resonances are at low energies and thus non-negligible.

We can see that even each r2 winding state contribution is suppressed, the infinite sum of

their contributions become significant at low energies. This is made manifest by Poisson

resummation.
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Next we turn to the factor
√

F (1 − x)/F (x) in front of the exponential in Eq. (6.27),

this is the leading order contribution to x-integration of the amplitude and consequently

the part that modifies effect of twisted fields to low energy physics. Using approximation

in Eq. (6.14), the factor gives (− ln(x))1/2 as x→ 0. This will modify the power of − ln(x)

in Eq. (6.21) to (− ln(x))(1−`)/2. In other words, when there is one T 2, we replace ` by

` − 1, when there is two tori, T 2 × T 2, we replace by ` − 2 and so on. We see that

this piece results in fractional power of 1/s, exotic kinematic effect which does not exist

in field theory or KK models. In D6-D6 model, we can assume two branes wrapping

compactified space T 2 ×T 2 ×T 2[83]. In this case, effects of twisted fields are completely

compensated by these factors from classical contribution and we thus recover 1/s pole

at low energy. Therefore, around the resonances, since x ' 0 is dominant in the x-

integration, the Veneziano form of the amplitude is naturally recovered in this choice of

compactification. Note that this is not necessary and there are possibilities for exotic

IR behaviour, i.e. gs/M
2
S contact form or fractional power of 1/s(Eq. (6.22)), of total

amplitudes in other choices of compactification.

The rule is if we have two intersecting branes wrapping same n T 2 tori, we replace `

by `−n in Eq. (6.22) to get leading order behaviour of 1/s pole. Complete cancellation

occurs when ` = n and we always retrieve 1/s gauge boson exchange contribution. In

cases where ` − n > 2, we have IR finite amplitude and it is suppressed automatically

by the string scale MS and effectively decouple at low energy. In model construction,

instead of arbitrary intersection and compactification choices(modulo previously known

conditions such as SUSY preservation or GUT which are a matter of preferences), we

also have to consider this kinematic aspect of string amplitudes. For low energy phe-

nomenology purpose, since we do not observe exotic fractional powers of 1/s, therefore
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they should be eliminated by appropriate choices of compactification corresponding to

number of twisted fields we have when we setup branes intersection. At higher energy,

there is no reasons(so far) to prevent these terms, they are part of stringy effects unique

in intersecting-branes models.

Note also that after Poisson resummation, since the 1/s pole is recovered together

with the factor of M2/MS for each T 2( from Eq. (6.27)), the argument on the limit of

the upper bound on the string scale from proton decay is no longer valid in this choice

of compactification.

On the other hand, instead of interpreting low energy physics in terms of field the-

oretic resonances(i.e. x → 0, 1 limits corresponding to s, t-channel exchanges), it is

pointed out in ref. [82, 84, 85] that there exists purely stringy contribution(instanton

contribution) when contribution around saddle point of classical action is dominant in

the x-integration. However caution has to be made that this is the case only when

quantum part of the amplitude is regulated(no singularity along x-integration). If there

is IR divergence from quantum part, it means the contribution from pole at x = 0(1)

is dominant and saddle-point approximation ceases to be valid. In the case that the

quantum part is regulated, we can conclude from the previous section that leading order

must be of contact form, gs/M
2
S, now multiplying with exponential suppression from

area of the worldsheet instanton. As expected, even in this saddle-point approximation,

the instanton effect is multiplied by gs/M
2
S and thus suppressed by the string scale.
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6.2.3 Limit on lower bound of string scale in bottom-up ap-

proach from proton decay

In ”bottom-up” coincident-branes model[26, 27, 81], we do not have effect of twisted

fields in the picture, all fermions and gauge fields are identified with open string living on

the same stack of branes with unspecified number of branes. Assuming some unification

group which have leptons and quarks in the same multiplet( in order to induce proton

decay), we can identify each particle with appropriate Chan-Paton matrix. Tree-level

amplitude for 4 fermions is generically[26, 81, 47]

Astring = igs [A(s, t)S(s, t)T1234 + A(t, u)S(t, u)T1324 + A(u, s)S(u, s)T1243] (6.30)

where A(x, y) is kinematic part of SU(n) amplitude[49, 26],

S(x, y) =
Γ(1 − α′x)Γ(1 − α′y)

Γ(1 − α′x− α′y)
, (6.31)

the usual part of Veneziano amplitude with the 0th pole excluded( put into A(x, y)

part explicitly). Chan-Paton factors Tijkl = tr(titjtktl + reverse)( t’s are Chan-Paton

matrices) contains information of gauge group, mixing and so on of external particles. To

be more specific, we consider uLdR → ūRe
+
L process of proton decay like in intersecting-

branes case. Proton decay amplitude is extremely small( if not 0) and therefore we

match string amplitude with 0 at low energy. Following ref. [81]

Astring(fLfR → fRfL) = igs

[

u2

st
T1234S(s, t) +

u

t
T1324S(t, u) +

u

s
T1243S(u, s)

]

' 0 (6.32)

where s, t, u are conventional Mandelstam variables. At low energy, S(x, y) → 1 and

since s + t + u = 0, this leads to constraints on Chan-Paton factors, T1234 = T1324 =
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T1243 ≡ T . Plug back into Eq. (6.32), retrieving the next non-vanishing term from

S(x, y) ' 1 − π2

6
xy
M4

S

,

Astring = −igsT
π2

2
(
u2

M4
S

) (6.33)

Like in intersecting-branes case, we compare with AGUT and use experimental limit on

proton decay while setting T = 1( if T = 0, there is no tree-level stringy proton decay

and no limit on the string scale could be derived),

τstring

τGUT
=

∣

∣

∣

∣

∣

AGUT

Astring

∣

∣

∣

∣

∣

2

= (
4

π4
)

1

u2
(
M4

S

M2
GUT

)2 >
(

4.4

1.6

)

× 10−3 (6.34)

where we have identified gs = 4παGUT . At ECM ' 1 GeV, u ' 0.5 GeV2, this gives

MS > 8.5 × 107 GeV ∼ 105 TeV (6.35)

a remarkably strong limit on string scale. Observe that this kind of kinematic suppression

makes use of worldsheet duality( i.e. s, t duality of Veneziano amplitude) to eliminate

the contact interaction term gs/M
2
S(dimension-6 operator), leaving only dimension-8

operator, u2/M4
S, as leading-order stringy correction which results in stringent limit

on MS. This limit, however, ignores the conventional spontaneous symmetry breaking

mechanism which suppresses proton decay by making the X and Y GUT bosons very

massive. It actually reflects the limit of proton decay from ”purely stringy” effect which

could exist if T 6= 0 in some specific embedding of the fermions in some unspecified

open-string representation at higher energies.

6.2.4 Conclusions

First we have discussed the possibility of getting limit on the upper bound of the string

scale in D6-D6 intersecting-branes SU(5) SGUT setup as in ref. [77] from the experi-

mental constraint on the proton decay. The quantum part of the four-fermion tree-level
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amplitude in this case is of the contact form with gs/M
2
S dependence due to the num-

ber of twisted-field correlations. We commented on how different number of twisted-field

correlations in different Dp-Dp setup could lead to different IR behaviour of the quantum

part of the amplitude.

Then we discussed appearance of the enhancement( or dehancement) factor α
(5−p)/(p−3)
GUT

in Dp-Dp setup when we compare stringy contact term gs/M
2
S to the αGUT/M

2
GUT fac-

tor in 4 dimensional GUT amplitude. This non-integer power of αGUT is natural from

the viewpoint that we ”project” the extra-dimensional unification onto conventional 4

dimensional GUT RGE.

In non-trivial compactification such as T 2, there are classical winding states con-

tribution to the amplitude. We explicitly demonstrated how Poisson resummation of

the instanton contributions makes the classical instanton contribution to x → 0 region

manifest. In intersecting-branes scenario, there are contributions from both quantum

and classical part to the x → 0 region in the stringy amplitude, and we need both to

obtain the usual gauge boson 1/s pole at low energies.

Finally we estimated the lower bound on the string scale in ”bottom-up” coincident-

branes approach using constraint on proton decay. The limit is derived solely from purely

stringy( of another kind of purely stringy effect from the dimension 6 mentioned above)

contribution when appropriate choice of Chan-Paton factors is chosen. Comparing to

other constraints on the string scale in the ”bottom-up” approach [81], this lower bound

is remarkably strong, about 105 TeV.
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