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Abstract

This Study considers a flexible wing which is designed to change camber in re-
sponse to lift loads. This cambering response is achieved by properly constraining
a flexible bending plate-like wing. By supporting the leading and trailing edges of
such a wing, the lift loads cause the wing to camber. The performance of flexible
wings differs significantly from traditional rigid wings. The variable camber of the
flexible wings results in a lift curve whose slope depends on the stiffness of the airfoil
as related to the dynamic pressure of the flow. This relative stiffness of the bending
plate to the dynamic pressure of the flow is measured by a non-dimensional stiffness
parameter. A numerical analysis combining a vortex lattice aerodynamic model and
a finite element structural model is used to determine the performance characteristics
of these wings. The analysis is idealized by including only the linear bending effects of
the structure and the inviscid aerodynamics of the wing. The results of the analysis
show the theoretical performance characteristics of flexible wings in terms of the lift
curve slope of the wing as related to its stiffness and aspect ratio.

Thesis Supervisor: Sheila E. Widnall
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

One of the main goals in the design of a lifting body such as a wing is to maximize

the lift to drag ratio. This desire to minimize drag resulted in the development of

cambered airfoil sections for wings. Adding camber to wings has the effect of increas-

ing the amount of lift that can be achieved at a certain angle of attack. Camber

also increases the magnitude of the lift that can be generated before the wing transi-

tions from low drag laminar flow to high drag turbulent flow. By properly designing

the camber of a wing it is possible to achieve a high lift to drag ratio for a certain

range of operating points. Traditional fixed geometry wings generate lift through a

combination of camber and angle of attack. However, since the amount of camber

is fixed, these wings can only increase the amount of lift they are generating by in-

creasing their angle of attack. This tends to add drag and decreases the efficiency of

the wings. Thus, the range of efficient operation of a fixed-camber wing is limited to

a small range close to the operating point that it was designed for. When the wings

deviate too far from this design point, their efficiency goes down.

By utilizing airfoil sections that change camber as the operating point changes, it

is possible to extend that range of efficient operation of a wing. Wings of this type

are known as variable geometry wings. The characteristics of these wings make them

ideal for vehicles that require a large range of lifting needs, a wide range of speeds or a

need to generate both positive and negative lift. There are many wing designs which

utilize variable geometry airfoils but their shapes are usually controlled externally by



the use of mechanical actuators that deploy leading edge flaps or slats or otherwise

change the shape of the wing. While these wings often achieve significant performance

advantages over fixed geometry wings, the control and actuation system is often too

large and complex to be practical for many smaller applications.

An elastically flexible wing changes its camber shape automatically, in response to

lifting loads. Such an automatic camber-adjusting wing does not use external control

devices to change camber, but rather controls the shape through the elastic flexibility

of the chordline. Because this wing can change its amount of camber, it responds to

an increased lift requirement by increasing its camber as well as its angle of attack.

This automatic cambering behavior in response to load is achieved by controlling

the flexibility of the wing in the chordwise direction. By having a flexible chordline

and being constrained in deflection at the leading and trailing edges, the lift forces

push up on the center of the wing and bend it into a cambered shape. Thus, additional

lift is generated by an increase in camber as well as a change in angle of attack. This

increase in camber allows the wing to generate the increased lift more efficiently.

1.1 Description of Flexible Wings

The elastically flexible wings considered in this work are comprised of a flexible

plate in the shape of a wing with an aerodynamic thickness distribution. The plate

is supported by explicitly prescribed boundary conditions at the leading and trailing

edges of the wing or by rigid spars along the leading and trailing edges that are

cantilevered at the root of the wing. The spars are mounted to the craft such that

they are free to pivot around their major axes. The spar that runs along the trailing

edge is also free to slide in the chordwise direction to provide simple support to the

plate. Thus, the spars constrain the deflection of the wing under load such that the

wing is reasonably flexible in the chordwise direction but is not allowed to deform in

the spanwise direction providing a flexible camberline.

By properly constraining the leading and trailing edge deflections, the wing can

be made to increase its camber as the lift loads increase. By the proper tailoring of



the flexibility of the camberline, the wing can increase its camber in direct proportion

to the lift loads. The flexible region should be flexible enough so that the lift loads

cause it to camber, but not so flexible that it cambers more than desired.

1.2 Advantages of Flexible Wings

Flexible wings have many advantages over standard fixed geometry wings. Rigid

wings are designed to operate mainly at one operating point. The camber of these

wings is designed to maximize the performance at that point. Wings operating at

low lift coefficients generally have low camber while higher lift coefficients generally

demand higher camber. Due to their ability to change camber, flexible wings have

a much broader range of lift loads where they can operate efficiently. At low lift,

these wings have only a small amount of camber much like the rigid wing designed to

operate at that same operating point. However, at higher lift, the camber is increased

and thus the wing operates like the rigid wing with higher camber. Thus, the flexible

wing has the ability to perform with high efficiency over a much broader range of

operating points than any one fixed geometry wing.

A flexible wing also resists stalling. Most rigid wings are designed to operate at a

moderate lift point. The camber of the wing is designed to optimize the performance

of the wing at that point. When such a wing is operated at a much higher lift point,

it is prone to stall since it does not have enough camber for that amount of lift and

must drastically increase its angle of attack. For a flexible wing, an increased lift

need is met by a camber increase as well as an increase in angle of attack. Thus, the

increase in angle of attack is less for the flexible wing than it is for the rigid wing and

the flexible wing is further from its stall point.

1.3 Applications

Flexible wings are particularly well suited for certain applications. Given their

ability to camber in the direction of the lift force, they work well on lifting bodies



that may need to generate lift in either directions such as lifting surfaces on sailboats

or control surfaces on aircraft. They may also work well for devices that have a large

range of lift requirements such as compressor or turbine blades in turbomachinery.

1.3.1 Aircraft

There are many types of aircraft that could utilize a wing with a wide performance

range. It is not uncommon for an aerobatic aircraft to perform maneuvers that can

require the wings to operate anywhere between +6g and -2g or more. The wings of

such aircraft would need to be able to generate lift up to 6 times the weight of the

aircraft as well as negative lift of 2 times the weight of the aircraft. Standard fixed

geometry wings are often pushed to their aerodynamic limit, or stall point, by such

extreme maneuvers. A flexible wing would be much further from its limit at these

points and would be in a more efficient configuration than the fixed geometry wings.

This would give the aerobatic plane a much greater stall margin as well as reduced

drag, and thus more speed, through the maneuvers.

These flexible wings could also be used for control surfaces on aircraft with more

conservative operation. The elevators and rudders on such aircraft operate through a

wide range of lift needs. A flexible wing could adjust its camber to remain in a efficient

configuration throughout a wide range of lift points giving an efficient configuration

for a wide range of control surface positions.

1.3.2 Sailcraft Keels and Sails

Sailcraft have a unique place in the world of fluid dynamics. The sails and un-

derwater appendages (such as rudders and keels) of sailcraft need to generate lift in

either direction depending on the direction they are sailing in. In some operating

points the wind blows over the port side of the craft and in other operating points

the wind blows over the starboard side of the craft. Thus on some points of sail

the lifting bodies must generate lift in one direction and on other points of sail the

pressure and suction surfaces are reversed. This unique need to generate lift in both



directions resulted in the development of sails that can camber from side to side as

the wind pushes on them.

However, traditional sails behave in a very different way than the flexible wings

studied here. Structurally, a wing is a membrane rather than a bending plate. The

deflection state of the loaded membrane is determined by the tensions that build up

in the membrane rather than the bending strains that are associated with the plate.

The shape of a sail is determined mainly by the way that the sailmaker cut the cloth

of the sail. The sail tends to exhibit a "snap through" camber response where it takes

on one of only two possible shapes; positively cambered or negatively cambered. The

shape of the elastic flexible wing studied is proportional to the loading on it.

In a similar way, a flexible wing can camber in either direction depending on the

direction of the lift forces. By having a flexible wing for a keel, the drag of the

craft can be reduced and the craft can go faster. The ability to camber in either

direction allows the performance advantages to be realized on either tack. The elastic

response of the camber to the lift allows the keel to adjust to the lift need of the boat.

Flexible wings can also give rudders better control authority. The rudder, much like

the elevators on aircraft, needs to generate lift in either direction to quickly adjust

the direction of the boat. A flexible rudder could reduce the drag associated with the

steering the boat allowing the boat to maintain more speed through maneuvers.

1.3.3 Turbomachinery

The compressors in turbomachinery act to push air or some other fluid through

the turbomachine. The turbines of these machines act to extract energy from the

fluid. Both the compressors and turbines make use of lifting bodies to impart or

extract energy from the fluid flow. In many applications, these lifting bodies are

blades with airfoil cross-sections. The performance of these blades is limited by two

operating points of the blades. The high lift limit is the stall point of the blades. The

low lift point or windmilling point is the zero lift point of the blades. The efficiency

of the machinery is often limited by the difference between these points.

By utilizing a flexible blade, the difference in lift between the stall point and



windmilling point is much greater resulting in an increased efficiency of the turbo-

machinery. The difference in lift between the stall point and the windmilling point

results in a large difference in camber. Given the large camber at the stall point, the

lift at this point can be increased, or the angle of attack of the blades can be reduced.

The drag at the windmilling point is reduced by having an uncambered airfoil at this

zero lift point.



Chapter 2

Theory and and Modeling of

Flexible Wings

An elastically flexible wing changes its shape when acted on by the aerodynamic

pressures associated with lift. The centerline of the wing can be thought of as a

bending plate acted on by the distributed load of the aerodynamic pressure forces.

By fixing the deflection of the leading and trailing edges of the wing, the wing acts

like a simply supported bending plate. As the lift forces build up on the wing, it

bends into a positively cambered shape. By properly tailoring the flexibility of the

camberline, the camber response of the wing can be made to be proportional to

the load. Such a wing has dramatically different performance than a standard fixed

camber wing.

2.1 Classical Theories

For wings of reasonably high aspect ratio the flow is roughly parallel to the di-

rection of travel. At any spanwise location of such a wing, the flow is very similar

to the two-dimensional flow around an airfoil that is identical to the cross section of

the wing. The performance of these airfoil sections give useful information about the

behavior of the entire wing itself.

Similarly, a plate that is simply supported along two opposite edges and is free



along the other two, often has a deflection state that is similar from one spanwise

station to another. If the plate is much longer than it is wide, has supports along

the longer edges and has minimal variation of the load in the spanwise direction, the

variation in the deflection in that direction will be negligible. Thus, the deformation

of the entire plate can be studied by looking at the two-dimensional bending of cross-

sections of the plate.

To understand the behavior of a flexible wing, it is useful to explore the theoretical

performance of a two-dimensional flexible airfoil. A two-dimensional flexible airfoil

theory can be derived by combining classical linear bending plate theory and linear

inviscid airfoil theory. Classical plate theory describes the bending of the camberline

under load and classical airfoil theory describes the the pressure load distribution on

an airfoil of a given shape. A combination of these two theories gives a good model

for the behavior of the wing sections and therefore the wing itself.

2.1.1 Two-Dimensional Plate Theory

In a two-dimensional analogy, the camberline of a flexible airfoil can be thought of

as a bending plate simply supported with a pin joint at the leading edge and a roller

pin at the trailing edge. When such a plate is loaded, it bends. The lift forces that

act on the airfoil act upon the plate and bend it into a cambered shape as shown in

Figure 2-1.

The elastic deflection of a bending plate can be described by the Bernuolli-Euler

plate equation given in [9]:

D w(x = P(X) (2.1)

Where the plate stiffness, D, is given in terms of the elastic modulus, E, Poisson's

ratio, v and the thickness, h as

Eh 3

D 12(1 - (2.2)
The deflection at some point 12(1 - 2)

The deflection at some point xp,w(xp), is proportional to the magnitude of the



Pin Joint Roller Pin Joint

Figure 2-1: Simply Supported Plate Acted on by a Distributed Load

load so long as the load is distributed in the same way. Thus if

C p(x) == w(z,) (2.3)

for some constant, C, then for a proportional load state, a p(x), the deflection state

is given by

C [a p(x)] == a w(xp) (2.4)

This proportional response is valid for a small strain (small deflections) and linear

elastic materials (constant E(o)). Thus, if the total load on the beam doubles, the

deflection at any point will also double.

The boundary conditions shown in Figure 2-1 (simply supported at the extremities

of the beam) are necessary to produce a positive (upward) deflection in response to a

positive load. In order for the wing to camber in the right direction, the center of the

load must act between the supports. As is shown in Section 2.1.2, the loading for an

uncambered wing at an angle of attack is centered at the 1/4 chord and for a purely

cambered wing at zero angle of attack is located at the 1/2 chord. In order to produce

positive camber, the center of load should be behind the leading edge support and in



front of the trailing edge support. This requires that the leading edge support must

be in front of the 1/4 chord point in order for the uncambered wing to camber under

the initial flat plate load. Further, the trailing edge support should be behind the

1/2 chord point to maintain positive camber for a purely cambered loading. The best

performance is obtained for boundary conditions as close to the leading and trailing

edges as possible.

2.1.2 Airfoil Theory

Much aerodynamic theory has been developed to describe the behavior of lifting

bodies. A wing of sufficiently high aspect ratio can be described in terms of cross

sectional airfoil shapes at its spanwise stations. The flow around such a wing has a

very small velocity component in the spanwise direction such that it can be modeled

as a two-dimensional flow around the various airfoil sections. Examining the behavior

of airfoils in a two-dimensional flow gives a good approximation of the actual flow over

the wing at various points along the span. Generally, the lift and drag performance

of airfoil sections can give a good indication of the lift and drag performance of the

entire wing.

The theory of thin airfoils, as given by Von Mises in [7], gives an approximate

solution for the flow around a thin airfoil, and thus the lift, in terms of the vorticity

distribution along the camberline, y(x). The vorticity distribution, -y(x), is deter-

mined from the camberline of the airfoil by enforcing the conditions that there is

no flow across the camberline (i.e. the flow is tangent to the camberline) and that

7y() goes to zero at the trailing edge (thus enforcing the Kutta condition). The flow

around the airfoil that is induced by such a I(z) distribution is a good approximation

to the flow around a thin airfoil with the same camberline.

The lift due to this vorticity distribution can be expressed in a non-dimensional

lift coefficient as

2 (/2
C, = cV -/ 2 ( x) dx (2.5)

c Vo J-c/ 2



where c is the chord of the airfoil and V, is the freestream flow velocity. For a straight

camberline at an angle to the freestream flow of a, the lift coefficient is

C 1 = 27ra (2.6)

Similarly, the lift coefficient due to a curved camberline given in terms of the max

camber, e, at zero angle of attack to the flow (a = 0) is

Cl = rE (2.7)

Combining these two results for a general cambered airfoil at some angle of attack

gives

C1 = 27ra + -re. (2.8)

The moment due to the pressure distribution is given by

Sc/2
M = - /2 p() (x- zm) dx. (2.9)

where xm is the point that the moment is acting around. In most cases, the moment is

calculated around the 1/4 chord since the moment is independent of the lift when it is

calculated around the 1/4 chord. For the uncambered airfoil, this integral evaluates to

zero implying that the center of lift of the flat plate is at the 1/4 chord. Performing

this same integral for the cambered airfoil at zero angle of attack shows that the

moment around this point is equivalent to the lift force acting at the 1/2 chord point.

Thus the center of lift for the pure camber case is located at the 1/2 chord.

The location of the center of lift for a general airfoil having some non-zero camber

magnitude and at some non-zero angle of attack depends on both the amount of

camber and the angle of attack. Because camber produces lift at the 1/2 chord while

angle of attack produces lift at the 1/4 chord, the amount of lift produced by each of

these factors determines where the center of lift is located, and the magnitude of the

lift at that point.



Traditional aerodynamic theory describes airfoils that have an arbitrary but fixed

amount of camber. The lift and drag forces are usually described in terms of nondi-

mensional coefficients that do not depend on the size of the airfoil or the strength of

the fluid flow. The lift coefficient of these fixed geometry airfoils is proportional to

their angle of attack. The relationship between angle of attack and lift coefficient is

described by the lift curve for that airfoil. Before stall, all inviscid airfoils have a lift

curve that is linear with a positive slope equal to 27r. An uncambered airfoil has a lift

coefficient equal to 0 at zero angle of attack. A cambered airfoil on the other hand has

a positive amount of lift at zero angle of attack. The lift curve of the cambered airfoil

is still 27r and is simply shifted upward from the uncambered lift curve. The more

camber an airfoil has, the more its lift curve is shifted upward from the uncambered

airfoil. The additional lift produced by camber is linearly proportional to the amount

of camber. The lift curves for various fixed geometry airfoils is shown in Figure 2-2

as well as in [8].

2.2 Elastic Airfoil Theory

The behavior of elastic airfoils can be described be combining simple plate theory

with simple airfoil theory resulting in an aeroelastic description of the flexible airfoil.

Airfoil theory describes the amount of lift that is generates by the airfoil and how

that lift is distributed. Beam theory describes how a beam bends under load. The

airfoil lift loads bend the beam and shape of the beam describes the camber of the

airfoil. The derivation of the linear aeroelastic theory is relatively straight forward,

but does require a few slight modifications to each of the theories. The deformation

response of the bending beam depends on the actual lift force of the airfoil rather

than the lift coefficient. Thus, when describing the behavior of the elastic airfoil in

terms of the traditional lift curve, it is also necessary to look at the lift of the airfoil

at each point on the curve.



2.2.1 Linear Theory of Flexible Airfoils

For a flexible airfoil, as the angle of attack increases, the camber increases and

thus the coefficient of lift will continually rise at a rate faster than the traditional lift

curve. For a given camber and coefficient of lift, the angle of attack can be found

from traditional cambered airfoil lift curves. However, the camber increases as the lift

coefficient increases. Thus the lift curve slope for a flexible airfoil should be greater

than the traditional lift curve slope of 27r. Figure 2-2 shows the lift curves of fixed

geometry airfoils with different amounts of camber and the lift curve for an automatic

camber adjusting airfoil. It shows how the lift curve slope is increased by the changes

in camber.

Cl
Flexible Airfoil

Fixed Geometry
Camber > 0%

Slope = 2n

Camber = 0%
Slope = 2n

Figure 2-2: Lift Curves for a Flexible Airfoil and Rigid Airfoils of Various Camber



2.2.2 Stiffness Parameter

The two major elements which determine the magnitude of a flexible airfoil's

camber are the stiffness of the airfoil and the strength of the aerodynamic loading.

The interaction and balancing of these two forces determines the amount of bend in

the plate, and thus the amount of camber in the airfoil.

In order to determine the exact bending behavior of the airfoil, the bending stiff-

ness and aerodynamic forces are equated in a coupled aerodynamics, bending plate

equation:

D x = Pz (s) (2.10)

where D is the plate stiffness, w(x) is the deflection of the plate at any point, x, and

p(x) is the aerodynamic pressure load applied to the plate at any point, x. From

this equation it is easy to see that increasing the load, p(x) causes the plate to bend,

increasing the camber, and that increasing the elastic plate modulus, D, causes the

plate to bend less, decreasing the camber.

For a given operating point with a fixed fluid dynamic pressure, q, and given an

airfoil section of chord length, c, and plate stiffness, D, the camber response of the

wing to the loading can be described by a nondimensional stiffness parameter, K.

K = D (2.11)

This stiffness parameter describes the relative strength of the restoring force of

a flexible plate and the aerodynamic forces of the flow. Larger values of K describe

stiffer airfoils with respect to the flow. Airfoils that have the same relative strengths

of the plate and the flow, will have the same cambering behavior for specific angles

of attack. Thus, the slope of the lift curve is related to the stiffness parameter, K.

The stiffer the airfoil, the less it cambers and thus the lower the lift curve slope. The

limiting case of this is when the airfoil becomes infinitely stiff. At this point the

airfoil does not camber at all and thus the lift curve matches that of a symmetrical,

rigid airfoil. Smaller values of K describe more flexible airfoils with respect to the



flow. As the stiffness, K, goes down, the airfoil cambers more and thus the slope

of the lift curve goes up. The limiting case of this is a an airfoil made with a very

flexible material such as a cloth sail. A sail cambers to its full extent with minimal

load and thus its lift curve in the cambering region jumps to full camber immediately

with no proportional response. In between these two limits is the K range for an

automatic camber adjusting airfoil. The Lift Curves for automatic camber-adjusting

airfoils with different K values are shown in Figure 2-3.

Figure 2-3: Lift Curves for Airfoils of Various K Values

2.2.3 Critical Stiffness

The stiffness that results in an infinite lift curve slope is defined as the critical

stiffness ,K,,it. At this value of the stiffness parameter, the camber of an airfoil at zero

angle of attack results in exactly the proper amount of lift to sustain that camber.

The airfoil can operate in equilibrium at any amount of camber without a change in

angle of attack. Thus the camber is undetermined for this stiffness at zero angle of

attack.



The critical stiffness depends, in part, on the distribution of the plate stiffness,

D. For a constant D, the value of Kcrit is calculated by Widnall et. al. in [10] to

be 1.4. For a case where the plate stiffness varies, this value can change. In the

case of a NACA 0012 airfoil made from a constant modulus, isotropic material, D

will be larger in the center, due to the greater thickness, than it is near the leading

and trailing edges where the airfoil is much thinner. If for this case an average plate

modulus Dave is used in calculating K, then the value of Kcit is higher than 1.4.

For values of K below the critical stiffness, any initial camber at a fixed angle of

attack results in a full divergent deflection of the camberline. Thus in a theoretical

aerodynamic sense, the airfoil undergoes static aeroelastic divergence at the critical

stiffness. From a structural point of view, however, it is still possible for the aero-

dynamic forces and the plate structure to achieve an equilibrium for values of the

stiffness parameter below Kcrit. A cambered airfoil at some positive lift but negative

angle of attack produces pressure forces that would cause a flexible airfoil to camber.

By fixing the lift of the wing and allowing the angle of attack of the wing to adjust

to changes in the camber, it is possible to achieve an elastic equilibrium for values of

K less than Kcit.

The theoretical lift curve in Figure 2-3 shows that for values of K below Krit,

the lift curve slope is negative. This occurs when the increase in loading causes the

airfoil to camber to such an extent that the increase in lift due to camber is greater

than the increase in the restoring force of the beam. Such negative lift curves would

be impossible to achieve in a wind tunnel or other experimental situation, but is

relatively easy to achieve numerically or for applications to craft where the lift is

determined rather than the angle of attack of the airfoil.

2.2.4 Effect of Spar Placement

The stiffness parameter defined in Equation 2.11 is based on the boundary con-

ditions at the leading and trailing edge points. However, this boundary condition

cannot be realized in a real wing because the spars that enforce the boundary con-

ditions cannot be located at the leading and trailing edges. Since the airfoil has no



thickness at the leading and trailing edges, a spar located there would also have no

thickness and thus no strength. In real wings, these spars must be placed where the

airfoil has significant thickness so that a structurally efficient spar can be used.

For such real wings, the spars are placed closer to the mid chord where the airfoil is

thicker. However, the spars cannot be placed arbitrarily as explained in Section 2.1.1.

For many applications the structural considerations of the spars are an important

design limitation and the designer is forced to maximize the spar thickness to support

the loads on the wing. Thus the spars are placed as close to the thickest part of the

airfoil as possible. It has been determined (mainly through working designs) that the

leading edge spar should not be much further back than the 10% chord point and the

trailing edge spar no further forward than the 70% chord point. The portion of the

airfoil in front of the leading edge axle and behind the trailing edge axle should be

made from a much stiffer material than the flexible region so that there is no bending

of the chordline in these regions.

Placing the spars at locations other than the leading and trailing edges has a large

effect on the value of the stiffness parameter of the airfoil. Placing the spars closer

together acts to effectively stiffen the airfoil in two ways. First, the flexible region

between the spars is smaller and making the plate seem stiffer. Secondly, some of the

load acts on the airfoil regions in front of and behind the spars. Thus, the load acting

on the flexible section is diminished and the load acting beyond the spars acts to

decamber the airfoil. This effect was quantified by Widnall et. al. in [10] for the spar

location effect on the critical stiffness. By applying a curve fit to numerical results,

K,it for an airfoil with constant plate stiffness between the spars is given by

Kcrit = 1.3 - 2.6 XL.E. Spar 2.3(1 - T.E. Spar ) (2.12)
c c

where zL.E. Spar and XT.E. Spar are the x locations of the leading and trailing edge

spars.



2.3 Two-Dimensional XFOIL Tests

The viscous drag of an airfoil is determined by many characteristics of the airfoil

shape and operating point. The drag polar for an airfoil shows the relationship of

drag to lift coefficient for the airfoil. Changes in the camber of an airfoil change the

lift coefficient associated with the minimum drag coefficient for an airfoil. In general,

increases in camber increase the minimum drag lift coefficient. Figure 2-4 show how

the minimum drag point moves to higher lift coefficient as the camber of the airfoil

increases.

Drag Polars for 12% Thick NACA
Airfoils For Various Cambers

0.012

0.010
NACA 0012

- NACA 1512
0.008 " NACA 2512

V NACA 3512
' NACA 4512

0.006

0.004
0.0 0.5 1.0

Lift Coefficient

Figure 2-4: Drag Polars for Airfoils of Various Cambers

In order to determine the value of K that produces the best lift to drag ratio for

a flexible airfoil, the performance of several characteristic airfoils with similar cross

sections but different amount of camber were explored. In an effort to minimize drag,

an operating point was chosen for each airfoil in the lowest drag region of the drag

polar. The corresponding operating points on the lift curve were determined. These

operating points were connected by a line to form a composite lift curve. This lift

curve describes the performance of an automatic camber adjusting airfoil as it changes

camber as was illustrated in Figure 2-2. From this lift curve, a relationship between



C and camber was determined.

The program, XFOIL (See [3] for program details) was used to generate the lift

and drag data for airfoils of various camber and lift coefficient. The NACA x515

section was chosen for the thickness and camber distribution. The Stiffness of a

particular airfoil was related to a proportionality between camber and lift coefficient

as

Flexibility camber (2.13)
camber

For example if the flexibility, was chosen to be 10, then at a C, of 0.1, the NACA

1515 (1% camber) was chosen; for a C1 of 0.2, a NACA 2512 (2% camber) was chosen;

for a C, of 0.3, a NACA 3512 (3% camber) was chosen; etc. In this way, a lift curve

was constructed from the various operating points of the airfoil as represented by the

various fixed geometry airfoils. Lift curves were constructed for various flexibilities.

The results showed that the optimal lift to drag performance was attained when the

camber to C1 ratio was near 5. For this flexibility, a C1 change of 0.1 results in a

2% camber change. For this flexibility, the amount of lift produced by the camber

of the airfoil is about 3 times the amount of lift produced by angle of attack. Put

another way, for high reynolds number airfoils, the optimal lift to drag ratio occurs

when about 3/4 of the lift is produced by camber and the remaining 1/4 by angle of

attack.

The lift curves generated by these XFOIL tests show the relationship of lift curve

slope to stiffness for a two-dimensional airfoil. A few of the lift curves are show in

Figure 2-5. The slope of the lift curve clearly varies with the stiffness of the airfoil.

As the flexibility of the airfoil goes up (stiffness goes down), the slope of the airfoil's

lift curve increases. For a high enough flexibility, the slope becomes negative.

The results of these XFOIL tests also give a good indication of the reduction in

viscous drag of flexible wings over rigid symmetric wings. The drag polars for various

flexible airfoils are shown in Figure 2-6. The drag on the rigid airfoil (flexibility =

0) increases rapidly as the lift coefficient increases because the angle of attack is also



XFoll Tests Results:
Lift Curves for Flexible Airfoils
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Figure 2-5: XFOIL Results: Lift curves for Viscous Airfoils

going up rapidly. As the flexibility goes up, the angle of attack change associated

with a lift coefficient change is smaller, as is shown by the lift curves in Figure 2-5.

The drag associated with a given lift coefficient initially decreases due to the fact that

more of the lift is being generated by camber and less by angle of attack. This drag

performance is optimized at a flexibility near 5.55 and for flexibilities above this, the

drag goes up. This is mainly due to turbulent flow on the pressure surface of the

airfoil due to the low and even negative angles of attack.

The viscous drag coefficient is affected by the flexibility of the airfoils. For the

reynolds number chosen for these XFOIL tests, the minimum drag occurred for a

flexibility around 5.5. There is an optimal flexibility for a flexible wing where the

viscous drag is minimized. for a fixed planform, the total drag is also minimized for

this flexibility. In general there is an optimal flexibility for the flexible airfoil in order

to minimize the drag and thus maximize the lift to drag ratio of the wing.

The important result of this XFOIL study showed that the optimal lift curve oc-

curs when the approximately 3/4 of the lift is produced by camber and the remaining



- Symmetric Airfoil
O Flexibility = 4
= Flexiblity = 5.55

Flexibility = 7.14
Flexibility = 9.09

0.5 1.0 1.5 2.0

Lift Coefficient

Figure 2-6: XFOIL Results: Drag Polars for Viscous Airfoils

angle of attack. The slope of this optimal lift

than the rigid airfoil lift curve slope.

curve is approximately 3 times

2.4 Three-Dimensional Extension

Airfoil theory gives a great deal of information about the flow over the wing in

terms of lift, but cannot account for the span affects on the flow and the resulting

induced drag. The flow over finite span wings differ from the flow over airfoils because

the lift is zero at the wing tips and varies along the span of the wing. The spanwise

variation in lift results in a sheet of vortices trailing downstream from the wing. This

shed vorticity results in a downward fluid velocity often referred to as downwash. The

downwash velocity adds to the freestream velocity causing a change the apparent angle

of attack often referred to as the induced angle of attack, ai. This induced angle of

attack changes the amount of lift that the wing generates as well causing induced

drag.

XFoll Test Results:
Drag Polars for Flexible Airfoils
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The performance of finite wings is affected by the induced downwash. The induced

angle of attack reduces the angle of attack of the wing thereby reducing the lift.

However, since the actual angle of attack, ca, of the wing is referenced to the far

field flow (which remains unchanged), the wing appears to have lower lift than airfoil

theory predicts and the slope of the lift curve for the wing is reduced. This effect is

shown in Figure 2-7.

2-D lift at xa

Finite Span Lift at aa /

2-D lift curve
Slope = 2

/ lift curve for
finite span wing

Figure 2-7: Lift curve for a Finite Wing

The magnitude of ac depends on the strength of the downwash with respect to

the free stream strength. The downwash depends on the gradient of the spanwise

loading of the wing. Higher aspect ratio wings have lower spanwise loading gradients

and thus smaller downwash and resulting in a smaller induced angle of attack for a

given lift coefficient. The higher the aspect ratio of the wing, the smaller the induced

angle of attack will be in relation to the geometric angle of attack, and thus the closer

its lift curve slope will be to the theoretical two-dimensional slope of 2r.

The minimum induced drag occurs when the downwash is a constant value across

the wing. This occurs when the spanwise lift distribution is elliptical as shown in



Figure 2-8. Rigid wings have been designed with some combination of spanwise chord

distribution, twist distribution or camber distribution. An elliptic chord distribution

with no twist or camber produces an elliptic lift distribution for all angles of attack.

However, this uncambered wing will, in general, not be as efficient as a properly

designed camber wing for the same application. However, a fixed camber distribution

that produces an elliptic lift distribution for one angle of attack will, in general, not

produce an elliptic lift distribution for other angles of attack.

Lift Distribution
L(y)

Figure 2-8: Elliptic Lift Distribution for a Finite Wing

For such an elliptically loaded wing, the lift curve slope is given by

m = (2.14)1 + "__Oa.
wAR

where m is the lift curve slope for the finite span wing, mo is the 2xr theoretical

two-dimensional lift curve slope and AR is the aspect ratio of the wing.

Tapered planforms can very nearly match the elliptic span loading. According

to Glauert [4], a tip chord to root chord ratio between 0.3 to 0.5 produces the best



approximation of an elliptic span loading. The lift curve slope for a finite span tapered

planform is shown compared to that of an elliptic planform over a range of aspect

ratios in Figure 2-9.

Comparison of Elliptic and Tapered Planforms
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Figure 2-9: Lift Curve Slopes of Tapered and Elliptic Planforms

2.4.1 Flexible Wings of Finite Span

The performance of finite span flexible wings are affected in much the same way

as rigid wings. Downwash affects the lift curve of the flexible wing in the same way

as it affects rigid wings. The lift curve slope is reduced and induced drag is formed.

However flexible wings have a theoretical two-dimensional lift curve slope greater than

27r, so it is possible for a finite span wing to have a lift curve slope greater than 27r

as well.

However the effective strength of the flow changes as well when the aspect ratio

changes. This changes the critical stiffness value, Keit. For high aspect ratio flexible

wings, this effect is summarized in Equation 2.15 from as defined by Widnall et. al.



in [10].

Kwing = Kairfoa (1 - 1.3(2.15)

Thus, Ket i,g is decreased for a finite span wing.

This theory was developed assuming that each spanwise cross-section of the plate

behaved like an ideal two-dimensional plate and assumed the proper chordwise bend-

ing for the local loading only. However, in a real wing, the plate is continuous and

thus the bending at any point along the plate will be affected by the loading over

the entire plate (See Mansfield [6]). For high aspect ratio wings, the gradient of the

loading in the spanwise direction are much less steep and the spanwise stations are

able to more closely conform to the predicted beam behavior. Lower aspect ratios on

the other hand, have very steep gradients in the load and thus the camber response

conforms less closely to the local loading.

2.4.2 Effective Stiffness

The question of the determining the stiffness parameter for a finite span wing has

been addressed by Widnall et. al. in [10]. The stiffness of the wing is determined

by an effective stiffness test and non-dimensionalized in the same way as the two-

dimensional stiffness parameter. This method involves applying a load to the wing

and measuring the deflection of the wing. Specifically, the test involves applying

a uniform distributed span load, P(load/unit length), to a line that lies halfway

between the axis of rotation of the two spars as Shown in Figure 2-10. The effective

stiffness of the wing, S 1ff, is then given in terms of the deflection at the midspan,

Wmidspan as

P
Se -= (2.16)

Wmidspan

The effective stiffness gives a single stiffness value for a wing that may or may not have

a constant value for K over the span. The choice of measuring the deflection at the

midspan rather than the root or tip is relatively arbitrary. However, this convention



is used by Widnall et.al. in [10], and is presented here to keep notation consistent.

Span Load, P

Figure 2-10: Effective Stiffness Test Setup

The critical dynamic pressure of the wing, qit can be determined from the effec-

tive stiffness by

1
qcrit = ASef(1 1.3

AR

(2.17)

where A is a coefficient around 0.1.

Since Real wings are constructed from a particular material with a particular elas-

tic modulus, thickness distribution and spar placement, once it has been constructed,

it is virtually impossible to modify the structural properties and in particular the

plate stiffness. For such a real wing, the stiffness changes as the dynamic pressure

changes rather than the plate stiffness. Thus, the critical stiffness, Koit is related to

a critical dynamic pressure, qrit. The critical stiffness for the wing, K it wing is given

as

D
Kerit wing - D 3

qrit (S)3 (2.18)



In general, the exact value of K,,it for a given wing planform should be determined

numerically or experimentally, but the effective stiffness test provides a good estimate

for the cases where numerical or experimental analysis is unavailable.



Chapter 3

Numerical Methodology

The study of the behavior fo flexible wings is accomplished by modifying and com-

bining two existing computer programs to solve for the steady aeroelastic behavior of

the flexible wings. The Fluid Dynamics are modeled with a vortex lattice program

originally coded by Harold Youngren and the Structure is modeled in the ADINA

finite element program. The vortex lattice program solves for the aerodynamic loads

due to an inviscid flow over the wing. These loads are then passed to the finite

element program, ADINA, that models the structural behavior of the wing. The

ADINA program solves for the linear elastic static response of the wing structure

to the steady aerodynamic loads. The static deflection state is then passed back to

the vortex lattice program which solves for a new set of loads given the new wing

geometry. The new loads are passed to the finite element program and it solves for a

new deflection state. This process continues until the solution converges to a steady

equilibrium state.

3.1 Vortex Lattice Aerodynamic Model

The potential flow over a thin wing can be modeled by a distribution of vorticity

on the surface of the wing and the corresponding vorticity shed into the wake (See

[8]). The vortex lattice program discritizes the vorticity into a finite number of bound

"horseshoe" vortices which have a vortex segment bound to the surface of the body



and two trailing segments that extend downstream with the wake. The circulation

of each segment of the horseshoe vortex is the same such that the correct amount of

vorticity is shed into the wake from the vortex according to Helmholtz's law. The total

circulation of the wing is then modeled by a group of these horseshoe vortices that

are distributed over the surface in both the chordwise and spanwise directions. The

vorticity on the wing at any point is then modeled by varying strengths of the bound

segments of the horseshoe vortices near that point. From the vortex distribution and

strengths, the lift and drag of the wing can be modeled in a discrete set of loads.

3.1.1 Geometry

The wing is represented in a 3-D cartesian space with the x axis pointed down-

stream along the root chordline, the y axis pointed in the right spanwise direction

and the z-axis pointed up. The origin is located at the leading edge of the root of the

wing. The freestream vector is assumed to be at a small angle to the x-axis allowing

the use of small angle linearizations. The leading edge of the wing can be swept (an

angle to the y-axis) and the wing can have dihedral out of the x - y plane.

The full wing planform is symmetric across the x - z plane. The full load state

can be determined from the load state on only one half of the planform (in this case

the +y half). The load on the other half of the planform is the mirror image of that

load state. Thus by treating the x - z plane as a symmetry plane, only half of the

wing needs to be constructed. This half, referred to as the real wing, is constructed

by specifying the geometric placement of the vortices and the collocation points.

The other half of the planform, referred to as the image wing, is constructed by the

enforcement of a reflective boundary condition on the x - z plane.

The wing is sectioned into spanwise strips. Each of these strips is represented by

the chordline at each edge. The edges of these strips are parallel to the x - z plane

but may be at a different angle of attack than the root chordline. The camberline

is prescribed by a set of (x, y, z) coordinates at the edge of each strip. Thus, all

geometric considerations such as sweep, twist, and dihedral can be accounted for.

The spanwise geometry is assumed to be linear between the strips.



The strip is then divided into a set of chordwise panels. A vortex is placed at the

1/4 chord point of each panel and extends from the 1/4 chord point of root edge of

the panel to the 1/4 chord point of the tip edge of the panel. Thus it need not be

parallel to the y-axis or leading edge of the panel. It is also not necessary for the

bound segment to be perpendicular to the trailing segments of the horseshoe vortex.

The vortex lies in the x - y plane in a purely mathematical sense, but it may be

considered to lie on the surface of the wing in order to better visualize the geometry

of the lattice. The Geometry for a typical wing is shown in Figure 3-1.

axis

z axis

ilh strip

x axis

Figure 3-1: Vortex Lattice Geometrical Representation

A "collocation point" is placed at the 3/4 point of the midspan of the panel. Flow

tangency is enforced at this point during the solution process. The tangent vector

at this point is given by the linear interpolation of the camberline slopes at the 3/4



chord point of the two edges of the panel. Since the camberline data set is made

of discrete (x, y, z) points, the slopes are interpolated from the data set by the use

of cubic splining. Again, this point lies on the x - y plane for purely mathematical

purposes, but may be considered to lie on the surface of the wing for visualization

purposes.

In order to accurately represent the flow, the corners of the panels in one strip

match with the corners of the panels in the next strip. Thus there are the same

number of vortices in each strip and the coordinate of the tip end point of the bound

segment of a vortex in one panel matches the root coordinate of the bound segment

of a vortex in the next panel. Thus there are a set of continuous vortex segments

extending form the root to the tip that vary in strength in the spanwise direction and

shed the differential vorticity downstream.

3.1.2 Formulation of the Vortex Lattice

Once the geometry of the lattice has been established, each of the horseshoe

vortices can be described by the location of the two endpoints of the bound segment

of that vortex, r, and r'. The velocity vector Ui at any point in the flow due to the

circulation around the vortex can be calculated using the Biot-Savart Law

= r (3.1)
47r P - ,

and integrating along the three segments of the horseshoe vortex. By assuming a unit

circulation strength, we can determine the influence of that horseshoe vortex on each

of the control points. It is also easy to calculate the influence of an image vortex on

the control points by setting the y coordinate of the endpoints to be the negative of

the actual vortex. By calculating the influences for each of the vortices, an "influence

coefficient matrix" can be constructed.



3.1.3 Determination of vortex strength

The actual strengths of each of the vortices should cause the flow to be tangent

to the surface at each of the collocation points. The normal vector to the surface at

each of the collocation points can be determined from the geometry. By setting the

vector dot product of the normal vector with the velocity vector that is induced by

the vortices to be zero, the flow is enforced to be tangent to the surface. Since the

induced velocity is caused by all the vortices, the flow tangency at any control point

can be expressed by a linear equation involving all N vortices. The N equations for

the N control points, form a N x N system of linear equations that can be solved

simultaneously for the N vortex strengths. In the program, the solution to this matrix

equation is found using Gaussian Elimination since the Matrix is, in general, fully

populated.

3.1.4 Solution and Discrete Forces

The strength of a given vortex is related to the lift force it generates by the

Kutta-Joukowsky Theorem. Given the bound segment of the horseshoe vortex, ', is

the vector sum of the position vectors of the endpoints, r', and r2, as

c = r2 - rl. (3.2)

The force vector that the mth vortex generates is then given by

Fm = m Um x cm (3.3)

where u'4 is the total velocity vector and Fm is the vortex strength of the mth vortex.

These discrete forces are stored so that they can be sent to the finite element pro-

gram. The finite element program, takes as an input, the modulus of the material.

This modulus is expressed in a dimensional way, so in order to describe the relation-

ship of the loads to the stiffness of the wing in terms of the stiffness parameter, K,

the loads need to be dimensionalized. The dynamic pressure and lift coefficient are



chosen so that the total lift is 100.

3.1.5 Total Forces and Non-Dimensional Force Coefficients

Summing the discrete force vectors gives the total force on the wing. The total

force of the full wing takes into account the image half of the wing as well as the real

half.

N

Ftotal = 2 E Fm (3.4)
m=1

This total force can be resolved into drag and lift forces by taking the dot products

of the Total force vector with the freestream and its normal respectively.

L = Ftotai * [-(sin a)i + (cos a)k] (3.5)

D = Ftota . [(cos a)i + (sin a)lk] (3.6)

The lift and drag forces can be expressed more generally by non-dimensional force

coefficients. The lift coefficient is defined as

CL = 1 (3.7)
,PV' Sref

where L is the total lift, ipV, is the free stream dynamic pressure and S,,f is the

surface area of the wing. Similarly, the drag coefficient is defined as

CD 1 (3.8)
C PV2Sref

where D is the total drag.

3.1.6 Trefftz Plane Drag Calculation

The drag calculated by Equation 3.6 is very sensitive to numerical errors. In most

cases, the force vectors near the leading edge of the wing have substantial forward



components and the vectors near the trailing edge of the wing have substantial aft

components. These should mostly cancel out leaving only the induced drag compo-

nent of the total force. A small error in these vectors, however, could result in a large

error in the drag vector given all of the vector cancellation. Thus the drag calculation

has a very low accuracy.

One solution to this problem is to calculate the induced drag by looking at the

induced velocities in the wake far downstream from the wing. This is most commonly

done by constructing a plane, known as the Trefftz Plane, parallel to the y - z plane

in the far field wake as shown in Figure 3-2, and looking at the induced flow velocity

in that plane.

wake vortex sheet

Trefftz Plane

Figure 3-2: Trefftz Plane Intersecting Wake Vortex Sheet

The work done by the induced drag force can be calculated from the residual

velocity vector, W. The induced velocity field W is irrotational and can be expressed

as the gradient of a crossflow potential.

W = V0 (3.9)

The kinetic energy per unit volume can be written as simply pj jll 2. Thus the

induced drag is simply the integral of the kinetic energy per unit volume over the



entire Trefftz Plane.

D = Wp J II|I 2 dy dz (3.10)

D = ~p V -. V dy dz (3.11)

By taking a contour that completely encloses the wake, the area integral becomes, by

Gauss's Theorem, a contour integral.

D = - wp w - ds (3.12)

The velocity component of w' normal to the wake is the same on either side of the

wake cut. Thus the contour integral can be changed into a line integral in terms of

the potential jump across the wake.

D = -p Aq- dl (3.13)

The potential jump, AO, at any spanwise station of the wake must be equal to the

bound circulation, r, at the point on the wing directly upstream of that point. Thus

it is trivial to calculate the Trefftz Plane drag by taking the integral along the wing

of the bound circulation, P(y).

D = -lp r(y) - -n dl (3.14)

Given the discrete nature of the circulation distribution on the wing, r, at any

spanwise station can be expressed as a sum of the horseshoe vortex strengths at that

spanwise point. Thus the integral can be evaluated by summing over all of the N

bound vortices on the wing.

D = -p r. w - An (3.15)

This total drag can be expressed in terms of the drag coefficient as in Equation 3.8.



Both the trefftz plane analysis and the vector analysis are calculated by the vortex

lattice program. Both are given as output for comparison, however it is generally

accepted that the trefftz plane analysis gives the better result and this result will be

given as the total drag coefficient for the wing in the results.

3.1.7 Vortex Lattice Program Overview

The actual program that is used in this study is a modified version of a vortex

lattice program written by Harold Youngren for the Project Athena Todor facility

in 1990. The geometric shape of the wing is read into the vortex lattice program

from a datafile. The user then inputs the desired lift coefficient and the stiffness of

the wing. The program determines the influence coefficint matrix and solves for the

vortex strengths at the desired lift coefficient and determines the angle of attack of

the reference line at the root of the wing. The program also determines the downwash

distribution along the span of the wing and the induced drag of the wing.

The accuracy of the method depends to a large degree on the geometry of the

wing and the number and placement of the vorticies. Some of the problem that arise

in the accuracy are due to sweep discontinuities at the root and the drastic variation

in spanwise loading at the tip (See Moran [8)). Given the low sweep of the wings in

this study as well as the large number of vorticies placed on the wing, the method

should be quite accurate. In particular, the accuracy of the lift is much better than

the accuracy of the drag and by calculating the drag in the Trefftz Plane, much of

this inaccuracy is overcome. for the very linearized models in this study, the accuracy

of the method is more than adequate.

3.2 Finite Element Model

The elastic response of a structure to an applied load state can be analyzed nu-

merically by breaking the structure into small pieces known as finite elements (See

[2]). Each of these finite elements is essentially a small plate acted on by a very

simple set of loads applied at discrete points within the element called nodes. Since



the elements are simple, it is easy to find their response to the simple load states that

can be applied to them. Then the entire structure can be put back together and the

more complex real load state applied to it. Each element feels some simple part of

that real load and responds accordingly. The response of the entire structure is then

the combination of the responses of all the elements put together.

By using the Principle of Virtual Work, the general response of each of the el-

ements to imaginary loads can be determined. The response is represented in an

influence matrix called the element stiffness matrix. This matrix describes the dis-

placements of each of the nodes of the element to imaginary loads applied to each of

the nodes.

By then assembling the elements into a mesh, the response of the entire structure

to an imaginary load state is determined. The element stiffness matrices are added

together into a much larger global stiffness matrix. This matrix describes the response

of each of the nodes in the entire structure to imaginary loads applied at any of the

other nodes. The response of the structure to the real load state is then simply a

combination of several imaginary load states.

3.2.1 Formulation of the Finite Element Mesh

The elemental boundaries are determined mainly by geometric constraints. A set

of points, called nodes, are defined on the midplane of the plate. These nodes define

the corners of the elements. The elemental boundaries are defined by lines connecting

the nodes. There are nodal degrees of freedom (d.o.f.s) defined at each node. Theses

d.o.f.s define the displacement and rotation of the structure at the nodes.

For the plate bending/stretching case that is modeled here, each node must have 5

d.o.f.s., the 3 displacements (u, v, w) and two rotations (0, and 0,). The displacements

u, v and w are in the x, y and z directions respectively, and 0, and 0, are the rotations

from the x axis and the y axis respectively as shown in Figure 3-3.
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Figure 3-3: Nodal d.o.f.s Figure 3-4: Triangular Area Coor-
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3.2.2 Local Element Coordinate System

For the plate structure of the wing, a Finite Element mesh involving 3 node tri-

angular plate elements is utilized. These triangular elements utilize a generalized

triangular area coordinate system (1,C2, C3) as shown in Figure 3-4. Properties of

the element such as the displacement, strain or stress are only known at the nodes.

The properties of the element can be interpolated within the element by the use of

interpolation functions. The three node isoparametric triangular element has inter-

polation functions N1 , N2 and N3 .

N 1 = C1, N2 = 2, N3 = 3 = 1 - 1-2 (3.16)

The coordinates within the element are interpolated from the interpolation func-

tions with respect to the coordinates of the 3 nodes, (x, yl), (X2,y 2) and (xs,y 3).

X = NIxI + N 2 X 2 + N 3 X3  (3.17)

y = NXyl + N2 y2 + N3Y3  (3.18)

The Jacobian matrix to transform from the (Cl, C2, (3) coordinate system to the (x, y)

coordinate system is given by



J _= aoC aC (3.19)

0a2 a02

For the triangular elements, the determinant of the Jacobian is simply twice the are

of the triangle. The shape interpolation functions and the Jacobian matrix describe

the relationship between the local coordinate frame of the element and the global

coordinate frame of the entire structure.

3.2.3 Element Stiffness Matrix

Each of the elements is described by a element stiffness matrix. For triangular 3

node triangles, the element stiffness matrix describes the response of the structure to

imaginary unit loads or virtual loads at each of the nodes of the element.

The formulation of the element stiffness matrix comes from the principle of mini-

mum potential energy. The potential energy HpII, is defined as

S= U - W (3.20)

where U is the internal strain energy of the structure and W is the work done by the

applied loads. U and W are defined as

U = J { e}T [E]{e} dV (3.21)

W = J (X, y) w dA (3.22)

where {e} is the strain vector, [E] is the elasticity matrix, p, is the loading and w is

the deflection.

The variational form of the potential energy equation is given as

SII, = SU - SW (3.23)

The structure will tend toward a minimum potential energy state. This minimum

energy state can be found by taking SII, = 0. The element stiffness matrix [k] is



derived from the internal strain energy term, 6U.

The plate that models the flexible ceneterline of the wing, undergoes stretching

as well as bending due to the loads that are applied to it. The structural problem of

plate bending and plate stretching are, for an isotropic material, separable. The plate

bending case uses the plate bending modulus matrix, [D], to relate the out of plane

displacements w, 8, and 8, to the transverse loading p,. The plate stretching case uses

the plate stretching modulus matrix, [E], to relate the in-plane displacements u and

v to the in-plane loading p, and py. As long as the deflection state is small relative

to the plate dimensions, these problems remain separate and the FEM formulation

for each can be done separately.

For the bending plate case, the internal energy, U, for the element is formulated

as

1U = [J] IJJ dC2 dC1  (3.24)

The curvature matrix, [.], is defined as

O 2

-= 2 =[M] (3.25)
By

2

-2 b2w

[M] is defined from geometry as

-(Y3 - Y)
2  

-(Y2 -- Y1)2 2(Y2 - Y1)(Y3 - Yl)

M -(e3 - i)2 -(- 2 - ")2 2(-2 -- 1 )(- 3 - ) (3.26)

2(-3 - -1)(Y3 - Y1) 2(-2 - 1)(Y2 - Y1) -2[(+3 - 1l)(Y2 - 1)(-2 - 1)(Y3 -- O1) 1

Then the energy, U, can be written

1 1 - (
U = -f [M]T [D][M] dC d( 2 ]i (3.27)

giving U = if[k]bi, where [k]b is the bending stiffness matrix



kb = i [M]T [D][M] dG( d( 2] (3.28)

The bending stiffness matrix, [k]b, is a 9x9 matrix relating the three out-of-plane

deflections, w, 0, and 09, for the three nodes to the out-of-plane load, p,, and the

applied moments, M, and My, at the three nodes.

For the stretching plate case, the internal energy, U, for the element is formulated

as

U = [E[E] |J|1 dC2 dC1  (3.29)

Formulating the internal energy equation into the form U = q4r[k],' gives

k,= [B]T [E][B] t 11J11 dC2 d 1  (3.30)

where t is the thickness of the element, |JI is the determinant of the Jacobian Matrix

and [B] is the spatial derivative matrix

ON, 0 ON2  0 ON 3  0

1 0 0 0 aOc a a oC

[]-1 0 N 0 2  0 N 0
B= 0 0 0 1 0aC2 aC2 a (3.31)

0 [J]-' 0 ON1  0 9N2  0 ON3
0 1 1 0 0~C at aCi

0 N1  0 ON2  0 ON3
aC2 0a2 C(2

The stretching stiffness matrix, [k],, is a 6x6 matrix relating the two in-plane

deflections, u and v, for the three nodes to the in-plane loads, p. and py at the three

nodes.

The plate element must solve for both the bending and stretching of the structure.

Thus the element stiffness matrix needs to have both the bending and stretching terms

in it. By defining the element d.o.f. vector, ', to be

qe = LUi, v, U2, v 2, u s , v 3 , Wi, 9 x,1, O,1, W 2 , 9 x,2 ,
9 y,2 , w 3 , Ox,3, Oy,3J (3.32)



then the element stiffness matrix, [k],, can be formed by combining the bending and

stretching element stiffness matrices [k]b and [k], to form a 15 x 15 matrix.

ke, = 0 (3.33)
0 kb

3.2.4 Global Stiffness Matrix

The element stiffness matrix for each element relates the nodal responses of that

element to the applied nodal loads. By combining all of the element matrices together

such that the global d.o.f.s match, the global stiffness matrix can be constructed. This

global stiffness matrix relates the global displacements to the global loading state.

A given non-boundary node (one that is shared by more than one element), there

are terms in the element stiffness matrices of all the elements that share that node

which relate the displacement of that node to the forces applied at that node. The

terms in the global stiffness matrix for that node are then simply the sum of the

elemental terms. Each term of the global stiffness matrix is constructed by summing

all the terms that relate a given force to a given displacement of a given node.

3.2.5 Solution Method

Once the Global stiffness matrix is constructed, the solution involves simply find-

ing the solution of the system of algebraic equations that are given by the matrix.

The work term, 6W, gives the discritized load vector, Q. Thus from the global

stiffness matrix, [K], the d.o.f. vector, q, and the load vector, Q, we get the matrix

equation

[K]q= Q (3.34)

This matrix is solved by a general matrix solution technique. The solution is given

in terms of the d.o.f. vector, [q]. The displacements u, v and w for each of the nodes

are given in the solution vector, [q]. These displacements are printed out to a data

file so that they can be read by the input routine of the vortex lattice program.



3.2.6 ADINA program overview

The finite element program used for this study is the ADINA program developed

by ADINA R&D Inc.. The ADINA (Automatic Dynamic Incremental Non-Linear

Analysis) package is capable of performing finite element calculations for a wide va-

riety of problems, however, a very limited set of the capabilities of the package are

needed for this study. The program itself is licensed to the MIT Supercomputing

Facility and has been compiled to be run on the CRAY X-MP. For this study, ac-

cess to the CRAY X-MP has been through the experimental Transparent Computing

Module that has been developed by the MITSF.

The ADINA package consists of three programs, ADINA-IN, ADINA and ADINA-

PLOT. ADINA-IN is used to setup the Finite Element mesh from inputed geometric

and load information. ADINA-IN creates a formatted database containing all the

information so that a solution to the problem can be determined by ADINA. ADINA-

PLOT takes that solution and presents it in graphical or tabular formats that give

information about the problem that is requested by the user.

ADINA-IN exectues a series of commands contained in a ".in" file. This file

contains all the geometric information about the problem as well as the boundary

conditions loading and material type. It also contains information on how the mesh

should be created and what type of elements should be used. This study is interested

in the linear elastic behavior of flexible wings only. Thus, all materials have been

specified as ELASTIC in the ADINA input files such that the model will respond

in a completely linear way to the loading. The wing has been modeled with 3-node,

triangular PLATE elements. The formulation of these elements is done automatically

by the ADINA-IN program.

ADINA is the actual finite element solver. It takes the geometric information

from the ADINA-IN database and constructs the element stiffness matricies for all of

the elements. It then assembles the global stiffness matrix from the element stiffness

matricies. By inverting this matrix and the corresponding load vector, ADINA solves

for the deflections of all the nodal d.o.f.s for the structure.

This solution is formatted into a useful, readable output by the ADINA-PLOT



program. This program reads commands form a ".plot" file that contains information

about what aspects of the solution the user would like to study. In many cases, numer-

ical information about the structure such as the deflection or stresses are desired and

the ADINA-PLOT program can write a ".plist" file that contains such information.

3.3 Interaction of Numerical Programs

For the problem of the flexible wing solved by these numerical schemes, there is

an interaction of the aerodynamic forces and the structure. This interaction must be

modeled by the numerics. This interaction is handled by the programs in an iterative

fashion rather than solving the two systems simultaneously. The programs pass back

and forth information on the loads and the shape.

3.3.1 Geometric Relationship

To ease the interaction of the two numerical schemes, the mesh nodes of the finite

element portion of the program are chosen so as to match the load points of the vortex

lattice program. This allows trivial interaction of the two schemes. A node of the

finite element mesh is placed at center of the bound segment of each of the horseshoe

vortices. Thus, the lift force produced by that vortex acts directly at the node.

Many other nodes are placed so as to fill out the mesh. The placement of these

nodes is such that they lie on the spanwise edges of the vortex lattice strips. Thus,

the new camber distribution of the wing at each of these spanwise stations can be

easily splined directly from the nodal displacements at that station.

The vortex lattice itself is geometrically constructed so that the finite element

mesh that is constructed from it is well formulated. There are panel edges that

correspond directly to the locations of the axle boundary conditions. The panels are

placed such that the mesh has a good resolution in the flexible bending section of the

wing.



3.3.2 VL: Lift Load Information

The vortex lattice program generates a set of discrete aerodynamic loads that act

on the lifting wing. These loads act at the center of the bound vortex segment of

each of the horseshoe vortices. These load forces can be passed directly to the Finite

Element Program.

The vortex lattice is initialized with the the planform information and initial

camber information. For most of the data runs, the initial camber state is assumed

to be that of an uncambered wing. Thus the performance information can be assumed

to be related for both positive and negative loading cases.

Subsequent iteration steps read geometric information from the finite element

program. The finite element routine passes displacement information to the vortex

lattice program that it then turns into planform and camber information.

The vortex lattice program is set up to maintain a constant lift coefficient through-

out a data run. Thus the angle of attack will change at each iteration step as the

camber changes. This is necessary to prevent divergent behavior in the wing. It also

models the response of a real wing more accurately since real wings have a finite load

to lift and must respond to that lift requirement. It should be noted that this is

different from the behavior of such wings in wind tunnel experiments since in wind

tunnels, the angle of attack is usually fixed and the lift measured.

The vortex lattice program is a modified version of a progam that was originally

coded by Harold Youngren for use in the MIT Project Athena Todor package. The

core section of the program that builds the influence coefficient matrix and solves

for the vortex strength distribution is largely unchanged from the original program.

However, to deal with the special requirements of the flexible wings, the geometry

input and output routines of the program have been significantly altered.

The program has been modified to maintain a constant lift coefficient throughout

the iterative solution process. Since the vortex lattice program models the wing

without any viscosity, the phenomenon of stall is completely ignored as are any other

nonlinearities in the lift curve of the wing. Thus the program has been easily be

modified to find the angle of attack from the specified lift coefficient by a modified



linear interpolation method of the angle of attack along the lift curve.

The input routine has been modified so that the exact placement of the vortices

is possible. This is necessary so that the vortices will be properly aligned near the

spars and will have consistent distributions elsewhere. The placement of a vortex in

the lattice can be explicitly defined in the geometry input datafile by the cartesian

coordinates of the endpoints of the bound segment of the horseshoe vortex.

The output routine has been modified to write the ADINA-IN file that will allow

the finite element program, ADINA, to read in the wing shape, material properties,

boundary conditions and loads. This routine specifies the details of the FEM mesh

such that the nodes of the mesh correspond to specific features of the vortex lattice

mesh. FEM nodes are placed along the chord strip edges and at the midpoints of

each of the bound vortices.

A second input routine has been added to read in the wing shape and camber from

the ADINA output file. The output from ADINA gives the coordinates of each of the

nodes in the finite element mesh. Since the mesh was constructed from information

from the vortex lattice program, the same information can be used to interpret the

ADINA output file and thus the new wing shape can be constructed based on that

file.

3.3.3 FEM: Displacements

The finite element program generates a deflection state based on the load infor-

mation passed to it by the vortex lattice program and material information supplied

by the user. The program solves for the displacements of the nodes that make up the

finite element mesh. These displacements are then given back to the vortex lattice

program as the loaded geometry for the wing.

The nodal locations for the finite element solution are chosen to correspond di-

rectly to the loading points and other geometric information in the vortex lattice

program. Thus the nodal displacements from the finite element program directly

relate to changes in the geometry of the vortex lattice.



3.3.4 Iteration of Solution

The solution process proceeds in an iterative way by passing load information

from the vortex lattice program to the finite element program and passing geometry

information from the finite element program back to the vortex lattice program. The

process starts with an undeformed wing geometry. The lift coefficient of the wing

is then set and the vortex lattice program finds the discrete lift loads. These loads

are passed to the finite element program which solves for the deflection of the wing.

The new geometry is passed back to the vortex lattice program which finds the new

discrete load distribution. The new loads are passed to the finite element program

which finds a new deflection state. This process continues until the solution converges

to a stable lift and geometric state. This solution is assumed to be the steady state

response of the flexible wing at that load coefficient.

The iteration proceeds with a high rate of convergence. The initial step provides

a large change in camber from the undeformed state. since the magnitude of the total

lift load does not change from iteration to iteration, the subsequent camber changes

of the wing become much smaller with each iteration step. Essentially the camber

changes position but not in magnitude with each additional iteration.

3.3.5 Special considerations for a flexible wing

Traditional tests to determine the lift curves for wings set the angle of attack and

measured the resulting lift. For a flexible wing with a very low stiffness parameter,

this would result in unstable modes where the lift due to camber would increase

faster than the restoring force in the plate due to the bending. Thus the camber

would increase until some physical restraint stopped it. By fixing the lift of the

airfoil, by setting the lift coefficient, the amount of camber would be relatively stable

and the angle of attack would vary until an equilibrium was reached. In this way, the

instabilities would be avoided.

A dynamic pressure is chosen for the method so that the vortex strengths can be

expressed in terms of force rather than force coefficients. Similarly the modulus of



the plate is chosen such that the plate stiffness compared to the dynamic pressure

gives the desired stiffness. In this way actual loads and material data can be sent to

the FEM program. The units cancel out in the analysis when the non-dimensional

parameters such as Aspect ratio and the stiffness parameter are use to define the

properties of the wing.

The geometry of the two models are specified in such a way as to allow the easy

correlating of the discrete loads between the vortex lattice program and the finite

element program. A typical paneling scheme for the wings is shown in Figure 4-6 and

Figure 4-21. The exact details of the paneling varies from model to model depending

on the aspect ratio and the boundary conditions that are chosen for the particular

data run.

The Finite Element mesh is constructed by the vortex lattice progam and utilizes

very particular geometric information about the vortex lattice. Thye finite element

mesh and the lortex lattice are shown together in Figure 3-5. The geometrical place-

ment of the finite element nodes corresponds to particular features of the vorex lattice.

Nodes Placed at Nodes Placed
Vortex Midpoint on Strip Edges

S-5 5 ' " "iVortex Lattice
ii /\. i, .' :/ 5 .i i Panel Edges

. I! .. I lot5

.! ': Finite Element
:" : ". .Edges

J Flexible - Spar
Region Boundary

Nodes Placed on Boundary of
Flexible Region and Spar Regions

Figure 3-5: Overlay of Finite Element Mesh and Vortex Lattice

Each of the vortices in the vortex lattice program generate a discrete load that



acts through the midpoint of the bound segment of that vortices. In order to easily

deal with these loads in the finite element model, nodes of the finite element model are

placed at the geometric location of these vortex midpoints. Thus the loads generated

by the vortex lattice can be directly applied to the corresponding nodes in the finite

element model. The typical placement of these nodes are shown in Figure 3-5.

The remainder of the finite element nodes are placed on the edges of the strips in

the vortex lattice model. Thus the displacements at these nodes directly correspond

to the chordlines at the strip edges. This allows the vortex lattice program to easily

construct the geometry of the deformed wing shape for the next iteration. This is

shown in Figure 3-5.

Vortex Lattice panel boundaries as well as Finite Element boundaries are placed in

the geometric location of the boundaries between the flexible region and the stiff axle

regions in the real wing. This boundary line is shown in Figure 3-5. This boundary is

specifically prescribed so that the material discontinuity between the flexible region

and the spar regions could be handled by the finite element program. The curvature of

the structure in the chordwise direction is typically discontinuous across this boundary

due to the material difference. Placing a Vortex lattice panel edge along this boundary

allows better resolution of the exact details of the camberline. This interface also

corresponds to the axis of rotation of the spars. Having nodes along the axis of

rotation allows the displacement of the spars to be specifically measured so that the

exact response of the spars can be determined for design purposes.



Chapter 4

Numerical Analysis of Flexible

Wings

The numerical methodology described in the previous chapter is used to determine the

steady state behavior of a given flexible wing operating at a certain dynamic pressure

and lift coefficient. In order to establish general performance characteristics, several

different planforns are examined numerically over a range of operating points and

the results expressed in terms of the stiffness parameter and the aspect ratio. These

results are then used to generate performance curves that describe the behavior of a

general flexible wing at any operating point.

Of primary interest in the numerical results is the lift curve slope for a wing.

The lift curve for flexible wings differ significantly from those for rigid wings. These

calculations develop theoretical lift curves for flexible wings. Traditional lifting line

theory calculations provide the lift curve slope of a rigid wing with a given planform.

The cambering response of the flexible wing increases the lift curve slope of the wing.

Thus the lift curve depends on the stiffness of the wing as well as the planform.

In this study, the drag polars are of secondary interest. Since this is an inviscid

calculation, only induced drag is obtained which depends primarily on the span and

the span load distribution of the wing. The span load distribution depends mainly on

the planform of the wing and varies only slightly due to the camber distribution. Thus,

the drag polars should not vary significantly as the value of the stiffness parameter



of a given wing changes.

4.1 Analysis Goals

The numerical analysis is used to calculate the behavior of flexible wings and

generate performance curves. The performance curves relate the lift curve slope of

a wing to the planform and stiffness parameter and can be used to predict how a

wing with given values of each of these parameters will perform. The performance

curves are derived from a limited set of planforms, but give general trends for more

general flexible wings. Although the inviscid calculations cannot show the increases

lift to drag ratio of a cambered wing, they can show the effects of flexibility on the

lift curve.

4.1.1 Convergence

The converged solution of the numerical method gives a good approximation to

the behavior of the flexible wing at a steady operating point. As with any iterative

method, complete convergence is impossible. However, a solution can be said to be

converged if the change in a particular parameter per iteration is small enough that

this change does not change the solution beyond an acceptable resolution.

For this method, several parameters are measured such as the angle of attack, the

induced drag and several other aerodynamic performance factors. Each of these quan-

tities should be constant to within an acceptable change per iteration for a converged

solution. The lift coefficient remains constant during the convergence progression,

and the changes in camber result in changes in the angle of attack of the wing. Thus

the angle of attack is the primary measure of convergence. For this study, the so-

lution is considered to be converged if the angle of attack does not change by more

than 0.0001 degrees per iteration. The camber shape of the wing also changes at each

iteration. This change in the shape of the wing is measured by the root mean squared

change in the z-deflection of the nodes. This error serves as a benchmark quantity by

which changes in the wing from one iteration to the next can be measured.



The iteration progression toward the solution also shows the stability of the

method and can be related to the stability of real flexible wings. A high rate of

convergence indicates a very stable behavior of the real wing, whereas a slower con-

vergence may indicate a less stable wing. The convergence rate should be faster for

wings with a higher stiffness parameter. The convergence rate should decrease for

wings with very low aspect aspect ratio and for wings below an aspect ratio of about

1.3 the method should not converge at all.

4.1.2 Parameter Range

Several parameters of the wing are specified at the beginning of the solution

process. The input datafile into the vortex lattice program contains the planform

geometry of the wing. This geometry information includes the aspect ratio of the

wing and the boundary conditions. An operating point for the wing of that planform

is then defined by the lift coefficient and value of the stiffness parameter. Since the

lift coefficient and stiffness parameter account for the dynamic pressure and the chord

of the wing in their non-dimensionalizations, the performance of a general wing can

be completely described by these parameters.

A set of data points for a range of lift coefficients, stiffness parameters and plan-

forms are needed in order to adequately resolve the performance curves for the wings.

To study the effect of stiffness on wing performance, lift curves are generated for each

planform for a range of values of the stiffness parameter. Wings with similar plan-

forms and boundary conditions that differ only in aspect ratio are tested to quantify

the effects of aspect ratio on the performance as well.

This study also looks at the effects of spar placement and plate thickness distri-

bution on the performance of flexible wings. In order to quantify the effects of these

parameters on performance, representative sets of planforms with different bound-

ary conditions and thickness distribution are tested. It is important to be able to

include the effects of these real wing parameters. These occur due to the physical

limitations that are encountered when constructing a real flexible wing. Quantifying

these effects allows wing designers to utilize the performance results in developing



real applications.

4.1.3 Data and Results

The primary result of this study is the lift curve of the wing. Given the linearity

of the numerical method, the lift curves are very linear and can described in terms of

the just the slope. The lift curve slope is calculated from the angle of attack data for

the given operating point. Since the wings tested have no camber in their unloaded

state, the lift curve passes through the origin and the slope of the lift curve is given

by a simple relation between one non-zero lift and the corresponding angle of attack.

For a given planform, lift curve slopes are calculated for a range of stiffness pa-

rameters. A performance curve is generated for a given planform to relate the lift

curve slope to the stiffness parameter. One particular quantity of interest is the crit-

ical stiffness of the wing which is defined as the value of the stiffness parameter that

produces a lift curve slope of infinity. The critical stiffness gives a consistent quantity

that can be used to relate wings of differing planform and aspect ratio.

The lift curve slope to stiffness parameter relationship is determined for a range

of planform aspect ratios. Several parameters are needed to describe in a general way

this relationship including the critical stiffness and the slope of the lift curve for a

rigid wing for that planform. Once all of these parameters have been determined, the

wing's performance can be completely described in terms of the planform, stiffness,

and lift curve slope.

4.2 Verification Tests

In order to verify that the numerical algorithm works properly, several verification

tests are performed. The first set of tests are convergence tests to show the conver-

gence rate of the algorithm. A second set of verification tests are run to show that

the lift curves produced by the method are linear. These test show the characteristics

of the numerical method.

The linearity and convergence tests are done for a typical planform for each type



of boundary condition and thickness distribution in order to verify the numerical

accuracy of the results for each type of planform. An initial verification test for a

simple rectangular flexible wing is presented here to show the methodology of the

verification tests and typical results.

4.2.1 Rectangular Planform

In order to verify that the numerical method produces answers that agree with the

two-dimensional theory discussed earlier calculations are done for a rectangular wing

with an aspect ratio of 10. The aerodynamics and structural response of a high aspect

ratio flexible wing should closely approximate the two dimensional theory. This wing

is modeled as an isotropic, linearly elastic plate with constant bending stiffness. The

wing is simply supported with leading edge pinned and the trailing edge pinned but

allowed to displace in the chordwise direction. The chord of the wing is constant from

the root to the tip and the leading edge of the wing is perpendicular to the root.

4.2.2 Convergence Tests

In order to show the convergence characteristics of the method, the method is

iterated until the solution converges. At each step of the iteration, the average change

in the z-displacement is measured. This average displacement is expressed in terms

of the Root Mean Square change in the z-displacement of the camberline nodes as

given by

RMS AZnodes = (Zode - Znod (4.1)

where z ode is the z location of the camberline node located at the vortex midpoint

at iteration n. This RMS Az gives a good indication of the average change over

the entire wing of the camberline. Thus, a converged solution would have a very

small RMS Az. For these tests, a RMS Az on the order of 10-' proved to be

a fully converged solution. At this point the accuracy of the method due to the

number of significant figures that are stored proves to be the limiting factor in further



convergence. The angle of attack is converged to within .0001 degrees and the induced

drag coefficient is converged to within .000001.

The convergence of the method is very fast. The RMS Az for the first iteration

is on the order of 10-2 which represents the initial deflection under the flat plate

loading. Since the total magnitude of the load does not change from one iteration

to the next, the average deflection does not change significantly either. However, the

cambering of the wing has the effect of changing the load shape and thus the shape

of the camberline. Thus, the deflection at any location on the wing may change

significantly from one iteration to the next as the shape changes. The RMS Az

takes this into account and measures the average magnitude of the deflection change.

However, due to the constant magnitude of the loading, even the RMS Az decreases

very quickly. The convergence rate depends on the stiffness, K, of the wing, but in

general, is on the order of an order of magnitude decrease in RMS Az per iteration.

To verify that the numerical method works, a rectangular planform with an Aspect

Ratio of 10 is tested for several stiffness values. The convergence rate for this wing is

shown in Figure 4-1. The convergence is very rapid for all cases, but the stiffer wings

converge more rapidly.

The lift coefficient, dynamic pressure, and thus the lift, are held constant through

the convergence process. Thus, as the camber changes from one iteration to the next,

the angle of attack must change as well to keep the lift constant. The angle of attack

converges to its final steady state value very quickly. This convergence is shown in

Figure 4-2. The angle of attack for the more flexible wings slightly overshoot their

final steady state angle of attack as the wing initially cambers too much due to the

flexibility of the material. This is the main cause of the slower convergence rate seen

in Figure 4-1.

4.2.3 Linearity of Lift Curve

Due to the linearity of all aspects of the algorithm, the lift curve should be com-

pletely linear. The vortex lattice code is completely inviscid so the wing's lift response

should be perfectly proportional to the camber and the angle of attack. The finite
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Figure 4-1: Verification Test: Convergence Rate

element code is run in an linearly elastic mode to insure that the deflection is pro-

portional to the load. Thus, the lift curve should be linear.

To confirm this linearity, several lift curves for the rectangular planform are gen-

erated over a range of stiffnesses to demonstrate the linearity of the lift curves. The

lift curves each have enough data points to ensure good resolution of the statistical

linearity of the slope. These lift curves are then analyzed to determine their linearity.

In order to determine the linearity of the lift curves, a statistical characteristic

of the data set known as the correlation coefficient as defined in [5] was determined

for each of the lift curves. This correlation coefficient expresses the strength of the

relationship in the data. A perfectly linear data set has a correlation of 1 or -1

depending on whether the slope of the line is positive or negative. For data that is

not perfectly linear, the correlation will be between 1 and -1 with 0 representing a

perfectly random data set. The closer the data is to a perfectly linear relationship,
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Figure 4-2: Verification Test: Angle of Attack Convergence

the closer the correlation coefficient is to either 1 or -1. The correlation coefficient r

is given by

r = -E, (Xi - X)(Y - (4.2
S(4.2) S. x SU \ - 1-

where the data is given by n (Xi, Y) pairs, X and Y are the statistical averages of

the X and Y data as given by the equations

1.
n

and

1

i= 1

(4.3)

(4.4)



and S, and S, are the statistical standard deviation of the data as given by the

equations

S, = (4.5)

and

S i= 1i (4.6)n-1

The Data that is used for the lift curve is given in (a, CL) pairs. Since the

denominator of the correlation coefficient contains the standard deviation of both

variables, the accuracy of the correlation coefficient degrades significantly as the line

gets close to vertical or horizontal. In the case of a vertical data set with good

linearity for example, the standard deviation of x, S, is very close to zero as is the

(Xi - X) term in the numerator. Thus, small errors, such as truncation errors cause

large changes in the correlation coefficient. A perfect data set for a vertical line would

result in a 0 in both the numerator and the denominator.

Table 4.1 gives the correlation coefficients for several lift curves for various stiff-

nesses of the rectangular planform. These correlations are very close to 1 (-1 for the

negatively sloped lift curve) showing the high degree of linearity of the lift curves.

Since the lift curves are very linear, they can be expressed in terms of their slope and

their intercept. However, all the flexible wings have no camber at CL = 0, and thus

the lift curves can be described in terms of their slope alone. Similarly, this slope can

be determined by one data point (since the intercept is always zero).

Table 4.1: Correlation Coefficients for Rectangular Planform
K I r

Rigid
3
2
1

0.99999
0.99998
0.99997
-0.99889



4.2.4 Numerical Results

The performance of the flexible wing is described in terms of the lift curve slope.

As the value of the stiffness parameter changes, the slope of the lift curves change.

This behavior can be quantified and expressed in terms of general performance curves

for the wing.

Lift curves are generated for the rectangular wing for several different values of

the stiffness parameter over a range of lift coefficients. These lift curves for the wing

are shown in Figure 4-3. It is clear from this figure that the lift curves are very linear

and that they intercept the origin. This linearity shows the that the method is linear

and allows the lift curve to be expressed in terms of the slope and the intercept. This

wing (and all of the wings in this study) is uncambered in its unloaded state, so all

the lift curves intercept the origin and the lift curves can be expressed in terms of

only their slope.

The lift curve slope for the wing increases as the stiffness parameter decreases.

The relationship between the lift curve slope and the stiffness parameter is shown in

Figure 4-4. This figure only shows the values of the stiffness parameter greater than

the critical stiffness of the wing. For stiffness lower than the critical stiffness, the lift

curve slopes are negative. These stiffnesses are not shown here mainly because the

beneficial operating points are all in the positively sloped region.

The results of the numerical calculations show that for values of the stiffness pa-

rameter below the critical stiffness, this relationship follows an inverse proportionality

such that the slope, m, is roughly given by

1
m c (4.7)

K

The slope is infinite for the critical stiffness and asymptotically approaches the lift

curve slope for the rigid symmetric tapered wing for very high stiffnesses. The rela-

tionship can be given by a curve fit to the numerical results of the form

3.65
m = mrigid + . (4.8)

K - Kcri
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Figure 4-3: Linearity of Lift Curves for Rectangular Planform

where mrigid is the lift curve slope of the rigid wing with the same planform. This

relationship is shown by the curve fit shown in Figure 4-4.

The critical stiffness for this wing is given from the numerical analysis to be 1.16.

The theory given by Widnall et. al. in Equation 2.15 gives the the value of K,,it for

an elliptically loaded wing of aspect ratio 10 as 1.218. The numerical result is within

5% of the predicted value.

4.2.5 Drag Polar

The induced drag drag of the rectangular flexible wings for a range of stiffness is

shown in Figure 4-5. The drag varies very little as the stiffness changes. This is due

mainly to the fact that induced drag is primarily a function of the span loading which

depends mostly on the aspect ratio and the planform and very little on the camber

distribution.
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4.3 Analysis of Ideal Tapered Wings

The theory that is discussed in Section 2.4.1 describes the performance of high

aspect ratio elliptically loaded flexible wings that are modeled as two-dimensional

plates at every point along the span and boundary conditions right at the leading and

trailing edge of the wing. This theory should also offer insight into the performance

of wings that are nearly elliptically loaded. To verify this theory, a numerical analysis

is performed of several tapered flexible wing planforms. The results of this numerical

analysis are compared to the elliptic theory to show its accuracy for wings that are

not high aspect ratio elliptical wings.

4.3.1 Tapered Wing Planforms

The tapered planforms that are studied here have a very simple geometry. The

planform is trapezoidal with the tip chord equal to one half of the root chord. This

taper ratio is shown by Glauert [4] to give a close approximation to elliptic span

loading. The leading edge is swept back and the trailing edge is swept forward as

shown in Figure 4-6. The 70% chord line is perpendicular to the root chord (this is

important for comparison to the case where the axis of rotation of the trailing edge

spar is placed on this line).

The tapered planforms are used for several reasons. The leading and trailing

edges are straight allowing easy enforcement of the leading and trailing edge boundary

conditions. In the case where the spar boundary conditions are used, the locations

of the spars relative to the local chord is constant along the span of the wing and

the spars are straight. The value of the stiffness parameter, when corrected for axle

placement is also constant over the span. There is a good amount of prior work on

tapered planforms that can be used for comparison.

The lift curve slope for rigid tapered planforms are known from the prior work of

Glauert [4]. Thus, it is easy to compare the lift curves for flexible wings to those for

rigid wings with the same planform. For the case of rigid wings, the lift curve slope of

the tapered wing compared to the elliptic wing is shown for a range of aspect ratios
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Figure 4-6: Typical Tapered Flexible Wing Model

in Figure 4-7.

The lift curve slope for the family of tapered flexible wings depends on the value

of the stiffness parameter of the wing as well as the aspect ratio. For a given aspect

ratio the lift curve slope increases as the stiffness decreases until the lift curve becomes

completely vertical. The value of the stiffness parameter where this occurs is defined

to be the critical stiffness of the wing and depends on the aspect ratio of the wing.

For values of the stiffness parameter less than the critical stiffness, the lift curve slope

becomes negative.

To determine the effect of aspect ratio on the critical stiffness, Kcrit, the tapered

planforms are modeled without the spar section such that the boundary conditions are

enforced at the leading and trailing edges. The plate is modeled as a uniform isotropic

linearly elastic material. The plate stiffness in the chordwise direction is constant

(constant thickness). The thickness in the spanwise direction is proportional to the
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Comparison of Elliptic and Tapered Planforms
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Figure 4-7: Lift Curve Slopes for Tapered Planforms of Various Aspect Ratio

local chord of the wing such that the local value of the stiffness parameter is constant

over the span. The leading and trailing edges of the wing are simply supported such

that the x and z displacement of the leading edge is constrained and the z displacement

of the trailing edge is constrained (the y displacement is also constrained at the root).

The root and tip of the wing are free from supports.

A series of such ideally modeled flexible wings with varying aspect ratios are tested

to find their critical stiffness, Kc;t. The theoretical K,,ai is given by Equation 2.15.

This theory was developed for elliptically loaded planforms with no structural in-

teraction between spanwise locations. There should be correction to this theory for

non-elliptic distributions and real plates where there is interaction in the spanwise

direction. As described in Section 2.4.1, the camber distribution depends to a large

degree on the aspect ratio. The bending of the plate at the tip of a low aspect ratio

wing will be much more affected by the root bending loads that a high aspect ratio

wing.



4.3.2 Numerical Convergence of Tapered Planform

As a check to prove that the numerical model is appropriate for this planform,

the convergence rate of the numerical method is checked. As shown in Figure 4-8,

the change in the shape of the wing as measured by the average nodal displacement

decays very quickly. The shape of the wing converges in well under 20 iterations.

Once again the convergence rate depends on the stiffness of the wing, but even for

wings with a stiffness less than the critical stiffness, the convergence is good.
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Figure 4-8: Convergence Rate for Tapered Planform

As the nodal displacements converge to a final steady state shape, the angle

of attack of the wing also converges. Once again, the angle of attack of the wing

converges to within 0.0001 degrees for a RMS error an the order of 10-6 to 10-7. The

convergence of the angle of attack is shown in Figure 4-9.
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Figure 4-9: Convergence Rate for Tapered Planform

4.3.3 Linearity of Lift Curve

The lift curves for a flexible tapered wing of aspect ratio 6 over a range of flexibili-

ties are shown in Figure 4-10. Using the statistical analysis described in Section 4.2.3,

the linearity of each curve can be determined. The very high correlation coefficients

shown in Table 4.2 show that the lift curves generated by the numerical method are

very linear for the tapered planforms. Thus a lift curve can be described simply by

its slope which is determined by a single non-zero lift data point (since the lift curves

all go through the origin).

Table 4.2: Correlation Coefficients for Tapered Planform
K r
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Figure 4-10: Linearity of Lift Curves for Tapered Planform

4.3.4 Induced Drag Polars

The drag polars for several stiffnesses of the aspect ratio 6 flexible tapered wings

are shown in Figure 4-11. The change in stiffness has a minimal effect on the induced

drag of the wing as can be seen by the similarity among all the curves.

Camber primarily affects the pressure distribution in the chordwise direction.

Since this pressure distribution is the main factor in influencing the boundary layer,

the camber distribution can have large effects on the viscous drag. This drag often

makes a significant contribution to the overall drag on the wing and proper cam-

ber can dramatically improve the viscous and overall drag. However, the computer

programs used in this study do not predict the viscous drag on the wing.

4.3.5 Stiffness Effect on Lift Curve Slope

As the stiffness of the wing changes, the amount of camber for a given lift point and

thus the lift curve slope changes. For very high stiffness when the wing is essentially

rigid, there is little cambering and the lift curve nearly matches that of a rigid wing of
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Figure 4-11: Similarity of Drag Polars for Tapered Planform

identical planform. As the stiffness decreases, the slope increases until the lift curve

eventually becomes vertical and then negative as seen in Figure 2-3. The critical

stiffness, K,-it, of the wing is defined as the point at which the lift curve slope of the

wing becomes completely vertical. Figure 4-12 shows the relationship of the lift curve

slope to the stiffness, K for the ideally constrained tapered wing planform of Aspect

Ratio 5.

As with the rectangular planform, the relationship of lift curve slope to stiffness

for the tapered planform follows an inverse proportional relationship such that

1
m c -. (4.9)

K

The slope is again infinite for the critical stiffness and asymptotically approaches the

lift curve slope for the rigid symmetric tapered wing for very high stiffnesses. Thus

the relationship can be given by a curve fit similar to Equation 4.8 of the form

F
m = mriid + . (4.10)

K - Krit

where mrii is the lift curve slope of a rigid wing and F is a proportionality coefficient
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Figure 4-12: Lift Curve Slope as a Function of Stiffness

that depends on the aspect ratio of the wing. This inverse proportionality relationship

fits the data extremely well as shown by the curve fit data in Figure 4-12.

4.3.6 Aspect Ratio Effect on Flexible Wings

The value of the critical stiffness depends on the aspect ratio of the wing. As the

wing aspect ratio goes down, the critical stiffness, Keit, decreases. A relationship is

given by Widnall et. al. in [10] that relates Kit to the aspect ratio of the wing.

This relationship is based on lifting line theory and given in Equation 2.15 where the

airfoil Ke,it = 1.4. This relationship is shown by the theoretical line in Figure 4-13.

The performance shown by the numerical analysis matches the lifting line perfor-

mance prediction curve fairly well. For high aspect ratios, the numerical performance

of the flexible wing shows the same asymptotic behavior of the critical stiffness as the

lifting line theory predicts. For lower aspect ratios, the lift curve slope decreases. For

extremely low aspect ratios, the camber has very little affect on the lift of the wing

and thus the lift curve slope is not affected by the stiffness of the wing. For aspect
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Figure 4-13: Aspect Ratio Effects on Critical Stiffness

ratios below about 1.2, the numerical method would not converge.

The numerical results show a lower critical stiffness for most aspect ratios than the

lifting line theory predicts. This lower Kit is mainly attributable to the difference

in the way the structure is modeled between the lifting line calculations and the

numerical analysis done here. In the lifting line calculations, the camber at any span

station responds only to the local loading and there is no structural stiffness in the

spanwise direction. In the numerical model used here, the structure is modeled as

a real plate such that there is significant interaction in the spanwise direction. This

has a tendency to decrease the camber at the root and increase it near the tip as

compared with the lifting line theory.

In the low aspect ratio range, the critical stiffness calculated from the numerical

method is greater than that from the lifting line theory. For low aspect ratios the

swept leading edge boundary condition acts to change the bending behavior of the

plate. At higher aspect ratios, the bending is nearly cylindrical where for low aspect

ratios the bending is more conic. This effect causes the structure to actually camber



more than the lifting line theory predicts near the root and increases the critical

stiffness.

The proportionality coefficient, F, for an ideal tapered wing is also affected by

aspect ratio as shown in Figure 4-14. The curve fit shown in this figure is given as

Proportionality Coefficient for
Tapered Wings with Ideal B.C.s

r -u
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" Numerical Results
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Figure 4-14: Proportionality Coefficient for ideal Tapered Planform

F = 5logAR + 0.05. (4.11)

The lift curve slope of a flexible wing can be determined from Equation 4.10.

From the planform alone, the slope of the rigid wing, migid, can be determined. Kcrit

depends on several factors including aspect ratio, span loading and spar placement.

This equation can be used to determine the lift curve slope for flexible wings with

stiffnesses greater than Kcrit. It has been found from prior work that most of the

useful operation of flexible wings occurs above the critical stiffness.



4.3.7 Lift Performance Of Ideal Tapered Wings

The lift coefficient of tapered wings with boundary conditions enforced along the

leading and trailing edges can be expressed as a function of the angle of attack as

27 5 log AR + 0.05
1 + K- 1.4(1 -. 3

This equation gives the lift coefficient for a wing of given aspect ratio and stiffness.

The comparison of the critical stiffness for the wing with the effective stiffness

for the aspect ratio 5 flexible wing is shown in Appendix A. The comparison to the

stiffness test gives a value for the constant, A. For this wing, A = 0.115 (Widnall

gives the range of A as 0.9 < A < 0.12 in [10]).

The two-dimensional case for these boundary conditions gives A = 0.103 which is

well within the range given by Widnall and very close to A = 0.1 that she gives as

the most likely value for A.

4.4 Analysis of Non-Ideal Tapered Wings

The performance of real wings does not match the ideal performance models that

are characterized in Section 4.3. Two of the major effects on the performance are

caused by the placement of spars and the non-uniform chordwise thickness distribu-

tion of real flexible wings. Real wings cannot be supported by the idealized boundary

conditions of the ideal wings. The thickness of real wings varies along the chord

changing the plate stiffness over the chord. By modifying the models, the effects of

these real wing non-idealities on the wings' performance can be determined.

4.4.1 Spar Boundary Conditions

The idealized supports at the leading and trailing edges that constrain the wings

in the previous section cannot be easily realized for real wings due to the thickness

constraints. All real wings must have spars that are placed where the airfoil is thicker.

The leading edge spar is placed aft of the leading edge in the wing but must be forward



of the 25% chord location in order to allow the wing to camber properly. The trailing

edge spar is placed forward of the trailing edge but must be aft of the 60% chord

location for proper bending. Design tradeoffs for real wings have shown that placing

the spars at the 10% and 70% chord stations gives a reasonable compromise between

the bending behavior and the spar strength.

The spars of each of the wings are modeled as a relatively high modulus isotropic

region of the wing. The spars are designed for very minimal deflection under the

lifting loads by having a modulus that is 7 or 8 orders of magnitude greater than

that of the flexible region. The spar is cantilevered at the root and allowed to rotate

such that the axis of rotation forms a boundary condition for the flexible region. The

spar regions of the wing extends from the axis of rotation to the leading and trailing

edges such that only the region between the spar axes of rotation is allowed to bend

substantially under the loading.

Real wings need to support a substantial spanwise bending loads due to the lift.

This load is supported by the spars or their structural equivalent. The cross-sectional

moment of inertia of the spars is, in general, rather large so as to react the bending

moments. Thus, they are usually placed in the thickest region of the airfoil. For

flexible wings, the spars must be near the leading and trailing edges of the airfoil so

as to provided the proper boundary conditions for the flexible region. Airfoils are

invariably thin near the leading and trailing edges, so the spars need to be rather

large in size to make up for the lack of bending moment of inertia of their cross-

sections. The trailing edge spar, in particular, must be as far forward as possible to

take advantage of the thicker part of the airfoil.

In order to closely model a real wing, the spars in the model have been made rather

large and are placed as close to the center of the airfoil as possible. The trailing edge

spar region makes up the first 10% of the chord of the wing. This location is far

enough from the leading edge as to allow a sizable spar thickness, while still far

enough forward to allow proper bending of the flexible region. The trailing edge spar

makes up the last 30% of the wing at the root and a similar percentage over the span

of the wing. Again, this location allows the spar thickness to be large yet still allows



the flexible region to bend. The wing is made rigid in front of the leading edge axle

and behind the trailing edge axle to keep these regions from deforming under load.

This is particularly important for the trailing edge so as to provide a solid trailing

edge that enforces the Kutta condition. These two regions are shown in Figure 4-21

These realizable spar locations dramatically effect the stiffness of the wing. This

effect comes from several factors. First, the bending region of the plate is shorter in

length effectively increasing its stiffness. Second, the loading between the axles is less

than the total load (some of the load acts in front of the leading edge spar or behind

the trailing edge spar) thus reducing the bending loads on the plate. Finally, the load

that acts in front of the leading edge spar and behind the trailing edge spar act to

"uncamber" the wing due to the adverse moments they apply. All of theses factors

combine to make the plate appear much stiffer than the stiffness parameter indicates.

This effect decreases the value of Krt for a given planform. Using the spar

location correction formula from Widnall et. al. [10],

K,it = 1.3 - 2.6 L.E. Spar _ 2.3(1 - T.E.ar) (4.13)
c c

the critical stiffness for an airfoil section with the spars at the 10% and 70% locations

is reduced from 1.4 to 0.35. For an elliptically loaded wing with an aspect ratio of 8,

the finite span correction formula

1.3
Kcit win, = Kcrit air oi (1 - 1R) (4.14)

further reduces Kcrit from 0.35 to 0.293. The interaction of the various spanwise

locations of the bending plate reduce Krit further. The numerical analysis for this

tapered wing with an Aspect Ratio of 8 and spars at the 10% and 70% locations gives

K,,it = 0.255.

The lift curve slope for this wing as a function of its stiffness is shown in Figure 4-

15. This Figure shows how the lift curve slope increases as the stiffness decreases. As

the stiffness decreases, the lift curve slope goes up as more of the lift is generated by

camber and less by angle of attack. The slope becomes infinite for the case where all



the lift comes from camber and none from angle of attack. The stiffness where this

occurs is defined to be the critical stiffness of the wing, Kit.

Tapered Planform, AR = 8
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Figure 4-15: Stiffness Parameter Affect on Lift Curve Slope

The relationship between lift curve slope and stiffness follows a similar inverse

relationship as the ideal case. The proportionality coefficient for the tapered planform

with the spar boundary conditions is shown in Figure 4-16. The curve fit that is shown

in that figure gives the functional form for F for this case of a tapered wing with spars

at the 10% and 70% chord positions. This curve fit is given by

F(AR) = log AR + 0.05. (4.15)

Correcting for aspect ratio follows Equation 2.15, but uses the two-dimensional

airfoil Kcrit = 0.35. Thus the curve is similar to the curve for the ideal boundary

conditions, but proportionally lower. This curve along with the numerical data are

presented in Figure 4-17.

The critical stiffness for the wing displays a similar comparison to the lifting line
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Figure 4-16: Aspect Ratio effect on F

prediction as the ideal tapered wing. The critical stiffness falls below the lifting

line prediction at high aspect ratios and for very low aspect ratios are higher than

predicted. However, the vales are close to the lifting line prediction. Thus, a per-

formance curve that utilizes the lifting line prediction gives a good estimate of the

critical stiffness for the wing.

The lift coefficient of tapered wings with spars at the 10% and 70% chord locations,

uniform plate stiffness in the chordwise direction and constant stiffness in the spanwise

direction can be expressed as a function of the angle of attack as

2-r log AR + 0.05
CL =( 2 )a (4.16)

1 + A K - 0.35(1- 3)

The comparison of the critical stiffness for the wing with the effective stiffness

for the aspect ratio 5 flexible wing is shown in Appendix A. The comparison to the

stiffness test gives a value for the constant, A. For this wing, A = 0.122 which is

slightly higher than predicted by Widnall et. al. in [10]. The two-dimensional case

for these boundary conditions gives A = 0.104 which is well within the range given

by Widnall and very close to A = 0.1 that she gives as the most likely value for A.
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Figure 4-17: Aspect Ratio Effects on Critical Stiffness for Wing with Spars

4.4.2 Non-Uniform Plate Stiffness

A further correction to the theory involves the non-uniformities in the plate stiff-

ness due to the thickness distribution of the airfoil sections. The wings considered

in the previous sections are modeled as having a uniform plate distribution in the

chordwise direction in the flexible region of the wing. If a constant isotropic material

is used however, the plate stiffness will vary in the chordwise direction as the thickness

varies. This should affect the behavior of the wing slightly.

The plate stiffness, D, for an isotropic plate is given by

E h3

D = (4.17)
12(1 - v2)

where E is the modulus of the plate, v is Poisson's ratio and h is the thickness of the

plate. For a NACA 4 digit series airfoil with 15% max thickness (such as a NACA

0015), the thickness distribution is given in [1) as



h(x) = 1.5(0.2969 - 0.126 - 0.3516() + 0 .2 84 3( )3 - 0.1015()). (4.18)

Since the only significant plate bending occurs in the flexible region between the spars,

the average thickness in this region can be determined by taking the integral of the

thickness over this flexible region and dividing by the length of the flexible region,

1 0.7
have -= h(x)dx (4.19)

0.6c l=o.1

giving an average thickness of have = 0.132467. The average plate stiffness, D for this

airfoil section is then defined using the average thickness as

E h3
Daveave (4.20)

= 12 (1 - v 2 )

giving finally a stiffness for the airfoil section as

DG1/

K = 3ave (4.21)
VM 2

where Da,, is the local plate stiffness and c is the local chord of the wing.

For airfoils with this stiffness distribution, The K i correction for axle placement

has not been determined in any of the prior work. However, the correction can

be determined from the effective stiffness test. The results of the two-dimensional

effective stiffness test for spars placed at the 10% and 70% chord locations, as shown

in Appendix A, give an estimate for the airfoil Kc:it = 0.30. Figure 4-18 shows the

effect of non-uniform thickness on the lift curve slope to stiffness relationship.

The lift curve slope for the NACA thickness wing is slightly lower that of the

uniform thickness wing of the same aspect ratio as shown in Figure 4-18. The lift curve

slope again follows the inverse proportionality relationship to the stiffness parameter.

The value of Kent for the wing of finite span again depends on the aspect ratio of

the wing. The comparison of Kcrit for wings of several planforms with both uniform

and NACA thicknesses are shown in Figure 4-19. For this definition of the average
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plate stiffness, the critical stiffnesses for the NACA thickness wings are below those

of the uniform thickness wings.

There is also a correction to F based on the non-uniform plate thickness distribu-

tion. For the aspect ratio 6 wings shown in Figure 4-18, the proportionality coefficient,

F, is decreased from 0.825 to 0.725 for the non-uniform thickness distribution. The

Proportionality Coefficient is affected in a similar way for wings of other aspect ra-

tios. A comparison of The proportionality coefficients for a uniform thickness and a

NACA 0015 thickness distribution are shown in Figure 4-20. For the wing with the

non-uniform thickness distribution, F is given from the curve fit as

F(AR) = 0.868log AR + 0.05 . (4.22)

Thus, the lift coefficient for the flexible wing with NACA thickness distribution is

given by
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27r 0.0868 log AR + 0.05
CL =( + )a (4.23)1 + + K - 0.30(1- )

in terms of the aspect ratio and the stiffness parameter of the wing.

subsectionEffective Stiffness Comparison

An effective stiffness test for a tapered wing with an aspect ratio of 5 and the

NACA chordwise thickness distribution is shown in Appendix A. Comparing the

effective stiffness to the numerically calculated critical stiffness gives a value for A =

0.20. This value of A is higher than the A value for the uniform thickness wings.

However, the similar comparison for the two-dimensional airfoil case gave a value for

A = 0.16 indicating that the average plate stiffness for the airfoil may not adequately

model the plate stiffness and would therefore change the stiffness parameter and the

critical stiffness.



Proportionality Coefficient for
Tapered Wings with Spars B.C.s

1.4

1.2 ...o ***

1.0 PO.

** .o -** I Uniform Thickness0.8 . .o-
0.8 .f. ""Curve Fit 1

0.6 o Non-Uniform Thickness

" 0.6 .. .... Curve Fit 2

0.2

0.0 I I

0 5 10 15

Aspect Ratio
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4.5 Tests Involving Sailboard Fin Planforms

Several flexible wing planforms have been developed for sailboard fins. These fins

were developed by Flex Foil Technology Incorporated and are referred to as the Flex

Foil planforms. The analysis of these planforms demonstrates the performance of

real wings. These wings were designed to more closely approximate elliptic loading

than the tapered planforms. The numerical models tested here closely model actual

sailboard fins that have been constructed and sailed.

4.5.1 Sailboard Fin Planforms

One application of flexible wings is in flexible sailboard fins. Several prototypes

of such fins have been developed. These fins present difficult mechanical engineering

problems for their designers. The fins are small yet generate a significant load making

strength of the spars critical. The attachment to the windsurfer itself is also difficult

given the available space inside the board. The fins are much smaller than traditional



windsurfer fins so that they can take advantage of the higher lift coefficients possible

for cambered wings.

The latest prototype fin utilizes carbon fibers in the leading and trailing edge

spars to solve the strength problem. Uni-directional fibers are molded into the lead-

ing and trailing edge regions to provide bending strength. These fibers are tapered

into cylindrical axles at the root which are inserted into holes in the board. These

cylindrical axles are allowed to rotate providing the proper boundary conditions for

the fin. The hole for the trailing edge axle is elongated to allow it to slide. These

same axles react the bending loads on the cantilevered wing due to the lift.

The flexible region between the spars is composed of solid polyurethane rubber.

The modulus of this rubber is carefully controlled to provided the proper stiffness for

the fins allowing them to camber under the lift loads that they generate. This rubber

is molded directly onto the axles providing for a good mechanical joint.

These planforms reflect the design compromises that these real constraints impose

upon flexible wings. The spars are placed at the 10% and 70% chord locations of the

root rather than at the leading and trailing edges of the wing. The leading edge is

straight rather than curved and swept at the root. They also have limited aspect

ratios that reflect the need to react the lift loads by cantilevered supports at the root.

The geometry that is assumed for the wings takes into account the mechanical

aspects of the camber deformation. The leading edge of the wing is swept back at a

small angle but is straight so that the spar can rotate without deforming the wing

out of the x-y plane. The trailing edge spar has a straight leading edge along the

axis of rotation. The trailing edge is curved such that the planform takes on a nearly

elliptical chord distribution. The model is shown in Figure 4-21.

The aerodynamic and structural considerations of the models are based on ac-

cepted wing design principles. The wings were designed with a reasonably high aspect

ratio to minimize the induced drag coefficient. The span however is typically limited

by structural considerations of the spars so the aspect ratio was not set too high. The

shape of the planform is designed such that the lift distribution gives nearly elliptic

loading.
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Figure 4-21: Typical Flexible Sailboard Fin Model

The 8 inch Flex Foil planform has a low surface area resulting in a high lift

coefficient at typical operating point. The surface area is about half of a standard

windsurfer fin. The higher lift coefficient takes advantage of the higher lift capabilities

of the wing due to camber. The aspect ratio is moderately high for good induced

drag performance.

The 10 inch planform has a larger surface area and higher aspect ratio than the

8 inch planform. This results in a lower operating lift coefficient than the 8 inch

planform but better induced drag performance. The surface area is still significantly

lower than standard fins again taking advantage of the higher lift capabilities of the



camber.

4.5.2 Convergence Tests

The convergence rate for the 8 inch Flex Foil Planform is shown in Figure 4-22

for a series of stiffness values. The initial RMS Az is higher for the lower stiffness

numbers since the more flexible wings have a greater initial deflection than the stiffer

wings. The stiffer wings converge faster as well.
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Figure 4-22: Convergence Rate

4.5.3 Linearity of Lift Curve

The lift curves for the Flex Foil 8 inch planform over a range of stiffnesses is shown

in Figure 4-23. The lift curves are very linear for a broad range of stiffness values.

The linearity of these lift curves is shown by the correlation coefficients very close to

.



1 (or -1) for each of the stiffness values in Table 4.3
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Figure 4-23: Linearity of Lift Curves for the 8 inch Flex Foil Planform

Table 4.3: Correlation Coefficients for 8 inch Flex Foil Planform
K r

Rigid 0.99996
1.6 0.99996
0.6 0.99998
0.1 -0.99976

The linearity shown in these tests can be generalized to any of the wing plan-

forms of any stiffness. The method produces completely linear lift curves due to the

liearizations utilized in the numerics. Thus, any lift curve for any planform and any

stiffness can be described by the line passing through any two lift points for this wing.

The wings studied in this test are uncambered in their unloaded state, so their lift

curves pass through C, = 0 at a = 0. Thus, the lift curves can be generated from

this zero point and one non-zero data point. In fact the lift curve can be completely

described by the slope of the lift curve. Thus for the actual tests, only one lift point



is generated.

4.5.4 Performance of 8 Inch Flex Foil Wing

The lift curve slope to stiffness relationship for the 8 inch Flex Foil Planform is

shown in Figure 4-24. The data follows the inverse relationship shown for the tapered

wings. Thus, the lift curve slope is given by

The curve fit shown in this

and Krit = 0.18. Thus the

F
m = mrigid + . (4.24)

K - Kcit

figure follows this equation with m,igd = 4.345, F = 0.7

lift curve slope for this fin is

0.7
m = 4.345 +

K - 0.18
(4.25)
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Figure 4-24: Performance Curve for 8 inch Flex Foil Planform

The results of the effective stiffness test for this planform are shown in Appendix A.



The comparison of the critical stiffness calculated numerically and the effective stiff-

ness gives A = 0.194. This is close to A for the NACA thickness tapered wing which

is 0.199.

4.5.5 Performance of 10 Inch Flex Foil Wing

The performance of the 10 inch planform is shown in Figure 4-25. For this wing,

Kcit = 0.173, F = 0.67 and the rigid wing lift curve slope is migid = 4.636. Thus

the lift curve slope for the fin is given as

0.67
m = 4.636 + 0.67

K - 0.173
(4.26)
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Figure 4-25: Performance Curve for 10 inch Flex Foil Planform

The results of the effective stiffness test for this planform are shown in Appendix A.

The comparison of the critical stiffness calculated numerically and the effective stiff-

ness gives A = 0.203. This is close to A for the NACA thickness tapered wing which

is 0.199 as well as that for the 8 inch sailboard fin which is 0.194.
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4.5.6 Critical Speed for 10 inch Fin

For the case of a wing that has been constructed of a particular material, the

critical stiffness is related to a critical flow dynamic pressure. Since the plate stiff-

ness, D, is fixed by the material properties of the wing, changes in the stiffness are

related only to changes in the speed of the flow. Thus for a wing with fixed material

properties, it is often useful to discuss the critical speed of the wing rather than the

critical stiffness.

For the case of the 10 inch fin, a relationship between the flow speed and the lift

curve slope can be determined. The modulus of the flexible material for this case is

4000psi and the airfoil is a 15% thick NACA section. The fin is operating in water. As

can be seen in Figure 4-26, the slope of the lift curve increases as the speed increases

until the wing reaches it's critical speed of approximately 30 knots.

Lift Curve Slope as A Function of Speed:
10 inch Flex Foil Planform, E=4000
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Figure 4-26: Critical Speed for 10 inch Flex Foil Planform
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Chapter 5

Conclusions and

Recommendations

The numerical analysis shown in Chapter 4 give the details on the performance of

flexible wings. These curves can be unified into a concise set of performance curves

that adequately describe the behavior of flexible wings. The following sections outline

the results of the analysis in a simple set of performance equations.

5.1 Performance Characteristics of Flexible Wings

The results of the numerical analysis of flexible wings give a good indication of

how they perform. The stability of the method and the quick convergence indicate the

stability of real flexible wings and their response rate to changing operating points.

The actual data shows how a flexible wing behaves at certain operating points.

5.1.1 Camber Stability

The quick convergence of the method indicates a strong stability of the camber of

real flexible wings. As the wing changes shape, the loading quickly responds to the

new shape. The numerical loading changes very little between iterations. The real

loading acts in a similar way minimizing the dynamics of the structure and leading

quickly to the final solution. The final camber shape is very stable for operation
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above the critical stiffness.

5.1.2 Lift Performance

The lift coefficient for a particular wing is determined by the aspect ratio of the

wing, its planform shape, its stiffness and its angle of attack. These parameters can

be combined into a single equation for elliptically loaded wings:

27r F
CL =( 2 + 1.3 ) (5.1)1 + - K - Kcrit airoiz(1 - 1)

where AR is the aspect ratio of the wing, K is the stiffness of the the wing, a is the

angle of attack and CL is the lift coefficient as described earlier. Kcit airfoil depends on

the axle locations and the stiffness distribution along the chord. The proportionality

coefficient, F, also depends on the Aspect Ratio of the wing and the spar placement.

For the case of the tapered wing ideally constrained at the leading and trailing

edges, F is given from a curve fit of the data as

F = 5 log AR + 0.05. (5.2)

Moving the spars to the 10% and 70% chord points changes F to

F = logAR + 0.05. (5.3)

For the flexible wings, with the non,uniform thickness distribution, and the spars at

the 10% and 70% chord locations, F is given as

F = 0.868 log AR + 0.05. (5.4)

This equation is valid for nearly elliptically loaded wings as well. The more non-

elliptic the span loading of the wing is, the further from the predicted lift the actual

lift will be.

This equation shows the inverse relationship between the lift curve slope and the

stiffness of the wing. For a given aspect ratio, the relationship of the lift coefficient,
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CL, and angle of attack,a, depends only on the stiffness, K in an inverse proportion-

ality.

The proportionality coefficient gives an indication of the sensitivity of the lift

curve slope to changes in the stiffness of the wing. The optimal drag performance

of flexible wings has been experimentally determined to occur for a lift curve slope

around 3 times greater than the rigid wing slope. The magnitude of F for the wing

gives an idea of how close the design speed is to the critical speed. Low values of

F indicate a sharp upturn in the lift curve slope near the critical stiffness and less

difference between the optimal and critical stiffnesses. Larger values of F indicate a

more gradual increase in the slope near critical and thus more of a difference between

the optimal and critical stiffnesses.

The magnitude of F also indicates the range of near optimal stiffness. The flatter

the slope to stiffness curve near the optimal stiffness, the wider the range of stiffnesses

will result in near optimal performance. Larger F values give larger range of near

optimal performance. Since F increases with the aspect ratio, the higher aspect ratio

wings have a larger range of near optimal stiffnesses.

5.1.3 Angle of Attack

In order to avoid the aeroelastic divergence at K,,rt, the numerical program for this

study sets the lift coefficient and determines the angle of attack rather than the other

way around. Although this is the reverse of the way wind tunnel experiments are

performed, it is a valid method for analysis. However, the primary resulting equation

given above, is monotonic allowing it to be inverted so that the more standard CL, a

formulation can be used. This inverse relationship is simply

CL
a ( K - K , - )) (5.5)

This is simply a rewritten form of Equation 5.1. This form is included since the

numerical methodology that is used to gather the data, takes the lift coefficient as

the input and determines the angle of attack. This form avoids the singularity at
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the critical stiffness, Kcit. This form can even obtain the negative angles of attack

that occur for stiffness values lower than Kcit (although there is very little numerical

verification of this range of stiffnesses).

5.1.4 Variation of Parameters with Planform Type

The performance curves that have been generated for the tapered wing planforms

can be used to predict the performance of a more general planform. However, the

accuracy of the predictions depends on how closely the planform of the real wing is to

the tapered model. In the case of the flexible sailboard fins, the trailing edge of the

wing is not straight so that the load is closer to an elliptic distribution. However, the

curve of the trailing edge also changes the positions of the spar rotation axes relative

to the local chord. Near the midspan of the wing, the trailing edge spar makes up a

larger percentage of the local chord than it does near the tip or root. The value of

K,,it and F are both highly dependent on the placement of the boundary conditions.

Thus, the values of Kit and F that are predicted by the performance curves are not

extremely accurate.

However, the effective stiffness test gives a very good prediction of the critical

stiffness. The value of A for the tapered planform with the NACA thickness distri-

bution is very close to the value of A for the sailboard fin planforms for the same

thickness distribution. Thus, if the value of A for the tapered planform is used to

predict Kit based on the effective stiffness test for the sailboard fin planforms, the

predicted Kerits very closely match the Keit calculated numerically.

5.1.5 Low Aspect Ratio Performance

Flexible wings do not perform well at very low aspect ratios. At low aspect ratios

the loading due to camber is not positive over the chord but rather dips negative over

the half of the chord loser to the leading edge. This not only does not provide lift,

but also does not support the camber that causes it. Thus the flexible chordline will

be unstable and the benefits of camber will not be achieved.
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Lifting line theory suggests a flexible wing with an aspect ratio less than 1.3 can

not achieve any significant performance advantages over a rigid wing. Below 1.3, the

wing loading due to pure camber should not support that camber. For higher values

of the stiffness parameter, the lift curve does increase slightly over the rigid wing, but

the wing becomes unstable before reaching critical stiffness. For loadings due mainly

to angle of attack and only partially to camber, the leading edge loads tend to offset

the negative loads due to the camber and the camber is supported by these loads.

However, as the lift curve slope increases, this leading edge load due to angle of attack

decreases and the chord line becomes unstable. Thus the wing does not have a well

defined critical stiffness nor useful operation at low angles of attack.

The numerical analysis tends to confirm this idea, although the aspect ratio where

it occurs tends to be slightly lower than predicted by lifting line theory. A wing with

an aspect ratio of 1.2 had a converged solution at zero angle of attack, indicating the

critical stiffness for the wing and thus that the aspect ratio where wings no longer

show the full range of behavior is actually lower than 1.2. However, in this aspect

ratio range, the numerical method converges very slowly, indicating that the stability

is weak. A numerical analysis for an ideal wing of aspect ratio 1 could not arrive at

a converged solution for an angle of attack of zero.

Low aspect ratio flexible wings have very low proportionality coefficients F. The

low value for F indicates that the range of stiffness parameter values where substantial

benefits can be derived from camber is small. Thus the difference between the optimal

operating stiffness parameter value and the critical stiffness is small.

5.1.6 Drag Performance

The numerical analysis used in this study to determine the performance of flexible

wings is only capable of determining the induced drag on the wing. The camber of the

wing does not affect the induced drag significantly since the induced drag is simply

a function of the span loading which varies very little as the camber changes. For an

elliptically loaded wing, the induced drag is simply a function of the lift coefficient

and the aspect ratio of the wing.
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CDi - (5.6)
r AR

For non-elliptically loaded wings, the induced drag follows the same form as in

Equation 5.6, but is slightly modified to account for the non-ellipticality with a plan-

form efficiency coefficient, e.

CDi - L (5.7)7r AR e

This efficiency coefficient is a function of the shape of the span loading of the wing.

For an elliptically loaded wing, it is one, and for any other wing it is less than one.

In general, this coefficient is rather close to one for most planforms. The tapered

planforms studied here have an efficiency coefficient on the order of 0.8 to 0.9.

The span loading of a flexible wing does not typically change significantly as the

stiffness changes. This is mainly due to the cambering behavior of the wing. Since

the camber at any spanwise location of the wing is not only affected by the loading

at that point, but the overall plate bending induced by the total loading, the camber

tends to be more evenly distributed than the span loading. Thus, at the tip where

the load is low, the camber is greater than the two-dimensional plate theory would

predict for that airfoil cross-section. Similarly, at the root, where the loading is high,

the camber tends to be lower than the two-dimensional plate theory would predict.

This camber distribution tends to distort the ellipticality of the loading by decreasing

the load at the root and increasing it near the tip. Thus, the efficiency coefficient for

the cambered wing remains relatively close to that of the rigid wing and the induced

drag polar does not change significantly from that of the rigid wing. This is seen for

the case of the tapered planforms in Figure 4-5 and Figure 4-11.

In general, for nearly elliptically loaded wings, the induced drag for the wing

depends only on the planform and the lift coefficient only. Thus, the lift to induced

drag ratio for a flexible wing is nearly constant for constant lift no matter what the

flexibility or camber of the wing.

The camber does, in general, have a significant impact on the viscous drag of
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the wing. The numerical analysis utilized in this study cannot determine the viscous

drag effects on the wing and thus cannot determine the effect of flexibility on the

viscous drag. However, once the steady state camber has been determined from this

method, and a thickness distribution chosen, the viscous drag of the airfoils or the

entire wing can be determined by utilizing other numerical analyses such as XFOIL

mentioned earlier. The results of the analysis described in Section 2.3 give the optimal

performance for a flexible airfoil. This minimum drag occurs when about 3/4 of the

lift comes from camber and 1/4 from angle of attack. This should hold true for the

airfoil sections of a flexible wing as well.

5.2 Design of Flexible Wings

The results of this study give a good indication of the performance characteristics

of flexible wings. The results can be used by aerodynamic designers that wish to

utilize flexible wings in their vehicle designs.

5.2.1 Steady Load Lifting Surfaces

Flexible wings can be applied to the steady lifting surfaces. However, in order

for these wings to have an advantage over standard fixed geometry wings, the range

of operating lift should be large. One example of a situation where this occurs is

in the keels of sailboats or the fin on a windsurfer. The lift requirement for both of

these devices is relatively constant in magnitude, but switches direction as the craft

"tacks" or "jibes" from one direction of travel to another. In this case, the camber

response of the flexible wing can switch direction as the direction of loading on the

keel changes.

In order to properly design a keel of fin to perform at an optimal level for such

an application, the designer must first understand the operating requirements of the

craft such as speed and lift. A planform should be chosen that can generate high

lift coefficients (0.5 to 0.8) for these operating requirements. The aspect ratio of the

wing is often chosen due to structural constraints of the spars or depth requirements
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of the keel itself. The spar placement is also determined by structural constraints.

The viscous analysis shown in Section 2.3 indicates that for an optimal lift to

drag ratio occurs for a lift curve slope around three times that of a rigid wing for

Reynolds Numbers on the order of 10'. By performing a similar viscous drag analysis

for the design operating point, the designer can determine a lift curve slope that

maximizes the lift to drag ratio at the operating lift coefficients. The value of the

stiffness parameter of the wing can be determined from the slope using some of the

performance curves in this study. Finally, the material properties of the wing such as

the modulus, can be determined from the stiffness and the operating point through

the equations presented above.

5.2.2 Control Surfaces

Control surfaces are often required to operate over a wide range of lift require-

ments. Flexible wings can be used to enhance the performance of these surfaces

by lowering the drag associated with the control actions and improving the control

authority of the surface. By adding camber to the surface as the lift need goes up

(or negative camber for negative lifts) the control surface can have a much greater

range of lift outputs than a fixed geometry surface. This allows the designer to chose a

lower surface area planform (with an associated lower drag) or to have greater control

authority with the same planform as the rigid control surface.

The passive nature of the camber response allows the operator to achieve these

advantages without the added complexity of mechanical actuators or other active

shaping devices. The automatic response also allows keeps the surface in an optimal

configuration through quick maneuvering. The lower drag associated with such ma-

neuvers through the use of the flexible wings should be an advantage to nearly all

vehicles. This device could be applied to the elevators or tail surfaces of aircraft as

well as the rudders of sailboats.

The lift curve slope for control surfaces represents the control gain of the system.

The designer can tailor the gain of the system by selecting the proper wing stiffness

to achieve the desired lift curve slope. However, the designer should avoid the critical
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stiffness, where the gain becomes infinite and the control forces can no longer be

commanded. In most cases the design will provide lowest drag far enough from the

critical stiffness that this should not pose a problem to the designer.

5.3 Recommendations for Further Study

This study looks at several of the important parameters that govern the behavior of

flexible wings. However, there are several more characteristics of flexible wings that

should be explored in the future. It is also important to verify these performance

characteristics outside of the numerical environment of the program used here by

conducting wind tunnels tests or other experimental tests.

5.3.1 Spar Placement

The spar placement correction given in Equation 2.12 from Widnall, is simply a

curve fit of available 2-D data. This model should be explored more carefully to see

if there is a better formula that could be used. It may also prove an interesting study

to show the effect on the performance of other spar locations.

The spars in the wings in this model are placed in the model such that the pro-

portions of the chord that are in front of, between and behind these spar locations

are roughly constant over the span. It may be interesting to explore cases where

this proportionality is not so constant or even cases where the axes of rotation of the

spars are external to the structure for part of the span. For example, in the case of

the tapered wing, if the leading edge spar axis of rotation were perpendicular to the

root chord, the axis of rotation would be substantially ahead of the leading edge at

the wing tip. The performance of such a wing would be drastically different from the

tapered wings where the axis of rotation is within the structure.
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5.3.2 Viscous Drag

This study utilized an extremely simplified model that did not include any of the

effects of viscous drag, which is where cambered wings gain most of its performance

advantages. The performance optimization must therefore include these viscous ef-

fects. This could be done by either replacing the vortex lattice with a viscous panel

program or more simply, by post processing the converged result of a numerical pro-

gram similar to the one presented here with a viscous flow solver.

5.3.3 Planforms

This study was mainly concerned with the simple tapered wing planforms. These

planforms are nearly elliptically loaded and thus follow the theory reasonably well.

Further study on other types of planforms with more or less elliptic load distributions

may enhance flexible wing theory.

5.3.4 Non-Uniform Stiffness in the Spanwise Direction

The stiffness parameter, K, was considered to be constant over the span of the

wing for these tests. However, better performance may be achieved by varying the

stiffness in the spanwise direction. Making the wing stiffer near the tip or stiffer near

the root may have beneficial or adverse affects on the spanwise camber distribution

and change the performance characteristics.

5.3.5 Other Non-Uniform Chordwise Stiffness Distributions

Two chordwise stiffness distributions were chosen for this study. The uniform

chordwise stiffness distribution gives a good simple model for the flexible wings. The

plate stiffness that accounts for real airfoil thickness distributions gives a good idea

of how the performance curves are modified for non-uniform stiffness distributions.

These are two of only a large number of possible stiffness distributions that can be

utilized.
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In particular, the chordwise stiffness distribution could be modified to shift the

camber closer to the leading edge or the trailing edge. Although the inviscid results

presented here may not be drastically modified by a change in the stiffness distribu-

tion, a viscous analysis may show a marked performance improvement for a slightly

different stiffness distribution.

There is also an issue of changing the spanwise stiffness distribution. By adding

stiffness near the root or near the tip, it may be possible to modify the span loading of

the wing to make it more elliptical. This would, in general, depend on the particular

planform that is used.

5.3.6 Wind Tunnel Tests

As with other aerodynamic devices, wind tunnel tests can be used to verify or

enhance numerical solutions. It is important to be able to reproduce the performance

of the flexible wings in the wind tunnel to prove the stability and accuracy of the

method.

5.3.7 Shred

One of the primary applications to date is the application to windsurfer fins as

developed by Flex Foil Technology Incorporated. Possibly one of the best ways to see

the benefits of flexible wings is to put one of these fins on your board and go sailing.

The lower drag results in improved speed which any high performance sailor should

feel.

Although these fins are not yet available to the general public, they may soon be

on the market. Until they are, if you see a sailor fly by you on the water and you

can't figure out why he is going so fast, it could be that he is one of the test pilots

for Flex Foil trying out one of their new secret weapons.
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Appendix A

Effective Stiffness Analysis

The numerical results for a number of effective stiffness tests are presented in this

appendix to show a typical solution. The examples that have been selected and

presented here are not the complete set of analyses, but rather give a few typical

results to demonstrate the methodology of the test. These examples should give the

reader a good idea of the details of the analysis process and allow the reader to more

easily reproduce the results.

A.1 Two-Dimensional Effective Stiffness Tests

The Effective stiffness tests described in Section 2.4.2 can be used to determine

the critical stiffness, K,rit of a two-dimensional flexible airfoil section. The bending

of a infinite plate under an distributed line load gives the load to deflection ratio for

the airfoil. This ratio gives the effective stiffness of the plate

P
Se -f . (A.1)

where P is the load per unit span and w is the deflection of the plate at the point of

loading.

The load is applied at the midpoint between the boundary conditions. For these

two-dimensional tests, a unit square plate is loaded with a load of 100 distributed
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along a line midway between the boundary conditions. The plate has 10 elements

along each edge (11 nodes along each edge). The load is applied to a line spanning

the plate containing 11 nodes. This load is applied in a consistent way by applying a

load of 10 to all 9 interior nodes and a load of 5 to each of the 2 edge nodes. Thus a

total load of 100 is applied to the plate.

The critical stiffness for the airfoils is given from calculations based on the plate

equation

D O4() = p(X). (A.2)

From the definition of the stiffness parameter

D
K - (A.3)

q00 ( )3

the critical dynamic pressure is given as

D
qcit = () (A.4)

This value for the critical stiffness is compared to the effective stiffness for the airfoil

giving a value for A as

A = "q (A.5)
Sei1

A.1.1 Plate with Ideal Boundary Conditions

The effective stiffness test is used to determine the critical stiffness of an ideal

flexible airfoil. The geometry and boundary conditions for the plate as well as the

consistent nodal loading that is applied are shown in Figure A-1.

The plate used for this test has an elastic modulus E = 3.000 x 10', a Poisson's

ratio v = 0.3 and a thickness h = 0.12. The plate stiffness, D, is given by

E h3

D = 12(1 - 2) (A.6)
12(1 - v2)
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ADINA-IN VERSION 3.0.3, 6 MAY 1993
2-D Effective Stiffness Test for Ideal Plate

ADINA ORIGINAL

0.09253

XVMIN -0.8944
XVMAX 0.4472
YVMIN -0.8944
YVMAX 0.000

PRESCRIBED
FORCE

TIME 1.000

10.00

U1 U2 U3 81 '2 83

C /--///
D -/-///

Figure A-1: Effective Stiffness Test: Ideal B.C.s

For this model, D = 47.5.

The deflection of the plate is shown in Figure A-2. Under the applied load of 100,

the average deflection of the midchord, w, is 0.038 Thus, the effective stiffness, Se, ,

is 2631.

The critical stiffness for an ideally supported airfoil is given as K, it = 1.4. Thus,

the critical dynamic pressure is

(A.7)qeri = Kcrit(j)3

giving a value of q,,t = 271.27

Given Sq, = 2631 from the effective stiffness test, A is calculated to be 0.1031.
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ADINA-PLOT VERSION 4.0.3, 6 MAY 1993
2-D Effective Stiffness Test for Ideal Plate

ADINA ORIGINAL DEFORMED XVMIN -0.8944 Z
LOAD STEP L -.-J XVMAX 0.4472
TIME-1.000 0.09253 0.09253 YVMIN -0.8944

YVMAX 0.000 X
Y

V

- UzU 2 U3 1 2 8 3
B //-///
C /--///

D -/-///

Figure A-2: Effective Stiffness Test: Ideal B.C.s

A.1.2 Plate with Spar B.C.s and Uniform Thickness

The critical stiffness for the two-dimensional airfoil sections for the wing with the

boundary conditions at the 10% and 70% chord locations can be determined from the

effective stiffness of a plate with these boundary conditions. The plate used for this

test has a modulus of E = 1.000 x 10', a Poisson's ratio of v = 0.3 and a uniform

thickness of h = 0.12 giving a plate stiffness of D = 15.82. The load and boundary

conditions for this effective stiffness test are shown in Figure A-3.

The displacement of the test plate is shown in Figure A-4. The deflection at the

midspan for this test is 0.02878 giving an effective stiffness of Seff = 3475.

For a flexible airfoil with a uniform plate thickness and the spars placed at the

10% and 70% chord positions, the critical airfoil stiffness is given by Widnall et. al.

as Kerit is 0.35. The critical dynamic pressure is then quit = 361.7. Thus, the value

for A for this airfoil is 0.1041.
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ADINA-IN VERSION 3.0.3, 6 MAY 1993
2-D Effective Stiffness Test (uniform thickness)

ADINA ORIGINAL XVMIN -0.8944 Z
XVMAX 0.4472

0.09253 YVMIN -0.8944
YVMAX 0.000 X

Y

PRESCRIBED
FORCE

TIME 1.000

10.00

SU U2 3 818e2 83
B //-///
C / - - ///
D -/-///
E --- //B

Figure A-3: Effective Stiffness Test: Spar B.C.s and Uniform Thickness

117



Figure A-4: Effective Stiffness Test: Spar B.C.s and Uniform Thickness

118



A.1.3 Plate with Spar B.C.s and NACA Thickness

The critical stiffness for the two-dimensional airfoil with the boundary conditions

at the 10% and 70% chord locations and the NACA thickness distribution can be

determined from the effective stiffness test. The plate used for this test has a modulus

of E = 1.000 x 105, a Poisson's ratio of v = 0.3 and an average thickness of h =

0.132467 giving an average plate stiffness of D = 21.28. The load and boundary

conditions for this effective stiffness test are shown in Figure A-5.

ADINA-IN VERSION 3.0.3, 6 MAY 1993
2-D Effective Stiffness Test (NACA thickness)

ADINA ORIGINAL XVMIN -0.8944 Z
XVMAX 0.4472

0.09253 YVMIN -0.8944
YVMAX 0.000 X

Y

PRESCRIBED
FORCE

TIME 1.000

10.00

U U2 U3 812 83
B //-///

D -/-///

Figure A-5: Effective Stiffness Test: Spar B.C.s with NACA Thickness

The displacement of the test plate is shown in Figure A-4. The deflection at the

midspan for this test is 0.01804 giving an effective stiffness of Se11 = 5543.

For a flexible airfoil with a uniform plate thickness and the spars placed at the

10% and 70% chord positions, the critical airfoil stiffness is given as Ke,.i is 0.30. The

critical dynamic pressure is then qcrit = 567.6. Thus, the value for A for this airfoil

is 0.1024.is 0.1024.
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Figure A-6: Effective Stiffness Test: Spar B.C.s and NACA Thickness
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A.1.4 Determination of Airfoil Critical Stiffness

A summary of the two dimensional effective stiffness tests is given in Table A.1.

Table A.1: 2-D Critical Stiffness Calculations
Effective Stiffness Tests
Parameter Ideal Plate Spars/Uniform Spars/NACA
E 300000 100000 100000
nu 0.3 0.3 0.3
thickness (max) 0.12 0.12 0.132467
D 47.472527 15.824176 21.286314
P 100 100 100
w 0.038 0.02878 0.01804
S eff 2631.5789 3474.6352 5543.2373
K crit 1.4 0.35 0.30
q crit 271.27159 361.69545 567.63504
A 0.1031 0.1041 0.1024

A.2 Tapered Wing

Tapered wings are used to generate a set of performance curves for general flexible

wings. There types of tapered wings are studied. The idealized theory for flexible

wings is determined from a set of tapered flexible wings with the boundary conditions

enforced at the leading and trailing edges of the wing. This theory is then modified

to account for the boundary conditions enforced by the spars. Two types of tapered

wings with spars are studied. The first is a wing with a constant plate thickness in

the chordwise direction. The second is a similar set of wings with a chordwise plate

thickness distribution given by the thickness distribution of a NACA 0015 airfoil.

Since all three cases use the same planforms, the results can be compared to isolate

the effects of the non-idealities of the spars and the non-uniform thickness distribution.

The examples shown here involve a tapered wing of aspect ratio 5.

The effective stiffness of the wing is defined in the same way as for the airfoil as

are the stiffness parameter and the critical dynamic pressure. However, the dynamic

pressure in this case is for a full three dimensional wing and must take into account

the aspect ratio effects when compared to the effective stiffness. Thus, A is defined
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A = qc,.it(1 - ). (A.8)A Seff (A.8)

A.2.1 Ideal Boundary Conditions

The first tapered wing case is the wing with the boundary conditions enforced

at the leading and trailing edge. This case can be compared to the two-dimensional

ideal airfoil so that the effects of aspect ratio alone can be studied. The results of

the effective stiffness test can be compared to the critical stiffness that is obtained

numerically.

ADINA-IN VERSION 3.0.3, 6 MAY 1993
Ideal Tapered Wing Effective Stiffness Test

ADINA ORIGINAL XVMIN -0.8944 Z
XVMAX 0.5255

0.09792 YVMIN -0.8398
YVMAX 0.000 X

PRESCRIBED
FORCE

E
TIME 1.000

C I 6.000

U1 U2 U3 8182 83

C /--,,,
D -/-///

Figure A-7: Ideal Tapered Wing: Effective Stiffness Test Loading

The wing is loaded as shown in Figure A-7. This loading case is the consistent

nodal loading for P = 32 (load/unit span). The material properties of this wing

are given as E = 1.0 x 10s, v = 0.3. The thickness of the plate is constant in the
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chordwise direction, but varies in the spanwise direction such that the local thickness

is 12% of the local chord. In this way, the stiffness parameter, K, is constant along

the span.

ADINA-PLOT VERSION 4.0.3, 6 MAY 1993
Ideal Tapered Wing Effective Stiffness Test

ADINA
LOAD STEP
TIME-1. 000

C ~s

ORIGINAL DEFORMED XVMIN -0.8944
LJ I I XVMAX 0.5255
0.09792 0.09792 YVMIN -0.8398

YVMAX 0.000

3

z

X

U1U2 U3 8182 83

C

Figure A-8: Ideal Tapered Wing: Effective Stiffness Test Deflection

As explained in Section 2.4.2, the deflection, w, is measured at the midspan. The

deflection for the effective stiffness case is shown in Figure A-8. The deflection at the

half span is 0.038 giving the wing effective stiffness Sff = 834.

The critical stiffness measured numerically is Kit = 0.9751. Accounting for the

aspect ratio correction, the airfoil stiffness parameter for this wing is K,,it ir foil =

1.32. Thus, the critical dynamic pressure qrit = 95.9 Thus the calculated A is 0.115.

123



A.2.2 Spar B.C.s and Uniform Thickness

The second tapered wing case is a wing with the boundary conditions enforced at

the 10% and 70% spar locations at the root of the wing. The plate thickness for this

case is uniform in the chordwise direction. The critical stiffness for the airfoil sections

for this wing are given by Equation 2.12 as 0.35.

ADINA-IN VERSION 3.0.3, 6 MAY 1993
Tapered Wing Effective Stiffness Test (Uniform Thickness)

ADINA ORIGINAL XVMIN -0.8944 Z
XVMAX 0.5255

0.09792 YVMIN -0.8398
YVMAX 0.000 X

Y

PRESCRIBED
FORCE

TIME 1.000

6.000

U1 U2 U3 182 3

C /--///
D -/-///
E

Figure A-9: Ideal Tapered Wing: Effective Stiffness Test Loading

The wing is loaded as shown in Figure A-9. This loading case is the same consistent

nodal loading for P = 32 (load/unit span) as given in the ideal effective stiffness test

described in the previous section. The material properties of this wing are given as

E = 5.0 x 104, v = 0.3. The thickness of the plate varies in the spanwise direction

such that the local thickness is 12% of the local chord.

The deflection for the effective stiffness case is shown in Figure A-10. The de-

flection, w, measured at the midspan is 0.018 giving the wing effective stiffness

Seff = 1769.
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Figure A-10: Ideal Tapered Wing: Effective Stiffness Test Deflection

The critical stiffness measured numerically is K,,it = 0.2174. Accounting for the

aspect ratio correction, the critical stiffness for this wing is Ki airfoil = 0.294. Thus,

the critical dynamic pressure for this wing qit = 215.29, giving A = 0.1217
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A.2.3 Spar B.C.s and NACA Thickness

The final tapered wing case is also a wing with the boundary conditions enforced

at the 10% and 70% spar locations at the root of the wing. The plate thickness for

this case, however is given by a NACA airfoil thickness distribution in the chordwise

direction. There is no expression in the prior work to estimate the critical stiffness

for the airfoil sections for this wing. However, from the effective stiffness test in

Section A.1.3, the airfoil Kc,it is estimated to be approximately 0.30.

ADINA-IN VERSION 3.0.3, 6 MAY 1993
Tapered Wing Effective Stiffness Test (NACA Thickness)

ADINA ORIGINAL XVMIN -0.8944 Z
XVMAX 0.5255

0.09792 YVMIN -0.8398
YVMAX 0.000 X

PRESCRIBED
FORCE

TIME 1.000

S6.000

C /--///
D -/-///

Figure A-11: NACA Tapered Wing: Effective Stiffness Test Load

The wing is loaded as shown in Figure A-9. This loading case is the same consistent

nodal loading for P = 32 (load/unit span) as given in the ideal effective stiffness test

described in the previous section. The material properties of this wing are given as

E = 5.0 x 104, v = 0.3. The thickness of the plate varies in the spanwise direction

such that the local maximum thickness is 15% of the local chord. The thickness in the

chordwise direction between the 10% and 70% chord locations follows Equation 4.18.
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ADINA-PLOT VERSION 4.0.3, 6 MAY 1993
Tapered Wing Effective Stiffness Test (NACA Thickness)

ADINA ORIGINAL DEFORMED XVMIN -0.8944 Z
LOAD STEP L . . J XVMAX 0.5255
TIME-1.000 0.09792 0.09792 YVMIN -0.8592

YVMAX 0.000 X

Y

5 - UU 3 1 E8,2893

E --- ///

Figure A-12: NACA Tapered Wing: Effective Stiffness Test Deflection

The deflection for the effective stiffness case is shown in Figure A-10. The de-

flection, w, measured at the midspan is 0.019 giving the wing effective stiffness

Sef, = 1686.

The critical stiffness measured numerically is Ke,it = 0.187. Accounting for the

aspect ratio correction, the airfoil stiffness parameter for this wing is K,.t airfoil =

0.253. The critical dynamic pressure, qcrit = 336.54 giving A = 0.1996
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A.3 Flexible Sailboard Fins

Effective stiffness tests were also performed on the sailboard fins. Rather than the

simple geometry of the tapered wings, these planforms have a chord distribution that

more closely matches an elliptic shape. The chord distribution has been designed to

cause the loading to more closely match an elliptic distribution. The spars are again

placed at the 10% and 70% chord locations at the root and the spars are straight.

However, since the trailing edge is not straight, the local spar axes of rotation do

not lie at the 10% and 70% chord locations. Thus, even though the plate stiffness

is proportional to the cube of the local chord the, change in boundary condition

placement over the span causes the stiffness parameter to vary over the span. The

effective stiffness test allows the complex stiffness distribution of the wing to be

expressed in terms of a single number.

A.3.1 8 inch Flex Foil Fin Planform

The first flexible fin case is the 8 inch flex Foil planform. The Aspect ratio for

this fin is 6.0. The span is 8 inches and the root chord is 3.5 inches.

The fin is loaded as shown in Figure A-13. This is a consistent nodal loading

for P = 10 (pounds/inch). The material properties of this wing are given as E =

5.0 x 103 psi, v = 0.3. The thickness of the plate varies in the spanwise direction

such that the local maximum thickness is 15% of the local chord. The thickness in

the chordwise direction between the spar locations follows Equation 4.18.

The deflection for the effective stiffness case is shown in Figure A-14. The deflec-

tion, w, measured at the midspan is 0.041 inches giving the wing effective stiffness

Sef = 243psi.

The critical stiffness measured numerically is Kit = 0.180. Accounting for the

aspect ratio correction, the airfoil stiffness parameter for this wing is Kc ait.oil =

0.230. Then, q,it = 47.14psi gives A = 0.194
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ADINA-IN VERSION 3.0.3, 6 MAY 1993
8 inch Flex Foil Fin - Effective Stiffness Test

ADINA ORIGINAL XVMIN -3.130 Z
XVMAX 2.458

0.3854 YVMIN -3.405
YVMAX 0.000 X

Y

PRESCRIBED
FORCE

E
TIME 1.000

C

5.000

U1 U 2 U 3 8182 83

B //-///
C /--///
D -/-///

Figure A-13: 8 inch Flex Foil Fin: Effective Stiffness Test Load

129



ADINA-PLOT VERSION 4.0.3, 6 MAY 1993
8 inch Flex Foil Fin - Effective Stiffness Test

ADINA ORIGINAL
LOAD STEP L _J
TIME-1.000 0.3854

DEFORMED XVMIN -3.130
XVMAX 2.458

0.3854 YVMIN -3.421
YVMAX 0.000

u1u2u3ele 2 e3
B//-///
C /--//!
D -/-///
E --- //

Figure A-14: 8 inch Flex Foil Fin: Effective Stiffness Test Deflection
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A.3.2 10 inch Flex Foil Fin Planform

The 10 inch planform

root chord is 3.7 inches.

has an aspect ratio of 7.36. The span is 10 inches and the

ADINA-IN VERSION 3.0.3, 6 MAY 1993
10 inch Flex Foil Fin - Effective Stiffness Test

ADINA ORIGINAL XVMIN -3.309 Z
XVMAX 3.073

0.4402 YVMIN -4.147
YVMAX 0.000 X

PRESCRIBED
FORCE

TIME 1.000

5.000

B //-///
C /--///
D -/-///
E

Figure A-15: 10 inch Flex Foil Fin: Effective Stiffness Test Load

The fin is loaded as shown in Figure A-15. This is a consistent nodal loading

for P = 10 (pounds/inch). The material properties of this wing are given as E =

5.0 x 103 psi, v = 0.3. The thickness of the plate varies in the spanwise direction

such that the local maximum thickness is 15% of the local chord. The thickness in

the chordwise direction between the spar locations follows Equation 4.18.

The deflection for the effective stiffness case is shown in Figure A-16. The de-

flection, w, measured at the midspan is 0.05 inches giving the wing effective stiffness

S,,f = 200psi.

The critical stiffness measured numerically is Keit = 0.171. Accounting for the

aspect ratio correction, the airfoil stiffness parameter for this wing is K t air oil =
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Figure A-16: 10 inch Flex Foil Fin: Effective Stiffness Test Deflection

0.388 giving q,,it = 40.6psi and A = 0.203
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Appendix B

Numerical Analysis

This appendix shows some of the output plots from the numerical analysis. They

are presented to show some examples of the numerical solutions and the steady state

behavior of the flexible wings. Examples are shown for a typical planform for each of

the wing types analyzed in Chapter 4.

Numerical results are shown for several of the interesting operating points of the

flexible wings. The load distribution output plots from the vortex lattice code are

included for the rigid wing loading and critical stiffness loading for each of the example

wings. Output plots from the finite element program showing the wing deflection at

the critical stiffness are also included. These plots are typical of the output from the

computer programs.

B.1 Tapered Wing: Ideal Boundary Conditions

The loading of a rigid tapered wing with aspect ratio of 5 is shown in Figure B-1.

Figure B-2 shows the loading at the critical stiffness for the wing. Since the angle

of attack is nearly zero, all the load is produced by the camber of the wing as is

plainly shown in this figure.

Figure B-2 shows the deflection of the wing at the critical stiffness.
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gure B-1: AR 5 Tapered Flexible Wing: Rigid Loading

CL - 0.343

CL - 0.442

CL = 0.539

CL = 0.545

CL = 0.546

CL = 0.545

// CL 0.30.542C I _ CL 0.52353

FLEXIBLE HING: IDEAL B.C
SYM1000.000
01 CL = 0.01633 CM 51-0.316

Figure B-2: Ideal AR 5 Flexible Wing: Load at Kcrit
Figure B-2: Ideal AR 5 Flexible Wing: Load at Kcrit
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ADINA-PLOT VERSION 4.0.3, 6 MAY 1993
AR 5 Tapered Flexible Wing: Ideal B.C.

ADINA ORIGINAL DEFORMED
LOAD STEP L - .
TIME-1.000 0.09792 0.09792

XVMIN -0.8944
XVMAX 0.5255
YVMIN -0.8569
YVMAX 0.000

z

C /--///
D -/-///
E ///

Figure B-3: Ideal AR 5 Flexible Wing: Camber at Kcrit
labelapp:ideal5-w
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B.2 Aspect Ratio 5 Tapered Wing: Spar Bound-

ary Conditions

The rigid loading for this wing planform is shown in Figure B-1. The bound-

ary conditions and thickness distributions have no affect on the loading of the rigid

wing. Thus, this rigid planform is identical to the tapered wing with ideal boundary

conditions for the rigid case.

B.2.1 Aspect Ratio 5 Tapered Wing: Uniform Thickness

Figure B-4 shows the loading at the critical stiffness for the wing. Since the angle

of attack is nearly zero, all the load is produced by the camber of the wing as is

plainly shown in this figure.

CL a 0.305

-CL 0. 380

CL - O.A10

-WCL - 0.422

CL -0.397

CL -0.3811

AR 5 FLEXIBLE NING: SPAR B.C.
ALFA = 0.003 ZSTl1000.000
CL = 0.400 CDI = 0.00974 CM = -0.0098

Figure B-4: Uniform thickness AR 5 Flexible Wing: Load at Kcrit
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ADINA-PLOT VERSION 4.0.3, 6 MAY 1993
AR 5 Flexible Wing: Uniform Thickness

ADINA ORIGINAL
LOAD STEP L - J
TIME-1.000 0.09792

DEFORMED XVMIN -0.8944
0- , XVMAX 0.5255
0.09792 YVMIN -0.8569

YVMAX 0.000

z

Y

U1 U2 U 3 182 3
B //-///
C -- //
D -/-///
E - - - J//

Figure B-5: Uniform Thickness AR 5 Flexible Wing: Camber at Kcrit

B.2.2 Aspect Ratio 5 Wing: NACA Thickness

For the NACA stiffness distribution, the loading is slightly different near K,,it.

than the uniform stiffness.

Figure B-7 shows the deflection for this wing.
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Figure B-6: NACA AR 5 Flexible Wing: Load at Kcrit

138

-K
rX% K

r~x-/x~x ~fx-



Figure B-7: NACA AR 5 Flexible Wing: Camber at Kcrit
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ADINA-PLOT VERSION 4.0.3, 6 MAY 1993
AR 5 Flexible Tapered Wing: NACA Thickness
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B.3 Flexible Sailboard Fins

Results are shown for both Flex Foil planforms as the deflection behavior of these

planforms is quite unique. Giver the non-uniformity in the stiffness parameter in

the spanwise direction, the camber response takes on a unique shape that should be

shown.

B.3.1 8 inch Fin Planform

Plots for the 8 inch planform are included to show the rigid wing loading as well

as the loading at the critical stiffness. The camber response near the tip of the wing is

higher than in the tapered wing examples due to the large percentage of the chord of

the flexible region near the tip. This causes the tip to camber more than it normally

would, and distorts the elliptic loading.
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Figure B-8: 8 inch Flex Foil Planform: InitCLa Load
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FLEXIBLE KING: FLEX FOIL 8"
ALFA - 5.182 ZSrM1000.000
CL = 0.400 C01 x 0.00820 CH = -o.2918

Figure B-8: 8 inch Flex Foil Planform: Initial Load
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Figure B-9: 8 inch Flex Foil Planform: Load at Kcrit
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ADINA
LOAD STEP
TIME-1.000

ORIGINAL DEFORMED XVMIN -3.130
L - - J XVMAX 2.458
0.3854 0.3854 YVMIN -3.432

YVMAX 0.000

ADINA-PLOT VERSION 4.0.3, 6 MAY 1993
Flex Foil 8 Inch Fin: Deflection at Critical Stiffneaa
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Figure B-10: 8 inch Flex Foil Planform: Camber at Kcrit
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B.3.2 10 Inch Fin Planforms

The 10 inch fin shows many of the same tip effects as the 8 inch fin due to the

large size of the flexible region as compared to the tip chord.

FLEXIB

A-, IN AV- -/ - C
CL

Mm ACL
S CL

xVC L 0.

-AA. CL 0. OA
r -- -- CL = 0.4

-v-. CL - 0. 86' " __ _ CL - 0. 70

ILE 4I-/rCL 0. 469

LE NING: FLEX FOIL 10"
HLRFA 6.101 ZSYMT1000.000
CL = 0.500 CDI = 0.01050 CH = -0.441

Figure B-11: 10 inch Flex Foil Planform: Initial Load
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Figure B-12: 10 inch Flex Foil Planform: Load at Kcrit
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Figure B-13: 10 inch Flex Foil Planform: Camber at Kcrit
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ADINA-PLOT VERSION 4.0.3, 6 MAY 1993
Flex Foil 10 Inch Fin: Deflection at Critical Stiffness
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