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Abstract

This thesis demonstrates an approach to nonlinear control system design that uses
linearization by state feedback to allow faster maneuvering of payloads by the Shuttle
Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the
nonlinear plant dynamics so that a linear controller can be designed for the SRMS.
Model reduction techniques were employed to reduce computation time so that an
implementable controller can be delivered.

First a nonlinear design model was generated via SIMULINK. This design model
included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo
model, and linearized gearbox model. The current SRMS position hold controller was
implemented with and without feedback linearization on this system. The contribution of
the joint accelerations from the nonlinear feedback was compared with that of the control
for different joint rates, mass, and dimensions.

Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The
maneuver was simulated with and without feedback linearization. Then, a nonlinear
model of the gearbox was included in the SIMULINK design model. Finally, higher
bandwidth controllers were developed. Results of the new controllers were compared
with the existing SRMS automatic control modes for the Space Station Freedom Mission
Build 4 Payload extended on the SRMS.
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Chapter 1

Introduction

The Space Shuttle Remote Manipulator System (SRMS) will be a key component in the

assembly process of the Space Station Freedom (SSF). The process on the early flights

will require capturing an orbiting intermediate SSF build via the SRMS and then

retracting the arm to berth the SSF in the payload bay. Berthing is accomplished by

latching the Unpressurised Berthing Adaptor (UBA) to the trunnions and keel via payload

retention latches. After latching, the SRMS is used to attach cargo bay SSF truss segment

and component elements to the UBA attached SSF build. Each Shuttle flight carries

approximately 35,000 lb. of SSF payload to be assembled on-orbit via the SRMS. SRMS

operations, particularly the time required to complete specific SRMS maneuvers, has a

significant impact on operational mission timelines.

Experience with SRMS operations [1] indicates several areas where improvements can be

made including: speed of manipulation, positioning accuracy, and vibration control. The

speed of manipulation depends both on the system bandwidths and the maneuver

velocities. A significant amount of time is spent damping vibrations caused by a SRMS

maneuver, while maneuver velocities are kept small to achieve stopping distance criteria



and limit vibration. Several active or passive vibration damping systems have been

recently developed. For example, Prakash et al. [2] discuss the application of

multivariable linear optimal control to the problem of position hold and active vibration

damping. Scott and Demeo [3] developed an active damping augmentation system using

an identified system model from simulation. Sasiadek [1] discusses passive damping by

manipulator redesign and the application of new materials. He also discusses active

vibration control via input pre-shaping and the application of force feedback. The current

SRMS [4] automatic mode commands the end effector to move along a linear trajectory

at a constant velocity using bandwidth limitations and adjustments to the coast velocity to

provide reasonable transient responses at either end of a maneuver.

This thesis develops and demonstrates an approach to nonlinear control system design

using linearization by state feedback. The design provides improved transient response

behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is

accounted for using a second feedback loop designed around the feedback linearized

dynamics. A classical feedback loop is developed to provide the easy implementation

required for the relatively small onboard computers. Feedback linearization also allows

the use of higher bandwidth model based compensation in the outer loop since it helps

maintain stability in the presence of the nonlinearities typically neglected in model based

designs.

This thesis is organized as follows. Chapter 2 provides a brief description of the Shuttle

SRMS. Chapter 3 develops the approach taken and the theory applied. Chapter 4

discusses the nonlinear manipulator dynamics, the nonlinear servo and gearbox models

used for simulation, and the reduced models used for design of the compensation.

Chapter 5 develops the control laws to be used for maneuvering the SRMS with a

deployed payload. Chapter 6 demonstrates performance of the system with and without

12



feedback linearization during a maneuver. The implementation of the steering algorithm

is also discussed in Chapter 6. Finally, Chapter 7 presents the conclusions and discusses

topics for future work.
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Chapter 2

Remote Manipulator System

A team of Canadian companies led by SPAR Aerospace Limited of Toronto designed,

developed, tested and manufactured the anthropomorphic Space Shuttle Remote

Manipulator System (SRMS). The SRMS was first tested on-orbit in November 1981 on

the Space Shuttle Columbia. This development of the SRMS was performed under a

contract from the National Research Council of Canada (NRCC) under the guidance of

NASA.

This chapter presents background information about the SRMS. Section 2.1 gives

physical descriptions of SRMS components, while section 2.2 discusses SRMS software.

The coordinate systems for the SRMS are defined in section 2.3. Finally, Payload

Deployment and Retrieval System (PDRS) operating modes are discussed in section 2.4

15



2.1 Physical Description

End Effector

Wrist

Wrist Pitch

Lower arm

Elbow Pitch

Upper arm

Orbiter longeronShoulder Yaw

*
Shoulder Pitch

Figure 2.1. SRMS Physical Description

The Space Shuttle Remote Manipulator System is illustrated in Figure 2.1. It is a crucial

part of the Space Shuttle Payload Deployment and Retrieval System (PDRS) and is the

Orbiter baseline on-orbit cargo handling system. The SRMS is used to maneuver

payloads to the cargo bay for berthing and from the cargo bay for deployment. The

SRMS can handle payloads of up to 65,000 lb. mass with dimensions of up to 60 feet in

length and 14 feet in diameter from up to a 49 feet distance in space. Other SRMS

applications include: inspection, servicing and repair of spacecraft; transfer of men, work

stations and equipment; crew extravehicular activities (EVA) as well as the on-orbit

assembly of the Space Station Freedom (SSF).

16



2.1.1 Mechanical Arm Assembly

The mechanical arm assembly is 50 feet 3 inches in length, 15 inches in diameter, and has

a mass of 905 pounds. It is located on the port side of the vehicle and stowed outside the

payload dynamic envelope. It consists of six individual joints: shoulder yaw, shoulder

pitch, elbow pitch, wrist pitch, wrist yaw, and wrist roll, as shown in Figure 2.2. These

joints provide six degrees-of-freedom at the end effector. The shoulder yaw, shoulder

pitch, and elbow pitch joints provide the translational capability, while the wrist joints

provide the attitude pointing. The motion is coordinated by an onboard computer from

operator inputs or automatic trajectory points.

Link 3 Link4 Link 5 Link 6 Link 7
Shoulder Pitch
Joint

3 I 5 6

Elbow Pitch Wrist Pitch Wrist Yaw Wrist Roll
Joint Joint Joint Joint

2 Shoulder Yaw

LINK Joint

-s Arm Attach Point

Figure 2.2. Model of SRMS

The SRMS hardware is comprised of a mechanical arm assembly, manipulator controller

interface unit (MCIU), end effector, thermal protection system, and shoulder brace. The

following sections will describe each of these elements.

17



2.1.2 MCIU

The MCIU contains the circuitry for interfacing with the general purpose computer

(GPC), display and control subsystem (D&C), arm based electronics, brace control

functions, end effector automatic functions, and the built-in test equipment (BITE). The

hand controllers and D&C panel send signals through the MCIU to the Orbiter GPC

where the commands are converted into joint motor rate commands. The MCIU then

passes these joint rate commands and current limits to the corresponding joints.

2.1.3 End Effector

The end effector is a hollow cylinder 13.6 inches in diameter and 21.5 inches long. It

connects the arm to the payload. The purpose of the end effector is twofold: to grapple a

payload and keep it rigidly attached as long as required or to release a grappled payload.

The end effector is attached to the wrist roll motor and physically interfaces with the

payload grappling fixture.

2.1.4 Thermal Protection System

The on-orbit thermal environment requires that the manipulator have thermal protection.

Thermal protection is achieved through both passive and active control. The passive

thermal control system consists of insulation blankets and coatings, while the active

thermal control system uses heaters.

2.1.5 Shoulder Brace

The shoulder brace is used to carry loads during launch. It is installed between the upper

arm boom and the shoulder pedestal and must be released to allow arm uncradling during

flight. The shoulder brace cannot be relatched during orbit and is not required for

landing.

18



2.2 SRMS Software
The SRMS software is organized into 15 principal functions to perform mathematical and

logical operations to monitor and control the active mechanical arm motion. It first

selects and initiates the control modes. It then computes the command inputs and the

operational status. SRMS caution and warning signals are generated and fault detection

is performed.

2.3 Coordinate Systems
RMS and payload POR positions (X,Y,Z) are always defined in the orbiter body axis

system (OBAS). The origin of the OBAS is 236 inches in front and 400 inches below the

nose of the orbiter. The +X axis points away from the Orbiter nose, while the +Y axis

points towards the starboard wing, and the +Z axis points "downward." A positive roll

rotates the port wing "up", while a positive pitch rotates the nose "up", and a positive

yaw rotates the nose starboard.

236'

v

Figure 2.3. Orbiter Body Axis System (OBAS) for POR Translations

RMS and payload Point of Resolution (POR) attitudes (pitch, yaw, roll Euler sequence)

are defined in the orbiter rotation axis system (ORAS). The origin of the ORAS

coincides with the origin of the OBAS. However, the +X axis points towards the tail of

19



the Orbiter, while the + Y points towards the port wing, and the +Z axis points

"downward." In ORAS, a positive roll rotates the port wing "down", a positive pitch

rotates the tail "up", and a positive yaw rotates the nose starboard.

400"

Figure 2.4. Orbiter Rotation Axis System (ORAS) for POR Rotations

The end effector operating system (EEOS) is fixed with respect to the end effector. The

EEOS defines the axis along which the end effector will move. The payload operating

system (PLOP) is a right-handed orthogonal coordinate system that defines the axes

along which the payload translates and rotates when the SRMS is in the manual mode.

The origin of the PLOP is chosen to be some fixed point on the payload. It is commonly

given as a transpose of the payload axis system (PAS) with its axes parallel to those of

the ORAS when the payload is berthed. The PAS is defined by the payload designer and

must also be a right-handed, orthogonal coordinate system.

20



- Y

Figure 2.5. End Effector Operating System (EEOS)

2.4 PDRS Operating Modes
Operation of the SRMS is based on the "man-in-the-loop" concept, when the operator is

an integral part of the control and monitoring system [4]. An operator controls the SRMS

from the Display and Control (D&C) panel in the aft flight deck. Command inputs are

based on visual, closed circuit television feedback, and information available on the D&C

panel as shown in Figure 2.6. Visual contact is imperative to avoid collisions between

the SRMS, orbiter and payload.

21



Overhead
Window

View

D&C panel Aft
Aft

THC Window View
& CCTV

RHC MCIU PAYLOADGPC

Figure 2.6. "Man-in-the-loop" Concept

There are four primary control modes: manual augmented, automatic, manual single

joint, and direct drive, as well as one back-up mode. The operator can move the SRMS

end effector in six degrees-of-freedom, three rotation and three translation, using either

the manual or automatic control modes. These control modes will be described in more

detail.

2.4.1 Manual Augmented Modes

The Manual Augmented Mode is the normal mode of operation of the SRMS. One or

more joints are driven simultaneously to translate and rotate the end effector in the

Manual Augmented Mode. The operator uses two three degree-of-freedom hand

controllers to issue commands. One of the hand controllers is for rotation in pitch, yaw

and roll about the point of resolution (POR), a convenient and easily visible component

on the manipulated payload. The other is for translation, resolved for up/down, left/right,

and fore/aft. During this mode of operation, cross-coupling (which varies with payload

22



mass and POR velocity) and drifting in uncommanded directions can be expected.

However, once the arm is stationary, its position can be maintained to within +/-2 inches

and +/- 1 degrees. The control algorithms for manual augmented modes process the

astronaut's input commands into rate demands for each of the six joints.

All together, there are four types of manual augmented modes: orbiter unloaded mode,

orbiter loaded mode, end effector mode, and payload mode. Each of these modes

provides control for a different combination of POR, payload and command coordinate

system, as shown in Table 2.1. The coordinate systems described in Table 2.1 are

defined in Figures 2.3, 2.4, and 2.5.

Table 2.1. SRMS Operating Modes
Operating Mode Point of Resolution (POR) Coordinate System

Orbiter Unloaded Tip of End Effector Orbiter Body Axis System
(OBAS) for POR
translations
Orbiter Rotation Axis
System (ORAS) for POR
Rotations

Orbiter Loaded Pre-determined point within Same as above
payload

End Effector Tip of End Effector End Effector Operating
System (EEOS)

Payload Pre-determined point within Payload Operating System
payload (PLOS)
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2.4.2 Automatic Modes

There are two types of automatic modes: pre-planned automatic sequence and operator

commanded automatic sequence. These modes consist of arm trajectories defined by a

series of end effector positions and attitudes. These trajectories are designed to keep the

arm boom and payload at least five feet from any orbiter or payload structure.

The operator can also control the individual joints via the computer system or via one of

the two hardwired systems. Servo motor modules drive the joints through high reduction

epicyclical gear trains which produce the desired torque and speed characteristics.

Measurements available to the control system include motor rate produced by analog

tachometers and joint angles provided by joint encoders. No joint angle rate

measurements are available and boom flexibility is not observable in the joint angle

measurements. For an unloaded arm, the maximum translational and rotational rates of

the end effector are 2.0 ft/sec and 4.76 deg/sec, respectively. The rate limits for a loaded

arm varies with payload mass. For a 32,000 lb. payload, the maximum allowable tip

velocity of the SRMS is 0.2 ft/sec [5].

2.4.3 Pre-planned Automatic Sequence

On orbit, the GPC will maneuver the arm through the preprogrammed auto sequence

selected by the operator. In the pre-planned automatic sequence mode, software

compiled prior to launch is used to control automatically the six-jointed arm along a

prespecified flight trajectory. This "auto sequence" consists of a series of points. Each

sequence is designed for a specific flight, arm, end effector, and payload. The maximum

of 20 sequences can be constructed for each flight. There is no limit set for the number of

points per sequence. However, the total number of points per flight cannot exceed 200.
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Prior to starting the auto sequence, the payload POR must be within a specified distance

of the first point, usually two inches and one degree. The SRMS software then calculates

a straight line from the current POR for translational motion and an eigenaxis for

rotational motion to the next point. Arm dynamics, however, prevents exact straight line

motion or precise rotation about the prescribed eigenaxis. The preprogrammed points

may be either fly-by or pause points. For fly-by points, the arm will drive toward the

point until the POR is within 12 inches and 3 degrees of the point ("fly-by sphere"); then

the arm will progress towards the next point. Hence, the position and attitude of the fly-

by points may not be achieved. For pause points, the arm will decelerate when the POR

reaches the "washout sphere", which is 24 inches and 5.5 degrees around the point. Once

the point is reached, the arm stops and the POR remains within two inches and one

degree of the pause point until the operator commands the arm to move to the next point.

For every sequence, both the initial and the final points are pause points.

2.4.4 Operator Commanded Mode

The operator has direct control of the second type of automatic trajectory. The operator

commanded automatic sequence (OCAS) is initiated on orbit. The operator can enter the

desired position and attitude of the POR into the GPC via the computer keyboard to

maneuver the SRMS. The computer calculates a straight line (both linear and rotational)

from the current POR position to the specified point. The GPC will then maneuver the

arm to the desired position and attitude. Again, because of arm dynamics, exact straight

line motion cannot be achieved. In this mode, there is no collision detection or avoidance

system to prevent an incorrect command from causing the arm/payload to contact the

orbiter. Hence, each OCAS command must be verified through pre-flight procedure

testing, or in-flight through visual inspection by the crew or flight controllers in mission

control.
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2.4.5 Single Joint, Direct Drive and Backup

The remaining three control modes permit the astronaut to manipulate the arm on a joint-

by-joint basis. The single joint mode control algorithms provide joint rate commands to

the selected joints, simultaneously requiring the other joints maintain their positions. The

commands are given through the D&C panel and routed through the SRMS software.

The SRMS software controls the position of all the joints, limits drive speeds, provides

joint position displays, and indicates when the joint angles reach their limits.

Uncommanded joints maintain their current positions.

The direct drive mode is a contingency mode which supplies rate commands to the

selected joint via hardwires, bypassing the SRMS general purpose computer software.

To enter the direct drive, the brakes must be engaged. When a joint is selected to drive,

that joint's brake is released, while the other brakes remain engaged. After the joint

command is taken off, the brake is reapplied and "higher-than-normal" joint rate

oscillations occur. System display data may not be available in this contingency mode.

The back-up mode is a contingency mode that is utilized in the event that no primary

control mode is operable. This is similar to the direct drive mode; however, the display

data and ground downlist is never available.
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Chapter 3.

Approach & Theory

Several control methods are possible for maneuvering the SRMS and attached payload.

The current system consists of six lead-lag compensators in parallel, which act on the

system error dynamics with a low bandwidth design to force the SRMS to follow a

prescribed linear trajectory. The approach is simple, but may not provide good transient

performance when maneuvering the SRMS and does not provide good vibration damping

when precise end effector control is desired. Hence, the speed of manipulations of the

SRMS is hindered.

A second approach, suggested in [2], is the design of a linear optimal controller via pL-

synthesis [6] for a nominal joint angle configuration while treating all other

configurations as structured uncertainty. However, the error in the model due to joint

angle variations is real parameter error in the state space coefficient matrices. This, in

turn, leads to overly-conservative designs which necessarily have low bandwidth to avoid

instability for off-nominal joint configurations. Alternatively, model based compensators

such as those investigated by Prakash [2] could be developed for several arm
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configurations and gain scheduled. However, this would be extremely cumbersome to

implement in the relatively small shuttle computers.

Since the actual dynamics of the SRMS are nonlinear, any linear compensator will

exhibit poor transient response and will need to be overly conservative to account for

uncertainties due to the important nonlinear dynamics in the controller design.

This chapter describes an approach to controlling the SRMS during trajectory following

using the nonlinear dynamics of the plant. The approach, termed "feedback

linearization," applies a nonlinear feedback control law in a "inner" feedback loop to

cancel plant nonlinear dynamics. The transformed system (the Nonlinear SRMS Plant

Dynamics with the Nonlinear Feedback Law) is now linear and a corresponding

conventional feedback control law can be designed in an "outer" feedback loop to reject

disturbances and provide robustness to unmodeled dynamics, Figure 3.1.

Nonlinear
+" . oClassical + SMRS Plant

-Controller Dynamics

Nonlinear
Feedback Law

Figure 3.1. Classical controller designed for linearized system

Section 3.1 defines a general nonlinear system, while, section 3.2 discusses nonlinear

control issues. Section 3.3 discusses the Taylor series method of linearization. Finally,

section 3.4 presents the mathematical notation and definitions that are used in 3.5 and 3.6

for the discussion of feedback linearization concepts.
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3.1 Nonlinear Description
The general form of a system of first-order nonlinear ordinary differential equations in

state space representation is,

i(t) = f[t, x(t)

(3.1)

where t denotes the time; x(t) denotes the value of the function xO at time t and is a n-

dimensional vector. The vector quantity x(t) is referred to as the state of the system at
dx

time t, i is the rate of change of x with respect to time (-), and f[t,x(t)] is a vector-
dt

valued nonlinear function of the states and time. Therefore, a typical open loop

description of a system with an input function (forcing function) for a nonlinear system is

i(t) = f[t,x(t)] + g[t,x(t)lu(t), Vt * 0

(3.2)

where u(t) enters linearly and is an m-dimensional vector; and the functions f and g

associate, with each value of t and x(t), a corresponding n-dimensional vector. u(t) is

called the input or the control function [7]. Eq. 3.2 is defined as the nonlinear open loop

system dynamics. Note that u, determined from the control law, is separate from the

plant dynamics. g[t,x(t)] is a nonlinear function that describes how the controls enter the

plant dynamics.

In control system design, the control law, u, is chosen so that the states, x, can be brought

from an arbitrary initial condition to an arbitrary end point, within the workspace of the

system dynamics, in a finite amount of time [8]. When applying the control law, the

system must also exhibit global asymptotic stability. Stability issues will be discussed in

the following section.

29



3.2 Nonlinear Control Issues

Stabilization and tracking are the two design issues encountered in most (nonlinear)

control problems. The stabilization problem involves designing a control system that

drives the states of the closed-loop system to a particular equilibrium point. Slotine [9]

defines this stabilization/ regulation problem as finding a control law u, for a given

nonlinear dynamic system i = f(x, u, t), that sends the state x, from any point in a

region Q towards 0 as t - o. Position or joint control of the SRMS is an example of

a stabilization task.

On the other hand, in the tracking problem, the aim is to develop a control system that

forces the closed-loop system to follow a given time-varying trajectory. In [9], the

tracking problem is defined as: for a given nonlinear dynamic system t = f(x,u,t),

y = h(x) and a desired output trajectory ,yd find a control law for the input u such that,

starting from any initial state in a region 9, the tracking error y(t) - yd (t) vanishes

while the state x remains bounded. Manipulating the SRMS to follow a trajectory is a

typical tracking problem. The stabilization and tracking problems are often related.

The typical procedure for designing a controller for a nonlinear system is illustrated

below in Figure 3.2
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Define physical system
to be controlled

Specify desired
behavior, select

sensors & actuators

Model physical plant using
differential equations

Design control law

Refine
models

to
improve

perfoi

Simulate & analyze
resulting control system

Implement control
system in hardware

Figure 3.2. Nonlinear Controller Design

rmance

Before designing a nonlinear controller, the physical system to be controlled must be

defined. Next, performance objectives must be specified. The physical plant is described

via differential equations. A nonlinear feedback control law is then derived based on

these equations. This is followed by simulation and analysis of the resulting control

system. The results may suggest modifying the physical plant model to improve

performance. Finally, the control system is implemented.
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3.3 Taylor Series Method of Linearization
Linear control systems are "easy" to work with because there are well known methods

available to stabilize them. The usual approach, Taylor series linearization method, for

dealing with a nonlinear control system is to linearize the system about a particular

operating point. If this yields a controllable linear system, then it is possible to stabilize

the linear system.

Taylor series linearization, also called Jacobian linearization, deals with the local stability

of a nonlinear system. This method provided the justification for using linear control

techniques on physical systems by showing that stable control design using the linearized

system guarantees the stability of the original nonlinear system[9]. A nonlinear

autonomous system defined as i(t) = f[x(t)] can be transformed into a locally linear

system using the Jacobian.

If f is continuously differentiable and f(O)=O, where 0 is an equilibrium point of the

system, then the Jacobian matrix, J, of f can be evaluated at x=0.

L at, af]
axi  ax,

(3.3)

The system i = Jx is the linearization (linear approximation) of the original nonlinear

system at the equilibrium point x=O. The stability of the linearized system, Table 3.2, is

characterized by the eigenvalues of the Jacobian matrix, J.
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Table 3.2.

Taylor Series Linearization

Stability of Linearized Eigenvalues of J Equilibrium Point (for

System nonlinear system)

Strictly Stable all are strictly in the left- asymptotically stable

half complex plane

Unstable at least one is strictly in the unstable

right-half complex plane

Marginally Stable left-half complex plane, at may be stable,

least one is on the jo axis asymptotically stable, or

unstable

Taylor series linearization [7,9] implies that, as long as the system is kept "close" to the

operating point, the nonlinear system will be stable. Hence, there are limitations such as

when the system is not "close" to the operating point with Taylor series linearization

method. SRMS maneuvers would require many set points with the associated

compensators at each point, thus resulting in a numerically intensive and impractical

approach. Also, it is undesirable to use gain scheduling or to have a low bandwidth

design for the SRMS controller because these would yield poor transient responses.

Therefore, feedback linearization was implemented in the controller design for the

SRMS.

3.4 Mathematical Background for Feedback
Linearization

Preliminary mathematical tools associated with the development of the feedback

linearization control law will be introduced in this section. In the following discussion,
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operations will involve scalar functions, h(x):R" -- R, and vector functions,

f(x):R" -> R". These functions are called vector fields. In the following discussion,

only smooth vector fields will be considered, that is, the functions have continuous partial

derivatives of arbitrary higher order.

ah
The gradient of the scalar field, h(x), is denoted by Vh = -; it is represented by a row-

ax

vector of elements. Similarly, the Jacobian of the vector field, f(x), is denoted by
f

Vf = -; this is represented by an (nxn) matrix of elements. These concepts are used in
ax

defining the Lie derivative or directional derivative.

Definition 3.1 For a smooth scalar field h(x):R" -- R and a smooth vector field

f(x): R" -- R", the Lie derivative of h with respect to f, denoted by Lh, is a new scalar

field defined by:

Lh = Vh(x)f(x)

n ah(x)
1=1 axi

(3.4)

Repeated Lie derivatives are defined recursively by:

Lh = h

IL'h = L,(L'-'h) = V(L':-h)f

(3.5)

Similarly, if g is another vector field, then the scalar function L,Lh(x) is

L,Lfh = V(Lh)g

(3.6)

The concept of Lie derivatives will be used in the derivation of the control law for the

feedback linearization.
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3.5 Feedback Linearization
With the development of feedback linearization, it is possible to stabilize nonlinear

control systems without any linearization about an operating point. It is not like Taylor

series linearization, the nonlinear system is not approximated by a linear system. The

fundamental concept of feedback linearization is to cancel the nonlinearities in a "inner

loop" of the nonlinear system so that the closed loop dynamics becomes linear in form.

A (classical) linear controller can then be designed in the "outer" loop.

Feedback linearization transforms the nonlinear system into an equivalent controllable

linear system. In feedback linearization, a nonlinear system now behaves like a linear

system, via feedback control and a transformation of the state vector. Hence, linear

control theory can be used to design the appropriate compensation. The resulting linear

system, usually a bank of integrators, is invariant over the entire operating envelope,

under exact modeling conditions.

In sections 3.5.1 and 3.5.2, two types of feedback linearization will be discussed. The

first is Input-State Linearization and the second is Input-Output linearization. Both are

fundamentally different from the Taylor series linearization method.

3.5.1 Input-State Linearization

Input-state linearization is a form of feedback linearization. Input state linearization

involves solving the feedback linearization problem by finding a state transformation and

an input transformation so as to transform the nonlinear system dynamics into an

equivalent dynamic system, which can be controller, via nonlinear feedback, into a linear

time-invariant system. Then, linear design techniques such as pole placement can be

employed to determine the reference input v, which would define the desired trajectory

[9]. For a single-input nonlinear system, i = f(x,u), a state transformation z=z(x) and an
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input transformation u=u(x,v), are found. The equivalent linear time-invariant dynamics

have the form i = Az + by. Slotine [9] defines the criteria for input-state linearization as

Definition 3.2 A single-input nonlinear system of the form i = f(x) + g(x)u with f(x)

and g(x) being smooth vector fields on R", is input-state linearizable if there exists a

region Q in R", a diffeomorphism 0:0 R", and a nonlinear feedback control law

u = a(x) + 3(x)v such that the new state variables z=)(x) and the new input v satisfy a

linear time invariant relation i = Az+ by. A and b are of the form

0 1 0 0 ... 0 0"

00 1 0 - 0 0

0 0 0 1 ... 0 0
A = ... ... ... ... ... ,b=

0 0 0 .- 1 0

0 0 0 0 ... 0 1

All the poles of the transformed system (determined from the characteristic polynomial,

det[sI-A]=s(n) are at the origin and there are no system zeros. This yields a decoupled set

of integrators and the concept can be extended beyond SISO systems [10].

It can be shown [9] that the control law for an input-state linearization problem is of the

form
(-Lz + v)

U =

(LL-1z)

(3.7)

which yields

zn =V

(3.8)

36



The closed-loop system using input-state linearization is presented in Figure 3.3. There

are two feedback loops in this system, an inner loop to linearize the input-state relation,

and an outer loop to control to specifications the overall closed-loop dynamics.

0--1 , x
v = -k z u = u(x, v) x = f(x, u)

Uinearization of Input States

Stabilization of Closed-loop Dynamics z = z

Figure 3.3 Input-State Linearization

Slotine [9] remarks that, in using input-state linearization, if the initial state is at a

singularity point, the controller cannot bring the state to the equilibrium point. Hence,

although the result is valid over a large region in the state space, it may not always be

global. Thus, we have the discussion between a global diffeomorphism (transformation)

and a local one, which in turn influence the region of validity of such a total linearization

procedure.

3.5.2 Input-Output Linearization

The second type of feedback linearization is often considered when dealing with the

tracking problem, for a nonlinear system of the form

I = f(x,u)
y = h(x)

(3.9)

For the tracking problem, it is desired to make the output, y(t), track a given trajectory,

yd(t). From Eq. 3.9 , it is obvious that the output y(t) is only indirectly related to the

input u, through the state variables. If it is possible to identify a direct and simple
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relation between the system input and output, the tracking problem would be easier to

solve. This issue motivates the input-output linearization approach, which does not

require a full state transformation and it does not, therefore, yield total system

linearization.

In order to generate a direct relation between the output y and the input u, the output

function y is differentiated repeatedly until the input appears. Then, u is designed to

cancel the nonlinearities.

Definition 3.3 The number r of differentiations required for the input u to appear is

called the relative degree of the system.

When the input appears in a number r of differentiations of the output, up to the system

order n (i.e. r 5 n), then we say the system is of relative degree r and the input/output

linear system is a well posed problem. The process of repeated differentiations means

that we start with y=h(x), differentiate and proceed up until y(r), i.e. until the control input

u appears on the right-hand side. For r=l, we have

3 = Vh(f + gu) = Lrh(x)+ Lh(x)u

(3.10)

If Lh(x) * 0 for some x=xo in a region Ox, then, because of continuity, that relation is

verified in a finite neighborhood Q of xo. The input transformation in Q becomes

1
u = - (-Lfh + v)

L,h

(3.11)

This yields a linear relation between the input and the output, specifically, j = v. If

Lah(x) = 0 for all x in Ox, it is necessary to differentiate j to obtain
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; = Lfh(x) + LgLfh(x)u

(3.12)

If LgLfh(x) = 0 x in Q2x, differentiation must be performed again and again until for

some integer r, LgL-'h(x) 0. The control law becomes

1
u = (-Lf h + v)

L,L-'h

(3.13)

This is applied to

yr) = L'h(x)+ LgL'Wh(x)u

(3.14)

to yield

y(r) = v

(3.15)

When the system has relative degree r < n, the nonlinear system can be transformed

using y,,... ,y r-), into the "normal form", which will allows the internal dynamics and

the zero dynamics to be studied [9]. Setting

= [ 1  P 2  . T r ]T[ [Y " y(r-Il)]T

(3.16)

With the output defined as y = g1, the "normal form" of the system becomes

2

a(, V) + b(t, W)u

(3.17)
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(3.18)

g, and , are called the normal coordinates or normal states. The internal dynamics

associated with the input-output linearization correspond to the last (n-r) equations

y = w(g, W) of the normal form. These dynamics generally depend on the output states

p., and are the unobservable dynamics after feedback linearization. By setting the output

to zero, in the internal dynamics equation, the zero dynamics are determined. The zero

dynamics are defined as r = w(O,N ).

There are two approaches that can be taken for the SRMS tracking problem. The SRMS

plant is comprised of three parts, servo, gearbox, and nonlinear arm dynamics. Chapter 4

provides the details concerning the significant nonlinearities that are found in the

nonlinear arm dynamics. Chapter 4 also discusses the linearization of the servo and

gearbox models.

The first approach is to use input state linearization around the nonlinear arm dynamics to

derive a control law for the "inner" loop. This would allow for the design of a linear

controller in the "outer" loop of the SRMS system to compensate for the error in the

feedback control law caused by not including the nonlinearities of the servo and gearbox.

In this case, all the states are observable and there are no internal dynamics. A pole

placement controller can then be designed in the "outer" loop.

This approach is investigated in this thesis; the significant nonlinearities are assumed to

be in the nonlinear arm dynamics portion of the SRMS system. The servo and gearbox

components are not included in the design of the feedback linearization control law

because of the dimension and modeling uncertainty associated with these models.
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The alternative approach is to include the nonlinearities of the servo and gearbox in

deriving the feedback linearization control law. A control law based on input-output

linearization methods could be derived to cancel the plant nonlinearities. The internal

dynamics of the system could be found by defining the system in the "normal form" as

defined in Eq. 3.17. The stability of these internal dynamics would dictate whether it is

possible to designing a compensator for the system. Slotine [9] provides a detailed

discussion on how a simple linear pole-placement controller in the outer loop provides

local asymptotic stability of the overall system so long as the zero dynamics are locally

asymptotically stable.
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Chapter 4

SRMS Modeling

A simulation model of the nonlinear SRMS dynamics has been developed in SIMULINK.

The actual dynamics will replace sensor dynamics during implementation. This

simulation model, illustrated in Figure 4.1, contains a representation of the gearboxes,

nonlinear arm dynamics, and servos. This simulation model is used in the "outer loop"

linear controller design.

Command

Figure 4.1. Simulation Model - Nonlinear Plant
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The gearbox model, described in section 4.1, has a nonlinear stiffness that is linearized in

the design model. The gearbox dynamics model the conversion of motor rate into applied

joint torque and include a nonlinear stiffness, which represents the flexibility of the

gearbox. The nonlinear arm dynamics, outlined in section 4.2, contain the significant

nonlinearities. This nonlinear arm dynamics module outputs a joint angle perturbation to

a corresponding joint torque.

The servos, described in section 4.3, contain delays and limiters which are ignored in this

implementation of the model. The individual joint servos provide a motor rate consistent

with the controller generated motor rate command. All of the six joint servos and

gearboxes are independent of each other (i.e. single input, single output). Boom

flexibility has not been included in the models and will be treated as uncertainty when the

feedback compensation is designed.

Each servo is a seventh order system that contains several high frequency poles. These

poles do not affect the controller design; however, they do require smaller integration

steps of 0.001 sec which increases the computation time. Therefore, the frequency

weighted Balance and Truncate model reduction technique was implemented to eliminate

the high frequency poles and reduce each servo model to second order. This second

order servo model reduces the computation time because it requires an integration step

size of 0.1 sec. Section 4.4 discusses the procedure used to reduce the servo models,

while section 4.5 illustrates the results from this procedure.

In order to develop a simulation model that is implementable in the relatively small flight

computers of the shuttle, the servo and gearbox models were linearized. The nonlinear

dynamics are also reduced to allow development of a simplified feedforward control.

This procedure is described in section 4.6. The nonlinearities of the servos and gearboxes
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are not included in the feedforward terms, but are accounted for by the "outer loop"

feedback compensator design.

Table 4.1. Variable Notation for Simulation Model - Nonlinear Plant

Variable Description

(b Input : Commanded Motor Rate

Ty Output: Joint Torque

TGB Output: Gearbox Torque

A'Y Output: Change in Joint Angle

4.1 Gearbox Model
The block diagram for the gearbox model of each joint [11] is presented in Figure 4.3. A

state space description of this system is generated via SIMUIJNK. The input to each

gearbox is motor rate from the servos, and the change in joint angle, Ay , which is fed

back from the arm dynamics module. This is done to model the "twist" angle or the shaft

deflection between the motor side and the joint side.

The actual gearbox stiffness gain, KG, is the slope of the curve at a particular gearbox

torque, ry, and deflection angle vector, ) - y (motor shaft angle - joint angle). The

relation between the gearbox torque and the deflection angle is described in Eq.4.1.

B
2

C - L

4T'A

(4.1)

where BL is the gearbox backlash half angle as seen on the joint side of the gearbox and

TA is the gearbox torque at the backlash half angle as seen on the joint side. The values
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of BL and TA for the different joints are presented in Table 4.3. The actual nonlinear

stiffness curve for the gearbox is presented in Figure 4.3.

Table 43. Variables for Calculation of Actual Gearbox Gain

JOINTS

Gains Units Shoulder Shoulder Elbow Wrist Wrist Yaw Wrist

Yaw Pitch Pitch Pitch Roll

BL radians 1.6872 1.4983 0.8998 0.9222 0.9234 0.9222

TA ft-lb. 0.1697 0.2035 0.2008 0.3201 0.3206 0.3210

Max
Slope

Min
Slope

-Y

Figure 4.2. Gearbox Nonlinear Stiffness Curve

The nonlinear gearbox can be linearized by substituting the gains for KG in Table

4.2[11]. KG transforms the deflection angle, denoted by -- in Figure 4.2, into a torque,

ty. The gearbox model yields joint torque and gearbox torque; these are obtained from

multiplying ty by the gear ratio and gearbox efficiency gains, respectively. KG can
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range in value between zero and a maximum slope determined by the servos under

consideration. The linear values from Table 4.2 that were used for KG in the design

model fall between the maximum and minimum values of the actual gearbox stiffness

gain.

Motor
Rate Gearbox

Stiffness
Joint
Torque

Gearbox
TorqueRatio

Figure 4.3.

Delta
J Gamma

Gearbox Model

Efficiency

for Nonlinear Plant

Table 4.2. Linear Gains for Gearbox Model

JOINTS

Gains Units Shoulder Shoulder Elbow Wrist Wrist Yaw Wrist

Yaw Pitch Pitch Pitch Roll

KG ft-lb./rad 0.3478 0.6212 1.1962 1.9292 1.924 1.9292

N no dim. 1841.95 1842.95 1260.28 737.74 738.74 737.74

11 no dim. 1.17 1.27 1.20 1.21 1.21 1.21

The controller design model was developed by using

nonlinear gearbox model was implemented later.

the linearized gearbox model. The
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4.2 Nonlinear Arm Dynamics
The equations of motion for the nonlinear model of the SRMS were developed using the

Lagrangian approach. The Lagrangian function, L=T-V, is first formed, where T is the

kinetic energy and V is the potential energy. Since it is assumed that there are no gravity

terms and no rigid body dynamics, V = 0. The equations of motion are

H(q)4 + H(q)q - [T] = u

(4.2)

Rearranging yields

i = H(q)-[-H(q)q + (T))T + u]

(4.3)

where u, is the vector of joint torques, H(q) is the 6X6 composite inertia or mass matrix,

while q is the vector of joint rates, T= 0.5[]TH(q), and

f(q) = -[H(q)]kl,. From these equations, it is possible to generate a state
k=18q k

space description of the system, arm dynamics.

4.3 Servo Model
The model for an individual joint servo [12] is presented in Figure 4.4. The servos take

as input a motor rate command generated by the controller for each point. The gearbox

reaction torque is also modeled as a servo input. The output is motor rate including the

appropriate servo dynamic lags. The delays and limiters are ignored in the development

of the feed-forward control law. The appropriate servo gains [11] are defined in Table

4.4. Notice that the motor dynamics and tachometer feedback loop contain high

frequency dynamics, which can be ignored in the basic design model.
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Table 4.4. Gains for Servo

Gains Units All Six Joints

KA Volts/Volt 1.92

KB Volts/ Radian/Second 0.235

KD Counts/ Radian/Second 11.378

KDA Volts/Count 0.1615"

KT Foot-Pound/Amp 0.17

KTR Seconds-1  0.05*

* for space station sized payloads, KDA for wrist joints is 1.0 and KTR for wrist joints is

0.01 to reflect the upgraded servo power amplifiers.

4.4 Model Reduction for Servos
Each of the six SRMS joints, as shown in Figure 4.4 represents a 7th order system.

However, many high frequency modes can be truncated. Model reduction techniques

were used to reduce the model for each joint from 7th order to 2nd order.

Moore, [13] describes a model reduction technique which is referred to as "Balance and

Truncate." This technique was modified to allow frequency weighting by the method of

[14] and then was applied to the servo models described previously. The frequency

weighting enables the technique to concentrate on providing good models in a particular

frequency range.
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4.4.1 Balance and Truncate Model Reduction Technique

The Balance and Truncate technique requires an open-loop stable plant. It uses a state-

space representation of the plant in which the controllability and observability grammians

are diagonal and equal [13]. The diagonal elements of theses grammians, called Hankel

singular values (HSVs), provide the basis for model reduction. Modes that are easily

controlled and observed are represented by large Hankel singular values, while modes

that are difficult to control and observe are represented by small Hankel singular values.

Thus, the state space can be partitioned into strongly and weakly controllable/ observable

modes, and the subspace of weakly controllable/ observable modes may be deleted [13].

The Balance and Truncate method uses a state space model of the form

i(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(4.4)

where G(s) is

G(s) = D + C(sl - A)-' BA[

(4.5)

A nonsingular state transformation T can be found such that

z(s) = T x(s)
(4.6)

which yields another representation of the system G(s)

G (s) =[ B [TAT T-B]

(4.7)

By properly selecting T, Moore's balancing techniques can improve the numerical

properties of (TAT-",TB,CT - ). The procedure for "properly selecting" T involves using
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the controllability grammian, Le , and observability grammian, Lo. The controllability

grammian , Lc, shows the influence of the input on the states, and is given by

LC= jexp(At)BBexp(ATt)dt

(4.8)

The observability grammian indicates the observability of the states in the output, and is

given by

Lo= exp(ATt)CTCexp(At)dt

(4.9)

Solving the matrix Lyapunov equations yields Le and Lo

AL, + LCA T + BBT = 0

ATL, + QL, + CTC = 0
(4.10)

The controllability and observability grammians of (TAT- ,TB,CT - ) are related to the
grammians of (A,B,C), designated as Lc and Lo by

L-' = T-L(T
- )T

L = T'LT
(4.11)

Moore's balancing transformation T is selected such that

LC = LO
(4.12)

In order to calculate T, the positive definite Le and Lo can be factored such that

L, = RRT}

Le = SST

(4.13)
Considering the positive definite matrix

H = RTLR
(4.14)
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Let the singular value decomposition of STR be

UHn'V = STR
(4.15)

H= VAH Vn

(4.16)

where aH is the matrix of Hankel singular values, which provide the basis for model

reduction. U is a unitary matrix containing the left singular vectors of STR, and VH is

the corresponding unitary matrix that contains the right singular vectors of STR. Since

U U = I and VV, = I, selecting

T = RVHH2
(4.17)

yields the desired

L, = L, = XH
(4.18)

Now it is appropriate to truncate states having small Hankel singular values, which are

diagonal elements of gH. The transformed system becomes

[A A12 B
G(s)F.[T-[TAT T-B] i

(4.19)

Model reduction can be performed on this balanced realization. The first m states,

located in the top left corner of the A matrix, are kept; all others are truncated depending

on li. The reduced system, given in Eq. 4.20, has truncated modes and relatively small

approximation errors, on

G(s),t = n

(4.20)
The upper bound on the approximation error [13] is
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aH = lG.,(s) - GR,.d(s).. <2 _., Vo,
i=m+1

(4.21)

where A are the Hankel singular values of the modes that are truncated

4.4.2 Frequency Weighted Balancing Technique

Using model reduction techniques such as Balance and Truncation with unweighted

balancing " spreads out" the approximation errors evenly over all frequencies. In some

cases, it is desirable to emphasize certain frequency bands at the expense of others.

Enns[141 developed a frequency weighted balancing technique. Input, W,(s), and

output, W,(s), weighting functions are incorporated into the model according to the

method described in [14], see Figure 4.5.

W(s) =[: B1
C, D1

(4.22)

W.(s)= A Do

IC, Do]
(4.23)

SWG(s) = D, Wo,

Figure 4.5 Frequency Weighted Balancing at Input and Output

Considering the controllability grammian for the frequency weighted balancing, the

augmented system Lyapunov equation becomes.

AL +LA T +BBT = 0

(4.24)
where

4[A 

BC,

(4.25)
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BD,

(4.26)

The controllability grammian is extracted from the top left corner of the augmented

controllability grammian, after solving Eq. 4.24.

(4.27)

Similarly, considering the observability grammian for the frequency weighted balancing,

the augmented system Lyapunov equation becomes.

AiL.+ L.,.+ AT. = o
(4.28)

where

.=[BC A,
(4.29)

C,= [DC C,]
(4.30)

and the observability grammian is extracted from the top left corner of the augmented

observability grammian, after solving Eq. 4.28.

(4.31)

Using Lc and Lo ,the same method described for the unweighted case, can be used to

solve for T in the frequency weighted balancing case.
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4.5 Reduced Order Servos
A recent upgrade to the shuttle RMS servo power amplifiers (SPA) has increased the gain

values for the digital to analog (KDA) blocks, shown in Figure 4.4, in the three wrist joint

servos, by a factor of six. Also, the gain values for the integral trim block (KTR) are five

times lower in the three wrist joints due to the same SPA upgrade. Model reduction

results both for the shoulder yaw and the wrist pitch joints will be discussed. Other joint

reduced order models are obtained in a similar fashion. State space representations for

the shoulder yaw servo and wrist pitch servo, shown in Figure 4.4, were generated via

SIMULINK.

First, a balanced realization without frequency weighting was created for the shoulder

yaw servo. Figure 4.6 presents the singular value response of second order reduced

model without frequency weighting. The full seventh order model is shown as the solid

line, while the reduced second order model is represented as the dashed line. At low

frequency, the reduced order model proved to be an inaccurate representation of the full

order model because, without frequency weighting, the algorithm spreads the error over

all frequencies.

56



101

10-1

10-2-
10-6

Balance and Truncate

10-5 10-4 10-3 10-2 10-1 100 101

Frequency (Hz)

102

Figure 4.6. Singular Value Response, Model Without Frequency Weighting

A more accurate representation of the full order model was obtained by adding frequency

weighting at the output. Table 4. 5 defines the variables used in the frequency weighting

procedure.

Table 4.5. Frequency Weighting Filter Description

Type of filter lowpass

Break frequency 10-5 Hz

Order of weight second

Location of filter output

Figure 4.7 and Figure 4.8 present the reduced order models with frequency weighting at

the output for the shoulder yaw and wrist pitch joints, respectively. Again, the full

seventh order model is shown as the solid line, while the reduced second order model is

57



represented as the dashed line. Now, at low frequency, the reduced order model for both

the shoulder yaw and the wrist pitch joints proved to be a nearly perfect match of the full

order model.

Balance and Truncate
101

8 100

0 -

.5 10-2

10-3
10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

Frequency (Hz)

Figure 4.7. Second Order Model of Shoulder Yaw Servo, With Frequency

Weighting
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Figure 4.8. Second Order Model of Wrist Pitch Servo, With Frequency Weighting

Poles and zeros of the reduced order model were verified to be stable and minimum

phase, respectively. Bode plots , Figure 4.9 and Figure 4.10, individually from the two

input channels to the one output were generated for both the shoulder yaw and wrist pitch

servos. The solid lines represent the seventh order models, while the dashed lines

represent the reduced, second order models. In both channels, the magnitude and phase

matched well up to about 0.2 Hz, which is well below the current SRMS controller

bandwidth.
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Figure 4.11 illustrate the singular value response for all six joints. The solid curves

represent the full 42nd order model, while the dashed curves represent the reduced 12th

order model.

101

100

10-1

10-2

10-3

10-4-
10-6

Figure 4.11. 12th

Balance and Truncate

10-2 10-1 100 101

Frequency (Hz)

Order Reduced Model of Servos

The Balance and Truncate model reduction technique that was used eliminated high

frequency modes of the system. The second order reduced model had modes below 20

Hz, whereas in the full system model there was a mode at 6760 Hz. Eliminating high

frequency modes results in being able to integrate with larger step sizes. Because the

plant dynamics are nonlinear, it is necessary to use the computationally intensive fourth

order Runge-Kutta integration method. By using larger step sizes for the integration (of

0. 1 sec), the computation time is drastically reduced.
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4.6 Model Reduction for Nonlinear Plant
The equations of motion for the SRMS described in section 4.2 also result in

computationally intensive calculations of the link composite inertia matrices. A

technique for reducing the model of the nonlinear plant which involved considering the

predominant composite inertia matrix over the reach space of the SRMS was used.

Figure 4.12, Table 4.6 and 4.7 present the reach limits and joint rate limits, for each joint

of the SRMS, that were used to search for the dominant composite inertia matrices.

Figure 4.12. Reach Space of SRMS

Table 4.6. Reach Limits of the SRMS
Joint Reach Limit

+175.40 -175.4o
Shoulder Yaw

+2.60 +140.40
Shoulder Pitch

-2.4o -155.60
Elbow Pitch

-114.4o +114.40
Wrist Pitch

-114.60 +114.60
Wrist Roll440_ +00

-440.00 +440.00Wrist Yaw
r I l
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Table 4.7. Rate Limits for SRMS
Unloaded Units Shoulder Shoulder Elbow Wrist Wrist Wrist
I-load Yaw Pitch Pitch Pitch Yaw Roll
JRL PL Degrees/ 2.29 2.29 3.21 4.76 4.76 4.76
Coarse second
JRL_PL Degrees/ 0.229 0.229 0.321 0.476 0.476 0.476
Vernier second

Composite inertia matrices were computed over the state space of joint angles and joint

rates. The norms of these matrices were compared over the different joint configurations

and joint rates. Typical values of the norms for the different configurations are presented

in Table 4.8. These values are normalized over the six joint inertia and payload inertia.

Table 4.8. Norms of Composite Inertia Matrices in SRMS Reach Space

Joints Configuration Configuration Configuration Configuration Configuration

A B C D E

Shoulder Yaw 1.4283e-07 9.1038e-08 1.5194e-07 2.2052e-07 3.1918e-07

Shoulder Pitch 5.7985e-04 3.6959e-04 6.1685e-04 8.9527e-04 1.2958e-03

Elbow Pitch 2.5585e-03 1.3198e-03 9.5599e-04 1.0211e-03 2.3375e-03

Wrist Pitch 4.6649e-04 2.4499e-04 1.7218e-04 2. 0276e-04 3.7978e-04

Wrist Roll 2.5660e-03 1.4887e-03 1.0619e-03 1.3043e-03 1.8185e-03

Wrist Yaw 2.5871e-03 1.6673e-03 1.2228e-03 1.5591e-03 1.5690e-03

Payload 9.9124e-01 9.9491e-01 9.9597e-01 9.9502e-01 9.9260e-01

In all cases the composite inertia matrix for the SRMS links were insignificant compared

with the composite Inertia matrix for the payload. Hence, a suitable reduced order

nonlinear system only considers the composite inertia matrix for the payload represented

in a shuttle fixed frame.
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Chapter 5

Controller Design and Analysis

Using the approach presented in Chapter 3, the nonlinear feedback control law is derived

in this chapter. Next, implementation of the feedback control law is discussed. Details

about Spar Aerospace's lead-lag controller are also included in this chapter.

5.1 Derivation of the Control Law
Recall from the EQ. 4.3, the equations of motion for the nonlinear arm dynamics

i = H(q)-'[-(q)l + (- (T))T + u]
aq

(5.1)
Let the state vector be defined as

x= [ = .
X2]=[q]

(5.2)
then

S= = H(x ) -1 [-_(x )x 2 + (T)) + u]
(5.dq
(5.3)
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In the feedforward control calculation we have ignored the process noise, measurement

noise, and servo and gearbox nonlinearities. The system can be represented as

x= f(x)+ g(x)ul ...+Fwl

y = h(x)- -...+v

(5.4)

Fw represents the process noise while v represents the measurement noise. Here, u

represents joint torque, which is achieved by commanding the motors to produce the

desired torque. The joint servos and gearboxes are a high speed inner control loop that

achieves the desired motor rate commands and joint torques. Nonlinearities existing in

these components are taken into consideration by an outer loop feedback controller. The

feed forward terms computed from the nonlinear arm dynamics become

f(x) - d I
f(x) H(x)-[-(x)x 2 +( dq(T) f(x)

g(x) = On/2Xm

y = h(x) = x

(5.5)

where n is the state dimension and m is the number of controls. Only the joint angles are

measured. The joint rates must be estimated or the command must be fed forward. Both

options will be examined. The servo lags will determine whether the feedforward

command rates will allow satisfactory performance.

x, f and g are smooth vector fields and h is a smooth nonlinear function. Differentiating y

with respect to time yields
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. ah
y = f(x)+

ax
ah-g(x)uax

= Lfh(x) + Lh(x)u

(5.6)

If Lh(x) is bounded away from zero for all x, then the state feedback law would take the

form of
1

u = 1(-Lh(x) + v)
L,h(x)

u = a(x)+ P(x)v

(5.7)

The new linear system from the input v to the output y would be

y=v

(5.8)

Thus, the feedback control law has the effect of making (n-1) of the system states

unobservable.

If for all values of x, Lh(x) - 0, then it is necessary to differentiate the equation for y'

Y = Lh(x) + L,L,h(x)u

(5.9)

recall that Lh(x) = L(Lh)(x) and L,Lh(x) - Lg(Lfh(x)). This time, if for all values

of x, L,Lfh(x) is bounded away from zero, then the control law is given by

1 2
u = 1 (-L h(x) + v)

LLh(x)

(5.10)

and the linearized input-output system is

y=v

(5.11)
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A general expression for the control law can be derived. If y (order of differentiations) is

the smallest integer for which LgI'h(x)- Ofor i=0, ...,y-2 and LLf-'h(x) is bounded

away from zero, then the control law is given by

1
u = h( (-Lh(x) + v)

LLf-'h(x)

(5.12)

This yields

yY=v

(5.13)

In the case of the nonlinear arm dynamics for the SRMS, differentiating the output until

the input states appears yield:

S= f,(x)+ 0 u
Lrh(x) Lh(x)

Y = f 2(x)+ g,(x)u
L h(x) LLh(x) J

(5.14)

Since for all x, LLh(x) 0 the new input v can be defined by

v=f 2(x) +g2(x)u

(5.15)

Letting Y = v, and solving for the feedforward term yields

u = -g 2(x)-'f 2(x)+ g2(x)-1V

(5.16)

The linear control, v, represents joint accelerations derived from the outer loop (i.e., the

loop which corrects errors due to the servo/gearbox nonlinearities and process noise)

68



error dynamics. f2(x) is the joint acceleration required to cancel the nonlinear arm

dynamics. g2(x)- ' converts joint acceleration to joint torque.

Substituting Eq. 5.16 into Eq. 5.5 the gives

[f(x) g, (x
t= FfI(x)] + g -g (x , [ (x)-i f,(x) + g,(x-2 v]

y = x, +v

(5.17)

from which a state space representation of the "feedback linearized" system can be

derived. This state space representation (which is a series of integrators)is now linear

from the new control v to the output y.

_0 I ]x

y 0 x

(5.18)

5.2 Implementation of the Control Law
Referring to Figure 5.1, the error dynamics are computed by differentiating the steering

command and the joint encoder angle measurements which are being fed back. In the

current system, a simple lead/lag compensator acts on the joint angle error in each joint to

produce a joint rate command which is transformed into a digital motor rate command by

a conversion factor. This conversion factor consists of the product of gear ratio (N) and

digital tachometer gain (KD). The numerical values for N and KD are presented in

Tables 4.2 and 4.4, respectively.
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The joint servos produce the desired motor rate or joint torque subject to their internal

lags. The feedforward joint acceleration term f2 (x) is computed by feeding back the joint

angles y and estimating joint rate using motor rate feedback. Alternatively, the

commanded joint rate maybe used in this calculation, if servo time constants are small

relative to the important arm dynamics.

The feedback compensator, K(s), must now be designed to provide good performance in

the presence of disturbances and to provide stability in the presence of unmodeled

dynamics. The unmodeled dynamics include boom flexibility, servo control saturations,

and gearbox nonlinearities.

Spar Aerospace's Phase 1 Space Station Berthing study concluded that the SRMS

position hold mode exhibited unstable joint oscillations with attached payloads greater

than 65,000 lb.. mass. The Phase 2 Space Station Berthing Study suggested

implementation of a first order lead-lag compensator to stabilize heavy payloads (over

65,000 lb..) [15]. This lead-lag controller is both payload and joint dependent. The

transfer function of the compensator is presented in Eq. 5.19.

G(s) = K(1 + Ts)
(1 + T,2s)

(5.19)

This transfer function must be converted from continuous time to discrete time in order to

be implemented in the SRMS general purpose computer (GPC) software. Using the

Tustin approximation for the analog-to-digital conversion, with sampling time T,

2 (1- z-1)
S=5

T (1 + z-' )

(5.20)
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Y(z) GF1 + GF2z-
G(z)+

X(z) 1+ GF3z -1

(5.21)

Table 5.1 defines the variables presented in equations 5.19 through 5.21.

Table 5.1. Lead-Lag Compensator Gains

Payload K T(s) T1 (s) T2 (s) GF1 GF2 GF3

MB (l/s) (W/s)

3A 0.1 0.08 60 6 0.99404 -0.99272 -0.98675

5B 0.1 0.08 80 8 0.99552 -0.99453 -0.99005

8 & 8' 0.1 0.08 90 9 0.99602 -0.99513 -0.99115

W jet

A t FB = Feed back Command Processing Rate (Outer Loop)
A t FF = Feed forward Command Processing Rate (Inner Loop)
wjet = Thruster disturbance
n = measurement noise
x=y = joint angle
x 2 = j = joint rate

Figure 5.1. Linearized Plant Model



A classical control approach can be taken in the design of a controller for the "Linearized

System." The goal is to obtain a system that is implementable in the shuttle computers,

which have relatively small computing power. The feedback linearization control law

presented in Eq. 5.16 was implemented in the "inner loop" for the nonlinear arm

dynamics model to yield the "linearized system". Classical loop-shaping methods and

robust control techniques can be used to obtain an appropriate design for the "outer loop"

compensator. This thesis investigated the design of an LQR compensator and a pole

placement compensator.

72



Chapter 6

Results

The goal of this endeavor is to study the performance of the SRMS system with different

controllers and show the effects of feedback linearization. First, the current SRMS

controller was studied with and without feedback linearization. Next, a LQR controller

was designed for the system without feedback linearization to evaluate the linear

controller performance and stability over the state space of a typical SRMS berthing

maneuver. Finally, pole placement controller was designed in the outer loop for the

system with feedback linearization.

Section 6.1 discusses the performance of the simulation model described earlier with the

current position hold controller. A nonlinear model of the arm dynamics was simulated

in SIMULINK. In this model, the servos and gearbox models were linearized because

the nonlinear arm dynamics contain the significant nonlinearities of the system. The

saturations and delays were eliminated from the servo model and the gearbox stiffness

was modeled with a linear gain. A feedback linearization control law, derived from the

nonlinear arm dynamics was used in the inner feedback loop. The outer feedback loop

contained the current position hold controller, which is a lead-lag controller.
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Section 6.2 discusses how feedback linearization can improve the performance of the

system at high maneuver rate limits. The contribution of the nonlinear feedback term in

the joint acceleration for different joint rates is compared with the contribution from the

control to the joint acceleration. Next, section 6.3 describes how the steering algorithm is

generated and section 6.4 discusses how it is incorporated into the current lead-lag

controller system and simulates it using the MB4 SSF berthing trajectory. Section 6.5

discusses the development of the nonlinear gearbox in the SIMULINK model.

Boom flexibility was not included in the design model. Hence, a low bandwidth

controller, such as the current lead-lag controller, was able to stabilize the design model

at low rates over the designated trajectory. However, when boom and gearbox flexibility

are considered in the design of the controller, a higher bandwidth controller must be

implemented to suppress the vibrations and control the end effector. High bandwidth

controllers using proportional-derivative (PD) feedback compensation or LQR

compensators use velocity feedback to provide additional lead. Section 6.6 explores the

possibility of designing a LQR controller for the system without feedback linearization.

This controller would only be expected to stay stable over a certain operating region.

Section 6.7 discusses a PD controller using the pole placement technique with the

feedback linearization to find a controller that maintains stability over the entire region.

6.1 Current System Performance

A SIMULINK model of the current system was generated. The block diagram for this

model is presented in Figure 6.1 A trajectory of joint angle histories was generated for

the steering command block. Details about the steering algorithm will be presented in

section 6.3.
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Ay is the difference between the commanded joint angle and the actual joint angle y. It is

the input to the current lead-lag controller, described in section 5.2. A state space

representation of the current lead-lag controller was used in the SIMULINK model. The

commanded joint rate from the lead-lag controller is fed to the "g2vneil" function, which

is a macro used to apply the feedback linearization "inner loop" control law and convert

the commanded joint rates into commanded motor rates. These commanded motor rates,

along with the gearbox torque, are inputs to the state space representation of the reduced

order servos model (12th order model). The output from the servos block is the actual

motor rate. This motor rate, along with the Ay, are the inputs to the gearbox state space

representation. The gearbox block produces joint torque and gearbox torque. The joint

torque is fed to the nonlinear arm dynamics block, while the gearbox torque is fedback to

the servo block.

"nldyn_simpl" is the macro that uses the nonlinear equations of motion for the SRMS,

which were presented in Eq. 4.3, to generate the joint angle. It is also possible to obtain

the joint rate from the "nldyn_simpl" macro. However, joint rate measurements do not

exist in the actual SRMS; instead, joint rate must be estimated and filtered based on the

motor rate.
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Simulink with Runga Kutta, a fourth/fifth order integration method was used to simulate

the system dynamics. A maximum step size of 0.1 sec was used for the integration. The

euler method of integration, which was six times faster computationally, was also tried,

but proved to be inaccurate.

The lead lag controller used in the current system limits the joint rates by virtue of its low

bandwidth. Figures 6.2 and 6.3 present the joint angle and joint rate histories for a step

input of 10 degrees in the shoulder yaw joint angle. The joint rates were set to be zero

initially. The dotted line represents the input for each joint. The oscillatory nature is due

to the lack of friction in the model; there is no damping modeled in the nonlinear

dynamics.
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6.2 Feedback Linearization
Chapter 3 introduced the concept of feedback linearization and showed how the nonlinear

feedback control law is derived. This section demonstrates how feedback linearization

influences performance. The nonlinear feedback control law for the SRMS is made up

of two parts, the joint acceleration due to the control and the joint acceleration due to the

nonlinear feedback term. The relative contribution of each depends on joint rate, end

effector position, payload mass and dimension properties. To facilitate the study, a

cylindrically shaped payload was assumed held on the SRMS in its various positions.

Figures 6.5 through 6.15 illustrate these relationships. Joint rates between 0.14 deg/s and

3 deg/sec were studied. Currently, the joint rate limits for Space Station size payloads are

set at 0.14 deg/sec. At such slow rates, the feedback linearization "inner" control loop

will have little influence on the system. However, at higher rates the feedback

linearization "inner" control loop will have a significant impact on the system. The end

effector positions that were studied are shown in Figure 6.4. Their locations are

presented in Table 6.1.

F0

Go

HQ

Figure 6.4. End Effector positions
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Table 6.1. End Effector Position and Attitude
X Y Z PITCH YAW ROLL Mass Dim.

Position (in) (in) (in) (deg) (deg) (deg) Size changes
(MS) (RS)

Shoulder Shoulder Elbow Wrist Wrist Wrist
Yaw Pitch Pitch Pitch Yaw Roll
(deg) (deg) (deg) (deg) (deg) (deg)

Fl1 379.5 0.0 880.0 0.0 270.0 0.0 1 1

-147.09 53.79 -7.88 78.97 52.32 46.74

F1 379.5 0.0 880.0 0.0 270.0 0.0 10 5

-147.09 53.79 -7.88 78.97 52.32 46.74

Fl1 379.5 0.0 880.0 0.0 270.0 0.0 10 1

-147.09 53.79 -7.88 78.97 52.32 46.74

F1 379.5 0.0 880.0 0.0 270.0 0.0 1 5

-147.09 53.79 -7.88 78.97 52.32 46.74

G1 379.5 0.0 760.0 0.0 270.0 0.0 1 1

-152.81 80.21 -72.23 -45.71 56.99 52.46

H5 379.5 0.0 650.0 0.0 270.0 90.0 1 1

-158.62 82.73 -96.35 -30.52 61.39 149.9

K1 979.5 0.0 880.0 0.0 270.0 0.0 1 1

-32.91 53.79 -7.88 -78.97 -52.32 -7.78

K1 979.5 0.0 880.0 0.0 270.0 0.0 10 5

-32.91 53.79 -7.88 -78.97 -52.32 -7.78

L1 979.0 0.0 760.0 0.0 270.0 0.0 1 1

-27.19 80.21 -72.23 -45.71 -56.99 -13.5

M5 979.0 0.0 550.0 0.0 270.0 90.0 1 1

-15.66 76.51 -109.56 -19.6 -65.2 59.54
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Mass and dimension relations for the cylindrical payload were studied for end effector

positions Fl and K1. For all configurations, as joint rate increased, the contribution from

the nonlinear feedback joint acceleration increased dramatically, while the contribution of

joint acceleration due from the control remained the same. The contribution of joint

acceleration from the control term is only dependent on the error in joint angle. The

steady state response to a 0.1 degree and 1.0 degree error are presented as '*' and '+',

respectively. The transient response is one order of magnitude greater.

Figure 6.5 shows that, for position Fl, with MS=1 (note MS=10 has 10 times the mass of

MS=1) and RS=l, the joint acceleration due to the nonlinear feedback term becomes

significant for joint rates greater than 0.5 deg/sec. The significance of the nonlinear

feedback term varies by joint. Each of the six lines represent the response of one joint,

and are labeled as such (SY=Shoulder Yaw, SP=Shoulder Pitch, EP=Elbow Pitch,

WP=Wrist Pitch, WY=Wrist Yaw and WR=Wrist Roll). For Position Fl with MS=1 and

RS=1, the elbow pitch, wrist pitch and shoulder pitch joint accelerations due to the

feedback linearization terms are affected the most by increasing the rates. The shoulder

yaw, wrist yaw, and wrist roll joints are relatively insensitive to the increasing rates for

these arm geometries.
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Figure 6.5. EE Position Fl, MS=1, RS=1

For a ten times change in mass properties (MS) and five times change in cylinder

dimension (RS), the joint acceleration nearly quadruples in each joint for position Fl. In

each joint, the magnitudes of the joint acceleration due to the feedback linearization term

increase by about the same amount. Now, the shoulder yaw, wrist roll and wrist yaw

joint accelerations due to the feedback linearization terms are affected slightly with

increasing rates. The wrist pitch joint acceleration increased more than the shoulder pitch

joint with increasing rates in this case.
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Figure 6.6. EE Position Fl, MS=10, RS=5
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Figures 6.7 and 6.8 will explain how the ten time change in mass properties and the five

times change in dimension properties is broken down. According to Figure 6.7, changing

only the mass properties (MS) by ten times and not changing the dimension properties

(RS) does not significantly change the joint accelerations. The wrist roll, wrist yaw, and

shoulder yaw joints are unaffected by the rate increase. As in Figure 6.5, the magnitude

of the wrist pitch joint acceleration is less than that for the shoulder pitch joint at the

different rates.
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Figure 6.7. EE Position Fl, MS=10, RS=1
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Figure 6.8 illustrates that increasing the dimension properties for end effector position F1

by five times, without changing mass properties, has a severe impact on joint

accelerations. The joint accelerations due to the feedback linearization terms in Figure

6.8 are about three times larger than the joint accelerations in Figure 6.5. Increasing the

dimension properties simultaneously with mass properties increases the joint

accelerations due to the feedback linearization terms even more. The joint accelerations

shown in Figure 6.6 are slightly greater in magnitude than the joint accelerations shown

in Figure 6.8. Increasing RS affects the wrist roll, wrist yaw, and shoulder yaw joints.

As in Figure 6.6, their joint accelerations increase with increasing rate. Also the

magnitude of the joint acceleration due to the feedback linearization terms in the wrist

pitch joint is greater than that of the shoulder pitch joint.
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Figure 6.8. EE Position Fl, MS=1, RS=5
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Comparing Figures 6.5 and 6.9 shows that the joint accelerations due to the nonlinear

feedback terms for position GI are approximately fifteen times less than the joint

accelerations for position Fl. The nonlinear feedback terms do not dominate the control

input until the joint rates are greater than 2.0 deg/sec. For position G, the wrist roll, wrist

yaw, and shoulder yaw joint accelerations due to the feedback linearization terms

increase slightly with increasing rate. Their magnitudes are about the same in position G

as they are for position F. The magnitude of the joint accelerations in the elbow pitch,

wrist pitch and shoulder pitch joints are significantly less for position G than for position

F. As in position F with MS=1 and RS=1, the magnitude of the joint acceleration for the

shoulder pitch joint is greater than that for the wrist pitch joint.
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Figure 6.9. EE Position G-, MS=1, RS=1-3
Figure 6.9. EE Position G1, MS=, RS=I
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Figure 6.10 illustrates that the joint accelerations due to the nonlinear feedback terms are

similar for position H5 and Gl, nearly fifteen times less than those for position Fl. The

joint accelerations due to the nonlinear feedback terms are slightly less at position H5

than position Gl. The magnitudes of the joint accelerations for the elbow pitch, wrist

pitch, and shoulder pitch joints are significantly less in position H than they are for

position G. The magnitudes of the other joints are remain the same. Figure 6.4 shows

that position F is the furthest from the shuttle in the Z direction, with respect to the end

effector coordinate reference frame. Position H is closest to the shuttle, while position G

is in-between F and H. All three positions have the same X and Y coordinates. This

implies that the further away the end effector is from the shuttle, the more important the

feedback linearization "inner loop" control law will be. Again, for positions G and H, it

is not until the joint rates reach 2.0 deg/sec do the nonlinear feedback terms dominate the

control input.
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Figure 6.10. EE Position H5, MS=1, RS=1
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Figure 6.4 and Table 6.1 show that position K has the same Z coordinate value as

position F. Its X coordinate value is smaller than that of position F. For position K1, the

joint accelerations due to the nonlinear feedback terms in the elbow pitch, wrist pitch, and

shoulder pitch joints are almost half that for position Fl. For joint rates greater than 0.7

deg/sec, the nonlinear feedback terms will be significant.
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Figure 6.11. EE Position K1, MS=1, RS=1
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For position K1, increasing the mass properties ten times and the dimension properties

five times only increases the magnitudes of the joint acceleration due to the nonlinear

feedback terms in all the joints by about 35 percent. Whereas, for position F, changing

the mass and dimension properties by the same amounts changed the joint accelerations

by over 400 percent. The joint accelerations in the elbow pitch, wrist pitch, and shoulder

pitch joints also changed signs. Hence, the mass properties and dimension properties

have different effects on different end effector positions.
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Figure 6.12. EE Position K1, MS=10, RS=5

2.5

90



The joint accelerations due to the nonlinear feedback terms for the elbow pitch, wrist

pitch and shoulder pitch joints are not as significant at position L1 as they are for the

position K which has the same X and Y coordinates. It is not until joint rates are greater

than 2.5 deg/sec that the joint accelerations due to the nonlinear feedback terms become

significant.
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Figure 6.13. EE Position L1, MS=1, RS=1
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EE position M5 yields even smaller joint accelerations for the nonlinear feedback terms

in the elbow pitch, wrist pitch, and shoulder yaw joints than position L1. This is expected

because position M is closer to the shuttle than position L. Both have the same X and Y

coordinates. This result supports the conclusion that the closer the end effector is to the

shuttle, the less significant are the joint accelerations due to the feedback linearization

terms.
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Figure 6.14. EE Position M5, MS=1, RS=1

From these plots, it is possible to summarize that the effect of the nonlinear feedback

term is dependent not only on the joint rates, but also on the end effector position, mass

properties, and dimensional properties. This implies that using feedback linearization

will have a significant impact on the system performance for higher joint rates and

maneuvers further from the shuttle. Currently, for space station size payloads, a joint rate

of .14 deg/sec is chosen to be the rate limit. At this slow rate, feedback linearization
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should have negligible effect on the performance of the system. Using feedback

linearization, which takes into account the joint acceleration due to the nonlinear

feedback term, should allow this joint rate to be increased. This, in turn, would reduce

mission time required for SRMS maneuvers and ultimately allow astronauts to perform

additional operations on-orbit.

6.3 Steering Algorithm
A realistic maneuver profile was created to be used with the design mode 1. Six points

were chosen based on the current MB5 berthing trajectory for the Space Station Freedom.

These points are described in Table 6.2. This trajectory was established to provide a

direct, well lighted, and visible profile.
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Table 6.2. MB5 Berthing Trajectory

POINT 1: SRMS at Capture Position

View: MB5 -Capture

RMSJOINT -90.03 deg 97.99 deg -60.02 deg -57.45 deg 0.00 deg 19.50 deg

S

EE position -674.4" 0.0" -907.8" 269.8 deg 270.0 deg 269.8 deg

POINT 2: SRMS moves station further out and up over starboard wing

View: MB5 - Station Positioned for final Attitude Ad ustment

RMSJOINT -134.22 deg 69.77 deg -46.72 deg -70.05 deg 33.32 deg 50.20 deg

S

EE position -429.6" 75.5" -828.4" 269.3 deg 288.2 deg 269.4 deg

POINT 3: SRMS moves payload in Y over Starboard Wing

View: MB5 -Station UBA Keel 5 Feet from the Orbiter Longeron

RMSJOINT -159.46 deg 87.00 deg -58.00 deg -94.28 deg 47.73 deg 77.82 deg

S

EE position -429.4" -91.3" -811.2" 269.3 der 288.2 deg 269.4 deg

POINT 4: SRMS moves payload in roll and Z to a 60 degree ELP

View: MB5 - Station aligned in Position with some Roll

RMSJOINT -169.49 deg 89.07 deg -59.93 deg -105.48 deg 51.06 deg 92.36 deg

S

EE position -429.4" -135.8" -795.4" 269.3 deg 288.2 deg 269.4 deg

POINT 5

View: MB5 - Capture

RMSJOINT -149.21 deg 83.63 deg -59.96 deg -97.23 deg 25.07 deg 74.97 deg

S

EE position --429.3" -41.4" -786.5" 269.7 deg 310.8 deg 269.8 deg
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POINT 6: SRMS at Capture Position

View: MB5 - Capture

RMS JOINT -156.15 deg 93.19 deg -92.95 deg -77.11 deg 26.78 deg 82.45 deg

S

EE position -428.7" -41.5" -671.9" 269.7 deg 310.9 deg 269.8 deg

The steering algorithm for the design model was generated via a modified "Rigid Body

Kinematic SRMS (KRMS)" code [16]. Rates for the different joints were computed

using EE position and rate limit information. The rate limits used for translation (X,Y,Z)

and rotation (pitch, yaw, roll) were 0.14 ft/s and 0.14 deg/s, respectively. It was possible

to generate a joint angle trajectory using these six points and rate information. First, the

maximum rates for maneuvers of each joint between the trajectory points were computed

based on the given rate limits. Then, using the computed rate information and the joint

angles for the trajectory points, it was possible to generate a joint angle history of the

maneuver. The approach taken was based on Euler's theorem and use of appropriate

quaternia.

Theorem 6.1 (Euler)The most general displacement of a rigid body with one point fixed

is equivalent to a single rotation about some axis through that point. [17]

The rigid body motion described in Euler's theorem rotates about the eigen axis [17].

Rigid body motion can be separated into translational and rotational components. The

translational components of motion can be specified by the motion of an arbitrary base

point which is fixed in the body , while rotational motion can be specified by changes in

orientation of the rigid body[ 17]. Translation and rotation rates are computed separately

and superimposed. The translation rate vector is determined from the product of the
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translation rate limit and the unit normal from the first end effector position to the second.

The rotation rate vector is determined from the product of the rotation rate limit and the

eigenaxis. In order to determine the eigenaxis, quaternia must be generated for the end

effector positions.

Quaternions perform coordinate transformations on vectors. A quaternion is an ordered

combination of scalar and (3D) vector elements which is capable of transforming 3D

vectors according to prespecified rules. Quaternia are the mathematical representation of

Euler's theorem. [18]

The notation for a quaternion of frame II with respect to frame I is

(6.1)

where V is the vector which lies along the single equivalent axis of rotation, and s is a

scalar which, along with V, yields the angle of rotation about the eigenaxis, v. v is a unit

vector.

Quaternions are used to perform coordinate transformations on vectors. They obey the

relationship

in = qulx qI

(6.2)

where x' is a quaternion whose scalar part is zero and is coordinatized in frame I, and

qi (q )-1. The form in which quperforms coordinate transformations according to

Eq. 6.2 is defined as
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Figure 6.15. Coordinate Transformation with a Quaternion

The quaternia from ORAS to the first end effector position, qEAS and from ORAS to the

second end effector position, qEAS, are computed using MATLAB macros. Successive

transformations can be grouped [18], this leads to

qEE2 qEE2 * qORAS
EE1 ORAS EE1

(6.4)

The eigenangle, 0, and eigenaxis, U, can then be extracted from Eq 6.4.

• EE2 EE2 (2:4S= sign(qEE) * qEE(2:4)

180
0 = 2 * a sin(lvll) *

_ V
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(6.5)

The time for the maneuvers are determined by the rates and distance between end effector

positions. The time for the translation and rotation part of the maneuvers are computed

separately. The longer time is used as the time of maneuver. The time for the translation

portion is computed by dividing the distance between the two points by the rate limit for

the translation maneuver. The time for the rotation maneuver is determined by dividing

the eigen angle by the rate limit for the rotation maneuver.

Timetrnsiatio = IlPoint 2 - Point II Timerotin eigen angle
Rate Limittranslation' Rate Limitrooso,

(6.6)

The translational rate for the maneuver is computed by taking the product of the rate limit

and the unit vector from Point 1 to Point 2. This rate is scaled if the time of the rotation

part of the maneuver is greater than the time of the translational part. The rotational rate

is determined by the product of the extracted eigen axis (Eq. 6.5) and the rate limit for

rotation. Again, this is scaled if the time for the translational portion of the maneuver is

longer than the time for the rotational portion.

Once the rates and time of maneuver are determined, the end effector positions and a joint

angle history can be generated using the modified "Rigid Body Kinematic SRMS

(KRMS)" code [16]. These end effector positions and joint angle trajectories, Figure

6.16 and 6.17, were then incorporated into the design model for evaluation. The "*" on

the plots indicate the values of the joint trajectory specified in Table 6.2.
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Figure 6.17. Joint Angle Trajectory

For point 1 of the maneuver, the joint angles do not yield a unique set of euler angles to

describe the attitude of the end effector. With respect to ORAS, the set of euler angles

generated by the steering algorithm, [1800 2700 1800] is equivalent to the desired set of

euler angles [269.80 2700 269.80]. The "RateInv" code was modified to choose the

[269.80 2700 269.80] set of euler angles. Figure 6.17 illustrates how the two sets of euler

angles are equivalent. The order of rotation is Pitch Yaw Roll for the euler sequences.

Frame A presents the direction of the coordinate frame. Frames B, C, and D present the

[1800 2700 1800o ] sequence. Frame B represents a 180 rotation about the pitch axis from

100
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Frame A; Frame C represents a 2700 about the Yaw axis from the system in Frame B;

and Frame D represents a 1800 rotation about the Roll axis from Frame C. Frames E, F,

and G present the corresponding euler sequence for [2700 2700 2700]. Notice that

Frames D and G yield the same configuration. Hence, the euler sequences [1800 2700

1800] are equivalent to the euler sequence [2700 2700 2700].

Frame A:
Order of Rotation:
Pitch-Yaw-Roll

Pitch
Yaw

Euler Sequence: [1 80 270 180]

Yaw
Frame B: A

Euler Sequence [270 270 270]

Frame E: Yaw

Pitch
Roll

Roll
Roll

Pitch

Frame C:

Pitch

Frame D:

Yaw

Yaw

Roll4f

Roll
I

Pitch

Frame F:

Frame G:

Yaw

Roll Pitch

4 Pitch

-- Pitch

Yaw

Figure 6.18. Euler Angles for Point 1
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6.4 Implementation of Steering Algorithm
The joint angle trajectory of Section 6.3 was used to test the design model, including the

current lead-lag controller, with and without feedback linearization. Because the joint

rates were so slow (0.14 in/s & 0.14 deg/s) the results with and without feedback

linearization were nearly identical. Recall, the results from section 6.3 showed that for all

such slow rates, the joint acceleration due to the feedback linearization terms are

insignificant as compared with the joint acceleration due to the control term. The results

from studying the system at such slow rates using feedback linearization indicate that it is

possible to implement feedback linearization in the system. For maneuvers at higher

rates, the joint acceleration due to the feedback linearization terms will become

significant as long as the Ay (difference between the commanded joint angle and the

actual joint angle) remain relatively small. Figure 6.19 presents the resulting joint angles

along with the prescribed trajectory. It is impossible to differentiate between the actual

joint angle history and the commanded trajectory in Figure 6.19 because they are nearly

identical.
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Figure 6.20 presents the joint rates commanded during the maneuver from Point 1 to

Point 6. As expected, the joint rates change direction and magnitude when the SRMS

moves from one point to another. Also the magnitude of the joint rates are relatively

small.
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Figure 6.20. Joint Rate History with and without Feedback Linearization

for 0.14 in/s and 0.14 deg/sec Rate Limits
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Figure 6.21 presents the resulting Ay histories. The magnitudes of Ay are greatest when

the trajectory changes from one point to another. Overall, the magnitudes of the Ay are

small, hence the commanded trajectories are followed closely.
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Figure 6.21. Ay History for 0.14 in/s and 0/14 deg/s Rate Limits
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6.5 Nonlinear Gearbox Model
Section 4.1 discussed the linear and nonlinear models of the gearbox. A SIMULINK

model of the nonlinear gearbox was generated and can be incorporated in the system

model. The linear and nonlinear gearbox models were subjected to the same motor rate

inputs from the servo model (obtained from a constant command input to the servo

model). The resulting joint toques and gear torques were in the same direction, but of

slightly different magnitudes. Figures 6.22 and 6.23 present the resulting linear and

nonlinear gearbox joint torques, respectively, while Figures 6.24 and 6.25 present the

resulting linear and nonlinear gearbox gear toques, respectively. Also, the frequency

content of the signals with and without the nonlinear model also differ. Incorporating the

nonlinear gearbox model will be more computationally intensive; however, it will yield

more accurate results.
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6.6 LQR Controller
In section 6.4 it was shown that it was possible to use the current linear lead-lag

controller in the outer feedback loop plant to stabilize the system. This section will

investigate the possibilities of replacing this lead-lag controller with a linear optimal

controller, namely a Linear Quadratic Regulator (LQR) for the system without feedback

linearization. A LQR controller will be designed for the SIMULINK 30th order model

that includes the reduced order servos.

Optimal Control theory is becoming increasingly important in designing modem control

systems because its objective is to minimize the cost function. Optimal control theory

helps to determine which control signals will cause a process to satisfy physical

constraints while minimizing performance criteria [19]. R.E. Kalman provided the

solution to the classical LQR problem in the 1960s. Since then, properties of the LQR

problem have been well developed [20]. Kwakernaak and Sivan [21] explain the details

of LQR theory. The solution to the LQR problem is known to be a constant gain matrix,

hence, the LQR does not increase the order of the closed-loop system.

Using an LQR compensator, it is possible to stabilize SISO and MIMO nominal models.

It also provides insight as to how the system will behave with model based compensators.

However, it does have limitations, including requiring full state feedback, which is

impractical in many applications.
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u y

Figure 6.26. System with LQR Compensator

LQR requires uncorrupted full state feedback; hence, the disturbance vector only includes

the process noise, and not the sensor noise. The general state space representation of the

system in Figure 6.26 is

, A B B3  'XP
e = C D,, DJ u

. C D C, D,,2 D, LU

(6.7)

where x, is the state vector, e is the error vector that includes the states and the controls

e = , d is thedisturbance vector, y is the output vector that is fed to the compensator

and u is the control input from the compensator to the plant. Because LQR requires full

state feedback, the C2 matrix is always the identity matrix, I.

The LQR method derives a feedback control law that minimizes the following quadratic

cost function. The cost function, presented in Eq. 6.8 is subject to the constraints of the

differential equations of the state variables.

J = [xQx, + uTRu]dt

(6.8)
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where Q is a positive semi-definite symmetrical matrix that weights the states. Q = NTN,

and [A,N] must be detectable. R is the positive definite symmetrical matrix that weights

the controls. The optimal feedback control law that is produced by the LQR method is

u = -KxP

K = R-B P

(6.9)

where P is the positive semi-definite solution of the "control" algebraic Riccati equation.

In general there are many solutions of the "control" algebraic Riccati equation, however,

only one is positive semi-definite. If [A,B] is controllable and if [A,N] is observable,

then P is positive definite.

0 = -PA - ATP - Q + PBR-B TP

(6.10)

The closed-loop dynamics of the system become

ip= Axp +B2u + Bid

u = -Kx,

i, = [A - B2K]x p + Bd

(6.11)

And, the poles of the closed loop system are guaranteed to be stable, i.e. in the left half

plane.

ReX,[A-B,2 K] <0, Vi

(6.12)

Stability of the nominal closed-loop system is assured regardless of the numerical values

of A,B,Q, and R. The exact locations of the closed-loop poles will, however, depend on

the numerical values of the given A and B, and chosen Q and R matrices.
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The weighting matrices Q and R were chosen based on Bryson's rule. The states that are

important, and weighted heavily are the joint angle and joint rate states. All controls

were weighted equally. It was desired that the magnitude of the change in joint angle be

less than one degree, or less than 0.017 rad. It was assumed that this is equivalent to a 0.1

deg/sec change and rate and 0.1 deg/sec change in the control. Using Bryson's rule [22],

the corresponding Q, and R matrices were chosen to be
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The state space for the system was obtained from a SIMULINK modell. The system

model contained a linear representation of the servos, gearbox, and nonlinear arm

dynamics model. Figure 6.27 presents a block diagram of the SIMULINK model that

1Note, when converting the SIMULINK block diagram representation of the system
into a state space representation, the states maybe rearranged by SIMULINK.
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was used to generate the LQR controller. The nonlinear arm dynamics model was

linearized about Point I in the trajectory. The joint acceleration was approximated as the

product of the composite inertia matrix at Point 1 and the control input. The other terms

from Eq. 4.3 are higher order terms that are not significant in the approximation.

MATLAB tools were used to solve the "control" algebraic Riccati equation and derive the

required gain matrix.

_State State H- i

Space Space

Figure 6.27 SIMULINK Model Used to Generate LQR Gain Matrix

The LQR compensator was integrated with the SIMULINK model of the system. The

states associated with Ay and A were weighted most through Q. A block diagram of the

system is presented in Figure 6.28. The steering command input is the same as the one

used for the current lead-lag controller model.

I SteeringI , y. _ Command
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Figure 6.32 SIMULINK Model of LQR Controller Integrated with System



The LQR controller was designed based on linearizing the nonlinear arm dynamics about

Point 1 of the trajectory. As the SRMS moves away from this point, LQR does not

guarantee system stability. This effect is seen in Figures 6.29 through 6.31. As the

SRMS approaches Point 2 of the trajectory after 150 seconds of motion, the controller

can no longer stabilizes the system.
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6.7 Pole Placement Controller
Using input-output feedback linearization it is possible to represent the nonlinear arm

dynamics as a set of twelve integrators (two differentiations are required to get to the

input and there are six joints). A pole placement controller can be designed in the outer

feedback loop to stabilize the decoupled system, which also contains the servos and

gearbox models. This pole placement controller is made up of twelve SISO lead-lag

controllers. Using such a controller is different from the current lead-lag controller,

which was applied only to the Ay states for feedback. The new pole placement controller

will be applied to the Ay states as well as the Aj states for feedback. The pole placement

method was used to design a controller for the system with and without feedback

linearization.

First, a pole placement controller was designed for the system at Point 1 without feedback

linearization. The current lead-lag controller with a gain of 0.1 was used in the Ay states,

while the current lead-lag controller with a gain of 0.01 was used in the A states. The

system without feedback linearization is stable for Point 1, however, when the SRMS

moves to the subsequent points, some of the closed loop poles move to the right half

plane (see highlighted cells), resulting in instabilities. Figure 6.32 and 6.33 present a plot

of the pole locations for Point 1 through 6, while Table 6.3 present the corresponding

pole locations.
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Pole Locations for Point 1, 2 and 3
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Figure 6.32. Pole Locations for Point 1,2 and 3
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Figure 6.33. Pole Locations for Point 4, 5, and 6
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Table 6.3. Pole Locations for Point 1,2, 3, 4, 5 and 6
Point 1 Point 2 IPoint 3 Point 4 Point 5 Point 6
-0.007 -0.0062 1-0.0064 -0.0064 -0.007 (-0.0061

1-0.0071 1 -0.0072 -0.0077 -0.0076 -0.0071 ]-0.0073
-0.0096 -0.01 -0.0096 -0.0098 -0.0096 -0.0101
-0.0123 1-0.0126 1-0.0133 -0.0131 I-0.0122 -0.0118
-0.0012-0.0191i 0.0010-0.0134i 0.0014-0.0138i 0.0011-0.0141i -0.0125 -0.0122
-0.0012+0.0191i 0.0010+0.0134i 0.0014+0.0138i 0.0011+0.0141i -0.0125 -0.0125
-0.0047-0.0202i -0.0030-0.0212i -0.0208 -0.0183 (-0.0135 -0.0125
-0.0047+0.0202i -0.0030+0.0212i -0.0128-0.0261i -0.0022-0.0236i -0.0008-0.0185i 0.0014-0.0126i

1-0.0248 -0.0258 -0.0128+0.0261i -0.0022+0.0236i -0.0008+0.0185i 0.0014+0.0126i
(-0.0463 -0.027 -0.0455 -0.0256 -0.0024-0.0199i -0.0037-0.0220i

-0.0523 -0.0549 -0.0535 -0.0547 -0.0024+0.0199i -0.0037+0.0220i
-0.0391-0.1054i -0.1169 -0.0988 -0.1176 -0.0257 -0.0263
-0.0391+0.1054i -0.1227 -0.123 -0.1227 -0.0273 -0.0302
-0.1142 -0.1250-0.0000i -0.125 -0.125 -0.0546 -0.0529

S-0.1195 I-0.1250+0.0000i -0.125 -0.1250-0.0000i I -0.1179 -0.1162
S-0.125 (-0.125 -0.1250-0.0000i -0.1250-0.0000i '-0.1204 -0.1232
(-0.125 -0.125 -0.1250+0.0000i -0.1250+0.0000i --0.125 -0.125
1-0.125 -0.125 -0.125 -0.1250+0.0000i -0.125 -0.1250-0.0000i
(-0.125 -0.125 1-0.125 -0.125 -0.125 -0.1250+0.0000i

-0.125 -0.0453-0.1464i i -0.0434-0.1393i -0.0469-0.1730i -0.125 -0.125
(-0.125 ]-0.0453+0.1464i -0.0434+0.1393i -0.0469+0.1730i( -0.1250-0.0000i -0.125
1-0.0675-0.2949i -0.2154-0.6517i -0.0579-0.2338i (-0.0612-0.2993i -0.1250+0.0000i -0.125
1-0.0675+0.2949i (-0.2154+0.6517i -0.0579+0.2338i 0.0612+0.2993i -0.0450-0.1434i -0.0494-0.1418i

-0.2087-0.9571i -0.3240-0.8166i -0.0752-0.3093i -0.5625-0.9440i -0.0450+0.1434i -0.0494+0.1418i
-0.2087+0.9571i -0.3240+0.8166i -0.0752+0.3093i J -0.5625+0.9440iI -0.0541-0.2423i -0.0429-0.1662i
-0.5042-0.9168i -0.3450-1.3855i -0.5052-1.0501i ] -0.5703-1.0898i -0.0541+0.2423i -0.0429+0.1662i
-0.5042+0.9168i -0.3450+1.3855i -0.5052+1.0501i -0.5703+1.0898i -0.5835-0.9770i -0.0817-0.3350i
-0.5740-1.3141i -0.5286-1.3742i -0.5732-1.3143i -0.5740-1.3132i -0.5835+0.9770i ( -0.0817+0.3350i
-0.5740+1.3141i ( -0.5286+1.3742i -0.5732+1.3143i J -0.5740+1.3132i -0.6246-0.9723i -0.5673-0.8943i
-0.5230-1.3745i -0.6096-1.3506i -0.5646-1.3257i -2.0709 -0.6246+0.9723i -0.5673+0.8943i

Next, a pole placement controller was designed with feedback linearization. A block

diagram of the SIMULINK model with this pole placement controller is presented in

Figure 6.34. The current lead lag controller with a gain of 0.1 was applied to the Ay states

in the new design. Six SISO lead-lag controllers with gains of 100, zeros at -1 and a pole

at -10 were chosen to be used with the A' states. This pole placement controller placed

the poles of the linearized system at: -0.0068+0.0089i, -.0068-0.0089i, -109.0833 and

-0.9167.
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Figure 6.34. SIMULINK Model of Pole Placement Controller

The same trajectory for the lead-lag compensator was used with the pole placement

compensator. Figures 6.35 through 6.37 present the joint angle, joint rate and Ay histories

for the trajectory. Again, because the rate limit for the trajectory was set to be 0.14

deg/sec, the joint angle history with the pole placement controller that uses feedback

linearization should be similar to the current lead-lag controller. If the rates were

increased so that the feedback linearization terms became significant and the difference in

the commanded joint angle and the actual joint angle was kept small, then it is expected

that the pole placement controller, using the feedback linearization, will perform better

than the current lead-lag controller.

With the pole placement controller, the trajectory is followed closely. The commanded

joint angle trajectory is plotted with the actual joint angle history in Figure 6.34; they are

nearly identical.
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Figure 6.35. Joint Angle History for Pole Placement compensator

The joint rates for each of the joints are shown in Figure 6.36. The rate profiles for the

shoulder yaw, shoulder pitch and elbow pitch joints are nearly identical to those that for

the current lead-lag controller with and without feedback linearization. However, for the
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three wrist joints, the maximum rates for the pole placement controller are 40 percent less

than that for the current lead-lag controller.
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Figure 6.36 Joint Rate History for Pole Placement Controller

Figure 6.37 presents the Ay, the difference between the commanded joint angle trajectory

and the actual joint angle history for the six different joints. The Ay plots for the elbow

pitch and wrist yaw joints are similar in magnitude as the Ay for the current lead-lag

125

.L



controller, shown in Figure 6.21. The four other joints have larger magnitudes in Ay for

the pole placement controller than for the c
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Figure 6.37 Ay History for Pole Placement Controller
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Chapter 7

Conclusions and Future Work

SIMULINK models were generated for the SRMS system with the current lead-lag

controller, a pole placement controller, and an LQR controller. The servos and gearbox

models were linearized in the design model. Model reduction techniques were applied to

the 42
nd order model with servos to obtain a 12th order model. This allows for faster

computation time and an implementable system. The nonlinear arm dynamics were

modeled using the equations of motion for the SRMS.

This thesis has demonstrated some of the advantages in using simple feedback

linearization techniques. The current lead-lag controller is used with rate limits of 0.14

deg/sec. At this slow rate, the joint acceleration due to feedback linearization terms is

insignificant; however, at higher rates the joint acceleration due to the feedback

linearization terms begin to dominate the control. Hence, if the rate limits were

increased, using the feedback linearization control law in the "inner" loop would improve

performance. It was also determined that the joint accelerations due to feedback

linearization terms are dependent on the location of the end effector and the dimension

properties of the payload. If the end effector is maneuvering a payload further out from

the shuttle, the joint accelerations due to the feedback linearization terms will be greater

than if the end effector were maneuvering a payload closer to the shuttle.
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A nonlinear gearbox model was developed to replace the linearized gearbox in the SRMS

model. The linear and nonlinear gearbox models were subjected to the same motor rate

inputs from the servos. The resulting joint toques and gear torques were in the same

direction, but of slightly different magnitudes. Also, the frequency content of the signals

with and without the nonlinear gearbox model differed due to the nonlinear stiffness

representation.

Exploring the possibilities of incorporating a higher bandwidth controller than the current

lead-lag controller, an LQR controller was designed for the system without feedback

linearization. Using this type of controller would enable the system to be stabilized when

boom and gear flexibility are included in the system model. The present lead-lag

controller would not provide good active damping of boom and gearbox flexibility

because of the low bandwidth design and the lack of joint rate feedback. LQR

compensation can not be counted on to stabilize the nonlinear system as demonstrated in

Chapter 6. Future work might include developing a model based compensator for the

including feedback linearization for a trajectory following problem with active damping

of SRMS flexibility.

Finally, using feedback linearization, the nonlinear system appears to be a set of twelve

integrators. It was possible to design a pole placement controller in the "outer" loop for

this decoupled system. This system yielded smaller joint rate histories for the wrist joints

than the current lead-lag controller system. The pole placement controller should can

handle the vibration suppression problem better than the current lead-lag controller

because the velocity states are fed back and it is possible to add more lead to the

compensator and increase the bandwidth.
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A possible extension of this thesis could include incorporating the techniques that

Prakash [2] investigated for the position hold mode to the trajectory following problem.

Prakash studied optimal control techniques to achieve fine control of the end effector in

the presence of flexible-body dynamics and modeling uncertainty for the position hold

mode. Boom flexibility issues can be addressed if end effector position measurements

can be obtained, since flexibility is not observable in the current joint encoder

measurements. Input/output feedback linearization would be required to maintain

stability over the operating envelope of the SRMS.

Future work might also include implementation of the candidate controller on the high-

fidelity, multi-flex-body, Draper RMS Simulator (DRS) to test its performance in

berthing the SSF Stage 4 in the Orbiter bay via an automatic sequence. The speed of the

maneuver and accuracy of the control could be compared to the existing SRMS

controller.
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