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ABSTRACT

This thesis is concerned with the use of state
variable techniques for solving Fredholm integral equations, and
the application of the resulting theory to several optimal commun-
ications problems. The material may be divided into the
following areas;

(i) the solution of homogeneous and nonhomogeneous Fredholm
integral equations;

(Li) optimal signal design for additive colored noise channels;
(iii) optimal smoothing and filtering with delay;
(iv) smoothing and filtering for nonlinear modulation systems;
(v) estimation theory for a distributed environment.

A method for solving Fredholm integral equations
of the second kind by state variable techniques is derived. The
principal advantage of this method is that it leads to effective
computer algorithms for calculating numerical solutions. The
only assumptions that are made are: (a) the kernel of the integral
equation is the covariance function of a random process; (b) this
random process is the output of a linear system having a white
noise input; (c) this linear system has a finite dimensional
state-variable description of its input - output relationship.

Both the homogeneous and nonhomogeneous integral
equations are reduced to two linear first-vector differential
equations plus an associated set of boundary conditions. The
coefficients of these differential equations follow directly from
the matrices that describe the linear system. In the case of the
homogeneous integral equation, the eigenvalues are found to be
the solutions to the transcendental equation. The eigenfunctions
also follow directly.

In addition, the Fredholm determinant function is
related to the transcendental equation for the eigenvalues. For
the nonhomogeneous equation, the vector differential equations
are identical to those that have appeared in the literature for

tz
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optimal smoothing. The methods for solving these equations are
discussed with particular consideration given to numerical
procedures. In both types of equations I several analytical and
numerical examples are presented.

The results for the nonhomogeneous equation are
then applied to the problem of signal design for additive colored
noise channels. Pontryagin's Principle is used to derive a
set of necessary conditions for the optimal signal when both its
energy and bandwith are constrained. These conditions are
then used to devise a computer algorithm to effect the design.
Two numerical examples of the technique are presented.

The nonhomogeneous Fredholm results are applied
to deriving a structured approach to the optimal smoothing
problem. By starting with the finite time Wiener'<Hopjtequati.on
we are able to find the estimator structure. The smoother results
are then used to find the filter realizable with the delay. The
~erformance of both of these estimators are extensively discussed
and illustrated.

The methods for deriving the Fredholm theory results
are extended so as to be able to treat nonlinear modulation systems.
The smoother equations and an approximate realization of the
realizable filter are derived for these systems.

Finally I an approach to estimation on a distributed
medium is introduced. The smoother structure when pure delay
enters the observation method is derived I and a simple case is
illustrated.

Thesis Supervisor: Harry L. Van Trees
Title Associate Professor of Electrical Engineering
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CHAPTER I

INTRODUCTION

One of the more powerful techniques used in the analysis

of communication problems is the Fredholm integral equation

theory. 1, 2, 3, 4 Often, however, this theory is difficult to use because

solution methods are either too tedious for analytic procedures or too

awkward for convenient implementation on a digital computer.

In recent years, state variable techniques have become

increasingly useful, especially in optimal control theory. 5, 6,7 This

is primarily due to their adaptability to computational approaches.

In this thesis we shall deve lop a state variable theory for solving

Fredholm integral equations. We shall then apply this theory to

several problems in optimal communications.

State variable methods have already provided solutions

to several important problems in communication theory. Undoubtably

the most significant of these is the original work of Kalman and Bucy

8
on linear filtering theory. Starting with this work, many people

have used these techniques for the detection and estimation of random

9,10
processes.

b
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The major advantage that these techniques offer is

that they lead to solutions which are readily implemented on a

digital computer. Their essential aspect is that the systems or

random processes which are involved are represented in terms

of differential equations rather than by impulse, responses and

covariance functions. Since the digital computer is ideally suited

for integrating differential equations, we can see how this type

of formulation leads to convenient computational methods of

solutions.

There is a second important advantage of state variable

techniques. Historically, the concept of state found its first

application in optimal control theory. Over the years, control

theorists have developed a vast literature pertaining to state variable

methods. As a result, in using a state variable approach to our

problems, we can expropriate many of the methods that have been

developed in this area.

The application of the Fredholm integral equation

theory to communications is certainly well known. The homogeneous

integral equation, with its elgenfunctdons and eigenvalue s , is

probably most familiar in the context of a Karhunen- Loeve expansion

f d 11S' hi . h ' f ho a ran om process. mce t IS expansron t eory IS 0 ten t e

starting point in the analysis of a particular problem, it is easy

to see why we are interested in being able to determine the

eigenfunctions and eigenvalues for this equation. Similarly, the

b
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nonhomogeneous equation is often encountered. Its solution specifies

the optimal receiver and its performance for detecting a known

signal in additive colored noise. 3,4 Other applications of it include

the solution to the finite time Wiener- Hopf equation and accuracy

bounds for parameter estimation.

The major difficulty in using the Fredholm theory is

in obtaining solutions to these equations. With the exception of a

limited number of cases, finding analytic solutions is difficult

at best, while current numerical methods tend to use a large amount

of computer time. This is where major contribution of this thesis

lies. For a wide class of Fredholm equations of interest we shall

apply state variable methods to the problem of finding solutions

to these equations. Because of the inherent computational advantages

that these techniques offer, we shall be able to devise a solution

algorithm that is both well suited and efficient for implementing

on a digital computer.

We shall find, however, that our solutions are of more

general interest than for just solving these integral equations.

We shall apply our results to several problems in communications.

By coupling our method for solving the nonhomogeneous

equation with the Minimal Principle of optimal control theory, we

shall be able to formulate and solve a signal design problem for

additive colored noise channels where bandwidth and energy

. . d 13,6constr-aints are Impose .
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We can also use the nonhomogeneous equation to

14,15,16
derive the state variable form of the optimal smoother.

With the smoother equations we shall be able to find a structure

for the filter realizable with a delay. We shall also be able to

analyze the ner-for mance of both structures.

We shall also find that the technique we used in

solving the Fredholm equations may be used to solve new problems.

By extending these techniques, , we shall be able to find the

smoothe r equations for nonlinear modulation systems. Again

bor-r-owing results from control theory, we shall also derive an

R1 '"'lroximation to the realizable filter from the smoother structure

far this p-r-oblem, 17

The final topic that we shall treat is apparently

quite divorced from the Fredholm theory. This is due only to

our approach. In processing array data, delay factors often

enter the signals. In this topic we shall use a variational approach

to derive the smoother structure when pure delay enters our

observation process. We use a variational approach for simplicity.

It is possible to develop and use a Fredholm theory approach;

however, this leads to a significantly longer derivation.

Before proceeding let us outline the sequence of

material in the thesis. In Chapter 2 we shall introduce the

concepts for describing random processes by state variable methods.

We shall also derive an important result that is used throughout
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the thesis. In Chapter 3 we shall consider the solution of the

homogeneous Fredholm integral equation. We shall derive a

transcendental equation for the eigenvalues, and then determine

the eigenfunctions. We shall also show how to calculate the

Fredholm determinant. 2,4 In Chapter 4, we shall consider

the nonhomogeneous equation solution. We shall derive a set

of differential equations that specify its solution. Then we shall

present several solution methods which exist for solving this

particular set of equations.

In the remainder of the thesis we shall apply the

results of Chapters 2-4. In Chapter 5 we consider optimal

signal design for detection in additive colored noise channels.

In Chapter 6, we present an extensive discussion of linear smoothing

and filtering with delay. In Chapter 7, we extend our results

to treat smoothing and filtering for nonlinear modulation systems,

while in Chapter 8 we present an approach to estimation theory

when delays occur in the observation method.

We shall present many examples. We do this for

two reasons. We shall work a number of analytic examples to

illustrate the use of the methods we derive. We shall also

present a number of examples analyzed by numerical methods.

In the course of the thesis we shall emphasize the numerical aspects

of our methods. We feel this is where the major application, of

much of the material lies. Most problems are too complex to be
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analyzed analytically, so finding effective numerical procedures

is a very relevant problem.

We also want to indicate our notational conventions.

Generally, scalars are lower case symbols which are not underscored;

vectors are lower case symbols which are underscored; and matrices

are upper case symbols which are not underscored.
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CHAPTER II

STATE VARIABLE RANDOM PROCESSES

In this chapter we shall introduce some of the concepts

and properties of state variable random processes that we shall

need. First, we shall review the ideas of the description and

generation of random processes using state variable methods. Then

we shall develop some of the properties of the second order moments

of these processes. We shall also introduce two processes which

we use in many of our examples. Finally, we shall present a

derivation which is common to many of the problems that we

shall ana lyz e .

A. Generation of State Variable Random Processes

In this section we shall briefly review some of the

concepts associated with the description and generation of random

processe s using state variable methods. This is done principally to

establish our notation conventions and terminology. For a more

detailed discussion we refer to references 3 and 8.

In the application of the state variable methods to

communication theory problems, the random processes of interest

are usually characterized as being generated by a dynamical system

that is excited by a white noise process. Consequently, the

relevant information, which must somehow be provided, is the
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equations describing the operation of the dynamical system and a

description of the white noise excitation rather than the probability

density(ies) or moments of the processes. It is this point of view

that we shall assume regarding the description of our random

processes.

This is not a very restrictive assumption, as we can

generate a large class of processes of interest. In particular, we

.can generate the important class of stationary processes with

rational spectra quite conveniently using constant parameter, linear

dynamical systems.

The majority of the processes that we shall discuss are

generated by a system whose dynamics may be described in terms

of a finite dimensional, linear, ordinary differential equation,

termed the state equation,

d~~t) = F(t)!(t) + G(t)~Jt), (linear state equation)) (2. 1)

where

!(t) is the state variable vector (n x 1),

~(t) is the white excitation process (m x 1),

F(t) (n x n) and G(t) (n x m) are matrices that

determine the system dynamics.

(For notational simplicity, we shall work with continuous time

processes. In the study of processes generated by a nonlinear

dynamical system, this introduces some attendant mathematical

difficultie s; however, we shall not dis cuss them here. 10) In general,

b
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we shall assume that ~(t) is white, i. e., it may be interpreted as the

derivative of an independent increment process. Consequently, we

have (assuming zero mean)

(2. 2)

In order to describe a state variable equation completely,

the initial state of the system must be considered. We are concerned

with representing a random process over the time interval

We shall assume that the initial state x(T ) is a zero- 0

mean random vector with a covariance matrix given by

E [ x(T )xT(T )] = p .
- 0 - 0 0

(2. 3)

In the case of a deterministic input signal and deter-

ministic initial conditions, knowledge of ~(To) and U(T) for

T :5 T :5 t is sufficient to determine x(t) for all t , With a randomo -
input and/or random initial conditions we can determine the

covariance matrix of the state vector,

K (t , T) = E[x(t)xT( T)] ,
x - -

(2.4)

for all t and T greater than To. We should note that this is true

only when the state representation is linear as we have assumed

in Eq. 2. 1.
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Generally, one does not observe the entire state vector

at the output of a dynamical system, ~, in many case s only the

first component of the vector is observed. Consequently, we must

specify the relationship between the observed random process and the

state vector, of the dynamic system. For the majority of the

random processes that we shall consider, we shall assume that the

observation relationship is a linear, possibly time -varying,

no memory transformation, i.e. , the observed random process

l(t) is given by

(observation equation). (2.5)

(If the observation is a linear transformation which involves memory,

and this transformation is representable in terms of a system of

state variables, 1.e. , there is an ordinary differential equation

describing the operation, we can reduce it to the previous case by

simply augmenting the state vector and then redefining the matrix C(t).)

In Fig. 2. 1 we have illustr ate d a block diagr am of the dynamic

system that generates the random processes of interest.

Finally, in a communications context, additive white

noise is often present in the actual observation. Consequently, we

shall consider signals of the form

.,!"(t) = ~(t) + w(t), (2. 6)

where

~(t) is a process generated as previously discussed,

w(t) is a white noise process.
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We assume that ~(t) has zero mean and a covariance matrix given by

by

(2. 7)

where R(t) is a positive definite matrix.

Before proceeding several comments are in order.

It is often convenient to describe the random processes

in terms of the system that generates them. On occasion we shall

do this, e. g. constant parameter systems refer to the processes

that may be generated by a dynamical system with a constant state

descripti on, e. g. stationary pr oces ses, or the Wiene r proce ss .

We have avoided introducing the assumption of Gaussian

statistics for x(T ), u(t) and w(t). We shall indicate whenever it is
- 0 - -

necessary to introduce this assumption; however, for many of our

derivations it is unnecessary since we use a structured linear

approach rather than an unstructured Gaussian approach.

In two of the chapters we shall analyze problems which

involve either processes which are generated by nonlinear dynamical

systems or those which are observed linearly through a distributed

medium, 1. e., the observation method cannot be described in terms

of a finite dimensional state equation. Since the notation required

for the description of the generation of these processes is peculiar

to the individual chapter we shall defer introducing it until then.

Finally, we shall usually work with low pass waveforms.

In Appendix B we have introduced the concept of a complex state

variable. This concept allows us to analyze bandpass waveforms of
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interest with very little modification to the low pass theory that we

shall develop.

B. Covariance Functions for State Variable Processes

Several of our derivations concern the covariance matrix

Ki(t, T) of a random process .l(t) which is generated by the methods

described in the previous section. In this section we shall briefly

review how this covariance can be related to the matrices which

describe the system for generating the random processe s.

The covariance matrix of l(t) is defined to be

(2.8)

By using Eq. 2.5, K (t, T) is easily related to thel .
covariance matrix of the state vector x(t),

TK (t ,T) = C(t)K (t , T)C (T).
l ~

(2. 9)

InAppendix A, the following result is shown:

K (t , T) =x

(2.10)

e(t, T)K (T, T) for t ~ T,
X

where e(t, T) is the transition matrix for the system defined by the

matrix F(t), 1. e. ,
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ddt e{t, T) = F{t)e(t, T), (2.11a)

e( T, T) = 1. (2. lIb)

Furthermore, in Appendix A, it is shown that the matrix K (t, t)x

satisfies the following differential equation.

ddtK (t, t) = F{t)K (t , t) + K (t, t)FT{t) + G{t)QGT{t), (2.12a)x x x
t > To'

with the initial condition

K (T ,T ) = P .x 0 0 0
(2.12b)

Because many of our examples concern stationary

processes and constant parameter systems we shall make some

comments regarding their generation. Let us assume that the

matrices describing the generation of l{t) are constant. Con-

sequently, the transition matrix e{t, T) is given by the matrix

exponential

"(t ) - F(t-T)c ,T -e . (2.13)

Furthermore, let us assume that P is chosen to be the steadyo
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• ;'<
state solution P to Eq. 2.12a. Therefore, K (t , t + A t) is a

00 ~

function only of At. We have

K (t , t+At =x- (2.14)

e -FAt P
oo

» At:S 0,

At 2= o.

We shall use two particular stati onary proce sses in

several of our examples. The first is the first order Butterworth,

or one -pole , process. The covariance function for this proce ss is

(2.15)

The state equations which describe the generation of this process

are

*One can evaluate Poo using transform techniques. It is easily
shown that



25

~~t) = -kx(t) + u(t), t >~, (2. 16a)

y(t) = x(t), (2. 16b)

E [ u(t)u (T)] = 2kS o(t -T), (2. 16c)

(2. 16d)

The matrices involved are

F = -k

G = 1

c = 1

P = So

Q = 2kS (2.17 a-e)

We shall use this process to illustrate analytically many

of the techniques that we shall develop.

The second process we shall use in examples to illustrate

the numerical aspects of an analysis using our techniques. This

process is generated by a two dimensional state equation where the

matrices describing the process generation are

F= l:o _lJ C = [ 1 0]

G= GJ p = [4 4:Jo 0 (2. IBa-e)

Q = 160
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The process l(t) is a stationary process whose covariance function is

(2. 19a)

and whose spectrum is

s (w) =y
40

(2. 19b)

We have illustrated these functions in Figs. 2. 2a and

2.2b. We have included this process principally to illustrate some

of the computational aspects of our techniques. We have also chosen

to state matrices such that the spectrum of y(t) has a peak in it

away from the origin. This will introduce some interesting aspects

~ some of our examples. We should also note that in all our

examples, any analysis involving this process would require a

prohibitive amount of time.

G.. The Derivation of the Differential Equations for

K (t ,T) f( T) dTX. -

Many of the problems in communication theory that we

shall analyze involve the integral operation
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~(t) K (t ,T) f( T) dT ,
Y.. -

(2. 20)

In the study of Fredholm integral equations i(t) is either related to

the eigenfunction 1(t) in the homogeneous case, or it is the solution

.B:(t)in the nonhomogeneous case. In linear estimation theory, this

is the integral operation specified by the Wiener-Hopf equation. In

this section we shall derive a set of differential equations for this

integral operation. Solving these differential equations is

equivalent to performing the integral operation specified by

Eq. 2.20. In many of our derivations, we shall use these dif-

ferential equations to convert an integral operator to a set of dif-

ferential equations.

Let us now proceed with our derivation. By using

Eq. 2.9, we may write Eq. 2.-20 as

1.(t) = C(t)i(t), (2.21)

where

Tf

W) A S Kx(t, T)C T( Tl.!( T)dT, T 0:5 t :5 Tf"

To

(2.22)

We shall now determine a set of differential equations

in terms of the function i(t). Substituting Eq. 2•..l0in Eq. 2.22,

we have
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~(t)
Te(t,-r)K (-r, -r)C (-r)f(-r)d-r

x -

Tf

+ Kx(t,t) S 9T(T,t)CT(T)f(T)dT, Toost os Tf'
t

(2. 23)

If we differentiate Eq. 2. 23 with respect to t , we obtain

t

= 5

Tf

+Kx(t, t) S 89Ta~T,t) CT (T)f( T)dT , To os t os Tf'

t

(2. 24)

We have used Eq. 2. lIb and cancelled two equal terms. In the

first term of the right-hand side of Eq. 2. 24 we substitute Eq. 2. lla,

and in the last term we use the fact that eT(-r, t) is the transition

matrix for the adjoint equation of the matrix F(t). 6 That is,

a T T Tat e (-r,t) = -F (t) e (-r,t). (2. 25)
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When we make these two substitutions in Eq. 2. 24, we obtain

d~~t) = F(t) Te(t ,or) K (T, T)C (T)f(T)dTX -

[
dKX(t, t) T J TSf T T

+ -dt - K (t, t)F (t) e (T, t)C (T)f(T)dT,
~ t

(2. 26)

By applying Eq. 2. 12a, we obtain

Tf

+[ F{t)Kx(t, t) + G{t)Q GT{t)] S 9T{T, tIC T{ T)f{T)dT,

t

(2. 27)

After rearranging terms and using Eq. 2.23, we finally have

Tf
dS(t) T S T Tdt = F(t) S(t) + G(t)Q G (t) e (T, t)C (T)-!(T)dT,

t

(2. 28)
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At this point we have derived a differential equation

for ~(t); however, we see that an integral operation still remains.

Let us simply define this integral operation as a second linear

functional of iJt):

Tf

:'lIt) - SeT (T, t)C T(T).!.(T)dT, To ;S t ;S Tf"
t

(2.29)

Therefore, we have

(2. 30)

It is now a simple matter to derive a second differential

equation which !l(t) satisfies. Differentiating Eq. 2.29 gives us

. Tf
dn (t) T T S T Tdt = - C (t)f(t) - F (t) e (T , t)C (T) f(T) dT ,

t

(2.31)

where we have again used the adjoint relationship given by

Eq. 2. 25. After substituting Eq. 2. 27, we have

(2.32)
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We now want to derive two sets of boundary conditions

which Eqs. 2. 30 and 2. 32 satisfy. In all the applications that we

shall consider, the function f(T) is bounded at the end points, t = To
and t = Tr Consequently, by setting t = Tf in Eq. 2.29, we

obtain

(2.33)

The second boundary condition follows directly from Eq. 2.23. If

we set t = T , the first term is zero, while the second term may beo

written

Tf

=K (T ,T) 5 gT(T,t)C(T)f(T)dT,x 0 0 -
- T

o

(2. 34)

or

g(T ) = K (T ,T ):O,{T) = P ,,(T ).
-0 xoo 0 Q...l.O

(2.35)

It is easy to see that the two boundar-y conditions given by Eqs. 2.33

and 2. 35 are independent.

We may now summarize the results of our derivation.

We have derived two differential equations:

(2. 30)

(repeated)
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d~(t) T<it = -C(t) f(t) - F (t)!l.(t), (2.32)
(repeated)

In addition, we have the boundary conditions

(2.35)
(repeated)

(2.33)
(repeated)

The relation to the original integral operation is given by

Tf

S(t) = C(t)~(t) = S
To

K (t ,T)f( T)d-r , T :S t :S Tf.X 0
(2.36)

Notice that the only property of i(t) which we required

was its boundedne ss at the endpoints of the interval. (This

excludes considering equations of the first kind where singularity

functions may appear there.) Equations 2. 23 and 2. 35 each imply

n linearly independent boundary conditions. Since the differential

equations are linear, any solution that satisfies the boundary

conditions is unique. Finally, the derivation of these equations can

be reversed in order to obtain the functional defined by Eq. 2. 22;

that is, we can integrate the differential equations rather than differen-

the integral equation. Consequently, the solution ~(t) to the

differential equations must be identical to the result of the

functional operation of Eq. 2. 22. This implies that the existence

of a solution ~(t) that satisfies the boundary conditions is both
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necessary and sufficient for the existence of the solution to the

operation defined by Eq. 2. 22.

In this chapter we have developed the concepts that we

shall need. In addition, we have presented a derivation which we

shall utilize in several subsequent chapters. We shall now use this

material to develop a theory for the solution of Fredholm integral

equations. We then shall apply this theory to several problems in

optimal communications.
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CHAPTER III

HOMOGENEOUS FREDHOLM INTEGRAL EQUATIONS

Homogeneous Fredholm integral equations play an

important role in theoretical communications. As a theoretical

tool, their most important use arises in the theory of Karhunen-

Loeve expansions of a random processes. One of the more

difficult aspects of this the ory is that, except in a limite d number

of cases, it is very difficult to find solutions to these equations.

We shall now apply a state variable method to find a solution

technique that is both analytically efficient and is especially well

suited for determining solutions by computational methods. We

shall then work a number of examples to illustrate the technique.

Finally, we shall show how our re sults can be us ed to find the

Fredholm determinant function.

A. The State Variable Solution to Homogeneous Fredholm

Integral Equations

The homogeneous Fredholm integral equation is usually

written

Tf5 Ky<t, T)1<T)dT = ~1<T) ,
To -

(3. 1)
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where the kernel K (t, T) is the covariance matrix of a vector
'l..

random process l.(t) which is generated by the methods described

in the previous chapter, .1(t) is an eigenfunction solution, and A

is the associated eigenvalue. (We should note that we are using a

vector eigenfunction-scalar eigenvalue expansion. 18,3 In this

expansion we have

00

-y(t) = L
i = 1

y.m.(t),
l.!.l

(3. la)

where the generalized Fourier coefficient is a scalar given by

Tf

Yi = S l:T( -r)li( -r)d-r
To

(3. lb)

v
This type of expansion is necessary if the components of y(t) are

"'"
corre la ted. )

The solution to this equation is an eigenvalue problem.

There are an at most countable number of values of A > 0 for which

solutions exist to Eq. 3. 1 and there are no solutions for A< o. If

K (t, T) is positive definite, then the solutions to Eq. 3. 1 have
S.
positive eigenvalues and form a complete orthonormal set. However,

if K (t, T) is only non -negative definite, then there exists solutions:y..
~ (t) with zero eigenvalues, i .e. , they are orthogonal to the kernelo
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Tf

S KX(t, T)~O(T)dT = 0, To;5 t ;5 Tf·

To

(3. 2)

We shall consider finding only those solutions with positive eigen-

values.

,If we index the eigenvalues and their associated eigen-

function by the subscript i, the integral Eq. 3.1 becomes

K (t, T) $. (T) dT = ~. $ .(T) ,Y 1 1 1
To:5t:5Tr (3. 3)

When we employ Eq. 2.9 we may write Eq. 3.3 as

C(t) = Xo. m. (t), T :5 t :5 Tf.lXl 0
(3. 4)

Let us now put Eq. 3.4 into such a form that we can employ the

results of Section II-C. If in Eq. 3.4 we set

m .(t) = f(t) ,
Xl -

(3. 5)

the re sult is that the integral enclosed by parenthe ses is the function

~(t) as defined in Eq. 2.22. Consequently, let us define ~ .(t) to be
- -1
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Tf

~i(t) = S Kx(t, T)CT(T).t (T)dT , To oS t oS Tf;

To

(3. 6)

so that Eq. 3.4 becomes

C(t)g. (t) = A.m . (t},
-1 1.I.1

(3. 7)

If we assume that A.. is positive, which is guaranteed if K (t,T) is
1 y

positive definite, we can solve for the eigenfunction in terms of g .(t).
-1

This gives us

1= x::- C(t) ~i (t) ,
1

(3. 8)

If we examine Eq. 3.6,. we see that the integral operation

which is defined is of the same form as the operation considered in

Section Il-C. Consequently, we can reduce it to a set of differential

equations with a two point boundary condition. Let us identify 1i(t)
in Eq. 3.6 wi th f'{t) in Eq. 2.20. Then, if we substitute

f(t) = m .(t)
- .I.1

(3. 9)

in Eqs. 2.20 and 2.32, we find that the differential Eqs. 2.30 and

2.32 become
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ddt g. (t) = F(t) g. (t) + G(t)Q GT(t)l1. (t), T :s t :s Tf,-1 -1 .:.1.1 0
(3.10)

= CT(t) CIt) g .(t) _ F T(t):!ll' (t), To:S t :s T
f
.

~. -1
1

(3. 11)

From Eqs. 2.33 and 2.35, the boundary conditions are

(3. 13a)

g.(T)=Pl1.(T).
-1 0 0:.1...10 (3. 13b)

The desired eigenfunction is re lated to the solution ~i (t) by Eq. 3. 8.

or

(3. 8)

(repeated)

The net result of Eqs. 3. 4 - 3. 13 is that we have

transformed the homogeneous Fredholm integral equation into a set

of differential equations whose coefficients are directly related to

the state equations and covariance matrices that are used to

generate the random process y(t).

Before we use the above results to determine the

eigenvalues and eigenfunctions, let us make two observations.

Notice that we have a set of 2n differential equations to

solve. This is consistent with previous methods for treating
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stationary processes. In these methods, one has a 2n-order dif-

ferential equation to solve, where 2n is the degree of the denomina-

tor polynomial of the spectrum.

Equation 3. 8 implies that all of the solutions to Eq. 3. 1

with positive A. are contained in the range space defined by C(t).

We should note that if C(t) is not onto for a set of t with nonzero

measure, then K (t,T) is not positive definite. In this situation
Y..

there may be solutions with A. e qual to zero which are not

contained in this range space.

We shall now specify a general solution technique for

solving these differential equations, which in turn specifies the

eigenvalues and eigenfunctions. With this technique we shall first

find a transcendental equation that specifies the eigenvalues. Given

the eigenvalues, the eigenfunctions follow directly.

Let us define the (2n x 2n) matrix W(t:A.) as

W(t:x.) =

I
I
I
I
I--------------~---------------I
I
I
I
I
I
I

F(t) G(t)Q GT(t)

(3. 14)

so that in vector form Eqs. 3. 10 and 3. 11 become
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d
dt (3.15)

Furthermore, let us define the transition matrix associated with

W(t:X-)by

w(T ,T :X-)= I.o 0

(3.16)

(3. 17)

(We have emphasized the X- dependence of W(t:X-) and w(t, T :X-)byo

including X- as an argument. )

In terms of this transition matrix, the most general

solution to Eq. 3. 14 is

After employing the boundary condition specified by Eq. 3.13, we

have

[-~~- -] !l.(T )I 1 0)

To:::t -r-

(3.19)
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Let us now partition 'l!(t, T :x,) into four n by n matrices such thato

'l!~~t, To :x,)
I '1f; (t, T :x.)I
I s.n 0
I

'1"!(t,T :x,) = --------------~--------------- (3.20)
0 I

'1"!; (t,T :x,) I '1"! (t , T :x,)Ins, 0 I .!l.!l 0

Rewriting Eq. 3. 19 in terms of these partitions, we have

(3.21)

Taking the lower partition, the boundary condition given by Eq. 3. 12

requires

'll.(Tf) = ['1"! t: (Tf, T :x'.)P + '1"! (Tf, T :x..)].!l.(T ) = 0 (3.22)
-1 !l~ 0 1 0 .!l!l 0 1 1 0

This implies one of two consequencies. Either

n .(T ) = o.
..:J.1 0 -

(3. 23)

which implies a trivial zero solution; or,
I

det[w t: (Tf, T :x'.)P +"ill" (Tf, T :x'.)] = o.
.!l~ 0 1 0 .!l!l. 0 1

(3. 24)
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ITthe latter is true, Eq. 3. 15 has a nontrivial solution which

satisfies the requisite boundary conditions. Because of the functional

equivalence of the se differential equations and the original integral

equation, this nontrivial solution to Eq. 3.15 implies that A..is an
1

eigenvalue. That is, the eigenvalues of Eq. 3.1 are simply those

values of A..that satisfy the transcendental equation specified by
1

Eq. 3. 24.

Now that we have found an expression for the eigenvalues,

we can show how the eigenfunctions follow.

For convenience, define A(A.)as

A(A.)= 'If (JTf, T :A.)P + iIr (Tf, T :A.).
!l2.. 0 0!l.!l 0

(3.25)

When A. is equal to an eigenvalue, A.., A(A..)has a vanishing
1 1

determinant. Consequently, the characteristic polynomial of A(A..)
1

has a root equal to zero and n.(T ) is the characteristic vector~l 0

associated with this root. (We have used the adjective "charac-

teristic" in order to avoid confusing the eigenvalue properties of

the matrix A(A.i)with those of the integral equation, Eq. 3. 1. )

Therefore, to determine n .(T ) to a multiplicative
.:.l.l 0

factor we need to solve the linear homogene ous equation

A(A..)n.(T ) = o.
1 ~l 0

(3. 26)

Given 1'I.(T ) we can find the eigenfunctions by using the
.:.l.l 0

upper partition of Eq. 3.21 and Eq. 3.8. This gives us
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= C~t) ['1fl=l:(t,T :x'.)P +'1fe (t,T :x'.)]n.(T ),
"i ~~ 0 1 0 ~.!l 0 1 .:.Ll 0

To~t~Tr

(3. 27)

which is the desired result.

Before proceeding we should comment about multiple-

order roots of Eq. 3.24. In general, the function det A(X,)vanishes

with nonzero slope, that is, near an eigenvalue x'.,
1

(3.28)

where c 1 is nonzero. In the case of multiple - order eigenvalues,

the function det (A(x')) vanishe s tangentially; that is, near an eigen-

value x'. of order 1.
1

(3. 29)

This implies that there will be 1. linearly independent vectors

n.(T ) satisfying
.:.Ll 0

A(x'.)n .(T ) = 0,
l.:.Ll 0 -

(3. 30)

i.e . A(x'.) has rank n - 1..
-- 1

If we examine our solution we see that the only function

that we need to determine is the transition matrix of W(t :x'),

'1f(t:T0 :x,) • For the important case of kernels that are covariance s

of the output of a constant parameter system, we can find an
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analytic expression for this transition matrix in terms of the

matrix exponential,

W(X.)(t-T0)
wet, T :x,) = eo (3.31)

This matrix exponential may be conveniently computed by Laplace

transform methods. We have

(3.32)

where ;J:.:,.1 is the inverse Laplace operator. (In the inversion the

contour must be taken to the right of all pole locations of [Is-W(X.)] -1. )

If one desires a numerical evaluation of this matrix exponential, as

is the case for systems of order greate r than one, a pos sible

method of calculation is to truncate the series expansion

00

eW(},.)t = L
j = 0

(3. 33)

In the case of time varying systems, there is no general

analytic method for determining this transition matrix. However,

we can still use our technique by evaluating this transition matrix

by numerical methods, ~ by integrating the differential equation

defining it.

We can now summarize our results for homogeneous
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Fredholm equations. The eigenvalues A. are specified by the
1

roots of the transcendental equation

detA(A.) = 0
1

(3.24)'
(repeated)

where A(A) is given by Eq. 3. 25.

A(A) = W t (Tf, T :A)P +W (Tf, T :A)
!l.2. 0 0 !l.!l. 0

(3.25)
(repeated)

The eigenfunctions are given by Eq. 3. 27

1t(t) = C,(t) [w t t(t, T :~ P + wt (Tf, T :~] n. (T )
. 1\.. ~~ 0 0 ~n 0 -Ii 0

1 -- -~

(3.27)

(repeated)

where n .(T ) satisfies the orthogonality relationship~l 0

A(A.)n .(T ) = o.
1 ~l 0 -

(3. 26)

(repeated)

(The multiplicative factor may be determined by applying the

normality requirement.) The matrices

Wt t (t ,T :A),we. (t,T :A),\]( t: (Tf, T :A), and W (Tf, T :A)
2.~ 0 ~11 0 " 2. 0 !l.!l. 0

are partitions of the matrix il!{t,To :A) which is the transition matrix

associated with the matrix
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W(t:A) =
F(t) I

I
I
I------------T---------------
I
I
I
I
I

CT(t)C(t)
- A

(3. 14)
(repeated)

These equations specify the eigenvalue s and eigenfunctions for a

kernel K (t , T) which is the covariance matrix for the random
Y..

process Y..(t). This random process is generated at the output of

a linear system that has a state variable description of its

dynamics and a white noise excitation.

To conclude this section we point out some advantages

that this technique offers.

1. We can solve Eq. 3. 1 in the vector case. For

those techniques which rely upon spectral factorization methods the

vector case could cause some difficulty. (In some respects we have

defined this problem away by our method of characterizing the

random processes of interest. It should be pointed out that

depending upon the problem this method of characterization may be

jus t as fundamental as the covariance method. )

2. Once the state matrices are chosen to generate

:l(t) , the differential equations that must be solved follow directly.

3. One does not have to substitute any functions back

into the original integral equation in order to determine the

transcendental equation that determines the eigenvalues.

4. We can solve for each eigenvalue and eigenfunction

independently of the others, which is significant in actually obtaining

accurate solutions.
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5. We can study a certain class of time varying

kernels.

6. Finally, the most important advantage is that the

technique is very well suited to numerical methods. This allows one

to determine numerical solutions easily for problems in which an

analytic calculation is either difficult or not feasible.

The major disadvantage is that the class of kernels

that we may study is limited to those that fit into our state variable

model. However, we emphasize that most of the processes of

interest in communications do fit within our model.

B. Examples of Eigenvalue and Eigenfunction Determination

In this section we shall illustrate the method developed

in the previous section. To do this we shall consider several

examples. First, we shall do three examples analytically. We

do this principally to illustrate the use of the formulae in the

previous section. The processes in these examples are generated

by a first order system. In general these are the only systems for

which thi s type of analysis can be done in a reasonable amount of time.

We shall then present an example of the numerical analysis of a

second-order system. It is this type of problem for which the

technique is most useful. It allows one to obtain numerical

solutions very quickly with a digital computer.

Example.!. - Eigenvalues and Eigenfunctions for the Wiener Process

The covariance matrix of a Wiener process which starts

at t = 0 is
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K (t,T) = l12min(t,T), O.:5t,T.y (3. 34)

A state-variable representation of a system which generates y(t) is

dx(t) - (t) (state equation) I (3. 35a)--ar- - u ,

y(t) = l-'-X(t)I (observation equation), (3. 35b)

where

E [ u(t)u( T)] = o(t- T), (3. 35c)

(3. 35d)

(The Wiener process starts with a known initial state by definition. )

For convenience let us identify the state matrices as

indicated in Fig. 2.1

F = 0 c =
G = 1 P = 0o (3. 36a - e)

Q = 1

Let us find the solution to Eq. 3. 1 when we choose

Tf = T and To = O. First, we need the matrix W(x') (the system is

constant parameter) specified by Eq. 3. 14. After performing the

required substitutions of Eq. 3. 36 inEq. 3. 14 we have
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0
I 1I
I

W(~)
I

(3. 37)= -------r -------
I

2 I

-1:- I
I 0X- I

To find the eigenvalues and eigenfunctions we need to find the

transition matrix of W(~). If we apply Eq. 3.32 we find that the

transition matrix 'l'(t, 0 :~) is

I

~ sin( -l:.-.t)cos(L t) I
I

~ I ~ :n:.
I

'l'(t, 0:~) = --------------~-------------- (3. 38)I
I

-..J:... sin ( -E-t) I cos(~t)I

T ~ I
~I

We now simply apply the results as summarized at the end of the

previous section.

First we substitute Eqs. 3. 36e and 3. 38 evaluated at

t = T into Eq. 3.25 to find A(~). In order for an eigenvalue to

exist Eq. 3. 24 implies

det(A( X-.)) = cos( --L T) = o.
1 .JXi (3. 39)

The distinct solutions to Eq. 3.39 are given by
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2

\ = l (2~~TT)'" J (3.40)

i = 0, 1, 2, ...

The eigenfunctions follow by substituting Eq. 3. 38 in Eq. 3.27.

Mter determining the appropriate normalization factor, we have

(3.41)

Example ~ - Eigenvalues and Eigenfunctions for ~ One Pole,

Stationary Proce ss

Let us now consider the kernel of Eq. 3. 1 to be

K (t,T) = Se-klt-TI.
y (3. 42)

This is the covariance of the output of a first order system with a

pole at -k and Po chosen such that the process is stationary. The

state equations that generate this process are given by Eqs. 2. 16

and 2. 17.

Since the kernel is stationary only the difference

between the upper and lower limits of the integral are important.

Consequently, we again set Tf = T and T = o.
Proceeding as before, the matrix W(~) follows by

substituting Eqs. 3.44 in 3. 14.
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-k

(3. 43)W(A.) =
I 2k8
I_______ J _

I
I
I
I

1-r k

The transition matrix for W(A.) is

'lr(t,o:A.) =
cos(kbt) - sinBkbt)! ¥ sin(kbt)

I
------------------~----------------- ,(3.44)I

I
1 sin(kbt) 'I cos(kbt) + sinWbt)-A.k b

where

(3. 45)

By substituting Eq. 3.46 in 3.24 and 3.25, we obtain an equation

which determines our eigenvalues

det(A(A..)) = -J- [ 1 - ,8k] sin(kb. T) + cos(kb. T) = °
1 o. 1\.. 1 1

1 1

(3. 46)

In order to compute the roots by hand, Eq. 3.46 can be

put in a more convenient form. This form is

2b.
tan(kb. T) = 1

1 b~ - 1
1

(3. 47)
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Solving Eq. 3.46 for A gives us the expression for the eigenvalues,

A., in terms of the b.,
1 1

Applying Eq. 3.27 gives us the eigenfunctions. They are of the

form

,. (t) = 'Y. [ cos(kb. t) + ~ sin(kb. t)], 0 $ t :s T,
1 1 1 u. 1

1
(3. 49)

where 'Y. is a normalizing factor.
1

Example ~ - Eigenvalues and Eigenfunctions for ~ One Pole, Non-

Stationary Proce ss

The output process of a constant parameter system is not

necessarily stationary e. g. the Wiener process. A second example

of this can be genera ted from the previous example. Instead of

setting P 0 equal to the mean-square power of the stationary process,

assume that we know the state at t = 0 exactly; that is,

P = o.o (3.50)

In this case the covariance function becomes
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K (t,T) =
Y

for T > t . (3. 51)

S -kt( k-r -kT)e e - e for t > T J

By substituting Eq. 3.44 in Eqs. 3. 24 and 3. 25 and setting P equalo

to zero, the equation for the eigenvalues follows directly:

sin(kbi T)det(A(~i)) = cos(kbi T) + b. = 0,
1

(3. 52)

where, as before,

(3. 45)

or equivalently,

tan(kb. T) = -b ..
1 1

(3. 53)

From Eqs. 3.27 and 3.44, the eigenfunctions have the form

$. (t) = 'Y. sin( kb. t)
1 1 1

O:::t:ST, (3. 54)

where 'Y. is again a normalizing factor.
1

Example i -Eigenvalues for ~ Two Pole, Stationary Process

In this example we want to consider the analysis when

the kernel is the covariance of the output of a second-order system.
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In contrast with the previous examples, however, we shall consider

a particular system and analyze it by using numerical methods.

Obtaining analytic results for systems whose dimension is greater

than one is straightforward, but extremely tedious. Let us assume

that the kernel K (t,T) of Eq. 3.1 is the covariance function given by
Y..

Eq .. 2.19 and illustrated by Fig. 2.2a. The state equations for

generating y(t) are specified by Eq. 2. 18. In addition, let us set

Tf = 2 and T = o.
First, we need the matrix W(x'). By substituting

Eq. 2.18 into Eq. 3. 14 we obtain

0 1 0 0

-10 -2 0 160

W(x') = 1-- 0 0 10X,

0 0 -1 2

(3. 55)

In order to determine det] A(X,)], we need to find the

transition matrix of W(x') evaluated at T = 2, 1. e. we need to
exponentiate the matrix W(X,). T. To do this, we used a straight-

forward approach by applying Eq. 3.33 and taking the first 30 terms

in a nested fashion. (For further discussion regarding our

numerical procedures, see .Refe r ence 32.

Once we find this transition matrix, we performed the

operations indicated by Eq. 3. 25 to find det] A(x')]. By varying the

parameter X, and repeating this procedure, we can plot this

function versus x'. The resulting curve is indicated in Fig. 3. 1.
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In this figure the zero crossings are the desired

eigenvalues. This type of behavior for the function det(A(x')) is

typical of those that we have observed. In the region of the larger

eigenvalues, corresponding to those with significant energy, the

function is well-behaved and oscillating (nonperiodically).As we

approach the less significant eigenvalues, however, the amplitude of

the os cillati on rapidly increase s , Eve ntually, the eigenvalues

become so small that it becomes difficult to compute A(x')

accurately. In this region the eigenvalues are approaching their

asymptotic behavior, as discussed by Capon. 19 This behavior is

governed by the "tail" of Sy(w). (In Fig. 3.1 we have used arrow-

heads to indicate the location of the eigenvalues as indicated by

Capon 's formulae. As the eigenvalues be come small, the comparison

is quite good.)

Since this state-variable technique is well suited for

finding the significant eigenvalue s , one could combine this method

with an asymptotic method in order to find all of the eigenvalues

conveniently. In all cases that we have studied, we could account

for at least 95 percent (often as much as 99 percent) of the total

energy

(3. 56)

by our method. The asymptotic method, or a comparable one for

non-stationary kernels, could be used to calculate the eigenvalues
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corresponding the residual energy not accounted for.

We can summarize the behavior of the eigenvalues for

this example by plotting in Fig. 3. 2 the first six eigenvalue s against

T, the length of the interval (T = Tf - To). We see that the curves

satisfy the monotonicity requirement, 20, 3

a~. (T)
1aT (3.57)

In addition, the number of significant eigenvalues increases with T

reflecting the increase in the "2WT product".

We shall conclude this example by discussing the

computer time required to find the eigenvalues for this kernel. We

used the Fortran language on the IBM 7094 computer (the method

has recently been reprogrammed for the IBM 360 as a gene ral

purpose routine.) As indicated earlier, we did not employ any

sophisticated algorithms for computing A(A.). The time required to

compute the data for Fig. 3.2 in order to find the first eight

eigenvalues (99.8 percent of the energy) is approximately 20 seconds;

in addition, the eigenfunctions may be found with very little

additional computer time.

C. The Fredholm Determinant Function

In the application of the Fredholm theory to com-

munic ati on theory problems, the Fredholm determinant function

is often used, e. g. in the design of receivers and the calculation of

their performance for detecting Gaussian signals in Gaussian noise.

This function is defined as
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00

D (z) =;r IT
i = 1 ( l+zA.)

1
(3. 57)

where the A. 'Is are the eigenvalues of Eq. 3. 1. In this section,
1

we shall show how the theory developed in Section 3. 1 of this chapte r

can be used to find a closed form expression for this function. This

expression can be determined either analytically, it can be readily

calculate d by the same numerical procedures employed in the

previous section.

To do this we make some observations re garding the

function det [A(.!.)] where z may be a complex variable. (1.) It isz
easy to argue that det[ A(.!.)] is analytic in the finite plane.z
(2. ) Because our test for the eigenvalues is necessary and sufficient,

det[A(.!.)] has zeroes only at !.. (3.) The sum of the eigenvaluesz ~l
converges to E(Eq. 3.56). Given these observations, one can show

that det] A(.!.)] has the infinite product form21z

00

det[A(~)] = Ao TI (I-Aiz)

i = 1
(3. 58)

where

A = lim A('!')o z
z ~ 0

(3. 59)

Comparing this with Eq. 3. 57, we find that the Fredholm determinant

function is given by
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1 1= -X-det[A(--)],
o z

(3. 60)

L e. we can evaluate D(z) by using the same function that we

employed for determining the eigenvalues of Eq. 3.1 except we use

a negative argument.

The only issue that remains is a convenient method for

evaluating the constant A ~ In a direct proof of Eq. 3. 60 Collinso

has done this. 22 For completeness, we shall include this part

of his derivation.

If we let z ~ 0 in Eq, 3.14, W(t:.!..) becomesz

lim W(t:.!.) =
z ~ 0 z

F(t) G(t) Q GT(t)

o
(3. 61)

Let us examine the differential equation, Eq. 3. 16

defining \If(t, T :.!..)when we substitute Eq. 3. 61. We see thatoz

-a\t lim \If (; (t, T :.!..)= -F T(t) lim
z ~ O!l.~ 0 z z ~ 0

(3. 62)

Since the initial condition for this homogeneous equation is the

zero matrix, its solution is the zero matrix, 1. e.

lim
z~O

1
'1[ l: (t ,T : -) = 021~ 0 z

(3. 63)

Similar ly we see that
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d
dt lim ~ (t ,T :.!.) = -FT(t)lim w (t, T :.!.)

z -+ 0 !L!l 0 Z z .-+ O.!l2l 0 z
(3. 64)

However, its initial condition is the identity matrix. Therefore,

from the adjoint relationship we have

. 1 -1T
hm W (Tf, T : -)= 9 (Tf, T ) (3. 65)

Z -+ o!1!l 0 Z 0

where 9(Tf, To) is the transition matrix of F(t). Consequently,

from Eq. 3.25 we obtain

(3. 66)

Since a transition matrix is nons ingular , its

determinant cannot change sign, i. e., it must always be positive.

This implies that A is positive, and we can take its logarithm.o
This yields 23

TfJ d~ Ln{det[ 9(t , T a)] )dt =
To

Tf T d9(t, T ) T5 T:d 9-
1

(t , Tal< dt a ) ] dt =
To
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Tf- 5 Tr[ F(t)] dt

To

(3. 67)

Therefore, we finally have

Tf- 5 Tr[ F(t)] dt

T
A = e 0

o (3. 68)

and
Tf

) Tr[F(t)]dt

To 1= e det] A( - -)]z (3. 69)~z)

For many of our problems, D~(z) is not the most

convenient function to use; instead, we shall use the function

00
A..

1
(1 + -r-)' (3. 70)d(A.) D. det[i( -A.)] =

o TT
i = 1

from which~z) can be quickly determined. The function d(A.)

approaches one as A.~ + 00 or -co. For positive values of A. it is a

monotonically decreasing function of A., while for negative values

of A.it has the same behavior as we have earlier discussed

regarding the behavior of det] A(A.)]•

Before proceeding, we shall pause to mention an
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asymptotic expression for d(A) when y(t) is a stationary process

and the time interval, or 2WT product is large. Under these

assumptions it is easy to show that

ClO

In d(>") ~ T 5 ln( 1+
S (w)y
X- )dw (3.71)

-C1C

This formula allows use to determine the asymptotic behavior of

d(X-)in our calculations.

Let us briefly determine d(A) for three of the examples

in the previous section. As before, we shall do two examples ana-

lytically and the third by numerical methods.

Example ~ - d(A) for ~ Wiener Process

Since F = 0, we have A = 1. From Eq. 3.38 we have,o

d(A) = det A( - A) = cosh( ~ T). (3. 72)
..J}\

Example.§. - d(A) for ~ One Pole, Stationary Process

Using Eq. 2. 17 in Eq. 3. 63 we find

" +kTA =eo (3. 73)

To determine det] A( -A)l J we use Eq. 3.44. Let us define

(3.74)
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After some routine algebra, we obtain

d(A) = e -kT[ ( f3
2
~ 1 ) sinh( k BT) + cosh(k f3T)] =

(3. 75)

Example!... - d(~) for ~ Two Pole J Stationary Process

Let us find d(~) for the same stationary kernel considered

in Example 4. As in that example we shall use a numerical analysis .

. From Eq. 3.68 we find

4A =eo (3. 76)

Next, we use the same computational method that we used to determine

the eigenvalues; however, we must use a negative argument. In

Fig. 3. 3a we have plotted the resulting d(A.)with solid lines for time

interval lengths of 1, 2 and 3. As a means of comparing our results

with those derived by assuming the time interval is large,

we have plotted the results indicated by Eq. 3.71 with dotted lines.

We can see that for T:=: 2, we are very close to the asymptotic

results indicated by a stationary process, large time interval analysis.

Finally, the function log (d(~))is often used in com-

munic ati ons , e.g., as it related to the realizable fitter error. In

Fig. 3. 3b we have plotted log(d(x)) vs , A. as found by our exact

analysis, the s olid lines, and the approximate results found using

Eq. 3. 71. Again we have the close comparison for T :=:2.
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(This plot also indicates the behavior for large A., whereas Fig. 3. 3a

did not. )

D. Discussion of Results for Homogeneous Fredholm Integral

Equations

In this chapter we have formulated a state variable

approach for solving homogeneous Fredholm integral equations. As

we indicated earlier, the technique has several advantages

particularly from a computational viewpoint. Consequently, in

problems where we need to evaluate the eigenvalues and/or eigen-

functions directly, we have a very general method available which

allows us to make just such an evaluation with a minimum of effort.

Quite often we do not need these solutions directly, but

we require an expression involving them. In many cases, we should

be able to determine such expressions in a closed form by using the

the ory that we have developed, for example, as we did with the

Fredholm determinant function.

Proceeding with our discussion, several comments are

in order regarding the desirability of having a convenient method of

evaluating this Fredholm determinant function.

1. In the problem of detecting Gaussian signals in

Gaussian noise, it enters in two ways. First, it appears as the

bias in calculating the threshold of the likelihood receiver. More

importantly, it is intimately involved in the calculation of

performance bounds for this problem. 12

2. In an estimation theory context if we consider the

problem of estimating the parameters of a Gaussian process
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I(or the system identification problem), we can show that the Cramer

Rao bound can be determined using this function.

Finally, the solution method we have developed is

important in itself. As we shall see in Chapter V, the concept of

requiring a determinant to vanish for the existe nee of a solution is

important. In this chapter, we shall find a similar set of

homogene ous differential equations and boundary conditions that

specify the solution to the optimal signal design problem for

additive colored noise problems. The method of solving these

equations is exactly analogous to the eigenvalue problem in that it

requires the vanishing of a determinant for a solution to exist.

Now that we have studied the solution of homogeneous

Fredholm equations, let us examine the nonhomogene ous equation.
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CHAPTER IV

NONHOMOGENEOUS FREDHOLM INTEGRAL EQUATIONS

Nonhomogeneous Fredholm integral equations are of

considerable interest in communication theory. In this chapter

we shall use the results of Chapter II to deve lop a state variable

method of solving these equations. As before, there are some

significant advantages to the methods introduced.

One of the more important applications of this integral

equation is the problem of determining the optimal receiver for the

detection of a known signal in the presence of additive colored noise.

Since we shall study this problem in detai 1both in this chapter and

in the next, we shall first pause briefly to review the communication

model for this problem. This is not meant, however, to imply that

this problem is the only place where we can apply our methods.

Other applications include the solution of finite time Wiener-Hopf

equations in order to find optimal estimators, as we shall do in

Chapter VI, and the calculation of the Cramer-Rao bound for the

estimation of signal parameters.

After this brief review we shall pre sent our derivation.

The results come quickly since we have derived the required

formulae in Chapter II. The result of our derivation is a pair of

vector differential equations and boundary conditions. Since these

equations have appeared in the literature in another context, namely
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14,15,16
the linear smoother, we have several solution methods available.

We shall devote a section to introducing these methods and comments

upon their applicability.

Finally, we shall cons ider three examples. Two of

the se will be worked analytically while we shall re sort to numerical

procedures for the third.

A. Communication Model for the Detection of a Known Signal

in Colored Noise

Let us briefly introduce the communication model for

the pr oblem of detecting a known ve ctor signal in additive colored

noise. We have illustrated the model in Fig. 4. 1. We have a

transmitter which on hypothesis 1 transmits ~ 1(t), while on hypothesis

0, it transmits ~o(t) over the time interval To ;s t esTr For

discussion purposes let us assume that ~ 1(t) is ~(t) while ~(t) is

-~ (t). The channel adds a vector colored Gaussian noise process

to the signal. We assume that this colored noise consists of two

independent components. The first component is a random process

~(t) that is generated according to the methods we discussed in

Chapter II. The second component is a white Gaussian process

~(t) that has a covariance as specified by Eq. 2.7. Consequently,

we have the following detection problem

on H1 r(t) = ~(t) +X(t) + ~(t), T ;s t ;s T
fo )

(4. 1)
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Under these assumptions it is straightforward to show

that the optimal receiver can be realized as indicated in Fig. 4.1

This realization is a correlation receiver. We multiply (dot

product) the received signal E.(t)with a function ~(t), and then

integrate over the observation interval, i. e. , the sufficient statistic

for the decision device is

= (4. 2)

The correlating signal is the solution to a nonhomogeneous Fredholm

integral equation.

This integral equation has the form

TfS KX(t,T)~(T)dT + R(t)~(t) = s It}, To:=; t :=; Tf;

T o

(4. 3)

where K (t , or), the kernel of the equation, is the covariance
Y..

'of the random process ;r(t) , which we assumed is

generated according to the methods discussed in

Chapter II;

~(t) is a known vector function, the transmitted signal;
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R(t) is the covariance weighting matrix of ~(t), which

is assumed to be positive definite i

and
gJt) is the desired solution, the correlating signal.

One can also find the performance measure for this

system. It is again straightforward to show that this measure,

usually termed d2, is given by

(4. 4)

where s(t) and [(t) are defined above. Error probabilities, detection

and false alarm probabilities can all be determined in terms of this

measure.

As we metnioned earlier we shall study the nonhomogeneous

integral Eq. 4.3 in the context of this detection problem. We

emphasize, however, that the techniques developed are general in

that they do not need to be considered in this particular context.

Let us now proceed to develop our solution method.

B. The State Variable Approach to Nonhomogeneous Fredholm

Integral Equations

Let us make two remarks regarding the solution. First,

in contrast to the homogeneous equation that has an at most

countable number of solutions, this equation has a unique solution
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when R(t) is positive definite. Second, we may find a series

solution in terms of the eigenvalues and eigenfunctions of the

homogeneous equation; for example, when there is equal white noise

level (J" in each component channel, we have

(4.5.)

(the general vector case requires a simple, but straightforward

modification) .

Let us now proceed with the derivation. We rewrite

Eq. 4. 3. (The first part of the derivation is due to a sugge sti on by

L. D. Collins.24) By using Eq. 2.9, we have

-1 [~(t) = R (t) i ~(t) - C(t)

Tf5 Kx(t, T)CT(T)g(T)dT],

To

To=5t :STr
(4.,6)

If in Eq. 4.6 we set

g:,(t) = .!(t) , (4. T)

we have the result that the integral enclosed in parantheses is the

function .§.(t)as defined in Eq. 2. 22. Consequently J we define ;(t)

to be
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TK (t, -r)C (-r)g(-r)d-r,x - ( '4. 8)

so that Eq. 4.3: becomes

~(t) = R-1(t) [~,<t) - C(t)~(t)] , (4. 9)

For the class of K (t, or) that we are considering, we have shown in
l

Chapter II that the functional defined by Eq. 4.8 may be represented

as the solution to the following diffe rential equa ttons:

(4. 10) .

( 4. 11)

plus a set of boundary conditions. If we substitute Eq. 4.9 in

Eq. 4.! 1» we obtain

d!l(t) T -1 T<ff: = C (t) R (t)C(t) s.(t) - F (t)21(t) (4.12)

Consequently, we have shown that the nonhomogeneous Fredholm

equation can be reduced to the following set of differential equations

and associated boundary conditions:
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(4.10)
(repeated)

dll(t) . T - 1 T CT(t)
ctt = C (t)R (t)C(t)~(t) -F (t).!l(t) - cr ~(t) To ~ t ~ Tf

(4.12)
(repeated)

(4.13)

(4.14)

The desired solution is given by Eq .: 4.3 to be

(4. 9)
(repeated)

Quite often it will be convenient to write Eq.''if ..TO and Eq. 4.~12

as one differential equation in the form

~(t) ~(t) 0

d = W(t) .- ...- ... _--- (41:.. 15,>dt
2l(t) !].(t) CT(t)R -1 (t)~(t)

To ~ t esTf,

where we define w(t) to be

I
F(t) J G(t)Q GT (t)

A I
w(1)= --------r-------

CT(t)R-1(t)C(t); -FT(t)

(4.16)

---
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We note that the coefficient matrix of Eq. 4. 16, W(t) is

similar to that which appeared in the homogeneous equation. The

major difference is that positive definite matrix R(t) appears whe re

-X, did. We also note from our discussion of the Fredholm

determinant that one wants to find the transition matrix ofW(t)

in order to compute ~(X,).

The solution indicated by Eq. 4.9, has an appealing

interpretation when one calculates d2 as given by Eq. 4.4... For

simplicity, let us again assume R(t) = c I, <r a scalar. Substituting

Eq. 4.9 into Eq. 4.4 gives us

dt . (4. I 7)

The first term is simply the pure white noise performance, d 2. The
w

second term represents the degradation, d2, caused by the presenceg
of colored noise in the observation. Therefore, we have

d2 = d 2 _ d2 (4. 18a)w g

Tf f sT<t~s<tl)dt ~ ~d2 = j (4. 18b)w
T
0

Tf

d2 = 5 (.I?<tlC;tli<tl) dt. (4. 18c)g
T ,
0
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In the next chapter we shall consider the problem of maximizing the

performance by choosing s(t} when it is subject to energy and band

width constraints.

C. Methods of Solving the Differential Equations for the

Nonhomogeneous Fredholm Equation

In the last section we derived a pair of vector dif-

ferential equations that implicitly specified the solution of Eq. 4. 3

As we shall see in Chapter VI, these equations appear in the optimal

smoother, or the state variable formulation of the unrealizable
:::t:

filter. In this section we shall exploit the methods that have been

deve loped in the literature for solving the smoothing equations in

order to solve the differential equations for the nonhomogeneous

equation. Since these methods have evolved from the smoothing

the ory literature, the material in this section draws heavily upon

References 14 and 15.

Let us outline our approach. We shall develop three

methods, each of which has a particular application. The first

method is useful for obtaining analytic solutions. The second is

intermediate result in the development of the third method. It is

useful because it introduces some important concepts and results.

The third method is applicable to finding numer ica l

solutions since the first two methods have some undesireable

aspects. We should also note that the methods build upon one

~:~Thisis consistent with the estimator-subtractor realization of the
optimal receiver for detecting s(t). 3
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another. Consequently, one needs to read the entire section to

understand the development of the last method.

Before proceeding, let us summarize the results from

the previous section that we need and introduce some notation that

we shall require. We want to solve the differential equations

derr = W(t)
o

, To;:: t ;::T
f

J (4. 1 5)
repeated)

~(t) ~(t)

!}.(t)

where we have defined

W(t) = ( 4. 16»)
(repeated)

F(t) G(t)QG T(t)

and we have imposed the boundary conditions

(4. 13)
(repeated)

= .Q.. (4. 14)
(repeated)

Furthermore, let us introduce the following notation. We define

the transition matrix of W(t) to be W(t, T), 1. e. ,

d
dt ~(t, T) = W(t)'1r(t, T), (4. 19a)

---
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'M"(t, T) = I . (4. 19b)

In addition, let us partition this transition matrix into four n x n

submatrices in the form

'M"(t,T) =
'M" (t , T)
!l'!l

(4.20)

Method 1

The basic appr oach of the first method is to use the

superposition of a particular and a homogeneous solution. First,

we generate a convenient particular solution in order to incorporate

the forcing term dependence. Then we add a homogeneous solution

so as to satisfy the boundary conditions. In order to find a particular

solution, let S (t) and n, (t) be the solution to Eq. 4. 15 with the
-p f:J

initial conditions

(4. 21)

Since we have specified a complete set of initial conditions we can

uniquely solve the equation

s (t) s (t)-p -p
d = W(t) ------ - - - .. .-.. ...... -- ,T ;st.dt ----

CT(t)R-l(t)~(t)
0

n (t) n (t)
P P

(4.22)
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In order to match the boundary conditions, let us add to this

particular solution a homogeneous solution of the form

~(t, T )o (4.23)

where n (T ) is to be chosen. Notice that the sum of these two~h 0 .

solutions satisfies the initial boundary condition (Eq. 4. r3)

independent of 21
li
(To)' Therefore, we want to chose 21h(To) such

that we satisfy the final boundary condition (Eq. 4. 14). To do this,

let us rewrite Eq. 4-k 23 in the form

= [-.~!~~'-~~~Jn (T ).:.!.h 0)

. ~. (t , T )
21 0

(4.24)

where we define the matrice s

(4.25)

Ae (t,T ) =~ t(t,T)P +~ (t,T).
!l 0 21.2.. 0 0 21!l 0

(4.26)

Conse quently, we have

-
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r~{t)J
ln(t)

(4. 27)

To::: t :::Tr:
Applying the final boundary condition, requires that

-1
n (T ) = - e (Tf, T. )n (Tf).:.Lb. 0 ll. 0 .:.Lp (4. 28)

Substituting this in Eq. 4.27 gives us the final result for this method,

-1S(t) = S (t) - ~t(t, To)C1? (Tf, T )11 (Tf)) To::: t ::: Tf (4. 29.)
- -p ~ !l. 0 -p

8
(The matrix C1?!l.~t,To)can be shown to be nonsingular for all t.)

Let us briefly summarize the method. First, we need to

determine ~t(t, T ) and ~ (t, T ) as defined by Eqs. 4. 1H, 4.25 and
~ 0 ,,0

4.26. (This can be done independent of the signal, ~(t).) We then

find the particular solutions S (t) and rL(t) by solving Eq. 4.!l.5 with
-p -'1J

the initial conditions specified by Eq. 4.....21. Finally, we substitute

these functions into Eqs. 4.27 and 4.28 to find s(t) and !l(t).

Two comments are in order. For a large class of

problems the differential equations that one needs to solve using

this method have constant c oefficients. Conseq uently, the method is

well suited for finding ~(t) and !l(t) analytically. We shall illustrate

the us e of this method in the next secti on with two examples.
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We also observe that the differential equations we need

to solve are unstable. e. g. if the system parameters are constant

W has eigenvalues with the positive real parts. Consequently, one

can (and does) encounter difficulty in numerically solving these

equations when the time interval [To' Tfl is long. This leads us to

the problem of finding an effective numerical procedure for solving

one equation.

In order to solve this problem we shall introduce two

more methods. The first of these will develop some important

concepts and results. The second shall use these concepts to develop

the solution method which has the desired numerical properties.

Method 2

The most difficult aspect of solving Eq. 4.15 is

satisfying the two point, or mixed, boundary conditions. The

essential aspect of the second method is to introduce a third

function from which we can determine s(T f). Since !)JTf) is always

identically zero, this allows us to specify a complete set of boundary

conditions at t = Tr With these conditions we then integrate Eq. 4.15

backwards over the inte rval.

From Method 1, let us define

(4. 31)

.)1

II~Thenotation ~(t/t) is consistent with Chapter VI.
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We shall find a matrix differential equation that :E(t/t)

satisfies. We have

dg} (t T ) j' dCb (t,T )
~ ' 0 _ d:E(t t) Cb (t, T ) + :E(t/t) " 0

dt - dt .!l 0 dt (4.32)

Substituting from Eqs. 4. 25, 4. 26, and 4. 19 , vre find

F(t)CI?(:(t ,T ) + G(t)Q GT(t) g}(t, T ) = '
~ 0 .!l 0

d~~/t) g} (t ,T ) + :E(t/t)(C T(t)R-1(t)C(t)~(:(t, T ) -F 1t)<I? (t , T »
" 0 _ ~ 0 .!l 0

(4.33)

Multiplying by <I?-l(t,T ) andusingEq. 4.3:1 yields
.!l 0

d:E(t/t) = F(t)~(t/t) + ~(t/t) F T(t)
dt

(4.34)

The initial condition follows from Eq s , 4.7.5 and 4.26

:E(T /T ) = po 0 0 (~L .35)

Consequently, we have the expected result that ~(t/t) is identical to

the realizable filter covariance matrix since it satisfies the same

matrix Ricatti differential equation and has the same initial condition.
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Let us define a function S (t)-r

s (t) = S (t) - <P t(t, T )Cl?-1(t,T )n (t) = S (t) - :E(t/t)n (t)-r -p ~ 0 11 0 ..:.l.p -p ~p

(4. 36)

We note that

(4. 37)

Now we shall find a differential equation for S (t). Differentiating
-r

Eq. 4.36 and using Eq. 4. 34, yields

d € '(t) Td~ = .F(t)ip(t) + G(t)QG (t)~p(t) -

(F(tl~(t/tl + ~(t/tlF T(tl + G(tlQG T(t) - ~(t/t) CT(t) R-1(t)c(tl~Ml)r,Jtl

- E(t/tl(C T(tlR -l(tl C(tl.ip(tl - F T(tl :!lp(t)

_,cT (t)R-1 (t)~Jt») (4.38)

After cancelling and combining terms by using Eq. 4.36 we have

The initial condition follows from Eqs: 4...36, 4.31 and 4. 22.

s (T ) = 0-r 0 -
(4.40)
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From Eq. 4.38 we have the expected r'esultthat ~ (t)
-r

satisfies a differential equation of the same form as realizable

filter estimator equation. We should note that in this particular

application of solving the nonhomogeneous integral equation, the

input ~(t) is deterministic rather than a random process, ~'

some received signal r( t) .

Equations 4. 34 and 4., 38 are the key to the second

method. We simply integrate them forward in time to t = Tf, apply

Eq. 4. 31 to find '§JTf}, and then integrate Eq. 4. 15backwards in

time using the complete set of boundary conditions at t = Tf.
Expressed in terms of an integral operation we have

~(t) Tf

+ S 'If(t, t ')

t

o
dt' ,

on(t)

To:$t:$Tr (4.41 )

Let us examine this method for a moment. The basic

approach was to convert a two point boundary problem into an

initial, or ftnal ,> value problem. Since the -S.r(t)function that we

developed for this conversion is the output of a realizable filter

structure, it has many desirable properties. In particular, a lot is

known regarding effective procedures for calculating S (t)
-r

numer-icafly .

However, we will still have difficulty integrating
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Eq. 4. 41 backwards in time since Eq. 4. 16 is also unstable when

integrated backwards. For example, with constant parameter

system W has eigenvalues in the left half plane. These produce

growing exponentials as we integrate Eq. 4. 16 backwards from the

endpoint. With our third method we shall eliminate this undesirable

feature.

Method 3

In this method we shall derive a result which allows us

to uncouple the equations for ~(t) and !1.(t). After we do this we shall

observe that the resulting differential equations for ~(t) and !l(t) have

some desirable features from a computational viewpoint. First, we

need to derive one key result.

Let us consider the difference of ~(t) and ~ (t).
- -r

Substituting Eqs. 4. 39 and 4.36

~(t) - ~ (t ) = ~ t: ( t, T ){-e- 1 ( Tf, T )!1. (Tf) + <b- 1(t ,T )!l (t)} =
- -r 2. 0!l 0 P :!l 0 P .

~l=(t, T )<b-1(t, T ) {ll (t) - Cl2 (t , T )Cf?-l(T
f
, T )ll (T

f
)} =

.2. 0!l ·0 -p Il 0 21 0 -p .

~(t/t) ,,(t) (4. 42)

Consequently, we have the result

;(t) - ~r(t) = ~(t/t)!1.(t), (4.43)

!1.(t)= ~-l(t/t) (~(t) - ~r(t)). (4.44)
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If we substitute this into Eq. 4. lOwe can obtain

separate the differential equations for ~ (t) and !).(t). We find

substituting for !l.(t)

d ~\t) = F(t) ~(t) + G(t)Q GT(t):E-1(t/t)(~(t) - ~r(t)) =

(F(t) + 'G(t)Q GT(t) :E-1 (tit) )~(t) - G(t)Q GT(t) :E-1 (tit) ~r(t),

(4. 45)

Similarly, substituting for ~(t) yields

(4.46)

We now note that by finding g (t) we can solve either Eq. 4. 45-r

or Eq. 4.46 for.~(t) or .!l(t) respectively. The initial (or final)

condition for Eq. 4.45 is given by Eq. 4.37 while for Eq. 4.46

is given by Eq. 4. 14. Either function can be obtained from the

other by using Eq. 4.43 .

. Now let us examine the stability aspects of these

equations when integrated backwards. Our discussion is es sentially

qualitative. First, we need to examine the coefficient matrices of
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Eq. 4.45 and Eq. 4.46. In Eq. 4.46, this matrix is

-(F(t) - ~(t/t) CT(t)R-l(t) C(t))T, which is the ne gative trans pose of

the coefficient matrix of the realizable filter. Consequently, if it is

stable, so is Eq. 4.46 when integrated backwards.

For constant parameter syste ms , we can see heuristically

that Eq. 4.45 is also stable when integrated backwards over large

time intervals. If the interval is "long",

d ~(t/t) ~ 0 (4.47)
dt

over most of the interval. If we assume equality, i,e., ~(t/t) = ~oo'

we have

(4.48)

or,

both matrices have the same eigenvalues; therefore, Eq.4.45

is also stable when integrated backwards over the interval.

Consequently, one can numerically solve either Eq. 4.45 or Eq. 4.46
v

and obtain stable solutions. However, if~(t/t) is also available we
A

should point out that Eq. 4.45 re quires its inversion whereas

Eq. 4.46 does not.

Summary of Methods

In this secti on we have developed in considerable detail

methods which exist for solving the differential equations we derived
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for the nonhomogeneous Fredholm integral equation. Let us now

summarize these methods by discussing their applicability.

If we have a constant parameter system and want to find

an analytical solution, method 1 is probably most useful since the

differential equations have constant coefficients for a large class of

problems. However, if we want to obtain a numerical solution,

especially over a long time interval, method 3 is probably the best,

since methods 1 and 2 can create some difficulties when integrated

numerically. We really never use method 2. The essential reason for

introducing it is that it was an intermediate result in our derivation

of method 3.

Let us now apply the results of this section to analyze

some examples of solving nonhomogeneous Fredholm equations with

our method developed in Section B of this chapter.

D. Examples of Solutions to the Nonhomogeneous Fredholm

Equation

In this section we shall consider three examples to

illustrate the results of the last two sections. Again, we shall work

two examples analytically while we shall use numerical procedures

for the third. In those examples that we work analytically, we shall

use method 1 as discussed in the last section. The computer

program used in the numerical example integrated the second

differential equation of method 3.

We shall present the examples in the context of detection

in colored noise. After determining the solution g(t) , we shall

compute the d2 (and d2) performance measures discussed at the endg
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of the previous section. Finally, in all three examples we shall set

To = 0 and Tf = T and assume that the forcing function, or transmitted

signal, s (t) is a pulsed sine wave with unit ener gy over this interval,

i,e. ,

s (t) = I2
T

2'V T sin (4.49)

We also assume that R(t), or the white noise level, is a scalar

constant

R(t) = rr > 0 (4.50)

Example.!. - g,(t) for ~ Wiener Process

Let us consider the problem of finding g(t) when the

kernel is the covariance of a Wiener process. Equations 3. 35 and 3. 36

describe a system for generating this process. First, we substitute

the parameters of these equations into Eq. 4.15 in order to find

the equation that we need to solve. We obtain

g(t) 0
I
1 g(t)I 0

d I

= ___ L __ --- - - ----- - - -.-.- ,O:St:STdt 2'
T}(t) lJ. I 0 T}(t) lJ..,f'f . (nnt)a:-' 0: T s m T

I

(4.51)
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From Eq. 4.13 and Eq. 4. 14 the boundary conditions are

;(0) = 0,

T)(T) = O.

(4. 52)

(4. 53)

Referring to the last section, method 1, we find particular solutions

; (t) and T) (t). These are the solutions to Eq .. 4. 15 with S (0) =p p p
T) (0) = o. Doing this we obtainp

. (n 1Tt )Sin -'-T
; (t)p------~2J~

(J'{

T) (t)
P

nrr n rrt
-T cOS(--rr-)

2where, for this problem, w'e define '{ to be

2 2
'{2 = (n 1T ) + ~ .

T (J

(4. 54)

(4.55)

After some straightforward calculation we find

Next, we need to find the transition matrix associated with Eq. 4.15.

w(t, 0) =

2
cosh([ L] t)

(J"

: 1
: 2 -2 2
: [~] sinh([~] t)

(J (J
I---------------------~--------------------
I

1 1 I
I

2 "2 2 2 I

[ ~] sin h([ L] t) :
(J (J I

I

1
2 "2

cosh([ 1:-] t)
(J

• (4.56)
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We need to add a homogeneous equation of the form Eq. 4. 23

=

1 1
2 -2 2 2

[ !:-] sinh( [ .l:.-] t)
(J"' (J"'

(4. 57)

From Eqs. 4.57 and 4.54 we find that we must choose llh(O) to be

Eq. 4.28

11",(t) "

1
2 2

cosh([L] t)
rr

Consequently, we have

.§.(tl = -l7J ~
<r'l

1
122

2 -2 sinh( [ 1::..- ] t)
sin(n;t~_(n;)[ ~<r] (_l)n ---(j--"'1r-

2 2
cosh([ 1:....] T)

rr

Th~ solution g(t) is found by substituting Eq. 4.59 into Eq. 4.9

(4.58)

(4.59)
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1
2 2 -1

Sin(n;t) + (n; [ ~] ) (_I)n.
2

g(t) = ~ (~1Ty)

1
2 '2

sinh([ L] t)
CT , O~t~ T.1
2 2

cosh([.J:.-] T)
CT

After some straightforward but tedious manipulation we can also
2 •. LitiS ~

calculate dg as given by Eq. 4. 18c

1
2 2

tanh([J:....] T)
CT

•
2

1 + ~ (niT). 2 T
'Y

1
2 2

[1:-] T
CT

Example ~ - g(t) f or ~ One Pole Stationary Spe ctrum

c. u
(4.60)

l-..e \

(4. 61)

Let us consider the kernel to be the covariance function
. 2'. t!~ ,~~.", I, ("'1

for a one pole stationary process as described by Eqs. 2. 16 and 2. 17.

From these equations and Eq. 4. ls,the differential equations that we

need to solve are

O~t::ST,

(4. 62)
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subject to the boundary conditions specified by Eqs. 4. 13 and 4. 14.

We shall now use the first solution method which we discussed.

After some manipulation, we find

II 1 ( . (nrrt) nrr (nrrt)T'Jp(t)= -J T rr,,2 k sm 'I' + T cos T

- ~; ( 1 - f) ek>.t + ~; (1 + ~) e -kAt) J ( 4. 64)

where

A =
1

[1 + 28J2krr J
(4. 65)

( 4. 66)

In this example, the transition matrix, '1r(t, 0) that we need is

'1r(t, 0) =
1 kAt 1 -kAt

2kArr e - 2kAO"e

('4. 67)
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Therefore, according to Eqs. 4. 29 and 4.30

ll(t) =ft~._1_ (k sin (.ntrt ) + FE!.. cos fl.n.1Tt.)- ~( 1- '!')ekX.t - FE!.. (1 + '!')e -kAt)
.L 2 T T i,\ T 2T X. 2T X.. rJy ",;, , '

_ (( A+1)2 ekAt _ (A-1 )2 e -kAt ) 64X. 4X. nh (0), 0:S t :S T (6. 9 )

I

where

(A-Il2 -kAT)-1
4A e

( 4. 70)

Finally, using Eq. 4.9 we find the solution g(t)

{£ 1 {~(n1T.) 2 2J. (ntrt)g(t) = -..j T rJy2 Ll, T + k srn T -

S n1T ((A+1)2 kAT (A-1)2
(T AT . 2X. e - 2A )

-1-kATe

(continued)
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x (H 1) (_l)nekAt -e -k},,(T-t) +(}_-1) (-l)ne -kxt -e -k>..(T-t) )}

o :5 t :5 T ( 4. 71)

Ii

One can continue and evaluate the performance by

computing d2 and d: according to Eq. 4.18; however, the result is

rather complex and is not too illustrative. Instead of presenting an

analytic formula, we shall plot d2 and d2 against n for a particular
. g

choice of parameters. The results are presented in Fig. 4. 2

when k = 1, 0" = 1, S = 1, and T = 2. For the case n = 1, we see that

the presence of the colored noise degrade s our performance

approximately 50 percent from that of the white noise. For n == 8,

however, our performance is within 2 percent of the performance

for the white noise only performance.

We can easily see that this is what we would intuitively

expect. For n = 1, the bandwidth of the signal is approximately

TIlT = 1. 57. Consequently, most of the signal energy appears in the

frequencies where the spectrum of the colored component of the

noise is significant compared to white noise level. For n = 8 we have
a bandwidth of 8TI/T = 12.56. Therefore, most of'1.ts energy appears

"
where the white noise ~jt) is the dominant component of channel

observation noise.

It should be apparent from the complexity of these two

simple examples that an analytic solution for g(t) (and the

performance) is indeed a very difficult task when the kernel is the

covariance of a process generated by higher order syste m.

Consequently, it is desirable to have an efficient numerical method.
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Example ~ - ~ for ~ Two Pole Stationary Spectrum

For the second-example, we shall consider a numerical

approach to the analysis of a sec ond- orde r system. In partic ular ,
we chooseK (t,T) tobe the covariance given by Eqs. 2.18 and 2.-19

y --
0- = 1 and T = 2. To find g(t) we determined ;(t) by using method 3

in the last section.

In Figs. 4. 3 and 4. 4 we have drawn the signal s(t) and

the corresponding solution g(t) for n = 2 and n = 8. For the low-

fre quency (n = 2) case, we find that functionally s(t) and g(t) differ

significantly only near the end points of the inte rval, while for the

high-frequency (n = 8) case we find that s(t) and g(t) are nearly

identical. -Here, we are approaching the white noise, or matched-

filter, solution. We have summarized the results for this example

in Fig. 4.5 by plotting the d2 vs n behavior. We see that for

n > 8 we are within 4 percent of the white noise only performance.

Again we can see the effect of the colored noise upon the

detection pe rformance . For n = 2, most of the signal energy appears

_at the peak of the spectrum of the colored component of the noise.

Consequently, the performance is degraded the most. For n = 8,
the signal energy is centered around f = 12.56 where the white noise

is dominant.

The computer time that we re quired to find a solution

g(t) and to calculate its performance is approximate ly 5-10 sec of

-IBM 7094 computer time, using the Fortran language.

The method has recently been rewritten as a general

purpose routine for the IBM 360.
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Fig. 4. 3
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Fig. 4. 4
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E. Discussion of Results for Non-Homogeneous Fredholm Integral

Equations .

In this chapter we have formulated a state variable

approach for the solution of non-homogeneous Fredholm integral

equations. Let us briefly compare our approach to some of the

exi sting ones .

The approach of reducing an integral equation to a
25,26,27,11,3

differential equation certainly is now new. In one form or another

it is undoubtedly the most common procedure used. In comparison

to other differential equation methods, our approach has several

advantages (many of which are shared with our solution method for the

homogeneous equation).

1. We can solve Eq. 4.3 when s(t) is a vector function.

2. The differential equations that must be solved

follow directly once the state matrices that describe the generation

of the kerne 1 are chosen.

3. We do not have to substitute any functions back into

the original integral equation in order to find a set of linear

equations that must be solved.

4. We can study a wide class of time varying systems.

5. The technique is well suited for finding numerical

solutions.

There are two major disadvantages.

1. The class of kerne Is that may be considered is

limite d. However, the technique is applicab le to a large and

important class of kernels that appear in communications.
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2. We cannot handle integral equations of the first

k d h h hi f h . .. d . "II 3, 27in , ~ w en t e w Ite component 0 t e norse 1S 1 entic a y zero.

For these equations singularity functions appear at the interval

endpoints. We precluded these in our derivation. We should note

that we have observed the limiting behavior of our solution approaching

these singularity functions when the white noise is small.

A second method that is in contrast to the differential

equation approaches is to find the inverse kernel of the integral

equation. The inverse kernel Q(T, u) is defined so that it satisfies a

second integral equation

Tf "

S {R(t) s (t-T) + K;l(t, T)} Q( T, U)dT = IIi(t-u)

To ( 4. 72)

In terms of the inverse kernel the solution g(t} is found to be

Tf

g{t) = S Q(t, u)~.<u)du, To < t < Tf
To

(4.73)

One common nume r-ical method that uses this approach is to

approximate the integral operations 4. 72 and 4. 73 by matrices

[K] [Q] = I (4.74)

g = [Q]~ (4.75)
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Let us briefly compare the computation required

using this approach to that of our approach. If we assume that we

sample the interval at NI points)Equations 4.73 and 4.74 are NI

dimensional. One can show that the number of computations required

to find [Q] as given by 4..73 goes as (NI) cubed. If we assume that

we find Q by s pecifying the coefficients of our differential

equations, the computations we require incr-e as es only linearly with

NI. The computation required to implement Eq. 4.3 is proportional

to NI squared, whereas the computations required to solve our

equations again is linearly proportional to NI. The conclusion is that

for large NI, which is required for high accuracy, the differential

equation approach is superior.

Before we leave the topic of the inverse kernel, we shall

point out an important concept that we shall use in a later chapter.

We can consider that the non-homogeneous integral equation

specifies a linear operation. In an explicit integral representation,
-n.

this linear operation is given by Eq. 4. 72. It is completely equivalent,

however ~ to specify g,(t) implicitly as the solution to our differential

equations.

-In the two following chapters we shall apply the results

of this chapter. In the next we shall apply them to the problem of

designing optimal signals for detection in additive colored noise

channe Is. Our basic approach is to re gard the differential

equations we have developed as a dynamic system with initial and

final boundary conditions When the problem i~ expressed in this

form we can apply the Maximal Principle of Pontryagin for the

optimization. 13.6
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In the subsequent chapter we shall present a new approach

to solving Wiener-Hopf equations by using the results of this chapter.

We shall then proceed to deve lop a unified theory of linear smoothing

and filtering with delay.
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CHAPTER V

OPTIMAL SIGNALS DESIGN FOR ADDITIVE

COLORED NOISE CHANNELS VIASTATE VARIABLES

In the problem of detecting a known signal in the presence

of additive colored noise, the signal waveform affects the per-

formance of the receiver. For a given energy level, certain

signals result in lower probabilities of error than do others.

Consequently, by choosing the signal waveform in some optimal

manner, we may maximize the performance of the system.

If one does this optimization, however, the signals that

result tend to have large bandwidths. For example, when the noise

is stationary, it places the signal energy in a frequency band that is

on the tail of the colored noise spectrum. Often the available band-

width is restricted; the ref ore , in this case one must perform thi s

optimization with some form of constraint upon the bandwidth of the

signal waveform., This is the problem which we want to consider in

this chapter. For a given energy level, we want to find the signal

waveform that optimizes the detection performance when the band-

width (defined later) is constrained.

A. Problem Statement

We introduced the problem of detecting a known signal

in the presence of additive colored noise in Chapter IV. Let us
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briefly review some of its aspects for the optimization problem that

we want to consider. The model of the system that we want to study

is illustrated in Fig. 4. 1. Depending upon the hypothesis, a known

sig.nal, s(t) or -s(t) is transmitted over an additive scalar colored

noise channel. In general, we shall assume that this colored noise

is a zero mean Gaussian process that consists of a white component

w(t) plus an independent component y(t) with finite power. It is

easy to show that the optimal receiver computes the log-likelihood

ratio by correlating the received signal with a second known function

g(t) .

This correlating signal may be determined by solving a

Fredholm integral equation, Eq. 5. 1, of the second kind,

(5. 1)

where

s(t)

g(t)

No/2

is the transmitted signa 1;

is the optimal correlating signal;

is the power per unit bandwidth level of the

white noise (identified as CT in the previous

chapter) ;

and

K (t , T)
Y

is the covariance function of the colored

(finite power) component of the additive noise.

is the observation interval.
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(We shall study only scalar channels here. However, all the results

can be extended to vector channels with little or no difficulty.)

For this problem the appropriate performance measure

is given by

TfS stt) g(t) dt ,

To

(5. 2)

Under the Gaussian assumption that we made, we can determine

probabili ties of error, false alarm and detection. If we relax this

assumption, we can still interpret d2 as the receiver output

signal to noise ratio.

The choice of the signal s(t) is not completely free. We

impose two constraints upon it. The first is an energy constraint,

or

2s (-r)d-r=E. (5.3)

Since Eq. 5.1 is linear, it is easy to see that d2 is linearly

dependent upon E. Secondly, one can define bandwidth in a

multitude of ways. Initially, we shall require that our signal

satisfy the constraint
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00

S JISs(wli 2dw =
-00

(5.4)

I. e., we have used a mean square constraint upon the derivative of

the signal. (We do not need a normalization factor because of

Eq. 5. 3. )

We shall set up and solve the optimization problem using

the constraint of Eq. 5.4. After we have done this, we shall show how

we can extend our results to other types of constraints, ~,

We can now state the optimization problem in terms of

Eqs. 5.1 through 5.4. We want to find a signal s(t) that maximizes

the performance measure d2 given by Eq. 5.2 where g(t) is related

to s(t) by Eq. 5. 1, and yet satisfies the energy and bandwidth

constraints imposed by Eqs. 5.3 and 5.4.

The first approach which one may want to consider is to

formulate the opti miz.ati on problem in terms of the eigenfunctions

and eigenvalues of the homogeneous equation which may be

associated with Eq. 5.1. If one does this, he finds that the optimal

signal is the eigenfunction with the smallest eigenvalue which

satisfies both Eqs. 5.3 and 5.4'. This approach neglects two

important issues. Unless Eq. 5.4 is satisfied with equality, we can

find better signals. In addition, it neglects discontinuity effects

caused by turning the signal on and off at To and Tf respectively.



113

A second approach as proposed by Van Trees is to apply the calculus

of variations while introducing Lagrange multipliers to incorporate

the constraints .28The resulting integral equation can then be

converted to a set of differential equations by using results we

derived in Chapter IV. For the particular form of constraints upon

the signal that we have initially used, 1. e. , Eqs.5. 3 and 5.4, this is

undoubtedly the most direct method of the minimization. However,

the approach that we shall use is more general. Many of the

results that we shall develop can be extended to constraints which

cannot be readily handled with the classical calculus of variations.

We assume that the colored component of the noise y(t) is a random

process that is generated as we described in Chapter II. Making

this assumption we recognize that we can represent the linear

integral Eq. 5.1 as a set of differential equations as discussed in

the previous chapter. Next we consider that this set of differential

equations can be viewed as a dynamic system with boundary

conditions and an input s(t); consequently, the Minimum Principle

of Pontryagin can be used to perform the optimization:3 'By using

this approach we shall first find a general solution to the problem,

then we shall consider two specific examples in order to illustrate

the techniques involved.

B. The Application of the Minimum Principle

In this section we shall develop a state variable formulation

for the problem. Using this formulation we shall apply the

minimum principle to find the necessary conditions for the

existence of an optimal signal. We shall then exploit these conditions
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to find an algorithm for determining the optimal signal.

Since there are several important issues that arise in

the course of our derivation, we shall divide this section into

subsections as listed be low:

1. The State Variable Formulation of the Problem

2. The Minimum Principle and the Necessary Conditions

3. The Reduction of the Order of the Equations by 2n

4. The Transcendental Equation for ~ and AB and

the Selection of the Optimal Signal Candidates

5. The Asymptotic Solutions

1. The State Variable Formulation of the Proble m

In order to apply the Minimwn Principle we need to

formulate the problem in terms of differential equations, boundary

conditions, cost functionals, and a control. First, we need to find

a set of differential equations and boundary conditions which relate

g(t), the solution of the Fredholm integral equation expressed by

the solution of Eq. 5. 1 to the signal s(t).

We can do this by using the results derived in the

previous chapter. Reviewing the se results we have shown that

g(t), the solution to Eq. 5. 1 is given by Eq. 4. 9

g(t) = N: (s(t) - CIt) ~.!t)), (5. 5)

The vector function, ~(t), satisfies the differential equations,

Eqs. 4.10 and 4.12
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(5. 6)

d.:l(t)
--ar- = CT(t) N2 C(t)~(t) - FT(t).:l(t) - CT(t) N2 s(t)

o 0
To:St:STf

(5.7)

The boundary conditions which specify the solution uniquely are

Eqs. 4. 13 and 4. 14.

;(T ) = P n(T )
- 0 o~ 0

(5.8)

(5.9)

Consequently, we have the desired result that we can relate g(t) to

s(t) by solving two vector differential equations where we have a

two point boundary value condition imposed upon them.

Let us now develop the cost functional for the problem.

The performance measure of our system is given by Eq. 5.2. If we

substitute Eq. 5.5 in Eq. 5. 2 and use Eq. 5.3, we find that

2S(T) N (S(T) - C(T) ;( T))dT
o

Tf
= 2E 2 S

No - No
To

(5.10)
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The first term in Eq. 5.10 is the performance when there is just

white noise present. The second term represents the degradation in

performance caused by the presence of the colored component of the

noise. As in Chapter IV, let us define d2 to beg

TfS S(T)C(T)~(T)dT 1

To

(5.11)

and the function L(g(t), s(t)) to be

2L(~(t), s(t)) = N s(t)C(t)~(t),
o

(5. 12a)

(5. 12b) .

Since the energy E and the white noise level N /2 are constants, ito

is obvious that we can maximize d2 by ~inimizing d 2.g
The state variable formulation requires that the system

variables be related by derivative rather than integral operations.

Since we are constraining both the signal and its derivative, we

cannot use s(t) as the control. Instead, let us define the control

function, v(t) , to be the derivative of the signal.

v(t) ds(t)
= dt (5. 13)
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Furthermore, we require

(5. 14)

Eq. 5.14 is a logical requirement. Since we are constraining the

derivative of the signal, it is reasonable to require that there be no

jump discontinuities (implying singularities in v(t)) at the endpoints

of the interval.

We now have all the state equations and boundary

conditions that describe the dynamics of the system. The state

equations are given by Eqs. 5.6, 5.7, and 5. 13.

(5. 6)
(repeated)

d~~t) = CT(t) N2 C(t)~(t) - FT(t)!l(t) - CT(t)N2 stt), (5.7)
o 0 (repeated)

TostsTf

ds (t) = v( t) ,
dt (5. 13)

(repeated)

We have (2n + 1) individual equations. The boundary conditions are

given by Eqs. 5.8, 5.9, and 5.14.

£(T ) = P 11(T )
- 0 oJ. 0

(5. 8)
(repeated)

(5. 9)
(repeated)

(5. 14)
(repeated)
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Notice that there are (2n + 2) individual boundary conditions.

Consequently, these conditions cannot be satisfied for an arbitrary

v(t) .

In order to introduce the energy and bandwidth constraints,

we need to augment the state equations artificially by adding the two

equations

dxE(t)
dt (5. 15)

(5. 16)

(We have introduced the factor of 1/2 for a later convenience.) The

boundary conditions are

(5. 17)

(5. 18)

(5. 19)

It is easy to see that these differential equations and boundary

conditions represent the constraints described by Eqs. 5. 3 and 5. 4.

With these last re sults , vre have formulated the pr oblem

in a form where we can apply the Minimum Principle.
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2. The Minimum Principle and the Necessary Conditions

In this section we shall use Pontryagin's Minimum

Principle to derive the necessary conditions for optimality. Before

proceeding, two comments are in order. First, the control function

is v(t) not s(t), which is one of the components of the state vector for

the system. Secondly, we shall not develop much background

ma terial on the Principle i tse If. For further information we refer

to References 6 and 13.

The Hamiltonian for this system is

T· T· •poL( ~(t), s(t)) + p ..s..(t).s.(t) + P.!l. (t) 2l.(t) + Ps (t) s(t)

2
Po -W- ~(t) C(t) ~(t)

o

+ p.£.T(t)(F(t) ~(t) + G(t) Q GT(t) !1(t))

(5. 20)

':~Weshall drop the arguments when there is no specific need for them.
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'We have denoted the costate vector of the state equation describing

the dynamics of the system (Eqs. 5.6, 5.7 and 5.13) by the variable

E.(t). The subscript indicates the corresponding state variable. The

costates of the constraint equations are denoted by A.E(t) and x'B(t).

The system that we want to optimize may be explicitly time-

dependent (non-autonomous), has a fixed time interval and has

boundary conditions at both ends of the time interval.

Let ~(t), ~(t), and s(t) be the functions that satisfy the

differential equations expressed by Eqs. 5.6, 5.7 and 5.13; the

boundary conditions given by Eqs. 5.8, 5.9 and 5. 14; and the

constraints of Eqs. 5.3 and 5.4, when the control function is v(t).
,..

The Minimum Principle states: In order that v(t) by optimum, it is
,. " Anecessary that there exist a constant p and functions Pe (t) , P (t), P (t),

o 2.. -~ s
" f\.A.E(t), and x'B(t) (not all identically zero) such that the following four

assertions hold:

1\ 1\ *a. ·..Pg(t)= V'~H, (5. 21)

1\ A

P (t) = V' H, (5. 22)
-.!l. n

1\
",'

P (t) = -en/as, (5. 23)
s

" 1\x'E(t) = -aa/as (5. 24)

* ",. /\,/\ 1\ " 1\ I\. Ito A " ,..

H =- H(~, 11,S ,xE' Xg Po' E.~' E..!l.'Ps' A.E,A.B,v , t)
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As expected the energy and bandwidth constraint costates are

constants (therefore, we shall drop the time dependence notation. )

Since we have no boundary upon the control region, we

can minimize the Hamiltonian vs. the variable v(t) by equating the

derivative to zero.

(5.31)

Furthermore, for this to be a minimum, we require that

~o equivalently, from 5.31 (5.32),..
v = v(t\

In general, we can show that A.B > o. Then we can solve Eq. 5.31

for v(t}. This yie lds

(5. 33)

Substitute Eq. 5.33 in Eq. 5. 13. Now w'e shall write the canonical

equations expressed by Eqs , 5.6, 5.7, 5.13, 5.26, 5.27 and 5.28

in an augmented vector form. This yields a homogeneous set of

4n + 2 equations,
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(5. 25)

b. for all t in the interval [To' Tf] the function

H(~ " ~ A 1\ " A " ~ ~ t) . ... d~, !l'~' xE' xB' E~' E.'!l'Ps' I\.E' I\.B' v, 1S rmrurmz e

as a function of the variable v;

c. P is a constant with p 2= 0;o· 0

d. the costate vector is perpendicular to the manifold

defined by boundary conditions at each end of the interval.

Let us now examine what each of these assertions implies.

If we perform the derivative operations indicated by Eqs. 5.21 to
"

5.25, we find

1\ 2 TAT" T 2 ".Ps,(t) = -Po ~ C (t) s(t) - F (t)E.~(t) - C (t) N C(t)P.!l.(t))
o 0

To :5 t :5 Tf j (5. 26)

.E'n(t) = -G(t)Q GT(t)~l.(t) + F(t) Pn(t)) To:5t :5Tf} (5.27)

P (t) = ~p 'N2 CT(t) ~ (t) + CT(t) N2 P (t) - A.E(t)~(t), (5. 28)s 0 - -21 'o 0
T :5 t :5 T

f
"o J

(5. 29)

(5. 30)
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(From now on, we shall dr op the A notation and assume that we

refer to the optimal solution. )

If, in assertion (c) of the Minimum Principle, the

constant p is identically zero, then we have what we shall call ano

asymptotic case. We shall return to this case later; however, let

us for the interim set p equal to unity. Since the costateo

equations are linear, this entails no loss of generality .

.Let us consider the boundary,or transversality, conditions

implied by assertion (d). At the initial time, these conditions

imply

(5..35)

and p (T ) is unspecified. At the final, or endpoint, time we haves 0

(5. 36)

and p n(T f) and .Ps(Tf) are unspecified. We also have that A.E and A.B

are unspecified constants (A.B 2:: 0). We also have the boundary

conditions given by Eqs. 5. 8, 5. 9 and 5. 14. Therefore, we have a

total of 4n + 2 boundary conditions. In addition, we should notice

that we do not have to find the control v(t) in order to find s(t),

although we may easily deduce it from Eq. 5. 33.

3. The Reduction of the Order of the Equations by 2n

We are now in a position to show how the assertions of

the Minimum Principle may be used to find the candidates for the

optimal signal. However, before proceeding we shall derive a
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result that significantly simplifies the solution method. We shall

prove that, in general,

_C(t) = P (t)~ --!l l
(5.37)

(5. 38)

This reduction was suggested by the variational approach of Van Trees.

We point out though that our derivation is independent of the type of

constraint imposed upon the signal; i,e., it only depends upon the

differential equations for ~(t) and !l(t).

Let us define two vectors .§.1(t) and g2(t) as

(5. 39)

(5.40)

If we differentiate these two equations and substitute Eqs. 5.6, 5.7,

5. 26 and 5. 27 (with p equal to 1), we findo

~ l(t) = F(t) ~(t) + G(t) Q GT (t) !l(t) - G(t) Q GT (t)p s(t) + F(t) l?:o(t)

= F(t)S1(t) +G(t)QGT(t)'s2(t), To===t===Tfl (5.41)

..€ 2(t) = CT (t) ~ C(t) ~(t) - F T (t) !l(t) - CT (t) ~ s (t)
o 0

= CT (t) ~ C(t) .s.1(t) - F T (t) Eo2(t) J T 0 ===t ===Tr- (5. 42)
o
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The boundary conditions that the solution to these differential

equati ons satis fy may be found by using Eqs. 5. 8, 5. 9, 5. 35 and

5.36. They are

(5. 43)

(5.44)

Consequently, Eqs. 5.41 to 5.44 specify two vector linear

differential equation with a two point boundary value condition.

However, these equations are just those that specify the eigenvalues

and eigenfunctions for the homogeneous Fredholm integral equation

as shown in Chapter III, Eqs. 3.10 to 3.13. We have shown that

in order to have a nontrivial solution to this problem, we require

that

(5.45)

where A. is an eigenvalue of a Karbunerr-Los ve expansion of the
1

colored noise. Clearly, this is impossible since A. :::o. Consequently,
1

the only solution is the trivial one, 1. e., ~ 1(t) = ~ 2(t) = Q, which

proves the assertion of Eqs. 5.37 and 5.38.

4. The Transcendental Equation for AE and AB and the Selection of

the Optimal Signal Candidate s

In this subsection we shall use the necessary conditions

to derive a transcendental equation that must be satisfied for an
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optimal solution to exist. The method and result are very similar

to that which we used in Chapter III to find the eigenvalues of the

homogeneous Fredholm equation. The most important distinction is

that this equation is in terms of two parameters, AE and A.B, whereas

we had but one before. Once we satisfy this equation, we can

generate a signal which is a candidate for the optimum solution.

Because of the linear dependencies derive d in the

previous subsection we can reduce the 4n + 2 equation specified in

Eq. 5.34 to a set of 2n + 2 equations. We have

~(t) F(t) G(t)QG T(t) 0 0 ~(t)

.!l.(t) CT(t) ~ C(t) -F T(t) -cT(t)--?- 0 !l.( t). N
d 0 0

dt =
1s(t) 0 0 0 - A.
B

s(t)

P (t) 4 0-N C{t) -~ 0 ps(t)s
0

T :St:STf" (5. 46)
0

The boundary conditions are given by Eqs. 5.8, 5.9, and

5. 14. These conditions specify 2n + 2 boundary conditions that must

be satisfied for an optimum to exist.

Since Eq. 5.46 is a homogeneous linear equation, we may

not, in general, have a nontrivial solution. In order to find where we

may obtain a nontrivial solution, let us define the transition matrix

associated with Eq. 5.46 to be X(t, To: A.E, A.B). We emphasize the
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dependence of X upon ~E and A.B by including them as arguments.

Since Eq. 5.46 is linear, we can determine any solution

to Eq. 5.46 in terms of this transition matrix. If we use the boundary

conditions specified by Eqs. 5.8 and 5. 14, we find that any solution

that satisfie s the initial conditions may be w-ritten in the form

't)( t) ,,(T )- 0

o

(5. 47)

s(t)

P ,,(T )0- 0s(t)

To::: t :::Tr
The final boundary condition requires that .!l(Tf) and s(Tf) both be

zero. In order to see what this implies, let us partition this

transition matrix as follows (we drop the arguments temporarily):
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By substituting Eq. 5.38 in Eq. 5.37, we find that in terms of these

partitions, the requirement that !l.(Tf) vanish, implies

Similarly, we find that s(T f) being zero requires

o = [X t(Tf,T :A.E,A.B)P + X (Tf,T :A.E,A.B)],,(T )sE.- 0 0 s!l 0 - 0

+ X (Tf, T :A.E, A.B)p (T )
s Ps 0 s 0

(5.49)

(5. 50)

We can write Eqs. 5.49 and 5.50 more concisely in matrix-vector

form

o =

,,( T )- 0

(5.51)
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or by defining the matrix in Eq. 5.51 to be D(AE, AB), we have

(5. 52)

T} (T )- 0

Equation 5. 51 specifies a set of n + 1 linear homogeneous

algebraic equations. The only way that this set of equations can have

a nontrivial solution is for the determinant of the matrix D(~, AB)

to be identically zero. Consequently, the test for candidates for the

optimal signal is to find those value s of AE and AB ( > 0) such that

(5. 53)

Once Eq. 5.53 is satisfied, we c an find a non-zero solution

to Eq. 5.52 up to a multiplicative constant. Knowing !l(To) and

p (T ), allows us to determine the candidate signal(s), SA A (t), for
S 0 E' B
the particular values of AE and AB that satisfy Eq. 5.53. The

multiplicative constant may be determined by applying the energy

constraint of Eq. 5.3; i ,e. ,

(5. 54)
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By using Eq. 5.33 we can determine the bandwidth of the signal.

We have that

~ Sf
2. Tf

B2=
( d s~, AB (T) ) 1 S 2d-r =

EX.2
P A. A. (T)dTdT S E' BT B T

0 0

(5. 55)

In order to satisfy Eq. 5. 53" we require that only the

rank of D(A.E"A.B)be less than or equal to n the dimension of g(t) and

!l.(t). The case when this rank is less than n presents an

important aspect of this optimization. For convenience, let us

define

(5. 56)

nD specifies the number of linearly independent solutions to Eq. 5.52

that we may obtain for the given values of A.E and A.B. These

solutions in turn specify "n functions, v(t), that satisfy the

necessary conditions for optimality given by the Minimum Principle.

We see that because of the linearity and quadratic

constraint of any linear combination of these functions that have the

same values of A.E and A.B also satisfy the necessary conditions

given by the Minimum Principle. Consequently, any time we find "n
is greater than 1, we must consider these linear combinations when

checking to see which candidate is indeed optimum. Of course,
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these candidates are subject to the same constraints as any other;

i.e., the energy and bandwidth constraints given by Eqs . 5.54

and 5. 55.

5. The Asymptotic Solutions

An issue which we deferred was the question of the

asymptotic case when p equals zero. Since these solutions provideo
an useful in the analysis of a particular problem, it is worthwhile

to examine them before proceeding with the discussion of the

algorithm of our design procedure. We shall call the solutions

that satisfy the necessary conditions of the Minimum Principle when

p is zero the asymptotic solutions. (They are often calledo
pathological solutions.) In order to test for their existence, we set

p equal to zero in Eq. 5.34 and examine the differential equations foro

PG(t) and E!l.(t). If we write these equations in augmented vector

form, we obtain the following homogeneous equation

d
dt

I
-FT(t) I -C T(t) ~ C(t)

I 0
= --------t------~

I
-G(t) QGT(t) I F(t)P (t)-~

(5.57)

The appropriate boundary conditions are specified by Eqs. 5.35 and

5.36.

From Chapter III, Eq. 3. 13,
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(5. 58)

Let us define the transition matrix associated with Eq. 5.57 to be

<I?(t,T: -N /2). We note that <I?(t,T:-N /2) is related to the transitiono 0

matrix '1'(t, T: -N /2) associated with W(t:-N /2)d . 0

'j /. T /<I?(t,-r:-N 2) ='1' (T,t:-N 2)o 0 (5. 59)

Any solution to Eq. 5.57 may be found in terms of

<I?(t,T:-N /2). In order to find the solution to Eq. 5. 57 that satisfieso

the bo mdar'y conditions, we partition <I?(t,T:-N /2) into four n x no

submatrices,

N
<I?(t:T:- ~) = (5. 60)

If w'e incorporate the boundary condition specified by Eq. 5. 36

that the solution to Eq. 5.57 is

p (Tf)·-!l.
(5.61)
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The initial condi ti on specified by Eq. 5. 35 require s

T No
p (T ) = '1' (Tf, T :- -2 )p (Tf)-11 0 14U 0 -n (5.62)

= - p_P 1- ( T ) = - P '1'T~(Tf, T :-N 2)P n.. (Tf),U""-;S. 0 0 .!l~ 0 0-

or

o =
(5. 63)

The only way that Eq. 5.36 can have a nontrivial solution is for the

determinant of the matrix enclosed by brackets in Eq. 5. 63 to vanish.

If we transpose the matrix in Eq. 5. 64 (this doe s not change the

determinant value), we find that we have the test for an eigenvalue

that we developed in Chapter Hl , There we showed that the only way

for this determinant to vanish is for

A.. > 0
1

where A.. is an eigenvalue associated with the Karhunen Loeve
1

expansion colored noise process. Clearly, this is impossible.

Consequently, the only solution is the trivial one, i,e. ,
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c. The Signal Design Algorithm

In the previous section we have derived the results

necessary for solving the signal design problem. In this section

we shall use these results (and a fair amount of experience) to

devise an algorithm which when implemented on a digital compute r

will find the optimal signals and their performance.

Ideally, we want to be able to find the optimum signal

for given values of E and B.' Although this is certainly possible, it

is far more efficient to solve a par ttcular- problem where we let B

be a parameter and then select the spe cific value in which we are

intere sted (the energy is normalized to unity). The reason for this

approach will become apparent when we consider some specific

examples.

The Minimum Principle has provided us with a set of

necessary condition from which we found a test (Eq. 5.53) for an

optimum signal. The result of this test is that we essentially have

an eigenvalue problem in two dimensions. The most difficult aspect

of the problem becomes finding the particular values of AE and AB

that both satisfy this test and correspond to a signal the desired

bandwidth. The algorithm that we suggest here is simply a systematic

method of approaching this aspect of the problem.

The algorithm has several steps. First, we shall

outline it. Then in the next section we shall discuss it in the context

of two examples.

a. Find the loci points in the AE, AB plane that

satisfy Eq. 5. 53. This requires that we have an effective procedure

for calculating transition matrices. In general, one can simply
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(5. 65)

If we substitute Eq. 5.65 in Eq. 5.34, we find that the

differential equations for s(t) and ps(t) are

1s(t) = - ~ P (t) 1
I\.B s

(5. 66)

(5. 67)

The only solution to these equations that satisfies the boundary

conditions specified by Eq. 5. 14 is

~ (t-T.)
s(t) =-J 2T sin n1TT f - ~ 0 (5. 68)

with

(5. 69)

Several comments are in order. (1 .) The bandwidth of

these signals is easi lyshown to be nn/T. (2.) We have not violated

assertion (a) in our application of the Minimum Principle since p (t)s
is non zero. (3.) We did not require our system to be time

invariant, nor did we specify the dimension of the system.

Consequently, these solutions, which are probably the most

practical to transmit, exist for all types of colored noise that fit

within our model.
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numerically integrate the differential equations that specify the

transition matrix. However, if the matrices that describe the

generation of the channel noise (F,G,Q,C) are constants, then we can

use the matrix exponential, i.e. ,

(5. 70)

where Z(~, A.B)is the coefficient matrix of Eq. 5.45.

b. For a particular point on these loci, solve Eq. 5. 52

for !l(T0) and p s(T 0)· Then use Eq. 5.47 to determine the signals

sA. A. (t}, P A. A. (t) and ~A. A. (t).
E' B s E' B . E' B

c. Since the performance is linearly relate d to the energy,

normalize these signals such that sA.E,A.B(t)has unit energy.

d. Calculate the bandwidth and performance of the

normalized signals as specified by Eqs. 5.55 and 5. 11, respectively.

e. Repeat parts b, c, and d at appropriate intervals

along these loci in the A.E,A.Bplane. (The interval should be small

enough so that the bandwidth and performance as calculated in part d

vary in a reasonably continuous manner.) As we move along a

particular locus in the. A.E,A.Bplane, plot the degradation ~

bandwidth in a second plane, a d2, B2plane.g
f. As mentioned earlier, we ne ed to pay spe cial

attention to the case when Eq. 5.53 has more than one solution. This

situation corresponds to a crossing of two or more loci in the

~, A.Bplane. In this case find the solutions and plot the locus

produced in the d2, B2 plane by linearly combining the differentg
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signals. Probably the most convenient means of doing this is to use

the Fredholm integral equation technique discussed in Chapter IV.

g. For a given value of bandwidth constraint the

optimal signal is the one that corresponds to the lowe st value of

d2. This signal is the absolute minimum, while the others corre spond
g
to relative minima.

h. We recommend that one use his engineering judgment

in determining which loci on the ~,AB plane are on inte rest and in

deciding when the white noise performance is being approached.

The problem of determining which loci in the AE,ABplane

generate the optimal solution is time consuming. As we shall see,

these loci can be rather complex. In the two examples that we have

studied, we have observed a phenomenon which, if it were generally

true, would considerably simplify this aspect of the algorithm. If

one chooses a value of AE and finds the solution of Eq. 5. 53 with the

largest value of AB, the signal that corresponds to this point is

globally optimum for the value of B that the signal has. (Similarly,

one can fix AB and find the solution of Eq. 5.53 with the largest AE

in abs olute value.) With this conjecture the bandwidth then becomes

a monotonic function of either ~ or AB. The only possible

difficulty that would be in finding the points corres ponding to loci

crossing.

We have not been able to prove that this phenomenon

is true in general. However, it seems quite promising in view of the

evidence that we have and the analogy to the smallest eigenvalue

optimization procedure when there is no bandwidth constraint

. d 3lmpose .
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D. Examples of Optimal Signal Design

In this secti on we shall illustrate our technique. We

shall consider the colored noise to have the one and two pole spectra

described in Chapter II.

Example !-Signal Design with ~ One Pole Spectrum

The equations describing the generation of the colored

component of the observation noise are given by Eqs. 2. 15 and 2.16.

Since the process is stationary, let us also set To = 0 and Tf = T.
In order to set up the te st for the optimum signal, we

need to find the coefficient matrix in Eq. 5. 46. If we substitute the

coefficients of the Eqs. 2. 15 and 2. 16 into Eq. 5.46 we obtain

£(t) -k 2kS 0 0 £(t)

t](t) 2 k 2 0 ,,(t)
No -N

d 0 (5.71)
dt =

s(t) 0 0 0
1 s(t)- A-
B

ps(t)
4 0 -A- 0 P (t)-N E s
0

From Eqs. 5.8, 5.9 and 5. 14 the boundary conditions are

£(0) = 811(0), (5. 72a)

t) (T) = 0, (5. 72b)

s(O) = s(T) = 0 (5.72c)
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Step (a) in our algorithm requires us to find the loci

in AE, AB plane that satisfy Eq. 5.53. To do this, we need to

calculate the transition matrix (4 x 4) of Eq. 5. 71 x{ T, 0 :AE, AB) .

From this matrix we can compute D(AE, AB) (2 x 2) by using

Eq.5.51.

To illustrate this, let us choose specific values and use

a computer to perform the required calculations for the parameters

k, No/2, S, and T. Let us set

k = 1

N·
0 12"" =

(5. 73 a-d)
S = 1

T = 2

The loci of points in the ~, AB plane that satisfy Eq. 5.53 are

illustrated in Fig. 5. 1.

In this figure only six loci have been plotted. Other loci

with lower values of AB for a given ~ exist but are not significant in

the final solution. (They correspond to signals with a large band-

width and performance very close to the "white noise only" limit.

We found these loci by first fixing AE and then locating the zeroes

of Eq. 5.53 as a function of AB·

According to Eq. 5.32, we need to look for solutions

only in region of the plane where AB > o. In this particular

example we did not observe any loci in the first quadrant of the plane.

Consequently, the only region of interest is where AB > 0 and

AE < o.
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The reas on for considering the asymptotic solutions

should now be apparent. We have sketched their loci as given by

Eq. 5.69 with dotted lines. We see that the loci asymptotically

approach those of the asymptotic solutions. Therefore, for large

values of AE a convenient place to start searching for the loci is

near those specified by Eq. 5. 69. We should point out that the loci

of the asymptotic solutions do not cause the determinant specified

by Eq. 5. 53 to vanish. This is because in determining their

existence we used the equations directly derived from the Minimum

Principle rather than the reduced set of equations that were used to

derive Eq. 5.53.

Now, if we take the solutions specified by these loci

and determine the bandwidth and performance of the corresponding

signal according to steps (b) through (e), we produce a second set of

loci in a d2_B2 plane. These are illustrated in Fig. 5.2. We can
g

identify the corresponding loci by the numbers 1 through 6). In

addition we have indicated the bandwidth and performance of the

asymptotic solutions by a large dot near the ide ntifying number of

the loci aht approaches it. (We can indicate it by a single dot

because the entire loci for the asymptotic solution corre sponds to

just one signal.)

In the AE - AB plane of Fig. 5. 1 as we move from left

to right on the solid lines, those that cause the determinant of

Eq. 5. 53 to vanish, we generate the loci in the d2 _B2 plane withg
the solid lines in the direction indicated by the arrowheads. We see

that they evolve from the dots corresponding to the asymptotic

solutions. As can also be seen, the loci corresponding to numbers
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I.



143

one and two are well behaved, while those corresponding to the

remaining numbers have a rather erratic behavior.

As indicated by step (f) the other aspect of the optimization

that needs to be considered is the crossings of the loci that occur in the

~ - A.B plane. At these crossings, there are two signals with the

same values of A.E and A.B that satisfy the necessary conditions.

If we find the degradation and bandwidth of all possible linear

combinations of these signals (normalized to unit energy), we pr-oduce
plane

the loci in the d; - B1indicated by the dotted lines. (There is no

relation between the dotted lines in each plane.) Since it is evident

that only some crossings are significant, 1.e., are candidates for

the absolute minimum, we have not plotted the loci produced by all

the crossings. Once we have generated these loci over the band-

width constraint region of interest, we can find the optimal signal

corresponding for any particular bandwidth constraint value. We

merely select the signal which produces the absolute minimum -
2- 2 plane

degradation, or the lowest point in the d . - B / for the spe cifiedg
value of B.

At this point we pause to discuss the phenomenon we

mentioned in the last section. To do this, let us trace the loci in

the two planes. Let us start at the top right of the graph with ~

large in absolute value. As we start to increase A.E by moving

downward, the locus in the d2 - B2 plane eminates from point oneg
and proceeds across to the right. The point on this locus where

the dotted line starts corresponds to the first loci crossing in the

A.:E - A.B plane. All the points on this dotted line correspond to

this crossing point. As we again move downward increasing A.E
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and take the largest AB solution, we generate the solid line. This

continues until we reach another" dotted line which again corresponds

to a loci crossing. We can continue in this manner as far as we

wish. The important point is that we could ignore the complicated

patterns corresponding to remaining values of AB that satisfied

our te st.

Let us illustrate the actual form of some of the optimal

signals for two different values of the bandwidth constraint, B.' In

the first ill~stration we haveB2 equal to 9. If we examine the d2 - B2" g

of Fig. 5. 3, we see that the optimal signal is a linear combination

of the two solutions that are produced by the first crossing of loci

one and two in the AE - AB plane. The optimal signal for this

constraint is illustrated in Fig. 5. 3. We see that we can achieve

a degradation of 23.6 percent less than the white noise only

performance.

In addition, we have drawn g(t), the corre lation signal for

the optimal receiver. The signal(s} exhibit no particular symmetry

for this constraint value of B equal to 3 as it is composed

principally of the signals sin(iTt/T} and sin(2iTt/T}. We should note

that because of the possibility of two different sign reversals there

are actually four signals that are optimal. All of these, however,

basically have the same wavesha pe.

In Fig.5.4 we show the optimal signal s(t} and its

correlating signal g(t} when we allow twice as much bandwidth,

L e. , B2 = 36. In this case, the optimal signal does not correspond

to a crossing in the AE - AB plane, as it did previously. The band-

width is sufficiently large enough so that we can attain a performance
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only 6.4 percent below that of only the white noise being present.

The signal does display some symmetry in that s(t) = -s(T-t); and

the correlating signal is almost identical to s(t) indicating that we

(nearly) have a white noise type receiver.

We conclude this example by discussing the improvement

over a conventional signal that is attainable by transmitting an

optimal signal. We propose the following comparison. Let us

transmit a unit energy pulsed sine wave, 1. e., ..j ZEIT sin(nTIt/T).

The bandwidth that this signal consumes is n1T/T, 1. e., BZ = (nTI/T)2 .

We can find the performance of these signals dZ . by referring tog sm
Fig. 4. Z or from the large dots on Fig. 5.2 since these signals

also correspond to the asymptotic solutions. For this same amount'

of bandwidth, let us find the performance of the optimal signal -

d: opt. (We can do this by looking directly beneath the dots in

Fig. 5. 2. ). we now compare d2 t with the performance of the pulsedg op
sine wave. We have done this in Table 1. Index II reflects the

improvement when referenced to the pulsed sine wave performance

while 12 references it to the white noise only pe rforrnance , 12 is

probably the index of most significance since it reflects 'the total

improvement of the system.

We can see that tIE performance improvement

indicated by lZ is hardly outstanding. We can conjecture two

reasons for this. For the parameter values chosen, the white noise

is just as significant in effect as the colored component. Also, the

one pole or first order spe ctrum is difficult to work with since the

_noise does not have much structure to exploit by designing the

signals c orre ctly.
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Example ~ - Signal Design With ~ Two Pole Spectrum

In this example we shall consider the signal design

problem when the colored component of the observation noise has

a two pole spectrum. We do this primarily for several reasons.

First, we want to develop a better understanding of the problems

involved in implementing our algorithm. Secondly, we want to ....
verify the phenomenom that we obser-ved with the one pole spectrum.

Thirdly, the one pole spectrum considered in the previous example

can give deceiving results at times. Finally, we want to demonstrate

that our optimization procedure can produce more significant impro-

vements when working with a process that has more "structure" to

it.

We as sume that the colored component of the observation

noise is generated by Eq. 2.18. In addition, we set the white noise

spectral level to unity and assume that the interval length is two,

i.e ., T2 =·0, Tf = T = 2. Hence, the colore d component of the

observation noise dominates for all frequencies less than say. 8Hz.

This particular colored noise spectrum is particularly

interesting because of its shape. Suppose we constrain the bandwidth
'2

to be less than 3, or B = 9. This corresponds to allowing

frequencies which are lower than that frequency where the spectrum

has its peak. We certainly do not want to put all the signal energy

in frequencies near the peak. Yet, if the bandwidth is available we

should be able to use it to our advantage. Although one can

conjecture from either our previous example, or his engineering

judgment that a linear combination of pulsed sine waves should be

close to optimum, it is not apparent that this is so.
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Let us proceed with the steps in our algorithm. The

first six loci in the AE - AB plane are illustrated and numbered in

Fig. 5.5. Again, we observe the asymptotic behavior for large

negative values of AE. In two respects the loci exhibit a somewhat

more complicated behavior than those for the one pole spectrum.

First, they do not cross simply pairwise. Apparently, they cross

with the adjacent locus; i.e., the second crosses the first and

third, the third crosses the second and fourth, etc. Sec ondly, in

some regions they are extremely close together.

In Fig. 5. 6we have plotted the corresponding loci in the

2 2dg -B plane. Their behavior is very similar to the one pole case.

We see that the first and second loci are well behaved, while the

others exhibit the same type of erratic behavior. As indicated by the

dotted lines, there are regions where we must consider the linear

combinations of signals corresponding to a loci crossing in the

~ - AB plane. Most importantly, the maximum AB phenomenom

still occurs.

Let us now examine the shape of an optimal signal when we

constrain the bandwidth such that the colored noise is dominant over

the allowed frequency rap-gee If we chose B2 = 13, the optimum
signal set) and its correlating signal get) are illustrated in Fig. 51.7.

The signal is principally composed of functions of the form sin(irt)

and sin(31T't). The degradation realized by this signal is .53 which is

approximately 15 percent below what one might expect using a non-

optimum approach of se lecting the pulsed sine wave with the best

performance that still satisfies the bandwidth constraint.
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Fig. 5.7

Optimal s(t) and g(t)
for a ~econd Order Spectrum
and B = 13

Performance d2= .53
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In Table II we have s umrna r iz ed the performance in the

same way that we did in the first example of this section. In this

example the optimization has improved our performance more

significantly. This is probably due to the colored noise being more

dominant in this example.

E. Signal De sign With a Hard Bandwidth Constraint

In this section we shall derive the differential equations

that specify the necessary condition for optimality when we

constrain the absolute value of the derivative of the signal, 1. e. ,

we require

1

Iv(t) I = I d~\t) I ::5 EZ B, (5.74)

As before, we constrain the signal energy by

2s {-r)d-r:S E (5. 75)

We can formulate the problem in a manner very similar

to that used previously. The resulting Hamiltonian is

Po ~ s{t)C{t)~{t) + E.~ (t){F{t)~{t) + G{t)QGT{t)21{t))
o -

(continue d)
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Taking the required derivatives, we find

BH· T 2 T8I" = -P g(t) = poe (t) No s(t) + F (t).P.s(t)

~ = -i> (t) = G(t)Q GT (t)p c(t) - F(t)p (t)an -!l. - ~ -!l.

+ ~(t)s(t)

The transversatility conditions imply

(5. 76)

(5. 77)

(5. 78)

(5. 79)

(5. 80)

(5.81)

(5. 82)
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We again have that AE is a constant. Furthermore, we

note that Eqs. 5.77, 5.75, 5.81, 5.82 are identical to Eqs. 5.26,

5.27, 5.35, 5.34 respectively. Consequently, we can again show by

using the results of Section B-3 that

~(t) = (5.83a)-p (t)
-ll

(5.83b)

Therefore, Eq. 5.79 becomes (assuming Po equals unity)

ps (t) = - ~ C(t)~(t) - ~s(t)
o

(5. 84)

The major differe nee between the application of the

Minimum Principle to this problem and the one in the text comes

in the minimization of the Hamiltonian as a function of the control

v(t). If ps(t) is non-zero, this minimization implies

1
"2v(t) = -E B sgn(ps(t)) (5.85)

This implies that the optimal signal has a constant linear slope of

+E 1/2B when p (t) is non-zero.- s
The differential equations, now non-linear, that specify

the necessary conditions are

dS(t) T
dt = F(t) ~(t) + G(t)Q G (t)21(t) (5. 86)
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(5. 87)

1
ds(t) "2<It = v(t) = -E B sgn(p s(t)) (5.88)

(5.89)

The boundary conditions are

(5.90)

(5.91)

(5.92)

If ps(t) is zero over any region, we cannot determine v(t) by Eq. 5.85.

In such region

(5.93)

implies

s(t) = - ~ 4N C(t)~(t)
E 0

(5.94)
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If we combine this equation with Eq. 5. 86, we find that the two

equations have the same form as those that specify the eigenfunction's

associated with the colored noise.

This leads us to the following conjecture: the optimal

signal consists of regions of a constant slope of i.E l/2Band regions

where the signal has the same functional form as the eigenfunction of

the colored noise. Finding a solution technique for solving these

differential equations will be part of future research.

F. Summary and 'Discussion

We have presented a state variable method for designing

optimal signals for detection in colored noise when there are energy

and bandwidth constraints. The performance measure was given

by d2, which specified the loss of receiver performance due to theg
colored noise being present. We used the differential equations and

their associated boundary condition that specified the optimal receiver

and performance measure as if they described a dynamic system.

We then applied Ponttyagin's Minimal Principle to derive the

necessary conditions that the optimal signal must satisfy. These

conditions specified a characteristic value problem. We could

determine the optimal signal by solving this characteristic value

problem.

We suggested a computer algorithm for doing this.

By using this algorithm we were able to analyze two examples of

colored noise spectra. In addition to finding the optimal signal and

its associated performance, the algorithm displayed several

intere sting features.
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One may argue that we did not need to use the Minimum

Principle to solve this problem since we could proceed directly to

the 2n + 2 differential equations and boundary conditions via the

usual calculus of variations and the estimator-subtractor realization

of the receiver. The advantage of this formulation becomes apparent

when we change the type of constraints upon the signal. In Section E

we derived the differential equations that specify the optimal signal

when we impose an energy constraint and a hard (bandwidth)

constraint, Ids(t) Idt I :s B. This problem is readily solved using a

Minimal Principle, whereas the calculus of variations would require

much more effort.

We intend to continue studying the issue of hard constraints

by examining the design problem when we impose peak constraints on

the signal itself and/or its derivative. We expect that the important

aspect will be to find an efficient computer algorithm to solve the

resulting differential equations.

There are several other important issues.

1. The most difficult aspect of our method is to select

the signal that is globally optimum from all those that satisfy the

necessary conditions optimum. As we have discussed in the text,

we have observed a phenomenom which eliminates this problem.

We feel that there is sufficient empirical evidence to spend some

time trying to verify this theoretically.

2. The equivalence of ~(t) and -E.1") (t), and !l.(t) and E. S(t)

is a very general result. Because of this generality it seems that

there should be a means of formulating these problems with a

stochastic minimum principle which would allow us to obtain the
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final differential equations directly. However, this means has not

been apparent so far. 29

3. One can also pose the optimization problem when we

use a suboptimum receiver. For example, if we constrain the

receiver to be a matched filter, one wants to minimize the functional

2'd =g
Tf Tf

) j s (t)Ky(t, T)S (T)dT =

To To .

Tf5 S(t)C(t)~(t)dt

To

(5.95)

where we have defined

K (t , T)C(T)s(T)dTx (5.96)

The results of Chapter II are now directly applicable, and we can

proceed in a manner analogous to the way we did in this chapter.

Similar results should exist for other types of suboptimal receivers,

e. g., those operating in a reverberation environment.

4. The algorithm that we used requires an accurate

method for calculating transition matrices. All the problems that

we have examined to date have involved constant parameter

systems. Consequently, we could use the matrix exponential. By

being reasonably careful we have not encountered any difficulty when

we used a straightforward series sum approximati on. However,

this is certainly no guarantee that this series approach will always
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work, for example as the dimension of the system increase s , We

think that it is worthwhile to investigate other methods to compare

their accuracy and speed to the present method.

5. Finally, the results in this section can be extended

to bandpass signal design by using the material in Appendix B. The

possibility of a noise spectrum that is not symmetrical about the

carrier introduces some interesting questions on how to best take

advantage of this situation.
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CHAPTER VI

LINEAR SMOOTHING AND FILTERING WITH DELAY

In this chapter we shall use the results derived in

Chapter IV for solving nonhomogeneous Fredholm integral equations

to develop a unified approach to linear smoothing and filtering with

delay. In the smoothing problem vre receive a signal over a fixed

time inte rval [T ,Tfl. We then want to find ~(t), T s t S Tf, theo - 0

estimate of the state vector that generated this signal over the

same fixed interval. In a filtering proble m we receive a signal

continuously, L e. the endpoint time of the interval, Tf, is constantly

increasing. We then want to produce an estimate which evolves in

time as a function of this endpoint. For the realizable filter we want

to find g( Tf} vs . Tf' the estimate of the state vector right at the

endpoint time, Tf" For the filter with delay, we are allowed a

delay before we make our estimate. We want to find ~(Tf- A) vs.

Tf' the estimate of the state vector A units prior to the endpoint of

the inte rval.

Our approach to these problems is straightforward. We

start with the Wiener-Hopf equation that specifies the impulse

response for the optimal linear estimator. 3 We then show how we can

find a set of differential equations that specify the optimal estimate

implicitly as part of their solution. From these equations we can

derive matrix differential equations which determine the covariance
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of error.

Our approach to the problem of filtering with delay is

also straightforward. In the solution to the optimal smoother, we

simply allow the endpoint time of the observation inte rval to be a

variable. We then derive a set of differential equations which are a

function of this variable endpoint time rather than the time within

a fixed obse rvation interval as for the smoother. The performance

is also derived in an analogous manner.

Several comments are in order before proceeding.

First, all the derivations in this chapter are original. Many of the

results, however,' have appeared in the liter ature. They are

referenced where appropriate. The most important point to be made

concerning our methods is the approach. The entire the ory can be

deve loped concise ly and directly starting from a few bas ic res ults .

Secondly, we shall employ a structured approach to this

topic. We shall require the estimator structure to be linear,

regardless of the statistics of the processes involved. Existing

approaches to this problem are unstructured; it is assumed that the

processes involved are Gaussian and then the estimator structure

is derived. It is well known, however, that both approaches yield

the same estimator.

Thirdly, we shall assume that the reader is familiar

with the well known results for realizable filtering by using state
8,3

variable techniques, i.e. , the Kalman-Eucy filter.

Finally, although these topics have been extensively

studied in the literature, several incorrect derivations and results

have appeared. We shall point out these errors and give the
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correct results.

A. The Optimal Linear Smoother

In this section, we shall derive a state variable realization

of the optimum linear smoother, the state variable equivalent of the

unrealizable filter. First, we shall establish our model.

Let us assume that we generate a random process l(t)

by the methods described in Chapter II. Let us also ass ume that we

observe this process 'in the presence of an additive white noise w(t)

over the interval To :5 t :5 Tr That is, we receive the signal

.!(t) = -y(t) + ~(t) = C(t) ~(t) + ~(t), (6. 1)

where ~(t) is the state vector of the system that generates

y(t) , ~(t) is an additive white observation noise that has

a covariance R(t) O(t-T) as given by Eq. 2.7.

In the optimal smoothing problem we want to find a state-

variable description of the linear system that minimizes the mean-

square error in estimating each component of the state vector ~(t).

We shall find that this description consists of two first-order vector

differential equati ons having a two-point boundary restrictions.

Let us now proceed with the derivation of these equations.

First, w'e define the matrix impulse response of the

optimal linear smoother to be h (t , T), or
-0
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1\
~(t) = h (t , T)r(T)dT,~o - (6. 2)

This operator produces an estimate of the state vector, ~(t) at time

t by observing rtr) over the entire interval [T ,Tfl.- 0
It is well known and can easily be shown by classical

methods that this impulse response satisfies the following Wiener-

Hopf integral equation.

Tf

Kdr{t, T) = S ~{t, v)Kr{v, T)dv,

To -

(6. 3)

where Kdr(t, T) is the cross covariance of the desired

signal and the received signal, K (t , T) is the covariancer

of the received signal.

For our application, the desired signal is the state vector, ~(t).

Therefore, we have

(6. 4)htt , v)K (v, T)dv,
- r

~:~Althoughh (t , T) is a matrix and should be denoted by a capital letter
in our notaTi?>nconvention, we shall defer to the conventional notation.

TWe have assumed zero means for x(To)' v(t) and w(t). If the means
were non zero, we would need to add a bias term to Eq. 6.2.
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with

(6.5)

The first step in our derivation is to solve this equation

for h(t, T). In order to do this, we need to introduce the inverse
-c>

kernel Q (t , T) of K (t, T), the covariance of the received signal.r r

Let us now introduce some material from Chapter IV on

the nonhomogeneous that we need. From Eq. 4.3 we can write the

nonhomogeneous Fredholm integral equation as

(6. 6)

As we discussed in Chapter IV, vre can consider that this integral

equation specifies a linear operator upon ~(t), with the solution g,(t)

being the result of this linear operation. We define the integral

representation of this operation to be (Eq. 4. 73).

Tf

g{t) = 5
To

(6. 7)Q (t, T)s(T)dT,
r -

Operating upon ~(t) with Qr(t, T) to find g(t) is equivalent to solving

the integral equation by means of our differential equation approach.

It is easy to show that the inverse kernel satisfies the following



169

integral equation in two variables

TfS Kr{t, v)Qr{v, T)dv = Io{t-T),

To

(6.8)

Let us multiply both sides of Eq. 6.4 by Qr(T,Z) and then

integrate with respect to T. This yields

~ ~ .~

S K (t,T)CT(T)Q (T,z)dT = S h(t, v) SK (V,T)Q (T,z)dTdvx r - r r- - - -
T T To 0 0

Tf

= S hJt,v)Io{v-z)dv =~t,z), To:St, z:STr (6.9)

To

We are not directly interested in the impulse response

of the optimum estimator. What we really want to find is the estimate

~(t), which is the output of the estimator. We can obtain this by

substituting Eq. 6.9 into Eq. 6.2,

(6. 10)

~(

We should observe that the inverse kernel can be shown to be
symmetric, i,e. Qr(t, T) = QI{ T, t); therefore, we can define it as
a pre - or post- multiplier operator.
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Thus, the optimum estimate is the result of two integral operations.

We now want to show how we can reduce Eq. 6. 10 to two differential

equations with an associated set of boundary conditions. The
1\

estimate x(t) is spe cifie d implicitly by their solution.

Let us define the term in parenthesis in Eq. 6. 10 as

B'.r(T), so that we have

Tf

Iir(Th=S Qr(T, z)!:.(z)dz,
- T

o
-

(6. 11)

Substituting this into Eq. 6. 9 gives us

"x(t) (6. 12)

Observe that Eqs. 6.10 and 6.11 are integral operations of the type

encountered in Chapters IV and II, respectively. Consequently, we

can convert each into two vector differential equations with an

associated set of boundary conditions.

From our previous discussion, g (T) is the solution to-r

the nonhomogeneous Fredholm integral equation when the signal

~(t) is replaced by £(t). From Chapter IV, we have

(6. 13)



171

where ~(T) is the solution to the differential equations, (Eqs. 4.10

and 4.12

(6. 14)

(6. 15)

The boundary' conditions are (Eqs. 4.13 and 4. 14)

(6. 16)

(6. 17)

In Chapter II we found that the integral operation given

by Eq. 6. 12 also has a differential equation representation. If in

Eq. 2.22 we set

f(t) = a (t),- ...9r (6. 18) .

and then substitute Eq. 6. 13 for [r(t), we find that x(t) can be

found by solving the differential equations

"dx(t) " T
dt = F(t).!(t) + G(t)Q G (t)!l2(t), To:5 t :5 T f (6. 19)
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(6. 20)

The boundary conditions for these equations (Eqs. 2. 33 and 2. 35)

(6.21)

(6. 22)

Upon a first inspe ction it appears that we need to solve

four coupled vector differential equations with their associated

boundary conditions. However, if we examine Eqs. 6.15 and 6.20,

we find that Il 1(t) and ~2(t} satisfy the same differential equation.

Since both equations have the same boundary condition at t = Tf
(Eqs. 6.17 and 6. 22), they must have identical solutions. Therefore,

we have

(6. 23)

By replacing Ilj (t) and .!l2(t} by E,(t}in Eqs. 6. 13, 6. 15, 6. 18 and
It.

6. 20, we see that i(t} and ~(t) satisfy the same differential

equations (Eqs. 6. 14 and 6. 19) and have the same boundary

conditions (Eqs. 6.16 and 6.21).

Therefore, we must also have
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A
~(t) = ~(t),

Consequently, we have shown that two of the four differential

equations are redundant.

(6. 24)

We finally obtain the state variable representation of the

optimum linear smoother. The optimum estimate ~(t) satisfie s the

differential equati ons

"dx(t) " T
Cit = F(t)~(t) + G(t)Q G (t):e.(t),

dp(t) T -1 T T 1
dt = C (t)R (t)C(t) ~Jt) F (t):e.(t) - C (t) R - (t).r(t) ,

where we impose the boundary conditions

1\
x(T ) = P p(T ),
- 0 0 - 0

The smoother realization specified by Eqs. 6. 25 to 6. 28 is we 11

(6 .25)

(6. 26)

(6. 27)

(6. 28)

known. It was first derived by Bryson and Frazier in reference 14

to maximize the a posteriori probability of the state vector.

be assuming Gaus sian statistics and then using a variational approach

When we compare these equations to those in Chapter IV

that specified our solution to the nonhomogeneous Fredholm integral
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equation, we observe that they are identical in form. The major

difference is that our input is now a random process !:.(t), whereas

before we had a known signal ~(t). The result of this observation is

that the solution methods developed in Chapter IV, Section C are also

applicable to solving the above estimation equations for the smoother.

(In fact, the methods presented there were originally developed in

the literature for solving these estimator equations. We have

expl.oited the above identity of form to solve the equations

we derived in Chapter IV. In order to make use of these methods, it

is obvious that one must identify !(t) with ~(t) and E.(t) with !l.(t).

Since we shall need the results in the next section, it is

useful to relate the smoothing structure derived above to the realizable

filter structure. To do this we shall review some of the relation-

ships that we derived in Chapter IV. If we make the identity

suggested above, the variable S (t) is easily seen to correspond to-r

the realizabl~filter estimate, ~ (t). It is well known, or it can be-r

seen from Eq. 4.39 , that ~ (t) satisfies the equation-r

(6. 29)

where ~t/t) satisfies the variance equation (Eq. 4.34).

d~( !-)
dtt = F(t)~(~) + FT(t)~(~) - ~(i )CT(t)R-l(t)C(t)~f)+G(t)QGT(t)

(6. 30)

~ t
roWeshall use the n,otation~(t/T) and ~("T) inter-change ab ly, Both
symbols denote the covariance of error at time t (2: To) when we have
observed the signal r( T) over the interval [T ,T].

- 0
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We have not demonstrated directly that ~(t/t) is indeed the covariance

matrix of the realizable filter. It is straightforward to do so,

therefore, we omit it.

The smoother estimate ~(t) is re lated to the realizable

estimate ~ (t) in two ways. Quite obviously, the estimate correspond
-r

at the end of the interval as stated by Eq. 4.37

(6.31)

In addition we have the important relationship throughout the interval

as expressed by Eq. 4.43

(6. 32)

We shall often exploit this relationship in the remainder of the

chapter.

There is one important contrast between the two

structures. In the realizable filter, the covariance of error,

~(t/t), was implicit in the filter structure. In the smoother, the

corresponding covariance ~(t/Tf) is not. Deriving an equation for

this covariance is the topic of our next se cti on.

B. Covariance of Error for the Optimum Smoother

In this section we shall derive four matrix differential

equations, each of which specifies the performance of the optimal

smoother. Since this is a rather long section, we shall pause

briefly to outline our development.
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First, we shall derive differential equations for both the

smoother error and the realizable filter error processes. We shall

evaluate three expectations which involve these error processes

and the noise processes ~(t) and ~(t). Using these expectations we

shall then derive the four differential equations that specify the

covariance of error, ~(t/T f)' of the optimal smoother. We shall

point out and correct some errors that have appeared in the literature
14,15

on this topic. Finally, we shall suggest an algorithm for

finding the steady state covariance of error of the realiz able filte r ,

~oo' by using some of the results that we have derived for the

smoother performance. Let us now proceed.

The starting point for our analysis is finding the

differential equations for e (t) and e (t), the error process for the
- r

optimal smoother and the realizable filter respectively. First, we

consider the smoother error.

We note that the process ~(t) as generated by Eq. 2. 1

satisfies the differential equation

dx(t)
dt = F(t)~(t) + G(t)~(t), T :S t .o (2. 1)

(repeated)

We define the smoother estimation error to be

(6. 33)
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If we subtract Eq. 2.1 from Eq. 6.25, we find that the error

satisfies the differential equation

(6.34)

We can also w-rite Eq. 6.26 in terms of the error, ~(t). By

substituting Eq. 6.1 into Eq. 6.26, we obtain

(6.35)

We can also find the boundary conditions for Eqs. 6. 34

and 6.35. We still have at t = Tf

(6. 28)

(repeated)

To find the initial conditions, let us consider Eq. 6.27. We have

€ (T ) - (-x( T )) = P p(T ).
-0 -00-0

(6. 36)

However, -x(T ) is the a priori error, e ,in the estimate of the- 0 -0

initial state. From our as sumptions in Chapter II, this a priori
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error has zero mean and a covariance of P and is independent ofo
!!(t) and ~t). Consequently, we may write Eq. 6.36 as

"e(T) -e =P p(T).
- 0 -0 0- 0

(6. 37)

Let us now find a differential equation for the realizable

filter error. We define this error to be

1\
e (t) = x (t) - x(t),-r -r - T -s t ,o (6. 38)

If we substitute Eq. 6.1 into Eq. 6.29 and then subtract 2.1, we

find

T :::;t,
o (6. 39)

We ne ed to spe cify the initial condition of Eq. 6. 39. Since we have

assumed zero a priori mean for x(T ), we have
- 0

"-x (T ) = O.-r 0 - (6. 40)

Therefore, from Eq. 6.38 the realizable filter error at t = T equals the
o

. a priori error

(6.41)
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Finally, we can re late the smoother error to the realizable

filter error. By using Eq. 6.32, we can write

1\ 1\ 1\ ,...
x(t) - x (t) = (x(t) - x(t)) - (x (t) - x(t)) =
- -r - - -r -

(6.42)

(Since € (T') = E ,Eq. 6.37 is obviously a special case of Eq. 6.42-r 0 -0

evaluated at t = T .)o

Let us now summarize the important equations that we

shall use in our analysis.

1. Writing the smoothing equations 6.34 and 6.35 in

augmented vector form, we have

d
dt

CT(t)R- l(t) C(t)

~(t) F(t)

=

CT(t) R -l(t)~(t)

=
G(t)!f(t)

W(t)
G(t)u(t)

(6.43)
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where we can identify the coefficient matrix as it has been defined

previously by Eq. 4. 16. The boundary conditions for this equation

are

€( T ) - € = P p(T )
- 0 -0 0- 0 (6.37)

(repe ate d)

(6.28)

(repeated)

where € is the a priori error of the estimate of the initial state.-0

2. The realizable filter error is the solution to Eq. 6.39

-i- §..r(t) = (F(t) - ~(t)t)CT(t)R-1(t)C(t))~r(t) - G(t)~(t)

_~(})CT(t)R-1(t)W(t), To < t, (6. 39)

(repe ate d)

where the initial conditi on is

(6.41)

(repeated)

and ~(tt ) is the covariance of € (t).-r

3. The smoothing error and the realizable filter error

are related by

(6. 42)

(repe ate d)

In order to derive the differential equations for the

performance of the smoother, we shall need to evaluate three
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expectations. We shall simply state the results of the evaluation of

these expectations. The interested reader can follow the derivations

which follow these statements.

Expectation .!.

(6.44)

Pr-oof; By classical arguments, the received signal £(T) can be

shown to be uncorrelated with the error e (t) for all t , Te [T ,Tfl. As
- 0

given by Eqs. 6.25 through 6.28, the random process pt r) is the

.res ult of a linear operation upon the received signal; consequently,

it is also uncorrelated withs(t) for all tv r e] To' Tfl.

Expectation .3

, te (t)j'
A(t) = E -=-- .§.~(t) = '1r(t, Tf)

2(t)
--- ..--- - - - -) To::: t :::Tf'

o

(6. 45)

where '1r(t, Tf) is the transition matrix for W(t) and $(Tf, t) is the

realiz able filte r transition matrix.

Proof: In order to evaluate this expectation, we need to write the

solution of Eq. 6.43 as an integral operation. From Eq. 6.31, we

have

(6.46)
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With Eq. 6.28 this provides a complete set of boundary condition

for Eq. 6.43 at the endpoint of the interval. Therefore, we can

write

~(t) ~r(Tf)
Tf G( T)U( T)S ~(t,T)= '1!(t, Tf) ---- - + --- _____ .-J d-r ,

T -1
EJt) 0 t C (T)R (T)~(T)

Let us now substitute this equation into the above expectation. Since

the realizable error e (t) is independent of U(T) and wtr) for T> t ,
-r --

one of the terms is identically zero. Therefore, we have

A(t) = E t
e(t)l-=-- •.~';{t) = ~(t, Tf)
EJt) ..

(6. 48)

The expectation in this equation can be evaluated b.y writing e (Tf)-r

as an inte gr a1 ope ration,

Tf
~r{Tf) = ~(Tf' t)~r{t) - 5 ~(T f' T)[ G{T)u{T) + ~(~IC T{T)R -l{T)~{T)] d-r ,

t

(6. 49)

When we substitute Eq. 6.49 in Eq. 6. 48, we find that the second

term vanishes since e (t) is again independent of U(T) and W(T) for
-r - -
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T:::: t , Therefore, we finally obtain the desired result.

A(t) = E

E (t)- T
---- E (t)-r
E(t)

$(Tf, t):E(})

= w(t,Tf) --------, To:St:STr
o

(6. 45)

(repeated)

Expectation i

(6. 50)

Let us substitute Eq. 6.44 into the above. This yields

B(t) = E

x
T

(6.51)
G(t)~(t)

C(t) R-l(t) ~(t)



184

We can relate ~r(Tf) to ~(t) and ~t), and we can also evaluate the

second expectation. We find'

th(Tf,T )e (T )'t' o-r_ 0__ .-----------

Tf -

, + S ~(Tf T)[ G(T)U(T) + :E( ~)e T(T)R-l(T)~(T)] d-r
- - ,r_ .._T0 - -,.-::-- - - '- - - - - - - - - - -- ---

o

x

Tf

+ S ~(t, T)

t

(6.52)

In Eq. 6.52 we note that e (T ) is independent of u{t) and w(t);-r 0 --

consequently, we can easily evaluate the first term. In order to

evaluate the second term we need to split the impulse since it is

evaluated at T = t, the endpoint of the integration region. This yields

the desired result of Eq. 6.50.

With these expectations we can now derive the differential

equations for the covariance of error of the optimal smoother. Let

us proceed by differentiating the definition of the covariance. We
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want to evaluate

(6. 53)

Since the terms in the above are transposes of each other, we shall

consider only one of them. Substituting Eq. 6.34, we have

(6.54)

where we have used Expectations 1and 3. Adding the transpose

term we have the first differential equation for the smoother

covariance.

Differential Equation .!. for :E(t/Tf)

:;'~

'We use the notation :E(t/Tf) to indicate the covariance of error at a
time t( :=:: To) where we have obse rved the signal r( T) over the inte rval
To;::::T;::::Tr
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*T ~t~Tf'o .. (6. 5 5)

There are two difficulties with this expression. First, the forcing

term is difficult to evaluate. Secondly when integrated backwards

over long time interval it becomes unstable.

We shall now derive a second differential equation form

for ~(t/T f) which eliminates these difficulties.

If we solve Eq. 6.42 for E(t) we obtain

p(t) = ~-1 ({- )(~Jt) - §..r(t)). (6.56)

Now we substitute for .E(t) in Eq. 6. 34 (this is similar to the approach

of Method 3 in Chapter IV) we find

-G(t)~(t) , (6. 57)

Let us now substitute Eq. 6.57 in Eq. 6.53. If we us e Expectations

2 and 3, we have a cancellation of terms, and we obtain the desired

result

*A relationship of this form was first derived by Baggeroer in the
1966 WESCON Proceedings.
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Differential Equation ~ for ~(t/Tf)

(6. 58)

Several comments are in order here. This formula was

first derived by Rauch, Tung and Striebel using a discrete time

analysis and then passing to a continuous limit.I5 The covariance of

error for the realizable estimate, ~(t/t) enters Eq. 6.58 in two

w'ays. Obviously, its inverse appears as part of the coefficient terms.

In addition, it supplies the required boundary condition at t = Tf, for

(6.59)

Consequently, we can solve Eq. 6.58 backwards in time from t = Tf.
Finally, we discus sed the stability of equations with th is coefficient

in Chapter IV. We can reach the same conclusions here as we did

there, i. e., when integrated backwards from t = Tf' the solution to

Eq. 6. 58 will in general be stable. Consequently, obtaining solutions

for long time intervals 'doe s not cause any numerical difficulties

when done this way.
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We can derive a third differential equation for finding

~(t/Tf) by using the covariance of p(t), which we denote by rr (t/Tf)·
First, we relate this covariance to ~(t/Tf). We can rewrite Eq. 6.42

in the form

(6. 60)

\/)
Post multiplying Eq. 6.60 by its transpose, taking the expected

value of the result and using Expectation 1 gives us

(6.61)

By using an analysis similar to that used in deriving form 2 for

~(t/T f)' we can find a dlffer-ent ia le quati.on for 1f(t/T f)· This

gives us our third form.

Differential Equation ~ for ~(t/T f)

(6.62)

where Tf (t/Tf) is related to ~(t/Tf) by Eq. 6.61. Since E.(Tf)

is identically zero, the boundary condition at t = Tf is obviously
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(6. 63)

Again, some comments are in order. The same issues of

integrating backwards and the stability of the solution still apply as

discussed earlier for form 2 still apply. In addition, if ~(t/t) is

already available, it may be better to use this form rather than

form 2 since taking an inverse matrix at all points in the interval is

not required.

The first three differential equations that we have derived

are not well suited for finding analytic solutions for ~(t/Tf). Even

in the case of constant parameter systems, the matrix differential

equations have time varying coefficients. We can eliminate this

difficulty by considering a 2n x 2n matrix differential equation ra the r

than an n x n one as we have considered before. To do this we

need to c ombirie forms 2 and 3 in an appropriate manner.

One can show by straightforward manipulation of

Eqs. 6.58, 6.61 and 6.62 that the following matrix diffe rentta l

equation is satisfied.

Differential Equation! for ~(t/T f)

G{t)QGT{t): 0,-----,-------- ')

o : (CT{t)R-1{t)C{t)

(6.64 a)
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where W{t} is defined by Eq. 4.15

and P{..!...) .A
Tf

{6.64b}

I _ 1T{..!... ):~~{!.)
1 Tf t

I
--- --- --1-- - -- ---

I
-~{!. }1T {...!.. } I

t Tf 1
I

t-)T{-}Tf

We can specify the boundary condition at t = Tf by using Eqs. 6.59}

and 6.63)

Tf I
0~(rr) I

f I
Tf --- ""i

P{T} = 1 (6. 65)
f 10

I
0

where ~{Tf/Tf} is the realizable filter error at Tf·

Consequently we can solve Eq. 6.64 a backwards over

the interval using this boundary condition. This is analogous to

method 2 that we developed in Chapter IV.

ffwe extend the concept developed there, it is easy to

find an integral representation for the solution to Eq. 6. 64
30We have,
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----------------------

T
~(-!)I 0

Tf I
I---4---
I

o I 0

G(T)QGr.r(T) , 0, T_______ 1 w (t,T)dT,

I T -1o I C (T)R (T)C(T)
f

(,; '.,"-

(6.66)

We should point out that solving for ~(t/T f) using this

for m doe s have certain advantage s when the system parameters are

constant. In this case, the coefficient matrix W is a constant

matrix, which allows us to see the matrix exponential. This is

certainly an analytic advantage. However, we should remember

that we have a larger dimensional set of equations with which to

deal. Finally, we observe that this form is not well suited for

finding numerical solutions of ~(t/T f). Since it involves W(t) as a

coefficient matrix, it introduce s virtually the same stability

problems that we had for method 2 in Chapter IV.

This completes our discussion of the differential equation

forms for ~(t/Tf). Before proceeding, we shall discuss the merits

of each. Form 1 was the starting point of our derivation. Although

it was relatively simple in appearance, the forcing term for it was

difficult to evaluate. In addition, it introduced stability problems.

Forms 2 and 3 were well suited for numerical procedures, since they
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were stable when integrated backwards of the interval. However,

they were not well suited for analytic procedures because they involved

time varying coefficients. Form 4 was well suited for analytic

methods, since the coefficient matrix was a constant for systems

with constant parameters. It, however, also introduced stability

problems when used numerically over long time intervals.

Several errors have been made in the literature regarding

the covariance of p(t), 11' (tiT f) .14, 11£ we apply the results of these

papers, we can quickly show that they imply

(6.67)

which is clearly impossible for a covariance. We shall now correct

the se errors.

The differential equation of 6.64, form 4, for ':z(t/Tf)

was first derived by Bryson and Frazier.14 However, they

erroneously interpreted the partitions of P(t). They state that the

lower right partition should be 1f(t/Tf>; we have seen that it is

-1T(t,Tf) which,agrees with what Eq. 6.67 would indicate. They also

interpret the off diagonal partitions as E [~(t)pT(t)]. From

expectation 1, we know that this is identically zero. These

partitions are actually 1f(t/Tf):z(t/t) as we have indicated. Their

upper left partition for P(t/rf) however is :z(t/Tf) . Consequently, if

we naively apply their results to find :z(t/Tf), we would obtain

correct results. However, their incorrect assertions regarding the

covariance of p(t) leaves their derivation rather suspect.
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Rauch, Tung and Striebe1 state that the error ~(t) is correlated

with p(t) which is incorrect.I5 They also have not related

:E(t/Tf) and 1\ (t/Tf) correctly, as indicated by Eq. 6.63. Their

equation for :E(t/Tf) is correct as we have discussed previously

form 2.

Equation 6.58 also provides an interesting relationship

between the ralizable and unrealizable errors when calculated using

the class ical Wiener approach. This corresponds to the case when

the system parameters are constant and the time interval [ To, Tfl

is large. If we are somewhere in the "middle" of the interval

d:E(~ )
f

dt - 0, To «t« Tr (6. 68)

Denoting the realizable Wiener error by :Eooand the unrealizable

error by :E(t/oo), we obtain

This equation has an interesting implication. :E(t/oo)is easy to

determine since it is the unrealizable covariance;

however, :E:oIis usually difficult to determine. Eq. 6.69) provides

a linear matrix equation for finding :E00 (really :E-~) . Since there

are several ways of solving this linear equation, :Eoofollows directly.

Notice the linearity of the equation eliminates the ambiguity of

sol utions which arises by setting the Rica tti equati on to steady state.

This completes our discussion of the performance of
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the optimal smoother. Let us now illustrate it with several examples.

C. Examples of the Optimal Smoother Performance

In this last section we analyzed the performance, or

covariance of error, of the optimal smoother. In this section we

shall illustrate this performance by considering several examples.

First, we shall work two examples for first order systems

analytically. We shall apply Eqs. 6.64 and 6.65 to do this. Then we

shall consider the analysis of a second order system by numerically

integrating Eq. 6. 62 and then applying Eq. 6.61.

Example 6. 1 - Covariance of Error for ~ Wiener Process

In this first example we shall find the covariance of

error for a Wiener Process that is received in the presence of

additive white noise. The system for generating this proce ss is

described in Eqs. 3.35 and 3.36. We repeat the system matrices

here for convenience

F = 0 C = ~

G = 1 P = 0 (3.36)
0

Q = 1 (repeated)

In addition we assume that the spectral height of the additive white

noise is CT and the observation interval is [0, T], i.e., T = 0
-- 0

and Tf = T. Fortunately, we have available many of the required

results from previous examples which concern the process. As a

result, we can find the solutions rather quickly.
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The first step is to find the matrix W(t) and its

associated transition matrix '1!(t, T). We did this in Chapter IV and

the results are indicated by Eqs. 4.51 and 4.56 . (We need to

substitute t - T for t as the system has constant parameters.) Next

we need to find ~(T/T). We do this by using the partitions of

'If(t, T) as indicated by Eq. 4.31. This yields

(6. 70)

Consequently, Eq. 6.66 becomes

o

o o

TS'¥(t, T)
t

1 , 0
I----i----
I 2

o I -'=--
I <r

T'If (t, T)d T, 0< t < T. (6.71)

where 'If(t, T) is as defined by Eq. 4.56 as indicated above. Separating

our the upper, left partition for ~(t/T), we find after some

str aightforward manipulati on
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(6.72)

Example 6.2 - Covariance of Error for ~ One Pole Process

Let us now consider the performance for a random

process generated by a system with a pole at -k. The generation of

this process is described by Eqs. 2.16 and 2.17. The state

matrices are repeated here for convenience

F = -k

G = 1

C = 1

P = So (2.17)

(repeated)Q = 2kS

Let us consider a slight variation of this representation. Instead of

choosing Po =Psuch that the process generated is stationary, let

it remain a free variable. In addition, we chose the level of the

observation noise to be (J" and the observation interval to be [0, T] .

Again, we have many results available from previous examples.

The matrix W(t) and its associated transition matrix

'1i'(t, T) are given by Eqs. 4.62 and 4.68, respectively. (Again, we

need to substitute (t-cr) for t.) Next, we need to find ~(T IT). By

using Eq. 4.31 the realizable filter covariance of error ~(T IT) for

an arbitrary covariance of the initial state, P , is given byo
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(6.73a)

where

~= 48
kN o

(6.73b)

For this system, Eq. 6.66 becomes

t
P(T) = ~(t, T)

T I
~(T) ~

I
- - - - 1- - - -

I
I 0

o

o

T

S~(t. T)

t f2k8 I OJ- __ ~ ~(t, T)dT,
o , .!.

l 0"

ostsT. (6.74)

where ~(T/T) is defined above by Eq. 6.73a. Taking the upper left
{

portion for ~(t/T) we find after some straight forward manipulation

:E(~) = [ cosh [kA(T-t)] + sinh[~>"(T-t)] J x

~( ~)cosh[ k>..(T-t)) + (~ 'i.)- 28) strh [~>"(T-t)D • 0:5 t :5 T.

(6.75)
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In order to illustrate this result let us consider three choices of P .o

Case a - P = S (Stationary Process)
-- - -0 -

Here we have chosen P such that we are estimating ao

stationary process. In this case

(6.76)

If we substitute this equation into Eq. 6.75 , we can show that

t _ T {(COSh[kA.(T-t)] +{-sinh[kA.(T-t)])(cosh [kA.t]+{- Sinh[kA.t])}
~(T) - ~( T) 1 )

cosh] kA.T] + X sinh [kA.T]

O<t<T. (6. 77)

Therefore, we see that the covariance of error is symmetric with

respect to the midpoint of the interval. We can easily show that they

approach the large time results, Le. the Wiener filtering results,

quite easily. In Fig. 6.1 we have plotted Eq. 6.77 where we have

chos en k = 1, CT = 1, S = 1 and T = 2.

Case b - p! = 2S /A.+l (Steady State Realizable Filtering Error)
-- - -0 -- ----- ----

In this case we have chosen the initial covariance such

that we do not gain any improvement by realizable filtering, ~

T 2S
~-;I;) =Po = A. + 1 (6.78)
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P = 1e Stationary Process

Fig. 6. 1

~(t/t) and Zt/T) for a
First Order Process

I. .s
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for all T. Substituting this equation into Eq. 6. 7 we find

~(--!-) = E. + s '()...- I) -2k(T-t)_
T A. A.+ 1 e -

)...2~1 {. ~(1+ {-) + ~(l-{-)e -2k(T-t)} • 0 ~ t ~ T.

(6. 79)

Therefore, we see that the performance approaches a constant as we

move backwards from the endpoint. This constant is the unrealizable

filter error as we could calculate from the classical theory. The

behavior near the endpoint, i,e., near T, reflects the gain in
, --

performance which the realizable filter could attain by allowing some

delay before making its estimate. (We shall develop this concept

in detail in the next section.) In Fig. 6.2 we have plotted Eq. 6.79

for the choice of parameters in the previous figure.

Case c - P = 0 (Known Initial State)
-- - - 0 - .:.---- --- -----'-

Let us consider the case when we know the initial state

~( .:!:.. )T
= 2 S sin h] k)...T]
A.c os h[-=-k"""'A.-=T::1-]-+-s=""in---:-h~[k:r--:)...:-::T=-or-J (6.80)

When we substitute this into Eq. 6.75 we find
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Fig. 6. 2

z(t/t) and 2.-(t/T) for a
First Order Process

Po = 2S / ( 'A + 1) =

Uf

Lt' t

11 iF

-t- 1..
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28 (sinh[ kxt] (cosh] kX.(T-t)] + ~ Sinh[kx.(T-t)])1
~(4) = A 1 ' 0 < t <T.

cosh( kAT) + ~ sin h] kAT]

(6. 81)

In Fig. 5.3 we have plotted ~(t/T) for the same choice of parameters.

We can see that after. 6 secs.where it approaches ~(tlool, the

information regarding the initial state is virtually useless in making

our estimate. (We should point out that 'we did not take the ,observation

interval quite long enough for this case. There is a plateau in middle

of the interval if the interval is long enough. ')

Example ~ - Covariance of Error for ~ Two Pole Proces s

We have analyzed about all the systems that one can do

analytically in a reasonable amount of time. In order to study higher

dimensioned systems, woeuse numerical methods. To do this we

shall numerically integrate Eq. 6.62 to determine lI(t/Tf). Given

this function we find ~(t/Tf) by using 6.61. First though, let us

cons ide r the system that we wish to study.

We shall assume that we want to estimate the stationary

process y(t) which is described by Eqs. 2.18 and 2.19 . It has a

covariance function and a spectrum as illustrated in Figs. 2. 19a

and 2.19b, respectively.

Instead of performing the type of analysis done in the

previous example, let us consider a variate of a pre - emphasis

probelm.

Since we have a two state system, let us see if we can

improve our performance by including the second state, or the
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Fig. 6.3
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derivative of the message, in our transmitted signal. In this context,

we then have that the output of the system is

(6.82)

where we desire to estimate xl (t) as our message. It would not be a

fair comparison to simply add the second state, since this would

increase the transmitted power. Let us, therefore, constrain the

power to be fixed to its original level of 4. We have

2 2
4 Q!I + 40 Q!2 = 4 (6.83 )

dXI (t)
(E[x I(t) dt ] = 0 for a stationary differe nti able rand om pr oces s) .

Therefore, we sha ll vary Q!I and Q!2 within the constraint of Eq. 6. 83

to see if it can improve our performance. We shall also assume

that the additive white noise level is I and the interval length is 2.

In summary, the state matrices for our system are

02]

G = DJ R = I
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Q = 160 (6.84 a-e)

with a 1 and aZ constrained to be on the ellipse

(6.83)
(repeated)

In addition we choose the interval length to be Z, or T = 0 ando
Tf = T = Z.

If we proceed with our analysis by numerically integrating

Eq. 6. 63 to find ~(t/T) for various value a 1 and aZ that satisfy

Eq. 6. 83 , we generate the curves of Fig. 6.4. Here we have plotted

~11(t/T) (normalized), the covariance of the message.

We can make several observations regarding these

curves. Although we are estimating a stationary proces s, the curves

are not symmetrical about the midpoint of the interval as in

Fig 6. 1 unless the observed signal contains only one of the states,

Le., a1 = 0, or aZ = o. Secondly, we have plotted the curves only

for positive values of aZi if aZ is negative with respect to a 1J we

generate curves which are exactly inverted in time. At the present

time, we do not have a good physical interpretation for this observation.

Let us also consider the improvement in performance.

We have summarized this in Fig. 6.5. In ttis figure we have plotted

~ 11(T IT)(normalized), the realizable estimate at the endpoint of the

interval, and ~11(T/ZJT), the smoother performance of the midpoint

of the interval. These points are very close to their asymptotic
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Fig. 6.4

~11 (t /T) (normalized) for a
Second Order Process with
Trans mitted Signal
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limits, ~ll 00 and ~ll (t/ oq. First, we see that transmitting some of

the derivative in the signal does not improve the smoother performance.

However, it can either degrade or improve the realiz able estimate

significantly. Choosing Q!2= . 2 improves our performance (over Q!2=0)

by approximately 25 percent, whereas choosing Q!2= -. 25 degrades

it by 50 percent. This would indicate from this particular proble m

that this type of preemphasis is not useful when doing smoothing

(or filtering with delay), while it can yield significant improvement

for re alizab le filtering.

D. Filtering with Delay

The optimal smoother uses all the available data, both

tha t in the past and in the future, in making its estimate at a

particular point. However, one of the disadvantages of the optimal

smoother structure is that it operates over a fixed time interval

[To,Tfl. Consequently, as more data is accumulated, Le., Tf

increases, we must resolve the smoothing equations if we are to use

this added data.

In contrast to this, the realizable filter produces an estimate

that evolves as the data is accumulated. It, however, uses only

past data in making its estimate, whereas, the smoother make s use

of both past and future data for its estimate.

The filter realizable with delay combines the advantages

of both the realizable filter and the smoother. By allowing a fixed

delay before we are required to make our estimate, we can find a

filter whose output evolves in time as the data is accumulated yet it

is able to take advantage of a limited amount of future data in making
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its estimate.

Let us discuss the filter structure in more detail. We

assume that we have received the signal £(t) over the interval

[To' Tfl. We want to estimate the state vector at the point·

t = Tf - s , Le., find ~(Tf-~)(Tf - ~ >.To)' where the independent

variable in our filter structure is Tf' the endpoint of observation

interval. We note that like the realizable filter, the filter with

delay is a point estimator whereas the smoother esttmate s

the signal over an entire interval.

Our approach to finding the filter structure is straight-

*forward. We use the integral representation specified by solution

method 2 of Chapter IV to find ~(t) for the optimal smoother. We

then set t = Tf- ~ in this integral representation. This gives us

~(Tf - ~) in terms of the received data and the realizable filter~ We

then differentiate this integral to find a set of differential equations

for the desired estimate ~(Tf - ~). We note that the independent

variable for these equations is Tf rather than t, some internal point

in a fixed interval.

Let us proceed with our derivation. First we write the

smoothing equations Eqs. 6. 25 and 6. 26 in an augmented matrix

form,

*This approach to the problem was first used by Baggeroer in the
1966 WESCON Proceedings. 1'.7
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[ ~(t) J
= WIt) [~(~)J- to J---------,

CT(t)R -l(t)r(t)

(6.85)

To:=:t:=:Tf

From Eq. 4.41 the solution to these equations in an integral form is

(6. 86)

where x (Tf) is the realizable filter output at the endpoint of the
-r

interval Tfo Let us evaluate Eq. 6. 86 at t = Tf - Da,with
Tf-Da> To'

r~(Tf-Da)J tRr(Tf)j r ~ Q ]---- -- - = 'l{(Tf- b., Tfl ~ - - - - + J ili(Tf-.6o, T) -; -- ~ - - - - d-r

p(Tf- Da) 0 Tf- Da S (T)R IT)r(T)

(6.87)

This is the desired integral representation. We note that the only

time variable involved is Tf" Let us now determine a differential

equation that Eq. 6.87 satisfies, where the independent variable

is Tf the endpoint of an increasing interval rather than t , some

internal time in a fixed interval. Differentiating Eq. 6.87 we obtain
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(6. 88)

It is a straightforward exercise to show

We also have

(6.90)

Let us substitute these two equations plus the expression for

d~ r{Tf}/dTf from Eq. 6.29 . We obtain



212

d~ ~~T!=~lW(Tr-bo) 'li"(Tr-bo, Tr)~_r~~rl Sf 'li".(Tr-bo, TJ ; - - ~l- - - JdT
r ~(Tr- boJ L 0 J Tf,-bo Ie (T)R (T)r(TJ

\

~r(Tf)

- W(Tf) - - - - - +

o

o

+

o

-------- --------- -------

o
(6.91)

First, we identify the term in the first bracket as

from Eq. 6.85. If we write out the term in the second bracket, we

find that it can be written as
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I

Therefore, w'e finally obtain the desired differential equation

d
dTf

I
(6.92)

The only issue that remains are the initial conditions. In order to
A

specify ~(T o) and p(T o} we must solve the smoothing equations over the

interval [T ,T +~].o 0

Let us now see if we can simplify our structure by

eliminating E,<Tf-~}' From Eq. 6.42 we have

(6.93)

~~
This equation was first obtained by Baggeroer in the 1966 WESCON
Proce edings. Jb
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Substituting this into Eq. 6.92 we find

(6.94)

One of the difficulties in implementing Eq. 6.94 is the

calculation of the coefficient matrix 'lEsg(Tf-.6., Tf)~(Tf/Tf) +

'lEg (T f- .6., Tf)· For constant paramete r system 'lEgg(T f- A, T f) and.2.!l _
'lEg (Tf- .6., Tf) can be compute~ independent of Tr Therefore, one

1'") whi ch
need only evaluate ~(Tf/Tf) lis already available from the realizable

filter structure. For time varying systems it may be more efficient

to compute this coefficient matrix by solving a differential equation

for it. It is a straightforward exercise using Eq. 6.89 to show that

the coefficient matrix satisfie s the equation
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(6.95)

The initial condition follows by setting Tf = To + c: Eqs. 6.94

together with 6.95 are the same as those derived by Meditch.31

using a discrete time approach. We simply;Point out that depending

upon the system, we may be able to compute the coefficient matrix

more conveniently then by solving a matrix differential equation.

The most important aspect of implementing Eq. 6.94 is that it

appe ar s to be unstable. Indeed, if implemented directly it would be.

To illustrate where the difficulty lies let us pause a moment in our

discussion.

Let us consider a differential equation repre sentation for

the linear time invariant system with an impulse response

h(t) -

o <t<f:::.. J3 > 0

(6.96)
elsewhere
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Certainly, this system is stable under any realistic criterion. The

output of this system is given by

t

y(t) = S x(T)e13(t-T)dT.

t - ~

One can easily show that y(t) satisfies the following differential

equation

(6·98)

Since (3 is positive, this would indicate an unstable system which

contradicts what we had above. The difficulty lies in that we are

trying to subtract two responses which are in general unstable to

yie ld a stable net response. This is not very feasible to do in a

practical se nse.

The consequence of our discussion is that Eq. 6.94

which has the same form as Eq. 6.98 is not suitable for

implementation. We should manipulate into an integral for-m like

Eq. 6.

then realize this representation with a topped delay line. Note that

our delay line will have a finite length of ~; consequently, we can

always realize it as closely as desired by decreasing the top spacing.

This ends our discus sion regarding the structure of the

filter with delay. Before proceeding with our discussion of its



- ,----_--._-----------"'---'~--------_--.::~--.::====================:=-

217

performance two comments are in order. First, it is straightforward

to find a differential equation for p(T f-A) as well as ~(Tf-A) from

Eqs. 6.92 and 6.93. Second, we emphasize how quickly the filter

equations have been derive d from the smoother structure by using

our technique.

E. Performance of the Filter of Delay

In this section we shall employ the techniques that we have

deve loped to derive a matrix differential equation for ~(T f- A/T f) ,

the covariance of error for the filte r with de lay. This equation is

important in two respects. First, it tells us how much we gain in

performance by allowing the delay and using the more complicated

filter structure. Second, we can find how long the transient effects

are before we can attain steady state performance. Since we have

already derived many of the required results our derivation is short.

There are two ways in which we can proceed. We can

work with Eq. 6.58 and derive ~(Tf- A/T f) from it. Howeve r , to be

consistent with our approach to deriving the filter structure we shall

use Eq. 6.64 and separate out the partition for ~(Tf- A/Tf). This

also has an advantage in identifying some terms in a form which is

easily to compute.

To proceed let us work with Eq. 6.64, the integral

representation for the solution of Eq. 6.66. Setting t =T f - A we

have for Tf - A > To
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P( T ) =
f
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T -D.. I T -D.. T
~ (f ) I -1T( f ):E( _f )

Tf I Tf Tf
----- 1. =

I
T T - D.. I

_~( __f)1T( f ) I
Tf Tf I

T - D..
-1T( f )

Tf

I
G(T)QG T(T) I

T
-- --- - _..L. - -- - - -- - '1r (T -D..,T)dT

I T -1 fo J C (T)R (T)C(T)
•

(6. 99)

Let us now differentiate this expres sion with re spect to T f" We need

to use Eqs. 6.89 , 6.90 and 6. 29. Doing this we obtain

TTl
F(Tf)~(Tf )+~(Tf)F T(Tf)+G(Tf)QG T(Tf) I 0

f f I

TTl
-~(-.i)G T(Tf)R -1( Tf)C(Tf)~( -l.) ITf Tf I

I
+'1r(Tf-.6, Tf) - - - - - - - - - - - - - - - - - - - - - -:- - -

010
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+
G(Tr-.6)Q GT(Tr-.6) ) 0

I
--------1--- -------

I T -1o I C (Tr-.6)R (Tr-.6)C(Tr-.6)

To reduce this equation, we ftr-st note that
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T
:E(Tf) 0

f
(6.101)

o 0

After we combine terms with common factors and use Eqs. 6.99

and 6. 101 , we have

T - b.f
dP,( -~) T - b. T - b.

f f f TdT = W(Tf-~)P(-y-} + P( T )W (Tf-~) -
f f f

G(T _~}QGT(T -~) I
f f I

+ --------- -t----- ---"-----
I T -1I C (Tf-~)R (Tf-~)C(Tf-.6)

o

(6.102)

o

Simplifying the se cond term on the right, we have finally
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G(Tf-~)QG T(Tf-~) 1 0
I

+ -------~-+------------
I T -1

0. I C (Tf-~)R (Tf-~)C(Tf-~)

I
(6.103)

We see that with the exception of the added term the final equation

is very similar to the corresponding one for the smoother.

To find the initial condition P( TJro +~ we nee d to solve- one of the

form(s) of the smoother performance equations for ~(T IT +~) ando 0

-rr (To/T 0+~). Doing this we find

To 1 T
0

:E( T + ~ ) I - Tf( T +LS )P 0
0 I 0

T
0 I

(6.104)P( T +LS) = ------r --- -- ---
0 IT T

0 I - Tr( T ~LS)Po1T(T+~) I0 0
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Let us n?w consider the upper le ft partition for :E(Tf- ~/T f) . Using

Eqs. 6.99 and 6.61 with t = Tf - ~,. we find

(6.105)

To find the initial condition ~ T /T +~) we again needo 0
to solve the smoother equations over the interval [T , T +.6]. Weo 0

can again identify the coefficie.nt matrix Wgg (Tf- .6/Tf):E(Tf/Tf} +

Wgll(T f- .6/T f}that we had in the filter structure. As before we can

evaluate this by one of two ways. We finally note that Eq. 6. 105

together with Eq. 6.95 was first derived by Meditch in Reference 31.

One interesting aspect of Eq. 6.1<0is that it is a linear

equation unless .6 = 0 whereupon it becomes the matrix Riccati

equation for :E(Tf/Tf} as would be expected. The second aspect is
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that it is unstable when integrated forward. We, therefore, suggest

a backwards integration as we have done in previous problems. To

do this one will need to solve the smoother variance equation over the

entire interval of interest.

F. Example of Per-for-mance of the Filter With De lay

Let us illustrate the results of the previous section with

an example. To do this 'we numerically integrated Eq. 6.

The coefficient matrix was evaluated by using the matrix exponential.

The example that we shall study is a one pole process

with the initial covariance matrix chosen such that a stationary process

is generated. The equationsthat describe the generation of the process

are Eq. 2. 16 and Eq. 2. 17. In Fig. 6. 6 we have plotted the

~(Tf- I:1/Tf) that results from our numerical tntegr ati on vs.

Tf - 1:1 for various values of 1:1. The top curve is for 1:1 = 0, which is
the re alizable filter covariance as calculated by solving the Ricatti

equation; therefore, we can quickly see how much we gain by allowing

a delay. We have also indicated the lower limit on the covariance of

error, as calculated from the classical Wiener theory.

Several observations should be made. The transient

behavior has about the same duration as that of the realizable filter.

The curves approach the asymptotic limits very closely over the

interval length considered. Finally, we integrated Eq. 6.92 forward

in time. We have previously indicated that this equation is unstable

when integrated in this direction. If we plotted these curves over

several more time constants, we could see this instability entering.

The curves no longer remain constant as they start to gr ow exponentially.
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..-,

Fig. 6.6

Covariance of Error for the
Filter with Delay, ~ {Tf-Il/Tf>
for r.a First Order Process

Stationary Process

. .~ I•
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This oscillation is even more pronounced in the second order systems

that we have studied.' This is indicative of the type of behavior we

could expect if we integrated the differential equation, Eq. 6.92

describing the estimation structure directly.

G. Discussion and Conclusions

In this chapter we have extensively discussed linear

.smoothing and filtering with delay. As we stated in the introduction,

we feel that our approach is a unified one in that everything follows

from the differential equations for the optimal smoother .

.The starting point for our development was the finite

time Wiener-Hopf equation. We presented a method for deriving

the smoothing differential equations from this integral equation by

using our results for the Fredholm the ory developed in Chapters II

and IV. We then derived several different forms for the differential

equations specifying the covariance of error for the smoother.

After working several examples of the smoother

performance, we discussed the filter with delay. Both its structure

and performance could be derived directly from the smoother

results. We also indicated possible instability difficulty in implementing

these results. We suggested a way to avoid this difficulty; howeve r ,

we did not develop the suggestion extensively. We concluded the

discussion of filter with delay be presenting an example of its

performance for various amounts of delay allowed.

The smoother and/or filter with delay are not specifically

limited to the area of estimation theory. For example, quite

frequently in problems in radar/sonar the receiver has the optimal
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. smoother as one of its components. 3 Consequently, we can apply

our results to realize this part of the receiver. Certainly this is

not the only application, for further discussion we refer to

Reference 12.
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CHAPTER VII

SMOOTHING AND FILTERING FOR

NONLINEAR MODULATION SYSTEMS

In the previous chapters we have as sumed that the

generation of the random processes of interest could be described

by a linear system with a finite dimensional linear state represen-

tation. In this chapter we shall extend our techniques so as to treat

the problems of smoothing and filtering when the observation

method is a norr-Hnear function of the state of the system.

With this extension we can represent many modulation

schemes and channels of current interest in communications. We

should point out though that this is not the most general problem that

can be incorporated in the state variable framework. We shall

still require that our state equation be linear.

Let us outline our procedure. We shall briefly review

our model in order to introduce the notation required for the non-

linearity. We shall then show how we can use our techniques to

convert an integral equation for the optimal smoothed estimate to a

pair of differential equations for it. We shall solve the filtering

problem by use of an approximation technique for converting the

smoothing equations described over a fixed time interval to a pair

of equations which described the realizable filter with a moving end-

point.
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A. State Variable Modelling of Non-Linear Modulation Systems

In Chapter II we introduced the notation required for the

generation of random processes by systems with a linear state

representation. Let us modify our generation method to allow the

observed output, ,;y,(t), to be a non-linear function of the state vector,

~(t). As before, we shall require that the internal dynamics of the

generation be described by a linear state equation with a random

excitation process and random initial conditions. However, here we

need to assume that the state vector generated is a Gaussian random

process. Consequently, we have

dx(t)
ctt = F(t)~(t) + G(t) u(t), (linear state equation) , (7. 1)

TE [ u (t) u (T)] = Q 0(t - T), (7. 2)

E [x( T )xT(T ) = p •
- 0- 0 0

(7. 3)

where (t) is a white Gaussian process, with a "spectral height" of

Q, and x(T ) is a Gauss ian random vector.- 0

The non-linear aspect of this problem enters in how we

observe the state vector. We shall assume that the output, or

observed process, is a continuous, non-linear, no memory function

of the state vector,

~(t) = ~(~(t), t), (7. 4)
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Let us also introduce for the gradient of .§. with respect to the state

vector ~(t),

asl(x(t) ,t) I asl(x(t),t)I- I - I
a(x 1(t)) I a(XZ(f)) I

- - - - - - + - - - - -I --
, I I
aSZ(~(t), t) I I

a s (x( t, t) I
C(x(t), t) ~ - - ~ a(x1 (t)) I t

a(~(t)) _ - - - - -1- - - - - -I- - - - -,- - - __0

I : I
I I I
I I I

• 1 I
- - - - -1- - - - - I - - - --I - - -- -
as (x(t), t) I I Ias (x(t), t)

::(x~(t)) 'I I I a~ (t))I I n

; as 1(x(t), t)
I -ar;:-r(-x""'n(-;-;'t»:-

-1-.-- ---
I

T s t
o (7. 5)

Therefore, in the special case of linear s ystems C(~( t), t) is
. .

independent of ~(t) and may be identified as the C(t) whic h we have

been using previously.

We can incorporate certain types of non-linear memory

operation in our structure. If we can interpret the modulation, or

observation, operation as the cascade of linear system (with memory)

which has a state representation for its dynamics then followed by a

non-linear no memory operation, we can simply augment the state

vector to incorporate the memory operation and then redefine the

modulation operation. Probably the most important application of

this is FM modulation, where we interpret~t as the cascade of an
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integrator followed by a phase modulator.

The final aspect of our model is the received signal £(t).

Again, we shall assume that the signal ~h the receiver observes

over the interval [ To' Tfl is corrupted by added white noise,

£(t) = ~(~(t), t) + ~(t), (7. 6)

where

(7. 7)

with R(t) positive definite. Here we must assume that ~(t) is also

Gaussian.

Let us summarize the difference s between what we have

assumed here and in Chapter II. First, we allowed the observed

signal to be a nonlinear function of the state vector. Secondly, we

have assumed that ~(t) and ~t) are Gauss ian random processe sand

x(T ) is a Gaussian random vector. In Chapter II, we made- 0

assumptions regarding only their second order statistics.
can

We/consider the problems of smoothing and filtering

when the state equation is also non-linear. However, we need to use

a dliferent approach. In this approach, we maximize the a posteriori

density directly where we incorporate the constraint of the state

equation by using a time varying Lagrangian multiplier. This was

first done in Ref. and later in Ref.
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Finally, we have termed the observation ope ration as a

modulation. This is simply a convenience. One can model a large

class of communication systems and channels using this formulation.

One simply has a large augmented state vector to incorporate the

dynamics of all the systems involved.10

B. Smoothing For Non-Linear Modulation Systems

In this section we shall derive the differential equations

and their boundary conditions which implicitly generate the optimal

smoothed estimate ~(t) when the received signal is generated

according to the methods of the previous section. The starting

point for our derivation is an integral equation for g(t) as derived

by Van Trees in Ref. 3 using an eigenfunction expansion approach.

From Eq. 5. liD in this reference, it is necessary that the optimal

estimate x(t) satisfy the following integral equation

Tf

~(t) = S K~(t, T)C T(~(T), T)R -1 (T)(£(T) -~(~( T), T)d T, To ='= t ='= T f

To
(7. 8)

We now observe that we have the same type of kernel for

the integral operation as we discussed in Chapter II, Section C. The

only difference is that before the kernel operated upon CT(T)!.(T)
T A -1 ~whereas now we have C (!.(T), T))R (T)(£(T)-~(!.(T), T)). Consequently,

if we want to use the results that we derived in that section, we

must examine how this difference of terms affects the derivation.

When we do this, we see that the derivation is unaffected. Therefore,
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. T T " -l( ( 1\in Eq. 2.22 we can replace C (T)f.(T) by C (~(T), T)R T) !".(T)-~(~(T),T)

and reduce Eq. 7.8 to two differential equations with a set of

boundary conditions. The differential equations that describe the

optimal smoother for this problem are

(7. 9)

d~\t) = -F T(t)E(t) - CT(~(t), t)R - l(tX;J t) -~(~(t), t)), To:S t .s Tf.

(7. 10)

The boundary conditions that are imposed are the same. We have

~(T ) = P p( T ) I
- 0 0=- 0

(7.11)

(7.12)

We shall make two comments regarding Eqs. 7.9 through

7.12. First, our derivation of these differential equations and

boundary conditions from Eq. 7. 8 is exact. There are no

approximations involved. Second, we emphasize that the integral

Eq. 7. 8 is only a necessary condition. It is usually not sufficient;

consequently, its solution need not be unique.

Contrasting Eqs. 7.9 through 7.12 to those derived for the

corresponding linear problem in Chapter VI, Section A; we see that

the equation for ~(t) is the same, while the nonlinear aspects of the
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estimator are introduced in the equation for E.(t).

Now that we have derived the equations for ~(t) we must·

consider methods of solving them. First, let us run through the

methods discussed for solving the parallel set of linear equations

deve loped in section C of Chapte r IV. Method 1 employed the

superposition principle; therefore, it is not applicable. In method 2

we found a complete set of boundary conditions at t = Tf by introducing
a function that corresponded to realizable filter output. If we

could parallel this we could also solve Eq. 7.9 and 7. 10 backwards

from the endpoint. In the next section we shall derive an approximate

solution for the realizable filter, so this technique is certainly

feasible. However, we shall still have instability problems with

this method. The key to the third method was a linear relation

" 1\between the functions x(t) , x (t) and p(t) as given by Eq. 4. 42.
- -r -

Unfortunately, we do not have such a relationship at the current

time. Therefore, only method 2 seems at all promising.

Certainly, there do exist other methods of solving non-

linear two point boundary value problems. One technique is the

method of quasi-linearization. With this technique, the estimation

equations are linearized around some a priori estimate of the

solution. Then these linear equations are solved exactly, by use of

the transition matrix associated with this system. This new

solution provides the next estimate around which the nonlinear

equations are linearized. This technique is repeated until a

satisfactory convergence criterion has been satisfied. One of

the problems, however, is generating the required a priori estimate
1\

of ~(t) and E.(t). A reasonable choice might be to use the estimates
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found by applying method 2, in effect combining this method with a

quasilinearization approach.

We have seen how the realizable filter is important in

solving the smoothing equations. This filter is certainly of much

more interest than its use for this application. Let us now discuss

how we can use the smoothing equations to find an approximate

realization of the realizable filter.

c. Realizable Filtering for Non-linear Modulation Systems

In this section we shall present a derivation for an

approximate realization of the optimum realizable filter. Our

derivation is a modified version of that presented by Detchmendy
17,33

and Shridar. 'In particular, the modifications that we shall make

eliminate some of the troublesome issues in their results.

The fundamental difference between the interval estimator

and the realizable filter is the time variable involved. In the

smoother the important time variable is the time within the fixed

observation interval, whereas in the realizable filter the important

time variable is the end -point time of the observation interval, which

is not fixed but increases continually as the data are accumulated.

For the realizable filter we want the estimate at the end point of the

observation interval as a function of the length of the interval.

In order to make the transition between the two time

variables, we shall use the concept of "invariant imbedding".

However, before we do this, let us motivate its us e for this

particular problem.

'We consider a sample function of E(t) near the end point
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of the observation interval or near t = Tf" From Eq. 7. 12 we have

that it vanishes at t = Tr However, at t = Tf - ~ T, we have from

Eq. 7. 10

(7. 13)

Now, we shall examine the same problem with the same sample

functions from a slightly different viewpoint. Let us consider the

trajectories for ~(t) and .e.(t)over the interval [ To' Tf- L\T]. We can

way that these trajectories solve a second problem defined over this

shortened interval. For this problem the initial conditions are the

same. However, the endpoint time is now Tf - L\T, and .e.(Tf-L\T)

is equal to ~..!l. as defined in Eq. 7. 13 instead of being identically zero.

We can produce the same trajectory by considering an appropriately

chosen non-zero boundary condition for .e.(Tf-L\T).

This leads us to the following hypothetical que stion. If

we imbed our smoothing problem in a larger class of problems with

the boundary condition

(7. 14)

for Eq. 7. 10, how does the solution of Eq. 7.9 at Tf depend upon

changes in Tf and!l? This question is answered by the invariant
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imbedding equation, which is a partial differential equation for the

solution ofEq. 7.9 at Tf as a function of Tf and!l.

First, we shall sketch its derivation.17

Let us consider the solutions to Eqs. 7.9 and 7.10 when

we impose the final bundary condition specified by Eq. 7. 14. We

shall denote these solutions by ~(t, Tf,,,) and p(t, Tf<~l). We have

introduced arguments Tf and!l. to emphasize that these solutions are

dependent upon these parameters. We also point out that we are

assuming Il to be an independent variable. We have

A= x(t)- )
(7.15)

(7.16)

We define

(7.17)

We note

(7.18)

For future convenience let us also define the function r by
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(7. 19)

and the function A by

=

(7. 20)

which is the desired realizable filter estimate at Tr We shall now

determine a partial differential equation for ~(Tf' !]) in terms of the

variables Tf and .!l. •

Let us examine the solutions ~(t,Tf,T}) and E{t, Tf,T}) as

illustrated in Fig. 7.1. We have from Eq. 7.10

AT=
t - T- f

A
1") - A{~(Tf' n ),n ' Tf)AT = 11- A1") (7.21)
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t~ Tf-6T Tf

x(t, T r- '!V
vs , t

T t ~ Tf-llT Tf

E(t, T ,!l-)
vs , ~

Fig. 7. 1

Diagram for Invariant
Imbedding Argument
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Now, we can interpret !.(Tf- AT, Tf, 21) as being the solution to a

second problem prod ucing the same trajectory ove r the interval

[T 0' T f- AT] with the boundar-y condition !l - A.:l' i. e. ,

(7. 22)

We also have

(7. 23)

Combining Eqs. 7. 22 and 7. 23, we find

(7. 24)

We also can expand s(Tf,,.,) in a two dimensional

Taylor series. Doing this, we obtain

ai(Tf'''') a ~ (T f'.:l)
i(Tf-AT,,.,-A!l)=~(Tf'.:l) - aT

f
AT - 8.:l A.:l

(7. 25)

):<
We interpret a~ (Tf,.:l) /a.:l as in Eq. 7. 5.
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However, as given by Eq. 7.21, we have constrained D.!l..to be

(7. 26)

Substituting Eq. 7.26 in Eq. 7. 25, equating the result to Eq. 7. 24 and

dividing by D.Twe obtain the desired invariant imbedding equation

(7. 27)

This equation relates the value of the solution to Eq. 7.9 at t = Tf to
changes in Tf and 11, the end point time of the interval and the

boundary condition for Eq. 7. 10 at t = Tr
We now want to solve Eq. 7. 27 and evaluate its solution

at !l = 0 as prescribed by Eq. 7. 18 to find the realizable estimate

*x(Tf) vs Tf"

Let us see if we can find a set of ordinary differential

equation that will generate the solution to Eq. 7. 27. This equation is

a partial differential equation; therefore, we would expect that its

solution would require an infinite set of equations. In general, this is

true; however, let us try a finite order approximation. Since we

are interested in the solution at !l. = 0, let us use a power series

*We point out that we have made an expansion in terms of D.T. Since
there is currently some controversy regarding the significance of
the terms in the exqansion, we are certainly involved in this issue
with our approach. 0
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expansion in ll. We shall try a solution of the form

(7. 28)

Eq. 7.28 implies that we shall consider explicitly only terms linear

in!l..

Let us substitute our trial solution into Eq. 7. 27. Using

Eqs. 7. 17 and 7. 18 and expanding terms to first order we obtain

terms of O( 11112)

F(Tf:{~(Tf) + P"l(Tf)n] + G(Tf)QG T(Tf) + terms of O( 11112)

(7. 29)

Now we combine terms of the same order in 11. We find
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- F{TflP 1(T fl - G{Tf)Q GT{Tfl) n + terms of O{ I~ 121 = 0

(7. 30)

Demanding a solution for arbitrary .!l gives us a first order

approximation to the realizable filter. For arbitrary Il the coefficients

of each power of .!l must vanish. We find

"d!.( Tf) A T ~ - 1 ""
dT f = F{Tfl:£{T fl + PI {TflC {:£{Tf}, Tfl R {Tfl (E.{Tfl - ~(:£{Tf), T fl) ,

(7. 31)

To complete the solution we need to specify some initial conditions

for Eqs. 7.32 and 7.23. To do this we set Tf = To in Eq. 7.28.

We have

1\
~(T ,n) I = x( T ) = 0 )- o..:.J. - 0

.!l=Q '
(7. 33)

since we have assumed zero a priori means. We also have that

Eq. 7. 28 must satisfy the condition of Eq. 7. 11. This implies
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P1{T ) = Po 0 (7.34)

(This also requires that the initial condition for the coefficients in any

higher order expansi on must be zer o. )

Several comments are in order.

1. Although we have not made an issue about terms of

order AT in our expansion, we have derived the same approximation

as found by Snyder who approximated the solution to an a posteriori

Fakker-Planck equation. 10

2. If the observation method is linear, Equations 7. 31

through 7. 34 are identical to those describing the Kalman-Bucy

filter. This is certainly to be expected. For the linear case, it is

easy to show that a first order expansion yields an exact solution to

the invariant imbedding equation.

3. P l{Tf) is conditioned upon the received signal;

therefore, it cannot be computed a priori as in the linear case. We

also point out that we have no reason from this method to equate

P1{Tf) to a conditional covariance matrix. However, in Snyder's

approach one can make this identification.

4. Finally, if we want to consider higher order

approximations, we should observe how P1{Tf) couples to the estimate.

In general, the higher order terms will couple both ways also, 1. e. ,

with the estimate and with the other terms. In addition, the number

of elements in the higher order approximations are going to be

large, ~ on the order of (NF)n where NF is the state vector

dimension and n is the approximation order.
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D. Summary

In this chapter we have briefly outlined an approach to

smoothing and realizable filtering for non-linear modulation systems.

We started with an integral equation that specified a necessary

condition for the optimal smoothed estimate. We then demonstrated

how some of the techniques which we developed earlier in Chapter II

could be extended to reduce this integral equation to a pair of non-

linear differential equations for the optimal smoothed estimate.

This reduction was an exact procedure; therefore, solving the

differential equations is equivalent to solving the integral equations.

These differential equations specified the smoother

structure for our problem; however, we were still faced with the

issue of solving them. One of the methods suggested employed the

realizable filter.

With this motivation in addition to the general desirability

of solution for the realizable filter, we introduced the concept of

invariant imbedding. This concept used the smoother structure to

derive a partial differential equation for the realizable filter estimate.

This equation was difficult to implement; therefore, we introduced

an approach which allowed us to find an appr oxima te solution which

could be implemented conveniently. Using this approach, the filter

structure followed directly.
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CHAPTE R VIII

STATE VARIABLE ESTIMATION

IN A DISTRIBUTED ENVIRONMENT

In the application of state variable techniques to com-

munication problems, the issue of delay arises quite naturally. For

example, since these methods are well adapted tovector processes,

they appear to be well suited for problems in array data processing.

In these problems, the delay enters because of the finite propagation

time of the signals between elements in the array.

When we try to incorporate the issue of delay into our

model, several difficulties arise. Although delay is cer tain Iy a

linear operation, there does not exist a way of r ep reaenting it ~ith

the methods that we introduced in Chapter II. If we examine the

iss ue of delay more close ly, we can see why this is true.

A delay operation inherently involves spatial as well as

temporal aspects, whether it is caused by a wavefront propagating

across an array, or a signal passing through a delay, or transmission.

We must recognize that this type of opera tion is created by a

me chanism that is distributed across a spatial environment. Since

the mode 1introduced in Chapter II involved only a single time

variable, we should not expect that they would be able to handle this

situation where there is both a time and spatial variable.
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In this chapter we shall extend our state variable techniques

so that we can handle a certain class of problems that involve a

distributed environment. This c las s of problems arises quite often

in array data processing. We shall discuss our approach in the

context of incorporating a delay operation; however, the methods

are directly extendable to other distributed environments where the

medium may have several spatial coordinates, be nonhomogeneous

and/or lossy. As we shall see, even the simple delay mechanism

causes a fair amount of difficulty.

Our approach here is also going to be different. Previously,

we worked with integral equations and used our methods to reduce

them to differential equations. In this chapter, we are going to derive

the differential equations directly by assuming that the processes

involved are Gaussian and then maximizing the a posteriori density

by a variational approach. This does not mean that we cannot

extend our previous methods, e. g., the Fredholm integral equation

theory to this problem. We have done this; however, it is not of

enough general interest to develop it here for this single problem.

A. A State Variable Model for Observation in a Distributed

Environment

In this section we shall extend the concepts for the

generation of random processes of Chapter II so that we can

incorporate the distributed aspects of the delay operation. Our goal

is to find a set of state and observation equations to represent

signals of the form
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m

~(t) = a 0 ~Jt) + L. a 1~(t - T i) , 0:5 T 1 := T2:= •.• := T m
1=1

(8. 1)

where s(t) is a signal process generated by the methods we have

previously discussed. (We shall allow vector observations; this

feature does not require any additional modifications to the theory)

Let us assume that we have generated a signal ~(t)

according to these methods. This implies that we have a state and

observation equation describing its generation,

To < t (state equation» (8.2)

~(t) = C(t)~(t), T < t (observation equation).o (8. 3)

This also implies that we have made the following assumptions regard-

ing the statistics of the initial state x(T ) and the driving noise- 0
process ~(t),

(8. 4)

E[~(t);! T( T)] = Q 0(t-T) (8. 5)

For the purposes of the derivation in the next section, we shall also

assume that these are a Gaussian random ve ctor and a white

Gaussian random process respectively. We emphasize that the
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result is not dependent upon this assumption, since an alternate,

but more complex,derivation can be made without it by structuring

the filter to be linear.

As can easily be seen, the generation of ~(t) is described

by a set of ordinary differential equations, or equations with only

one independent variable. However, if we want to use state

variable techniques, the functional des cription of the delay operation

as expressed in Eq. 8. 1 is not applicable. We need to introduce an

equati on which describe s the dynamics of the system which produces

the de lay operation. This operation cannot be described in terms of

a finite dimensional ordinary differential equation; it is a partial

differential equation with a spatial variable z as well as a temporal

variable z ,

a ~(t, z) a~(t, z)
+ = 0at az (8. 6)

For this problem with pure delay, we have assumed a unity velocity

of propagation with no loss of generality.

It is easy to see how this equation describes the dynamics

of the delay oper-ation. Let us show how' we can represent S(t-T.) in
- 1

terms of this equation and a boundary condition at z = o. The

general solution to Eq. 8.6 is

'1J(t, z) = '1J (t-z)- -0 (8. 7)

,,~
~I"

We should not confuse the vector w(t,z) with the earlier transition
rnatrices us ed.
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where -w is an arbitrary function to be determined. If we imposeo

the boundary condition

-W{t,z)I = ~(t),
z = 0

(B. B)

we find

-Wo{t) = r«. z) I = ~(t).
z = 0

(B.9)

(We could consider that Eq. B. B describes the input to a delay line. )

If we evaluate !(t, z) at z = Ti, or at the output of the delay line, we

obtain

-W{t,z) I .. = -w (t-T.) = S{t-T.) .
- -0 1 - 1

Z = T.
1

(B. 10)

Consequently, we can rewrite Eq. B. 1 as

m

.l(t) = Q!os(t) + L Q!i'\l((t, Ti) ) To < t )

i = 1

(B. 11)

where -w{t, z) is the output of the dynamic system whose operation is

described by Eq. B. 6 and whose input is described by the boundary

condition of Eq. B. B. Thus, we can eliminate the functional

description of the delay that appears in Eq. B.l.
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We are now able to write a set of state and observation

equations to represent the effect of a delay in our observation. We

have the state equations

dx(t}
dt = F(t)~(t) + G(t)~(t), (8. 2)

(repeated)

T ::: t , O:s zo (8. 6)

{repeated)

We impose a boundary condition upon !(t, z) at z = 0,

!(t,O) = s(t} = C(t)~(t} (8. 8)

( repeated)

upon !(t, z). The observation equation becomes

m

~(t) = O!oC(t)x(t) + LO!iC(t-Ti)~(t-Ti) =
i = 1

m

aos (t) + I:ai~(t,Ti)

i = I
(8. II)

As we can see, the equation describing the dynamics of

the delay operation enters as a state equation. However, there is an

important point to be made regarding the difference between

Eqs. 8.2 and 8.6. The state of Eq. 8.2 at a particular time can be
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described by a set of numbers the state vector. To describe the

state of Eq. 8. 6, we must specify a set of functions of the variable z .

One cannot determine the state of this equation at a future time without

knowledge of these functions. In dealing with distributed media, the

extension of the state vector to a state function is intrinsic to the

ide a of a system state.

The concept of the state of the delay operation leads us to

the pr oblem of the assumptions that must be made regarding its

initial state 'i"(T ,z), 0:5 Z :5 T • For the present we shall assume- 0 m
that it is a zero mean Gaussian random process as a function of z with

a covariance

E['!r(T , z)'!r(T , s)] = K (z,s)
- 0 - 0 0

o :5 Z, S ;5 Tm (8. 12a)

To complete our assumptions regarding our model, we

shall assume that we observe .l(t) over the interval To :5t ;5 Tf in the

presence of an additive white Gaussian noise. The refore, our

received signal !:.(t) is

!:.(t) = .x(t) + ~(t), (8. 13)

where .l(t) is given by Eq. 8.9 and the covariance of w(t) is

(8. 14)
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Before proceeding to the next section whe re we shall

derive the receiver structure for estimating x(t}, let us briefly

discuss how we could generalize our model for other types of

propagation media. The key to this is recognizing that the equati on

we introduced to describe the delay operation is actually a state

equation which describes the dynamics of the distributed media of

interest. It is, therefore, appropriate to consider modifying

equation 8.6 as a generalization of our model. For example, the

dynamics of the medium may be described by the equation

a~(t, z) a!(t, z)
At(t,z) -a-t- + Az(t,z) az + B(t,z}!(t,z) = 0, To<t, 0 < z

(8. 15)

where we impose the boundary condition of Eq. 8.9. Eq. 8.15 is

obviously a generalization of the delay mechanism equation. By

choosing the coefficient matri ces appropriate ly, one can mode I non-

homogeneous and/or lossy media.

We can also generalize Eq. 8.5 to include time varying

gains at each element. In this case Eq. 8. 11 becomes

m

y(t} = ao(t)~(t) + > ,
i = 1

a, (t)w(t, T,),
1 - 1

(8. 16)

where !(t, z) is the solution to Eq. 8. 15.

We have illustrated our model in Fig. 8. 1. In this

model, ~(t) is generated by a system as described in Chapter II. It
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passes through a propagation, a distributed, medium whose dynamics

may be described by Eq. 8. 15. The signal is then spatially sampled

at various points in the medium and linearly combined according to

Eq. 8. 16. The resulting signal then has white noise added to it

before being observed at the receiver. We can generalize the model

even further by allowing different propagation paths. In this case,

we would have a separate medium description for each path.

The model assumed allows a large degree of flexibility.

In some respects too much, since it requires us to make detailed

assumptions regarding the medium, which in turn makes the receiver

quite detailed and difficult to implement. However, if one is faced

with a problem which does have this type of problem entering in

its observation process, one must somehow incorporate the spatial

aspects of the problem. We feel that our approach is a reasonable

attempt at doing this.

B. State Variable Estimation in the Presence of Pure Delay

In this section we shall derive the equations that specify

the optimal smoother when pure delay enters into the observation

method. We shall find that these equations are a set of differential-

difference equations that specify the desired estimate implicitly as

part of their solution.

We shall assume that the generation and observation of

the received signal may be described by Eqs. 8.1 - 8.14 of the

previous section. Our approach to deriving the smoothe r structure is

different than that used in Chapter VI. We shall use a variational

approach to maximizing an a posteriori density. In maximizing this
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density we shall need to introduce Lagrangian multipliers to incorporate

the constraints among the different variables. We should also note

that since the delay operation is introduced as a dynamic system with

a state equation, we shall be required to estimate its state also. Let

us proceed with our derivation.

Since the processes involved were assumed to be Gaussian,

it is straightforward to show that the joint a posteriori density for

~(t) and !(t, z) has the form

where k is a constant and the functional J is given by

Tf

J(!.(T 0)' !!.(t) ,!(T 0' z)) = iII !. (T 0) IIr: + i Sll~(t) IIQ -1 dt

T o

+.!.2

(8.18)

* ~IlxiiA = xAx
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We note that x(t) is related to x(T ) and u(t) by Eqs. 8. 2, '1I(t, z) is
- - 0 - -

specified by Eqs. 8.6 and 8.8, and y(t) is given by Eq. 8.11. The

arguments for J are x(T ), v(t) and'1r(T ,z) since these variables
- 0 - - 0

uniquely determine ~(t) and ~t, z).

It is easy to see that to maximize this density, we could

just as well minimize J as a function of the variables ~(T 0)' !!(t) and

'1r(T ,z). However, to perform this minimization we need to incor-- 0

porate the constraints between the different variables. First, we

need to relate x(t) to u(t) and x(T). We can'ao this by using a time-
- - - 0 A

varying Lagnngian multiplier .e.(t)for Eq. 8.2. We shall add to the

functional J an identically zero term Lo of the form

Tf

S
dx(t)

Lo = PT(t) ( at - F(t)~(t) - G(t)u(t) ) dt

To

(8.19)

It will be useful to integrate the first term by parts. Doing this,

we have

~f ( dpT(t) )J -dt ~(t) + .ET(t) F(t)~(t) + .ET(t)G(t)u(t) dt

To

(8. 20)

To incorporate each of the delay operations S(t-T.) need
- 1

to introduce a Lagrangian multiplier lJ. .(t, z) which is a function of
-1
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both space and time. The state equation describing the delay

operation is given by Eq. 8. 6. Consequently, we add to J in terms

L. which are all identically zero
1

(
a~t, z) a!{t, z) ) .
at + az dt dz , 1 = 1, m, (8.21)

We shall also need to have this term integrated by parts. Doing this

with respect to both variables t and z , we obtain

Tf

Li = ~ (.I?{t, T/~(t, Til - ~T{t, 0)C{t)x{tl ) dt

T
·0

T.
1

+ S (~T{Tf,Z)i]({Tf'Z) - ~T{To'Zl!{To'ZrZ

To

al:!:T{t, z) )
8z !(t,z)dtdz, i = I,m, (8.22)

where we have substituted C(t)x(t) for w(t, 0) according to Eq. 8.8.

We add Lo and Li as given by Eq. 8.20 and Eq. 8. 22,

and then we substitute the expressions for .l(t) and ~(t) as given by

Eq. 8.9 and Eq. 8. 3. Doing this, we find,
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Tf

J(x(T ),u(t), w(T ,z)) = -2
1
Ilx(T ) II 1 + 2

1 r Ilu(t) II -1 dt +
-0- 0 -op- j Q

o TO

T T
m m

-2
1 5 ("iJ{T(T ,z)Q (z,!:,)iJ{(T ,!:,)d!:,dzJ- 0 0 - 0

o 0

+ PT(Tf)?£(T f) - !?(T o)x(T 0) - ~ ( d.E.~(t) x(t)+.E.T(t)F(t)?£(t)+.E.T(t)G(t)~(t))dt

To

TfS ( .t='f(t, Ti)~t, Ti) - .t='f(t, O)C(t)?£(t)) dt

To

m

i = 1

T.
1

S (~ ~(Tf' z)'Ir(Tf, Z) - ~~(T ,z)w(T ,Z)) dz
-1 - -1 0 - 0

o

Tf T.
1 T

S \ (8l:i (t r z)J at +
To 0

T
8~. (t,z) )
-~z . !(t, z)dt dz (8. 23)
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Let us now proceed with our optimization procedure to

minimize J. First, we define ~(T ), ~(t) and ~(T ,z) to be the
- 0 - - 0

optimum choice for minimizing J. Now we expand J about these

optimal estimates, i.e. , we let

x{T ) =- 0
1\
x{ T ) + e 0 x (T )
- 0 - 0

(8. 24)

/It,.

E.{t) + e 0 ~(t) (8.2S)

"~(T ,z) = ~(T ,z) + eo~{T ,z)
- 0 - 0 - 0

(8.26)

Substituting Eqs. 8.24 through 8.26 into Eq. 8.23, we find

Tf

e ~T(TolP~ 1I) ~(Tol + S uT(tlQ -ll)!:!(tl +

To

1\ T
a.'lr{t, T.)) X

1- 1

m

-1 )R (t)(-aoC{t)o~{t) - a.o'lr(t,T.))dt
1 - 1

'---'
i = 1
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m

I
i = 1

Tf!(J::y(t, Ti)O!(t, Ti) - J::Y(t, O)C(t)O~(t)) dt

o

T.
1

J I~!(Tf, z)oW(Tf, z) - f1~(T ,z)o'lf(T ,Z~dZ
~1 - -1 0 - 0 J

o

2+ termsof 0 (e)

(8. 27)

Now let us combine the common variations. We obtai n

1\ '" AJ(x(T ), u(t), w(T ,z)) = J(x(T ), u(t), \]"[(T ,z)) +
-0- -0 -0--0
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T m
~ T dp (t) T ~ T .

\~ (t)Q!oC(t) - -dt - P (t)F(t) - L""i (t. O)C(t~c5X(t)

i=l

m

~( -dT (t)a. + ~~(t, T.~O~(t, T.) dt +L.. - 1 -1 1 1
i=l

Tm

J
Tm m

J~_T(To' s )QO(S, z)ds - "~~T ,Z)U l(T.-Z) o~(T ,z)dzL -1 0 - 1 - 0

o i = 1o

T.
m 1

i~ !J:.{(Tf• z)c5"\V(Tf•z)dz

o

m Tf T. T T~ J J( a ~ :(t,z) a ~ . (t ,Z))
.~ ;: +-~z c5~(t, z)dt dz

1-1 T 0
o

+ terms of O(e 2), (8. 28)

where

(8. 29)

We shall now make a series of arguments to cause the e

variation of the functional to vanish. First, we shall require that the

Lagrangian multiplier functions satisfy equations such that the

coefficient of some of the variations vanishes identically. We shall

then argue that the coefficients of the remaining variations must
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" /\vanish because of the optimality of !(T 0), u(t), and !<To' z).
First, we shall impose restrictions upon E(t) , the

Lagrangian multiplier for the state Eq. 8.2. We shall require that

it satisfy the differential equation

m

CT(t) (a~ (t) +.L .!.:i(t ,0)) , T 0==t .s Tr:
1 = 1

(8. 30)

In addition, we shall impose the boundary condition

(8. 31)

Next, we shall restrict the Lagrangian multipliers for each of the

delays T.. We shall require
1

alJ..(t, z)
-1
at +

alJ..(t,z)
-1

az T. ,
1

i = 1, m

(8.32)

We note that these equations can be solved functionally,

lJ..(t,z) = lJ. ,(t-z), T ==t ==Tf, 0< z < T., i = 1, m
-1 -0. 0 1

11
(8.33)

where lJ. (t) is a function yet to be determined. In addition, weq-. '
1

shall impose both temporal and spatial boundary conditions. We

shall require
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a. ~ .(Tf, z) = 0 ,
-1

o :s z :s T.,
1

(8. 34)

or from Eq. 8. 33

(8.35)

b. ~.(t,T.) = a.d(t),
-1 1 1-

T :st:STfo ) (8.36)

or from Eq. 8.33

(8. 37)

We can interpret each of these conditions in terms of results we

developed earlier. Eq. 8.34 is the parallel to Eq. 8.31 in that it

specifies a terminal state. Eq. 8. 36 is a spatial boundary condition

parallel to the one imposed upon 'It(t, 0) as specified by Eq. 8. 8.

If we substitute Eqs. 8.30, 8.31, 8.32, 8.34 and 8.36

in Eq. 8. 28

1\ ,,1\
J(x(T ), u(t), 'It(T ,z)) = J(x(T ),u(t), 'It(T ,z) +
-0--0 -0--0

E

Tf

((~T(To)p~l -I?(To))O.!(To) + I.(~T(t)Q-l_pT(t)G(t)o~(t)

o

(continued)
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T Tj Jm ~T(To,!:.)Qo(!:.,Z)d!:.- If1[(To,z)U_1(Ti-Z) c5w(To,z).

i = 1o o

(8. 38)

If we examine the variations in the above we see that

they are the control parameters. Consequently, we can argue that in
,.. A A

order for x( T ), u(t) and '1r(T ,z) to be optimum, their coefficients
- 0 - - 0

must vanish. We have then

1\
x(T ) = P P (T )
- 0 0 - 0

(8.39)

(8. 40)

ill

2:-
i = 1

jJ..(T ,z)u l(T.-z) =
-1 0 - 1

Tm

J
o

A
Q (z,s)'1r(T ,s)ds,o - 0

(8. 41)

1\
Eq. 8. 40 allows us to eliminate ~(t) in the differential

equation for ~(t). We obtain

(8. 42)
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Eqs. 8.39 and 8.41 specify initial conditions upon the

state of the system. Eq. 8.41 presents a problem since it is in an

integral equation form. Quite often we shall be able to reduce this

integral equation to a differential equation by techniques similar to

those we have previously discussed. It may be realistic to assume

that the initial state estimate is spatially white. This is certainly

a worst case situation. In thi s case we have

o :5 Z, S :5 Tm (8. 43)

for which Eq. 8. 41 becomes

m
-1 I\,

fJ. .(T ,z)u l(T. -z) = K (z)'1r(T, z),
-1 0 - 1 0 - 0

O:5z:5 Tm (8. 44)

This completes our derivation of the estimator structure

by minimizing the functional J. Let us now summarize our results

for this structure. We have for To::=:t :5Tf (all the equations are

repeated).

A
dx(t)
~t = F(t)~(t) + G(t)Q GT(t)E(t) (8. 42)

1\
a~(t, z)

at = O::=:Z:5T m
(8. 6)
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(8. 30)

ajJ..(t, z)
-1
at o :S Z :S T., i = 1, m,

1
(8.32)

where

m

d(t) = R-1(t)(r(t) - a C1(t)x(t) - "" Q!.iIt.(t,T.~
- - 0 - L 1-1 17

i = 1
(8. 29)

The temporal boundary condition are

1\
P p( T ) = x( T ),
CF'- 0 - 0

(8.39)

m

I
i = 1

-1 /\
jJ..(T ,z)u I(T.-z) = K (z)'!r(T, z), O:S z :S T , (8.44)
-1 0 - 1 0 - 0 m

(8. 31)

jJ. .( Tf, z) = 0,
-1

o < z <T., i = 1, ID.
1

(8. 34)

The spatial boundary conditions are
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/' 1'\
!(t,O) = C(t)!.(t), (8. 8)

J-L.(t,T.) = Q!.d(t),
-1 1 1-

(8.36)

If we compare these equations to those for the case of ordinary state

variable equations, we can see that these equations are a logical

extension to them.

In the above representation, we used the partial
A

differential equations to specify w(t, z) and the J.L .(t, z}. When we are
- -1

concerned with a pure delay operations, we can solve these partial

differential equations and convert the above representation to a set

of differential-difference equations. In the general case of

arbitrary delay spacing, this representation can be rather complex

due to the various time intervals involved. However, in the case of

equally spaced delays we can obtain a structure which is easier wi.th

which to work. Let us illustrate this with an example.

Example! - Estimator Structure for Two Equal Delays

We shall consider the case when m = Z, and

T = 0
0

Tf = T > 4~T

T1 = ~T

TZ = Z~T (8.37 a-d)
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This model would correspond to a three element receiver. We

shall allow the system for the generation of ~(t) to have an arbitrary

state description.

To convert our receiver to a differential-difference
r-

equation form we need to solve the equations for !(t, z) and

.t=i(t, z}, We have done this in Eqs. 8.10 and 8.33. First, we want

to determine ~(t) over the interval [0, T]. To do this, we need
1\
!(t, z). We have

1\
!(t, z) =

A
!(O, z-t) -2D.T<t-z<0

Aw (t-z) = C(t-z)x(t-z) 0 est - z < T-0 -

(8. 38)

The re for e, we obtain

-1 ,... '" 1\
R (t)[!:.(t)-Q!oC(t)~(t)-Q!IC(t-D.T)x(t-D.T)-Q!2W(O, 2D.T-t)],

D.T:::ts2D.T,

d(t) =

~D.TstsT. (8.39)

Now we need to find the functions J..L (t). From Eqs. 8.35 and 8.37
-0.

1
we have
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J-Lo (t) =
1

{::~{t+At),

T - DoTst sT,

-DoT s t ST - DoT; (8.40a)

1:0 (t) =
z {

Ol

Q!l£!. (t+lDo T),

T - 2D.TSt S T ,

- 2D.T:St T - lDoT. (8.40b)

We are now able to write the estimation equations solely
,,/\ 1\

in terms of ~(t), E(t) and 'l!(O, z}. The equation for ~(t) is the same

throughout the interval

A
d~(t) A T
-at = .F(t)!Jt) + G(t)Q G (t)E(t), o:s t:S T (8. 41)

By substituting Eqs. 8.39 and 8.40 for d(t) and fJ. .(t, 0) respectively,
- -1

we find for the different time intervals

+ (l2R -1 (t+2 A)[!:{t+2AT) -(loC{t+2AT)~{t+2AT) -(l 1C{t+AT)~{t+AT) -azC{t)k6;) )

o S t S Dot
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-1 [ 1\ 1\ /\]+(11 R (t+D.t) .!'(t+AT) -(10 C(t+AT)~(t+D.T) -(11 C(t)~(t) -azC(t-AT)~(t-D.T)

azR -1 (t+ ?t..T)[ Eo( t+ Zt..T)- a0C(t+ Zt..T)g(t+ Zt..T)- a1C(tMT)~ (t+t..T) -azC(t )g( t) "

D.T < t < 2D.T, (8. 42c)

CT(t) (aOR -1(t)[ r(t)- ao C(t)~(t)-a1C(t-t..T)X(t-t..T)-azC(t~zt..T)x(t- ZtIT)

(11R -1(t+D.T)[£(t+D.T) -(1oC(t+D.T)~(t+D.T) -(11C(t)~(t) -azC(t)D.T}~(t-D.T)]

+ azR -1 (t+Zt..T)[.E<t+Zt..T)-a 0C(t+ ze..T)~(t+Zt..T) .,a1 C(tMT)Q(t+t..T)-azC(t)~(t) l)
2D.T < t < T - 2D.T

(8. 42d)

(cantin ued)
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CT (t) (aOR -1 (t)[ :r.(t) -aoC(t)~(t) -a1C(t-b.T)~~ T -em -a2C(t- 2t>.T)1t-2b.T)]

a1R-1(t+b.T)[ £(t) - aoC(t+b.T)~(t+b.T) - a1C(t)~(t) - O!zC( t-b.T)~'<t-b.T)] )

T - 2.6.T < t < T - .6.T. (8. 42d)

dE(t) T
-- = -F (t)p(t) -dt -

T - .6.T < t < T. (8. 42e)

The boundary conditions are

1\
P p(O) = x(O)0- - (8. 43)

p(T) = Q (8. ~4)

K-1(t)'lt(O, t) =
o -

-1 [ ~ AO2R (2.6.T-t) £,(2.6.T-t) -02 C(2.6.T-t)x( 2D.T-t) -al C(.6.T-t)x(.6.T-t) -02 'It( 0, t)] ,

o ::= t ::= AT, (8. 45a)
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AT == t == 2AT. (8. 45b)

Eqs. 8.41 through 8.45 specify our receiver structure. It would be an

understatement to say it is simply complex.

'"The major difficulty encountered is that 2£(t) enters the

equations both delayed and retarted, i.e., ~(t), ~(t- AT), and

~(t+AT) all can enter the same equation. Unfortunately the mathematical

theory for solving this type of equation has not been developed very

extensively, if at all. Therefore, we shall suggest two possible

approaches.

First, orie can approximate the de lay operation by some
,-

finite Pade approximation. The order would of course be dependent

on how large the delay is compared tothe correlation time of the

process involved. We should point out that we are approximating the

receiver, not the environment and then designing the receiver.

A second approach is to augment the state vector to

include ~(t-2AT), ~(t-AT), X(t+AT) and ~(t+2AT), and the corresponding

" A A "function E.(t-2AT), E.(t-AT), E.(t+AT)and p(t+AT). Obviously, this

increases the dimension of the system involved quite quickly which

will impose a severe computational demand. Finding efficient

solution algorithms is one of the issues for our future research.
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c. Discussion of Estimation for Distributed Systems

To conclude this chapter we shall make some general

comments on the status of estimation theory for distributed syste m.s ..

As we have done in many parts of this thesis we have

borrowed heavily from optimal control theory methods. The research

concerning the optimal control for distributed systems if far more

advanced than it currently is for estimation theory. Because of the

relationship between the two we shall briefly mention some of the

more pertinent work that has been done in this are a.

The initial research in the area of optimal control theory

for distributed systems was done in a series of articles by

Butkovskii and Lerner.35-38 , In these articles they developed a

maximal (or minimal) principle for such systems. They have also

studied approximation procedures by· the use of truncating an

orthonormal expansion series.

From the aspect of applications to a particular system,

all their studie s have been conce rned with the heat, or diffusion, .

equation. This particular equation has been investigated in almost

all the studies of distributed systems which have appeared in the

control literature. This is perhaps unfortunate since this equation,

which is of the parabolic type, is not representative of those

which commonly describe a dynamic system. These equations are.

usually of the hyperbolic type, and they are, in particular" related

to propagation phenomena. 34, 39

in the area.

Since Butkovskii's work several people have made studies
. 40 41

Most notable 1S Wang. ' He has emp loy.ed dynamic

programming principles to the control problem. This gives a
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functional equation which the optimal process satisfie s , He has also

formulated the concepts of observability and controllability for

distributed systems. In his examples (the heat equation) he resorts

to expansion techniques in order to determine the solution. Wangts

studies are probably the most concise formulation of the concepts

which arise in~distributed. systems which has appeared to date.

Sakawa 42 has also studied the optimal control of a system

described by the heat equation. He exploits the fact that the input-

output relationship for such a system can be analytically determined.

Again expansion techniques are used to actually find a solution.

Other investigators in this area include Goods on, Pie rre, and
43-45

Murray.

Recently, the realizable filter structure for the problem

that we studied in the last section was obtained by extending the
46

Kalman-Bucy approach. Many ofthe same issues enter, in

particular, delayed and advanced differential-difference equations.

In addition the variance equation the results is a function of two

essentially spatial variables which further complicates the issue.

We could derive the realizable filter from the smoother in Chapter VI.

Whether we can do this for the problem considered here remains to

be seen. In array processing the realizable filter is not usually

employed; however, we have seen that it is very useful in .

conjunction with the solution of the interval estimation equations.

A current disadvantage of the state variable approach is

that a method to dete rrnine the mean square error performance has

not been determined, whereas one does exist for the classical theory.

In the classical theory, however, the system is limited to be
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stationary and of infinite time. In addition, numerical integration

techniques must be used because of the non-rationality of the spectra

involved. A state variable approach to this problem may possibly be

computationally easier and at the same time allow one to study the

transient or time varying aspects of the problem. This would allow

us to determine how much we lose by using an asymptotic analysis.

We mentioned in the introduction that we could derive a

Fredholm theory for this problem. We can employ these results to

find a second, or modal, approach to this problem. If we actually

compute the eigenvalues and eigenfunctions involved we can expand

our receiver in terms of them. By truncating this expansion we can

obtain an approximate our receiver structure. (This is similar in
'.. 35- 38

concept tothe approach OfButkovskti and Lerner. )A bank of

correlations may be an appreciable simpler structure than that

derived in last section. ,Furthermore, we can calculate the

performance using this method.
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CHAPTER IX

SUMMARY

We have presented an extensive discussion ot the

use of state variable techniques for solving Fredholm integral

equations and the application of the resulting theory to problems

in optimal communications. The material in Chapters 2-4

developed the solution techniques for the integral equations,

while the remaining Chapters 5-8 exploited various aspects of

the theory to solve various communication theory problems.

In Chapter 2 we introduced the concepts of generating

random processes with systems described by state variables. We

were particularly interested in the properties of the covariance

of the state vector Kx(t,'t). By using these properties we were

able to reduce the linear operator specified by this covariance to

a pair of differential equations with an associated set of boundary

conditions. These equations were the key to many of our derivations.

In Chapter 3 we applied these concepts and results to

solving homogeneous Fredholm integral equations. We first
reduced the integral equation to a homogeneous set of differential

equations with imposed boundary conditions. The coefficients for
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these equations and the boundary conditions were determined

directly in terms of the state matrices that describe the generation

of the kernel of the integral equation. We then used the transition

matrix associated with these equations to find a transcendental

function whose roots specified the eigenvalues. Given these eigen-

values, the etgenfuncti.ons follow directly from the same transition

matrix. Finally, we used the same transition matrix that specified

the eigenvalues to find the Fredholm determinant. As a result,

we had that the only function that needed to be calculated in order

to find the eigenvalues, eigenfunctions and the Fredholm determinant

function was the transition matrix.

In Chapter 4 we again used the results of Chapter 2

to reduce the nonhomogeneous Fredholm integral equation to a

set of nonhomogeneous differential equations with a set of boundary

conditions. The coefficients of the differential equations and

boundary conditions were again directly related to the state matrices

which describe the generation of the kernel. We noted that the

differential equations and boundary conditions derived were the

same as those that specify the optimal smoother structure. Then

we exploited the methods that have been developed in the literature

for solving the smoother equations so as to solve the nonhomogeneous

integral equation. We were also careful to note the applicability

of each method that we introduced.

Chapter 5 considered a problem in optimal signal
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design. One of the more important applications of the nonhomogeneous

integral equation occurs in the communication problem of detecting

a known signal in additive colored noise. We viewed the results of

Chapter 4 as describing a dynamic system which related the correl-

ating signal in the optimal receiver to the transmitted signal. We

then used Pontryagin's Principle to derive a set of necessary conditions

for the signal that optimizes the system performance when both the

signal energy and its bandwidth are constrained. By using the

necessary conditions we devised an algorithm to design optimal

signals and their resulting performance when the channel noise had

first and second order spectrums. In the course of doing these

examples 1 the algorithm displayed several interesting features.

Chapter 6 was an extensive presenation on a unified

approach to optimal smoothing and filtering realizable with a delay.

Our starting point was the finite time Wiener-Hopf equation. We used

the nonhomogeneous integral equation results from Chapter 4 and

those from Chapter 2 to derive the state variable structure for 'the

smoother. We then found the differential equations for the realizable

with delay filter directly from the smoothing equations. We presented

several different methods for calculating the covariance of error of the

smoother and the filter realizable with delay.

In Chapter 7 we extended the results derived in

Chapter 2 so as to treat nonlinear modulation systems. Using these

results we reduced an integral equation that specifies a necessary
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condition for the smooth estimate to a set of differential equations

and boundary condition for it. Our derivation was exact, so the

results were equivalent to the original integral equation. We then

introduced the concept of invariant imbedding in order to derive

an approximate realization of the realizable filter from the nonlinear

smoothing equations.

In Chapter 8 we recognized that when pure delay

enters our observation, we cannot describe it with a finite dimen-

sional state equation. Consequently, we extended our concept of

state to include function states in a space-time domain. With

this concept we were able to derive the smoother structure for

delayed observations. The methods we used were extendable to

other types of distributed media; however, the structure even in

the case of pure delay was rather complex.

This completes the general summary of the results.

In the course of our discussion we worked many examples to illustrate

the methods derived. Although the methods were certainly analytic-

ally efficient when used properly, we emphasized the numerical

aspects of our methods since this is where we think their major

application lies.

We also indicated that the techniques that we used were

quite often powerful enough to be either extended or applied to

more complex problems. These problems suggest topics for further
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research. We shall list them by chapters:

2-4. extending the results on solving the Fredholm integral
equations when the kernel is generated by a nonlinear
or dispersive system;

5 signal design for spread channels; solution algorithms
for problems when hard constraints are imposed;

6 effective implementation of filters realizable with delay;

7 solving the smoothing equations for nonlinear modulation
systems ;extension of invariant imbedding to treat
filters realizable with delay; finding the relationship
between the covariance of error and the invariant
imbedding terms;

8 evaluation of the smoother performance; effective
solution procedures for the smoother; the use of a
modal or eigenfunction expansion for realizing the
filter structure.

In addition there are many direct applications of the theory we

have already developed. Many of these are mentioned at the end

of each of the respective chapters.
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APPENDIX A

DERIVATION OF THE PROPERTIES OF

COVARIANCES FOR STATE VARIABLE

RANDOM PROCESSES

In this Appendix we shall sketch the derivation of the

properties stated in Chapter II-B. We assume that !.(t) is generated

as discussed in Chapter II-A.

First, we derive Eq. 2. 10. Consider the case when

t > 7. The state at time t is related to the state at time 7 and

the input utt ') over the interval t> t ' > 7 by

t

~(t) = !l(t,T)~(T) + J !lIt, t')G(t')~(t')dt'

7

(A-I)

where 8(t, t ') is defined by Eq. 2. 11. If we post-multiply A-I by
T!. (T), and take expectations we obtain

8(t,7)K (7,T) +x

tS !lIt, t I)G(t I)E[ ~(t l)~ T( T)] dt '

7

(A-2)
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However, because of the Markov nature of the state vector, y,{tY)

and x{T) are independent over the range of integration. Conse quentl.y,

the second term of A-2 is zero, and we have

K (t , T) = 9{t, T)K (T, T),x X
t > T (A-3)

which is the first part of the desired result. The derivation of the

second part of Eq. 2.10 is identical; therefore, we omit it.

We now derive Eq. 2.12. We proceed by differentiating

the definition of K (t , t)x

d r ~(t) T dxT(t) J
T K~(t,t) = E L-at ~ (t) + ~(t) dt (A-4)

By substituting the state equation, we obtain

ddt K (t , t) = F(t)K (t , t) + K (t , t)FT(t)x x x

(A-5)

Since the last two terms are transpose s of each other, we consider

only the sec ond te rm. The state at time t in terms of the initial

state x(T ) and the input u(tJ) for T < t ' < t is given by- 0 0

t

~(t) = (lIt, To) ~ (To) + S {lIt, t l)G(t ')~(t ')dt 1

To

(A-6)
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Therefore, we have

E [~(t)~ T(t}]GT(t} = {e(t, T }E[x(T }uT(t}] +o - 0-

tJ 9(t. t')G(t')E[ ~(t ').'?(t)] dt'}G T(t)

'To

(A-7)

We assume that the first term is zero for t > T. The second termo
becomes upon performing the expectation

t

E[!.(t)~T(t)]GT(t) = 5 9(t,t')G(t')Q o(t'-t)dt'GT(t)

To

(A-B)

The integral is non-zero at only the endpoint of the integration

interval. We must assume that the limiting form of the delta function

is symmetrical; therefore, only one -half the "area" is included in

the integration region. IntegrationEq. A-B thus yields

(A-9)

Substituting this term plus its transpose into Eq. A-5 gives the

desired result

(A-9)

The initial condition Kx (T , T ) must be specified.
- 0 0
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APPENDIX B

COMPLEX RANDOM PROCESS GENERATION

All of the waveforms considered in the text were low pass

signals. In many applications, e. g. the signal design problem that we

considered, it is useful to be able to extend these concepts to the

case of bandpass waveforms. In this section we shall show' how we

can do this by using the concept of a complex state variable.

The use of complex notation for representing narrow band

processe s and functions is we 11 known. For example, if y(t) is a

random proces s that has a spectrum which is narr ow band about a

carrier w we can represent it in the formc

jw t
y(t) = Y (t) cos(w t) + Y (t) sin(w t) = Re[y(t)e c]c esc (B-la)

where

,." .
y(t) = Yc(t) - J Ys (t) (B - 1b)

Y (t) and y (t) are low pass processes. Under the narrow band andc s

stationarity assumptions, one can show

(B-2a)
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and

(B-2b)

Both components have the same covariance, and the cross covariance

is an odd function. There are two important points to be made here.

We can represent yet) as sinusoidal modulation of a low pass

complex process y(t) , termed the complex envelope.The real and

imaginary parts of yet), yc(t) and ys(t) respectively, are random

processes that have identical auto covar iance s , and a very particular

form for their cross covariance. This provides a key to our analysis.

The use of complex state variables is purely a notational

convenience. It is obvious that all the problems which one wants to

consider may be solved by expanding the terms into their real and

imaginary components. However, for the problem where the complex

notation is applicable, this expansion is too general a formulation

and it leads to a needlessly cumbersome description of the

processe s involved.

If we are to describe random processes by complex

notation, we want to have a convenient form for representing the

various covariances of the components. Obviously, if we have to

enumerate them all individually, we have not gained anything over

using the higher dimensioned representation. The complex

notation for describing random processes is applicable when there

are two processes;~, the quadrature components yc(t) and

y (t) of a narrow band process, which have the same autos
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covariances and the particular form for the cross covariance between

them. We now want to show that we can find a state representation

which generates a complex random process which satisfies Eq. B-2.

In addition we want to generalize our concepts so as to include the

non-stationary vector process case.

Random Process Generation with Complex Notation

In this section we shall develop the the ory needed to

describe the generation of complex random proces ses. Let us assume

that we have the following state variable description of a linear

system

d~(t) ,...,." ,.",."
<:it = F(t)~(t) + G(t)~(t) (linear state equation) J (B-3a)

i(t) = C(t)~(t)) (linear obse rvation equation) (B-3b)

where all the coefficient matrices may be complex. In order to

describe the generation we shall make two assumptions regarding the

statistics of the driving noise ~(t) and the initial state vector ~(T ).
- - 0

With these two ass umptions we shall deve lop the entire theory.

Finally, we shall demonstrate that such representations can indeed

be used as a convenience to describe the complex envelope of narrow

band processes by showing that they yield results consistent with

Eqs. B-1 and B-2 in the stationary case.

First, let us consider the white noise driving function
M~(t). The complex covariance function for the proces s assuming zero
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mean is

(B-4)

where we have used the notation

(B-5)

i.e., the conjugate transpose. Let us expand this complex

covariance in terms of the quadrature components.

K~t,T) = E[ (u (t)- j (t))(u T( T) + j (T))] =
U -e u -c u
- -s -s

Ku U (t,T) + Ku U (t,T) + jKu u (t, T) - jKu u (t, T) =
-c-c -s-s -c-s -s-c

1'/
Q O(t-T) (B-6)

In order that the covariance matrix be a convenient method of

representing the covariances and cross covariances of the
#ttl

components of ~(t), we shall require that

1 fJ
K (t,T) = K (t , T) = '2 Re[ Q] O(t-T), (B-7a)u u u u-c-c -s-s

(t, T) 1 NK (t,T) = -K = '2 Im ]Q] o(t- T). (B-7b)u u u u-c-s -s-c
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The covariance matrices for the two components are identical non-

negative definite matrices, and the cross covariance matrix is a
,J

skew symmetric matrix. This implies that Q(t) is a Hermitian

matrix with a non-negative definite real part.

We also note that the conjugate operation in the definition

of the complex covariance matrix, for under the above assumption

we have

(B-B)

Quite often, one does not have correlation between the

components of u(t) (1. e. , E[ u (t) u T(t)] = 0) since any correlation- -c -s -
between the components of the state vector may be represented in

the coefficient matrices F(t) and G(t). In this case, Q(t) is a real

non-negative definite symmetric matrix. Also, note that under the

assumptions we made, u is uncorrelated with u for all i .c. s.
1 1

The next issue which we want to consider is the initial

conditions. In order that we be consistent with the concept of state,

whatever assumptions which we make regarding the state vector at

the initial time To' should be satisfied at an arbitrary time

t (t ::::To)·

First, we shall assume that x(T.) is a complex random
- 1

vector (we assume zero mean for simplicity). The complex

covariance matrix for this random vector is
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,.J,.., I'J +
P = K,.,(T ,T ) = E[x(T )5{ (T )] =o x 0 0 - 0- 0

(B-9)

The assumptions which we shall make about the

covariance of this random vector are

1 ,.I
= "2 Re[ Po] ) (B-I0a)

K (To' T , = K (T . , T. )xx 0' xx 11-c-s -c-s
(B-I0b)

Consequently, the complex covariance matrix of initial condition is a

Hermitian matrix with a non-negative definite real part. We also note

that under the above assumptions

(B- 11)

Let us now consider what these assumptions imply about

the covariance of the state vector ~(t) and the obse rved signal ~(t) .

Since we can relate the covariance of ~(t) directly to that of the

state vector, we shall consider K (t,T) first.x



292

In the study of real state variable random processes one
,.,J

can determine K",,(t,T) in terms of the state equation matrices, the
x

function Q associated with the covariance of the excitation noise
N N ~
u(t), and the covariance K~(T ,T ) of the initial state vector, x(T ).- x 0 0 - 0

The results for complex state variable s are exactly paralle 1. The

only change is that the transpose operation is replaced by a conjugate
w

transpose operation. The methods for determining K~t, T) are firstx,.,
to find K~(t, t) as the solution of a linear differential equation and then

use the transition matrix associated with the matrix F(t) to relate,., ,., ,..,
~t, T) to Ki}{(t,t). K~t, t) satisfies the linear matrix differential

equation

~
dK'"'(t ,t) ~, d _I

X .IV - ~ N+,'" - '"'+dt = F(t)K~(t, t) + ~(t, t) F (t)+ G(t) QG (t) (B-12)

,oJ

where the initial condition IW(T ,T ) is given as part of the systemx 0 0
'"description, ~(t, T) is given byx

,.J
K~(t, T) =x

T > t , (B-13a)

where 9(t, T) is the complex transition matrix associated with F(t).

We also note for future reference that
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(B-13b)

We can readily show that K-(t, t) is Hermitian for all t ,x

In order to do this, we simply perform the conjugate transpose

operation upon Eq. B-12. This yields

dt
.i'J + ~ + ,., AI + I"'! ~+I"+= K'" (t, t)F (t) + F(t)K (t , t) + G(t)Q G (t)x x (B-14a)

,., j'J +
Q is Hermitian; therefore, K"'(t, t) and K- (t , t) satisfy the samex x
linear differential equation. Since K''''(t,t) ~nd K-+(t,t) have the samex x

~ ~ - -
initial conditions (K"'(t, t) and K-(T, T ) is Hermitian by assumption) ,x x 0 0

they must be identical. Consequently, complex covariance matrix
,J

K"'(t, t) is Hermitian for all t , We can also show thatx

(B-14b)

for all t , In order to do this we note that this expectation satisfies

the linear differential equation

(15)

Since Ql equals zero (Eq. B-8), the forcing term in this equation is

zero. In addition, the homogene ous solution is zero for all t
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(Eq. B-11). This proves the assertion.

By using the above, we may prove that E[!(t)gr ( T)] equals

zero for all t and T. To do this we note that

'jJ [,J ~T:G(t,T)E ?£(T)?£(T)])

T > t , (B-16)

Since the expectations on the right side of the above equation are

zero, the expectation on the left equals zero for all t and 'T.

We note here that the assumptions which we have made on

the covariance of the initial state vector ~(T ) are satisfied by the- 0
covariance of the state vector ~t) for all t :::T .

- 0

Usually, we are not concerned directly with the state

vector of a system. The vector interest is the observed signal,

~(t), which is related to the state vector by Eq. B-3b. We can

simply state the properties of the covariance 1<- (t, T) since it is
Y...

related directly to the covariance of the state vector. This relation-

ship is given by

,./ # "" w+Kjt,T) = C(t)K""'(t,T)C (T)Y x (B-1?)

Consequently, it is clear that ~,J(t, t) is Hermitian and thats.
is zero.

We are now in a p osi ti on to derive some of the

properties regarding the individual components of the observed
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signal. First, let us prove that the covariances of ~c(t) and

~s(t) are identical. We have

1 ,..,
= 2' Re[ ~(t,T)] (B-18a)

1 ~
2' Re[ Ki(t, T)] (B-18b)

Consequently, the covariances of both components are equal to one-

half the real part of the complex covariance matrix.

The cross covariance between components may be found

in a similar fashion. We have
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E[;rc(t)~s( T)] = E { (~(t):i*(t)) ieT(T); i*T(T) )}

I

1 ~= -"2 Im [K-(t, T)]
Y..

(B-19)

By using Eqs. B-IB and B-19, we have a convenient

method for finding the auto- and cross-covariance of the real and

imaginary components of the complex signal ~(t) in terms of the

complex covariance function K-(t, T). This provides the notationals.
convenience of working with just one covariance matrix, yet it

allows us to determine the covariances of the individual components.

This is a major advantage of our complex notation.

Stationary Random Processes

We now want to show that the assumptions which we made

lead to results which are consistent with those which have been

developed for stationary scalar random processes. By choosing
w
P tobethe steady state solution to Eq. B-12, Le.,-0

,..., tV
P = lim K-(t, t),

o t-+oo ~

(B-20)
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,J

We can show that the covariance matrix K,J(t, T) is stationary.
. Y..

Equivalently, we could say that under this assumption for the initial

state vector ~(~), ~(t) is a segment of stationary random processes.

For stationary random processes we shall use the notation

,., 1'\/

IV(At) = KJJ(t, t +At),
Y.. Y..

(B-2l)

i.e ., we shall use only one argument.

Since we have already proven that the real and imaginary

components have the same covariance (Eq. B-l8), then Eq. B-2a

is certainly satisfied. Therefore, we need only to pr ove that the

cross covariance is an odd function. In general, we have

(Eq. B-l4),

IV "Re[ K,.J (At)] + j Im] K,..,(At)]
Y.. Y..

(B-22a)

By equating the imaginary parts and substituting Eq. B-l9, we

obtain

-K (-At),
~sY..c

(B -22b)

which for the scalar case is consistent with Eq. B- Zb. These

conditions are sufficient to show that Y..(t)has a real, positive

spectrum in the scalar case.
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Summary

In this section we introduced the idea of generating a

complex random process by exciting a linear system having a

complex state variable description with a complex white noise. We

then showed how we could describe the second order statistics of

this process in terms of a complex covariance function and then we

discussed how we could determine this function from the state

variable description of the system. The only assumptions which we

were required to make were on U'(t) and ~(T ). Our results were
- .. 0

independent of the form of the coefficient matrices F(t), G(t), and

C(t). Our methods were exactly paralle I to those for real state

variables, and our results were similar to those which have been

developed for describing narrow band processes by complex

notation. We shall now consider two examples to illustrate the type

of random processes which we may generate.

Example .!.
The first example which we cons ide r is the firs t orde r

(scalar) case. The equations which describe this system are

I"OJ

d~(t) = -kx(t) + u(t) (state equation) , (B-23)

and

I"OJ I"OJ

y(t) = x(t) (observation equation) . (B-24)

The assumptions regarding t;(t) and "i(T ) areo
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,..." jI'tIJ ~:( ,..."

E[ u(t) u (T)1 = 2Re[ k] PO(t-T) (B-25)

and

(B-26)

Since we have a scalar process, both P and Pbmust be real. In

addition, we have again assumed zero means.
"'"First, we shall find K (t, t). The differential equation,x

. Eq. B-12, which it satisfies is

"'"
dK""'(t, t)
x = _kK''''''(t, t) - k':~K""'(t,t) + 2Re[ k] Pdt x x

(B-27)

The solution to this equation is

t > To (B-28)

"""In order to find K (t,T), we need to find 9(t, T), the transition matrixx
for this system. This is easily found to be

"'"
~(t, T) = e -kl t-rr) (B-29)

"'"By substituting Eqs . B-28 and B-29 into Eq. B-13, vre find K"""(t,T)
x

"'"which is also K (t ,T) for this partic ular example. Furthermore, wey
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find the auto- and cross -covariance of the individual components by

applyting Eqs. B-lB and B-l9 respectively.

Let us now consider the stationary cas e in more detail.

In this case

P = P.o (B-30)

If we perform the indicated substitutions, we obtain

K~At) =x

At:S 0 (B-3l)

fOol

-k zxtPe At ~ 0

This may be written as

(B-32)

By applying Eqs. B-lB and B-l9 we find

Kx x (L>.t) = Kx x (L>.t) = ~ e - Re[ k] IL>.t Icos(Im[ k] L>.t) (B - 3 2a)
c c s s

K (At) = P e -Re[ k] IAt Isin(Im[ k]~)
x x 2c s

(B-33b)

The spectrum of the complex process follows easily as
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S""( w) = __ 2_R_e~[-=k]=.-P__ ----=-

x (w-Im[ k] ) 2 + Re[ k] 2
(B-34)

The spectra and cross spectra of xc(t) and xs(t) may easily be found

in terms of the even and odd parts of S:(w).x

From Eq. B-34, we see that in the stationary case, the

net effect of allowing a complex gain is that the spectrum has a

fre quency shift equal to the imaginary part of the gain. In a narr ow

band interpretation this would correspond to a mean Doppler shift

about the carrier. In general, we would not expect such a simple

interpretation of the effect of a complex state representation. This

suggests that we should consider a second example where we have a

second order system and two feedback gains.

Example ~

In this example we want to analyze a second order system.

In the steady state, it corresponds to a system with two poles. Note

that the pole locations -k1 and -k2 need not be complex conjugates

of one another. Again, we shall analyze the stationary case, the

analysis for the non- stationary case is straightforward, but is not

especially informative The state and observation eq uations for this

system are

(B -3 5)
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and

y(t) = [1:0]

(B -3 6)

The covariance of the driving noise is

(B-37)

From the steady state solution to Eq. ,B-1Z, we have

,...,
p = p
o

(

I
I
I,
J----------1-------------------------------------

-jIm [k)~z] : (Re(k lkz)Re[ k 1+kz] +Im(k1 kz)Im(kl +kz))
----- I ----------------
Re[ k 1+kz] I Re[ k 1+kz]

1

1
jIm[ k1kz ]
Re[k1 +kz]

(B-38)

,...
Therefore, we have a stationary process y(t) with power P.

In order to find the covariance matrix we need to find the

transition matrix for the system. We do this by using matrix

Laplace transform techniques. We find.
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(B-39)

If we substitute Eqs. B-38 and B-39 in Eq. B-13 and then use

Eq. B-1?, we obtain

.....
K .....(~t) =

Y

(B-40)

We now want to determine the spectrum S (w) from Eq. B-40. Let usy
define two coefficients for convenience:

Re[kl]

Re[k 1+kl]
(B -41)

k*+ kl 1
• (B-4l)
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After a fair amount of manipulation, we can compute S (w).y

s (w) = zpy

Re[AZ] Re[kz] + Im[Az] (w+Im[kz])
Z ,.., ,.., Z

Re [kz] + (w+Im[kz])
) . (B-43)

We have plotted this function for various values of k 1 and
,.., ,.., ,..,
kZ in Figure B-1 through B-4. The values of kl and kZ for a

particular figure are illustrated on the figures by the pole location
,.., ,..,

they produce, i.e., the system ~as a pole at -k 1 and -kZ.

In Figures B-1 and B-Z we illustrate that by simply

choosing the poles as complex conjugates we can produce either

spectrum which is either very flat near w = 0 or is peaked with two
...,

symmetric lobes. If one wanted to use real state variables to
"

generate this spectrum, a fourth order system would be required.

In this case, the complex notation has significantly reduced the

computation required.

Figure B-3 illustrates an interesting observation about

mean Doppler shifts. Let us draw the pole-zero locations for the

complex system. If there exists a line w = w about which the pole-c
zero pattern is symmetric, then in the stationary case the complex

notation effectively produces a spectrum which is symmetric about

w = w . For example, in Figure B- 3, the pole pattern is symmetricc
about w = l/Z. We see that the spectrum is symmetric about
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w = -1/2 als o. Consequently, we can use the complex notation to

introd uce mean Dopp ler shifts of narrow band proce sses .

Figure B -4 illustrates that, we can obtain spectra which

are not symmetric about any axis. This is a relative ly important

case. In dealing with narrow band processes if one can find a

frequency about which the spectrum is symmetric, then the component

processes y (t) and y (t) are uncorrelated. However, if there is noc s
axis of symmetry (or if the choice of carrier is not at our disposal)

then the components are definitely correlated. This example shows

that we can model narrow band processes with non-symmetric

spectra very conveniently with our complex state variable notation.
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Fig. B-1

Spectrum for a Second Order
Complex Process when Poles
are Closely Spaced
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Fig. B-2

Spectrum for a Second Order
Complex Process when Poles
are Widely Spaced
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Fig. B-3

Spectrum for a Second Order
Complex Process with a Mean
Doppler Frequency Shift
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