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Abstract

A study of quasi elastic charm production in charged current neutrino-nucleon scattering is
presented. A sample of about 1.3 million interactions recorded with the NOMAD detector
in the CERN SPS wide band neutrino beam has been searched for quasi elastically produced
charmed baryons (Λ+

c , Σc and Σ∗
c ). The search has been performed in two exclusive

decay channels of the Λ+
c , both including a Λ. Also, the semi-inclusive decay channels

Λ+
c , Σc, Σ

∗
c → Λ +X have been studied. Kinematic selection criteria have been chosen in

order to obtain samples enriched with quasi elastic charm events. Signal efficiencies and
background expectations have been estimated by Monte Carlo simulations. The observed
number of events in each searched channel has been found to agree with the background
expectation from charged and neutral current reactions and an upper limit for the cross
section has been derived. For the quasi elastic charm production cross section averaged
over the neutrino energy spectrum (〈Eν〉 = 24.3 GeV) the upper limit has been found
to be 〈σQEC〉 < 3.58 × 10−40 cm2 or relative to the total charged current cross section
〈σQEC〉/〈σcc〉 < 0.22 % at 95 % confidence level. Assuming an energy independent cross
section for neutrino energies above 15 GeV, an upper limit of σQEC < 4.0 × 10−40 cm2

(95 % C. L.) has been found for the absolute cross section.
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Kurzfassung

Diese Arbeit befasst sich mit der quasi-elastischen Charmproduktion in den geladenen
schwachen Wechselwirkungsprozessen bei der Streuung von Neutrinos an Nukleonen. Un-
gefähr 1.3 Millionen Ereignisse wurden mit dem NOMAD Detektor im CERN SPS Breit-
bandneutrinostrahl aufgezeichnet und nach quasi-elastisch erzeugten Charmbaryonen (Λ+

c ,
Σc und Σ∗

c ) durchsucht. Die Suche wurde in zwei exklusiven Zerfällen des Λ+
c durch-

geführt, welche je ein Λ enthalten. Zusätzlich wurde nach den halb-inklusiven Zerfällen
Λ+

c , Σc, Σ
∗
c → Λ + X gesucht. Quasi-elastische Ereignisse wurden durch die Anwendung

von kinematischen Auswahlkriterien angereichert. Die Effizienzen der Auswahlbedingun-
gen, wie auch die Beiträge der Untergrundsprozesse, wurden mit Hilfe von Monte Carlo
Simulationen abgeschätzt. Die beobachtete Anzahl der Ereignisse, welche die Auswahlkri-
terien erfüllen, stimmt mit den erwarteten Beiträgen der Untergrundsprozesse von gela-
denen und neutralen schwachen Wechselwirkungen überein und somit kann nur eine obe-
re Grenze für den Wirkungsquerschnitt berechnet werden. Für den Wirkungsquerschnitt
der quasi-elastischen Charmproduktion, gemittelt über das Energiespektrum des Neutri-
nostrahls (〈Eν〉 = 24.3 GeV), wurde eine obere Grenze von 〈σQEC〉 < 3.58 × 10−40 cm2

für das 95 % Vertrauensintervall gefunden. Relativ zum totalen geladenen schwachen Wir-
kungsquerschnitt entspricht dies einer oberen Grenze von 〈σQEC〉/〈σcc〉 < 0.22 %. Unter der
Annahme eines konstanten Wirkungsquerschnitts für quasi-elastische Prozesse bei Neutri-
noenergien über 15 GeV wurde eine obere Grenze von σQEC < 4.0× 10−40 cm2 für das 95 %
Vertrauensintervall gefunden.
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Chapter 1

Introduction

One of the important discoveries of the last decade has been the convincing evidence
for neutrino oscillations which indicate a non-zero neutrino mass and flavor mixing [1,
2, 3]. The accurate determination of mixing angles and mass differences between the
neutrinos remains a task of current and future neutrino experiments. For the τ appearance
experiments, which search for νµ → ντ oscillations via the charged current reaction of
the ντ , it is essential to know the charm production cross section since charmed hadrons
constitute one of the main background sources.

Even though the first measurements of charmed baryon production in charged current
neutrino reactions were performed in bubble chamber experiments more than 20 years ago
[4], there is still little data available compared to the charmed mesons. Near the charm
threshold a significant fraction of the charm production might be due to the quasi elastic
processes

νµ + n → µ− + Λ+
c (2285) (1.1)

νµ + n → µ− +Σ+
c (2455) (1.2)

νµ + n → µ− +Σ∗+
c (2520) (1.3)

and

νµ + p → µ− +Σ++
c (2455) (1.4)

νµ + p → µ− +Σ∗++
c (2530). (1.5)

Besides improving the knowledge of the total charm production cross section, the study of
these processes can give useful information about the form factors for weak transitions of
the nucleon into baryons containing a heavy quark. Also, the determination of the cross
section is crucial for the understanding of the quasi elastic processes, since the predictions
of the existing theoretical models disagree by more than one order of magnitude among
themselves [5, 6, 7, 8, 9, 10, 11, 12]. Furthermore, quasi elastic charm production might
offer a possibility for a model independent measurement of the branching fractions of Λ+

c

decays [13].

1



2 Chapter 1. Introduction

Several experiments have searched for quasi elastic charm production processes in the
last 25 years, most of them using bubble chambers [14, 15, 16, 17] which suffered from poor
statistics. Also, two emulsion experiments have searched for quasi elastic charm events:
E531 [18] at Fermilab and CHORUS [19] at CERN. The NOMAD experiment, which was
exposed to the CERN SPS wide band neutrino beam, provides data with high statistics
and good tracking resolution.

A search for quasi elastic charm production has been undertaken, exploiting the specific
characteristics of the events and identifying the charmed baryons via the decays:

Λ+
c → Λπ+π+π− (1.6)

Λ+
c → Λe+νe (1.7)

Λ+
c , Σc, Σ

∗
c → Λ anything. (1.8)

In Chapter 2, a brief overview of the Standard Model is given with emphasis on the weak
interactions. Also, the kinematics of neutrino-nucleon scattering are explained and a short
introduction to the theoretical treatment of quasi elastic charm production is presented.

The CERN SPS wide band neutrino beam and the NOMAD detector are described in
Chapter 3.

In Chapter 4, the Monte Carlo simulation used for background estimations is described
and a comparison with data is given. Also, two models for quasi elastic charm production
[6, 7, 12] are presented explicitly along with their cross section predictions. Furthermore,
a short description of the Monte Carlo programs which simulate the signal events is given.

Chapter 5 comprehends an elaborate description of the data analysis, showing all the
steps done in order to search for quasi elastic charm events. Also, the tools used to
calculate confidence intervals are introduced and an estimation of uncertainties is given.
The results, being upper confidence limits for the quasi elastic charm production cross
section, are compared with the cross section measurements of other experiments and the
influence of the model uncertainty is discussed.

Finally, in Chapter 6 a short summary of the analysis is given and the most important
results are recapitulated.

Throughout this thesis, the convention c = ~ = 1 is used for analytic calculations.



Chapter 2

Theoretical Background

2.1 Brief Overview of the Standard Model

Today’s understanding of particles and of the interactions between them is summarized
in the so called Standard Model of particle physics [20, 21, 22, 23]. Initially devised by
Glashow, Weinberg and Salam, it includes today the theory of the unified electroweak
interactions and Quantum Chromodynamics (QCD), the theory of the strong interactions.
The particles of the Standard Model can be divided in two fundamental classes, namely:

• Fermions with spin 1/2 are the particles of which matter is made,

• Gauge Bosons with spin 1 act as the mediators of the different interactions.

The fermions are either leptons which are not affected by the strong interactions or quarks

which are the fundamental constituents of the hadrons, the particles interacting via the
strong force. Leptons and quarks can be grouped into three generations according to
their masses as shown in Table 2.1. Ordinary matter consists of the fermions of the first
generation. The higher mass fermions of the second and third generation are produced by
the high energies of particle accelerators and cosmic rays. For every fermion there is an
associated anti-fermion with the same mass but opposite additive quantum numbers.

The fermions interact with each other via the exchange of the gauge bosons listed in
Table 2.2. The photon is the gauge boson of the electromagnetic interactions which affects
all charged particles. All fermions interact weakly with the exchange of the massive gauge
bosons W± and Z0. The strong interaction acts only on quarks and is carried by the
gluon. To complete the list of the known forces, gravity has to be mentioned. It affects all
particles and is assumed to be carried by the graviton, a spin-2 boson. However, since the
effects of gravity are negligible when considering the interactions of elementary particles,
it will not be discussed further.

The interactions of the Standard Model are based on the principle of local gauge invari-
ance which demands the Lagrangian of the theory to be invariant under transformations
of the gauge group SU(3) × SU(2) × U(1). QCD is governed by the symmetry group
SU(3), the electroweak theory by SU(2) × U(1). The non-Abelian character of SU(3)

3



4 Chapter 2. Theoretical Background

Quarks
Generation Flavor Charge (e) Mass (MeV/c2)
1st u +2/3 1.5 − 4

d −1/3 4 − 8
2nd c +2/3 1150 − 1350

s −1/3 80 − 130
3rd t +2/3 ≈ 178000

b −1/3 4100 − 4400

Leptons
Generation Flavor Charge (e) Mass (MeV/c2)
1st νe 0 < 3 × 10−6

e− −1 0.511
2nd νµ 0 < 0.19

µ− −1 105.7
3rd ντ 0 < 18.2

τ− −1 1777

Table 2.1: Properties of the fermions of the Standard Model [24, 25]. Since quarks do not
exist as free particles, their masses cannot be measured directly, but have to be derived
from hadron properties. Therefore, the values of the quark masses depend on how they
are defined. The constituent masses of the quarks are inferred from the hadron mass
spectra, while the masses that enter as parameters in the QCD Lagrangian are called
current masses. The values stated in the Table refer to the latter.

Interaction Gauge Relative Range (m) Participating
boson(s) strength fermions

strong gluons (g) 1 10−15 quarks
electromagnetic photons (γ) 10−2 ∞ all charged
weak W±, Z0 10−7 10−18 all
gravitational [graviton (G)] 10−39 ∞ all

Table 2.2: Interactions and corresponding gauge bosons of the Standard Model. The
relative strengths of the forces are roughly given for short distance scales of a few GeV
[26]. Since there is no quantized renormalizable theory of gravity in the Standard Model,
the graviton has to be considered a hypothetical particle.



2.2. Weak Interactions 5

and SU(2) leads to self-interactions between the gauge bosons. In the case of QCD, this
self-interaction accounts for the fact that quarks are confined to hadrons, i. e., they cannot
be observed as individual particles. However, probed at high energies they begin to behave
as free particles, a property referred to as asymptotic freedom.

Whereas the gauge bosons of the electromagnetic and the strong interaction are mass-
less, the theory of the weak interactions must accomplish the massive W± and Z0 gauge
particles. In order to achieve this, while retaining the gauge invariant structure of the the-
ory, the Higgs mechanism was introduced. This, however, requires at least one additional
particle, the Higgs particle, yet to be found.

Although the Standard Model is a mathematically consistent, renormalizable field the-
ory, it cannot be the final answer [27]. Even if the recently discovered neutrino masses were
incorporated, more fundamental shortcomings can be noted. For example, the minimal ver-
sion of the model has more then 20 parameters, which, as most physicists believe, are too
many for a fundamental theory. Although incorporated in the Standard Model, there is
no explanation for the fundamental fact of charge quantization or for the CP (charge-
conjugation and parity) violating interactions. There is no explanation for the existence
of the heavier fermion generations which have no obvious role in nature. Furthermore,
there is no prediction of the fermion masses which vary by five orders of magnitude. As
accelerators reach higher energies and results become more precise answers for some of the
current questions will certainly be found.

2.2 Weak Interactions

Since this thesis is about neutrino physics, the weak interactions will be discussed in
some detail. According to Quantum Field Theory, the fundamental processes of fermion
interactions are of the kind f → f ′ +V where a fermion f passes into a fermion f ′ thereby
emitting a vector boson V (f -f ′-V -vertex). These processes are governed by the Lagrangian
given at a point x in space-time:

L(x) = g · ψf ′(x)Γα(x)ψf (x) · V α(x) + Herm. conj.

= g · jα(x) · V α(x) + Herm. conj. (2.1)

with the fermion current
jα(x) = ψf ′(x)Γα(x)ψf (x). (2.2)

The Dirac spinor ψf is the field operator which annihilates a fermion f or creates an anti-
fermion f ; the field operator ψf ′ = ψ+

f ′γ0 creates a fermion f ′ or annihilates an anti-fermion

f ′. This means, the ordered product of the two, including a 4× 4-matrix Γ which depends
on the interaction, causes a transition from a fermion f in the initial state to a fermion f ′

in the final state. Together with the vector field operator V α, which creates a boson V or
annihilates a boson V , this describes the desired process shown in Figure 2.1.

For physical particles these processes are forbidden. The 4-momentum conservation
at the vertex can only be fulfilled if one of the particles is off-shell (or virtual), i. e., the
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f

V

f ′

g

Figure 2.1: Vertex graph for the virtual process f → f ′ + V with coupling constant g.

square of its 4-momentum is not equal to its mass. A physical reaction is obtained as
a combination of e. g. two of these f -f ′-V -vertices by connecting them with one of the
participating particles (see Figure 2.2). Since this particle is not observable, it may be
off-shell, thereby allowing the in- and outgoing particles to be real.

V

f2

f1

(a)

f ′
2

f ′
1g

g

V

f2

f1

(b)

f ′
2

f ′
1

g g f

f2

f1

(c)

V

Vg

g

Figure 2.2: Some examples of first order Feynman diagrams obtained as a combination of
two vertex graphs. Diagram (a) and (b) correspond to the fermion scattering f1 + f2 →
f ′

1 + f ′
2 while (c) shows the annihilation process f1 + f2 → V + V . The time direction is

from left to right.

In the case of the weak interactions, two classes have to be distinguished, namely the
charged current (cc) interactions and the neutral current (nc) interactions. Also, there is
a slightly different treatment for quarks and leptons due the small and yet undetermined
masses of the neutrinos

2.2.1 Charged Current Interactions

The emission of a charged vector boson W± causes a transition between the left-handed
fermions within a weak isospin doublet, i. e., the doublet of the two eigenstates1 with total
weak isospin 1/2:

(

f ↑

f ↓

)

. (2.3)

1The particles f↑ and f↓ have weak isospin ±1/2 along the “z-axis”.
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These processes f ↓ → f ↑ +W− and f ↑ → f ↓ +W+ are governed by the Lagrangian

Lcc = gcc · (jα
cc

+ ·W+
α + jα

cc
− ·W−

α ) (2.4)

with the vector field operators2 W±
α and the fermion currents jα

cc
± summed over the 3

doublets for leptons and quarks respectively:

jcc
α

+ =
3

∑

i=1

l↑i γα(1 − γ5)l
↓
i +

3
∑

i=1

q↑i γα(1 − γ5)q
↓
i . (2.5)

Here, the field operators ψf have been replaced by the particle symbols (l ↔ leptons,
q ↔ quarks) for simplicity. The current jcc

α
− is the Hermitian conjugate of jcc

α
+. The

projection operator 1
2
(1 − γ5) assures that only leptons with left-handed chirality are taking

part in the process:

f ↑γα
1

2
(1 − γ5)f

↓ = f ↑
Lγαf

↓
L. (2.6)

For massive fermions the weak isospin eigenstates are generally a mixture of the mass
eigenstates. A unitary (3 × 3)-matrix describing the relation between the two sets can be
introduced:





f ↓
1

f ↓
2

f ↓
3



 = U





f ↓
1,m

f ↓
2,m

f ↓
3,m



 , (2.7)

or equivalently for f ↑
i . The charged fermion current can now be rewritten as a sum over

the physical fermions:

jcc
α = (ν1,m, ν2,m, ν3,m)U+

l γα(1 − γ5)





e
µ
τ



 + (u, c, t)γα(1 − γ5)Uq





d
s
b



 . (2.8)

The quarks and charged leptons correspond to the particles shown in Table 2.1. Equation
(2.7) essentially implicates that charged current weak interactions cause transitions between
quarks or leptons of all generations.

Charged Leptonic Current

The recently found neutrino oscillations imply that the neutrinos νe, νµ and ντ do not
correspond to the mass eigenstates νi,m. This means, the mixing matrix Ul is not diagonal
[25]. In fact, current limits indicate mixing angles which correspond to almost maximal
mixing for νe ↔ νµ and νµ ↔ ντ . Also, there might be more than three neutrinos taking
part in the mixing. Because of the small masses of the neutrinos and since they interact
only weakly, the mass eigenstates are not yet directly observable, but have to be determined

2W+
α is the operator that annihilates a W + or creates W−
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by means of oscillation rates and cosmological measurements. The charged leptonic current
is therefore usually written in terms of the weak eigenstates:

jcc,l
α

+
= (νe, νµ, ντ )γα(1 − γ5)





e
µ
τ



 . (2.9)

Charged Quark Current

The mixing in the quark sector is described by the Cabibbo-Kobayashi-Maskawa (CKM)
Matrix:

Uq =





Uud Uus Uub

Ucd Ucs Ucb

Utd Uts Utb



 . (2.10)

The matrix elements |Uij|2 give the probability of the quark q↑i to pass into the quark

q↓j . Conservation of probability requires the CKM matrix to be unitary. In principle, the
individual matrix elements can all be measured in weak decays of the relevant quarks or in
deep inelastic neutrino-nucleon scattering. The 90 % confidence limits on the magnitude
of the matrix elements, as given in [25], are:





0.9739 − 0.9751 0.221 − 0.227 0.0029 − 0.0045
0.221 − 0.227 0.9730 − 0.9744 0.039 − 0.044
0.0048 − 0.014 0.037 − 0.043 0.9990 − 0.9992



 . (2.11)

The standard parametrization with three mixing angles and one phase was originally
proposed by Chau and Keung [28]:

Uq =





c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13



 (2.12)

with cij = cos θij and sij = sin θij for the generation labels i, j = 1, 2, 3. The phase δij

is responsible for CP violation. The advantage of this parametrization is that if one of
the angles θij vanishes, so does the mixing between the two generations. In the limit
θ23 = θ13 = 0 the third generation decouples, resulting in the usual Cabibbo mixing of the
first two generations with the Cabibbo angle θ12.

In contrast to the leptonic sector, the mixing in the quark sector is easily observable,
since the mass differences are bigger and the quarks interact also via the strong force. If a
mass eigenstate q↑m changes into a quark q↓, the strong interaction forces the latter during
the process of hadronization into a mass eigenstate q↓m.

2.2.2 Charged Current Reactions in the Low Energy Limit

The combination of the total weak current jcc
α

+ with its Hermitian conjugate jcc
α

− by the
exchange of a W boson, i. e., the connection of f1 → f ′

1 +W and f2 +W → f ′
2, results in
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weak charged current reactions of the form:

f1 + f2 → f ′
1 + f ′

2 (2.13)

The matrix element of such a process in lowest order of perturbation theory is given by

M = g2
cc · 〈f ′

1|jcc
α

+|f1〉 ·
−gαβ + qαqβ/m2

W

q2 −m2
W

· 〈f ′
2|jcc

β
−|f2〉 (2.14)

where
−gαβ + qαqβ/m2

W

q2 −m2
W

≡ P αβ (2.15)

is the W -propagator which describes the exchange of a W boson with 4-momentum q. The
W is generally off-shell (or virtual), i. e. q2 6= m2

W . The corresponding Feynman diagram
is shown in Figure 2.3.

W±

f2

f1

f ′
2

f ′
1

(1)

(2)

Figure 2.3: First order Feynman diagram for the charged current reaction f1+f2 → f ′
1+f ′

2.
The virtual W boson is emitted at the space-time-position (1) and absorbed at the space-
time-position (2) (or the other way around).

In the limit of low center of mass energies
√
s¿ mW , the momentum transfer becomes

small, q2 ¿ m2
W , and thus,

P αβ ' gαβ

m2
W

. (2.16)

Hence, the matrix element (2.14) can be written as

M ' gcc

m2
W

· 〈f ′
1|jcc

α
+|f1〉〈f ′

2|jα
cc

−|f2〉

=
gcc

m2
W

· 〈f ′
1f

′
2|jcc

α
+ · jα

cc
−|f1f2〉

=
GF√

2
· 〈f ′

1f
′
2|jcc

α
+ · jα

cc
−|f1f2〉 (2.17)

and corresponds to an effective Lagrangian:

L =
GF√

2
· jcc

α
+ · jα

cc
− (2.18)

with the well known Fermi constant GF . Due to the vanishing range of the weak interaction
in the low energy limit, this approximation is usually referred to as point like four-fermion-
interaction or current-current-interaction.
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2.2.3 Neutral Current Interactions

The fundamental process of the weak neutral current interactions is the emission of a Z0

boson, f → f +Z0. The Z boson, just as the photon, is a mixture of the third gauge field
of the SU(2) symmetry group (the other two being W+ and W−) and the gauge field of
the U(1) symmetry group. The form of the weak neutral current, therefore, also depends
on whether or not the fermions carry charge. The corresponding Lagrangian is given by

L = gnc · jα
nc · Z0

α. (2.19)

The coupling constant gnc is related to the charged current coupling constants gcc by

gnc =
√

2gcc
1

cos θW

=
√

2gcc
mZ

mW

(2.20)

where θW is the Weinberg angle defined by cos θW = mW/mZ . The neutral current is
summed over all fermions:

jnc
α =

∑

i

f
i
[γα(T i

3(1 − γ5) − 2Qi sin2 θW )]f i

=
∑

i

f
i
γα(gi

V − gi
Aγ5)f

i (2.21)

and

gi
V = T i

3 − 2Qi sin2 θW (2.22)

gi
A = T 3

i (2.23)

where T3 is the weak isospin of the left-handed component of the fermion along the z-axis,
i. e. ±1/2, and Q is the charge of the fermion in units of e.

2.3 Neutrino-Nucleon Scattering

As neutrinos are structureless and comparatively easy to produce in accelerators, they
make an exceptional probe of hadronic matter. Investigating neutrino collisions in fixed
target experiments is an excellent means for retrieving information about the structure of
protons and neutrons. In order to provide a basis for further discussions of such scattering
processes, some definitions have to be introduced. All the relevant expressions are given
for charged current interactions, since this is what this thesis is concerned with. Also, since
referring to the NOMAD experiment, the neutrino is always assumed to be a νµ.

2.3.1 Kinematic Definitions

Figure 2.4(a) shows the Feynman diagram for neutrino-nucleon scattering:

νµ +N → µ− +X (2.24)
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where X denotes a not yet specified hadronic final state. The variables k and pN denote
the 4-momenta of the particles in the initial state, the neutrino and the nucleon. The
4-momentum of the final state muon is k′. The hadronic final state is somewhat more
complex as it may consist of several particles. Considered as a whole, it is assigned with the
4-momentum pX which is a sum of all the individual hadron 4-momenta ph. The W-boson
emitted by the neutrino carries the four-momentum q which will be called 4-momentum
transfer from here on.

pN

k k′

W± q

ph

N

ν

pX

X

µ

θE

E ′

µ

ν

X

N

(a) (b)

Figure 2.4: Diagram for the reaction ν + N → µ + X. (a) Feynman diagram, (b) in the
laboratory frame.

In the rest frame of the nucleon, which corresponds to the laboratory system (neglecting
the Fermi motion) shown in Figure 2.4(b), these momenta can be written as:

k = (E,k), k′ = (E ′,k′), q = (ν,q)
pN = (M,0), pX = (EX ,pX), ph = (Eh,ph)

(2.25)

with M being the nucleon mass, M = mN . Neglecting the mass of the µ, the kinematic
event variables can be expressed as follows:3

• The total energy in the center of mass system
√
s:

s = (k + pN)2 = 2ME +M 2 ≈ 2ME (2.26)

3The approximation “'” indicates the neglected mass mµ, whereas “≈” only holds for E À M
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• The negative square of the 4-momentum transfer Q2:

Q2 = −q2 = −(k − k′)2 = −(E − E ′)2 + (k − k′) ' 4EE ′ sin2 θ

2
> 0. (2.27)

where θ = θµ is the scattering angle of the muon.

• The energy transfer ν in the laboratory frame:

ν =
q · pN

M
= E − E ′ = EX −M (2.28)

and

νmax ' 2E2

2E +MxBj

= E for xBj = 0. (2.29)

with xBj defined below in equation (2.32).

• The total energy W of the outgoing hadrons X in their center of mass frame corre-
sponds to an effective mass of the hadronic final state:

W 2 = p2
X = E2

X − p2
X = (E − E ′ +M)2 − (k − k′)2 = −Q2 + 2Mν +M 2 (2.30)

with

W 2
max ' 2ME +M 2 = s (2.31)

where ν = νmax ' E

Q2 ' 0

• The Bjorken scaling variable xBj:
4

xBj =
−q2

2q · pN

=
Q2

2Mν
with: 0 ≤ xBj ≤ 1. (2.32)

Combining equation (2.30) and (2.32) yields:

W 2 = M2 +Q2

(

1

xBj

− 1

)

. (2.33)

• The inelasticity or relative energy transfer y:4

y =
q · pN

k · pN

=
ν

E
= 1 − E ′

E
=

Q2

2MExBj

(2.34)

with: 0 ≤ y ≤
(

1 +
MxBj

2E

)−1

≈ 1

4The boundaries for xBj and y are given, neglecting the mass mµ of the outgoing muon.
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From (2.32) and (2.34) another useful relation can be given:

yxBj =
Q2

2ME
=

Q2

s−M2
(2.35)

For a given neutrino energy E = Eν , the measurement of two independent variables,
e.q. (E ′, θ) or (Q2, ν) or (x,Q2) or (x, y), is sufficient to characterize a scattering event of
the form (2.24).

2.3.2 Deep Inelastic Scattering

If a neutrino is scattered off a nucleon with sufficiently large Q2, the nucleon will break
apart. In the limitQ2 ÀM2, referred to as deep inelastic scattering (DIS), this reaction can
be described as scattering between a neutrino and a free quark with momentum pq = ξpN

(see Figure 2.5). It can be shown that in lowest order perturbation theory ξ = xBj, i. e.
the Bjorken scaling variable xBj is equal to the fraction of the nucleon momentum that is
carried by the interacting quark. The quark content of a nucleon is specified via the quark
distribution or parton density functions5 q(ξ) which are defined as follows:

q(ξ)dξ = Number of quarks q in the nucleon with
a momentum fraction between ξ and ξ + dξ.

(2.36)

The distributions u(ξ) and d(ξ) can be divided into valence quark and sea quark distribu-
tions:

u(ξ) = uV (ξ) + uS(ξ) (2.37)

d(ξ) = dV (ξ) + dS(ξ). (2.38)

For symmetry reasons it is assumed that the following relations hold for the sea quark
distributions:

uS(ξ) = u(ξ) s(ξ) = s(ξ)

dS(ξ) = d(ξ) c(ξ) = c(ξ)
(2.39)

where the q(ξ) denote the anti-quark distributions. For a proton consisting of three valence
quarks, two u and one d, the distributions must fulfill:

∫ 1

0

uV (ξ)dξ =

∫ 1

0

[u(ξ) − u(ξ)]dξ = 2 (2.40)

∫ 1

0

dV (ξ)dξ =

∫ 1

0

[d(ξ) − d(ξ)]dξ = 1. (2.41)

5The distribution functions q(ξ) should not be confused with the Dirac spinors f(x) introduced in
Section 2.2
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X(pX)

W+(q)

q1(ξpN)

N(pN)

ν(k)

q2

µ(k′)

Uq1q2

Figure 2.5: Feynman diagram for DIS neutrino-nucleon scattering. The neutrino scatters
off a quasi free quark q1 causing the reaction νq1 → µq2. The amplitude for this process is
proportional to the element, Uq1q2 , of the CKM matrix.

In lowest order the differential cross section for deep inelastic neutrino-nucleon scat-
tering can then be given as an incoherent sum of the differential cross sections for elastic
neutrino-quark scattering:

dσ

dxBjdy
=
∑

q,q′

q(xBj)
dσ

dy
(νq → µ−q′) +

∑

q,q′

q(xBj)
dσ

dy
(νq → µ−q′). (2.42)

The differential cross sections dσ/dy correspond to scattering processes of elementary
fermions and can easily be calculated. Neglecting the W-propagator for not too high
energies (see Section 2.2.2: sxBj ¿ m2

W ), they are given by

dσ

dy
(νq → µ−q′) =

2G2
F

π
xBjME|Uqq′ |2 (2.43)

and
dσ

dy
(νq → µ−q′) =

2G2
F

π
xBjME|Uqq′ |2(1 − y)2 (2.44)

where Uqq′ are the elements of the CKM matrix. Taking advantage of |Uud|2 + |Ucd|2 '
|Uus|2 + |Ucs|2 ' 1, the cross section (2.42) becomes

dσ

dxBjdy
(νN) = σ0 · 2xBj([d(xBj) + s(xBj)] + [u(xBj) + c(xBj)](1 − y)2) (2.45)

for W above the charm threshold (W > 2.5 GeV/c2), with

σ0 =
G2

FME

π
= 1.538 × 10−38 cm2

GeV
· E. (2.46)

An integration over xBj and y yields the total cross sections which are linear functions of
the neutrino energy. As shown in Figure 2.6, this behavior is well confirmed by experiments.
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Figure 2.6: σcc/Eν for the total charged current cross section of neutrino- and anti-neutrino-
nucleon scattering, as a function of the neutrino energy. The original plot as well a the
references of the individual measurements can be found in [29].

2.3.3 Quasi Elastic Charm Production

In quasi elastic scattering events the neutrino interacts with the nucleon as a whole and
leaves it intact. As in the case of elastic scattering, the reaction has only one degree of
freedom because it involves two incoming and two outgoing particles with definite masses.
Due to the mass difference between the initial and the final state baryon, as well as between
the neutrino and the charged lepton, the charged current process is not completely elastic.
The most prominent and well measured quasi elastic processes are

νµ + n→ µ− + p Ethr = 110 MeV
νµ + p→ µ+ + n Ethr = 113 MeV

(2.47)

where for neutrino energies above the threshold energy Ethr a transition between the quarks
of the first generation u ↔ d is induced. As a consequence of the quark mixing, the same
mechanism should be able to produce charmed baryons quasi elastically in the following
reactions:

νµ + n → µ− + Λ+
c (2285) (2.48)

νµ + n → µ− +Σ+
c (2455) (2.49)

νµ + n → µ− +Σ∗+
c (2520) (2.50)
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and

νµ + p → µ− +Σ++
c (2455) (2.51)

νµ + p → µ− +Σ∗++
c (2530). (2.52)

In the processes (2.48)-(2.52) a d quark has to change into a c quark. Hence, they are all
Cabibbo suppressed, i. e., they have a cross section proportional to sin2 θc ' 0.05. Since for
quasi elastic charm production (QEC) the hadronic final state consists of only one charmed
baryon, the threshold energy is lower than for DIS charm production where the hadronic
final state must involve at least one baryon and one charmed meson. The lower bound for
the energy of the hadronic system is thus given by:

WQEC > mΛ+
c

= 2285 MeV/c2 (2.53)

and
WDIS > mp +mD0 = 2802 MeV/c2 (2.54)

for QEC and DIS respectively. The matrix element for the QEC process, shown in Figure

d

W±

c

N

ν

Bc

µ

Figure 2.7: Feynman diagram for quasi elastic charm production.

2.7, can be written as6:

M =
GF sin θC√

2
uµ(k′)γα(1 − γ5)uν(k)〈Bc(p

′)|Jα
D+ |N(p)〉 (2.55)

where N and Bc denote the initial and final state baryons, and the hadronic current Jα
D+

describes the quasi elastic transition. In contrast to DIS, the hadronic current Jα
D+ is not

calculable with perturbative QCD because the q2 dependent, effective coupling constant
of the strong interactions, αs, is of the order of one in this kinematic region. However, if
the effective interaction is assumed to be of the V-A type, the general form of the matrix
element of the hadronic current [30, 31, 32] is given by

〈Bc(p
′)|Jα

D+ |N(p)〉 = uBc
(p′)ΓαuN(p) (2.56)

6Here, the uf (p) denotes the spinor of the particle f in “momentum-space”.
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and

Γα = γα(gV + gAγ5) +
iσαβ

(mN +mBc
)
qβ(fV + fAγ5) + iqα(hV + hAγ5) (2.57)

with

σαβ =
i

2
(γαγβ − γβγα). (2.58)

In general, the form factors gV , gA, fV , fA, hV , hA are complex and depend on q2. The
invariance under time reversal (T ) implies, however, that all the form factors in (2.57) are
real. If charge symmetry is assumed, the form factors fA and hV , corresponding to the
second class currents, have to be imaginary, hence

fA = hV = 0. (2.59)

In other words, there are no second class currents if both T invariance and charge symmetry
is assumed. The term corresponding to the form factor hA can be neglected, since it gives a
contribution proportional to the muon mass. It can be shown that only three combinations
of the six form factors can be determined if the helicities of the leptons are not measured
[30]. Neglecting the muon mass, the cross section can be written as:

dσ

dQ2
=
G2

F sin2 θC

8πE2

[

−2q2W1 + (4EE ′ + q2)W2 +
E + E ′

mN

q2W3

]

(2.60)

with structure functions

W1 =
1

4m2
N

{[(mBc
−mN)2 − q2](gV + fV )2 + [(mBc

+mN)2 − q2]g2
A}, (2.61)

W2 = g2
V − q2

(mN +mBc
)2
f 2

V + g2
A (2.62)

and
W3 = 2gA(gV + fV ) (2.63)

Since the center of mass energy of the hadronic final state W is fixed to the mass of the
charmed baryon, the reaction has only one degree of freedom. For a given neutrino energy
a quasi elastic event can therefore be characterized by a single variable, e. g. Q2.

Many authors have given predictions for the cross sections of QEC, based on the formula
(2.60). An overview of the various results is given in Table 2.3, where the cross section
values are given for a neutrino energy of 10 GeV. A common feature of all the models is a
nearly constant cross section for neutrino energies above 15 GeV. The differences between
the predictions, which can be more than one order of magnitude, arise from the fact that
the form factors cannot be established on the basis of the theory. In the calculations
[5, 6, 7, 8, 9, 10, 11] the q2 dependence of the form factors is parametrized with dipole
formulas

D(q2) ∝ 1

(1 − q2

m2
ex

)2
(dipole) (2.64)

mex = mass of the virtual exchange meson
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Process νµn→ µΛ+
c νµn→ µΣ+

c νµp→ µΣ++
c

σ in 10−40 cm2 σ σ/σcc σ σ/σcc σ σ/σcc

Finjord, Ranvndal [5] 1.2 0.18 % 0.06 0.009 % 0.12 0.018 %
Shrock, Lee [6, 7] 23.0 3.4 % 5.0 0.74 % 9.0 1.3 %
Avilez et al [8, 9, 10] 41.0 6.1 % − − 8.4 1.3 %
Amer et al [11] 3.2 0.48 % 0.6 0.089 % 1.1 0.17 %
Kovalenko [12] 5.0 0.74 % 1.5 0.22 % 3.0 0.45 %

Table 2.3: Predicted QEC production cross sections for a neutrino energy of 10 GeV. Also,
the production cross section relative to the total charged current cross section is given.

which are the empirical result of the analysis of experimental data on the electromagnetic
and weak nucleon form factors.

In this thesis the calculations of Kovalenko [12] and those of Shrock and Lee [6, 7] are
used. The model of Kovalenko tries to give an upper limit for the QEC cross section by
taking advantage of the local duality [33], which establishes a relation between the struc-
ture function F th(x,Q2) of DIS, calculated in QCD, and the observed structure function
F ph(x,Q2), which at small Q2 contains resonance peaks corresponding to the ground and
excited states of baryons. The average of the two structure functions coincides to good
accuracy, both, over the whole range of variation 0 ≤ x ≤ 1 (global duality)

∫ 1

0

[F th(x,Q2) − F ph(x,Q2)]dx ' 0, (2.65)

as well as in the vicinity of an individual resonance xmin ≤ x ≤ xmax (local duality)

∫ xmax

xmin

[F th(x,Q2) − F ph(x,Q2)]dx ' 0. (2.66)

A modified version of these relations, taking into account some of the dominant corrections
of F th(x,Q2) in the region of small and moderate Q2, can be used for an estimation of the
structure functions W1, W2 and W3.

The choice of the calculations of Shrock and Lee as a reference model is somewhat
arbitrary in the sense that there are no fundamental formal discrepancies compared to the
models [5, 8, 9, 10, 11]. Using the approximate SU(4) symmetry of the strong interaction7,
the form factors in the model of Shrock and Lee are derived from those found in the
reactions (2.47) and the neutron decay. The form factors are combinations of dipole terms
with parameters mex being set to the masses of the exchanged charmed mesons. A more
detailed description of the two models will be given in Section 4.2.

7If the masses of the quarks u,d,c,s are assumed to be equal, the strong interaction becomes invariant
under SU(4) “rotations” of these quark flavors
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The Experiment

The NOMAD (Neutrino Oscillation Magnetic Detector) experiment was situated at CERN
in Geneva, Switzerland. Proposed by Astier et al. 1991 [34], the construction was completed
in 1995 and data was collected from 1995 to the end of 1998. NOMAD combined the
benefits of counter experiments and bubble chambers, namely high statistics and high
spatial resolution. The main goal of the NOMAD experiment was a short baseline search
for νµ → ντ neutrino oscillations in the CERN SPS wide band neutrino beam. The ντ was
searched for via its charged current reaction ντ +N → τ−+X. For the energies considered,
the charged τ leptons travel about 1 mm before decaying. Since the spatial resolution
of NOMAD was not sufficient to resolve impact parameters associated with such decay
tracks, the τ− were identified using kinematic criteria, based on a precise measurement of
the missing transverse momentum in the final state. Final results can be found in [35].
The large sample of recorded interactions has allowed for a wide range of measurements.
In particular a search for νµ → νe oscillation has been undertaken [36].

3.1 The Neutrino Beam

The geometry of the West Area Neutrino Facility (WANF) is shown in Figure 3.1. The
Super Proton Synchrotron (SPS) at CERN supplied a beam of 450 GeV protons which
was directed onto a beryllium target, thereby producing a large number of secondary
hadrons. In every accelerator cycle (14.4 s) the protons used to produce neutrinos were
extracted from the SPS in two spills, which were separated by 2.7 s. Each spill had a full
width at half maximum of 3 ms and contained about 1.8 × 1013 protons. The number of
protons incident on the target was monitored by a beam current transformer (BCT). The
number of produced neutrinos was often expressed in units of protons on target (POT). The
multiplicity and charge asymmetry of the secondary particles was measured by secondary
emission monitors (SEMs) placed before and after the target. The beam focusing elements,
downstream of the target, were large magnets, designed to collimate the positively charged
secondary particles, while deflecting the negatively charged particles away from the beam
axis. Most of the focusing was done by the first element, called the horn. The second
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SIDE VIEW of beam line behind cave exit
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Figure 3.1: Schematic layout of the WANF beam line (all lengths in m).

element, the reflector, focused the smaller angle particles which had been missed by the
horn. Two helium bags were installed in order to increase the neutrino flux by reducing
multiple scattering and secondary interactions along the beam. Downstream of the focusing
elements was a vacuum decay tunnel of 290 m length in which the positively charged
particles could decay and, thereby, produce the neutrinos. The major contributions to the
νµ flux came from the reactions:

π+ → µ+ + νµ

K+ → µ+ + νµ.

The charge conjugate reactions also occurred, giving rise to a νµ component in the beam.
Earth and iron shielding directly after the decay tunnel filtered out all but neutrinos and
some muons. Silicon detectors in several pits within the shielding region measured the
muon multiplicity and could be used to monitor the beam and determine the absolute flux.
An additional toroidal magnet, which was placed after the muon pits, deflected most of
the remaining muons. The resulting neutrino beam reached the NOMAD detector 835 m
downstream of the proton target with the composition and properties shown in Figure
3.2 and Table 3.1 [37]. The predictions of the neutrino fluxes are based on Monte Carlo
simulations. For further reference on the WANF layout and the alignment procedures, see
[38].
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Figure 3.2: Composition of the neutrino beam and the νµ, νµ, νe and νe energy spectra at
NOMAD, within the transverse fiducial area of 260× 260 cm2. The Figures are taken from
[37].
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Neutrino Neutrino Source
Species Flux π+ or π− K+ or K− K0

L µ+ or µ−

Rel. Abund. 〈Eν〉 % 〈Eν〉 % 〈Eν〉 % 〈Eν〉 % 〈Eν〉
νµ 1.0 24.3 90.4 19.1 9.5 73.0 0.1 26.8 < 0.1 11.4
νµ 0.0678 17.2 84.0 13.8 12.8 38.1 1.9 26.9 1.2 17.0
νe 0.0102 36.4 − − 68.0 41.8 17.8 30.3 13.6 16.8
νe 0.0027 27.6 − − 25.1 22.8 68.2 30.4 3.5 11.1

Table 3.1: Composition of the neutrino beam and the sources of the different components
[37].

3.2 The Detector

The NOMAD detector [39] was composed of several independently working sub-detectors.
A schematic view of the detector is shown in Figure 3.3 along with the co-ordinate system.
The sub-detectors were placed along the beam-line with positional sensitivity transverse
to the beam direction. Most of the secondary particles which were produced in neutrino
interactions traveled in the beam direction since the interaction momentum was mainly
provided by the neutrinos. The veto system upstream of the detector allowed a fast iden-
tification of muons entering the detector. Following the muon veto, there was the forward

calorimeter (FCAL) which was used as a target for studies requiring very high statistics
while sacrificing some resolution in the vertex finding. The drift chambers (DCH) in the
center of the detector served as an active target and hence the most interesting of the
detected interactions occurred there. Further downstream, the trigger planes, the transi-

tion radiation detector (TRD), the preshower (PRS) and the electromagnetic calorimeter

(ECAL) were situated. These inner detectors (DCH to ECAL) were all surrounded by
a dipole magnet which provided a constant magnetic field. The hadronic calorimeter

(HCAL) followed downstream of the inner detectors and at the very end there were the
muon chambers. The x and y axes of the co-ordinate system were centered in the middle
of the first drift chamber. The neutrino beam entered with an angle of 42 mrad to the z
axis. It intercepted from below with the origin of the y axis in the ECAL.

3.2.1 The Magnet

The NOMAD detector reused the dipole magnet from the former UA1 experiment which is
described in [40]. The magnet coil was made from aluminum and provided a near constant
field of 0.4 Tesla which required a current of 5713 kA. The field, which was perpendicular
to the z axis throughout the DCH and the TRD region, allowed an accurate momentum
reconstruction for charged particles traversing the central detector. The two iron supports,
which acted as yokes, had been instrumented as calorimeters. The front pillar was used to
form the forward calorimeter, the back pillar formed the hadronic calorimeter.
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Figure 3.3: Top and side view of the NOMAD detector.
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3.2.2 The Veto Counters

Being the most upstream detector, the veto consisted of 59 scintillator counters and covered
an area of 5.4 × 5 m2. It was used to detect muons traveling with the neutrino beam and
charged particles from upstream interactions, and prevented them from causing valid trig-
gers. An additional veto plane was positioned between the FCAL and the DCH. Charged
particles from interactions downstream of the veto, e. g. in the magnet coil or the support
structures of the drift chambers, were removed during analysis by constraints on the vertex
position.

The scintillators were read out by photo-multipliers and a veto signal was constructed
from a logical OR of all the individual counters. The efficiency of the veto was constantly
monitored and found to be stable at about 96 % − 97 %. The contribution of the veto to
the overall dead time of the experiment during the two neutrino spills amounted to about
4 %. A detailed description of the veto system can be found in [41].

3.2.3 The Forward Calorimeter (FCAL)

The forward calorimeter, being the instrumented front pillar of the magnet, was used as a
massive active target and allowed neutrino physics studies including di-muon production
and neutral heavy lepton searches. The FCAL consisted of 23 iron plates, which were
4.9 cm thick and separated by 1.8 cm air gaps. The first 20 gaps were instrumented with
scintillator counters. The dimensions of the scintillators were 175 × 18.5 × 0.6 cm3. Five
consecutive counters along the beam direction were bunched together via light guides to
form a module which was read out at both ends by photo-multipliers (see Figure 3.4). Ten
such modules were arranged vertically to form a stack. There were four stacks aligned
along the beam axis. The active region of the FCAL had a mass of 17 t, was about 5
nuclear interaction lengths in depth and had an active area transverse to the beam of
175 × 190 cm2. Further details can be found in [39].

-beam

175 cm

ν

Figure 3.4: Top view of the FCAL.
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3.2.4 The Drift Chambers (DCH)

A crucial part of the detector were the drift chambers which provided at the same time
the target material and the track and vertex reconstruction of the charged particles. This
double function implied conflicting requirements for the walls of the drift chambers, for
they had to be as massive as possible to guarantee a large number of neutrino interactions
and as light as possible to minimize multiple scattering of particles, secondary particle
interactions and photon conversions. In order to reduce the radiation length for a given
target mass, the chambers were made of low density and low atomic number materials which
resulted in less than 1 % of a radiation length in the inactive area between two consecutive
measurements. The full drift chamber region consisted of 11 modules, each made up of
four individual drift chambers. In addition to these 44 drift chambers, there were another
5 chambers in the TRD region, providing additional tracking. The chambers were built
on panels made of aramid fibers in a honeycomb structure and sandwiched between two
kevlar-epoxy resin skins. These skins ensured the mechanical rigidity and flatness over
the area of 3 × 3 m2. Each drift chamber comprised four panels with three gaps of 8 mm
in between. The gaps were filled with a mixture of argon (40 %) and ethane (60 %), and
equipped with sense wires. Since the chambers were not completely gas tight, the gas was
circulated permanently in a closed circuit with a purifier section that removed oxygen and
water vapor. The volume with maximal acceptance and reconstruction efficiencies was
referred to as fiducial volume and had the dimensions of 2.6 × 2.6 × 4 m3 with a mass of
2700 kg. The overall density of 100 kg/m3 was about equal to the density of liquid helium.
Table 3.2 shows the atomic composition of the fiducial volume in detail. The sense wires

Proportion
Atom of Weight (%) Atomic Weight

carbon 64.3 12.011
oxygen 22.13 15.999
nitrogen 5.92 14.007
hydrogen 5.14 1.008
aluminum 1.71 26.982
chlorine 0.31 35.453
silicon 0.27 28.086
argon 0.19 39.948
copper 0.03 63.546
Total 100.00

protons 52.43
neutrons 47.57

Table 3.2: Composition of the drift chamber fiducial volume [42].

in the three gaps of a drift chamber were oriented with -5, 0 and +5 degrees with respect
to the magnetic field direction, corresponding to the NOMAD x axis. The three ionization
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signals produced by a particle traversing a drift chamber allowed a hit positioning accurate
to about 1.5 mm in the x direction, due to the angles between the wires. Transverse to
the wires (y direction) a position accuracy of 150µm was reached by the separation of the
wires and a constant gas drift velocity. The position along the beam line (z direction)
was determined by the position of the wire planes which was constantly monitored. The
efficiency of each wire to record a hit was typically 97 %. The three dimensional information
from each drift chamber could be used to reconstruct the helical path of charged particles
through the magnetic field. The curvature allowed the measurement of the momentum of
the particles through the relation

p cos θλ = qBr (3.1)

where p is the momentum and q the charge of the particle, θλ the pitch angle of the helix, r
the radius of curvature and B the magnetic field. The momentum resolution was a function
of the particle momentum and track length. For muons and charged hadrons with normal
incidence to the measuring planes the momentum resolution could be parametrized by

(

σp

p

)2

=

(

a√
L

)2

+

(

bp√
L5

)2

(3.2)

with
a = 0.05 m1/2

b = 0.008 m5/2(GeV/c)−1 (3.3)

and L denoting the length of the track. The first term in (3.2) corresponds to the error
due to multiple-scattering, the second term arises from the single hit resolution. A detailed
description of the drift chamber is given in [43].

3.2.5 The Transition Radiation Detector (TRD)

The purpose of the transition radiation detector was to separate electrons from pions. A
pion rejection factor larger than 103 was reached for an electron identification of 90 % in
the momentum range from 1 to 50 GeV/c. Together with the additional rejection provided
by the preshower and the electromagnetic calorimeter, a pion rejection factor greater than
105 was achieved. This was necessary for the oscillation search in the favored channel,
τ− → e− + νe + ντ , in order to eliminate neutral current background events with an
isolated pion mimicking an electron.

Transition radiation is produced by charged particles crossing the boundaries between
media which have different electron densities [44, 45]. The number of photons produced
is proportional to the Lorentz factor γ = E/m. Particles with higher mass, having a
Lorentz factor γ < 500, deposited their energy mainly due to ionization loss, whereas
electrons in NOMAD typically had a Lorentz factor γ > 500 and thus produced also
transition radiation. Since the number of photons produced per transition is small, a large
number of layers had to be used. The TRD, shown in Figure 3.5, consisted of 9 identical
modules which included a radiator and a detection plane. The radiator comprised 315
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polypropylene foils separated by 250µm air gaps. Each foil was 15µm thick and had an
area of 2.85 × 2.85 m2. The detection plane was made up of 176 proportional tubes. The
horizontal position of these tubes provided additional information about the position of
tracks and was used to extrapolate the tracks from the drift chambers. More details about
the TRD can be found in [46].

  

Detection planes
(176 straw tubes each)

(315 polypropylene foils)

Xenon (80%) - Methane (20%)

Drift Chamber

Radiator

 

Figure 3.5: Top view of the TRD setup.

3.2.6 The Preshower Detector (PRS)

The preshower detector in NOMAD was placed directly in front of the electromagnetic
calorimeter. It was composed of two 9 mm thick lead-antimony sheets, separated by a 2 mm
thick aluminum plate and followed by two planes of proportional tubes, 286 horizontal and
288 vertical. An exploded view of the PRS is given in Figure 3.6. The higher energy
deposit of electrons traversing the PRS compared to the energy deposited by hadrons
allowed a distinction between the two particle types. Together with the TRD and the
electromagnetic calorimeter, the PRS might be used for improving the pion rejection. The
position information provided by the proportional tubes yielded a measurement of the
interaction point of photons and helped in the resolution of overlapping energy clusters in
the electromagnetic calorimeter.

3.2.7 The Electromagnetic Calorimeter (ECAL)

The electromagnetic calorimeter consisted of lead glass counters having a depth of 19
radiation lengths and a rectangular cross section of 79 × 112 mm. The 875 counters were
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Closing block (stesalite)
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Figure 3.6: An exploded view of the preshower detector.

installed in a matrix of 35 rows and 25 columns. The ECAL was capable of measuring
the energy of incident photons and electrons in a range from 100 MeV to 100 GeV with an
energy resolution fitted with two parameters:

σE

E
= a+

b√
E

(3.4)

and

a = (1.04 ± 0.01) × 10−2

b = (3.22 ± 0.07) × 10−2 GeV
1/2.

Using the PRS in conjunction with the ECAL, the discrimination of electrons and pions
was improved substantially. The presence of the lead plates of the PRS degraded the
energy resolution of the ECAL. However, by combining the ECAL with the proportional
tubes of the PRS, the energy resolution could be partially recovered.

3.2.8 The Hadronic Calorimeter (HCAL)

The instrumented back pillar of the magnet served as the hadronic calorimeter in NO-
MAD. Being an iron-scintillator sampling calorimeter, it consisted of 11 scintillator planes,
placed in the 1.8 cm gaps between the first 12 of the 23 iron plates which formed the sup-
port pillar. Each scintillator plane was made up of 18 horizontal paddles resulting in an
area of 3.6× 3.5 m2 transverse to the beam direction. Photo-tubes on both sides measured
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the scintillation light which was directed through adiabatic light guides. In Figure 3.7 a
schematic view of the HCAL is given. The HCAL served the purpose of measuring the

Scintillator BoltsLight Pipes Iron Pillars

350 cm

360 cm

5 inch

Photomultiplier

Figure 3.7: The front view of the HCAL.

energy and position of neutral hadrons. This was important in order to reconstruct kine-
matic quantities such as the missing transverse momentum. Additionally, the calorimetric
measurement of charged particles could be used as a consistency check on the momen-
tum measurement and as an aid in distinguishing between muons and charged hadrons.
The horizontal signal position was determined from the ratio of signals at both ends of a
scintillator paddle, giving a resolution of approximately 20 cm. The energy deposited in a
scintillator module was obtained from the geometric mean of the two photo-tube signals.
For further details see [39].

3.2.9 The Muon Chambers

The muon chambers comprehended 10 drift chambers as shown in Figure 3.8, each with an
active area of 3.75×5.55 m2. The chambers were made of 48 vertical and 78 horizontal drift
cells which provided the position of charged particles passing through, with a resolution
of about 430µm for tracks crossing at 0 ◦ with respect to the neutrino beam direction.
The chambers were placed behind the HCAL and grouped into two stations which were
separated by a 80 cm thick iron wall which acted as a hadron absorber additional to the
HCAL. A muon passing through a station often gave rise to hits in at least two drift
chambers thus providing positional and directional information. The average hit efficiency
of the muon chambers was 92.5 % with a dominant source of inefficiency being due to dead
areas. A small gap between the muon chambers in the first station was closed in 1996 by
the addition of scintillators.
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Figure 3.8: Layout of the muon chambers.

3.2.10 The Trigger System

Within the NOMAD magnet two planes of scintillator counters were placed downstream
of the drift chambers (see Figure 3.3). These trigger planes, T1 and T2, detected charged
particles from neutrino interactions. Coincident signals from both trigger planes, together
with the absence of a signal from the veto plane, defined the primary trigger for NOMAD,
known as the V T1T2 trigger. Events fulfilling this trigger condition corresponded mainly
to neutrino interactions in the drift chambers. The time needed to acquire data from each
sub-detector and the time interval of the veto signal caused a dead time for the experiment
which was found to be approximately 17 %. Using the information of the FCAL and ECAL,
additional triggers could be defined for events occurring in the FCAL or ECAL, as well as
for events recorded for calibration purposes. A detailed description of the trigger system
and these additional triggers is given in [39].
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Monte Carlo Simulation

Today’s experimental particle physics relies heavily on the simulation of physics processes.
Such simulations are often needed to estimate efficiencies of event selection algorithms or
to study the effects of detector acceptances on event distributions. Monte Carlo techniques
are used to generate events randomly, according to a set of given physics criteria. The task
of creating event samples, which describe the main physics processes, is done by so called
Monte Carlo generators. The expected detector response to these generated events is then
produced by detector simulations whose output is of the same form as data1, with the
substantial difference that the details of the underlying processes are known.

4.1 Charged Current Monte Carlo Sample

The NOMAD software environment includes a Monte Carlo simulation predicting the neu-
trino beam, an event generator describing neutrino-nucleon scattering, a detector simu-
lation and a reconstruction package which transforms the raw output of the detector for
data and Monte Carlo events into a form suitable for analysis.

4.1.1 The Neutrino Beam Simulation

A program entitled NUBEAM is used to simulate the neutrino flux in the NOMAD de-
tector. It starts with the production of particles in the beryllium target by the incident
proton beam. The distribution of emerging particles is obtained from the year 2000 version
of the FLUKA software package [47]. The propagation of the secondary particles along the
beam line is taken care of by a simulation package based on GEANT3 [48] which models
the re-interactions behind the beryllium target and includes an accurate description of the
magnetic fields in the horn and the reflector. The resulting energy spectra of the decay
neutrinos are shown in Figure 3.2.

1In this thesis the expression “data” is only used in connection with real events.
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4.1.2 The Event Generation

The neutrino flux generated by NUBEAM is taken as input2 for the generation of neutrino-
nucleon scattering events in the NOMAD drift chambers. The Monte Carlo generator
includes DIS, quasi elastic (QEL) and resonant (RES) processes. The DIS events are
simulated with a modified version of the LEPTO 6.1 generator [49] where the Q2 and
W 2 cutoffs have been removed. The QEL and RES events are generated according to
the formulas found in [30] and [50]. For the parton density functions, which describe the
quark content of the nucleon, the GRV-HO parametrization [51] has been chosen. The
Fermi motion of the nucleon is described according to [52] and truncated at 1 GeV/c. The
fragmentation of the final state, which forms the hadrons out of the partons, as well as the
strong and electromagnetic decays are performed by JETSET 7.4 [53].

The DIS Monte Carlo generates events with a W 2 above 1.8 GeV2/c4, the RES and the
QEL Monte Carlo generate the events below. The RES Monte Carlo has been weighted such
that the sum of RES and DIS events has a continuous W 2 distribution. The contribution
of the QEL Monte Carlo events is determined by the well known cross section. For charged
current interactions of muon neutrinos, this ends up in

NQEL

Ncc

= 2.3 % (4.1)

NRESO

Ncc

= 3.8 %. (4.2)

4.1.3 The Detector Simulation and Event Reconstruction

The detector simulation of NOMAD, called GENOM, is based on GEANT3 [48]. It simu-
lates the propagation and interactions of the particles produced in the primary neutrino-
nucleon scattering process within the detector. Also, the decays of particles living long
enough to produce secondary vertices3, that can be distinguished from the primary vertex,
are carried out by GENOM. Finally, it simulates the full detector response to the event
and produces an output similar to the data. The reconstruction of Monte Carlo and data
events is done in two stages by a program called RECON. First, hits, tracks, vertices and
energy deposits in the individual sub-detectors are reconstructed, then, in the second stage,
the individual particles are identified by matching the tracks in the drift chambers with the
tracks and clusters in the other sub-detectors. The output of the reconstruction is stored
in a DST (Data Summary Tape), the format which is used for the analyses.

4.1.4 Comparison with Data

After reconstruction, the Monte Carlo results can be compared with data. In order to
receive a set of data events that consists mainly of charged current muon neutrino (νµcc)

2The neutrino energy and the position of the interaction are given as input for the Monte Carlo event
generator.

3Here, a vertex refers to the reconstructed position of an interaction.
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events, the following selection criteria have to be fulfilled:

• Detector: Proper performance of detector and beam is demanded during the data
taking period (run). Events from previously identified “bad” runs are rejected.

• Trigger: The events must fulfill the V T1T2 trigger described in section 3.2.10.

• Primary muon: At least one identified muon with an energy Eµ > 5 GeV has to
be present at the primary vertex. A muon candidate is a drift chamber track that
has been matched with a track reconstructed in the muon chambers. The primary
muon, which is assumed to have the highest transversal momentum with respect to
the neutrino beam direction, must be negatively charged.

• Fiducial volume: The primary vertex has to be in a confined region within the
drift chambers. In the NOMAD co-ordinate system this region is given by:

−120 cm ≤ xV 1 ≤ 120 cm
−120 cm ≤ yV 1 ≤ 120 cm

60 cm ≤ zV 1 ≤ 395 cm
(4.3)

• Track multiplicity: Including the µ−, at least two reconstructed primary tracks
must be found. Here, a track is assumed to originate from the primary vertex if its
first hit has been found in a cylinder (radius = 30 cm, length = 40 cm) with axis
along the neutrino beam direction and starting 10 cm in front of the primary vertex.
The number of primary tracks is denoted4 by nbox

trksV 1 .

• Charge: The charge sum of the primary track candidates has to fulfill

−1 ≤
∑

box

Qtrks ≤ 2. (4.4)

Figures 4.1 - 4.4 show the comparison of the charged current Monte Carlo events with the
data after applying the cuts described. The Monte Carlo sample which comprises about
3.8 times the number of events of the data sample, was normalized to the latter after the
cuts. The error bars shown are statistically only and have been omitted for the Monte
Carlo simulation.

Figure 4.1(a) shows the reconstructed neutrino energy which is given by

Evis
ν = |pµ +

∑

pc +
∑

pn|, (4.5)

because of momentum conservation. The momenta of the charged and neutral particles, pc

and pn, have been determined during reconstruction by a kinematic fit of the measurements
of the DCH and the ECAL. The agreement between data and Monte Carlo simulation is
fairly good. Also, the distribution of the muon energy shown in Figure 4.1(b) is well
described by the Monte Carlo simulation.

4A short description of the variables used in the analysis is given in appendix A



34 Chapter 4. Monte Carlo Simulation

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120 140

PSfrag replacements

Events
Events

Events
(

1
4 cm

)

Events
(

1
4 cm

)

Events
(

1
12 cm

)

Events
(

1
0.25 GeV

)

E
ve

n
ts
(

1
2

G
eV

)

Events
(

1
2 GeV

)

Events
(

c2

2 GeV2

)

Events
(

c4

GeV2

)

Events
(

1
0.02

)

Events
(

1
0.02

)

Events
(

1
0.2

)

Evis
ν (GeV)

Eµ(GeV)
Q2

vis(GeV2/c2)
W 2

vis(GeV2/c4)

xvis

yvis
Eneutral

cal (GeV)
nbox

trksV 1

Charge Sum(e)

nV 0

xV 1(cm)
yV 1(cm)
zV 1(cm)

MΛ+
c

rec (GeV/c2)
nbox

trksV 1

(Ecal
clu

−pdch
π )/(Ecal

clu
+pdch

π )

Eprs
sum(MIPs)

Data

cc MC

(a) Visible neutrino energy.
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(b) Reconstructed muon energy

Figure 4.1: Reconstructed energies in νµcc events.
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(a) Charge sum of primary tracks
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Figure 4.2: Charge and tracks multiplicities.
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Figure 4.2(a) shows the distribution of the charge sum for data and Monte Carlo events.
The distribution is peaked for the values zero and one, as it is expected from charge
conservation for neutron and proton target nucleons. In events with total charge > 1 or
< 0 some charged tracks have not been reconstructed or their charge has been misassigned.
The charge distribution of the Monte Carlo events is slightly narrower than for real events.
The tails have been removed by the νµcc event selection cuts. In Figure 4.2(b) the number
of primary tracks nbox

trksV 1 per event is plotted. Again, a good but not perfect agreement
between data and the Monte Carlo simulation is found. The first two bins are empty due
to the νµcc selection criteria.

Figure 4.3 shows the distribution of the position of the primary vertex along the x,
y and z axis of the NOMAD co-ordinate system. The comparison shows how well the
geometry and the materials are implemented into the detector simulation. The vertex
position distribution is well described by the Monte Carlo simulation. The peaks in the
x and y plots arise from the support structures which have a higher density than the
drift chambers. The small discrepancies in the z distribution have generally no effect on a
physics analysis.

Figure 4.4 shows the distributions of the reconstructed kinematic variables Q2
vis , W

2
vis ,

xvis and yvis which have been calculated from the reconstructed neutrino energy and the
muon momentum. In order to simplify the kinematic calculations, a more suitable co-
ordinate system, called the neutrino frame, has been introduced. This co-ordinate system
is rotated around the x axis by 42 mrad with respect to the NOMAD co-ordinate system
and, thus, has its z axis aligned with the neutrino beam direction. In the neutrino frame
the kinematic variables become

Q2
vis = 2Evis

ν (Eµ − pz
µ), (4.6)

W 2
vis = m2

N −Q2
vis + 2mN(Evis

ν − Eµ), (4.7)

xvis =
Q2

vis

2mN(Evis
ν − Eµ)

(4.8)

and

yvis =
Evis

ν − Eµ

Evis
ν

. (4.9)

The Q2
vis distribution in Figure 4.4(a) is well described by the Monte Carlo simulation. The

compliance for W 2
vis in Figure 4.4(b) is not as good. The Monte Carlo distribution has a

slightly steeper decline. The distributions of the Bjorken variable xvis and the inelasticity
yvis in figures 4.4(c) and 4.4(d) are only reproduced qualitatively.

4.2 Signal Monte Carlo Sample: Quasi Elastic Charm

Production

In order to study QEC events in the NOMAD Experiment, Monte Carlo generators for the
model of Shrock and Lee [6, 7] and for the model of Kovalenko [12] have been written. As
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Figure 4.3: Position of the reconstructed primary vertex for data and Monte Carlo events.
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(a) Square of the 4-momentum transfer
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(b) Invariant mass of the hadronic system
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(c) Bjorken variable xBj
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Figure 4.4: Reconstructed kinematic quantities for data and Monte Carlo events.
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noticed in Section 2.3.3, QEC includes the processes (2.48)-(2.52). For this work, however,
only the production of the ground state baryons,

νµ + n → µ− + Λ+
c (2285) (4.10)

νµ + n → µ− +Σ+
c (2455) (4.11)

and
νµ + p→ µ− +Σ++

c (2455) (4.12)

has been implemented. In the following some details about the cross section calculations for
both models are given along with the values of the parameters used in the MC generators.

4.2.1 The QEC Model of Shrock and Lee

Assuming isospin symmetry for proton and neutron, the differential cross sections of the
processes 4.11 and 4.12 are connected via the relation5:

dσ

dQ2
(νp→ µ−Σ++

c ) = 2
dσ

dQ2
(νn→ µ−Σ+

c ). (4.13)

The cross sections are calculated, using the general formula

dσ

dQ2
=
G2

F sin2 ΘC

8πE2

[

−2q2W1 + (4EE ′ + q2)W2 +
E + E ′

mN

q2W3

]

(4.14)

with structure functions

W1 =
1

4m2
N

{[(mBc
−mN)2 − q2](gV + fV )2 + [(mBc

+mN)2 − q2]g2
A}, (4.15)

W2 = g2
V − q2

(mN +mBc
)2
f 2

V + g2
A (4.16)

and
W3 = 2gA(gV + fV ). (4.17)

The real form factors gV , fV and gA can be calculated using the approximate SU(4)
symmetry (see Section 2.3.3). This results in

gV = (3/2)
1/2 F p

1 (Q2) (4.18)

fV = (3/2)
1/2 F p

2 (Q2) (4.19)

gA = − (3/2)
1/2 (1/3D + F )FA(Q2) (4.20)

for νµn→ µ−Λ+
c and

gV = (3/2)
1/2 (F p

1 (Q2) + 2F n
1 (Q2)) (4.21)

5The variables are denoted as in Section 2.3.
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fV = (3/2)
1/2 (F p

2 (Q2) + 2F n
2 (Q2)) (4.22)

gA = − (3/2)
1/2 (F −D)FA(Q2) (4.23)

for νµp → µ−Σ++
c . The constants F and D can be determined via the measurement of

baryon decays [54], e. g.

• n→ pe−νe:
(F +D) = 1.2670 ± 0.0035

• Σ− → ne−νe:
(F −D) = −0.340 ± 0.017

which yields

D = 0.8035 ± 0.0087 (4.24)

F = 0.4635 ± 0.0087. (4.25)

The Q2 depending functions F p,n
1 and F p,n

2 are a weak generalization of the form factors
appearing in the well known Rosenbluth formula for electron-nucleon scattering and can
be expressed as

F p,n
1 (Q2) =

Gp,n
E (Q2) + [Q2/(mN+mBc )2]Gp,n

M (Q2)

1 + Q2/(mN+mBc )2
(4.26)

and

F p,n
2 (Q2) =

Gp,n
M (Q2) −Gp,n

E (Q2)

1 + Q2/(mN+mBc )2
(4.27)

with the dipole form factors

Gp
E(Q2) =

1

(1 + Q2/m2
D∗)

2 (4.28)

Gn
E(Q2) ' 0 (4.29)

Gp
M(Q2) =

1 + µp

(1 + Q2/m2
D∗)

2 (4.30)

Gn
M(Q2) =

µn

(1 + Q2/m2
D∗)

2 . (4.31)

The parameter mD∗ corresponds to the mass of the charmed vector meson

mD∗ = mD∗(2010)+ = 2.01 GeV/c2 (4.32)

and µn and µp refer to the anomalous magnetic moment of the proton and the neutron:

µp = 1.7928473 (4.33)

µn = −1.913043. (4.34)
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The function FA appearing in the axial-vector form factor gA is also parametrized as a
dipole:

FA(Q2) =
1

(1 + Q2/m2
A)

2 (4.35)

with mA standing for the mass of the charmed axial-vector meson:

mA = mD1(2420)+ = 2.42 GeV/c2. (4.36)

The values of the parameters mD∗ and mA differ from the values stated in the original
publication, since those were estimations for masses of particles not yet observed. Also,
the values of F and D have been updated6. Implemented in the Monte Carlo generator
is a modified version derived from [31] which includes also the term corresponding to hA

(see equation (2.57)). However, as the hA term is proportional to the lepton mass, the
differences to the calculation of Shrock and Lee are negligible.

4.2.2 The QEC Model of Kovalenko

As mentioned in Section 2.3.3, the model of Kovalenko gives an upper limit for the QEC
cross section, by estimating the structure function appearing in the cross section formula
(4.14) with the help of local duality (see (2.66)):

∫ ξmax

ξmin

(F th(ξ,Q2) − F ph(ξ,Q2))dξ ' 0 (4.37)

where

ξ(ν,Q2) =
Q2

mN

(

ν +
√

ν2 +Q2
)

[

1 +
M2

0

Q2

(

1 +
M2

0

Q2 +M2
0

)]

(4.38)

replaces the Bjorken variable xBj, thereby taking into account some of the dominant power
corrections to F th for low and moderate Q2. In order to reproduce the cross section values
given in the publication, the phenomenological parameter M0, which describes the scale of
the internal nucleon dynamics, was set to M0 =

√
0.1 in contradiction to the stated value

M0 = 0.1. The details of the rather tedious calculation can be found in the publication.

4.2.3 Calculation of the total QEC Cross Section

For a fixed neutrino energy Eν the total cross section σ is obtained by integrating the
differential cross section dσ/dQ2 over the kinematically allowed Q2 range. The variable Q2

is determined by the 4-momentum vectors of the initial and the final state lepton:

Q2 = −(k − k′)2 = −m2
l + 2EE ′ − 2|k||k′| cos θ

= −m2
l + 2EE ′ − 2E(E ′2 −m2

l )
1/2 cos θ

(4.39)

6In the text of [6] F and D were interchanged by mistake. However, for the computation of the numerical
results, the right values were used.
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or equivalent by the initial and final state hadrons:

Q2 = −(pN − pX)2 = m2
N −W 2 + 2mN(E − E ′) (4.40)

where pX denotes the 4-momentum of the hadronic final state which is in this case the
charmed baryon. Equations (4.39) and (4.40) can be solved for the energy of the muon E ′

which yields a quadratic equation:

E ′2(4E2 cos2 θ −B2) − E ′(2AB) − (4E2m2
l cos2 θ + A2) = 0 (4.41)

with

A = W 2 −M2 − 2mNE −m2
l (4.42)

B = 2(mN + E). (4.43)

The solution for | cos θ| = 1 inserted into (4.39) gives the boundaries of the Q2 range. In
the process of forming equation (4.41), a second solution has been generated by squaring.
This solution, however, is not valid, since it does not satisfy equation (4.39). If the neutrino
energy Eν is too small (Eν < Ethr), there exists no solution to the equations (4.39) and
(4.41) and the total cross section vanishes. The threshold energies for the QEC processes,
depending on lepton and target type, are given in Table 4.1.

Neutrino Nucleon Ethr (GeV)
n 2.310

νe p 2.738
n 2.571

νµ p 3.020
n 8.310

ντ p 9.065

Table 4.1: Threshold energy of QEC production for the different neutrinos and target
nucleons in the rest frame of the nucleons.

Figure 4.5(a) and 4.5(b) show the total cross sections of the processes (4.10)-(4.12) for
the model of Shrock and Lee and for the model of Kovalenko. Due to the steep Q2 depen-
dence of the differential cross sections (Figure 4.6(a) and 4.6(b)), the total cross sections
become almost constant7 for neutrino energies above ≈ 15 GeV. This is a common feature
of all QEC models. The energy dependence of the total cross section is mainly a result of
the dilatation of the allowed Q2 range. The flatness of the total cross section also implies
that QEC can only be of relevance near its threshold energy, since the total charged current
cross section rises linearly with the neutrino energy (i. e., the fraction σQEC/σcc decreases).
The different Q2 dependence of the two models has an impact on the reconstruction effi-
ciency in the NOMAD detector since it yields a different energy distribution of the produced

7
∫ ∞

ξ
1

x1+ε
= const. < ∞ for ε > 0.
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charmed baryons. The cross section calculated here with the model of Shrock and Lee is
smaller than the one originally published (see Table 2.60): σorig.(10 GeV) = 2.3×10−39cm2.
This is an effect of the adjusted values of the mass parameters.
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Figure 4.5: Total QEC cross sections for the model of Shrock and Lee (a) and for the
model of Kovalenko (b).

4.2.4 Monte Carlo Generation of QEC Events

The purpose of Monte Carlo techniques is to map a uniform distribution of numbers u(x)
in an interval [0, 1] to an arbitrary distribution f(x) in an interval [a, b]. This is useful as
uniform distributions u(x) can be provided by random number generators on computers.
There are several methods to accomplish this mapping task, depending on the properties of
the function f(x). Here, only the simplest method is outlined, however, more sophisticated
approaches may be found in [53] and [55]. If the maximum of f(x) in the range [a, b] is
known, f(x) < fmax, a hit-or-miss method is applicable which may be described as follows:

1. A number x0 from the uniform distribution u(x) is selected and mapped to the
interval [a, b] with the relation x = a+ (b− a)x0.

2. A second number x1 from u(x) in the interval [0, 1] is selected and compared with
the ratio f(x)/fmax. If x1 > f(x)/fmax, the value x is rejected and the algorithm
starts again at step 1.



4.2. Signal Monte Carlo Sample: Quasi Elastic Charm Production 43

10
-3

10
-2

10
-1

1

0 1 2 3 4 5 6 7 8 9 10

PSfrag replacements

Q2(GeV2/c2)

d
σ

d
Q

2
(1

0−
3
9
cm

2
c2
/G

eV
2
)

Eν(GeV)
σ(10−39 cm2)

νµ + n → µ− + Λ+
c

νµ + n → µ− + Σ+
c

νµ + p → µ− + Σ++
c

Kovalenko

Shrock and Lee

Eν = 10 GeV
10

-3

10
-2

10
-1

1

0 1 2 3 4 5 6 7 8 9 10

PSfrag replacements

Q2(GeV2/c2)

d
σ

d
Q

2
(1

0−
3
9
cm

2
c2
/G

eV
2
)

Eν(GeV)
σ(10−39 cm2)

νµ + n → µ− + Λ+
c

νµ + n → µ− + Σ+
c

νµ + p → µ− + Σ++
c

Kovalenko

Shrock and Lee

Eν = 10 GeV

Figure 4.6: Differential QEC cross sections for the model of Shrock and Lee (a) and for
the model of Kovalenko (b).

3. Otherwise, if x1 ≤ f(x)/fmax, the value x is retained as final answer.

Since the probability that x1 ≤ f(x)/fmax is proportional to f(x), the values x, selected by
this algorithm, are distributed according to f(x). This brute force method always works
as long as the maximum fmax is known. However, for sharply peaked functions f(x), it
becomes slow due to the high number of rejected values.

Since for a given neutrino energy the differential QEC cross section depends only on
one variable, e. g. Q2, and has a known maximum, the hit-or-miss method can be applied
in order to generate events with a Q2 in the interval [Q2

min, Q
2
max], distributed like dσ/dQ2.

The selected Q2 then determines the kinematics of the event, i. e. the 4-momenta of the
muon pµ and the charmed baryon pBc

. Finally, the decay of the charmed baryon is taken
care of by JETSET [53].

For the simulation of the detector response and for the reconstruction of the events the
software packages GENOM and RECON, mentioned in Section 4.1.3, are used.





Chapter 5

Data Analysis

5.1 Introduction

The expected contribution of the QEC processes (4.10)-(4.12) to the total number of scat-
tering events in the energy range of NOMAD,

NQEC = nt

∫

σQEC

dNν

dEν

dEν (5.1)

nt = nucleons per area,

is relatively small, namely 8.6 h for the model of Shrock and Lee [6, 7] and 2.9 h for the
model of Kovalenko [12] respectively. The predicted fractions of quasi-elastically produced
Λ+

c (process (4.10)) are found to be:

N shr
Λ+

c

N
νµ
cc

= 0.0054 (5.2)

and
Nkov

Λ+
c

N
νµ
cc

= 0.0015. (5.3)

Due to the steep Q2 dependence of the differential QEC cross section, the charmed baryon
is m predominantly produced with low momentum. In the NOMAD experiment the decay
vertices of the charmed baryons cannot be distinguished from the primary vertex because
the Λ+

c has a mean life time of only τ = (200±6)×10−15s and the Σ+
c and Σ++

c , which decay
(100 %) via the strong interaction into a Λ+

c and a pion, have an even shorter mean life
time. The resolution of the squared mass of the hadronic final state, W 2

vis , calculated from
the visible neutrino energy Evis

ν and the muon momentum, is not sufficient to separate QEC
from DIS events. Therefore, the search has to be performed in exclusive decay channels.
For this analysis decays into a Λ have been investigated, namely the hadronic decay,

Λ+
c → Λπ+π+π− (5.4)

45
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with branching ratio:
Γi/Γtot = (3.3 ± 1.0) %, (5.5)

the semi-leptonic decay into a positron,

Λ+
c → Λe+νe

Γi/Γtot = (2.1 ± 0.6) %,
(5.6)

and the semi-inclusive decay,
Bc → Λ+X

Γi/Γtot = (35 ± 11) %
(5.7)

where Bc stands for Λ+
c , Σ+

c or Σ++
c and X denotes an arbitrary set of final state particles.

Since the Σc always decay into a Λ+
c , the branching ratio corresponds to the one of the Λ+

c

decay. The Λ itself can be identified from its most prominent decay:

Λ→ p+ π−

Γi/Γtot = (63.9 ± 0.5) %
(5.8)

which gives rise to an observable secondary vertex (τ = 2.632×10−10s).

5.2 Data Selection

In order to find the fraction of QEC events with respect to all charged current events, a
proper data1 sample has to be selected. This sample, referred to as the νµcc sample, is
specified via the selection cuts given in Section 4.1.4:

• Detector: Proper performance of detector and beam is demanded during the data
taking period (run). Events from previously identified “bad” runs are rejected.

• Trigger: The events must fulfill the V T1T2 trigger described in section 3.2.10.

• Primary muon: At least one identified muon with an energy Eµ > 5 GeV has to
be present at the primary vertex. A muon candidate is a drift chamber track that
has been matched with a track reconstructed in the muon chambers. The primary
muon, which is assumed to have the highest transversal momentum with respect to
the neutrino beam direction, must be negatively charged.

• Fiducial volume: The primary vertex has to be in a confined region within the
drift chambers. In the NOMAD co-ordinate system this region is given by:

−120 cm ≤ xV 1 ≤ 120 cm
−120 cm ≤ yV 1 ≤ 120 cm

60 cm ≤ zV 1 ≤ 395 cm
(5.9)

1In this thesis the expression “data” is only used in connection with real events.



5.2. Data Selection 47

• Track multiplicity: Including the µ−, at least two reconstructed primary tracks
must be found. Here, a track is assumed to originate from the primary vertex if its
first hit has been found in a cylinder (radius = 30 cm, length = 40 cm) with axis
along the neutrino beam direction and starting 10 cm in front of the primary vertex.
The number of primary tracks is denoted2 by nbox

trksV 1 .

• Charge: The charge sum of the primary track candidates has to fulfill

−1 ≤
∑

box

Qtrks ≤ 2. (5.10)

The νµcc Monte Carlo sample selected by these criteria has been normalized to the num-
ber of data events surviving these selection cuts, as it was done in Section 4.1.4. This
normalization has to be justified by investigating the contamination from neutral current
processes and the charged current interactions of other neutrinos (see next section).

5.2.1 Purity of the νµcc Sample

In order to determine the efficiency of the selection criteria in rejecting background from
neutral current reactions as well as from interactions of νµ, νe and νe, the corresponding
Monte Carlo samples have been studied. In Table 5.1 the obtained selection efficiencies (or
reduction factors) along with the expected number of events before and after the selection
cuts are given.

DCH
events

Selection
efficiency (%)

Events in the
νµcc sample

νµcc 1282000 48.5 ± 0.031 622500
nc 493000 0.168 ± 0.003 830
νecc 20000 0.175 ± 0.004 35
νecc 3000 0.254 ± 0.008 8
νµcc 41000 0.077 ± 0.004 30

Table 5.1: Efficiencies of the νµcc sample selection for Monte Carlo events produced by
νµcc scattering and other processes. The errors of the efficiencies are statistical only. The
abbreviation DCH stands for drift chambers.

The Monte Carlo samples comprise the following numbers of events:

• νµcc: 4.9 million events; ≈ 3.8 times the data sample,

• nc: 2.4 million events; ≈ 4.9 times the data sample,

• νecc: 940000 events; ≈ 47 times the data sample,

2A short description of the variables used in the analysis is given in appendix A
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• νecc: 380000 events; ≈ 128 times the data sample,

• νµcc: 400000 events; ≈ 9.7 times the data sample.

These numbers determine the stated statistical errors for the selection efficiencies. As
mentioned before, the νµcc Monte Carlo sample has been normalized to the number of
data events in the νµcc sample. The expected number of νµcc events in the drift chambers
(DCH events) is obtained with the help of the Monte Carlo efficiency. The number of DCH
events for the other processes is then given by the ratios Ni/Nνµcc which are determined by
the known cross sections and the neutrino energy spectra. The selection criteria discard
more than 99 % of the events of the background processes. At the same time about 50 %
of the charged current νµ events are rejected which is, however, to a substantial fraction
due to the restriction of the fiducial volume:

εvolume ' 0.72
εother ' 0.67.

(5.11)

Considering the small contribution from other processes to the νµcc sample, the proposed
normalization of the νµcc Monte Carlo sample to the data sample, seems to be reasonable.

5.3 Efficiencies and Normalization of the QEC Signal

Monte Carlo Samples

The search for QEC events is being performed in three different decay channels of the Λ+
c .

For the decays with a definite final state, (5.4) and (5.6) with Λ → p + π−, 12000 signal
events have been generated. The semi-inclusive decay channel (5.7) is being investigated
using a Monte Carlo sample which comprises 20000 QEC signal events, each with a Λ
decaying into a proton and a π−. The application of the selection cuts defining the νµcc
sample reduces the QEC signal samples to the following fractions:

• Λ+
c → Λπ+π+π−:

εshr
νµcc = 0.588 ± 0.007 (5.12)

εkov
νµcc = 0.599 ± 0.007 (5.13)

• Λ+
c → Λe+νe:

εshr
νµcc = 0.570 ± 0.007 (5.14)

εkov
νµcc = 0.575 ± 0.007 (5.15)

• Bc → Λ+X:

εshr
νµcc = 0.580 ± 0.005 (5.16)

εkov
νµcc = 0.571 ± 0.005, (5.17)
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The selection efficiencies are substantially higher than the efficiencies of the νµcc back-
ground Monte Carlo events shown in Table 5.1. This is an effect of the relatively high
mass of the charmed baryons which gives a lower bound to the momentum that has to be
transferred from the neutrino.

The Monte Carlo signal samples have been normalized to the numbers of expected QEC
signal events in the DCH which can be determined via the number of expected νµcc DCH
events (see Table 5.1) and the production and branching ratios given in Section 5.1. The
expected numbers of signal events in the νµcc sample for both QEC models are given in
Table 5.2.

Search Events in the νµcc sample
Channel Kovalenko Shrock

Λ+
c → Λπ+π+π− 27.7 86.5
Λ+

c → Λ l+νl 15.1 53.4
Bc → Λ+X 476.7 1443.6

Table 5.2: Expected numbers of signal events in the νµcc sample.

5.4 Selection and Identification of V 0 Vertices

The decay channels (5.4)-(5.7) of the Λ+
c all include a Λ in the final state. Being a neutral

baryon, the Λ may decay weakly into a neutron and a π0 (Γi/Γ = 35.8 %± 0.5 %), or into a
proton and a π− (Γi/Γ = 63.9 %±0.5 %). Due to the mean life time of (2.632±0.020)×10−10s
(cτ = 7.89 cm), the latter decay may be observed in the drift chambers as two charged tracks
which originate from a secondary vertex. These secondary vertices with two outgoing but
no incoming tracks are called V 0 vertices. The identification of a Λ is thus accomplished
by searching for a V 0 vertex and taking advantage of kinematic characteristics to separate
the Λ from other particles, such as Λ, K0

S and γ, whose decays or interactions might also
lead to V 0 vertices.

The V 0 vertices in the drift chambers have been labeled by the NOMAD vertex fitting
package [56], using the Kalman filter technique. In order to reject misidentified V 0 vertices
the following constraints have been demanded:

• P(χ2
V 0) > 0.01, where P is the χ2 probability of the vertex fit of the V 0 vertex.

• pl.o.f
T < 0.1 GeV/c, where pl.o.f

T is the transverse momentum of the decaying particle
with respect to the line of flight, as illustrated in Figure 5.1. This gives a measure
on the probability of the neutral particle to have emanated from the primary vertex.

• The measured proper decay time of the V 0 vertex has to be consistent with the mean
life time given in [25] for the tested hypothesis of either a decaying Λ, Λ or K0

S:

τ < 6τV 0 . (5.18)
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The remaining photon candidates are removed by a kinematic cut which will be
described later.

primary vertex

line of flight

pV 0

p+

p−

V 0

p
l.o.f
T

Figure 5.1: Definition of the transverse momentum of a particle with respect to the line of
flight.

Figure 5.2 gives a schematic view of the momenta, p+ and p−, of the positively and nega-
tively charged particles participating in a V 0 decay, split into transverse and longitudinal
components with respect to the momentum of the parent particle, pV 0

. One possibility

p
2trks

T

p
+

L

p
−

L

p
V

0

p
+

p
−

Figure 5.2: Schematic definition of the kinematic variables for a two-body decay of a
neutral particle.

to recognize a Λ is by reconstructing the mass (mΛ = (1115.683 ± 0.006) MeV/c2) from
the charged tracks of the decay particles, assuming them to be proton and pion. An al-
ternative method arises from the mass difference between the proton and the pion. The
Lorentz transformation, boosting the 4-momenta of the proton and the pion from the rest
frame of the Λ to the laboratory system, results generally in a higher momentum for the
proton compared to the pion. This can be seen from the transformation that boosts along
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an arbitrary axis, e. g. the z-axis:
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(5.19)

with p0 referring to the 4-momentum of a particle in the rest frame of the Λ where

p+0
= −p−0

.

If the velocity between the laboratory frame and the rest frame of the Λ is high enough (for
Λ decays: β > 0.26), the particle with the higher mass receives more momentum because
of its higher rest frame energy E0. From the longitudinal components of the proton and
pion momenta, p+

L and p−L , an asymmetry parameter can be constructed:

α2trks =
p+

L − p−L
p+

L + p−L
. (5.20)

The transverse momentum p2trks
T is by definition the same for both decay particles. The

2-dimensional plot of α2trks versus p2trks
T is known as Podolanski-Armenteros plot. It can

be shown that in this plot the values of Λ lie in a confined region. In Figure 5.3 the
distribution of V 0 vertices is shown for data before and after the selection cuts described
above. The Λ appear in region (II) with α2trks > 0. The Λ, being the charge conjugates,
populate region (I) with α2trks < 0. The distribution of K0

S is symmetric in α2trks since the
decay particles, π+ and π−, have the same mass. The photon conversions are found in the
region with small p2trks

T due to their vanishing mass. Hence, asking for p2trks
T > 0.06 GeV/c

rejects most of the V 0 vertices from γ → e+e−. For the search for QEC events in the decay
channels (5.4)-(5.7), the Λ candidates are required to lie in the region:

0.4 ≤ α2trks ≤ 0.93
0.06 GeV/c ≤ p2trks

T ≤ 0.12 GeV/c.
(5.21)

5.5 Search in the Decay Channel: Λ+
c → Λπ+π+π−

A quasi elastically produced Λ+
c , which decays into a Λ and three pions, should lead

ideally to an event with a primary muon, exactly four charged tracks from the primary
vertex (µ−π+π+π−), and, in case the Λ decays into proton and pion, to a secondary V 0

vertex. Figure 5.4 shows such an event, taken from the Monte Carlo simulation. The QEC
signal3 events can thus be characterized by the following criteria:

3The search in the exclusive channels Λ+
c → Λπ+π+π− and Λ+

c → Λe+νe has been optimized for quasi
elastically produced Λ+

c (process (4.10)). The chosen selection criteria suppress events which include Σ+
c

and Σ++
c .
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Figure 5.3: Podolanski-Armenteros plot: Λ and Λ populate the regions I and II respectively,
while the K0

s are distributed symmetrically in all regions except V. Photon conversions
populate the region with small p2trks

T .

Figure 5.4: Display of a QEC event with Λ+
c → Λπ+π+π−, taken from the Monte Carlo

simulation.
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• Eneutral
cal < 1.0 GeV: The reconstructed energy deposit of neutral particles in the

ECAL should be small since there should be no neutral particles originating from
the QEC process or the exclusive decays of the Λ+

c . Neutral particles arise mainly
from low energy secondary interactions. As shown in Figure 5.5, the distribution of
Eneutral

cal for energies below 1 GeV is not well described in the Monte Carlo simulation.
The distortion could be an indication of an inaccurate description of the photon
propagation in the detector simulation or of an underestimation of noise effects.
However, for the sum of events with Eneutral

cal < 1.0 GeV a good agreement between
data and Monte Carlo is found.
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Figure 5.5: ECAL energy deposit by neutral particles.

• 2 GeV2/c4 < W 2
vis < 8 GeV2/c4: The square of the hadronic mass reconstructed from

the visible neutrino energy and the muon energy, Evis
ν and Eµ, should be in a range

compatible with the Λ+
c mass, m2

Λ+
c

= 5.22 GeV2/c4.

• nV 0 = 1: There has to be a reconstructed V 0 vertex fulfilling the selection require-
ments described in Section 5.4, namely:

P(χ2
V 0) > 0.01 (5.22)

pl.o.f
T < 0.1 GeV/c (5.23)

τ < 6τV 0 (5.24)

p2trks
T > 0.06 GeV/c. (5.25)

• Λ identification: The reconstructed α2trks and p2trks
T of the particles emerging from
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the V 0 vertex are required to lie in a confined region:

0.4 ≤ α2trks ≤ 0.93
0.06 GeV/c ≤ p2trks

T ≤ 0.12 GeV/c.
(5.26)

• |MΛ+
c

rec − mΛ+
c
| < 2σM : Assuming pion masses for the charged primary tracks and

proton and pion masses for the tracks from the V 0 vertex, a total mass may be
calculated from the measured momenta. This reconstructed Λ+

c mass has to be
consistent with the value from [25] within the experimental resolution. From the
QEC Monte Carlo simulation the mass resolution is found to be σM = 0.047 GeV/c2.

• nbox
trksV 1 = 4: The number of reconstructed primary tracks should correspond to the

number of pions originating from the Λ+
c decay plus the muon track from the primary

interaction.

•
∑

box Qtrks = 0: For a target being a neutron the total charge must vanish.

The efficiencies of these cuts in separating the QEC signal from the νµcc background have
been determined with Monte Carlo samples consisting of about 12000 signal events for
both QEC models (see Section 5.3) and the νµcc Monte Carlo sample mentioned in Section
5.2.1. In Table 5.3 the values are given after each cut along with the expected number of
events. Due to the relatively small branching ratio for the decay Λ+

c → Λπ+π+π− (see

MCCC Background MC Signal Kov. MC Signal Shr.

ε[%] Events ε[%] Events ε[%] Events

νµcc Sample 100.0000 622519.0 100.0 24.7 100.0 86.5
Eneutral

cal < 1.0GeV 48.8003 303790.9 99.3 24.5 98.5 85.3
2GeV2/c4 < W 2

vis < 8GeV2/c4 18.9667 118071.4 92.2 22.8 88.1 76.2
nV 0 = 1 0.2125 1322.6 20.4 5.0 21.8 18.9
Λ Selection 0.1180 734.9 20.1 5.0 21.5 18.6

|MΛ+
c

rec − mΛ+
c | < 2σM 0.0148 91.8 10.2 2.5 12.7 11.0

nbox
trksV 1 = 4 0.0045 28.0 10.1 2.5 12.6 10.9

∑

box Qtrks = 0 0.0039 24.3 10.0 2.5 12.5 10.8

Table 5.3: Λ+
c → Λπ+π+π−: Expected numbers of surviving events and efficiencies of the

signal and the background from the Monte Carlo simulations.

(5.1)), only few QEC signal events are expected in the νµcc sample. The requirement of
a reconstructed V 0 vertex, which is crucial for the background rejection, also reduces the
QEC signal significantly. The quasi elastic process produces Λ+

c which are almost at rest.
The decay particles, one of them being the Λ, have little energy to share which makes
their reconstruction less efficient and, thus, only about 20 % of the V 0 vertices are found.
The small difference between the efficiencies of the two QEC models is a result of the
different Q2 dependence of their differential cross sections. Figure 5.6(a) and 5.6(b) show
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the W 2
vis distribution for QEC signal events. Since the resolution of W 2

vis is, obviously, not
sufficient to identify the quasi elastically produced Λ+

c , only a loose cut is applied in order
to reject events with high energy in the hadronic system. As mentioned in Section 4.1.4,
the description of the hadronic mass distribution by the Monte Carlo simulation is not
very good. In the region below 1.5 GeV2/c4 (see Figure 5.6(c)) there is an excess of Monte
Carlo events which is probably due to an inadequate simulation of low energy events.
The impact of the disagreement is alleviated by the rather large width of the region of
allowed W 2

vis values. The MΛ+
c

rec distributions of the QEC signal events in Figure 5.7(a) and
5.7(b) show a narrow peak at the value of the Λ+

c mass. Events with missing pion tracks

give rise to the bump just below the Λ+
c mass. Restricting the values of MΛ+

c
rec , thus, not

only suppresses background events but also rejects badly reconstructed signal events. The
number of primary tracks is shown in Figure 5.8. Considering the large statistical errors,
the agreement between Monte Carlo and data is acceptable. The demand for vanishing
total charge has only a small effect since the charge states ±1 have already been ruled out
by fixing the number of tracks.

The contribution of QEC events which do not belong to the signal sample4 has been
estimated with the help of inclusive Monte Carlo samples which comprise 100000 events.
The expected number of events for both QEC models and the efficiencies5 are given in
Table 5.4. From the final numbers in Table 5.3 and Table 5.4 it is clear that for the two

Kovalenko Shrock

ε[%] Events ε[%] Events

DCH Volume 100.0000 3694.5 100.0000 10986.1
Signal Sample 0.0545 2.0 0.0482 5.3

Table 5.4: Inclusive QEC: Contribution of Σ+
c , Σ++

c and Λ+
c events not fulfilling the

classifications of the signal sample.

investigated models at most a small excess of data events is expected. A strong suppression
of background events is achieved by the selection criteria, however, due to reconstruction
inefficiencies for low energy events only about 10 % of the signal events survive. In Table
5.5 the expected numbers of νµcc Monte Carlo events are compared with the numbers of
surviving events in the data. No significant deviations are found.

5.6 Search in the Decay Channel: Λ+
c → Λe+νe

A quasi elastic event which includes a semi-leptonic decay of a Λ+
c into a Λ, a positron and

a neutrino should feature one positively charged primary track additional to the track of

4Quasi elastically produced Σ+
c and Σ++

c as well as Λ+
c which decay into different channels do not

belong to the defined signal.
5Here, the total reduction is given, including the νµcc sample selection.
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(a) Signal Monte Carlo sample: Shrock and Lee
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(b) Signal Monte Carlo sample: Kovalenko
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(c) Data and νµcc Monte Carlo sample

Figure 5.6: Invariant mass of the hadronic system for events with limited energy deposit
by neutral particles in the ECAL (searched decay channel: Λ+

c → Λπ+π+π−).
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(a) Signal Monte Carlo sample: Shrock and Lee
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(b) Signal Monte Carlo sample: Kovalenko
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(c) Data and νµcc Monte Carlo sample

Figure 5.7: Reconstructed invariant mass of the Λ+
c assuming the primary tracks to be

pions and the V 0 to origin from a Λ decay (searched decay channel: Λ+
c → Λπ+π+π−).
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Figure 5.8: Number of charged primary tracks.

MCCC Background Data

ε[%] Events ε[%] Events

νµcc Sample 100.0000 622519.0 100.0000 622519
Eneutral

cal < 1.0 GeV 48.8003 303790.9 49.1121 305732
2 GeV2/c4 < W 2

vis < 8 GeV2/c4 18.9667 118071.4 19.0238 118427
nV 0 = 1 0.2125 1322.6 0.2199 1369
Λ Selection 0.1180 734.9 0.1205 750

|MΛ+
c

rec −mΛ+
c | < 2σM 0.0148 91.8 0.0125 78

nbox
trksV 1 = 4 0.0045 28.0 0.0050 31

∑

box Qtrks = 0 0.0039 24.3 0.0042 26

Table 5.5: Λ+
c → Λπ+π+π−: Numbers of surviving events and efficiencies for the data and

the background Monte Carlo simulation.
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the primary muon and possibly a secondary V 0 vertex from the decaying Λ. Figure 5.9
shows a Monte Carlo event which comprehends these properties.

Figure 5.9: Display of a QEC event with Λ+
c → Λe+νe, taken from the Monte Carlo

simulation. Top view (yz) and side view (xz) of the event are presented.

The momentum carried away by the νe results in an unbalance of the total transverse
momentum of the event with respect to the neutrino beam direction.

The positron may be identified via its energy deposition in the PRS and the ECAL.
The normalized difference between the momentum measured in the DCH and the energy
determined from the ECAL6, (Ecal

clu
−pdch

π )/(Ecal
clu

+pdch
π ), is used to discriminate electrons and

positrons from pions. Figure 5.10(a) shows the distribution of (Ecal
clu

−pdch
π )/(Ecal

clu
+pdch

π ) for tracks
taken from the Monte Carlo simulation. In Figure 5.10(b) the PRS energy deposit of
simulated electrons and pions is shown. The electrons lose on average more energy due to
shower formation.

A QEC signal event in this decay channel can be characterized as follows:

• Eneutral
cal < 1.0 GeV: As described in Section 5.5, only little energy should be deposited

in the ECAL by neutral particles.

6The energy corresponds to the cluster energy found in the ECAL. The momentum is determined by a
fit of the drift chamber track assuming the particle to be a pion.
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(a) Normalized difference between ECAL energy
and DCH momentum.
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(b) Energy deposited in the PRS in units of the
energy loss of a minimum ionizing particle.

Figure 5.10: Distribution of the discrimination variables used for the electron identification.
The pion sample is taken from the νµcc Monte Carlo. The electron distributions stem from
the e+ taken from the QEC Monte Carlo with Λ+

c → Λe+νe. The momentum pdch
π is

determined by a fit of the DCH track, assuming the particle to be a pion.

• GeV2/c4 < W 2
vis < 8 GeV2/c4: The square of the hadronic mass reconstructed from

the visible neutrino and the muon energy, Evis
ν and Eµ, should be in a range com-

patible with the Λ+
c mass, m2

Λ+
c

= 5.22 GeV2/c4.

• nV 0 = 1: There has to be a reconstructed V 0 vertex fulfilling the selection require-
ments described in Section 5.4, namely:

P(χ2
V 0) > 0.01 (5.27)

pl.o.f
T < 0.1 GeV/c (5.28)

τ < 6τV 0 (5.29)

p2trks
T > 0.06 GeV/c. (5.30)

• Λ identification: The reconstructed α2trks and p2trks
T of the particles emerging from

the V 0 vertex are required to lie in a confined region:

0.4 ≤ α2trks ≤ 0.93
0.06 GeV/c ≤ p2trks

T ≤ 0.12 GeV/c.
(5.31)
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• nbox
V 1cal

= 1: There has to be exactly one track from the primary vertex additional to
the one of the muon. For the purpose of identification that track is required to reach
the PRS and the ECAL.

• (Ecal
clu

−pdch
π )/(Ecal

clu
+pdch

π ) > −0.125: The energy deposit of a positron candidate in the
ECAL should be of the same order as its momentum measured in the drift chambers.

• Eprs
sum > 5 MIPs: The energy deposit of the positron candidate in the PRS must

exceed 5 times the energy deposit of a minimum ionizing particle.

The signal selection efficiencies and the background reduction factors have been determined
by means of the Monte Carlo samples mentioned in Section 5.3 and 5.2.1. In Table 5.6 the
impact of the selection cuts on the efficiencies is given sequentially. The number of charged

MCCC Background MC Signal Kov. MC Signal Shr.

ε[%] Events ε[%] Events ε[%] Events

νµcc Sample 100.0000 622542.0 100.0 15.1 100.0 53.4
Eneutral

cal < 1.0GeV 48.7988 303793.2 97.8 14.8 97.1 51.8

2GeV2/c4 < W 2
vis < 8GeV2/c4 18.9661 118071.7 80.1 12.1 74.2 39.6

nV 0 = 1 0.2124 1322.5 17.0 2.6 16.9 9.0
Λ Selection 0.1180 734.9 16.8 2.5 16.7 8.9
nbox

V 1cal
= 1 0.0134 83.2 2.3 0.3 3.1 1.7

(Ecal
clu−pdch

π
)/(Ecal

clu+pdch
π

) > −0.125 0.0004 2.4 1.7 0.3 2.3 1.2
Eprs

sum > 5.0MIPs 0.0000 0.3 1.4 0.2 2.0 1.1

Table 5.6: Λ+
c → Λe+νe: Expected numbers of surviving events and efficiencies for the

signal and the background Monte Carlo simulations.

current background events in the νµcc sample is not exactly equal to the numbers stated
for the other two decay channels (see Table 5.3 and Table 5.9), due to a slightly different
counting of the primary tracks.

Figure 5.11 shows the distributions of the reconstructed hadronic mass for the samples
of both signal and the background Monte Carlo events. The W 2

vis distribution of the QEC
events is shifted towards lower values, because of the momentum carried away by the νe.
Hence, about 20 % of the signal events have an W 2

vis below 2 GeV2/c4 and are discarded by
the restriction of the W 2

vis range. Since not all of the final state particles can be observed,
it is not possible to reconstruct the mass of the Λ+

c directly from the measured momenta of
the primary tracks. As already seen in Section 5.5 the reconstruction of the V 0 vertices is
rather inefficient and reduces the signal sample to about 20 %. An even more substantial
deflation of the signal sample is introduced by demanding the e+ track to reach the PRS and
the ECAL, again an effect of the lack of energy in the hadronic system. This inefficiency is,
however, justified by the vast background reduction of more than two orders of magnitude
which results from the electron identification. The distributions of (Ecal

clu
− pdch

π )/(Ecal
clu

+ pdch
π ) and

Eprs
sum for both signal and the νµcc background Monte Carlo events are shown in Figures

5.12 and 5.13. The total charge is fixed since events with a negatively charged track
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(a) Signal Monte Carlo sample: Shrock and Lee
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(b) Signal Monte Carlo sample: Kovalenko
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Figure 5.11: Invariant mass of the hadronic system for events with limited energy deposit
by neutral particles in the ECAL (searched decay channel: Λ+

c → Λe+νe).
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(b) Signal Monte Carlo sample: Kovalenko
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(c) Data and νµcc Monte Carlo sample

Figure 5.12: Normalized difference between ECAL energy and DCH momentum (searched
decay channel: Λ+

c → Λe+νe).
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(a) Signal Monte Carlo sample: Shrock and Lee
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(b) Signal Monte Carlo sample: Kovalenko
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(c) Data and νµcc Monte Carlo sample

Figure 5.13: Energy deposited in the PRS in units of the energy loss of a minimum ionizing

particle (searched decay channel: Λ+
c → Λe+νe).
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additional to the primary muon have been ruled out by the selection cuts defining the νµcc
sample.

The expected number of events originating from QEC processes other than the one de-
fined as signal have been estimated with the inclusive QEC Monte Carlo samples mentioned
in Section 5.5. The expected numbers of events for both models and the corresponding
efficiencies are given in Table 5.7. The signal selection in the semi-leptonic decay channel

Kovalenko Shrock

ε[%] Events ε[%] Events

DCH Volume 100.0000 3709.5 100.0000 11039.6
Signal Sample 0.0101 0.4 0.0051 0.6

Table 5.7: Inclusive QEC: Contribution of Σ+
c , Σ++

c and Λ+
c events not fulfilling the

classifications of the signal sample.

of the Λ+
c yields a very clean sample with a background reduction of more than 6 orders

of magnitude. However, only 1 − 2 % of the signal events survive due to reconstruction
inefficiencies and the small acceptance for low energy electrons. Together with the inher-
ently small cross section and the branching ratio, less than two events are predicted by the
model of Shrock and Lee. If the cross section is assumed to follow the model of Kovalenko
less than one event is expected from QEC.

In Table 5.8 a comparison of the expected numbers of νµcc Monte Carlo events with
the numbers of surviving data events is given. There are no data events left after the
identification of the e+.

MCCC Background Data

ε[%] Events ε[%] Events

νµcc Sample 100.0000 622542.0 100.0000 622542
Eneutral

cal < 1.0 GeV 48.7988 303793.2 49.1107 305735
2 GeV2/c4 < W 2

vis < 8 GeV2/c4 18.9661 118071.7 19.0231 118427
nV 0 = 1 0.2124 1322.5 0.2199 1369
Λ Selection 0.1180 734.9 0.1205 750
nbox

V 1cal
= 1 0.0134 83.2 0.0117 73

(Ecal
clu

−pdch
π )/(Ecal

clu
+pdch

π ) > −0.125 0.0004 2.4 0.0000 0
Eprs

sum > 5.0 MIPs 0.0000 0.3 0.0000 0

Table 5.8: Λ+
c → Λe+νe: Numbers of surviving events and efficiencies for the data and the

background Monte Carlo simulation.
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5.7 Semi-Inclusive Search: Bc → Λ +X

One of the limiting factors for the search for QEC events in exclusive decays is the small
size of the branching ratios. An inclusive search, on the other hand, does not allow an
adequate background suppression since the only criterion to mark out the QEC events is
given by W 2 = m2

Bc
which , however, cannot be measured with sufficient accuracy. The

semi-inclusive decay of a quasi elastically produced Bc into a Λ7,

Bc → Λ+X
Γi/Γtot = (35 ± 11) %,

(5.32)

promises a higher number of expected signal events while still giving a means of background
suppression by identifying the decaying Λ. The following characteristics are demanded in
order to receive a sample enriched with QEC events:

• 2 GeV2/c4 < W 2
vis < 6 GeV2/c4: The square of the hadronic mass reconstructed

from the visible neutrino and the muon energy, Evis
ν and Eµ, should be in a range

compatible with the Bc mass (m2
Λ+

c
= 5.22 GeV2/c4, m2

Σc
= 6.01 GeV2/c4). For this

decay channel, however, it has to be kept in mind that some of the energy may be
carried away by undetected neutral particles.

• nV 0 = 1: There has to be a reconstructed V 0 vertex fulfilling the selection require-
ments described in Section 5.4, namely:

P(χ2
V 0) > 0.01 (5.33)

pl.o.f
T < 0.1 GeV/c (5.34)

τ < 6τV 0 (5.35)

p2trks
T > 0.06 GeV/c. (5.36)

• Λ identification: The reconstructed α2trks and p2trks
T of the particles emerging from

the V 0 vertex are required to lie in a confined region:

0.4 ≤ α2trks ≤ 0.93
0.06 GeV/c ≤ p2trks

T ≤ 0.12 GeV/c.
(5.37)

The expected numbers of signal and background events after each cut together with
the corresponding efficiencies are given in Table 5.9. Since some of the momentum may be
carried away by neutral particles, the mean of the reconstructed hadronic mass distribution
of the QEC events is not at the value of the squared mass of one of the Bc, but shifted
towards zero. In Figure 5.14 the distribution of the hadronic mass is plotted for both
signal and the background Monte Carlo events. Bearing the displacement in mind, the

7Since the Σ+
c and the Σ++

c always decay into a Λ+
c and a pion, all quasi elastically produced charmed

baryons have essentially the same branching ratio for the decay into a Λ.
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(a) Signal Monte Carlo sample: Shrock and Lee
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(b) Signal Monte Carlo sample: Kovalenko
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(c) Data and νµcc Monte Carlo sample

Figure 5.14: Invariant mass of the hadronic system (searched decay channel: Bc → Λ+X).
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MCCC Background MC Signal Kov. MC Signal Shr.

ε[%] Events ε[%] Events ε[%] Events

νµcc Sample 100.0000 622519.0 100.0 476.7 100.0 1443.6

2GeV2/c4 < W 2
vis < 6GeV2/c4 17.9056 111465.9 79.6 379.7 76.3 1101.9

nV 0 = 1 0.1533 954.1 15.8 75.3 16.5 237.8
Λ Selection 0.0863 537.3 15.3 72.9 16.1 231.8

Table 5.9: Bc → Λ + X: Expected numbers of surviving events and efficiencies for the
signal and the background Monte Carlo simulations.

upper boundary, that restricts the band of allowed W 2
vis , has been put to a lower value

than for the searches in the exclusive decay channels.
Also here, the Λ selection criterion rejects about 80 % of the signal events because of

reconstruction inefficiencies. The expected contribution due to quasi elastically produced
Bc which do not decay into a Λ is given in Table 5.10. Efficiencies and numbers of events

Kovalenko Shrock

ε[%] Events ε[%] Events

DCH Volume 100.0000 2900.3 100.0000 8643.3
Signal Sample 0.1747 5.1 0.1324 11.4

Table 5.10: Inclusive QEC: Contribution of Σ+
c , Σ++

c and Λ+
c events not fulfilling the

classifications of the signal sample.

have been estimated with the help of the inclusive Monte Carlo samples mentioned in
Section 5.5.

In the final sample, a statistical significance of Sshr = 8.7 for the model of Shrock and
Lee is achieved with S defined by

S =
NQEC

√

NQEC +Nbackground

. (5.38)

Here, the total QEC contribution is taken into consideration, i. e., NQEC is equal to the sum
of the numbers given in Table 5.9 and 5.10. The expected excess predicted by the model
of Kovalenko would lead to an effect with a significance of Skov = 3.1. Hence, if present,
the contribution of a QEC process, having either cross section, should be observed. The
investigation of the data sample, summarized in Table 5.11, shows no significant deviation
from the predictions of the νµcc Monte Carlo simulation.

5.8 Calculation of Cross Section Limits

The small numbers of expected events in the exclusive decay channels (5.4) and (5.6) require
Poisson statistics. For the treatment of a Poisson process with background and small sig-
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MCCC Background Data

ε[%] Events ε[%] Events

νµcc Sample 100.0000 622519.0 100.0000 622519
2 GeV2/c4 < W 2

vis < 6 GeV2/c4 17.9056 111465.9 18.2616 113682
nV 0 = 1 0.1533 954.1 0.1594 992
Λ Selection 0.0863 537.3 0.0863 537

Table 5.11: Bc → Λ + X: Numbers of surviving events and efficiencies for the data and
the background Monte Carlo simulation.

nal, there are two methods accepted by the Particle Data Group [25], the Bayesian Method
and the Unified Approach, a frequentist method proposed by Feldman and Cousins [57].
Systematic uncertainties can be incorporated into the latter, following a semi-Bayesian
approach which has been suggested by Cousins and Highland [58]. In this work a pro-
gram called POLE [59] is used for confidence interval calculations. Following the Unified
Approach for the confidence interval construction, it allows for systematic uncertainties of
both, signal and background processes, a feature which is inevitable, considering the large
systematic errors introduced by the ignorance of the charmed baryon branching ratios. In
principle, the significant number of observed data events for the semi-inclusive decay chan-
nel (5.7) would allow a Gaussian approximation, according to the well known central limit
theorem. Independent systematic uncertainties could be included by using the common
propagation of errors. However, since neither signal nor background are exactly known,
the situation gets complicated and for the sake of consistency the upper confidence level is
being calculated with the help of POLE as well.

As seen in sections 5.5, 5.6 and 5.7, it has been differentiated between two possible
sources giving rise to the QEC events present in the final data sample in each searched
channel. There is a contribution of N ex

QEC events originating from the exclusive decay of
the according charmed baryon Bc as well as an inclusive contribution of N incl

QEC events from
quasi elastically produced Bc which decay into different channels8. Hence, the number of
selected QEC events in each searched channel is given by

N sel
QEC = N ex

QEC +N incl
QEC. (5.39)

The exclusive fraction is related to the total number of QEC reactions in the drift chambers,
N0

QEC, by

N ex
QEC = N0

QEC ·R · εex (5.40)

R = RBc

QEC ·Ri
Λ+

c
(5.41)

where RBc
QEC denotes the fraction of QEC reactions producing a Bc at the interaction vertex:

RBc

QEC =
NBc

N0
QEC

, (5.42)

8The definition of the samples N ex
QEC and N incl

QEC is such that they have no overlap.
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and Ri
Λ+

c
= Γi/Γtot refers to the branching ratio of the corresponding decay channel. Since

only the production of the ground state baryons is implemented in the Monte Carlo gen-
erators, only QEC events including Λ+

c , Σ+
c or Σ++

c are counted by N 0
QEC.

The efficiency εex results from the sequential application of the cuts defining the νµcc
sample and the signal selection cuts:

εex = ενµcc · εsel. (5.43)

A similar relation holds for the inclusive contribution:

N incl
QEC = N0

QEC(1 −R)εincl. (5.44)

Given an upper limit for the number of surviving QEC events in the final sample, the upper
limit for the total number of QEC events, which may have occurred in the drift chambers,
becomes:

N̂0
QEC =

N̂ sel
QEC

εtot
(5.45)

with the total efficiency given by:

εtot = R(εex − εincl) + εincl (5.46)

Finally, the upper limit for the QEC cross section relative to the known total charged
current cross section can be obtained by a comparison with the predicted total number of
charged current events.

5.9 Error Estimation

In order to determine confidence intervals of counting measurements the number of ex-
pected background events has to be known. The background must be established either by
a different measurement or by a Monte Carlo simulation. In general, only an estimation
with some uncertainty can be given. In this work the background has been estimated with
the help of the Monte Carlo samples mentioned in Section 5.2.1. The uncertainties of the
signal efficiencies include a statistical contribution as well as the Gaussian errors of the
branching ratios given in [25]. To some degree, also the difference between the QEC models
may be accounted for. The ignorance of the exact signal efficiencies is incorporated when
calculating the confidence intervals of the signal fractions in the surviving data samples.
The confidence levels for the QEC cross sections may then be determined with the mean
values of the efficiencies.

This approach may not be intuitive since for the calculation of cross sections, Gaussian
uncertainties of signal efficiencies are usually included with the help of the common error
propagation when dividing by the signal efficiencies. However, there is no obvious way to
combine a Poisson confidence interval for the number of signal events in the final sample
with the Gaussian uncertainty of the signal efficiency. Therefore all the uncertainties have
to be included already when calculating the confidence interval (see [58, 60]).
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5.9.1 Background Uncertainties

For the background error different sources have been investigated:

• The background contributions from neutral current reactions and interactions of νµ,
νe and νe have been estimated with the help of the corresponding Monte Carlo
samples mentioned in Section 5.2.1.

After the application of the signal selection cuts for the search channels (5.4)-(5.7) no
events have survived for any of these processes. With the help of Poisson statistics
the following upper limits for the signal selection efficiencies have been determined
at a 90 % confidence level:

DCH
events

Suppression
factor

Events in the
signal sample

nc 493000 < 1.0 × 10−6 < 0.5
νecc 20000 < 2.6 × 10−6 < 0.05
νecc 3000 < 6.5 × 10−6 < 0.02
νµcc 41000 < 6.1 × 10−6 < 0.25

In total, less than one event is expected and, thus, this contribution is neglected.

• The statistical errors are assumed to be Gaussian and can be determined from the
number of surviving Monte Carlo background events:

– Λ+
c → Λπ+π+π−:

σb = 2.5
σb

b
= 10 %

(5.47)

– Λ+
c → Λe+νe:

σb = 0.3
σb

b
= 100 %

(5.48)

– Bc → Λ+X:
σb = 11.9
σb

b
= 2.2 %

(5.49)

Obviously, the statistical error for the search in the semi-leptonic decay channel would
have to be treated with Poisson statistics. However, since no data events are observed
this approximation shall suffice.

• The systematic error introduced by the imperfections of the Monte Carlo simulation
is difficult to quantify. The efficiency of the Λ selection may be slightly different for
simulated events. Also the restriction of the W 2 range may not have exactly the same
effect on data and on Monte Carlo events. For the two search channels where only
few events have been observed in the final sample, this contribution is unimportant.
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However, for the semi-inclusive channel this uncertainty may have quite an impact.
Due to the lack of knowledge, all results will be given disregarding this systematic
error. Nevertheless, a limit which includes a 5 % systematic background error will be
presented to give an idea of the effect.

5.9.2 Uncertainties of the Signal Efficiency

The different sources contributing to the uncertainty of the total signal efficiencies can be
identified from equation (5.46). Most prominent is the error of the measurement of the Λ+

c

branching ratios. The uncertainties of the exclusive and inclusive efficiencies, εex and εincl,
are given statistically only. The fractions of the different QEC processes are determined
for both models directly from the Monte Carlo simulation. This last contribution does
not apply for the semi-inclusive search since Σ+

c and Σ++
c decay into a Λ+

c and cannot be
distinguished.

A summary of the values is given in tables 5.12, 5.13 and 5.14.

(%) Kovalenko Shrock model ind.
εex 6.005±0.219 7.358±0.244 6.682±1.336
εincl 0.055±0.007 0.048±0.007 0.051±0.008
Ri

Λ+
c

2.110±0.640 2.110±0.640 2.110±0.640

RBc
QEC 52.356±0.424 62.621±0.268 57.489±11.498

εtot 0.120±0.021 0.145±0.030 0.132±0.034
σεtot/εtot 17.787 20.917 26.007

Table 5.12: All the factors used to calculate the total signal efficiency in the decay channel
Λ+

c → Λπ+π+π−. The errors are statistical only except for the last column where the
difference between the models has been incorporated.

(%) Kovalenko Shrock model ind.
εex 0.799±0.080 1.124±0.096 0.962±0.337
εincl 0.010±0.003 0.005±0.002 0.008±0.005
Ri

Λ+
c

1.342±0.384 1.342±0.384 1.342±0.384

RBc
QEC 52.356±0.424 62.621±0.268 57.489±11.498

εtot 0.016±0.004 0.015±0.004 0.015±0.006
σεtot/εtot 22.875 24.885 40.866

Table 5.13: All the factors used to calculate the total signal efficiency in the decay channel
Λ+

c → Λe+νe. The errors are statistical only except for the last column where the difference
between the models has been incorporated.
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(%) Kovalenko Shrock model ind.
εex 8.733±0.207 9.320±0.216 9.026±0.632
εincl 0.175±0.015 0.132±0.013 0.154±0.046
Ri

Λ+
c

22.370±7.030 22.370±7.030 22.370±7.030

RBc
QEC 100.000±0.000 100.000±0.000 100.000±0.000

εtot 2.089±0.604 2.188±0.648 2.138±0.641
σεtot/εtot 28.888 29.610 29.956

Table 5.14: All the factors used to calculate the total signal efficiency in the decay channel
Bc → Λ+X. All errors are statistical only except for the last column where the difference
between the models has been incorporated.

For the last columns the mean values are used and the difference between the models
is assumed to correspond to the σ of a Gaussian distribution. This means for a parameter
p:

pind =
1

2
(pkov + pshr) (5.50)

σpind = |pkov − pshr|. (5.51)

At least for the semi-inclusive search channel this crude approximation seems to be rea-
sonable since the biggest difference between the models is given by the fraction of the
production cross sections of the charmed baryons, RBc

QEC, which in this case drops out. The
discrepancies between the efficiencies, on the other hand, is small enough to be treated as
a Gaussian fluctuation.

The common error propagation is used to determine the uncertainty of the total effi-
ciency εtot.

5.10 Results

The agreement between the measured numbers of events and the background predictions
in tables 5.5, 5.8 and 5.11 allows the calculation of upper limits for the expected numbers
of QEC events surviving the signal selections in each search channel. These upper limits,
which incorporate the errors discussed in Section 5.9, are given in Table 5.15 at a 95 %
confidence level. The different Q2 behavior of the differential cross sections demands a
discrimination of the QEC models. However, following the approach described in Section
5.9, also a limit which is to some degree model independent can be given. Dividing by the
signal efficiencies εtot defined in Section 5.8 and summarized in Table 5.16, upper limits
for the number of expected QEC events which may have occurred in the drift chambers
can be determined. The number of scattering events is proportional to the cross section
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95 % upper limit for signal sample events
Search channel

Kovalenko Shrock, Lee model ind.
Λ+

c → Λπ+π+π− < 15.00 < 15.30 < 16.35
Λ+

c → Λe+νe < 2.97 < 3.06 < 3.75
Bc → Λ+X < 58.50 < 58.80 < 59.15

Table 5.15: Upper limits (95 % C. L.) for the expected numbers of QEC events surviving
the signal selection cuts. The limits are given for the specific QEC models as well as for a
model independent average.

Signal Efficiencies εtot (%)
Search channel

Kovalenko Shrock, Lee model ind.
Λ+

c → Λπ+π+π− 0.120 0.145 0.132
Λ+

c → Λe+νe 0.016 0.015 0.015
Bc → Λ+X 2.089 2.188 2.138

Table 5.16: Total signal efficiencies for each search channel. The definition of εtot may be
found in Section 5.8.

averaged over the neutrino energy spectrum:

〈σ〉 =

∫

σ(Eν)φν(Eν)dEν
∫

φν(Eν)dEν

(5.52)

with the neutrino flux

φν =
dNν

dEν

. (5.53)

Since the absolute flux of the muon neutrinos is not very well known, cross sections are
generally given relative to the total charged current cross section. The upper limits for the
relative average cross section are presented in Table 5.17. In principle, a combined limit

95 % upper limit for 〈σQEC〉/〈σcc〉 (%)
Search channel

Kovalenko Shrock, Lee model ind.
Λ+

c → Λπ+π+π− < 0.97 < 0.82 < 0.97
Λ+

c → Λe+νe < 1.48 < 1.64 < 1.95
Bc → Λ+X < 0.22 < 0.21 < 0.22

Table 5.17: Upper limits (95 % C. L.) for QEC cross sections relative to the total charged
current cross section. The cross sections are averaged over the νµ energy spectrum of the
CERN SPS neutrino beam which has a mean energy of 〈Eν〉 = 24.3 GeV.

could be computed including the results of all search channels. However, since the limit
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would not improve much because of the dominating influence of the semi-inclusive decay
channel Bc → Λ+X, this has been abandoned.

As described in Section 4.2, the implemented QEC Monte Carlo generator does not
include the processes

νµ + n → µ− +Σ∗+
c (2520) (5.54)

νµ + p → µ− +Σ∗++
c (2530). (5.55)

The inclusion of the additional processes would lead to a different RBc
QEC and hence to a

different total efficiency εtot (see (5.46)) for the search channels Λ+
c → Λe+νe and Λ+

c →
Λπ+π+π−. This means that the upper limits determined from these two channels only
hold for the sum of the quasi elastic Λ+

c , Σ+
c and Σ++

c production. The results of the
semi-inclusive search in the channel Bc → Λ +X, on the other hand, should be valid for
the sum of all QEC processes, since the Σ∗

c cannot be distinguished from Λ+
c and Σc (i. e.,

RBc
QEC ≡ 1), and the efficiencies εex and εincl should be roughly the same for Λ+

c , Σc and Σ∗
c .

Hence, the same total efficiency εtot should be obtained.
If the total charged current cross section is assumed to grow linearly with the neutrino

energy (see Figure 2.6), the cross section average becomes:

〈σcc〉 = σ0 ·
∫

Eνφν(Eν)
∫

φν(Eν)dE
= σ0 · 〈Eν〉 = σcc(〈Eν〉). (5.56)

Hence, a limit (95 % C. L.) on the cross section averaged over the neutrino energy spectrum
can be quoted:

〈σQEC〉 < 3.58 × 10−40 cm2. (5.57)

Several measurements of quasi elastic charm production processes have been performed
in the last 25 years, most of them in bubble chamber experiments [14, 15, 16, 17]. Also, two
emulsion experiments have searched for QEC events: E531 [18] at Fermilab and CHORUS
[19] at CERN. For a comparison all the cross section measurements are listed below:9

• Gargamelle [14]:

〈σn
Λ+

c
〉 + 〈σn

Σ+
c
〉 + 〈σn

Σ∗+
c
〉 = (31.8 ± 19.2) × 10−40 cm2 (5.58)

• Son et al. [15]:
〈σn

Λ+
c
〉 = (80+84

−65) × 10−40 cm2 (5.59)

• BEBC [16]:
〈σp

Σ++
c

〉 = (2.3+2.7
−1.6) × 10−40 cm2 (5.60)

9The cross sections are given for neutron, proton or isoscalar targets depending on the measured process.
It is crucial to normalize properly if cross sections for different targets are compared: σN = 1

2 (σn + σp).
Thus, if a process only occurs for either a proton or a neutron, e. g. νn → µΛ+

c , a factor two must be
incorporated: σ(νn → µΛ+

c ) = 2σ(νN → µΛ+
c ).
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• E531 [18]:

〈σn
Λ+

c
〉 = (3.7+3.7

−2.3) × 10−40 cm2 (5.61)

• SKAT [17]:

〈σp

Σ++
c

〉 = (2.3 ± 2.0) × 10−40 cm2 (5.62)

〈σp

Σ∗++
c

〉 = (4.5 ± 4.0) × 10−40 cm2 (5.63)

• CHORUS [19]:

〈σn
Λ+

c
〉 + 〈σn

Σ+
c
〉 + 〈σn

Σ∗+
c
〉 = (5.5+3.9

−2.3) × 10−40 cm2 (5.64)

〈σp

Σ++
c

〉 + 〈σp

Σ∗++
c

〉 = (2.3+2.6
−1.6) × 10−40 cm2 (5.65)

〈σN
QEC〉 = (3.8+2.3

−1.5) × 10−40 cm2. (5.66)

The comparison of the different measurements can only be approximate as long as
the energy dependence of the QEC cross section is not known. However, considering the
flatness of the QEC cross section which is observed for all suggested models, the introduced
uncertainty is rather small compared to the statistical uncertainties of the measurements.
An estimation of the model dependence will be given at the end of the section. The CERN
experiments CHORUS and NOMAD were both situated in the same neutrino beam. Hence,
for these two the ambiguity of the energy spectra may be neglected completely. Figure
5.15 shows the results of all stated measurements normalized to an isoscalar nucleon target.
The different contributions measured by an experiment have been summed up in order to
compare them with the upper limit measured by NOMAD. Due to the large uncertainties,
all measurements are compatible within 1.5σ.

As mentioned in Section 5.9.1, the systematic uncertainties of the background have
been omitted due to the lack of knowledge. For the semi-inclusive search channel, the
background uncertainty has quite an impact. If an additional systematic error of 5 % is
assumed, the 95 % upper limit for the cross section average rises up to:

〈σQEC〉 < 5.0 × 10−40 cm2. (5.67)

Normalizing the predictions of the theoretical models to the determined upper limits,
allows to constrain the cross sections of quasi elastic Λ+

c , Σ+
c and Σ++

c production sepa-
rately. For an isoscalar target this yields the following model dependent numbers, again
at a 95 % confidence level:

〈σ〉/〈σcc〉 Kovalenko Shrock, Lee
νµN → µ−Λ+

c < 0.114 % < 0.131 %
νµN → µ−Σ+

c < 0.034 % < 0.026 %
νµN → µ−Σ++

c < 0.070 % < 0.052 %
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Figure 5.15: Compilation of QEC measurements. All cross sections are given for isoscalar
targets.

Also, limits for the absolute QEC cross section on an isoscalar target, σQEC = 1
2
(σΛ+

c
+

σΣ+
c

+ σΣ++
c

), can be given. For a comparison with the values compiled in Table 2.3 of
Section 2.3.3, a neutrino energy of 10 GeV has been chosen:

σkov
QEC < 3.75 × 10−40 cm2 (5.68)

σshr
QEC < 3.34 × 10−40 cm2. (5.69)

The difference is a result of the different energy dependence of the cross section predictions
which are shown in Figure 5.16. The plot also allows to estimate the discrepancy introduced
by averaging the cross section over the neutrino energy spectrum. The upper limit for the
cross section becomes 4×10−40 cm2 rather than the 3.6×10−40 cm2 estimated by assuming
an energy independent cross section.
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Conclusion

A search for the quasi elastic charm production processes

νµ + n → µ− + Λ+
c (2285) (6.1)

νµ + n → µ− +Σ+
c (2455) (6.2)

νµ + n → µ− +Σ∗+
c (2520) (6.3)

and

νµ + p → µ− +Σ++
c (2455) (6.4)

νµ + p → µ− +Σ∗++
c (2530). (6.5)

has been performed for three different decays of charmed baryons, namely

Λ+
c → Λπ+π+π− (6.6)

Λ+
c → Λe+νe (6.7)

Λ+
c , Σc, Σ

∗
c → Λ anything. (6.8)

Exploiting the good momentum measurement and tracking capabilities of NOMAD, the
Λ were found by searching for their decay vertices and distinguished from Λ, K0

S and
γ by using their specific decay asymmetry which can be manifested in an Podolanski-
Armenteros plot. Kinematic cuts have been applied, taking into account the characteristics
of quasi elastic charm events, such as a fixed W 2. In the decay channel (6.6) a cut on the
reconstructed invariant mass of the Λ+

c has been applied. The electron in the semi-leptonic
decay channel (6.7) was identified with the help of its energy deposit in the preshower
detector and the electromagnetic calorimeter. Good sensitivity was found for the semi-
inclusive decay channel (6.8), due to the relatively high branching ratio.

For all search channels, the data has been found to be in agreement with the background
predicted from charged and neutral current Monte Carlo simulations.

An upper limit for the cross section averaged over the neutrino energy spectrum of the
CERN SPS neutrino beam (〈Eν〉 = 24.3 GeV) has been derived. At 95 % confidence level
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this limit has been found to be

〈σQEC〉 < 3.58 × 10−40 cm2 (6.9)

〈σQEC〉
〈σcc〉

< 0.22 % (6.10)

The limit calculation includes the systematic errors of the signal efficiencies, however,
systematic uncertainties of the background estimation have been neglected due to the lack
of knowledge.

Given the almost energy independent behavior of the quasi elastic charm production
cross section for energies above 15 GeV, the absolute limit for the cross section has been
derived to be

σQEC < 4.0 × 10−40 cm2 (6.11)

at a 95 % confidence level.



Appendix A

Variables for Event Classification

nbox
trksV 1 The number of tracks having their first hit sufficiently close to the primary vertex

and which are not identified as coming from a decay, scattering or V 0 vertex. This
means the first hit must be in a cylinder (radius = 30 cm, length = 40 cm) with axis
along the neutrino beam direction and starting 10 cm in front of the primary vertex.

n
box+

trksV 1 The same as nbox
trksV 1 but positively charged.

n
box−

trksV 1 The same as nbox
trksV 1 but negatively charged.

nbox
V 1cal

The number of primary tracks, defined like nbox
trksV 1 , which reach the PRS and the

ECAL.

∑

box Qtrks The charge sum of the tracks which have their first hit sufficiently close to the
primary vertex (see also nbox

trksV 1).

V 0 A vertex with two outgoing tracks of opposite charge but no incoming track.

nV 0 The number of V 0 vertices.

Evis
ν

The visible neutrino energy is equal to the length of the total momentum measured
in an event.

Eµ The reconstructed energy of the primary muon.

Q2
vis

The reconstructed Q2.

W 2
vis

The reconstructed W 2.

xvis The reconstructed Bjorken scaling variable xBj.

yvis The reconstructed inelasticity y = Eν−Eµ

Eν
.

MΛ
+
c

rec
The reconstructed mass of the Λ+

c .
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P(χ2
V 0) χ2 probability of the V 0 vertex fit during reconstruction.

p
l.o.f
T Transverse component of the total momentum of the two outgoing charged tracks

of a V 0 vertex with respect to the line connecting the primary and the V 0 vertex (see
figure 5.1).

p2trks
T

The transverse momentum of the particle coming from a V 0 decay with respect to
the momentum of the mother particle.

p
+

L The longitudinal momentum of the positively charged particle coming from a V 0 decay
with respect to the momentum of the mother particle.

p
−

L The longitudinal momentum of the negatively charged particle coming from a V 0

decay with respect to the momentum of the mother particle.

α2trks The decay asymmetry α2trks =
p+

L
−p−

L

p+
L+p−L

.

MΛ
rec

The reconstructed mass of the Λ.

Ecal
clu

The energy of a cluster in the calorimeter (CAL).

Eprs
sum

Sum of the energy of the horizontal and vertical preshower tubes.

pdch
π

The momentum of a track determined from a fit with a pion hypotheses in the drift
chambers.

Eneutral
cal

The energy of all neutral “tracks”, i. e. calorimeter objects which have been
associated to a reconstructed vertex.
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