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ABSTRACT

The human horizontal vestibulo ocular reflex (VOR) was studied in four crew members
of the Space Lab SL-1 mission (1983). Five testing sessions were performed over the
four months prior to flight, and three testing sessions were performed in the first four
days after landing. Subjects were seated upright over the axis of rotation of a rotating
chair. The chair was rotated in the dark at a constant velocity of ±120 */s for one minute
then stopped. After stop, the subjects remained seated head upright for half the runs,
and tilted their heads down 90* from t=5 to 10 seconds after stop for the other half. Eye
movements were recorded throughout the spin, and for 60 seconds after chair stop via
EOG.

A automated software package was developed to perform data analysis. Slow Phase eye
velocity (SPV) was calculated using order statistic filtering. Statistical methods were
used to remove outliers, and the data was fit to several VOR models. A first order
exponential (10E) and Raphan Cohen derived three parameter model (3P) were used to
analyze the data, while a new model using a fractional adaptation operator (sk , 0<k<1)
and velocity storage was developed and tested against the other models. A new data
acquisition and chair control software package was developed for use with future
experiments. New methods were developed to improve the statistical robustness of the
model fitting procedure.

Due to poor data quality, one subject's data could not be reliably analyzed individually.
Post flight changes in model parameters were different between subjects. Two subjects
exhibited increased 3P normalized model gain post flight (p=.01, p=.06) while one
showed a decrease(p=.001). All three subjects showed a decrease in 3P indirect pathway
gain (not significant). One subject showed an increase in 10OE gain (p<0.1) and one
showed a decrease (p<O. 1). 10OE apparent time constant decreased in all three subjects. A
correlation was noted between reported space motion sickness intensity for the subjects,
and the magnitude and direction of post flight changes. All three subjects showed

significant changes when Et2 statistics were used to compare ensemble averaged pre and
post flight data.

Comparison to previous analysis of this data set (Kulbaski, 1988), indicates that the new
methods of data filtering and analysis are more effective. Some conclusions from the
previous analysis have been overturned while others have been reinforced. Data filtering
in the new methods has allowed reliable analysis of individual runs through model fitting.



Individual model fit results have confirmed the variability in individual preflight
responses noted by Balkwill (1992) and Oman and Calkins (1993). This may have
implications in the clinical testing of the VOR. Average parameters of individual fits
show similar changes as the parameters of averaged fits.

The new sk model was found capable of fitting the data well, but was ill suited to this
data set. Analysis of sk model parameters showed no significant changes post flight.
Suggested improvements in this model could improve its effectiveness at measuring post
flight changes. Comparison of the sk model with the 3P and 10E models showed that
for analysis of individual run data, better fits to the data were obtained with higher order
models (3-4 parameter), than with low order models (2 parameters). However when
higher order models are used to fit individual runs, the model fitting routines may also
exploit the additional degrees of freedom in an attempt to fit artifacts in the data. This
increases the variance of the resulting model parameters.
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Title: Director
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Senior Research Engineer
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1. Introduction

As spacecraft have grown larger, from the small Mercury and Gemini vehicles, to the

larger Sky-Lab and Space Shuttle in the US fleet, most astronauts have begun to

experience a physical discomfort upon entry into the micro gravity environment, known

as space motion sickness (SMS). First reported by cosmonaut G. Titov in 1961,

approximately 60% of both American and Soviet crews experience some symptoms of

SMS while in micro gravity. The symptoms of SMS are similar to motion sickness on

earth; pallor, sweating, lethargy, nausea and vomiting. The symptoms experienced by

any individual vary, but generally decrease and disappear over the course of two to five

days. Due to the great expense of space flights, the lost productivity of crew members

due to SMS is of considerable concern, as are long term adaptation effects which could

impact on longer space flights, such as the proposed manned Mars mission.

On the earth, The human body is subjected to a constant gravito-inertial force (GIF)

caused by Earth's gravitational field, equaling 9.81 m/s2 . The human brain processes

information from its sensory systems (vestibular, proprioceptive, and visual) with

knowledge of this 1-G bias in order to determine position and orientation. When the

body is subjected to a GIF different from that to which it is accustomed, the body is

forced to adapt the sensori-motor systems for the new environment. Adaptive change in

the CNS processing of sensori-motor systems can result in symptoms similar to SMS .

This has been seen in centrifuge studies (Guedry and Benson, 1978) and parabolic flight

(Lackner and Graybiel, 1984) where the GIF acting on the body is changed.

The sensory conflict theory of SMS states that when conflicting information is passed to

the central nervous system (CNS) by the sensory systems, the CNS is unable to convert

the sensory information into a recognizable body orientation, resulting in physical



discomfort and illusions. If the unusual gravitational force persists, the CNS is able to

adapt by creating new internal models with which to interpret body position. Thus,

symptoms decrease and disappear eventually as the unusual conditions persist.

In order to study this phenomenon, a set of experiments have been designed and

performed in a series of space shuttle SpaceLab flights including the SL-1 (1983), D-1

(1985) and SLS-1 (1991) missions and the upcoming SLS-2 mission (1993). This thesis

work is a re-analysis of one of these experiments from the SL-1 mission, the use of a

rotating chair to identify the dynamics of the horizontal angular vestibulo-ocular reflex

(VOR). Experiments were performed on five crew members preflight and four crew

members post flight, after micro-gravity adaptation had occurred. Analysis of the D-1

data and previous analysis of the SL-1 data (Kulbaski, 1986; Oman and Wiegl, 1989) has

shown some changes in how the CNS interprets sensory information after adaptation.

However, new methods in data filtering and analysis, and the use of more complex

models justifies re-analysis of the SL-1 data (see section 4.2).

The SL-1 data was compared against two mathematical models of the vestibular system

to quantitatively determine the changes in the CNS after adaptation. A third VOR model

was developed and compared to the existing models to assess its strengths and

weaknesses. A new data acquisition and chair control system was developed, and the

existing analysis algorithms were automated, and, in some cases improved, to allow

rapid, on-site data processing and preliminary analysis on future missions.



1.1 Thesis Organization

Chapter 2 presents the physiology and previous research into the human vestibular

system. Various models of the vestibular system are discussed.

Chapter 3 describes the experiment protocol and data acquisition.

Chapter 4 describes algorithms used in previous analysis of the SL-1 data, provides

justification for reanalysis and describes the new algorithms developed.

Chapter 5 presents the results of the data analysis.

Chapter 6 introduces new software and hardware developed for future missions.

Chapter 7 is a discussion of the implications, and conclusions based on the data analysis.

Also, recommendations for future work are included.



2.0 Background

The basis of human orientation is reflexive, and seldom is it consciously noted or

controlled. Orientation is determined through CNS processing of the various sensory

inputs available to it. This information is used to maintain balance, as well as awareness

of the relative positions of limb and body. Visual and vestibular cues are used to stabilize

vision in the presence of head movements. Vestibular information is used to stabilize

vision during rapid head movements, while retinal slip helps to stabilize vision during

slow head movements, or steady state.

2.1 The Vestibular System

For a complete reference on the vestibular system, refer to Wilson and Jones, 1979.

The vestibular labyrinth is the location of the body's sensors of angular motion, linear

motion, and gravity. Angular motions are sensed by the semi-circular canals while linear

motions are sensed by the otolith organs. Each labyrinth comprises three canals, lying

approximately orthogonal to each other, and two otoliths oriented horizontally (utricular

otolith) and vertically (saccular otolith). The canals are arranged such that they are tilted

approximately 20' back from the horizontal. The canal which lies closest to the

horizontal plane is referred to as the horizontal semi-circular canal.

Each semicircular canal is composed of a semicircular duct, filled with endolymph fluid.

In each duct, there is a diaphragm composed of gelatinous tissue which is attached to the

ampula much like a drum skin. When the head is rotated in the plane of the semicircular

canal, the inertia of the endolymph causes it to lag behind the head. This gives a relative

motion between the endolymph and the head, which causes the cupula to deform, and a

corresponding deflection of cilia of the sensory cells which are attached to the cupula.

The deformation in the cilia causes a change from the resting firing rate of the sensory



cells. The change in the firing rate is proportional to cupula deflection and therefore head

angular velocity, and is direction dependent. For large stimuli, the firing rate can

saturate. The tension in the cupula and ampula causes a restoring force which accelerates

the endolymph, and returns the cupula to the resting position. The cupular motion can be

approximated by a highly damped torsional pendulum.

Superior omloircula

ampulls of
lateral micircular cwn
semicircular
canal endolymphatic duct

cochlear nervi

potaior
micircular cochle

utrile spire lion

Figure 2.1, Membranous Labyrinth of the right ear, and schematic
diagram of one semi-circular canal showing the relationship between
head rotation and cupula deflection. Actual deflections are very small.
[from Laurence Urdang, 1982, and Benson 1967]

Within the vestibule lie two large membranous sacks, part of the labyrinth, known as the

utricle and saccule. Within each of these cavities lie the body's linear accelerometers, the

otoliths. The sensory part of the cavities is called the macula. This consists of ciliated

sensory cells covered by the otolithic membrane, and a calcium carbonate deposition in

the membrane. These calcium crystals have a density approximately three times that of

the surrounding endolymph, so when the head is subjected to a linear acceleration, the

crystals lag behind the surrounding endolymph, shearing the crystals relative to the

macula, bending the cilia and thereby causing the sensory cells to change their firing rates

(Fernandez and Goldberg, 1976). Due to the equivalency of gravitational force and

acceleration (Einstein equivalence principle) , the otoliths respond to changes in the



orientation and magnitude of the GIF as well as to linear accelerations and head rotations.

Since the macula of the saccule lies in a predominantly vertical plane, gravity induces a

bias in the resting position of the saccular macula. During exposure to micro gravity, the

saccular otoconia are unloaded, removing the 1-G bias, and changing the resting firing

rate of this macula. Pitch and roll head rotations in micro gravity will no longer cause the

otoliths to sense a changing GIF, while centripetal forces due to head rotations and

linear accelerations will still stimulate the otoliths normally. Thus, the otoliths will no

longer give information on the orientation of the head to an external reference (i.e.

Otoconia

Macula

Sensory Cells
Utricular or Saccular Nerve

Figure 2.2, Physiology of the otolith organ. [from Wilson and
Melvill Jones, 1979]

gravity) and the CNS must adapt to the absence of this signal.

2.2 The Vestibulo-Ocular Reflex

When you are looking at some target, and make a head movement, your eye must

compensate by rotating the opposite direction to maintain a stable image on the retina.



For steady state gaze, and slow head movements image stabilization can be

accomplished by the CNS by minimizing retinal slip. For fast head movements, the

visual processing of retinal slip is too slow (about 70 msec) to stabilize the image, and the

vestibular system is used to generate the requisite compensatory eye movements. This is

called the vestibulo-ocular reflex (VOR). The VOR relies on the semicircular canals and

otoliths to provide information on how the head is moving, and uses this to rapidly

(about 10 msec latency (Robinson, 1975)) generate compensatory eye movements to

prevent retinal slip, while retinal processing is used to correct small error remnants.

When head rotations are large or continuous, the magnitude of the required

compensatory eye movements exceeds the physical limitations of eye rotation. When this

happens, the eye will make a fast jump in the direction of motion, known as a saccade,

and then continue tracking from this new position. For very long or continuous rotations,

the eyes will saccade forward after they have counter rotated back past the center

position, maintaining eye position biased towards the direction of rotation. A series of

these saccades with reflexive slow tracking between is known as optokinetic nystagmus

(Komatsuzaki et al, 1969). During nystagmus, the saccades are generally referred to as

fast phases, while the tracking portion is referred to as the slow phase. The eye velocity

of the slow phases (SPV) is equal to the velocity of the visual scene relative to the head,

when a visual scene is presented to the subject. During rotations in darkness however,

there is no longer a retinal slip signal from the eyes to fine-tune the eye movements, and

the CNS relies entirely on vestibular information. Thus the eye movements are only due

to the VOR. For long or continuous rotations in darkness, the nystagmus that is

generated is known as vestibular nystagmus.

VOR is capable of being consciously modified by subjects rotating in the dark (Barr et al,

1976). When subjects were asked to imagine and stare at a point rotating with them in



front of their faces, they are able to partially suppress the VOR. Provided with a real

point to fixate on, subjects can almost totally suppress the VOR. Level of mental

alertness also affects VOR (Collins, 1962). Low levels of alertness also cause partial

suppression of the VOR. Thus it is very important to properly and instruct subjects prior

to testing.

2.3 Duration of Nystagmus

Through direct single unit neuron recordings in monkeys (Raphan et al, 1979), it has

been seen that the firing rate of the sensory canal neurons during continuous rotation in

the dark returns to the resting rate before nystagmus ceases. The deviation from the

resting firing rate follows an approximately exponential decay with a time constant of

approximately 5 seconds, while nystagmus decay follows a time course with a decay time

constant closer to 20 seconds. From this, it has been hypothesized that there exists an

element in the CNS that stores the sensory information from the canal afferents to

prolong nystagmus. This is commonly referred to as velocity storage. From an

evolutionary standpoint the existence of velocity storage would serve to aid the CNS in

properly evaluating rotations that persist longer than the time constant of the cupula,

when the vestibular system equilibrates and indicates no motion when in fact a steady

state rotation has been achieved. Studies in optokinetic after nystagmus (OKAN) also

support the theory of a velocity storage element. OKAN occurs when an immobile

subject is exposed to a moving visual field which induces nystagmus. After the scene is

stopped, nystagmus persists, which indicates the presence of a storage element.

Current theory holds that the source of velocity storage mechanisms in the brain is in the

flocculus of the cerebellum, where vestibular, visual and proprioceptive cues are

integrated. However, to date anatomists have been unable to determine the location of the

velocity storage element, although recordings in the vestibular nucleus have found both



the afferent neuron signals from the vestibular system as well as units with signals

corresponding to canal signals modified by the additional velocity storage element.

2.4 Testing of Horizontal VOR using Velocity Pulse Stimulation

Several tests of the human horizontal VOR have been developed. While various sorts of

rotational stimuli are commonly used, only velocity pulse stimuli will be discussed here.

To test the human horizontal VOR, the subject is seated upright in a rotating chair, and

rotated about the vertical axis. In order to isolate the VOR, sensory cues other than from

the VOR are masked out by rotating in the dark with auditory and proprioceptive cues

removed through the use of earphones and long clothing to eliminate wind cues.

Subjects are subjected to a step in horizontal angular velocity . At the beginning of the

stimulus, the VOR drives a rapid rise in SPV to a maximum usually between 0.5 and 0.8

of the stimulus velocity in the opposite direction to compensate. The cupula returns to its

initial position rapidly, and the primary afferents return to their resting firing rate due to

the absence of any angular acceleration at the constant rotation. Velocity storage

prolongs the SPV of the eye movements which decay approximately exponentially to

zero after 40 seconds. In humans and animals, often the SPV decay will "overshoot",

briefly reversing nystagmus, giving SPV in the same direction as the stimulus with low

magnitude. This is thought to be a result of neural adaptation, and has a time constant on

the order of approximately 80 seconds. When the rotation is then stopped, an equal but

opposite angular acceleration is induced in the canals causing nystagmus in the opposite

direction with equal magnitude. The subject subjectively interprets this period as a

rotation in the opposite direction although they are immobile. Figure 2.3 shows a typical

SPV response to a velocity step input, calculated using a five parameter model (section

2.7).
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Figure 2.3 Theoretical relative slow phase velocity response to a
step in angular velocity. Solid line is SPV response. Dashed line is
stimulus. Calculated using a five parameter model (Balkwill, 1992)

2.5 Velocity Storage Tilt Suppression (Dumping)

If, immediately following the cessation of rotation of a velocity step, the head is pitched

forward, the CNS will receive conflicting information from the otoliths and canals.

Following chair stop, the canal afferents signal the CNS that they are rotating in yaw.

After the head is pitched, this is translated to an apparent rotation in roll in body axes

coordinates. Meanwhile, the otoliths are recording a steady GIF, whereas if the head

were rolling, the GIF would be changing relative to the otoliths. Other senses, such as

the proprioceptors also indicate that no roll is taking place. This conflict persists until the

cupula returns to its steady state position. The SPV response during this period has a

characteristically faster decay approximating that of the canal time constant alone. It is

theorized that in the presence of the conflicting information coming from the canals and

otoliths, the CNS suppresses, or dumps the information in the velocity storage element.

Presumably, the CNS realizes that it no longer has a reasonable estimate of body

orientation, and is attempting to develop a new estimate from "scratch". Information

from the velocity storage element is suppressed, not lost, for if the subject returns to the

upright, the SPV time course will sometimes return to the appropriate velocity as if the

head had remained upright continuously (Kulbaski, 1986).



An alternative theory of what happens during "dumping" is called axis shifting. As the

head rotates forward, the CNS keeps track of the eye movements in global coordinates.

While the head is pitched down, the CNS calculates the axis of rotation between the

original vertical axis and the new horizontal axis. Eye movements are shifted

accordingly, reducing horizontal nystagmus while beginning torsional nystagmus.

Experiments in monkeys have shown some evidence of axis shift during passive head

movements (Merfeld, 1990), however recent experimentation in humans has shown no

evidence of axis shift following active head movements (Fetter et al, 1992 in progress).

2.6 Vestibular Models

As this thesis is primarily concerned with modeling the human horizontal angular VOR,

the inputs and outputs of each model are chosen to be the rotational velocity stimulus,

and the eye SPV respectively. The following models have several differences between

them, but there are several areas in which they are in agreement. The dynamics of the

semicircular canals are modeled in each case as a low pass filter on head angular

acceleration, giving head velocity as output over a mid-frequency range. All three

models assume implicitly at least, that the brain uses an internal model of SCC

dynamics. It is this model that generates the brain's best estimate of head velocity based

upon the most recent sensory inputs. In the absence of new information, such as during

prolonged rotation, the model continues to update the estimate of body rotation based

upon its model of the dynamics.

The characteristics of the VOR are commonly modeled using engineering controls

methods designed for linear systems. In general, Laplace transform methods will be

used here to describe the models.



The Robinson model (Robinson, 1971) is based on the idea that the sole purpose of the

VOR-OKN system is to provide a signal proportional to head velocity for low

frequencies where the canals are ineffective (see figure 2.4). The positive feedback loop

of eye velocity command (upper feedback loop in figure 2.4) gives the system the high

forward gain and long time constant to mimic velocity storage. In the dark, this will

increase the main VOR time constant from Tc to Tapparent, the apparent time constant of

the VOR.

bPursuit System

+ eye vel.
T.s+1command

Transfer Fcn2 sum

a eye gaze
Optokinetic System + vei. vel.

Gain1 sum
-1 + Gain Oculomotor sum

System
Transfer Fcn sum

k Tc.s

head vel. Tc.s+1
Canals

Figure 2.4, Robinson Model for VOR-OKN interaction for rotations
in the dark (Robinson, 1977).

The Raphan-Cohen Model (Raphan et al, 1977) is shown in figure 2.5. This model takes

into account all of the characteristics of the VOR mentioned above. The Raphan-Cohen

model can be simplified and rendered into Laplace notation using some simplifying

assumptions. First, rotation in the dark allows the neglect of the visual portion of the

model. Second, we assume that the system is left-right symmetrical, allowing removal

of the direction asymmetry terms. Next, cupula dynamics are assumed to be a simple

exponential decay with a gain K, and time constant, Tc. Finally, adaptation

effects are treated as another exponential decay in series with the cupula (Fernandez and

Goldberg). This is here referred to as a five parameter modified Raphan-Cohen VOR



model or more simply, the five parameter model(Balkwill, 1992) (see figure 2.7). In this

thesis, the five parameter model is used with Ta and Tc frozen at values of 80 and 6

seconds respectively. This is referred to as the three parameter (3P) model.

Direct Vestibular Pathway

Head
Velocity.

Output
ye velocity)

Figure 2.5, Raphan-Cohen model of OKN, OKAN, and vestibular
nystagmus (From Raphan et al, 1979).

eye velocityhead
velocity

Canal Dynamics Neural Adaptation
Sum1Indirect

Pathway
Gain

Leak rate

Figure 2.6, Five parameter modified R-C Laplace Transfer Function
Model for rotation in the dark without left-right asymmetries.

In this model, the eye velocity signal is a sum of the activity in both the direct and

indirect pathways. One major difference between this model, and the Robinson model,

is that the storage effects of the system are modeled as efferent feedback in the Robinson

model, whereas the modified Raphan-Cohen model assumes that the integrator



represents a separate state of the system, and models this using feed forward. A

significant feature of the modified Raphan-Cohen model, is that the zero associated with

the indirect pathway is believed to cancel the canal pole. Thus, as with the Robinson

model, the response can be approximated by a single apparent time constant that lies

between the adaptation and indirect pathway time constants.

Both the Robinson and modified Raphan-Cohen models can be simplified to a simple

first order model representation (10E model). This consists of a first order lag, with a

gain and time constant to describe the decay of horizontal nystagmus in the dark (see

figure 2.7). The time constant can be likened to the apparent time constants of the

previous models. An apparent time constant is the time constant of a first order

equivalent system to a higher order VOR model. It does not represent the dominant time

constant of the higher order model, but is influenced by both time constants.

angular velocity > SPV
>Ta.s+l

Gain Simple Lag
Figure 2.7, Simple first order model (10E) of nystagmus
decay.

An alternative model is based upon work carried on the semicircular canal afferent fibers

of the pigeon (Landolt and Correia, 1980). This model, here referred to as the sk model,

uses a different method to express the effects of canal adaptation. Canal afferent

response to accelerations can be modeled with a transfer function of the form,

H(s) = Gsk 1 1
(,Ls + 1) (rss + 1)

Here, the parameter G represents the system gain, k is an adaptation constant ( 0<k<l ),

and rL and Ts are the long and short time constants of the torsion pendulum model of the

cupula. The term s k can be decomposed into a series of polynomials in s of the form;

sk C Jiris
1 ,ris + 1



A single term equivalent to this expansion, C' Ji ri s / ( 'ris + 1) is similar to the neural

adaptation term found in the five parameter model above. The C' term is a magnitude

adjustment for reducing the infinite sum to a single term. The Ji term is the value of a

probability density function, J(T), evaluated at r = r . The Probability density

function (Thorsen and Biederman-Thorsen, 1974) has the form;
S 1

k+1Lz

for all r > 0

This has the effect of amplifying fast acting time constants the most, and long time

constants very little. As the fractional Laplace operator (sk) was originally developed for

use with visco-elastic materials, there is an analog to these we can use (Gross, 1953).

For a fast acting force/response, the material behaves elastically like a spring. For

slower force/response, the material relaxes, or creeps. One significant feature of this

relaxation spectrum for vestibular modeling, is that for the longer time constants, the Ji

term is much smaller than for shorter time constants, and thus faster time constants are

more heavily weighted in the overall response.

Due to its small effect on the response (two orders of magnitude below the (,L s + 1)-1

for the frequency range concerned here), the (, rs + 1)-1 term was ignored in this model,

simplifying it to;

H(s) = Gsk
( rs + 1)

Given an input acceleration impulse stimulus of amo/second the model response in the

time domain becomes;

r(t)= (G )[y*(-k,- )e- ]

Where,



y*(a,x) = e x x tale'dt
V(a) o

is the incomplete gamma function (which is single valued and finite in terms of a and t)

and T(a) is the complete gamma function evaluated at a. At negative values of t, for

-1< a <1, the incomplete gamma function can be evaluated using the following series;

y*(a,x)= 1 1+a "*(a,x) = F(1 + a) [i + (n + a)n!

where y = txI

To change this from a canal model to a VOR model, velocity storage terms, using the

same notation as for the five parameter model, were added. This gives the VOR model

transfer function as;

H(s) = GskS A + h}

,rS+1 S+h
1- rL(go + h)A=Y-h

B=- 90

The time response of this system to an acceleration impulse may then be written as

r(t) = ( )[Ay * (-k,- )e- L + By * (-k,-hot)e"' ]

This model will be referred to as the sk model although it also incorporates VOR velocity

storage effects.

Motivation for the use of this model arises from Correia, et al (1992). Correia found that

following 14 days of space flight, two Rhesus monkeys showed increased gain and

adaptation in SCC afferents. This suggested that one or more components of the

vestibular end organ was transiently modified following space flight, and that the sites of



plasticity of vestibular responses may not be exclusively within the CNS. The modified

Raphan-Cohen models do not predict gain changes due to changes in peripheral neuron

adaptation. The sk model accounts for neural response changes through the k parameter,

which affects both gain and apparent time constant.

2.7 Effects of Altered GIF

Early tests of VOR response in centrifuge have shown, that the magnitude and duration

of nystagmus was shorter when the head was reclined during a GIF greater than one.

Later testing in parabolic flight (DiZio and Lackner, 1988) has shown that the apparent

time constant of decay in both O-G and 1.8-G is significantly shorter than it is in 1-G.

Active head movement provoked velocity storage dumping was observed in both the 1-G

and 1.8-G trials, but not in the 0-G trials. This implies that the presence of an altered

GIF magnitude is equivalent to the dumping head movement, which alters the direction

of the GIF, in provoking velocity dumping in humans.

Adaptation to altered GIF has been studied previously as part of the D-1 and SLS-1

SpaceLab missions. Also, there has been some previous examination of the SL-1 data

presented here.

Previous analysis of the SL-1 data (Kulbaski, 1986) was confined to SPV responses

averaged across all subjects and all five pre-flight data sessions versus the first two post-

flight sessions (refer to section 3 for a description of the SL-1 experiment). A first order

exponential model was fit to the first twenty seconds of averaged head up data, and t=5

to t=10 of dumping head movement data. This analysis found that while the head up time

constant decreased significantly after exposure to micro-gravity (11.7 seconds pre-flight

versus 9.3 seconds post-flight), the gain ( 0.60 pre-flight versus 0.59 seconds post-flight)

and the dumping time constants (3.2 seconds pre-flight versus 3.4 seconds post-flight)



were unchanged . x 2 analysis showed significant differences existed between the head

up runs pre and post-flight from 6 to 20 sec after stop, and between the head up and

dumping runs from 5 to 10 seconds after stop. SL-1 post-rotatory SPV averaged across

subjects are shown in figure 2.9. It was believed that the change in pre-flight versus post

flight responses, while there was no change in dumping responses, was due to two

reasons; first, in the altered GIF environment of space, the CNS had partially suppressed

the VOR velocity storage as a result of altered GIF, and second, over the time in flight,

the CNS adapted to this altered GIF, and remained so for a short period post-flight.

Because tilt suppression still occurred following exposure to micro gravity, there was no

evidence that the otoliths were ignored by the CNS following exposure to micro
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Figure 2.8 SpaceLab SL-1 grouped mean post-rotatory SPV pre-
flight (squares) versus post-flight (circles).



gravity, and thus further tilt suppression beyond the adaptive tilt suppression was still

possible.

On the D-1 mission, (Oman and Weigl, 1989), horizontal VOR was tested in five

SpaceLab crew members 4 times pre-flight and five times post flight. Two of the

subjects were directionally asymmetrical, while the other three subjects showed no

change in VOR gain, and a more rapidly decaying SPV response post-flight then pre-

flight. A X2 analysis showed a significant difference in the post-flight versus pre-flight at

the p < .001 level. D-1 post-rotatory SPV averaged across subjects are shown in figure

2.8.

80

70

60

50

40

20

10

400 10 20 30
TIME (sec)

Figure 2.9, SpaceLab D-1 grouped mean post-rotatory SPV pre-
flight (squares) versus post-flight (circles).

0

3
0* 8

*

Qe'1o
9

ar

eIb,



On the SLS-1 mission (Balkwill, 1992), four crew members were tested on four days

pre-flight, and four days post-flight. The subjects were rotated at 120 */second for sixty

seconds while seated upright. The chair was stopped and the subjects remained upright

for half the runs, and pitched their heads forward 90* after chair stop, for the other half.

The dumping protocol was changed from the SL-1 and D-1 missions, in order for two

reasons. First, this allowed a full sixty seconds of dumping data to be collected and

modeled for changes, and second, as there is some uncertainty as to whether nystagmus

suppression stops completely following return to the head erect position, analysis of

post-dumping sections of previous data sets had been excessively complex. For SLS-1,

the SPV was calculated, and fit to the five parameter modified Raphan-Cohen model (see

section 2.6), and subjective duration of rotation was recorded. The apparent time

constant of decay of the SPV was found to be lower post-flight than pre-flight, suggesting

adaptation within the velocity storage mechanism. The change was believed to be a

result of changes in indirect pathway gain on the model. Subjective responses were also

found to be significantly shorter post-flight than pre-flight for three out of four subjects.

For use on the SLS-1 and subsequent missions, new methods of analysis were

developed including the use of order statistic filtering, automated dropout and outlier

removal, iterative model fitting techniques, and Xt2 testing (Balkwill, 1992).

2.8 Previous Analysis Methods used on SL-1 Data

Previous analysis of the SL-1 rotating chair data set was carried out in 1986 by Mark

Kulbaski. Following digitization of the data, three data processing steps were carried

out; SPV was determined, manual SPV editing was performed, and data was resampled

at 4 Hz for statistical analysis.



2.8.1 Preliminary Processing

The SPV was calculated using the acceleration based Massoumnia algorithm

(Massoumnia, 1983). The algorithm first differentiated the angular position signal to get

angular eye acceleration. The algorithm then used a set of rules based on eye acceleration

to classify each eye movement as either a fast phase or a slow phase of Nystagmus. Fast

phase movements were replaced with a linear interpolation between adjacent slow phases.

The Massoumnia algorithm occasionally failed to properly classify eye movements, and

thus fast phases that were not removed had to be removed through manual editing.

Misclassification was due to several causes. One was that the low pass filters rounded out

the peaks of high amplitude nystagmus preventing the algorithm from detecting the fast

phase. A second cause was when the algorithm correctly determined a fast phase, but

failed to accurately determine its beginning and end before interpolating across it. This

was interpolated at an incorrect velocity as the interpolation would be between transition

phases instead of slow phases. A third cause of errors was associated with transients in

the EOG signal. There were two typical sources of transients: When the head tilted down

during dumping runs, an electrode motion artifact occurred during each pitch movement.

Also whenever the amplifier DC offset was manually adjusted to compensate for

electrode drift, a transient was injected into the EOG. Finally, if the signal to noise ratio

of the signal was low, the noise would confuse the algorithm, and it would completely

fail to detect phases correctly.

Manual editing was performed on a PDP-11 using an interactive program known as

SPARTA (Digital Equipment Corp., Maynard, MA). The program read the SPV file

from the Massoumnia algorithm, and displayed the SPV on a CRT. Using

potentiometers, the user positioned two cursors on the screen to mark the beginning and

end of a fast phase. The data between the cursors was replaced with values linearly



interpolated between the values at the marked points. Following manual editing, the

SPV files were resampled to 4 Hz before further processing.

Of the 145 runs analyzed, 21 of them were then discarded at this point on the following

basis. If there was an abrupt change in the noise level in the EOG signal, this would

suggest an electrode had lost contact. If an EOG signal had a low signal to noise ratio,

the Massoumnia algorithm would fail to determine the SPV profile. If the SPV profile

was markedly atypical the run would be discarded. If the SPV response lagged

significantly behind chair motion, this indicated that the subject wasn't paying attention.

In all of these cases, the runs were discarded. However, all criteria were only semi-

quantitative.

2.8.2 Statistical Analysis

Two forms of statistical analysis were performed. The first was to conduct a X2 analysis

to determine if two response curves were different. The second was to fit a simple

exponential model to the data, and then to use ANOVA and t-tests to determine if the

model gain and time constant were significantly different.

The CW and CCW responses were tested by X2 to determine if responses were

directionally symmetrical. As no directional asymmetries were found, the CW and CCW

runs were normalized for direction and averaged together. X2 analysis was performed to

determine whether there was a trend across test days for all subjects. As no trend was

determined, all pre-flight data was averaged together for each subject, and the first two

post-flight sessions were averaged together for each subject. However this left the

possibility of trends within individual subjects, which was not tested. Subsequently,

Balkwill (1992) noted that Kulbaski had actually calculated the Yt2 statistic and assumed

that it followed the X2 distribution, which is not valid for small n.



Model fits were performed on averaged data sets for each subject using a simple

exponential model. This was carried out through the use of a log-linear least squares fit

to the data over the first twenty seconds of data for PRN and per-rotatory portions, and

from 5-10 seconds after the chair stop for dumping runs.

Results from this analysis were reported in chapter 7.

2.9 Justification for Reanalysis

Previous analysis of SL-1 data had several weaknesses. First, the manual SPV editing

was a potential source of error. Manual editing is always subject to variability due to

human inconsistencies, and therefore standards for selection of edited portions on

different runs may have varied. Also, the edited data was included in all subsequent

processing even though the actual data had been replaced by an interpolated line. Thus

interpolated points were inserted into the data at the interpolation regions that was then

used for calculation of run statistics. Another weakness is the use of only semi-

quantitative run exclusion criteria. A third weakness is that no individual runs were fit;

all analysis was performed on data averaged over several trials. Analysis of individual

runs would allow extraction of the variability of the responses. Individual and day to day

variations were smoothed over by averaging. Through analysis of individual data, trends

within subjects become much easier to see, where they are hidden by the averaging

process and other analysis such as ANOVA become possible. A third weakness was the

limitations of the model fit to the data. Only simple exponential models were fit to the

data, and velocity storage was not modeled. New insight might be gained through re-

analysis of this data using newer models such as the five parameter model and sk models.

Further justification for reanalysis is that new methods in EOG signal filtering have been

developed (Balkwill, 1992) that can be used to improve the data quality.



3. Experimental Methods.

3.1 Equipment

The experimental apparatus was composed of the equipment used for the NASA Spacelab

E072 F02 rotating chair experiment. This consisted of a motor driven rotating chair, and

EOG data collection equipment.

The rotating chair (see figure 3.1) was constructed as an undergraduate thesis project by

MIT students for use in the SL-1 and subsequent experiments (Johnson and Gidney,

1983). The chair was driven by a .75 hp, 27 ft-lbs torque DC motor, capable of smooth

rotation of the chair at angular velocities up to 200'/sec. An Inland Motor Division TPA

series motor controller and tachometer provided closed loop control of motor speed. The

velocity control command was generated by a voltage across a potentiometer which was

dialed by hand. Chair stop was initiated by grounding the velocity command using a

toggle switch, which generated approximately a step velocity change.

Rotating Chair

FM Tape Instrument Recorder

WCommand Generation

Rotating Chair Base and Filter Box

(Motor + Controller)

Figure 3.1, Experimental set-up



Data collection was accomplished through the use of electro-oculography (EOG). Five

infant cardiac electrodes were placed above and below the right eye, on the left and right

temples and either at the center of the forehead. The eye position was determined

through measuring the relative voltage between pairs of electrodes. Since the eye has a

dipolar magnetic field associated with its cornea (the corneo-retinal potential), movement

of the eyes changes the induced voltages across electrode pairs, allowing eye position to

be determined. The electrode pair at the temples monitored horizontal eye position, the

electrode pair above and below the right eye monitored vertical eye position, while the

fifth electrode was used as a reference ground for common mode rejection. Variability

induced by inexact electrode placement and changing corneo-retinal potentials, was

removed through calibration of the EOG using targets at known positions relative to the

head. Electrode leads were connected to a differential amplifier (nominal gain 3000)

mounted on the chair seat. Amplifier output was two voltage signals corresponding to

horizontal and vertical eye position, with magnitudes between ± 15 volts. A manually

controlled DC offset was added to these signals in the amplifier in order to keep the

signals within ± 10 volts. The position voltage signals were passed through slip rings at

the base of the chair shaft to the chair panel, and then through three cascaded first order

analog low pass filters with corner frequencies at 30 Hz. Filtered EOG signals and the

tachometer signal were recorded analog on FM tape using a calibrated Hewlett Packard

3964A Instrumentation Recorder.

The data was digitized in the MIT Man-Vehicle Laboratory (MVL) in two batches. The

first batch consisted of all pre-flight runs, and post-flight runs for subjects A, C, and D.

This was digitized from the FM tape using the same FM recorder playing into a

Macintosh Mac II computer running the Labtech Notebook version 1.0.1 software

package, sampling at 120 Hz. The output range of the recorder was limited to ± 3 volts,

and for this batch of data, input range on the Mac II A/D board was set to ± 10 volts.



The second batch of data consisted of all subject B post-flight runs. This was digitized

using the Labview version 2.1 software package sampling at 120 Hz. For this batch,

A/D input range was ± 1 volt, with the recorder output being adjusted to ± 1 volt. Both

batches were saved in identical binary form and all further processing was identical.

3.2 Subjects

Subjects used in this experiment were all members of the SL-1 crew team. Six subjects

were tested preflight, including the four SL-1 payload specialists and two alternate

payload specialists. Post flight testing was only conducted on the four payload

specialists, as the alternate payload specialist did not fly on the mission. All subjects

tested were male and all were free of any overt vestibular disease. To preserve

confidentiality, flight subjects were assigned the code letters A, B, C and D and will be

referred to as such herein.

Subjects were tested on five separate days before the flight. The pre-flight tests were

performed on F-151, F-121, F-65, F-43, and F-10 days before launch. Post-flight

testing was conducted on three days after recovery, R+1, R+2, and R+4 days after

landing. All experiments were performed at the NASA Dryden Research Facility at

Edward's Air Force base, California, by Dr. Oman.

3.3 Experimental Protocol

The same protocol was used for each subject on each test day. Deviations from this

protocol are noted at the end of this section.

The subjects were seated upright in the rotating chair with their heads directly above the

axis of rotation. Prior to electrode placement, the subjects skin was cleaned with

alcohol. EOG surface electrodes were placed on the skin in the pattern previously



mentioned (section 3.1). Subjects were given a blindfold and stereo earphones in order

to suppress visual and auditory signals. Subjects were asked to wear long sleeved shirts

and pants to remove tactile wind cues, however, this was not consistently done by the

subjects. Subjects were instructed to look straight ahead and keep their eyes open at all

times during the runs.

The subjects performed two types of runs. The first was termed a post-rotatory

nystagmus run (PRN). The second was termed a dumping run. For the PRN runs, the

subject was subjected to a steep ramp in angular velocity up to 120 */second, done by

turning the dial on the velocity command potentiometer. This angular velocity was

maintained for approximately 60 seconds, timed using a stopwatch, then the chair was

stopped within one second. Eye movements were recorded for 45 seconds following

chair stop as the subject remained upright. For a dumping run, the chair stimulus was

identical to the PRN run, however following chair stop, the following protocol was

observed. When the chair stopped, the operator would begin counting seconds aloud, '0-

1-2-3-4- "down" -5-6-7-8-9- "up" '. As the operator called out "down", five seconds after

stop, the subject would tilt their head down approximately 90 ', and remain so until the

operator called out "up" at ten seconds after chair stop. Eye movements were recorded

for 45 seconds following chair stop as with the PRN run.

Stimulus runs were performed in both clockwise (CW) and counter-clockwise (CCW)

directions. Direction of runs was alternated between successive runs in order to prevent

residual effects from the long time constant of neural adaptation from building up and

biasing results. The nominal experimental protocol was as follows;



run # 1

2

3

4

5

6

7-9

10

EOG calibration

CW PRN

CCW PRN

EOG calibration

CW dumping

CCW dumping

additional sinusoidal runs, part of a separate investigation

EOG calibration.

Not all data sessions were completed according to this pattern. For subject A, the non-

standard sessions were; F-121, additional CCW dumping run performed. For subject B;

F-121, additional CCW dumping performed; F-43 runs # 2 and 4 not done. For subject

C; F-65, run #4 not done, F-43 runs # 2 and 4 not done. For subject D; F-121 additional

CW and CCW dumping runs performed, F-65 runs #3,4,5 not done.

Each run was given a unique code, known as its run code, which were used to identify

runs for the remainder of this work. The run code consists of the subject letter (A-D)

followed by a one digit number representing the BDC session(1-8), followed by a two

digit number representing the run # (1-11). Hence B304 would represent subject B, on

the third BDC session (F-65) on the fourth run.



4.0 Data Analysis

4.1 New Algorithms for Data Reanalysis

All data analysis for the SL-1 data set was conducted in the MatLab 3.5 software package

(The MathWorks Inc., Natick, MA). MatLab can be used as a fourth generation language

for programming 'scripts', while it also allows execution of C language code from within

the program as MatLab external (MEX) files. The analysis routines used a mixture of

scripts and C code.

Prior to data analysis, all digitized data was resaved into MatLab format using a C

language program, batch_chairconvert, a modification of BDCF_convert (Balkwill,

1992).

4.2 Calibration Procedure

Calibration of EOG potentials was carried out using the NysA Nystagmus Analysis

package (Balkwill, 1992). The NysA calibrate script determines the calibration factors

from A/D units to degrees of eye movement with a semi-automated procedure. The

horizontal eye position of a calibration run is displayed. The user marks the regions of

the signal where the subject is focused on the right and left calibration targets using the

mouse. The calibration factor in degrees/unit is calculated as the ratio of the angular

difference in calibration targets (200 ) to the difference in the mean value of the A/D units

over the selected regions.

Due to significant EOG drift, some calibration factors had to be calculated differently.

Over a short time period (e.g., ten seconds), the EOG drift can be approximated as

linear. When the user selects the fixation regions, a first order fit was made over each

region, and these lines were projected to the midpoint between the two regions. The



calibration factor was then taken as the ratio of the angular difference in calibration

targets (200 ) to the difference in the projection of the linear fits onto the midpoint

between the regions, in A/D units.

Calibration factors were calculated for each of the three calibration runs for each subject,

for each BDC session. If calibrations were repeated within the run by the subject, the

more consistent calibration was used to generate the calibration factor. Calibration

factors for each stimulus run were then calculated by linearly interpolating between the

calibration runs. If the middle calibration run was omitted, the calibration factors would

be interpolated between the two known calibrations. If either the first or last calibration

was missing, calibration factors were calculated by projecting the interpolated line from

the other two calibrations over the stimulus runs.

4.3 Order Statistic Filtering

Prior to model fitting and data analysis, EOG data was filtered using two non-linear

order statistic (OS) filters and one linear filter. This was to remove noise in the eye

position signal, differentiate the position signal (linear filter), and remove saccades in

the eye velocity signal. Filtering programs were originally written by Balkwill, 1992.

Filter output corresponded to smoothed SPV profiles.

OS filters are a class of non-linear digital filters that operate on the local statistical

properties of their input data streams. Since they are non-linear, they do not have a

unique transfer function representation in the frequency domain.

4.3.1 Predictive FIR Median Hybrid Filter

Predictive FIR mean hybrid filters (PFMH) are a subtype of OS filters that work as

follows (Heinonen and Nuevo, 1987). A sliding window of odd length moves along the



data. At each point, the data in the window is rank ordered, and the output

corresponding to the middle of the window is assigned a value based on the statistics of

the sorted data of the windowed samples. The first and last half window lengths of filter

output are undefined, as there isn't a full window of data available. PFMH filters assume

the existence of a root signal. As the filter is applied, it reduces the difference between

the input data and the root signal. Repeated application of PFMH filters allows the filter

output to asymptotically approach the root signal.

For this analysis, PFMH filters with a root signal corresponding to piecewise continuous

polynomials are used. These filters use a window of length 2*N+l. The first and last N

samples are used to calculate first order polynomials (root signals), which then are used

to estimate the value at the middle, N+1st, point. Filter output is the median of the two

predicted values, and the original value at the center of the window. Two filters were

used, of lengths N=6, and N=10, and each filter made two passes on the data.

Since first order segments were used as the root signals, as the filters removed noise,

they also tended to sharpen the corners of the nystagmus signals, which had previously

been rounded off by the analog filtering prior to digitization.

4.3.2 Calculation of SPV using Adaptive Asymmetrical Trimmed Mean (OS) Filter

PFMH filtered eye position was differentiated to yield eye velocity using a linear nine

point FIR velocity filter consisting of a three point differentiating filter convoluted with a

seven point low pass filter with a 10 Hz cut off frequency (Massoumnia, 1983). The z-

transform of the filter can be expressed as;

-. 0332z-4-.0715z -3 -. 0678z -2-. 0522z - '+.0678z 2 +.0715z 3+.0332z 4

Tz-4

where T is the sampling period, 1/120 seconds.



Using the eye velocity signal as input, an OS filter called the adaptive asymmetrically

trimmed mean (AATM) filter was then used to calculate the SPV (Engelken and Stevens,

1990). The filter works on the assumption that the eye spends more time in the slow

phase portion of nystagmus than the fast phase. With this assumption, a histogram of

eye velocities would show a peak near the SPV, skewed off of the zero mean line, with a

long tail or secondary peak at higher velocities representing the fast phase velocities. The

filter takes a one second window of data and sorts the velocity values into ascending

order. The ends of the sorted data are 'trimmed' asymmetrically, with more samples

being removed from the high velocity tail of the histogram. The mean value of the

remaining samples is taken as the filter output. It should be noted that the estimated SPV

probably won't correspond to the actual eye velocity at any given point in time, as the

SPV is estimated based on the velocity distribution of surrounding points rather than

velocity at an individual point.

4.4 Tachometer Analysis

The tachometer signal was analyzed to determine the stimulus parameters. Since the

chair velocity command was created by a hand controlled potentiometer, the ramps

varied from run to run, as did the steady state chair speed. Also, due to inexact voice

indicators used to mark the beginning and end of runs on the FM tape from which data

was digitized, the beginning of the runs occurred at different points in time in the

digitized data. Finally, due to stimulus duration being timed by the operator, stimulus

duration's varied. To determine these parameters, a MatLab script, tachan_MIT was

created by modifying an existing script, tachan (Balkwill, 1992).

In order to calibrate digitized chair velocity, a marker on the tachometer signal caused by

a button push was used as a scale. The button caused a spike, equivalent to 500/second,



to be superimposed on the tachometer signal. The value of the spike in A/D units was

calculated, and the calibration ratio obtained.

The tachanMIT script converted the sampled tachometer signal to degrees, then began

searching from the beginning of the signal until it found the tachometer had climbed to

50% of its expected steady state rotation value. The delay from the beginning of data to

chair start was recorded, and one second beyond the point of 50% chair velocity was

recorded as chair start based on the assumption that the chair would accelerate to full

speed in 2 seconds under ideal conditions. In some cases, due to low chair acceleration,

the point marked as the chair start occurred before the chair had actually reached full

speed. In these cases the triggering parameter was manually adjusted from 50% up to as

much as 90% until the operator was satisfied that the indicated chair start corresponded to

the chair's reaching its steady state velocity. In some cases, long chair acceleration times

lead to loss of as much as 10 seconds of data.

The chair velocity was calculated as the mean value of velocity from five to fifteen

seconds after chair start. Continuing from fifteen seconds, it continued to monitor the

tachometer signal until it fell to less than 50% of its steady state value, it then recorded

this as the end of chair rotation. For dumping runs an additional parameter was

calculated. At the time of the head reaching ninety degrees pitch, the subject was to

depress the previously mentioned button. The time of this button press was also recorded

as the beginning of the five second head pitch movement.

4.5 Outlier Removal and Decimation

Outlier removal for this analysis was fully automated. A script called statprep2 ,

modified from an existing script, statprep (Balkwill, 1992), performed this as well as

other statistical preparation.



First, each SPV file was normalized in time to a uniform length of sixty seconds for each

of the per and post-rotatory segments. This was done to facilitate comparisons between

runs by having start and stop times occur at the same point in each run and identical run

lengths. Per rotatory SPV data was retained from the calculated start time for sixty

seconds. If chair stop occurred before sixty seconds had elapsed, the data was

extrapolated to fill a full minute by adding points at the median value of the last five per-

rotatory points to fill sixty seconds. If chair rotation persisted beyond sixty seconds,

only the first sixty seconds were used. Post-rotational data was taken from chair stop for

sixty seconds, and was truncated or extrapolated in the same manner as the per-rotatory

data.

The algorithm for outlier detection was designed to remove artifacts in the EOG data.

Artifacts are present at all times in EOG data from a variety of sources. One common

source of artifacts in this data was subject alertness. A subject that shows a low level of

alertness will also show a lower VOR gain. When SPV drops near zero due to low

alertness, it is referred to as a dropout. High physical and mental demands on SpaceLab

missions generally lead to fatigue, and resulted in dropouts in the SPV data. A second

source of artifacts is caused by tugging on electrode leads. This could happen when the

dumping maneuver was performed if the leads caught on the chair back. Other artifacts

were the result of the subjects adjusting the goggles or touching the electrode leads. It

should be noted that this list of artifacts is not all inclusive.

For short duration dropouts, the AATM algorithm would interpolate across the dropout

due to its basis on the statistics of surrounding points. Dropouts of greater than about .25

second duration would cause AATM to reduce the SPV over that range, and of greater

than one second would allow AATM to preserve the dropout. Due to intrinsic EOG noise



on the SPV of the order of 100/second, dropouts in regions where SPV was at or below

this level were indistinguishable from the baseline EOG SPV noise. The automated

algorithm (Balkwill, 1992) considered only from t=2 to 20 seconds after start and stop for

this reason. The natural logarithm of the data was taken, and a least squares log-linear fit

was made to the data. The root mean square error (RMS) about the fit was calculated,

and any points that were more than 3*RMS away from the curve, or below 7.4

deg/second were ignored as were any points within .5 second of one of these points in

order to catch the beginning and end of any dropout. A new fit was calculated using the

remaining points and all points were compared to this new fit. This would continue until

the RMS of a fit converged to within 20% of the RMS of the previous iteration. The

'good' points of the last iteration were recorded for later use.

The data files were then decimated down to 4 Hz using dec_30_new . This was done in

order to reduce the computational intensity and storage demands for subsequent analysis.

Decimation was carried out by averaging points in 1/4 second blocks. Points marked as

bad by the outlier removal algorithm were omitted from this average. Each 1/4 second

segment was least squares fitted to a straight line to correct for the general trend of the

curve. The variance of the points around the fitted lines was calculated and recorded,

along with the number of good points in that section. Calculating variance with respect

to the mean value in the window (as done by Balkwill, 1992) is equivalent to calculating

the variance around a line of zero slope. However, since the curves were known to be

changing with time, the least squares fit provided a local approximation to the curve over

the window, and the variance was calculated relative to the estimated values generated

by the line. This gave a better estimate of the variance than finding the variance about the

mean value of the window (Balkwill, 1992), which gave elevated variance estimates due

to the known trend in the curve. Due to intrinsic EOG SPV noise, and residual trends in

the curve around the fitted straight line segments, the variance found in this way varied



greatly. Using such values of variance directly would compromise the robustness of the

parameters estimated by the model fitting routine. Therefore, to make a robust estimate

of the variance, a histogram for all the variances of decimated points was calculated, and

divided into three sections of equal area. A mean variance was calculated for each area

and each point in that area was replaced in the calculation with its sections average. This

variance estimate was referred to as the assigned mean variance.

The weight given each decimated point was calculated as the number of contributing

points, ni divided by the assigned mean variance. The weights were used in the ensemble

averaging process described in section 4.10.

Additional parameters were calculated at the time of decimation based on the number of

good data points in the decimated regions. That number was used as a basis for deciding

which runs were of sufficient quality to support a fit to the model. This number was used

to help develop the rules for run rejection described below.

4.6 Run Rejection

Some runs were unsuitable for further processing due to the presence of artifacts as

discussed in chapter 2. Some run segments were rejected after the model had been fitted.

Any run segment would be rejected if either;

1. statprep removed more than 10 seconds of data
2. It took more than 10 seconds for the chair to reach steady velocity.
3. The model fitting routine hit a constraint (i.e. chose a constraint as the best fit)
4. Peak SPV response was below 25 degrees/second.

The first rule was formulated to eliminate run segments which had a significant amount

of data removed as outliers by the outlier detection algorithm. The second rule

eliminated those runs for which SPV response would not approximately conform to

response to a step function input. This was because the model fitting routine assumed a



step function input run through a low pass filter. The third rule eliminated runs for which

the model fit was unable to find a physiologically reasonable set of parameters to fit the

data. The fourth rule was devised to detect inattentive or sleepy subjects who would be

expected to have reduced SPV response.

4.7 Individual Model Fits

MatLab scripts were written to fit the first order exponential, three parameter, and sk

VOR models to the individual runs. These are included in appendix M. The models

were fitted by using a constrained optimization routine that searched the constrained

variable space of the model in order to find the least squares best estimate parameters for

the model. The optimization routine was a script called CONSTR from the MatLab

optimization toolbox (Grace, 1990). As stated in Grace, 1990, 'CONSTR uses a

sequential quadratic programming method, which solves a quadratic programming sub

problem at each iteration. An estimate of the Hessian of the Lagrangian is determined at

each iteration and a line search is performed using a merit function and the quadratic

programming sub problem is solved using an active set strategy.' Variable constraints

were chosen on the basis of what was considered to be physiologically reasonable

parameter values.

The per-rotatory and post-rotatory segments of each run were fit separately. This was

done for two reasons. First, because some runs only had good quality data for either the

per or post rotatory sections, but not both, this allowed runs where only half the data

was good to have the good half uncorrupted by the inclusion of bad data. Second, this

method allowed the separate halves of the data to reflect any asymmetries in the

responses of subjects to the direction of the stimuli. This method had the disadvantage of

providing data segments of only 60 seconds, which was too short to permit complete



observation of the adaptation time constant in the five parameter model, which is

expected to be on the order of approximately 80 to 120 seconds.

4.7.1 First Order Exponential Model Fits

The simplest model that was fit to the data was the first order model of section 2.5. This

model was fit to the data from 2 seconds following the start (or stop) to the full 60

seconds. The first two seconds were omitted to allow transients from the chair

acceleration to damp out, and because, due to the same transients, outlier detection

could not be reliably performed over this region. The constraints placed on the model

were as follows;

.18 5 K 5 1.8

5 T< 45

These constraints are believed to be physiologically reasonable, and were operationally

satisfactory as no fits reached the parameter boundaries.

4.7.2 Three Parameter Model Fits

The three parameter model was also fit over the region of 2 to sixty seconds after chair

start (or stop) for the same reasons noted in section 4.3.6.1.. Based on previous

experience with this model (Balkwill, 1992), and expectations of what is physiologically

reasonable, initial model constraints were chosen as follows;

.1 < K 1.8

3 < 1/ho 300

0 go < .45

Ta =80 seconds (fixed)

Ts = 6 seconds (fixed)

The adaptation time constant was fixed because using a sixty second stretch of data, the

time course of data was not long enough to accurately determine it. The cupula time



constant was fixed in order to assist convergence of the optimization. When fit to

individual runs with the additional degrees of freedom available, the model fit can

respond to atypical variations in individual run data. On three run segments, the fits of

the model parameters reached one of the assigned boundaries, and were discarded (see

section 4.6).

4.7.3 S k Model Fits

For a subset of runs, the sk parameter model was also fit over the region of 2 to sixty

seconds after chair start (or stop). Based on experience with this model, and Correia's

work, initial model constraints were chosen as follows;

0 C 15

0 k <1

55Tc< 15

3 < 1/ho 5300

0 5 go 5.45

The results of the sk model fits were used to evaluate the performance of the model, and

were not used to analyze vestibular changes due to micro gravity. Not all runs were fit to

this model due to slow computation.

4.8 Dumping Model Fits

Due to the brevity of the dumping head movement, the model fitting routines did not

have enough data to fit only the dumping portion of a run, while the remainder of a run

could not be used due to both possible contaminating effects from the dump movement,

and the loss of the first 5-10 seconds of data due to the dumping head movement. This

forced a different modeling approach for the dumping runs.



Due to the small amount of data, it was necessary to constrain the variation in the runs to

as few parameters as possible. Thus, only a simple exponential was fitted. In order to

minimize noise and computational speed, this was implemented as a log-linear least

squares fit. The data was fit in three sections independently. From chair start to 0.25

seconds before indicated dump was referred to as the 'before' segment. From 0.25

seconds after indicated dump to 4.75 seconds after indicated dump was referred to as the

'dump' segment. From 5.75 seconds after indicated dump to 19.25 seconds after indicated

dump (30 seconds after chair stop) was referred to as the 'after' segment.

4.9 Residual Analysis

Residuals of decimated SPV data around the three parameter model fitted values were

calculated in order to better assess the quality of the model fits. They were visually

scanned individually for possible systematic time trends, and the mean values of the

residuals were calculated. For some of the runs, periodograms were calculated using the

Spectrum function in MatLab in order to examine the frequency properties of the

residuals.

4.10 Mean Model Fits

A selected group of decimated runs were averaged together. The mean SPV curve was

calculated as a weighted average of the runs, using the weights calculated as described in

section 4.5. This was done to give greater weight to runs that had low variance, and

many contributing (pre-decimation) points. This would be expected to give a better

estimate of SPV in the regions that included or lay adjacent to points that had been

removed by statprep in any of the individual runs. In an individual run, due to the

removal of some of the points, the estimate of the SPV created by dec_30_new would

have larger variance due to the reduced number of data points contributing to the

estimate. Therefore, when averaging runs together, this was taken into account through



the weights, which would allow each individual run to contribute proportionally to the

mean relative to the number of good pre-decimation points divided by the variance of the

good pre-decimated points. The variance of the mean SPV curve at each point in time

was estimated as;.

wi[xi(t)- x(t)]2

s2 = _1 n,

(ni- 1)

where xi(t) is the value of the ith run at time t, and x(t) is the value of the weighted mean

value of all runs at time t. The multiplication by (n where n was the number of
(ni - 1)

SPV curves contributing to the mean at each point in time, was in order to account for

the lost degree of freedom.

The mean SPV curves were fit to the models in the same manner as the individual model

fits(section 4.3.6), with one significant difference. The cost function for the optimization

of the mean model fits was weighted at each point with a weight calculated in the same

manner as the weight used for the averaging procedure. This was done in order to

provide a maximum likelihood estimate fit to the data by placing higher weights on the

points in time in the mean data with the lowest variance or most contributing points, and

lower emphasis on points with higher variance, when fitting the models.

4.10.1 Statistical Comparison of Mean SPV Curves

Two forms of statistical analysis were performed on the mean SPV curves to determine if

they were significantly different. The first test was the Xt2 test, to determine if the two

curves were different from each other. The second test was the students t test at each

point along the line to determine where the curves were significantly different.



Both tests used the pooled variance of the two runs calculated at each point in time using

the formula;

S((n (t) - 1)s2(t) + (n2(t) - 1)s2 (t))
P = h(t) + n,2(t) - 2

where, n (t) = number of runs in ith curve

si (t) = ith run's variance

s (t) = pooled variance

The students t test (Balkwill, 1992), was conducted at every point in time

x (t)- x2(t)
s = (t) + 1

n (t) n (t )

and the sum of t-squares is just the summation of these values at every point of time;

t 2  (xI (t) - x2(t))

t sP (t)( + 1

nz (t) n2 (t)

This test statistic was also calculated in previous analysis of this data set (Kulbaski,

1988), and in analysis of the D-1 mission (Oman and Weigl, 1989). However it was

compared to the X2 distribution. This is only valid if ni and n2 (number of curves

averaged together) are large. For cases with nl and n2 small, this statistic should be

compared to the Xt2 distribution which depends on ni and n2 instead of the x 2 = Iz 2

distribution. Although the It 2 distribution was originally unknown, previously (Balkwill,

1992, Pouliot, 1991), a Monte Carlo simulation was run to determine Xt2 probability

values for profiles containing 100 points in time (100 degrees of freedom) for values of

2<nl<20, and 1<n2<10.



For degrees of freedom other than 100, tables of the Xt2 distributions are presented in

Balkwill, 1992. The ratio criterion of Xt2 values to the number of degrees of freedom

(df), r, decreases slowly as the number of degrees of freedom increases (Pouliot, 1991).

For one sample case (nl = 40, n2 = 16) the r value for p<.05 for 100 df was 1.29, while

for 56 df the p<.05 r value was 1.37. For greater numbers of df, the tables would provide

a slightly conservative estimate. The df in this study ranged from 58 to 231, so for most

cases the p values would be conservative.

The p values were calculated under the assumption that the nl and n2 didn't vary with

time. Calculating the distributions with either of these varying would require Monte

Carlo simulation, and was not attempted. Instead, for each run, the mean value of ni

was calculated and rounded downwards to determine the appropriate n value for each run.



5.0 Results

The SPV response for each run was calculated using the algorithms described in chapter

4. The vertical SPV data was not analyzed, as the experiment was designed to isolate

horizontal vestibular responses, although several runs were randomly chosen and

manually inspected for evidence of vertical nystagmus. No incidence of significant

vertical nystagmus were noted.

5.1 Calibration

The corneo-retinal potential is known to vary slowly over time, and is very sensitive to

light level (Gonshor and Malcolm, 1971). Changes in the light level were large for the

calibrations on the SL-1 mission. While runs were performed in total darkness,

calibrations were performed in normal interior ambient light conditions. This could have

the effect of changing the EOG potentials for the calibrations relative to the runs, and

induced a drift in the EOG potential that sometimes seemed visible on the calibration

EOG traces.

Since this analysis was performed primarily on SPV, as opposed to position, the act of

differentiation would scale the SPV, so, while the absolute magnitude of the SPV may

have changed slightly between calibration and test run, the relative magnitudes over the

length of a run would be unchanged and thus the shape of the SPV curves wouldn't be

affected, only their magnitude. From Gonshor and Malcolm, it was noted that EOG

potential decreased for ten minutes when white lights were switched to red for dark

adaptation, and then increased for a further ten minutes. Based upon the calibration

factors that were calculated for each subject, and the knowledge that each calibration was

separated by at least two runs, and therefore more than four minutes, we expect that the

magnitude of change in the EOG potentials over the course of a single run would be

small, on the order of 10% or less for most cases, while variations from run to run



would be accounted for through the linear interpolation of run calibration factors between

calculated calibrations. Second, from the same research (Gonshor and Malcolm, 1971)

we would expect that, had the lights remained off for the calibrations (to prevent EOG

potential from changing due to the light) we would expect to see a decrease from the first

to second calibrations, and an increase from the second to the third. This pattern only

emerged twice out of 32 cases. A drop from the first to second calibration, or a rise from

the second to third only occurred in six of the remaining 60 half cases. This is likely to

be a result of the EOG potential responding to the room lights being turned on for the

calibrations following dark adaptation. Calculated calibration factors are shown in tables

A. la through A. 1d in appendix A.

One unfortunate result, was the consistently low EOG potential of subject A. This was

reflected in the high calibration factors, between two to six times higher than the other

three subjects on average. This meant that the resolution on eye position was similarly,

1/2 to 1/6 of that of the other subjects. An associated problem was that the signal to noise

ratio was similarly reduced by a factor of two to six. As a result of this, the noise in the

EOG signal, electro-magnetic and biological and nature, was too high to permit

satisfactory analysis of subject A. Therefore subject A was arbitrarily omitted from

further analysis.

In previous analysis of this data set (Kulbaski, 1988), subject A was analyzed. However,

the quality of individual runs for this subject had less bearing in that analysis, due to all

analyses being conducted on ensemble averaged runs, both within and between subjects.

Assuming that the noise on subject A is random with zero mean, averaging the runs

should reduce the RMS magnitude of the noise on the averaged run. It should be noted

however, that in Kulbaski (1988) none of subject A's responses analyzed separately from

the other subjects proved statistically significant. Finally, in his report, Kulbaski states



that subject A, "... has the noisiest EOG signals, ...", and visual scanning of Kulbaski's

plots confirms this.

5.2 Rejected Runs

Due to previously mentioned artifacts and conditions, several of the runs were eliminated

from further analysis using the rules defined in chapter 4. Tables 5.la through 5.ld show

the status of all of the runs on a subject by subject basis. In many cases, only half of a

run would be omitted, either the per-rotatory or post-rotatory section only. In particular,

this was prevalent for the post flight BDCs. This is because the subjects were fatigued,

and instructed to relax during the per-rotatory sessions, and concentrate during the post-

rotatory sessions. This resulted in few good per-rotatory runs post flight, but improved

quality on the post-rotatory portions.

Run F-90 F-60 F-30 F-11 F-10 R+1 R+2 R+4
2 12 12 12 12 12 12 12 12
3 12 12 12 12 12 12 12 12
4 -- -- 12 -- -- -- -- --
5 12 12 12 12 12 12 12 12
6 12 12 -- 12 12 12 12 12
10 -- 12 -- -- -- -- -- --

Table 5.1a, Run rejection status for subject A. Empty boxes indicate
runs kept in entirety, a "1" indicates omission of per-rotatory segment,
a "2" indicates omission of a post-rotatory segment, dashes indicate
runs not performed or calibrations.

Run F-90 F-60 F-30 F-11 F-10 R+1 R+2 R+4
2 12 -- 1 1 12
3 2 1 1 1 1
4 -- -- 1 -- -- --
5 1 -- 1 -- 1 1
6 -- -- 1 1 1 12
7 -- 2 -- -- 1 -- -- --
11 -- 2 -- -- -- -- -- --

Table 5.1b, Run rejection status for subject B. Empty boxes indicate
runs kept in entirety, a "1" indicates omission of per-rotatory segment,
a "2" indicates omission of a post-rotatory segment, dashes indicate
runs not performed or calibrations.



Run F-90 F-60 F-30 F-11 F-10 R+1 R+2 R+4
2 2 1 -- 1 1 1 12
3 1 2 1 1
4 -- -- -- -- -- --

5 1 1 1
6 -- 12 1 12
10 -- -- -- -- -- -- --

Table 5.1c, Run rejection status for subject C. Empty boxes indicate
runs kept in entirety, a "1" indicates omission of per-rotatory segment,
a "2" indicates omission of a post-rotatory segment, dashes indicate
runs not performed or calibrations.

Run F-90 F-60 F-30 F-11 F-10 R+1 R+2 R+4
2 1 1 -- 1 1 1
3 1 1 1 1
4 -- -- 1 -- -- -- 1
5 1 -- -- 1 1 1 1
6 1 1 -- 1 1 1
7 -- 1 -- -- -- -- -- --
13 -- 1 -- -- -- -- -- --
14 -- 1 -- -- -- -- -- --

Table 5.1d, Run rejection status for subject D. Empty boxes indicate
runs kept in entirety, a "1" indicates omission of per-rotatory segment,
a "2" indicates omission of a post-rotatory segment, dashes indicate
runs not performed or calibrations.

5.3 Individual Model Fitting

Two of the three models discussed in section 2.6, the simple exponential and the three

parameter model, were fitted to the data separately for each subjects per and post-rotatory

runs. The first model that was fitted to the individual run data was the simple exponential

model. The optimal model parameters K 1 and T, for each run for each subject were

calculated. The three parameter model was fit to the individual run data. The optimal

model parameters K, ho, and go for each run and each subject were calculated. The

calculated model parameters for both models are tabulated in appendix A by subject and

by per or post rotatory segment for all runs that were individually analyzed. Subject B's



responses are shown in tables A.2.1 and A.2.2, subject C's responses are shown in tables

A.3.1 and A.3.2, and subject D's model responses are shown in tables A.4.1 and A.4.2.

5.3.1 Assessment of Model Gain Results

It is noticeable that the average first order exponential model fit gains of all three subjects

are higher than the expected values. All three subjects showed mean preflight gains of

between 0.65 and 0.9, while 0.6 is considered to be approximately the norm for humans

with "stare straight ahead" instructions. Several methods were used to test for why this

occurred. First, calibration factors were recomputed on a random sample of 8 calibration

runs across subjects B, C, and D to test for faulty calibration calculations. The average

difference between the old and new calculated calibration factors was found to be 1.2%,

which is too small to account for the differences observed. A second possible source of

error was the calibration target set-up. If the measurement of eye to target distance was

wrong, (e.g. if measurements had been improperly made from the headrest instead of the

eye), calibration factors would be affected. Lab notebooks from the experimenters do

not show any evidence of such a mistake. A third possible source of this discrepancy is

in the run rejection criterion, in particular rule number 4, rejecting runs with less than 25

degrees per second peak SPV. This could lead to elimination of runs with lower gains

and thus bias the average of the remainder upward. This rule alone was only used in 7/69

rejected run segments, however an additional 7/69 run segments had peak SPV below 25

degrees per second, and violated another rule as well. The remainder of the rejected runs

did not show a lower mean when preflight and post flight rejected runs were averaged

together. However, the average gain of only the preflight rejected runs, had average gain

of 0.54.

An other source of increased gain relative to Kulbaski, 1988, is the method of model

computation. Kulbaski chose to do a log-linear fit to the data to obtain the gains and time



constants. For this thesis, the model was fit to the first order exponential without first

taking the log. Log-linear fits were computed herein during the outlier removal

algorithm. Approximately twenty cases per subject were examined for differences

between the gains found by this log-linear fit and the first order exponential model.

Cases examined included per and post rotatory runs in both directions, but did not

include dumping runs. This study found that the first order exponential gain for subject B

was an average of 0.115 higher than for the log-linear gain. Similarly subjects C and D

had simple exponential gains that were 0.074 and 0.100 higher than their log-linear gains

respectively. The reasons for this seems to be that the 10E model overestimates the SPV

in the first two to four seconds of a run, and the log-linear fit weights the later SPV

points more than the 10OE model. Since the model fit routine did not fit the first two

seconds of data, the extension of the model fit over this region quite often predicted

higher and sharper initial peaks in the data. This did not seem to affect the three

parameter model fits , because the velocity storage terms allowed the model to fit a more

rounded initial peak to the data.

Finally, the outlier removal process could also have contributed to increasing the gain.

Any dropouts occurring early in the data would tend to force the model fit to pick a lower

gain because dropouts are regions of low SPV. Removal of dropouts by the outlier

detection algorithm, statprep2, would give higher estimates for the gain fitted to the

remainder of the data.

This combination of effects from the rejected runs, and model fitting procedure, could

conceivably account for the observed upward bias in the gain in the preflight runs.



5.3.2 Three Parameter Model Directional Asymmetry Analysis

Directional asymmetries were noted in several D-1 and SLS-1 subjects (Oman and Weigl,

1989, Balkwill, 1992) therefore following initial model fits to the individual runs, the

model parameters of the three parameter model were examined to determine if any

significant directional asymmetry existed. Per rotatory responses in each direction were

compared to each other, as were post rotatory head up responses. Dumping responses

were not analyzed as the dumping occurred only for the t=5 to t=10 seconds after chair

stop, preventing fitting of a model over the whole post-rotatory section. The small time

duration of the dumping pitch head movement precluded individual analysis of dumping

model parameters. Results of directional asymmetry are noted in table 5.2. The model

parameters were compared using the students t test with the assumption of unequal

variances for each direction. The only potential directional asymmetry found was for

subject C, for whom there were two model parameters out of the set of six, that showed

a probability of p<.05 for directional asymmetry. The per-rotatory go and post-rotatory

ho were found to be significantly different. However, the other four parameters,

including post-rotatory go and per-rotatory ho, were not found to be statistically

significantly asymmetrical. For any random distribution of 18 parameters such as these,

we would expect one of them to be significant simply due to random effects. It therefore

seemed unlikely that a significant directional asymmetry existed in these subjects.

Subject Section Nccw New prob(K) prob(go) prob(ho)
B per 7 6 .329 .757 .711

post 4 3 .991 .403 .466
C per 10 8 .128 .622 .001

post 7 5 .775 .025 .757
D per 4 4 .800 .859 .126

post 6 6 .854 .133 .177
Table 5.2, Summary of directional asymmetry t-test results on three
parameter individual model fit parameters.

In his analysis, Kulbaski tested for differences in the directional responses of these

subjects using a X2 test on direction for both the preflight head up and dumping runs. He



also found that there was no significant directional asymmetries in this subject

population.

5.3.3 Normalization of Data

In order to remove any possible variation due to differences between subjects, between

per and post rotatory sections, and any (undetected) directional asymmetries, each

subjects model fit parameters were normalized. In each case, the normalization was

done with respect to the mean of all per or post rotatory preflight parameters for a

particular subject and particular stimulus direction. This implied that the effects of space

flight would have a similar effect on subjects responses (model parameters) regardless of

run segment or direction. This allowed the data sets to be combined for analysis,

reducing several small data sets into fewer larger data sets that would improve the ability

to differentiate changes in the model parameters. A similar approach was recently used

by Oman and Calkins (1993) in analyzing the IML-1 MVI data. The preflight clockwise

and counter clockwise mean values used in the normalization are shown at the bottom of

tables A.2.1 through A.4.2 in appendix A.

A side effect of this normalization process is that it sets the preflight baselines all to a

value of 1.0. Differences between preflight and post flight then become the difference

between the post flight normalized means and 1.0.

5.3.4 Comparison of Preflight and Post flight Responses

For comparison between preflight and post flight responses, the data was divided into

two categories, preflight (F-90 to F-10), and return (R+1, R+2, and R+4). (Analysis of

data was also repeated after separating R+4 into a separate category denoted recover.

This was to check whether subjects had begun to re-adapt to the 1-G environment,

moderating the changes relative to preflight by test day R+4. This had the trade off of
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Figure 5.1a, Normalized Three Parameter Model gain, K, for all
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Figure 5.2a, Normalized first order model gain, K, for all subjects,
both directions, per and post rotatory.
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Figure 5.2b, Normalized first order model time constant, T, for all
subjects, both directions, per and post rotatory.

reducing the sample size of the return portion, and having a small sample size in the

recovery portion. As a result, no additional factors showed as significant, and therefore

only the two gravity level (preflight and return) analysis was presented here.) Plots of

three parameter model parameters for all subjects in both CW and CCW directions of

both per and post-rotatory normalized data are shown in figures 5.la through 5.lc.

Individual three parameter model fits did not show any clear trends for the changes in

model parameters post flight. The mean gains of the three parameter model fits increased

for subjects B and C, but decreased for subject D. The leak rate time constant of velocity

storage, ho, showed little change in any subject. The trend in indirect pathway gain, go,

was towards a decrease in all three subjects, but this parameter had the most variation of

the three parameters. Also, there was a trend to reduced spread in the model parameters
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post flight in ho and go. Three parameter model mean parameters, and variance, for all

subjects are shown in table 5.3.

For the first order exponential model gain, there was no distinct trend across the three

subjects. Subjects B and C each showed slight post flight increases in gain, while

subject D showed a decreased gain post-flight. Due to the small number of samples,

none of the changes had statistical significance. The first order exponential time constant

showed a consistent trend among the three subjects. In each subject, the first order

exponential time constants were seen to decrease post-flight. None of the subjects showed

evidence of recovery by day R+4. Table 5.4 is also included to show the variances and

means for the fits to the first order model for all three subjects.

In order to compare the post flight response to the preflight baselines, two tests were

applied to the normalized data; the students t test with unequal variances ( Microsoft

Excel, version 4.0), and fully factorial multiple ANOVA (Systat, version 5.2). For the

students t test, the return portion was compared to the preflight baseline, and the two-tail

t test was used because subject D exhibited changes in model parameters in different

directions from subjects B and C. The ANOVA was performed separately on each

subject for the same reason, using direction of rotation, and preflight versus post flight as

factors (2x2 ANOVAs on each subject). T-test results for both models are shown in table

5.5.

Examining tables 5.3, 5.4 and 5.5 shows that there is a diversity in the three subjects

responses to micro gravity. Subjects B and C showed similar responses, while subject D

showed changes in model parameters in the opposite directions. In particular, while

subject B showed a significant increase in three parameter model gain post flight, and



Subject K ho go # samples
Pre Flight mean 1 1 1 30

variance 0.079 0.096 0.390

Return mean 1.203 1.112 0.797 12
variance 0.035 0.078 0.139

Pre Flight mean 1 1 1 35
variance 0.062 0.059 0.227

Return mean 1.175 1.021 0.826 10
variance 0.056 0.062 0.173

D Pre Flight mean 1 1 1 16
variance 0.076 0.035 0.83

Return mean 0.699 0.975 0.817 12
variance 0.076 0.121 0.281

Table 5.3, All subjects three parameter model
model parameters for all subjects, CW and CCW for
rotatory segments.

mean normalized
both per and post-

Subject K T # samples
Pre Flight mean 1 1 25

variance .037 0.072

Return mean 1.045 0.977 9
variance .016 0.016

C Pre Flight mean 1 1 35
variance 0.033 0.035

Return mean 1.084 0.927 10
variance .013 0.046

D Pre Flight mean 1 1 15
variance .060 0.038

Return mean .813 0.950 12
variance .066 0.120

Table 5.4, All subjects first order model mean normalized model
parameters for all subjects, CW and CCW for both per and post-
rotatory segments.



subject C showed an trend to increase in gain, subject D showed a significant decrease

in gain. None of the subjects showed any significant change in the leak rate time

constant, ho. The indirect pathway gain, go, showed no significant change, but had a

decreasing trend for B, C, and D. The lack of significance may be due to the high

variability in this parameter. First order exponential model gain showed an increasing

trend for B and C and decreased for D, where subjects C and D were both significant at

the p<0.10 level. The apparent time constant had a decreasing trend for all three without

significance.

The 2x2 ANOVA results showed significance in the preflight versus post flight factor for

the three parameter model gains as well for subject B(F = 5.76 , df =1,38 , p= .021),

subject C (F = 4.24, df =1, 41 , p= .046) and subject D (F = 5.52, df =1,22, p= .011).

However, the first order model fit gains, which were almost significant (p<0.10) for the

t-tests for subjects B and C did not register flight condition as a significant factor. The 3P

and 10E ANOVAs also suggested the possibility of a directional asymmetry in subject C,

however the small sample size of post flight cw responses precluded any significance.

3P Model 10E Model
Subject K h o K T
B return 0.010 0.266 0.203 0.377 0.711

C return 0.061 0.808 0.276 0.092 0.350

D return 0.001 0.827 0.338 0.064 0.662

Table 5.5, All subjects two tailed t-test probabilities assuming
unequal variances for all model parameters. Statistically significant
results are presented in bold text.

5.3.5 Evaluation of sk Model

Since the sk model has not been applied to human horizontal angular VOR response data

previously, this model was studied and compared with existing models in order to assess



the relative strengths and weaknesses of each in their ability to describe the data. Each of

the models possesses a physiological or mathematical basis which suggests that it is

capable of modeling the VOR, however, the sk model will only be compared to the three

parameter model. Justification for this choice stems from the fact that this model is the

closest mathematically to the sk model. The significant difference between them lies in

the replacement of the adaptation time constant with the sk operator.

5.3.5.1 Comparison of sk and Three Parameter Models

Mathematically, the two models are identical with the exception of the adaptation time

constant of the three parameter model being replaced by the sk operator in the sk model,

both of which are meant to capture adaptation. This has the effect of changing the model

from a third order linear model, to a fractional order linear model through the

replacement of one pole with the sk term. This change has a bearing on the subsequent

time series responses of the two models. These were studied two ways, first by fitting

synthetic data generated by one model to the other model. Second, by comparing each

model's fit to actual data.

5.3.5.2 Comparison Using Synthetic Data

Several comparisons between the two models were made using each model to generate

data for the other model to fit. For the generation of data, model parameters were chosen

that were similar to parameters of fits to real data. The fits were conducted on only a

sixty second portion of data, representing either per-rotatory or post-rotatory data in

order to simulate the manner in which real data was fit. One example of such synthetic

fits are included in figure 5.3. For figure 5.3, the three parameter model response to a

velocity pulse input was used to calculate the synthetic data. This was then fit by the sk

model using the model fitting routines described in chapter 4. The model parameters

from this fit (First Fit) were then used to generate synthetic data which was in turn fit by



the three parameter model (Second Fit). Both models were run with the cupula time

constants fixed at 6 seconds in order to reduce the computational intensity of the models

and aid convergence by reducing the number of degrees of freedom.

From the fit of the sk model to the three parameter model synthetic data, it can be seen

that the two models are fairly close to each other, and similar in shape. The indirect

pathway gain of the sk model fit is 13% greater than that used by the three parameter

Initial First Second
Synthetic Fit fit
K =.7 G =.948 K = .69
Ta = 80 MSE = 3.717 k = .301 MSE = .0002 Ta = 80
Tc = 6 105 iterations Tc = 6 78 iteration Tc = 6
go =.120 go = .136 go = .121
1/ho = 32 1/ho = 22.1 1/ho = 31.74

Iable 5.6, Synthetic ata generauon
parameters from figure 5.1.

parameters ana moael Iit
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Figure 5.3, Comparison of sk and three parameter models. Dashed
line is three parameter model synthetic data, solid line is sk fit.
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model used to generate the data, while the leak rate time constants, ho, differ by 32%. In

both cases, the model fits are equally physiologically reasonable to the values used to

generate the data. The gain terms, K and G cannot be easily compared. This is because

the gamma function gain changes with the time constant that it is being convolved with,

and with k. Therefore, while the transfer function associated with K has unity gain, that

associated with G does not, and therefore they cannot be directly compared.

5.3.5.3 Fitting Both Models to Real Data

As a second method to compare the models, each model was fit to several sets of

individual run data. The results of each model fit to one such post-rotatory head erect run

are shown in figure 5.4. Model fit parameters for both models for this run are tabulated

in table 5.7.

From figure 5.4, there is little difference to be seen between the two models. The

indirect pathway gains found by each model differ by 4% while the ho was found to differ

by 14% between the two models. Again it should be noted that both models converged

on physiologically reasonable solutions. Additional insight may be gained through

analysis of the residuals between the two models, and between each model and the data.

These are presented in figure 5.5.

Model MSE # iter.

sk  20.41 134 G = 1.262 TI = 6 k = .287 go = .138 1/ho=23.04

three par. 15.70 80 K = .818 Tc = 6 Ta = 80 go = .143 1/ho=20.15

Table 5.7, Model fit parameters for sk and three parameter models
to C203 post rotatory data.
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The residuals pictured in figure 5.5 are fairly characteristic of the pattern for these models

run on good (low noise) data. From this figure it can be seen, that while neither model

fits the curve perfectly, the residuals of the data around each model fit are comparable in

magnitude. In particular, it is impossible to differentiate between the two models as to

which is a better fit to the data given that the noise (residual) between the data and either

curve is greater than the difference between the two models.

The sk model was run on 67 individual run segments including all three subjects preflight

and post flight, per and post rotatory, to examine the quality of the fits over many runs.

The results of these fits are included in Appendix A as tables A6 through A8.

Throughout this data set, the quality of the runs was measured visually by the operator,

and by the MSE of the model fits. In 56% of the test cases, the sk model had a higher

MSE, while it was lower in the remaining 46%. Comparison of the MSE using a paired-t

test showed no significant difference between the errors in the two models. However,

there were several cases of the sk model choosing a fit that was at the limit of one or more

of the constraints, or failing to converge on a solution. This happened for 4 of 67 test

segments (either per or post-rotatory). Over the same data set, the three parameter model

never failed. While fits at model constraints did not seem to affect the quality of the sk

fits, it would make the analysis much more difficult, as the sk model had chosen a

parameter at the constraint, or beyond, if the constraints are relaxed, that are either

physiologically unreasonable, or may represent other parameters that have not yet been

correctly identified. This was likely due to the extra degree of freedom in this model (C,

k, go, ho) versus the three parameter model (K, go, ho).

The sk model may require a longer data set in order to achieve good, unconstrained model

fits. The sk term is used to replace the adaptation time constant in the three parameter



model, which is believed to be quite long, on the order of 80 seconds. The three

parameter model has proven in the past to be unable to fit this long time constant with

only sixty second windows of data (Balkwill, 1992), and thus for this rotation protocol

the adaptation time constant was fixed at 80 seconds for analysis to aid model

convergence. This additional degree of freedom in the sk model slows convergence, and

adds an additional sink for the variance in the data. Reducing the degrees of freedom in

the sk model would aid convergence, but in order to fix the adaptation term, k, a

reasonable value would be needed. Lack of previous experience with the model precludes

this constraint. A possible improvement may be gained through fitting to the entire 120

seconds of per and post-rotatory response at once, rather than fitting the halves

separately. This would provide increased data to aid in the fit of the adaptation operator.

Due to the small number of individual runs with both per and post-rotatory responses of

sufficient quality for individual model fitting, this was not attempted.

A brief statistical analysis of the sk model fits was conducted on a subset of data from

subjects B and D. None of the four sk model variables showed any significant changes

post flight versus preflight when tested using the student's t test for unequal variance.

This was possibly due to having too many degrees of freedom, or data samples that were

too short. On the basis of this result it was felt justified not to fit the remainder of the

data set to this model. Also, based on this analysis of the sk data with four degrees of

freedom, it was not possible to confirm the changes seen by Correia (increasing G and k)

in his sk canal afferent model, with this corresponding sk VOR model.

5.3.6 Miscellaneous

It was felt to be possible, that over the course of a single BDC session, the subjects may

exhibit adaptation as a result of experiencing the four or more vestibular stimuli. To

minimize this, stimulus directions were alternated during testing. To examine whether



any adaptation had in fact taken place, the parameters from the individual run's simple

exponential model fits were examined for trends from the first stimulus to the last

stimulus on any given day by plotting the parameters along the order of runs, and

watching for trends. Examination of all three subjects showed no distinct trends in any

of the parameters throughout the course of the BDCs.

The residuals of the individual runs around the three parameter model fit were studied for

the appearance of trends that might signify unmodeled dynamics. No trends in the

residuals found along time in the runs, and in every case, the mean of the residual was

less than one standard deviation away from zero. The frequency content of the residuals

was concentrated in the region from 0.25 to 1.0 Hz. This was to be expected as the 4 Hz

sampling rate (following decimation) would eliminate noise above 2 Hz, and the OS

filtering effectively smoothed the data above 1 rad/sec.

An alternate method for dealing with the slow chair acceleration to full speed due to

manual control of the chair command was implemented. The three parameter model was

fit to all per-rotatory runs using the tachometer signal decimated to 4 Hz. This model fit

was performed on all per-rotatory preflight run segments from two seconds before chair

start up to chair stop, including the acceleration portion of the chair motion that was not

fit using the normal approach. The parameters calculated by these model fits were

compared to the normal method parameters using a paired-t test (Excel 4.0). None of the

model parameters for any subject were found to be significantly different at the p<0.05

level.

5.4 Analysis of Dumping Runs

The parameters from the dumping runs simple exponential log-linear fits are included in

tables A5a through A5c in appendix A. For this analysis, a fit was considered to be bad,



if the log-linear slope was found to be positive. This is because for all SPV curves after

chair stop, the SPV should decay, while a positive slope indicates that SPV is growing.

In general, the log-linear fit did not give consistent results for the time region before the

dump. This is likely due to the existence of residuals from the chair stop as well as having
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Figure 5.6, C304 log-linear fits to before dumping region, dumping
region, and after dumping regions (first, second and third straight line
segments from left, respectively).

little data on which to base the fits. An example of a badly fit dumping run is shown in

figure 5.6. An example of a dumping run which was well fit by the model is shown in

figure 5.7.

In figure 5.6, the characteristic problem of increasing SPV before the dump is initiated is

shown. This occurred in 28 out of 34 tested cases. In figure 5.6, a positive slope on the

after dumping region is also shown. This occurred in 2 out of 34 cases. Occurrences of

positive slope in the dumping region was in 1 out of 34 cases. This case was not

processed further. Figure 5.7 shows a run typical of the responses for the dumping and

after dumping regions for the fits that were retained. For a single run, C506, the subject



neglected to push the button to indicate that the dumping head movement was performed.

For this subject, the time of head down was assumed to occur at the nominal point of 5

seconds following chair stop.
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Figure 5.7, C205 log-linear fits to pre-dumping region, dumping
region, and post-dumping regions (first, second and third straight line
segments from left, respectively).

The pre flight and post flight mean dumping model slopes for subjects B, C, and D are

shown in figures 5.8a through 5.8c respectively.

From the three figures, it can be seen that for all three subjects after dumping, and for

subject C before dumping, that the slopes of the log(SPV) decreases following exposure

to micro gravity. This is equivalent to a shortening of the time constant over these

regions where dumping has not occurred.

On the dumping portion of the runs, subject B's slope decreases following exposure to

micro gravity, while subjects C and D show increases in the slope corresponding to a



lengthening of the dumping time constants. There is a distinct trend present for dumping

and non-dumping time constants to approach each other post flight. To test this the

preflight versus post flight changes were tested for significance using the students-t test
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Figure 5.8b, Subject C, mean dumping model slopes.
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Figure 5.8a, Subject B, mean dumping model slopes.
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assuming unequal variance. Due to the small numbers of runs, only subject's B and C

could be tested for preflight versus post flight changes in dumping and after dumping

slopes. While both B and C showed a decrease in the dumping slope post flight, B was

not significant, while C was significant at the p<0.025 level.

In order to provide a larger sample size to test for significance, the slopes were

normalized with respect to preflight mean values in each direction, and the normalized

values for all three subjects were grouped together. Analyzed this way, the grouped data

showed no significant changes preflight versus return or recovery. The dumping slope

showed no change, while the after dumping slope increased (time constant decreased)

on return, but not with significance.

The dumping runs were not ensemble averaged and then fit with the model as was done

with the per-rotatory and head-erect runs. This was a result of the dumping head

movement occurring at different points in time for each run. This caused a time shift in

the between runs data. Removing the time shift would introduce a magnitude shift, since......0. mxe r ... post...ght
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the magnitude was time dependent. This made it too difficult to average the dumping

runs together, and thus, the data was only fit individually.

5.5 Analysis of Ensemble Averaged Responses

The SPV data was ensemble averaged, as described in section 4.10, and model

parameters were fit to the ensemble averaged responses. The ensemble averaging process

makes several assumptions about the nature of the VOR: First, that the VOR dynamics

are stationary and therefore there is no variation in model parameters. Second, that the

measured response contains additive zero mean noise. Third, that all dropouts and other

non-zero mean artifacts have been successfully removed. Finally, if averaging across

directions, that no directional asymmetries exist. If any of these assumptions were

violated, the average of the individual run model fits will not be equal to the ensemble

average model fits.

Some additional runs were included in the ensemble averages that could not be fit as

individual runs. These consisted primarily of either runs that showed the characteristic

SPV decay profile but were too noisy to fit as individual runs, and runs that were fit as

individual runs, but had fits that reached one or more of the model constraints. The

additional run segments included in the ensemble averages were;

Post-Rotatory: B203 C102 D105
B211 C606 D106

D405
D406

Model fits were performed separately on the per and post rotatory sections, and

separately on the pre and post flight sections. The ensemble averaged pre-flight and post-

flight head up PRN curves are shown in figures 5.9 through 5.11. Due to having too few

good runs ( 2 for subject B, 1 for subject C, 0 for subject D), there was no post-flight per-



rotatory ensemble averages, therefore preflight per-rotatory runs will not be presented

either.
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Figure 5.9, subject B
flight (dashed).

ensemble averaged PRN response preflight (solid) versus post

70 80 90 100 110

Time (sec)

Figure 5.10, subject C ensemble averaged
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Figure 5.11, subject D ensemble averaged PRN response preflight
(solid) versus post flight (dashed).

In figures 5.9 through 5.11, the increase in the post flight peak SPV can be easily seen

for subjects B and C. For both these subjects, and for subject D as well, the region from

t=60 to t=65 seconds is visibly different post flight. This consistent with the individual

run analysis finding that gain may have increased post flight for subjects B and C.

Comparison of the ensemble averaged runs with Kulbaski's curves by subject, was carried

out visually. In subject B, the increase in post flight peak SPV response seen here in

figure 5.9 was not evident in Kulbaski's figure. The post flight peak SPV increase in

subject C and decrease in subject D were visible however. More detailed visual analysis

was not possible, as Kulbaski did not plot the preflight and post flight head up curves

together. Visual comparison of Balkwill, 1992, ensemble averaged per rotatory and head

up post rotatory curves showed evidence of higher peak SPV post flight in 5 cases.

Seven cases showed little or no change in the peak SPV post flight, while 4 cases

showed decreases post flight peak SPV.



The three parameter model was fit to the ensemble averaged data for each subject, and

the results are presented in table 5.8. As with the individual run model fits, in the

changes in the ensemble model fit parameters, subjects B and C are qualitatively similar,

while subject D is qualitatively different. Post flight three parameter model gains

increased for both subjects B and C by 29% and 35% respectively, while it decreased for

subject D by 16%. The parameter ho showed a 9% increase in subject B, no change in

subject C and a 15% decrease in subject D.

3P Model 10E Model
Subject pre/post K 1/ho go K T

flight
B pre 0.615 0.042 0.152 0.877 17.57

post 0.795 0.046 0.094 0.902 14.28
C pre 0.566 0.046 0.155 0.781 16.59

post 0.765 0.046 0.097 0.953 13.37
D pre 0.760 0.064 0.107 0.957 11.34

post 0.641 0.054 0.103 0.824 11.98
Table 5.8, Ensemble averaged model fit parameters for each subject.

Finally, the indirect pathway gain, go, showed a 38% decrease in subject B, 37%

decrease in subject C, and a 4% decrease in subject D.

As might be expected, the parameters of the ensemble averaged fits were not identical to

the average of the parameters of the individual fits. While parameters for subjects B and

C were generally close, subject D showed a greater difference. However, for all three

subjects, the same trends preflight versus post flight were present.

The It 2 test was performed on each pair of preflight and post flight ensemble averaged

SPV curves to determine if they were significantly different. The Yt2 test was run twice

on each subject. The first test was conducted on only t = 2 seconds to t=20 seconds after

chair stop. This region was chosen because it was expected that chair stop transients in

the first two seconds of data might affect the results, and that the greatest differences



between the curves were expected in the early to middle time range since both signals

asymptotically decay to zero. The second test was run over t=2 seconds to t=60 seconds

following chair stop, which was the full extent of the data, using the same method as

Balkwill, 1992. Results are presented in table 5.9.

From table 5.9, it can be seen that all three subjects individually showed significantly

different ensemble averaged SPV curves post flight relative to preflight. The reduced t2

value of subject B (nl=7, n2=5, df=231,72) relative to C (nl=9, n2=4, df=181,58) and D

(nl=8, n2=6, df=204,72)over t=62 to t=82 seconds is likely a result of subject B having a

higher variance over this region.

Subject time It 2  p

B 62- 82 96 >.100
62- 120 516 <.001

C 62- 82 209 <.001
62- 120 863 <.001

D 62- 82 180 <.010
62- 120 408 <.001

Table 5.9, Xt2 results for pre and post flight head up ensemble
averaged SPV curves.

To determine the regions of the curves which contributed the most to the It 2 totals,

paired t tests were conducted along the length of the curves to look for individual points

that were significantly different between the two curves. On this analysis, subject B

showed no p<.95 significant points. Subject C had 11 significant points lying mostly at

the beginning and end of the 58 seconds of data. Subject D had 25 significant points all

lying between 15 and 30 seconds after chair stop.

As a final evaluation of the sk model, the ensemble averaged data was fit with the sk

model. Results of the fits are presented in table 5.10.



Subject pre/post G k ho g0
flight

B pre 0.832 0.248 0.039 0.141
post 1.192 0.371 0.039 0.148

C pre 1.183 0.363 0.040 0.153
post 0.953 0.247 0.051 0.126

D pre 0.814 0.146 0.075 0.099
post 0.919 0.208 0.071 0.107

Table 5.10, sk model fit parameters to ensemble averaged data.

For the fits presented in table 5.10, the cupula long time constant, tl, was fixed at 6

seconds to speed convergence. From the results shown in table 5.10, it is hard to draw

any conclusions about what model parameters have changed as a response to micro

gravity. Gain, G, increases for subjects B and D, but decreases for C. Similarly, the

adaptation parameter k also increases for B and D but decreases for C. The leak rate time

constant 1/ho, doesn't change for B, decreases for C, and increases slightly for subject D.

Finally, the indirect pathway gain, go, which decreased for all subjects post flight with

the three parameter model, increased slightly for B and D, and decreased for C. With

this model, the pairing in direction of responses seen in the other two models, namely B

with C, has been replaced by a pairing of B with D for three out of four parameters.

The sk model was then run again, with the go and ho parameters frozen to the values

chosen by a model fit to the preflight data with all four parameters free (Table 5.10).

This was to test Correia's Hypothesis that all post flight changes would be confined to the

G and k parameters in afferent recordings. In particular, he hypothesized that the k

parameter increases post flight (Correia et al, 1992). Results of this two parameter sk

model fit are shown in Table 5.11. For these 'two parameter' sk fits, the quality of the

model fits was seen to degrade as measured by the MSE of the fits. This indicated that

freezing the go and ho parameters forced a fit that confirmed the Correia hypothesis by

removing the CNS parameters that could have accounted for the post flight changes.



From table 5.11, we see that all three subjects show an increase in the gain term, C. This

is largest for subjects B (+28%) and C and (+37%), and smallest for subject D (+8%).

The adaptation parameter k, increases for subjects B (+35%) and subject C(+27%), while

it decreases for subject D (-15%). Thus here we again see the split in responses that was

observed with the other two models, between subjects B and C, and subject D. From

Landolt and Correia, 1980, he found that the larger the value of k, the more adaptation

that a unit exhibited. Similarly with this work, subjects B and C tended to show the

anticipated change directions, and these subjects also had the larger values of k.

Subject pre/post G k
flight

B pre 0.838 0.249
post 1.080 0.338

C pre 1.159 0.357
post 1.846 0.453

D pre 0.854 0.156
post 0.919 0.133

Table 5.11, Two parameter sk model fits to ensemble averaged data.



6.0 New Software and Hardware

In the process of processing and analyzing the SL-1 data, several areas for improvement

over previous missions were noted. These generally fell into three categories; procedural

changes, hardware changes and software changes. Procedural changes resulting from

experience on the SL-1 mission were incorporated into the 1991, SLS-1 Space Lab

mission, and shall not be discussed here (Balkwill, 1992). Similarly, many of the

hardware changes that resulted from the SL-1 mission were also incorporated on the SLS-

1 mission (Balkwill, 1992), however, since that flight several changes in the hardware

have occurred. Finally, new methods have been developed in the rotating chair control

and data acquisition since the SLS-1 mission that bear mention here. All of the changes

noted below will be incorporated on the upcoming SLS-2 Space Lab mission.

6.1 Data Analysis Scripts

Significant amounts of new code were written in association with this thesis project, to

develop them for future Space Lab missions such as the upcoming SLS-2 mission. The

software was developed in two languages, Think C, and MatLab. Functionally, the

software can be put into two groups; First, a series of scripts implementing new

algorithms to analyze BDC data. Second, a series of scripts referred to as batch analysis,

which were developed to automate and speed the BDC data analysis process to allow

rapid, on-site data processing and preliminary analysis on future missions.

6.1.1 New Algorithms

There are several new MatLab scripts utilizing new algorithms for this analysis. These

are presented in appendix C. These scripts are, dec_30_new, decimate_mean,

mean_model_err, model_err_exp, model_err_sk and t chisq.



dec 30 new is used to decimate the 120 Hz files down to 4 Hz, in order to reduce the

number of data points that will subsequently be fit with models to a computationally

reasonable number. The algorithm computed the output to be a boxcar average of the

good (i.e. not marked as outliers by stat_ rep ) data points in each 1/4 second window. A

first order polynomial was fit to the good points over the window, and the variance of the

points was calculated about this line for each window. The variances for each window

were sorted into three regions of equal numbers of points, based on the value of the

variance. All points in each region were then set to be equal to the mean value of the

region. This was done to remove variance outliers that would cause problems with the

model fits. Weights were then calculated for each point as being the number of good

contributing points divided by the modified variance estimate.

decmean used the weighting factors generated in dec_30_new to generate a weighted

average of several runs that had the same stimulus and gravity conditions. The ensemble

averaged run at any point in time was calculated as a simple weighted average of all

contributing runs at the same point in time. Variance for this estimate was calculated as;

error = Iw * (- x) *(n -1)
j=1 ni

where n is the number of runs being averaged. The n factor was included to
(ni - 1)

account for the lost degree of freedom. The variance then had outliers removed using the

same method as dec_30_new . A weight was calculated for each point in time of the

averaged runs as the number of runs divided by the variance.

meanmodel err performed model fits on the ensemble averaged runs in a manner with

one significant change relative to the individual run model fits. The calculation of the



error function for the individual model fits was chosen to be a simple sum of the squared

differences between the data and the model at each point in time. For the mean runs, the

error function was weighted, and therefore calculated according to;

I A

error = Y w * (xcj- x) 2

j=1

where x = ensemble averaged data at time j
A

xj = model estimate at time j

w = ensemble weight at time j

This provided the statistical maximum likelihood estimate of the model to fit the data. It

was chosen not to use weighted error for the individual model fits in order to maintain

uniformity with earlier studies.

modelerrexp, does a model fit on individual data using the first order exponential

model described in chapter 2.

model errsk does a model fit on individual data using the sk velocity storage model

described in chapter 2.

t_chisq did X2 fits to the ensemble averaged curves using the formula described in

chapter 4, and did p<.0 5 students t test at each point in time along the curves.

6.1.2 Batch Analysis Scripts

The batch analysis scripts were written to bring together and automate the various

analysis scripts under a single controlling script. For this purpose, the algorithms used in

the existing analysis scripts were not changed, however information transfer and file

handling was changed. Another goal was to increase the speed of analysis. This was

done three ways. First, the number of intermediate data steps that were saved to, or read



from disk was reduced by retaining the data in memory and automatically performing the

next analysis step without saving the intermediate form of the data. Second, several

scripts that were computationally slow in MatLab were rewritten as MatLab external C

files for faster computation. Third, some aspects of data analysis that were previously

performed as stand alone C files, were rewritten as mex files to allow all analysis to be

performed through the MatLab user interface.

batch_analyse was written as the top level user interface script. It prompts the user for

decisions on what sort of data analysis is to be done, and calls the appropriate

subroutines to perform the analysis. It is set up for performing the analysis on a single

BDC session for one subject each time it is run, from data conversion through to model

fitting any of the three models.

mexchairconvert completes the first step in processing, converting the data from

binary to MatLab format. If the user responds positively to batch_analyse 's query to

convert the data, mexchairconvert is called, given the data path, subject name and

BDC #, and it converts all the files in the named folder with the correct names to MatLab

format.

calfrom file collects calibration information from previous calibrations to be applied to

the current data set, while cal factor_gen is used to call the NysA calibration script to

perform calibrations if they haven't been done previously. calibrate_calc is then called

by either of these routines in order to interpolate or extrapolate around the calibration

runs to generate calibration factors (cal factors) for each of the runs.

multiple AATM is used to create the batch file for AATM processing of the runs. It uses

a mex file called batchsave to create a file of data paths, run names, and the



associated calibration factors on the hard disk. A mex file version of AATM, called

mexAATM4 is invoked. This version does AATM processing on all files named in the

file generated by batch save.

CODES is used to create a matrix of data path and file name information for all of the

runs, excluding calibrations.

statprep and tachan are called to perform tachometer signal analysis and statistical

outlier removal and decimation on the runs. These scripts are not functionally changed

from Balkwill, 1992.

modelselect queries the user as to which model they would like to fit to the data. After

all runs have been fit with a model, the user is given the option of fitting another model

to the data.

mex_gamma is a MatLab external file used to calculate the partial gamma function for

the sk model. The code was written as a mex file in order to speed computation, which

was very slow in MatLab due to the iterative nature of the computation.

6.2 EOG Amplification

During the D-1 and SLS-1 missions, the same EOG amplification set up was used (see

section 3.1). The main disadvantage with this amplifier, was that it required manual

adjustments of the DC offset in order to maintain the output signals within the ±10 volt

input range on the A/D board. To remedy this, a new amplifier set up was obtained

consisting of a Denver Research Institute (DRI) EOG signal conditioner with nominal

gain of 1000 and cut-off frequency of 200 Hz, followed by two parallel OP27GN8 op

amps in non-inverting, nominal gain of 4 configuration. The DRI amplifier was a two



channel, light weight, miniaturized, battery operated low power electronic system

designed to amplify EOG potentials. It is equipped with an automatic level restoring

circuit which continuously monitors the output voltage and adjusts the DC bias whenever

this voltage exceeds 96% of the maximum allowable output of ±2.5 volts (DRI, 1984).

The DRI signal conditioner is identical to the flight unit used on D-1, SLS-1 and the

upcoming SLS-2 missions. The DRI amplifier was mounted in a interface box on the

back of the rotating chair, while the booster amplifier is connected between the chair

base plate, and the analog filter box.

6.3 LabView Data Acquisition and Chair Control

During the SL-1 mission, data was acquired using an FM tape instrumentation recorder

(see section 3.1) and data was subsequently digitized off line. For SLS-1, a program

called Labtech Notebook was used to sample the data in real time. This program was

found to be inefficient due to limitations in the names under which data could be saved

and because it was relatively unreliable. To replace these methods, a new data

acquisition system was implemented by modifying existing Labview software to perform

rotating chair data acquisition needs.

During the SL-1 mission, the rotating chair command voltage was controlled by

manually turning a potentiometer. This had been automated for the SLS-1 mission,

using a combined analog/digital circuit to create a timed command with an exponential

ramp up, followed by an automatically timed period of rotation and another exponential

ramp down to stop. The timer however was unable to consistently hold identically long

runs, allowing 59.5 to 61.3 second run lengths. Also, as the controller and data

acquisition were separate, the data acquisition had to be manually triggered. In order to

correct for these problems, chair control was moved to within the same LabView shell

as is used for data acquisition. This allowed for identically long runs with identical



profiles for the stimulus, eliminating the need for separate data acquisition triggering,

and consolidating all data acquisition and control in a single place.

A user's manual for the LabView routines is included in appendix B.



7.0 Conclusions

Several significant findings were noted in the analysis of the SL-1 data set. The major

conclusions resulting from this investigation are of two sorts, conclusions on the changes

in the behavior of the VOR, and conclusions on the efficacy of the engineering

innovations relative to the previous analyses (Kulbaski, 1988, Balkwill, 1992). These

two categories will be discussed separately;

7.1 Trends in Data and Interpretation

General trends were:

1. Strength of space motion sickness is directly related to adaptation

2. Post flight responses are different than preflight

3. Gain increases post flight

4. Indirect pathway gain probably decreases post flight

5. 10E time constant probably shortens slightly post flight

6. Dumping time constants do not change post flight

One important note that is significant in the interpretation of the results, is the

subjectively reported strength of space motion sickness observed by the subjects while on

orbit (Oman et al, 1984, Oman and Shubentsov, 1992). Subject B was reported as the

crew member with the strongest symptoms, subject C experienced moderate symptoms

and subject D was asymptomatic. Examination of the data has shown a correspondence

in the responses to space flight in each of the three subjects. Subjects B and C showed

changes in all model parameters in the same direction, while subject D generally showed

changes in the opposite direction. Possibly this indicates a different manner of adapting

to micro gravity that can be related to the severity of SMS symptoms. Both sickness

level and VOR changes are presumably caused by sensory conflict, which might in turn



be the result of changes in end-organ characteristics. Perhaps those subjects with the

strongest symptoms have the strongest sensory conflict and VOR changes in the micro

gravity environment, while subjects with milder symptoms have less sensory conflict

driving their VOR changes. The difference in VOR responses between subjects B and C,

and subject D, but not the correlation with symptoms, was noted by Kulbaski in his

earlier analysis of this data set.

We may postulate that the physiological phenomena causing a post flight increase in

gain also caused sensory conflict and SMS in flight. But why would a decrease in VOR

gain not also be associated with SMS? An explanation is as follows; Higher than

average VOR gain (B, C) is very seldom encountered in the natural world. Thus the

presence of high VOR gain would represent an unusual condition that the CNS would be

forced to adapt to, and the associated oscillopsia could cause SMS according to the

sensory conflict theory of motion sickness. In contrast, reduced VOR gain is commonly

encountered in normal experience. Common events, such as reduced alertness, can cause

a drop in VOR gain (Collins, 1962), and thus the CNS would be accustomed to dealing

with drops in gain. Therefore no motion sickness and no (or different) adaptation would

result.

While subjects B and C change in a different direction from subject D, the comparison of

the preflight versus post flight ensemble averaged responses show clearly that some form

of VOR change is occurring in all three subjects. It 2 analysis of the ensemble averaged

runs showed that all three subjects were significantly different post flight relative to

preflight for head up post rotatory nystagmus runs when tested over t = 62 to 120

seconds. Subjects C and D were also significantly different over the t = 62 to 82 seconds

regions. Previous analysis of this data set by Kulbaski showed significant difference in

the post flight responses of subjects B and D only, by comparing the Xt 2 statistic to the X2



distribution over t = 60 to 80 seconds. Ensemble averaged model parameters and

averaged individual model fit parameters also showed significant changes which are

discussed below.

The mean apparent time constants of subjects B and C were each found to decrease post

flight 19% relative to preflight values, while subject D increased their time constant by

6%. This is similar to Kulbaski's findings in direction, however he found slightly larger

time constant changes for all subjects post flight.

B C D
K T K T K T

pre 0.877 17.57 0.781 16.59 0.957  11.34
post 0.902 14.28 0.953 13.37 0.824 11.98

Table 7.1, Apparent time constants for ensemble averaged runs as
found previously (Kulbaski, 1988).

B C D
K T K T K T

pre 0.520 13.90 0.580 16 .7 0  0.7 80  11.10
post 0.580 7.10 0.750 11.20 0.590 13.90

Table 7.2, Apparent time constants for ensemble averaged runs as
found in this study.

Ensemble average SPV is quite different between 60-65 seconds, suggesting that VOR

gain has changed. Both subjects B and C showed a gain increase post flight in the gain of

the three parameter model fit, significant at the p<0.01 for B and p<0.10 for subject C.

Also, both subjects showed smaller gain increases in the simple first order model gains ,

with subject C being significant at the p<0.10 level. Ensemble averaged post flight first

order model gains for subjects B and C increase 3% and 22% respectively, while subject

D's gain drops 14%. These changes are in the same directions as was previously

calculated for this data set (Kulbaski, 1988), however, the values of the gains found in

this study averaged 41% higher than those found by Kulbaski. The most likely causes of

this are; First, that Kulbaski included all runs in his analysis, whereas case selection was

much more stringent in this study. In particular, as discussed in chapter 5, the rejection



of runs based on the rules of section 4.6 had removed many low gain runs from this

analysis, thereby increasing the gains calculated here relative to Kulbaski, who included

all runs. Second, the comparison of the model fitting methods, (i.e. fitting in the time

domain as opposed to log linear fits) from section 5.3.1, showed that an average increase

in model gain of approximately 10-15% would be found due to the different model fitting

method used for the first order exponential models alone. Finally, Balkwill's statprep

algorithm (section 4.5) filtered out dropouts which might have been more frequent post

flight due to fatigue, thereby lowering the post flight gains calculated by Kulbaski.

In all three subjects, the 3P model mean post flight indirect pathway gains of the

individual runs were seen to trend downwards, although none with significance. In

subjects B and C, the indirect pathway gain of the ensemble averaged model fits was also

seen to decrease post flight, while subject D showed only a marginal decrease (-4%).

Thus while statistical significance was not achieved, due to the high variability of this

parameter. The behavior of the model fits may indicate that the CNS is adapting the

indirect pathway gain to compensate for the exposure to micro gravity.

The suggestion of a shortening of the simple exponential time constant post flight is

shown by all three subjects individual model run results. All three subjects trend

downwards, although none of them achieved statistical significance. Also, the ensemble

averaged model fits for both of subjects B and C showed post flight decreases in the first

order model time constant. A third indication for the change in the apparent time

constant comes from the dumping study. The after dumping time constant showed a

downwards trend for all three subjects, without statistical significance.

This shortening of the apparent time constant can be tied to the reduction in the indirect

pathway gain. Since the velocity storage mechanism is used to prolong SPV responses to



vestibular cues, when the gain on the velocity storage is reduced, the contribution to the

SPV signal from the velocity storage mechanism will drop, while the direct pathway

contribution will be unchanged. This will have the effect of shortening the apparent time

constant of the response, and thus the two changes are related (Arakawa et al, 1990).

A possible justification for decrease in indirect pathway gain and the shortening of the

apparent time constant is as follows. When the subject is exposed to micro gravity, the

GIF environment is changed. Similar to the case of tilt suppression (dumping), the CNS

recognizes that the world environment has changed and does not trust its assessment of

body motion. Thus it suppresses the velocity storage information in a similar manner as

occurs when the dumping maneuver is performed. In the models, this is reflected in a

decrease in the indirect pathway gain for the three parameter model, and a decrease in

the apparent time constant for the first order model. Different time constants result for

whole body tilt induced suppression (0.4 of head up time constant), as compared to

dumping (0.6 of head up time constant) , and parabolic flight (0.7 of head up 1-G time

constant)(Oman and Balkwill, 1993). The time dimension of all these changes is

instantaneous. However, the effects on head erect and dumping responses measured post

flight on SL-1 were long lasting. It seems as if humans return from 0-G already partially

'dumped' by their adaptation to micro gravity, and that there is a residual effect lasting

several days.

From the analysis of dumping runs, it seems likely that the post flight dumping constant

is not changed by exposure to micro gravity. The post flight dumping time constant

increases for B, decreases for C significantly, and decreases for D. While C is significant,

the unusual split in the results (B versus C and D) relative to trends in the other

parameters, in addition to the limited amount of data caused by the brief five second



dumping duration, makes it seem unlikely that this one significant number represents a

trend of dumping slope changing post flight.

7.2 Engineering Innovations

7. New data filtering methods are superior to previous methods.

8. Analysis of individual runs permits statistical evaluation of changes seen in model

parameters.

9. New data acquisition and control software will provide improved data quality.

10. Near real time data processing allows faster processing and on-site analysis.

11. sk model needs further investigation.

12. Quantitative analysis provided new insight in fitting models to VOR data.

As one measure of the effectiveness of the new data filtering methods, the results of the

yt2 tests of subjects B, C, and D were compared to Kulbaski's calculation of the same

value. In each case, the Xt2 statistic for this thesis was higher than for Kulbaski's

analysis of the data. This measure reflects on the improved filtering and outlier removal

methods which has reduced the noise and thus the variance of the ensemble fits, and

thereby increased the value of the t2 statistic.

Another measure of the improvements in the new analysis methods is the discovery of

significant changes in the post flight gains of the subjects. Kulbaski (1988) noted

changes in mean gain values but concluded that there was no significant gain change post

flight in contradiction to this study. While it could be claimed that the run rejection rules

used (section 4.6) influenced the present finding, they could not have caused it: Rules

for the exclusion of data were developed on the basis of maintaining high data quality and

were used with the intent of preventing artifacts from contaminating the good data. The

runs that were excluded had generally lower gains preflight than the kept runs, while the



post flight rejected runs had generally higher gains. Thus, the rules for run rejection will

have reduced the likelihood of finding a significant gain increase, not aided it.

Despite the improved filtering methods individual run data from one subject, A, could

not be satisfactorily analyzed. This subject was noted to have significant noise problems

in Kulbaski (1988) and did not provide any statistically significant results in that analysis

when analyzed individually. Kulbaski's analysis of this subject was confined to ensemble

averaged responses.

New statistical methods developed to perform the ensemble averaging process took

advantage of improvements in computing capability to give more statistical power to

those data points with the best data, and arguably provided better estimates of the true

means of the populations.

Another improvement over Kulbaski's analysis is the ability to analyze the runs

individually. This has allowed the estimation of model parameters and assessment of the

statistical significance of changes seen. Analysis of individual runs has also provided a

measurement of the variability in the data. This has implications for clinical testing

where often very few trials are taken. Due to the high variability seen in this data set, it

seems possible that conclusions based on small sample populations may be misleading.

In association with this thesis, a new data analysis and experiment control software

package was developed, DAM/DQM.L-mod6. This new software has reduced operator

workload for conducting baseline data collection sessions. Also, with the addition of the

integrated chair control, velocity and duration of stimuli provided to the subject has

become consistent and repeatable, simplifying data analysis requirements.



The new batch_analysis software developed as a part of this thesis has become an almost

fully automated, self-contained pipeline for data analysis within the MatLab user

interface. Operator input has been minimized, and external programs have been

rewritten for use from within MatLab. This has greatly increased the speed of the data

processing procedure, allowing near real time processing of data. Combined with the

new acquisition and control system, the new software allows all individual runs of a full

BDC session data set for an individual to be analyzed in under an hour (using the first

order exponential model), compared to several days required in the past. This met one of

the goals of this thesis by allowing rapid on site data processing and preliminary analysis

on future missions.

Another contribution of this thesis, is the development of the sk VOR model. This model

provides an alternate mathematical formulation of what is happening in the canal afferent

neurons as subjects are stimulated, and provides another method to measure changes in

human VOR responses.

As a result of there yet being no definitive way to differentiate between the three

parameter model and the sk model on the basis of the quality of the model fits, and

considering that the sk model would be both more difficult to analyze both within this

data set, and for comparisons to previous data (SLS-1), it was decided to use this model

for data analysis only in a limited manner. The sk model was limited in its effectiveness

by two elements. First, the additional degree of freedom in the model added another

parameter for preflight versus post flight variations to be assigned to, and thus reduced

visible changes in any of the model parameters. Second, the k term can be represented

by an apparent adaptation time constant that is longer than the duration of this data set.

Use of this model would be better suited to a data sets with longer runs. Additional

experience may allow one or more of the model constraints to be fixed to aid



convergence. ho seems to be a likely prospect to be fixed. In both models the ho

represents the same physiological trait, and this is not expected to change preflight versus

post flight based on experience with the three parameter model. Also, in the test

segments, the two models chose values for this parameter which were similar.

Quantitative comparison of the sk and three parameter models, and with the first order

exponential model has provided additional insight into the requirements of model fitting

as related to the number of free parameters. Both the three parameter model, and four

parameter sk model were capable of generating very good fits to the data. Neither

subjective visual analysis, or comparison of the MSEs was capable of discerning any

advantage to the quality of either model's fits. However, the additional degree of

freedom of the sk model provided an additional parameter for the model fit procedure to

use to fit the data. This led to smaller changes and higher variance in all parameters

which directly affected the ability of the statistical analysis to determine changes. As a

contrast, with the ensemble averaged data, the sk model was also fit with only two free

parameters (velocity storage parameters were frozen to preflight values) when fitting post

flight curves. While this confined the change in the curves to only two parameter, and

thus made parameter changes easier to see, it caused a small but noticeable drop in the

quality of the model fits. In a similar manner, fits of the two parameter simple

exponential model also had lower quality of fit then either the three parameter or sk

models. In short, it is very important to be careful when choosing a model, or freezing

parameters within a model, to consider carefully the effects on quality of fit and ability to

discern changes.

In general, the results of this study agree well with those found in previous space shuttle

mission studies. The significance of some of the results has decreased relative to

100



previous analysis of this data, while other aspects have become more significant. This is

a result of the new, more stringent methods of data filtering.

7.3 Suggestions for Future Work

Additional study of the behavior of EOG potentials with respect to changing light

intensities is needed. Calibration methods for future Space Lab missions involve

allowing eyes to dark adapt before runs begin, and performing all calibrations with

filtered red light. Examining the time effects of these lighting conditions on EOG

potential is necessary.

Further improvements to the automated analysis system could also be implemented.

Significant amounts of time could be saved by eliminating the need to convert data from

binary format to MatLab format. Also, while sampling data at low rates (e.g. 120 Hz),

the CPU is not doing any useful work. Rewriting the data acquisition system to operate

on an interrupt status would allow the implementation of the digital OS filters including

AATM in real time and reduce the number of analysis steps required. A further

improvement could be realized by writing the data acquisition software as a MatLab mex

file, which would allow all acquisition and analysis functions to take place through one

user interface.

Additional experimentation with the sk model seems warranted. Applying this model to

other data sets that have longer trials would be better suited to this model. Fixing the ho

term could also be attempted to aid convergence, and then retesting the model on this

data set. Finally, it would be interesting to examine if there was any difference in the k

values of subject D relative to B and C in light of that subjects different responses to

space flight.
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Run F-90 F-60 F-30 F-11 F-10 R+1 R+2 R+4
1 .5288 .6785 .2651 .3420 .3885 .3896 .2533 .2433
4 .4888 -- -- -- -- .5504 --
6 -- -- 0 -- -- 0 -- --
10 (.3020) -- -- -- (.6425) .4003 .6167 .4455
11 -- .5405 -- -- -- -- -- --
12 -- -- -- .4676 -- -- -- --

Table A.la, Horizontal calibration factors for subject A in degrees
of eye movement per measured A/D unit. Calibration factors in
brackets were considered unreliable and were not used for
interpolation. Dashes indicate that the run was not a calibration run.

Run F-90 F-60 F-30 F-11 F-10 R+1 R+2 R+4
1 .0839 .0666 .0618 .0994 .1014 .0473 .0442 .0391
2 -- -- -- -- .1090 -- -- --
4 -- -- -- -- -- .0510 .0513 --
5 -- .1052 -- - .1352 -- -- .0749
6 -- -- .1718 -- -- -- -- --
9 .1058 -- -- -- -- -- -- --
10 -- -- -- -- -- -- -- --
11 -- -- .1038 .1177 -- -- --
12 -- .1065 -- .0857 -- -- -- --

Table A.lb, Horizontal calibration factors for subject B in degrees
of eye movement per measured A/D unit. Dashes indicate that the run
was not a calibration run.

Run F-90 F-60 F-30 F-11 F-10 R+1 R+2 R+4
1 .1234 .1521 .0982 .0685 .0844 .1297 .1216 .1171
4 .1825 .1210 -- -- .1177 .1421 .1422 .1680
6 -- -- .1587 -- -- -- -- --
7 -- -- -- .2227 -- -- -- --
10 -- .0980 -- -- -- .1457 .1515 .1719
11 .1379 -- -- -- .0950 -- -- --

Table A.lc, Horizontal calibration factors for subject C in degrees of
eye movement per measured A/D unit. Dashes indicate that the run
was not a calibration run.

Run F-90 F-60 F-30 F-11 F-10 R+1 R+2 R+4
1 .2105 .1430 .0920 .0946 .0893 .1098 .0669 .1078
4 .1941 -- -- .3745 .0990 .2654 .0882 .1026
5 -- .0614 .1589 -- -- -- -- --
10 .3115 -- -- .2199 -- .1153 .1269 --
11 -- -- -- -- .1123 -- -- --
15 -- .0793 -- -- -- -- -- --

Table A.ld, Horizontal calibration factors for subject D in degrees
of eye movement per measured A/D unit. Dashes indicate that the run
was not a calibration run.
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Run K3 ho go K1 T
102 0.690 0.0522 0.170 0.94 13.05
103 0.609 0.0239 0.152 0.7 20.98
104 0.820 0.0287 0.072 0.8 11.83
202 0.850 0.0278 0.122 0.91 16.86
203 0.375 0.0532 0.298 0.69 15.53
206 0.821 0.0298 0.095 0.84 13.97
207 0.563 0.0335 0.072 0.56 11.19
211 0.446 0.0405 0.068 0.46 9.88
302 0.598 0.0274 0.208 0.85 21.33
303 0.952 0.0212 0.129 1.01 20.71
304 1.097 0.0265 0.061 1.04 11.26
305 1.091 0.0230 0.107 1.09 17.72
406 0.770 0.0261 0.110 0.81 16.35
605 0.954 0.0298 0.095 0.96 14.12
802 0.709 0.0355 0.134 0.85 14.65

cw means 0.687 0.0316 0.134 0.76 16.05
iw means 0.813 0.0321 0.121 0.90 14.72

Table A2.1, Subject B per-rotatory model fit parameters
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Run K ho go K T
102 0.541 0.0323 0.170 0.70 24.34
103 0.461 0.0540 0. 191 0.73 16.37
104 0.679 0.0373 0.076 0.69 14.40
105 0.747 0.0355 0.035 0.72 9.43
202 0.645 0.0441 0.164 0.89 18.48
206 0.686 0.0385 0.053 0.65 11.86
302 0.554 0.0618 0.222 0.93 15.95
303 0.575 0.0213 0.129 0.84 15.86
304 0.974 0.0335 0.061 0.89 13.92
305 1.250 0.0326 0.022 1.20 8.13
403 0.655 0.0451 0.153 0.87 17.84
405 0.788 0.0315 0.037 0.72 10.37
406 0.568 0.0305 0.019 0.64 6.50
503 0.646 0.0477 0.188 0.97 18.34
504 0.669 0.0556 0.180 0.98 16.36
506 0.970 0.0220 0.036 0.74 12.41
507 0.799 0.0266 0.029 0.75 12.40
601 0.930 0.0331 0.055 0.84 13.28
602 0.663 0.0618 0.148 0.93 13.82
604 0.864 0.0346 0.064 0.74 15.08
605 0.857 0.0440 0.058 0.81 12.00
701 0.843 0.0395 0.092 0.84 16.43
702 0.829 0.0490 0.086 0.89 13.33
704 0.856 0.0362 0.071 0.68 16.99
705 0.975 0.0416 0.048 0.90 11.20
802 0.689 0.0548 0.099 0.74 13.89
804 1.130 0.0306 0.040 0.97 11.60

ecw means 0.724 0.0366 0.086 0.84 12.15
w means 0.714 0.0394 0.116 0.81 15.79

Table A2.2, subject B post-rotatory model fit parameters.
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Run K ho go K T
102 0.756 0.0400 0.136 0.90 14.23
103 1.071 0.0240 0.093 1.03 15.79
105 0.572 0.0430 0.203 0.83 15.63
106 0.730 0.0210 0.071 0.65 14.17
202 0.536 0.0340 0.138 0.63 15.60
203 0.585 0.0310 0.224 0.86 20.54
205 0.916 0.0320 0.087 0.93 12.78
206 0.645 0.0270 0.158 0.77 19.73
304 1.020 0.0320 0.072 1.01 11.47
305 1.285 0.0230 0.071 1.18 13.27
403 0.753 0.0320 0.099 0.89 12.66
404 0.520 0.0620 0.134 0.66 10.72
405 0.947 0.0190 0.063 0.80 14.21
406 0.714 0.0500 0.09 0.79 10.24
503 1.271 0.0250 0.056 1.18 11.04
505 0.705 0.0440 0.128 0.84 12.89
506 0.710 0.0340 0.164 0.89 17.15
803 0.773 0.0360 0.133 0.95 14.41

cw means 0.889 0.0262 0.111 0.92 15.39
Pw means 0.717 0.0421 0.1235 0.82 12.95

Table A3.1, subject C per rotatory model fit parameters
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Run K ho go K T
103 0.922 0.0430 0.095 0.99 15.23
105 0.499 0.0460 0.146 0.63 17.73
106 0.535 0.0570 0.119 0.63 14.20
202 0.795 0.0360 0.156 1.00 21.79
203 0.818 0.0500 0.143 1.06 16.40
205 0.642 0.0310 0.069 0.52 17.66
206 0.889 0.0370 0.027 0.85 8.50
302 0.524 0.0370 0.181 0.70 22.85
303 0.419 0.0590 0.197 0.71 15.06
304 0.829 0.0208 0.047 0.59 16.64
305 0.651 0.0429 0.039 0.70 8.94
404 0.502 0.0680 0.189 0.82 13.61
405 0.888 0.0390 0.03 0.77 9.53
406 0.632 0.0290 0.069 0.56 16.76
502 0.573 0.0500 0.14 0.75 15.82
503 0.712 0.0430 0.09 0.73 15.30
505 0.955 0.0310 0.06 0.82 15.09
506 0.641 0.0560 0.091 0.69 12.95
602 0.895 0.0370 0.063 0.84 13.65
603 0.661 0.0560 0.151 0.88 15.43
605 0.857 0.0350 0.063 0.71 15.34
702 0.753 0.0460 0.1 0.80 15.39
703 0.75 0.0524 0.1 0.89 13.31
705 0.813 0.0373 0.07 0.68 16.34
706 0.885 0.0427 0.048 0.84 11.30
803 0.723 0.0540 0.092 0.76 13.52
805 1.093 0.0190 0.03 0.88 10.93

cw means 0.719 0.0474 0.092 0.79 12.90
w means 0.661 0.0388 0.117 0.71 17.55

Table A3.2, subject C post rotatory model fits
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Run K ho go K T
102 0.527 0.0390 0.189 0.77 15.77
103 0.661 0.0290 0.134 0.75 17.01
303 1.252 0.0280 0.076 1.20 12.82
402 0.985 0.0430 0.119 1.13 12.79
502 0.477 0.0580 0.146 0.62 11.66
503 0.688 0.0410 0.157 0.87 14.80
506 0.414 0.0380 0.233 0.66 17.59

cw means 0.754 0.0340 0.150 0.87 15.55
w means 0.663 0.0470 0.151 0.84 13.41

Table A4.1, subject D per-rotatory model fit parameters

Run K ho go K T
102 0.688 0.0490 0.128 0.84 16.00
103 0.808 0.0440 0.085 0.82 14.59
302 0.897 0.0590 0.107 1.07 12.88
303 1.071 0.0590 0.024 1.19 6.78
402 0.994 0.0560 0.053 1.04 9.78
403 0.935 0.0722 0.136 0.41 12.93
502 0.792 0.0610 0.102 0.93 12.50
503 0.852 0.0510 0.075 0.84 12.90
506 0.874 0.0350 0.028 0.82 8.72
602 0.465 0.0650 0.170 0.69 14.03
603 0.536 0.0490 0.104 0.60 14.70
605 0.607 0.0780 0.023 0.67 6.35
606 0.484 0.0316 0.047 0.42 12.37
702 0.747 0.0640 0.071 0.81 10.53
703 0.625 0.0390 0.088 0.60 16.54
705 0.644 0.0750 0.021 0.71 6.26
706 0.481 0.0355 0.047 1.20 13.11
802 0.771 0.0480 0.085 0.77 14.22
803 0.864 0.0530 0.092 0.94 13.27
805 0.521 0.0850 0.037 0.58 7.17
806 0.581 0.0180 0.014 0.63 6.34

cw means 0.908 0.0522 0.070 0.82 11.18
w means 0.843 0.0563 0.098 0.97 12.79

Table A4.2, subject D post-rotatory model fit parameters
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Run m b RMS m b RMS m b RMS
pre pre pre dump dump dump post post post

104 0.207 3.511 0.18 -0.089 4.632 0.05 -0.008 3.436 0.11
105 0.283 3.402 0.21 -0.196 4.959 0.25 -0.041 3.522 0.13
206 0.193 3.594 0.30 -0.122 4.617 0.1C -0.053 3.811 0.21
211 0.268 1.811 0.13 -0.216 3.997 0.3 -0.085 2.817 0.57
304 1.451 2.841 0.41 -0.041 4.635 0.01 -0.063 4.481 0.16
305 0.047 4.308 0.55 0.051 2.926 0.2 -0.033 3.681 0.13
405 0.56 3.24 0.28 -0.08 4.436 0.06 -0.103 4.486 0.21
406 0.038 3.823 0.27 -0.003 2.986 0.2C -0.035 2.763 0.62
506 0.113 4.172 0.14 -0.076 4.44 0.4C -0.034 3.66 0.26
604 -0.092 4.557 0.21 -0.02 3.903 0.08 -0.059 4.428 0.12
605 -0.011 4.336 0.28 -0.159 5.01 0.09 -0.044 4.11 0.18
704 0.132 4.067 0.37 -0.061 4.351 0.22 -0.055 4.366 0.21
705 1.288 3.331 0.27 -0.157 5.062 0.09 -0.051 4.112 0.26
804 0.141 3.993 0.22 -0.184 5.319 0.07 -0.075 4.545 0.42

mean -0.052 4.447 0.25 -0.128 5.304 0.17 -0.053 3.874 0.26
pre -0.103 4.338 0.17 -0.050 3.628 0.27

flight
post -0.052 4.447 0.25 -0.11 4.789 0.11 -0.057 4.312 0.24
flight

Table A5a, Dumping log-linear model fits for subject B.

Run m b RMS m b RMS m b RMS
pre pre pre dump dump dump post post post

105 0.131 3.76 0.19 -0.097 4.511 0.12 -0.041 4.166 0.13
106 0.463 3.122 0.19 -0.076 4.372 0.07 -0.042 3.98 0.14
205 -0.025 4.229 0.27 -0.258 5.349 0.14 -0.007 3.417 0.15
206 1.208 3.019 0.13 -0.054 4.436 0.07 -0.053 3.727 0.32
304 0.631 3.181 0.27 -0.215 5.098 0.18 0.004 2.967 0.31
305 0.044 3.94 0.16 -0.296 5.337 0.27 -0.057 3.656 0.34
405 0.104 4.075 0.29 -0.195 4.895 0.31 -0.054 3.865 0.20
406 7.802 -9.272 6.65 -0.153 4.648 0.21 -0.005 3.32 0.23
505 0.141 3.858 0.32 -0.043 4.171 0.1C -0.021 3.835 0.12
506 -0.056 4.412 0.07 -0.07 4.146 0.05 -0.059 4.247 0.13
605 -0.105 4.6 0.23 -0.041 4.034 0.12 -0.047 4.249 0.10
705 0.134 4.049 0.35 -0.062 4.38 0.2C -0.023 3.797 0.14
805 0.099 3.963 0.22 -0.228 5.482 0.1C -0.068 4.234 0.21

mean -0.062 4.413 0.19 -0.138 4.681 0.15 -0.040 4.227 0.2
pre -0.040 4.320 0.17 -0.146 4.696 0.15 -0.038 3.801 0.20

flight
post -0.105 4.6 0.23 -0.110 4.63 0.14 -0.046 4.090 0.15

flight
Table A5b, Dumping log-linear model fits for subject C.
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Run m b RMS m b RMS m b RMS
pre pre pre dump dump dump post post post

506 0.149 3.726 0.24 -0.124 4.524 0.11 -0.084 4.113 0.26
605 4.266 -14.35 7.13 -0.001 3.031 0.20 -0.059 2.963 0.32
606 0.135 3.171 0.47 -0.028 3.363 0.13 -0.075 3.68 0.17
705 0.803 2.258 0.11 -0.261 4.895 0.11 -0.307 6.537 3.92
706 0.253 3.081 0.64 -0.195 4.651 0.19 -0.046 3.378 0.23
805 2.871 -11.93 6.25 -0.155 4.364 0.15 -0.007 2.402 0.14
806 -0.073 3.616 0.48 -0.029 2.767 0.09 0.012 1.453 0.23

mean -0.073 3.616 0.48 -0.113 3.942 0.14 -0.080 3.503 0.75
pre 3.726 0.24 -0.124 4.524 0.11 -0.084 4.113 0.26

flight
post -0.073 3.616 0.48 -0.111 3.845 0.15 -0.098 3.791 0.96

flight
Table A.5c, Dumping log-linear model fits for subject D.

Run C k go ho
102 0.844 0.301 0.159 0.026
103 1.595 0.552 0.176 0.022
202 1.214 0.343 0.152 0.034
302 1.169 0.236 0.126 0.056
303 1.295 0.348 0.140 0.044
403 1.118 0.318 0.148 0.037
503 0.983 0.192 0.133 0.049
504 1.137 0.231 0.129 0.052

reflight mean 1.169 0.316 0.145 0.040

Table A.6a, Per rotatory sk model fit parameters for subject B.
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Run C go ho
102 1.67 0.33 0.12 0.064
103 1.72 0.59 0.19 0.014
104 1.11 0.28 0.11 0.068
202 1.12 0.27 0.14 0.048
203 1.45 0.39 0.14 0.052
206 2.51 0.69 0.19 0.016
207 0.86 0.37 0.12 0.058
211 1.11 0.40 0.10 0.082
302 0.79 0.08 0.12 0.058
303 0.73 0.09 0.13 0.048
304 0.84 0.07 0.08 0.094
305 1.53 0.37 0.15 0.031
406 1.45 0.49 0.17 0.027
605 0.87 0.18 0.12 0.060
802 1.39 0.34 0.13 0.053

preflight mean 1.269 0.340 0.137 0.050

Table A.6b, Post rotatory sk model fit parameters for subject B.

Run C k go ho
202 0.857 0.167 0.140 0.039
203 1.262 0.287 0.138 0.043
103 0.734 0.098 0.110 0.063
302 0.660 0.189 0.143 0.037
303 1.276 0.470 0.162 0.034
502 0.948 0.314 0.141 0.042
503 1.217 0.456 0.153 0.028

preflight mean 0.993 0.283 0.141 0.041

Table A.7a, Per rotatory sk model fit parameters for subject C.
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Run C k go ho
102 1.446 0.334 0.130 0.055
103 0.195 0.027 0.000 0.400
105 1.369 0.304 0.130 0.057
106 1.065 0.479 0.152 0.025
202 1.002 0.368 0.143 0.043
203 0.858 0.032 0.109 0.072
205 1.013 0.139 0.093 0.084
206 1.056 0.315 0.150 0.037
304 1.789 0.493 0.145 0.036
305 0.884 0.046 0.086 0.086
403 1.174 0.546 0.220 0.061
404 1.630 0.501 0.133 0.056
405 1.029 0.416 0.143 0.026
406 1.623 0.494 0.135 0.050
503 1.376 0.380 0.131 0.042
505 1.480 0.352 0.124 0.060
506 1.135 0.229 0.128 0.056

preflight mean 1.184 0.321 0.127 0.073
Table A.7b, Post rotatory sk model fit parameters for subject C.

Run C k go ho
102 1.296 0.353 0.143 0.049
103 1.900 0.596 0.182 0.019
302 0.927 0.439 0.110 0.076
303 0.926 0.128 0.103 0.069
303 0.926 0.128 0.103 0.069
402 1.647 0.310 0.121 0.061
402 1.647 0.310 0.121 0.061
502 1.443 0.477 0.135 0.053
503 1.507 0.360 0.136 0.051
506 0.804 0.194 0.125 0.059

preflight mean 1.302 0.329 0.128 0.057
Table A.8a, Per rotatory sk model fit parameters for subject D.
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Run C k go ho
102 0.811 0.200 0.126 0.052
103 0.694 0.005 0.08 1 0.093
302 1.386 0.342 0.132 0.047
303 1.240 0.420 0.113 0.055
402 1.685 0.477 0.136 0.042
502 0.942 0.098 0.086 0.090
503 1.939 0.571 0.157 0.025
602 0.795 0.189 0.111 0.069
603 0.661 0.288 0.132 0.044
702 1.125 0.384 0.125 0.053
703 1.205 0.512 0.161 0.021
802 0.793 0.276 0.128 0.044
803 0.828 0.187 0.114 0.060

preflight mean 1.242 0.302 0.119 0.058

Table A.8b, Post rotatory sk model fit parameters for subject D.
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Appendix B

Labview Routines

User's Manual

117



B.1 Introduction

This appendix is meant as a quick introduction to the use of the LabView routines that are

used with rotating chair data acquisition. Since the creation of these routines, they have

been customized for use on other experiments beyond the rotating chair, including the

MVL Link trainer, linear sled, and other rotating chair usages. This manual will not

cover the specifics of these other versions since the operation of these other versions is

similar.

This manual is written for persons that have some rudimentary knowledge of the

operation of LabView Software. If you are unfamiliar with the use of LabView, refer to

the LabView user's manual tutorial.

B.2 History

The LabView routines used for chair data acquisition had their genesis in a set of routines

originally written in the MVL in 1991 by Nicolas Groleau, who was then working on the

Principal Investigator in a Box (PI) project. The PI project performed control, data

acquisition and analysis on an experiment utilizing a rotating dome. Originally, the

LabView routines were used to acquire the raw data, perform some analyses to

determine statistical data parameters, and save the data to a file. In some cases, this

package was also used to provide a steady output voltage that would be used to drive the

rotating dome at constant velocity for a set length of time.

Starting in early 1992, these LabView routines, then named DAM/DQM.L , were

provided to the staff of the rotating chair project, for modification to replace the existing

rotating chair data acquisition system. Improvements that would be gained by the

change to LabView included automatic triggering, control over data filenames,

simultaneous data acquisition and chair control, and real-time data display.
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Beginning with the original DAM/DQML , the software was customized for use with the

rotating chair over the following 15 months. As it changed, the name received the

extension '-mod#', in order to identify significantly changed versions as it evolved. The

current version of the software in use for the rotating chair is DAM/DQM.L-mod6 . The

majority of changes that have taken place through the evolution of DAM/DQML were

made in the higher, organizational level of the original program. The low level functions

including A/D board drivers have remained generally unchanged. Many of the changes

were actually removal of portions of the original program that were not relevant to the

rotating chair usage, in order to speed up the processing time. As a result of this path of

creation, there are many remnants of the original rotating dome software, both in

structures, and in names, still present in the latest version.

B.3 Before Using DAMIDQM.L-mod6

The front panel of the DAM/DQM.L-mod6 routine is shown in figure B.1. The chart

regions on left hand side are the frames for plotting of real time data. The numeric

indicators on the right hand side of the screen represent the controls and states of the

software. The color convention used for controls and indicators is as follows;

red --> controls

blue --> indicators

green --> indicators (older versions)

Before beginning data collection, it is necessary to make sure that all controls are at the

desired position. The controls appear in two groupings at the top and bottom of the right

hand side of the window. In general, the controls at the top will need to be changed for

each subject, and each BDC. The controls at the bottom generally will only need to be

altered whenever the program is moved to a different machine.
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Other indicators and controls are present off screen. These represent vestiges of the

original dome program ability to relay data from file. They are disabled, but the ability

to replay data is latent within the program.

B.3.1 Controls

BDCF -

of data will be taken

normal baseline data collection mode, with chair output

corresponding to a step function passed through a low pass

filter of time constant 0.17 seconds.
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Subject Code: Mounted at the top of the screen, the Subject Code control sets the

name under which all subject data files will be saved. It must be

set for each subject. It is changed by clicking the cursor within the

window and typing the subject name or code.

BDC#: This refers to the number of the Baseline Data Collection and should be

set at each session. It is changed by clicking the cursor on the arrow heads

on the bottom of the control.

# of runs: This controls the total number of runs and calibrations to be performed

before the program shuts itself off. It should be set appropriately each

time the program is run.

save path: This controls where the run folder is created.

Slot #: This indicates which slot the Macadios A/D board is in.

CZ1 1This sets the duration (in seconds) of calibration runs.

sees: This sets the duration (in seconds) of regular data acquisition runs.

freq: This sets the data sampling frequency (in hertz).

Chair Type: This defines the which chair is going to be used. There are three regular

settings,

passive - indicates that no output mode will be used, three channels



other - latent modes that have not been defined

Sets data file save type to either binary or ASCII. Binary save is default

due to faster save time.

B.3.2 Indicators

run folder name: indicates the name of the folder that data will be saved into.

RUN #: Shows the number of the current run or calibration in the series.

motor output: The chart border contains the real-time display of the voltage

sent to the motor servo controller.

A/D inputs: This chart border contains the real-time display of the data being

acquired for all three input channels.

B.3.3 File and Run Name Conventions

DAM/DQML-mod6 will open a folder following the path information given in the

save path, with a name following thhe convention;

Subject Code BDC# - time - day

The subject code and BDC# are taken from the front panel controls, while the time and

day are read from the computer's clock.

Each individual run will have three files saved within this folder using the following

notation;

Subject Code BDC# RUN# .HEOG
.VEOG
.TAC

where the subject code and BDC# are the same as defined on the front panel controls,

and the RUN# is defined by the indicator of the same name, and has a value between 01

and 99. The suffixes .HEOG, .VEOG, and .TAC refer to the signals saved on channels 6,

4, and 2 respectively, which are defined to be the horizontal eog, vertical eog and
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tachometer signals. These files can be converted to matlab format using a variety of

conversion programs including mexchair_convert, which is described in appendix C.

B.4 Running DAM/DQM.L-mod6

Once all front panel controls are set to the proper values, the program can be initiated.

This is done by clicking on the single arrow at the top left of the screen(not shown in the

figures). At the beginning of a BDC session, the computer will present a dialog box

containing the name of the run folder as defined by the front panel controls. If the subject

code or BDC# is incorrect, you may abort by clicking on the Reset button and then

change the appropriate control before restarting. If the name is correct, click on the

Continue button. For all subsequent runs within a BDC session, the process will be

identical for each run.

The computer will present another dialog box with the choices of Run or Cal,

corresponding to whether a run or a calibration will take place. If run is chosen, you will

then be presented with another dialog box asking for the direction of the run, right or left.

The default values alternate according to the nominal run profiles chosen for the SLS-2

mission. Following the choice of direction, there will be an approximately 15 second

delay as the computer develops the output array and initializes the A/D board. The

background of the motor output, and A/D input charts will be re-drawn in white. The

motor command output and A/D input traces will appear in their respective charts, and

will be drawn across the screen. At approximately halfway through the run, the data will

reach the right edge of the chart, and data plotting will continue from the left hand edge,

erasing the earlier points. Data collection will stop after a period of time equal to ss

plus two seconds has elapsed. A dialog box will appear asking whether or not to save the

data. If NO is pressed, the previous run will not be incremented to the run counter. If
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yes is pressed, the data will be saved and the run counter will be incremented by one. If

this was not the last run, it will return to the run/cal dialog box.

If cal is chosen from the run/cal dialog box, the run/cal panel will appear in the middle of

the screen. This panel is shown in figure B.2. There are two controls on this panel, the

motor voltage slider, and the done switch. At this point, the operator has direct control

over the output channel 1, driving the rotating chair. By moving the slider left or right,

the chair will be driven accordingly so that it can be lined up to external calibration

targets. The slider appears spring loaded, so that releasing the mouse button will trigger

an immediate stop, and is limited to ± 1 volt (approximately ± 50 "/sec). Once the chair

is properly aligned, the done switch should be clicked. At this point the run/cal panel

disappears, and data collection begins for the calibration run. Data collection lasts

according to the number of seconds defined by the cal control on the front panel, and

wraps over the display area twice, as with regular data collection. During the calibration

run, motor voltage is held to 0 volts. At the end of data collection, a dialog box will

appear asking whether or not to save the data. If NO is pressed, the previous run will not

be incremented to the run counter. If yes is pressed, the data will be saved and the run

counter will be incremented by one. If this was not the last run, it will return to the

run/cal dialog box.

After the last run has been completed, the program will automatically terminate.

References:

LabVIEW 2 User Manual, January 1990 edition. National Instruments Corporation Part

Number 320244-01.
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Rot. Chair BDC

Subject Code BDC

of runs

MVL DATA

save path

run folder name

RUN #

Cal I 0';

secs Ii 120 0

freq tp 1200

Chair type RITE

S DOCF binary

Figu re I 1, DAM/D)QMA, I. -mod Iroi t paiiil I



motor voltage

1 I I
-1.0 0.0 1.0

Figure B2, run/cal front panel

done?

YES
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Appendix C

MatLab External C Codes

mexgamma.c

mexchair_convert.c

batchjfact_save.c
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/* mex gamma.c */
/* Created by T. Liefeld February, 1993 */
/* Calculates the complete and incomplete gamma functions for sk modelling */
/* Complete gamma function taken from Numerical recipes in C, pages 167-174 */
/* Returns the gamma function multiplied by an exponential with the same time */
/* series corresponding to the fractional derivative of an exponential */
/* to invoke from MatLab, use the following protocol; */
/* mex_gamma( a, x );
/* where x can be a array */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unix.h>
#include <fcntl.h>
#include <math.h>

#include <cmex.h>

#define ITMAX 100
#define EPS 2.5e-5

double hcal, vcal,sigma;

#define A_IN prhs[0]
#define X_IN prhs[1]
#define N_IN prhs[2]
#define G_OUT plhs[0]

user_fcn( nlhs, plhs, nrhs, prhs)
INT nlhs, nrhs;
Matrix *plhs[], *prhs[];
(

int m;
long int p,i;
char data_path[40];
short double *a,*x,*ret_val,*num,gammln();
short double gammp(),r,y,GG,sum,n,R,Rold;

/* get the data path from the MatLab pointer */

a = A_IN->pr;
x = X_IN->pr;
num = N_IN->pr,

G_OUT = create_matrix(1,*num,REAL);
ret_val = G_OUT->pr;

for (i=0;i<=(*num- 1);i++){

y=fabs(*(x+i));
GG = exp(-1*y)/exp(gammln(l +*a));
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sum = 0;
n=l;
R= 1*y;
sum=sum+*a*R/(n+*a);
while((R/(n+*a))>fabs(EPS * (sum- 1))) {

n=n+l;
Rold=R;
R=y/n*Rold;
sum=sum+*a*R/(n+*a);

ret_val[i] = GG*sum;

short double gammp(a,x)
short double a,x;
/* returns the incomplete gamma functionP(a,x) */

short double gamser,gammcf,gln;
void gsero,gcf();

if (a<0.0) a=a*(-1);
if (x<(a+1.0)) (

gser(&gamser,a,x,&gln);
return gamser,

) else(
gcf(&gammcf,a,x,&gln);
return 1.0-gammcf;

void gser(gamser,a,x,gln)
short double a,x,*gamser,*gln;
{

int n;
short double sum,del,ap;
short double gammln();

*gln = gammln(a);

ap = a;
del = sum= 1.0/a;
for (n=1;n<=ITMAX;n++)

ap+= 1.0;
del *= x/ap;
sum +=del;
if (fabs(del) < fabs(sum)*EPS) (

*gamser = sum*exp(-x+a*log(x)-(*gln));
return;

)
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return;

short double gammln(xx)
short double(xx);

/* returns ln(GAMMA(xx)) for xx>0.0. */
I

double x,tmp,ser;
static double cof[6]={76.18009173,-86.50532033,24.01409822,-

1.231739516,.0120858003e-2,-0.536382e-5 );
int j;

x=xx- 1.0;
tmp = x+5.5;
tmp -= (x+.5)*log(tmp);
ser = 1.0;
for (j=0;j<=5;j++){

x+= 1.0;
ser += cof[j]/x;

return -tmp+log(2.50662827465*ser);

void gcf(gammcf,a,x,gln)
short double a,x,*gammcf,*gln;

int n;
short double gold = 0.0,g,fac= 1.0,bl= 1.0;
short double bO = 0.0,anf,ana,an,a l,a0= 1.0;
short double gammln();

*gln = gammln(a);
al=x;
for (n= 1 ;n<=ITMAX;n++)

an = (short double) n;
ana = an-a;
a0 = (al+a0*ana)*fac;
b0=(bl+b0*ana)*fac;
anf = an*fac;
al=x*a0+anf*al;
bl=x*b0+anf*bl;
if (al){

fac = 1.0/al;
g=bl*fac;
if (fabs((g-gold)/g)<EPS) (

*gammcf = exp(-x+a*log(x)-(*gln))*g;
return;

gold = g;
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/* Written by Ted Liefeld, February 1993. */
/* batchfact_save is a MatLab mex file that takes a data path and run code from */
/* MatLab, along with horizontal and vertical calibration factors and writes these */
/* to a file called 'batch_factors' which can then be used as a batch file for AATM */
/* processing. A version of AATM that specifically looks for this batch file has */
/* been written as a mex file and renamed mexaatm4 */

/* to invoke from MatLab, use the following protocol; */
/* batch_fact_save('run_name',hcal,vcal) */
/* where run_name includes both path and file information, hcal is the horizontal */
/* calibration factor, and vcal is the vertical calibration factor. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unix.h>
#include <fcntl.h>
#include <cmex.h>

#define out_filename "batch_factors"
#define F_IN prhs[0]
#define CH_IN prhs[1]
#define CV_IN prhs[2]

double hcal, vcal,velA;

userfcn( nlhs, plhs, nrhs, prhs)
INT nlhs, nrhs;
Matrix *plhs[], *prhs[];

int create_output_file(), getfile_parameters(),m,out_handle;
void write_matlab_header();
void save_vel_data(), save_os_data();
long int p;
char data_path[40];
short double *cl,*c2;
FILE *file_ptr,

/* get the data path from the MatLab pointer */
p = (F_IN->n);

for(m-0; m<p; m++)(
data_path[m] = (char) *(F_IN->pr+m);

)
data_path[m] = 0';
cl = CHIN->pr;
c2 = CVIN->pr;

/* write the data to file */
file_ptr=-fopen(out_filename,"a+");

fprintf( file_ptr, "%s\r",data_path);
fprintf(fileptr, "%6.4f\r",*cl);
fprintf(fileptr, "%6.4f\r", *c2);
fclose(file_ptr);I
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/* mexchair convert.c */
/* Originally written D. Balkwill 1991 */
/* Modified by T. Liefeld, 03/93 */

/* Originally written as a stand alone application (Balkwill, 1992), this version has */
/* been re written to be used as a mex file with altered file names, and the expanded */
/* ability to handle up to 99 files */

/* to invoke from MatLab, use the following protocol; */
/* mexchair_convert('path:subject BDC',num_runs) */
/* where path is the file path to the data, subject BDC is the subject is letter code and*/
/* BDC is the BDC number, eg/ data_path:Al, for subject A, BDC #1 */

/* Only the main body of the program is included, as the rest of the program and */
/* subroutines are unchanged */

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unix.h>
#include <string.h>
#include <cmex.h>

#define FALSE 0
#define TRUE 1

#define MAX_LINE_LENGTH 81

#define BLOCK_SIZE 16384
#define BAD_TYPE 0
#define DOUBLE_TYPE 1
#define FLOAT_TYPE 2
#define LONG_TYPE 3
#define SHORT_TYPE 4

#define MATLAB_DOUBLE 1000
#define MATLAB_FLOAT 1010
#define MATLAB_LONG 1020
#define MATLAB_SHORT 1030

#define TORSIONAL_VAR "tor" /* channel 1 */
#define HORIZONTAL_VAR "hor" /* channel 2 */
#define VERTICAL_VAR "ver" /* channel 3 */
#define ACCELERATION_VAR "acc" /* channel 4 */

/*char *matvar_names[] = (
TORSIONAL_VAR, HORIZONTAL_VAR, VERTICAL_VAR,

ACCELERATION_VAR
char ;*

char run_code[MAX_LINE_LENGTH];
char out_code[MAX_LINE_LENGTH];
char temp[MAX_LINE_LENGTH];
char temp2[MAXLINELENGTH];
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char infilename[MAX_LINE_LENGTH];
intin _fnamelen;
int in_handle;
FILE *infptr;
char *in_buffer;
int inbytes;

char outfilename[MAX_LINE_LENGTH];

int out_handle;
FILE *outfptr,
char *out_buffer,
int out_bytes;
int out_namejen;
char inter_filename[MAX_LINE_LENGTH];
int inter_handle;
FILE *inter_fptr;

typedef struct {
long type;
long mrows;
long ncols;
long imagf;
long namlen;
) Fmatrix;

Fmatrix F_out;
long mrows = OL;
long ncols = OL;

int sample_size[5] = { 0, 10, 4, 4, 2 );
int in_size, out_size;
int in_type, outtype;
int num_channels;
long totalbytes;

int save_intermediate = FALSE;

int zz;

#define ALLOCATE_BUFFER(BUF) \

(BUF) = malloc(BLOCK_SIZE);\
if (!(BUF)) {\
mex_printf("Out of memory on buffer allocation.\n");\
goto done;\

#define READ_BUFFER() \
in_bytes = read(in_handle,in_buffer,BLOCK_SIZE);

#define WRITE_BUFFER(NUM) \
write(outhandle,out_buffer,NUM);
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#define WRITE_INTER(NUM) \
write(inter_handle,out_buffer,NUM);

char in_line[MAX_LINE_LENGTH];
char matlabname[MAX_LINE_LENGTH];

#define F_IN prhs[0]
#define CHIN prhs[1]
#define CV_IN prhs[2]

user_fcn( nlhs, plhs, nrhs, prhs)
INT nlhs, nrhs;
Matrix *plhs[], *prhs[];

int open_inputfile(), create_output_file(), create_inter_file(), get_file_parameters();
int num_run,m;

long calculate_num_samples();
void write_matlab_header(), transfer_data();

int i,ll,il,i2;
long int p;
char data_path[40];
short double *num;

ALLOCATE_BUFFER(in_buffer)
ALLOCATE_BUFFER(out_buffer)

/* get the data path from the MatLab pointer */
p = (F_IN->n);

for(m-0; m<p; m++)(
data_path[m] = (char) *(F_IN->pr+m);

data_path[m] = '1';
num = CH_IN->pr;

strcpy(run_code,data_path);

11 = strlen(run_code);
out_name_len = 11;
strcpy(temp,run_code);

strcpy(temp2,run_code);

for (i=O; i < (10);i++) (
if ((out_filename[i] >= 'a') && (out_filename[i] <= 'z'))

out_filename[i] += 'A' - 'a';

zz = 1;

while (zz < 5) (
zz = zz + 1;

for (i = 1; i <= *num; i++) {
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i2 = i% 10;
il = i/10;

run code[11+1] = '0' + i2;
run_code[ll] = '0' + il;

strcpy(temp,run_code);
strcpy(temp2,run_code);

if (zz == 2) (
strcat(temp,".HEOG");
strcat(temp2,".eogh"t );

else
if (zz == 3) {

strcat(temp,".VEOG");
strcat(temp2,".eogv");

else
if (zz == 4) (

strcat(temp,".TAC");
strcat(temp2,".tach");

else
if (zz == 5) {

strcat(temp,".POS");
strcat(temp2,".pot");

strcpy(in)filename,temp);
strcpy(out_filename,temp2);

strcpy(matlab_name,in_filename);

if (open_input_file()) (

if (create_output_file()) (

if (get_file_parameters(i)) {

mrows = calculate_num_samples();
write_matlab_header();
transfer_data();

strcpy(temp,run_code);
save_intermediate = FALSE;

done:
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if (in_handle > 0)
close(in_handle);

if (out_handle > 0)
close(out_handle);

if (interhandle > 0)
close(inter_handle);

)
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Appendix D

Batch Analysis Scripts

batch_analyse

cal from file

caljactor-gen

calibration_calc

multiple_AATM

CODES

model_select
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Appendix D notes:

This collection of scripts comprises the new material added to the automated analysis of

Space Lab data originally developed by Balkwill (1992). The primary additions here are in

file and data handling, not in the generation of new algorithms (with the exception of the sk

modelling routines). Other routines that are called from within batch_analyse, such as

statprep and tachan that are not listed here, are not functionally changed from the scripts

presented in Balkwill, 1992.

Figure D1, that follows is a flow chart of the main components of the batch analysis system

showing the interconnectivity and order of use of the separate scripts. In the figure, shaded

ovals represent mex files, and lightly shaded round cornered squares represent other MatLab

scripts called by batch_analysis.

137



data path
subject code
# of runs

end
Figure Dl, batch_analysis flow chart (explanation of symbols in

text)
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% batch_analyse

% written by T. Liefeld throughout spring 93
% given a folder of runs from a BDC, this functions as a
% superscript that will prompt the user for all analysis
% from data collection through to model fitting.

data_path = input('Enter Data Path >> ','s');
sub_code = input('Enter Subject Code >> ','s');
number = input('Enter Number of Runs >> ');

convert = input('Convert the data to MatLab format? >>','s');
if ((convert == 'y') I (convert == 'Y'))

code = [data_path,sub_code];
mexchair_convert(code,number);

end

ql = input(' Do you want to do a calibration? >> ','s');
if ((ql=='y') I (ql=='Y'))

q = input('Calibration factors from file or new? (f/n) >> ','s');
if ((q == 'f) I (q == 'F))

cal_from_file
end
if ((q == 'n') I (q == 'N'))

cal_factor_gen
end

end;

q2 = input(' Do you want to perform AATM? >> ','s');
if ((q2 = 'y') I (q2 =='Y))

multiple_AATM;
end;

% create the run_code matrix, codes
CODES
number = number-n_cals;

q3 = input(' Do you want to perform Tachan and Stat_Prep >> ','s');
if ((q3=='y') I (q3=='Y'))

for i = l:number
run_code = codes(i,:);
fprintf([NnRun code = ',run_code,n']);

% perform statistical analysis on tach and SPV
tachan_batch;
statprep_batch;

end
end

q4 = input(' Would you like to fit a Model? >>','s');
while ((q4=='y') or (q4=='Y'))

model_select;
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q4 = input(' Would you like to fit another Model? >>');
end;

% calfrom file
**************************************************************

% written by T. Liefeld, 22/4/93
% Takes previously generated calibrations from a file
% specified by the user and generates the vector of
% calibration factors for use with mexAATM4

filename = input(' Enter the data path and name of the file containing the calibration
factors','s');

load filename
calibration_calc
clear_filename

% calfactor_gen

% calls calibrate for a number of runs and generates the cal factors
% for the PRN and dumping runs

chdir HardDisk:SIMULINK:NysA_V2:scripts:

run = ones(1,number);
n_cals = input('How many cals?');
dim = input('Enter # of dimensions (1/2) >> ');

if (n_cals >= 0)
fprintf(1n Enter the run number for the cals in order')
fprintf(\n from lowest to highest')
for i=l:n_cals

calnum(i) = input('cal # >> ');
run(calnum(i)) = 0;
if (calnum(i) < 10)

n = num2str(calnum(i));
cal_code = [data_path,sub_code,'O',n]

calibrate
hcal(i) = scale 1;
if (dim == 2)

vcal(i) = scale2;
end
g(i) = input('Was this cal good enough to use? >>','s');

else
if (calnum(i)>= 10)

n = num2str((calnum(i)));
cal_code = [data_path,sub_code,n]
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calibrate
hcal(i) = scale l;
if (dim == 2)

vcal(i) = scale2;
end
g(i) = input('Was this cal good enough to use? >>','s');

end
end

end
end

% calculate calibration factors for the runs
% based only on the good calibrations
for i = 1:n_cals
if ((g(i)= 'y') I (g(i) == 'Y'));

g_cal(i) = calnum(i);
calh(i) = hcal(i);
if (dim == 2)

calv(i) = vcal(i);
end

end
end

q = input('Would you like to save measured cal values? >>','s');
if ((q == 'y') I (q == 'Y'))

save_name = input('Save File Name : ','s');
save_name = [data_path,save_name];
if (dim == 2)

save save_name data_path sub_code number dim g_cal hcal vcal
else

save save_name data_path sub_code number dim g_cal hcal
end

end

calibration_calc

% calibration_calc

% written by T. Liefeld, 22/4/93
% interpolates or extrapolates as necessary to generate the
% calibration factors for runs, given the number of runs,
% the position of the calibration runs in the series, and the
% calibration factors

if (length(g_cal) == 0)
fprintf(' No good cals?')

elseif (length(g_cal) == 1)
for i = 1 :number

hor_cal(i) = hcal(1);
if (dim == 2)
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ver_cal(i) = vcal(1);
end

end
elseif (length(g_cal) >1)

for i = 1:number
forj = 1:(length(g_cal)-1)
if (i<g_cal(1)) % runs before first cal, extrapolate

delta = g_cal(1) - i;
del2 = g_cal(2) - g_cal(1);
hor_cal(i) = hcal(1)-(hcal(2)-hcal(1))*delta/del2;
if (dim == 2)

ver_cal(i) = vcal(1)-(vcal(2)-vcal(1))*delta/del2;
end

end
if (i = gcal(1)) % first cal run

hor_cal(i) = hcal(l);
if (dim = 2)

ver_cal(i) = vcal(1);
end

end
if ((g_cal(j)<i) & (i<g_cal(j+l))) % interpolate between

delta = i - gcal(j);
del2 = gcal(j+1) - g_cal(j);
hor_cal(i) = hcal(j)+(hcal(j+1)-hcal(j))*delta/del2;
if (dim == 2)

ver_cal(i) = vcal(j)+(vcal(j+ 1)-vcal(j))*delta/del2;
end

end
if (i =-- g_cal(j))

hor_cal(i) = hcal(j);
if (dim == 2)

ver_cal(i) = vcal(j);
end

end
if (i == gcal(j+1))

hor_cal(i) = hcal(j+ );
if (dim == 2)
vercal(i) = vcal(j+1);

end
end
if (i> g_cal(j+l))

delta = i - g_cal(j+1);
del2 = g_cal(j+1) - g_cal(j);
hor_cal(i) = hcal(j+l)+(hcal(j+1)-hcal(j))*delta/del2;
if (dim == 2)

ver_cal(i) = vcal(j+1)-(vcal(j+ 1 )-vcal(j))*delta/del2;
end

end
end

end
end
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% multiple_AATM

% written by T. Liefeld, 21/4/93
% prepares a batch file for AATM processing using the
% appropriate calibration factors and names, and a
% predefined batch file name, batch_factors, for use
% with mexAATM4.

% create file of ones for the vertical calibration if no vertical
% calibrations were performed
if (dim -= 1)

ver_cal = ones(1,number);
end

% remove earlier files
chdir HardDisk:SIMULINK
if (exist('batch_factors') == 2)

delete batch_factors
end

for i = l:number
if ((i < 10) & (run(i) > 0))

n = num2str(i);
run_code = [data_path,sub_code,'O',n];
batch_save(run_code,hor_cal(i),ver_cal(i));

else
if (i >=10 & (run(i) > 0))

n = num2str(i);
run_code = [data_path,sub_code,n];
batch_save(run_code,hor_cal(i),ver_cal(i));

end
end

end
% send the EOF marker that mexAATM4 looks for
batch_save('&',0,0);

mexAATM4;

% CODES

% written by T. Liefeld, 21/4/93
% creates a matrix, called codes, containing all the run codes
% of non-calibration runs

j = 0;
for i = 1 :number

if (run(i) == 1)

stln = length([data_path,sub_code])+2;
if (i < 10)

143



n = [num2str(0),num2str(i)];
else

n = num2str(i);
end
codes(i-j,1:stln) = [data_path,sub_code,n];

elseif (run(i) == 0)
j = j+l;

end
end

% model_select

% written by T. Liefeld, 21/4/93
% model select allows the user to choose which models are to
% be fitted to the data being processed through batch_analyse.

fprintf(' \n\n MODEL SELECTION: \n\n')
fprintf(' 1. First Order Exponential \n');
fprintf(' 2. sk model (w/ velocity storage)\n');
fprintf(' 3. Three Parameter (w/ velocity storage)\n');
model = input(' Enter Number >>');
pr = input(' Print outputs? >>');

for i= 1:number
run_code = codes(i,:);
fprintf([NnRun code = ',run_code(stln-3:stln),Nn']);

if (model == 1)
ind_model_fite xp

elseif (model == 2)
ind_model_fit_sk2

elseif (model == 3)
ind_model_fit

end
end

end
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Appendix E

New Algorithm Scripts

dec_30_spv

dec_mean

mean_model_err

model_err_exp

model_err_sk

t_chisq
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% dec30_new

% written by T. Liefeld 3/93
% in addition to decimating the SPV files, it also
% creates the decimated Tach and SPV for the model fits
% using the real tach signal, and calculates weights
% for the model fit to use calculating MSE

% set bad data to zero for summation purposes
norm_spv = norm_spv .* good_data;

1 = length(good_data);

new_l = (1 - 1)/30; %new sampling frequency

y = zeros(30,new_l);
g = zeros(30,new_l);
n = zeros(l,new_l);
d = zeros(l:new_l);
x = zeros(1,new_l);
z = 1:1:30;

for t=1:(new_l-1)
for i = 1:30

y(i,t) = norm_spv(30*t+i);
g(i,t) = good_data(30*t+i);

end;
x = sum(y);
n = sum(g);
[a] = polyfit(z,y(:,t)',1); % linear least squares fit to each bin
for i = 1:30 % calc variance about the linear fit

d(t) = d(t) +((y(i,t) - (a(2)+a(l)*i)).*g(i,t)).A2;
end;

end;

dec_good = (n>0); % good data flag

% Decimated SPV is box-car average across row, with n=number of
% good samples. Correction in denominator to prevent division
% by zero for an entire bin of bad data; dec_spv=0 in this case.
dec_spv = x ./ (n + (-decgood));

% Variance within trace is variance of each bin around a linear
% polynomial fit to each bin. A correction in case of
% good samples in bin is <= 1; variance within=0 in this case.
within = d./ (n -1 + 2*(n<=1) );

% calculate weights as the number of samples divided by the variance of each
% sample.
dec_weight = n ./ within;
bad_weight = pack_true(isnan(dec_weight));
dec_weight(bad_weight) = zeros( 1 ,max(size(bad_weight)));
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zero_var = pack_true((within<= le-7));
dec_weight(zero_var) = zeros( 1 ,max(size(zero_var)));

% remove outliers in the weights
% sort variances into ascending order
[y,i] = sort(within);

% calculate mean variance of three equal sized regions
meanl = mean(y(l:160));
mean2 = mean(y(161:320));
mean3 = mean(y(321:480));

% set all points in each region equal to their mean variance
var(i(l: 160)) = mean l*ones(1,160);
var(i(161:320)) = mean2*ones(1,160);
var(i(321:480)) = mean3*ones(1,160);

% calculate n, for each point;
n = dec_weight .* within;

% calculate the new weighting function to be used for averaging
% of runs
weight = n./var;

plot(dec_weight,'x')
%save data, having departed from 'file_specs' by now
eval(['save ',run_code,'.dec_spv decspv']);
eval(['save ',run_code,'.dec_weight dec_weight']);
eval(['save ',run_code,'.within within']);

%clear dec_good dec_spv i 1 new_l within x out_weight zero_var decweight

%DecMean:

% Written 3/93 by T. Liefeld
% calculates the ensemble weighted mean of several runs
% and its variance for best estimate model fitting

num_runs = input('Number of Runs >> ');

for i = 1:num_runs
run_code(i,:) = input('Enter Run Code: ','s');

end

stat_code = input('Enter code for stats file: ','s');

sample = 4;
minute_size = 60 * sample;

sum_spv = zeros(1,2*minute_size);
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sum_square = zeros(1,2*minute_size);
total = zeros(1,2*minute_size);
n_tot = zeros(1,2*minute_size);

for i= 1:num_runs

if (exist([run_code(i,:),'.dec_spv']) -= 2)
fprintf(['Error: cannot find data for run code ',runcode]);

else
eval(['load ',run_code(i,:),'.dec_spv']);

eval(['load ',run_code(i,:),'.weight']);
eval(['load ',run_code(i,:),'.n']);
eval(['load ',run_code(i,:),'.parms']);

sum_spv = sum_spv + (abs(spinv)/spinv*dec_spv .* weight);
total = total + weight;
d_spv(i,:) = abs(spinv)/spinv*dec_spv;
wt(i,:) = weight;
n_tot = n_tot + n;

end
end

mean_spv = sum_spv ./total;

for i= 1:num_runs
sq(i,:) = ((d_spv(i,:) - mean_spv).A2).*wt(i,:);

end
varspv = sum(sq) ./total;
var_spv = varspv *(num_runs/(num_runs- 1));
var_spv(pack_true(isnan(var_spv))) = zeros( 1 :sum(isnan(v ar_spv)));

% do the same variance histogram method developed for the ind.
% runs and apply it here to make the weighting funtion less
% extreme in the weight calculation

% sort variances into ascending order
[y,i] = sort(var spv);

% calculate mean variance of three equal sized regions
meanl = mean(y(1:160));
mean2 = mean(y(161:320));
mean3 = mean(y(321:480));

% set all points in each region equal to their mean variance
var(i(l:160)) = mean l*ones(1,160);
var(i(161:320)) = mean2*ones(1,160);
var(i(321: 4 80)) = mean3*ones(1,160);

% calculate the new weighting function to be used for averaging
% of runs
weight = num_runs*ones(1:480)./var;

sigma_sq = mean(var_spv);
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eval(['save ',statcode,'.stats mean_spv var_spv n_tot num_runs weight'])

std_spv = sqrt(var_spv);
plot(mean_spv+2*std_spv,'g')
hold on
plot(meanspv-2*std_spv,'g')
plot(mean_spv);grid
title('Mean SPV +- two standard deviations');
xlabel('Sample Number');
ylabel('SPV (deg/sec)');
hold off

clear total mean_spv var_spv std_spv
clear stat_code run_code i num_runs sample minute_size
clear nysa_path data_path

function [f,g] = model_err(model_parms,t,u,dec_spv,goodindices,normparms, weight)

%mean_model_err
********************************************************************

% Error function for model fitting. Constrained optimization
% minimizes the output of this function, which is currently set
% as the mean square error (MSE) between the SPV data and the
% model SPV data.

% D. Balkwill 12/9/91
% modified T. Liefeld 3/93

% calculate physical parameters for transfer function, and
% determine the corresponding model response

model_parms = model_parms .* norm_parms;
K1 = model_parms(1);
Tc = model_parms(2);
Ta = model_parms(3);
hO = model_parms(4);
gO = model_parms(5);

num = -[Ki, (K1 * (hO + gO)), 0, 0];
den = [1, (1/Tc + 1/Ta + hO), (1/(Ta*Tc) + hOiTc + hO/Ta), hO/(Ta*Tc)];
y = lsim(num,den,u,t);

% ensure that y and dec_spv are both either row vectors or column vectors
[ml,nl] = size(y);
[m2,n2] = size(dec_spv);
if (ml > nl) % y is column vector

if (m2 < n2) % dec_spv is row vector
y = y';

end
else % y is row vector

if (m2 > n2) % dec_spv is column vector
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y = y';
end

end

% Only base MSE on data points at which we have valid data.

d = y(goodindices) - dec_spv(goodindices);
d = d .*d .* weight(good_indices);
f = sum(d ) / length(d);

%fprintf('MSE = %f\n',f);

plot(t(goodindices),dec_spv(good indices))
hold on
plot(t(goodindices),y(goodindices),'g');
hold off

% dummy value which 'constr' requires but is unused for our
% purposes; this must be some constant value for our purposes
%

return;

function [f,g] = model_err_sk(model_parms,t,u,dec_spv,good_indices,norm_parms)

%model_err_exp

% Error function for model fitting. Constrained optimization
% minimizes the output of this function, which is currently set
% as the mean square error (MSE) between the SPV data and the
% model SPV data.

% T. Liefeld 12/6/92

% calculate physical parameters for transfer function, and
% determine the corresponding model response

model_parms = model_parms .* norm_parms;
K = model_parms(l);
T = model_parms(2);
A = model_parms(3);

y=A*K*exp(- 1 *t/T);

% ensure that y and dec_spv are both either row vectors or column vectors
[m2,n2] = size(decspv);
[ml,nl] = size(y);
if (ml > nl) % y is column vector
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if (m2 < n2) % dec_spv is row vector
y = Y';

end
else % y is row vector

if (m2 > n2) % dec_spv is column vector
y = Y';

end
end

% Only base MSE on data points at which we have valid data.

d = y(goodindices) - dec_spv(goodindices);

f = sum(d .* d) / length(d);

plot(t(good_indices),dec_spv(good_indices))
hold on
plot(t(good_indices),y(good_indices),'g');
hold off

% dummy value which 'constr' requires but is unused for our
% purposes; this must be some constant value for our purposes
%

return;

% t_chisq

% performs a chi squared analysis comparing two ensemble averaged
% curves. Also performs 95% and 97.5% students t tests at every
% pont in time along the curves and plots only those points that
% are significant.

% written by T. Liefeld, 4/93

clear
clg

t975 = [ 12.706, 4.303, 3.182, 2.776, 2.571, 2.447, 2.365, 2.306, 2.262, 2.228, 2.201,
2.179, 2.160, 2.145, 2.131, 2.120, 2.110, 2.101, 2.093, 2.086, 2.080, 2.074, 2.069, 2.064,
2.060, 2.056, 2.052, 2.048, 2.045, 2.042];

t95 = [ 6.31, 2.92, 2.35, 2.13 2.02, 1.94, 1.90, 1.86, 1.83, 1.81, 1.80, 1.78, 1.77, 1.76,
1.75, 1.74, 1.73, 1.73, 1.72, 1.72, 1.72, 1.72, 1.71, 1.71, 1.71, 1.71, 1.70, 1.70, 1.70,
1.70];

% load the averaged data
eval(['data_path = input("Enter Data Path >> ","s");'])
eval(['run_code = input("Enter Run Code >> ","s");'])
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eval(['load ', data_path,run_code,'.stats'])

% use only post-rotatory
meanA = mean_spv(249:320);
varA = var_spv(249:320);
nA = ntot(249:320)/30;

clear mean_spv var_spv n_tot

eval(['runcode = input("Enter Run Code >> ","s");'])
eval(['load ', data_path,run_code,'.stats'])

% use only post-rotatory
meanB = mean_spv(249:320);
varB = var_spv(249:320);
nB = n_tot(249:320)/30;

clear mean_spy var_spv n_tot

% evaluate to find the good regions, i.e. where both curves
% have good points.

goodAl = (-isnan(meanA));
goodA2 = (nA >0.1); % at least 10 pre-decimation points
goodA = (goodAl .* goodA2);

goodB1 = (-isnan(meanB));
goodB2 = (nB >0.1); % at least 10 pre-decimation points
goodB = (goodB1 .* goodB2);

good = pack_true(goodA .* goodB); %both curves must be good

% redefine curves only at good points
meanA = meanA(good);
varA = varA(good);
nA = nA(good);
meanB = meanB(good);
varB = varB(good);
nB = nB(good);

% calculate the pooled variance for A and B
wons = ones(1,length(nA));
p_var = (wons./nA+wons./nB).*(((nA- 1).*varA + (nB- 1).*varB)./(nA+nB-2));

% calculate chi-squared value
chi = ((meanA - meanB). 2)./p_var;
chisquare = sum(chi);
n_chi = length(chi);
fprintf(' n: %f\n',n_chi);
fprintf(' chiA2: %6.2f\n',chisquare);

% calculate t values
weight = (nA + nB)./(nA .* nB); % I/nA + i/nB
std = (meanA-meanB)./ sqrt(weight .* p_var);
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df = floor(nA +nB -2);
for i=l:length(df)

if (df(i)<l)
df(i) = 1;

end
end

t=1/4:1/4:60;

% check for significance in the t-test
sig_diff_975 = pack_true(abs(std>t975(df)));
sig_diff_95 = pack_true(abs(std>t95(df)));

fprintf(Nn .95 sig t-test %4.0f\n',length(sig_diff_95));
plot(t(sigdiff95),meanA(sig_diff95),'o',t(sigdiff95),meanB(sigdiff_95),'x')
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