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Abstract

The small subunit (β2) of Escherichia coli class Ia ribonucleotide reductases (RNRs)
contains a diferric tyrosyl radical (Y•) cofactor essential for the conversion of nucleotides to
deoxynucleotides that are needed for DNA synthesis and repair.  The mechanism and factors
involved in the biosynthesis, maintenance and regulation of this cluster remains unclear.  To
understand these pathways, the genes contiguous to nrdB (gene encoding β) in 181 bacterial
genomes were analyzed which revealed a highly conserved [2Fe2S]-ferredoxin, YfaE in E. coli.
YfaE has been cloned, expressed, reconstituted, and characterized by UV-visible, EPR and
Mössbauer spectroscopies.  Titration of met-β2 (an inactive diferric-β2 with Y• reduced) with
[2Fe2S]1+-YfaE results in formation of diferrous-β2 with one Fe reduced/YfaE oxidized.  At the
end point of titration, exposure of the reduced cluster to O2 in the absence of an additional
reducing equivalent yields the diferric-Y• with 2 Fe/Y• generated, suggesting that the reducing
equivalent required for cluster assembly is supplied by β2, likely by W48.  The kobs for the
reaction between met-β2 and [2Fe2S]1+-YfaE determined by anaerobic stopped flow
spectroscopy is ~1-5 s-1.  Studies of conserved Lys to Ala mutations of β2 indicate electrostatic
interactions may play an important role for interaction with YfaE.  Quantitative Western blots of
the whole cells suggest that YfaE acts catalytically in reactivating met-β2 in vivo.  Titration
experiments establish that met-β2 can be reduced by catalytic amounts of YfaE, Fre (a flavin
reductase) and flavin with consumption of NADPH.  In the presence of a Y• scavenger,
hydroxyurea, ΔyfaE shows slower growth rates than the isogenic wt strain and Western blots
analysis shows up-regulation of YfaE expression, supporting YfaE’s role in the reactivation of
diferric-β2 in vivo.  To investigate the iron sources for diferric-Y• assembly, changes in Fe pools
inside the cell subsequent to expression of β2 was monitored by whole cell Mössbauer
spectroscopy.  The results show that both Fe2+ and Fe3+ pools can provide the iron for cluster
assembly, suggesting a reduction mechanism(s) for Fe3+ to allow it function in this capacity.  A
potential role of YfaE as an iron chaperone for iron delivery to β2 has also been investigated.

Thesis Supervisor: JoAnne Stubbe
Title: Novartis Professor of Chemistry and Professor of Biology
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Chapter 1

Introduction to Ribonucleotide Reductase Small Subunit
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General introduction

Ribonucleotide reductases (RNRs) are essential proteins in all organisms and catalyze the

conversion of purine and pyrimidine nucleotides to deoxynucleotides, supplying the monomeric

precursors (dNTPs) for DNA replication and repair (Figure 1-1) (7, 9-13).  Their central role in

nucleic acids metabolism has made them a successful drug target for anti-tumor therapies (14-

20).  There are three classes of RNRs characterized by the metallo-cofactors used for initiating

the nucleotide reduction process (Figure 1-2) (2).  The class Ia and Ib RNRs, found in eubacteria

and eukaryotes, contain a diferric-tyrosyl radical (Y•) cofactor.  The class Ic RNR, recently

identified in Chlamydia trachomatis, a human intracellular parasite, employs a MnIV-FeIII

cofactor.  The class II RNRs use adenosylcobanamin (AdoCbl) as a cofactor and are found in

bacteria, archaera and eukaryotes.  The class III RNRs require an Fe-S cluster and S-

adenosylmethionine (SAM) to generate a stable glycyl radical (G•) cofactor.  The class III RNRs

are found only in facultative and obligate anaerobes (16-20).
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Figure 1-1.  Reaction catalyzed by RNR.  The arrow indicates the 3′ hydrogen (red)
abstracted by the thiyl radical in the active site.  The electron source for the reduction of
the 2′ hydroxyl (blue) is supplied via formation of a disulfide (class I and II) or via
oxidation of formate (class III).
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The function of the metallo-cofactors in all classes of RNR is to generate a transient thiyl

radical for initiation of the radical dependent nucleotide reduction by abstracting the 3′-hydrogen

atom of the nucleotides (a, Figure 1-3) (21, 22).  The 3′-nucleotide radical (b, Figure 1-3)

formed after the 3′-hydrogen abstraction undergoes protonation of the 2′-hydroxyl group and

elimination and generates 3′-keto-2′-deoxynucleotide radical (c, Figure 1-3) which then accepts

a hydrogen atom from an adjacent active site cysteine, forming a 3′-keto-2′-deoxynucleotide and

a disulfide radical anion (d, Figure 1-3).  The 3′-keto-2′-deoxynucleotide is reduced by the

disulfide radical anion concomitant with protonation by the active site E441 and becomes a 2′-

deoxy-3′-nucleotide radical with the formation of a disulfide bond (e, Figure 1-3).  This 2′-

NH
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OH
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Figure 1-2.  Three classes of RNRs.  The class I RNRs have a diferric-Y• cofactor, the class II
RNRs use adenosylcobalamin, the class III RNRs contain a glycyl radical and the class Ic
RNRs harbor a MnIV-FeIII cluster.  All these cofactors are used to generate the thiyl radical
required for catalysis (2).



36

deoxy-3′-nucleotide radical then re-abstracts a hydrogen atom from the active site cysteine and

becomes a 2′-deoxynucleotide with the regeneration of the thiyl radical (f, Figure 1-3).  In the

class I and II RNRs, the electron source for the nucleotide reduction is provided by the formation

of the disulfide bond between conserved cysteines in the active site.  This disulfide can then be

reduced by the cysteines located in the C-terminus of the subunit possessing the active site.

These cysteines, located in the disordered C-terminal tail are re-reduced by thioredoxin and

thioredoxin reductase (or glutaredoxin and glutaredoxin reductase) using NADPH as the electron

source.  In the class III RNRs, formate provides the reducing equivalent and is converted to CO2

(Figure 1-1) (12).
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Figure 1-3.  Mechanism for nucleotide reduction.  The mechanism is proposed to be
common for class I and II of RNRs.  See text for descriptions of each step.
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The class Ia RNR

The class I RNRs are composed of two subunits, the large subunit αn harbors the transient

thiyl radical (C•) and the small subunit β2 contains the diferric-Y• cofactor essential for the

generation of the C•.  In E. coli, α exists as a homodimer whereas in mouse, α has been shown to

form different oligomeric states (α2, α 4 or α6), depending on the concentration of ATP and

dNTPs (23-26).  Besides the site for nucleotide reduction, α also contains different allosteric

effector binding sites.  The specificity site (S-site) binds ATP, dATP, TTP and dGTP that

determines which substrate (CDP, GDP, UDP and ADP) is preferred for reduction (27-29).  The

class Ia RNRs are distinct from the class Ib RNRs in that the class Ia RNRs contain a second

allosteric site called activity site (A-site).  Under low dATP concentrations and in the presence of

ATP, the overall rate of nucleotide reduction increases whereas under high dATP concentrations,

the activity of RNR is inhibited by dATP’s binding to this activity site (27).  A third allosteric

regulation site (H-site), which binds ATP weakly, has been proposed to play an important role in

the oligomeric states in mouse RNR (25, 30).

The class Ia RNR from E. coli will be the focus of this thesis.  The large (α) and small

(β) subunit of E. coli class Ia RNR is encoded by nrdA and nrdB, respectively.  The large subunit

can form a homodimer (α2) of 172 kDa and the small subunit forms a homodimer (β2) with a

molecular mass of 87 kDa.  As in other organisms, in E. coli, α2 contains the site of nucleotide

reduction and the specificity and activity sites (Figure 1-4) (4).  β2 contains the essential diferric-

Y• cofactor (Figure 1-5) (8, 31).  The two subunits form a 1:1 complex with a Kd of 0.2 µM or

less in the presence of substrates and effectors (32).  Sucrose gradient ultracentrifugation studies

by Brown and Reichard suggest that dATP causes α to form higher molecular weight aggregates

(33).  Recently an inactive α4β4 complex (E. coli) formed in the presence of dATP was observed
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by a method called gas-phase electrophoretic mobility macromolecule analysis (GEMMA) (34).

However this result is inconsistent with SEC from our own lab in which dATP generates an α2β2

complex (Hassan, unpublished results).

So far only the individual structure of α2 (co-crystalized with a 21-mer peptide identical

to the C-terminal tail of β2) and β2 but not a structure of α 2β2 complex have been solved.

However, Uhlin and Eklund have generated a docking model from individual α2 and β 2

structures based on shape complementarity (Figure 1-6) (4, 8, 31).  The most intriguing feature

from this docking model is that the Y122 (Y• in β2) is > 35 Å away from C439 (C• in α2),

suggesting the generation of the thiyl radical C439• by Y122• requires an unprecedented long

range radical propagation step thought to involve redox active amino acids and proton coupled

electron transfer (PCET) (Figure 1-7) (1).

Based on this docking model, a radical transfer pathway composed of absolutely

conserved amino acid residues was proposed (β: Y122 → W48 → Y356) → (α: Y731 → Y730

→ C439) (Figure 1-7) (4).  Site-directed mutants (SDM) of these conserved residues indicated

their importance (35-38).  However, loss of catalytic activity precluded analysis of function.

Recent methods (native protein ligation and evolution of suppressor tRNA/aminoacyl-tRNA

synthetase pairs specific for an unnatural amino acid have allowed investigation of the proposed

pathway by substitution of the conserved Ys in the pathway (Y356-β; Y731 and Y730 in α) with

unnatural amino acids.  Fluorotyrosines (2,3-F2Y, 3.5-F2Y, 2,3,5-F3Y, 2,3,6-F3Y and F4Y), 3-

nitrotyrosine, 3-hydroxyltyrosine and 3-aminotyrosine allow modulation of the protonation state

and reduction potential, key for analysis of PCET (39-43).  This elegant approach has provided

the first direct evidence for the residues involved in the radical transfer pathway (Y356 in β;

Y731 and Y730 in α).  These studies confirmed pre-steady state experiments that substrate and
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effector binding in α triggers the rate limiting conformational change, which leads to initiation of

the radial transfer and formation of the active transient C439• required for catalysis.  These

substitutions have made the study of the radical propagation mechanism possible and

unprecedented reaction in biology and a target of a currently used anti-tumor agent (39-43).

Effector Binding SiteSubstrate Binding Site

Activity Site Y731
Y730

Figure 1-4.  Crystal structure of E. coli class Ia RNR large subunit α2 (4-6).  The arrows
indicate the active site where nucleotide reduction occurs, the allosteric specificity site that
controls which nucleotide is reduced, the activity site which controls overall rate of nucleotide
reduction and the two Ys (730, 731) which involve in the generation of the C•.  The substrate
GDP (blue CPK) in the active site and effector TTP (green CPK) at the allosteric sites are
shown.  The blow up shows the C• in the active site essential for catalysis.

Y356 Y356

Figure 1-5.  Crystal structure of E. coli class Ia RNR small subunit β2 (3, 4, 7, 8).  The C-
terminal end of β2 (residues 345-375) is thermally disordered (red).  The blow up shows the
diferric-Y• cluster required to generate the thiyl radical in α2 for nucleotide reduction.  The iron
atoms of the diferric cluster are shown in red spheres.  The arrow shows the Y356 involved in
radical propagation between the two subunits.
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35 Å
β2 Peptide

β2 (340) β2 (340)

β2 Peptide

β2 Peptide

Figure 1-6.  Docking model for E. coli class Ia RNR α2β2 complex (4-7).  The α2 subunit is in
blue and green and the β2 subunit is in red and orange.  A C-terminal peptide from β2 (355-375)
was used to obtain crystals of α2 in which only residues from 360-375 are visible in the
structure.  Residues 341-359 in β2 and residues 733-761 in α2 are not visible in this structure.
The Y• in β2 required to generate the C• in α2 for catalysis are > 35 Å removed.



41

Figure 1-7.  The proposed PCET pathway of E. coli class Ia RNR (1).  The radical
propagation pathway composed of conserved amino acids: (β: Y122 → W48 → Y356) →
(α: Y731 →  Y730 →  C439) are shown (red line).  Y356 locates in the disordered C-
terminus of β2 and its position is unknown.
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The diferric-Y• cluster of E. coli class Ia RNR

In addition to research on the mechanisms of nucleotide reduction by the active site C•

and on the radical transfer pathways from the Y• to generate the C•, the mechanism of formation

of the essential diferric-Y• cluster in vitro has also been extensively investigated.  Early studies

by Atkin et al showed that the β2 diferric-Y• cofactor can be self-assembled from apo-β2 in the

presence of Fe2+, O2 and reductant (44).  The stoichiometry of this assembly requires oxidation of

two ferrous irons and Y122 and requires an additional reducing equivalent to provide the four

electrons needed for reduction of O2 to H2O (Figure 1-8).  Optimized reconstitution conditions

now give 1.2 Y• and 3.2-3.6 Fe per β2.  Theoretically one β2 can have 2 Y• and 4 Fe.  The main

reason for the substoichiometric amounts of Y• and Fe per β2 is due to the inability to control the

iron delivery and the additional reducing equivalent which could be supplied by Fe2+ from the

reconstitution.  This substoichiometry complicates the interpretations of spectroscopic studies on

the intermediates formed during the cluster assembly, and leads us to investigate that how the

delivery of iron and the reducing equivalent is controlled for the assembly of the diferric-Y•

cofactor of β2 inside the cell.

2 Fe2+ + e- + H+ + O2 + Y-OH

Fe3+-O- Fe3+ + H2O + Y-O•

Figure 1-8.  Stoichiometry of the diferric-Y• cluster formation.  Two ferrous iron, one
electron and one tyrosine provide the four electrons needed to reduce one O2 and generate
one diferric-Y• cofactor and one water molecule.  However, so far only substoichiometric
amounts of Y• (< 1 Y•/β) have been obtained from experiments in vitro.  The in vivo
source of iron (red) and the reducing equivalent (green) are unknown.
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There are several challenges in studying the biosynthesis of diferric-Y• cofactor of β2.

First, apo-β2 can self-assemble, which can complicate the determination of successful cofactor

assembly by biosynthetic means.  Second, Fe2+ is weakly bound which makes it difficult to find

“factors” that deliver iron as it dissociates.  Third, Fe2+ is easily oxidized at pH 7.  Fourth, there

is often redundancy in important pathways.  Although efficiency may vary, cells still are able to

survive if one single pathway is deleted, which makes it difficult to identify the function of a

specific pathway.

To address these issues, our approach is heavily based on our knowledge on the in vitro

cluster assembly, the iron homeostasis pathways in E. coli, and the biosynthesis of FeS proteins.

Studies on the diferric-Y• cofactor assembly in vitro provide the basis for us to formulate the

mechanism of iron delivery (Chapter 4 and 5) and source of reducing equivalents (Chapter 2 and

3).  Current understanding of the iron homeostasis in E. coli provides the basis for us to design

experiments to investigate iron delivery pathways for β2 (Chapter 4).  Studies on the biosynthesis

of FeS proteins provide the basis for our experimental design to look for biosynthetic

machineries (Chapter 2) and investigate potential iron chaperones (Chapter 3 and 5).
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The diferric-Y• cofactor assembly in vitro

The mechanism of diferric-Y• cluster assembly in vitro has been studied in great detail

with wt and mutant β2s (Figure 1-9) (3, 5-7).  The assembly starts with a conformational change

in apo-β2 followed by sequential loading of two ferrous irons to specific sites ( 7, 45).  An

alternative model has been proposed by Hendrich and coworkers based on studies using EPR

spectroscopy and Fe2+ and Mn2+ loading in apo-β2.  The model suggests that binding of one Fe2+

in a β subunit lowers the affinity for the second metal in the same subunit and prohibits iron-

binding of the other subunit.  The binding of the second metal in the same subunit is triggered by

exposure to O2 or in high glycerol buffers (46).

Reaction of Fe2+-loaded β2 with O2 yields a transient diferric-peroxide intermediate

observed in β2 mutants in E. coli and wt-β2 in mouse (13, 47).  In addition a transient

intermediate in the E. coli wt-β2 formed and disappeared within 10 ms was also observed by

Tong et al and is likely the peroxide intermediate (7).  This diferric-peroxide intermediate is

proposed to be reduced by W48 (the same W in the PCET pathway, Figure 1-7) to form a

tryptophan cation radical (WH+•) and an FeIV-FeIII intermediate (X) with a rate constant of 60-80

s-1 when the apo-β2 is preloaded with Fe2+ (Figure 1-9) (48).  When the reaction starts with apo-

β2 without preloaded Fe2+, the rate of formation of X is masked by a conformational change of

apo-β2 (kobs~5-10 s-1) (Figure 1-9).

  There is agreement in the field that X is kinetically competent in generating the diferric-

Y• cluster and that it has a FeIV-FeIII core structure.  EXAFS (extended X-ray absorption fine

structure) studies revealed a short Fe-Fe distance (2.5 Å) (49).  In conjunction with studies of

17O2, H2
17O, and 2H2O ENDOR (electron-nulear double resonance), EPR and Mössbauer

spectroscopies using rapid freeze quench (RFQ) technique, a structure of X composed of a
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terminal hydroxyl on FeIII and an oxo bridge in addition to bridges from carboxylate oxygen(s)

from E115 and E238 between FeIII and FeIV was proposed [(HO)FeIII(µ-O)FeIV] (50-52).

Alternate structures of X were also proposed based on studies by MCD (magnetic circular

dichrorism) [FeIII(µ-O)(µ-OH)FeIV] (48) or DFT (density functional theory) [(H2O)FeIII(µ-O)(µ-

O)FeIV] (53, 54).  Determining a structural model of X that is in agreement with all spectral

studies is complicated by heterogeneity of the sample (only substoichiometric amount of Y• per

diferric center was formed in the cofactor assembly in vitro) and variation in sample preparation.

After the formation of the X-WH+• intermediate, in the presence of reducing equivalent

such as excess Fe2+, DTT, or ascorbate, the WH+• near the surface is rapidly reduced to W at a

rate > 20 s-1 (Figure 1-9, a) and then intermediate X is reduced to a diferric center concomitant

with oxidation of Y122 to Y• at a rate constant of ~1 s-1 (Figure 1-9, c) (6).  When no reductant

is ready available, Y122 is oxidized by WH+• at a rate > 3 s-1 (Figure 1-9, b), followed by a slow

reduction of the intermediate X to form the diferric cluster (Figure 1-9, c).  The electron source

for this step has not been identified (5).

Lessons learned from in vitro studies in controlling delivery of iron (addressed in Chapter

4 and 5) and the reducing equivalent (addressed in Chapter 2 and 3) are likely to play an

important role in vivo.  Whether β2 assembly in vivo similarly proceeds through “X” and WH+•

intermediates as observed in vitro is important to establish.
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Figure 1-9.  Working model for in vitro cluster assembly in β2 (3).  The exact structures and
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Brief overview of E. coli iron homeostasis and possible mechanisms of sources of Fe for β2

To look for iron delivery pathways for β2, an understanding of the iron homeostasis in E.

coli may help us identify possible sources of iron for the diferric-Y• cofactor of β2.  In nature,

most of the iron is in +3 oxidation state.  Due to its extremely low solubility (~10-18 M at pH 7.0),

iron uptake in bacteria is very challenge and creative solution of secretion of high affinity Fe3+

chelating agents, siderophores (Kd~10-30 M) that are then taken up by a number of outer

membrane transporters powered by protein complex TonB-ExbB-ExbD using transmembrane

potential (Figure 1-10) (55).  The ferric-siderophores bind to specific periplasmic binding

proteins that deliver them to specific ATP-binding cassette (ABC) transporter complexes which

allow their transport to cross the plasma membrane.  The iron from the internalized ferric-

siderophores can then dissociate from the complex subsequent to reduction to lower affinity Fe2+

or in the case of very tight binders such as enterobactin, degradation occurs with esterases.

Bacteria also use other strategies to uptake iron, for example, transporting host iron-binding

proteins like transferrin, lactoferrin, or hemoglobin through specific receptors; lowering the pH

of the environment to increase the solubility of ferric iron; reducing ferric irons to ferrous form

by outer membrane reductases and diffusion through outer membrane porins or ferrous and

divalent cation transporters (55, 56).

By examining the iron homeostasis network, two possible direct iron sources for apo-β2:

one is the membrane transporters, the other is iron storage proteins.  In E. coli, there are three

outer membrane ferric-siderophore transport systems and three known permeases in the plasma

membrane that transport ferrous iron (55-58).  The major ferric-siderophore uptake system is

ferric-enterobactin (or enterochelin, a catecholate-type siderophore), which involves 7 transport

genes (fepA-G) and 6 genes involved in its biosynthesis (entA-F).  The second is the ferric-citrate
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transport system, which contains 5 transport genes (fecA-E).  The source of citrate is the TCA

cycle.  The third is the ferric-hydroxamate (ferrichrome) transport system, which also has 5

transport genes (fhuA-E).  In contrast with the enterobactin and citrate transport systems, the

ferrichrome system contain two outer membrane transporters, FhuA and FhuE, and no

biosynthetic machinery.  The source of hydroxamate may be fungi or other bacteria.  The

transports of these three ferric-siderophores through the outer membrane are all TonB dependent

(Figure 1-10).

Figure 1-10.  Iron homeostasis in E. coli: a working model for how apo-β2 obtains iron.
Path 1: from membrane transporters, path 2: from iron storage proteins or labile iron pools,
path 3: iron chaperone mediated delivery using Fe2+ from membrane transporters, path 4:
iron chaperone mediated delivery using Fe2+ from iron storage proteins.
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Transport of ferrous iron are through porins in the outer membrane and then by at least

three different permeases in the plasma membrane.  The major ferrous iron uptake mechanism

involves the Feo system, which is composed of 3 genes (feoABC).  FeoB encodes a ~85 kDa

cytoplasmic membrane permease with a Km for Fe2+ ~0.5 µM (59).  Ferrous iron from the

periplasm can also be transported into the cytosol by two non-specific divalent cation permeases:

the manganese transporter (MntH) and the zinc transporter (ZupT) (60, 61).

The other possible iron source is iron storage proteins.  There are three common iron

storage proteins in E. coli: ferritin, bacterioferritin (Bfr), and iron detoxification protein (Dps)

(62).  The larger (~500 kDa) ferritin and bacterioferritin can accommodate at least 2000 Fe3+

atoms as ferrihydrate per 24-mer, while the smaller (~250 kDa) Dps can store about 500 iron

atoms per 12-mer.  The in vivo release of stored iron from ferritins or Dps remains elusive but

must occur by a reductive mechanism.  For bacterioferritin, it is proposed that a ferredoxin, Bfd

(Bfr-associated ferredoxin) interacts with Bfr to mediate the release of stored iron by reducing

ferric irons to soluble ferrous form.  The E. coli Bfd is induced under iron limiting condition.

Recently a newly discovered protein CyaY, a human frataxin homologue, has been proposed to

function as an iron storage protein (63).  Details of CyaY will be discussed in the upcoming

secsion.

Regulations of expression of iron transporters and iron storage proteins are mainly

through the bacteria global iron regulator, Fur (ferric uptake regulator).  Fur is a homodimer,

composed of 15-17 kDa subunits.  It binds ferrous iron via its C-terminal, histidine-rich domain

and represses the transcription of target genes by DNA binding via its N-terminal domain (55,

64).  The DNA binding affinity of Fur increases ~1000 fold when loaded with ferrous iron.

Interestingly, the affinity of Fur for ferrous iron is about 10 µM, which is similar to the estimated
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concentration of the labile iron pool inside the cells (64, 65).  Therefore, Fur may be designed to

respond to physiological fluctuations of the labile iron pool inside the cells.  Under iron-replete

conditions, Fe2+-Fur represses the expression of proteins related to Fe uptake such as iron

membrane transporters or iron-chelating siderophore biosynthesis.

Fe2+-Fur also represses the transcription of a small non-coding RNA, RyhB.  RyhB is

proposed to act as an antisense RNA, which binds to and facilitates the degradation of target

mRNAs that encode Fe-containing proteins such as ferritins or bacterioferritins (66-68).

Therefore, Fe2+-Fur enhances the expression of Fe-storage proteins indirectly by repressing

RyhB.  Interestingly, when Fur is deleted in E. coli, they are iron deficient (~70% decrease) due

to low expression of iron storage proteins and other Fe-binding proteins (69).

The source of iron will be dependent on growth conditions and ultimately the iron

delivered to apo-β2 needs to be in the ferrous form.  However, the reactivity of Fe2+ with O2 and

H2O2 require that Fe2+ is sequestered inside the cell to prevent the formation of hydroxyl radicals

(HO•) via the Fenton reaction (70).  Based on the iron homeostasis network, several pathways by

which apo-β2 can obtain ferrous iron are postulated (Figure 1-10): the first one is directly from a

membrane transporter (path 1); the second pathway is from iron storage proteins or labile iron

pools which supplies loosely bound ferrous ions (path 2) (64, 65); a third pathway is based on

our understanding of copper deliver via “chaperone” proteins.  Interestingly in the systems thus

far characterized, the chaperone proteins are structurally homologous to the proteins to which

they are delivering the metal (71).  Thus a third possibility is from an iron chaperone which

obtains ferrous iron from membrane transporters; and a fourth possibility is from iron storage

proteins but mediated by an iron chaperone (path 4) (Figure 1-10).
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The knowledge of the iron delivery pathways in E. coli have provided the basis for our

experimental design of applying whole cell EPR and Mössbauer spectroscopies to investigate the

role of these pathways in the biosynthesis of the diferric-Y• cofactor of β2 (Chapter 4).  In

addition to studies on Fe homeostasis, studies on the biosynthesis of other Fe-containing proteins

could serve a great paradigm for us to formulate possible mechanisms for the biosynthesis of the

diferric-Y• cluster.
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Biosynthesis of FeS clusters

FeS centers are the “oldest” type of cluster and likely play an essential role in iron

homeostasis in all organisms.  The biosynthesis of a diverse range of clusters, which also can

self-assemble, have been most extensively studied.  Thus lessons learned from these studies may

provide insights into design of experiments with cluster assembly in β2.

FeS proteins play important roles in various cellular functions, including electron transfer

(ferredoxin), coupling proton and electron transfer (Rieske protein, nitrogenase), substrate

binding and activation (dehydratases, acetyl-CoA synthase, radical SAM enzymes, sulfite

reductase), regulation of enzyme activity (glutamine PRPP amidotransferase, ferrochelatase),

regulation of gene expression (IscR, SoxR, FNR, IRP), Fe storage (ferredoxins, polyferredoxins),

disulfide reduction (thioredoxin reductase) and sulfur donation (biotin synthase) (72-75).

In prokaryotes, machineries essential for FeS cluster biosynthesis are encoded in operons

such as nif (nitrogen fixation), isc (iron sulfur cluster) and suf (sulfur utilization factors) operons.

These machineries are conserved in eukaryotes and archaea.  Earlier studies on nitrogenase in A.

vinelandii by Dean and coworkers revealed two key proteins, NifS and NifU that are involved in

the cluster maturation of the nitrogenase (76).  The fact that deletions of either nifS or nifU did

not abolish nitrogenase activity led to the identification of isc operon in A. vinelandii (77).  An

example of redundancy, that is observed frequently for important metabolic components.  In E.

coli, two FeS biosynthetic operons, isc (containing iscRSUA-hscBA-fdx genes) and suf

(containing sufABCDSE genes) have been identified.  The isc operon contains the housekeeping

genes in E. coli.  Deletion of genes in this operon is lethal or causes a severe growth defect.  On

the other hand deletion of genes in the suf operon shows a prominent phenotype only when cells
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are grown under oxidative stress or iron starvation conditions (78-80). The house keeping isc

operon in E. coli will be the focus of the following sections.

Proposed biosynthetic pathway for FeS cluster assembly

A biosynthetic pathway for the FeS cluster assembly is shown in Figure 1-11.  Details of

each step will be discussed in the following sections.  The sulfur source is from L-cysteine,

which is converted to L-alanine by cysteine desulfurase (IscS, NifS, SufS/SufE or CsdA/CsdE)

and then transferred directly or through an intermediate protein to scaffold proteins (IscU, NifU,

IscA, SufA, ISU).   The iron, which ultimately comes from iron transporters and/or iron storage

proteins, may be delivered by iron chaperone(s) (CyaY, IscA) to scaffold proteins.  In vitro,

either [2Fe2S] or [4Fe4S] clusters can be assembled on the scaffold proteins which can then be

transferred into the target apo-proteins (81-83).  Accessory proteins such as ferredoxin, protein

folding ATPase chaperones, HscA/HscB or SufBCD complex have been shown to facilitate the

cluster transfer to target apo-proteins at the expense of ATP (82, 84-86).

Cysteine desulfurases

Cysteine desulfurases catalyze the conversion of L-cysteine to L-alanine and persulfide

using pyridoxal-phosphate (PLP) as a cofactor (87, 88).  IscS or NifS form homodimers required

for desulfurase activity (89, 90).  In the Suf system, desulfurase SufS forms a complex with

SufE, which facilitates sulfide transfer to scaffold protein SufA (91).  In the Isc system, it has

been shown that IscS forms a complex with Fdx, but the function of Fdx, reductive liberation of

S2- for delivery to scaffold proteins remains to be established (92).  Recently, studies by

Fontecave and coworkers showed that IscS co-purifies with CyaY and that Fe3+-CyaY can be

reduced to Fe2+-CyaY by cysteines.  Therefore, a model in which FeS cluster is assembled on
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IscS followed by delivery of the cluster into IscU has also been proposed (93).  The Kd between

IscS and IscU determined by ITC is ~2 µM, which is much lower than their estimated cellular

concentrations ([IscS] ~ 45 µM, [IscU] ~ 40 µM), suggesting that in vivo IscS and IscU might be

present in the form of a complex (84, 94).

Cysteine desulfurases
(IscS, SufS/E, NifS, NFS)

L-cysteine L-alanine

Scaffold proteins
(IscU, IscA, NifU, SufA, ISU)

Iron chaperone
(CyaY, IscA?)

Apo-proteins

Iron
transporters

Iron
storage proteins

? ?

S2- Fe2+

[2Fe2S] or [4Fe4S]Accessory proteins
(HscA/B, SufBCD, Fdx)

Figure 1-11.  A working model for FeS cluster assembly.  Cysteine desulfurases convert
cysteine to alanine to provide sulfide for assembling FeS clusters in scaffold proteins.  The iron
could come from iron chaperone frataxin/CyaY or IscA.  The [2Fe2S] or [4Fe4S] clusters
assembled in the scaffold proteins are delivered to recipient apo-proteins with assists from
accessory proteins.



55

Scaffold protein-IscU

In the U-type scaffold protein typified by IscU, one [2Fe2S]2+ per IscU dimer can be

reconstituted in vitro by Fe2+ and S2-.  The [2Fe2S]2+-IscU2 can transfer its cluster in vitro to

[2Fe2S]-requiring apo-proteins such as apo-Fdx at a turnover rate of 0.21 min-1 (95, 96).  The

rate of [2Fe2S] transfer can be facilitated by molecular chaperones HscA and HscB (Figure 1-

12).  It has been shown by ITC that apo-IscU binds to HscA and HscB with Kd of 1.6 and ~13

µM, respectively (84, 97).  The cellular concentrations of IscU, HscA, and HscB are ~40, ~20,

and ~10 µM, respectively, determined by Western blots (84, 98).  Therefore, fair amounts of the

IscU-HscA or IscU-HscB complex can be formed in vivo and play a significant role in the FeS

cluster assembly.

HscB interacts with both HscA and IscU, increases the ATPase activity of HscA (~4

fold) and enhances the Km between HscA and IscU by ~17-fold.  In the presence of both HscB

and IscU, the ATPase activity of HscA was enhanced by ~400-fold (84, 85, 99).  Furthermore,

recent studies have shown that the rate of cluster transfer from [2Fe2S]2+-IscU2 to apo-Fdx

increases ~20 fold in the presence of DTT, excess ATP, and stoichiometric amounts of HscA and

HscB, indicating a physiological role of HscA/HscB molecular chaperones in facilitating

efficient FeS cluster transfer from scaffold proteins to apo-proteins (85, 96).

Besides [2Fe2S]2+-IscU2, other forms of FeS cluster can be assembled on IscU.  In vitro,

it has been demonstrated that after prolonged incubation (~6.5-14 h) with Fe3+, IscS, L-cysteine

and β-mercaptoethanol, two [2Fe2S]2+ per IscU dimer can be reconstituted (Figure 1-12) (82).

Furthermore, a slow reductive coupling (~7.5-12.5 h) between the two [2Fe2S]2+ clusters to form

one [4Fe4S]2+ triggered by dithionite or reduced IscFdx has been shown by UV-vis and

Mössbauer spectroscopies (82).  This conversion can be reversed in the presence of O2 (Figure

1-12).  Also, it has been shown by Mössbauer spectroscopy that only the [4Fe4S]2+, but not the
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[2Fe2S]2+ cluster in IscU can be transferred in vitro to [4Fe4S]-requiring apo-aconitase at a

turnover number of 0.074 min-1 (83).  The presence of HscA/HscB has no effect on the rate of

[4Fe4S] cluster transfer.  In vivo, the two cluster forms of IscU could be an equilibrium

maintained by IscFdx and oxygen (or reactive oxygen species formed under oxidative stress).

IscS + 2 L-Cys, 2 Fe2+, 2 e-

[2Fe2S]2+

IscU dimer

apo-proteins
[2Fe2S]2+

HscA/B

ATP (DTT)

[2Fe2S]2+ [2Fe2S]2+

2e- (Fdx)

[4Fe4S]2+

IscS + 2 L-Cys, 2 Fe2+, 2 e-

apo-proteins
[4Fe4S]2+

O2

(DTT)

Figure 1-12.  Formation of FeS clusters in scaffold protein IscU.  Apo-IscU can be loaded with
one [2Fe2S] cluster at the interface between its two monomers. A second [2Fe2S] cluster can be
assembled on [2Fe2S]-IscU and through reductive coupling by ferredoxin (Fdx) or dithionite can
form a [4Fe4S]-IscU.  This two [2Fe2S] cluster to one [4Fe4S] cluster conversion is reversible by
O2 oxidation.  The [2Fe2S]- and [4Fe4S]-IscU can deliver its cluster to [2Fe2S]- and [4Fe4S]-
type apo-proteins, respectively.
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Recent studies by Dean and coworkers have shown that endogenous IscU with an affinity

tag purified from A. vinelandii contains one [2Fe2S]2+ cluster per dimer (100).  This [2Fe2S]

cluster is oxygen sensitive, similar to the [2Fe2S]2+-IscU2 assembled in vitro (81).  No [4Fe4S]

cluster was observed from endogenously purified IscU, probably because the cluster is too labile

for purification or the in vivo concentration is too low to detect.

One major problem with the in vitro studies described above is that the rate of FeS cluster

transfer  (<1 min-1) and the rate of the interconversion between [4Fe4S] and [2Fe2S] (several

hours) are very slow, too slow to be physiologically relevant.  Inside the cell the rate of reaction

must be enhanced to be of physiological relevant.  The mechanism of this enhancement remains

to be established.

Scaffold protein-IscA

In vivo, the exact function of the scaffold protein IscA is still under debate.  Because of

the high affinity for ferric iron (Kd = 3 x 1019 M-1) observed in E. coli IscA in the presence of

DTT or NADPH and catalytic amounts of thioredoxin (TrxA) and thioredoxin reductase (TrxB)

(101, 102), it has been proposed that IscA acts as an iron chaperone for IscU (103, 104).  It is

worth noting that despite the high affinity for Fe3+ measured in vitro, only ~10% of IscA as

isolated is iron-loaded.

Both [2Fe2S] and [4Fe4S] clusters can form on IscA by in vitro reconstitution in the

presence of Fe2+ and S2- or Fe2+ and L-cysteine with IscS (105-107).  Heterologous expression of

A. ferrooxidans IscA in E. coli contains one intact [4Fe4S] cluster per monomer subsequent to its

purification (108).  The reconstituted [2Fe2S]2+-IscA2 in vitro (one cluster per dimer) from a

cyanobacterium is capable of transferring its FeS cluster to a [2Fe2S]-requiring apo-Fdx or a

[4Fe4S]-requiring apo-adenosine 5’-phosphosulfate reductase (APR).  In the former case, after
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[2Fe2S]2+-IscA2 was mixed with apo-Fdx (1:1 ratio) under anaerobic condition in the presence of

DTT, ~50% of the cluster was transferred into apo-Fdx in 10 min and the reaction reached ~80%

completion after ~1 h.  In the latter case, [4Fe4S]-APR, the rate of cluster transfer was not

determined and it is unclear whether the formation of the [4Fe4S] cluster occurs in IscA (similar

to IscU) or in the target proteins (109).

Despite similar functions proposed for IscU and IscA, kinetic analyses in E. coli IscU and

IscA showed a tighter apparent Km between [2Fe2S]2+-IscU2 and apo-Fdx (~27 µM) than

between [2Fe2S]2+-IscA2 and apo-Fdx (~210 µM).  In addition, the turnover number of delivery

of [2Fe2S] clusters into apo-Fdx is ~7 fold higher from [2Fe2S]2+-IscU2 (0.21 min-1) compared to

that from [2Fe2S]2+-IscA2 (0.029 min-1) (95).  Even though so far only the in vivo [IscU] has

been determined (~40 µM), given the low concentration of Fdx in vivo (~5 µM), [2Fe2S]2+-IscA2

is unlikely to be the physiological FeS cluster donor for apo-Fdx (84, 110).  This suggests that

IscU and IscA likely have distinct substrates in vivo.  The observation that IscA can accept an

FeS cluster from IscU but not the other way around implies that IscA might be an intermediate

FeS scaffold protein between IscU and apo-proteins (107).

Iron chaperone: frataxin?

The source of sulfide for the FeS cluster assembly on scaffold proteins is provided by

Cys and cysteine desulfurases, whereas the source of iron has been postulated to come from

frataxin.  Frataxin, a ~13 kDa protein, was first recognized in an inherited autosomal recessive

syndrome, Friedreich ataxia, characterized by ataxia, cardiomyopathy and high incidence of

diabetes (111).  Disruption of the frataxin gene in yeast (yfh1) causes iron accumulation in

mitochondria, loss of respiratory function, mitochondrial DNA depletion and increased

sensitivity to oxidative stress (112).  Although in eukaryotes, the mature form of frataxin is



59

targeted to and functions in mitochondria, an artificially generated cytosolic frataxin can rescue

the survival of mitochondrial frataxin-deficient cells, suggesting the extramitochondrial frataxin

is able to replace the mitochondrial frataxin (113).

An  eukaryotic frataxin homologue in E. coli, CyaY, which shares ~25% sequence

identity with frataxin has been characterized (114).  Anaerobic isothermal calorimetry (ITC)

studies demonstrated that at least two ferrous iron can bind to one CyaY monomer with a Kd ~ 4

µM and up to 26 ferric iron can bind to one CyaY monomer (63).  Analytical ultracentrifugation

experiments showed that CyaY tetramers are formed in the presence of ferrous iron under

anaerobic conditions but upon exposure to O2, higher molecular weight aggregates of CyaY are

formed (63).  Whether there is any physiological role for the oligomerization of CyaY is

unknown.

For yeast frataxin (Yfh1), studies using size-exclusion chromatography (SEC) and

inductively coupled plasma mass spectroscopy (ICP-MS) suggest that Yfh1 is in a monomeric

state and anaerobic ITC experiments demonstrated that Yfh1 binds two ferrous iron per

monomer with an affinity of 2~3 µM (115).  Physical analysis using dynamic light scattering, gel

filtration, and analytical ultracentrifugation indicate that upon addition of ferrous iron

aerobically, Yfh1 forms a stable multimer of 840 kDa, corresponding to 48 protein monomers

which contain ~50 Fe per monomer (116, 117).  The conserved acidic residues on the surface of

frataxin have been shown to be the iron binding ligands.  Mutations on the conserved acidic

residues seem to have no effect on the formation of aggregation (118).  Because of the

ferroxidase activity of frataxin and its ability to bind a large amount of iron, it has been proposed

that frataxin can serve as an iron storage protein and prevent oxidative stress caused by redox-

active iron (119, 120).  However, in human cells, deletion of frataxin does not appear to affect
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the iron pools in mitochondria (121).  In addition, it has been demonstrated by using a mutant of

Yfh1 which is unable to form multimer forms, that the iron-induced oligomerization does not

play a critical role for Yfh1’s function in vivo, suggesting that the major role of frataxin in vivo

may not be as an iron storage protein (122).

The exact physiological function of frataxin is still controversial.  It has been proposed

that frataxin can function as an iron chaperone for the FeS biosynthesis.  For yeast frataxin,

mutagenesis and solution NMR structural studies suggest the conserved acidic residues in Yfh1

are responsible for iron binding and are essential for interaction with Isu1 (IscU-like scaffold

protein in yeast) or ferrochelatase (The protein that delivers iron to heme dependent proteins)

(115, 123, 124).  Studies on human enzymes also showed that frataxin can provide iron for

ferrochelatase (125).  Surface plasma resonance reveals that the binding affinity between human

frataxin and human ferrochelatase is about 40 nM (126).  In yeast, frataxin (Yfh1) and

mitochondrial iron tranport proteins (Mrs3p and Mrs4p) can cooperate to provide iron for heme

biosynthesis in mitochondria (127).  Frataxin can also interact with aconitase and in the presence

of DTT and citrate, convert inactive [3Fe4S]1+-aconitase into active [4Fe4S]2+ enzyme (128).

These studies suggest that frataxin may be a general iron donor for different Fe-containing

proteins.

Even though deleterious effects in the frataxin-deficient strains have been demonstrated

in yeast and human cells, a deletion of cyaY does not show obvious difference in bacterial

growth, iron content, and survival rate upon exposed to H2O2 compared to wild type, suggesting

CyaY may have different functions from its eukaryotic homologues (129).

Because of the central role of FeS biosynthesis in iron homeostasis, studies on how

frataxin and CyaY deliver iron into scaffold proteins could serve a great paradigm in thinking
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about the possible mechanism of iron delivery into apo-β2 and experimental designs to examine

proposed mechanisms.

The first example demonstrates the involvement of frataxin in the FeS cluster assembly in

vitro was carried out using human proteins (130).  Holo-frataxin was reconstituted by aerobic

incubation with excess FeCl3 at room temperature for 5 h, followed by passage through a

Sephadex G-25 column to remove unbound Fe3+.  The reconstituted holo-frataxin contained 6

Fe3+ per monomer.  The transfer of Fe3+ from holo-frataxin to apo-ISU (IscU equivalent) was

monitored at A456nm, indicative of the formation of [2Fe2S]2+ clusters in ISU.  The reaction was

carried out under anaerobic conditions in the presence of 4.3 mM DTT and 2.4 mM Na2S, in

addition to 100 µM apo-ISU and 40 µM holo-frataxin.  The observed rate constant for the

formation of [2Fe2S]2+-ISU was ~0.075 min-1.  Furthermore, in the absence of apo-ISU, ferric

iron was not released from holo-frataxin.   When the holo-frataxin was replaced by “free iron” (It

is unclear whether Fe2+ or Fe3+ was used), the rate of cluster formation was negligible.  These

results support that iron is directly transferred from holo-frataxin into apo-ISU.

The second example involves E. coli CyaY (93).  Fe3+-loaded CyaY was reconstituted by

incubation aerobically with 15-fold molar excess FeCl3 for 2 h at 4 ºC, followed by passage

through a NAP10 desalting column.  The Fe3+-loaded CyaY was further purified by a Superdex

200 gel filtration column and the soluble oligomers (dimers to pentamers), which contained ~20

Fe3+/CyaY, were isolated.  To examine whether the Fe3+-CyaY could deliver Fe3+ to apo-IscU

under anaerobic conditions, 50 µM apo-IscU was incubated with 5 mM DTT for 30 min

followed by passage through a spin column to remove DTT.  Fe3+-CyaY (containing 150 µM

Fe3+), 1 µM IscS and 2 mM L-cysteine were then added into the DTT-treated apo-IscU and the

formation of [2Fe2S]2+-IscU was monitored at A456nm.  An kobs of 0.127 min-1 was obtained and



62

~90% of IscU dimer contained a [2Fe2S]2+ cluster 2 h after addition of Fe3+-CyaY.  Because no

DTT was present, the authors further demonstrated that L-cysteine is likely the reductant for the

reduction of the Fe3+ in CyaY and proposed a model in which FeS clusters were pre-assembled in

IscS and then transferred into IscU.

The third example is from studies on Drosophila frataxin (Dfh) (131).  ITC studies

established that Dfh binds one Fe2+ per monomer with a Kd of ~6 µM and the Fe2+ loaded holo-

Dfh monomer binds to one ISU monomer with an affinity of ~0.2 µM.  The holo-Dfh was

prepared by incubation of apo-Dfh with 1:1 ratio of Fe2+ for 20 min at 30 ºC under anaerobic

conditions and used without further purification.  The holo-Dfh mediated FeS assembly in apo-

ISU was demonstrated by addition with 100 µM holo-Dfh into 100 µM ISU under anaerobic

condition in the presence of 4.3 mM DTT and 2.4 mM Na2S and the formation of [2Fe2S]2+-ISU

was monitored at A426nm.  The observed rate constant for the [2Fe2S]2+ formation is 0.096 min-1.

A control experiment in which holo-Dfh was replaced by Fe2+ showed negligible [2Fe2S]2+-ISU

formation, supporting the FeS cluster assembly in apo-ISU is frataxin mediated.

Even though these experiments strongly suggest iron-loaded frataxin/CyaY can deliver its

iron for FeS cluster assembly in ISU/IscU, the rate of the cluster formation in ISU/IscU is very

slow (0.075-0.127 min-1), too slow to be of physiologically relevant.  In the case of CyaY, the

rate of CyaY mediated cluster formation is even slower than the rate of cluster transfer from

[2Fe2S]2+-IscU2 to apo-Fdx (0.21 min-1) (95).  These results suggest that certain components

inside the cell that can facilitate the iron delivery are required to make the role of frataxin as an

iron chaperone physiologically important.  Because in vivo the Fe3+-frataxin rather than the Fe2+-

frataxin is likely to be more physiologically relevant, the DTT and L-cysteine used in the in vitro

studies as reductants for reduction of the Fe3+-frataxin maybe a reason for the slow turnovers.
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Whether the more physiologically relevant reductants such as ferredoxins could enhance the

reduction and transfer of the Fe3+ in frataxin remains to be established.
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Studies on class Ia RNR cofactor maintenance in vivo

In addition to biosynthetic pathways for metallo-cofactors, there exist maintenance

pathways that can repair the cofactors that are damaged during catalysis or oxidative stress (132,

133).  The evolutionary advantage for a maintenance pathway is that the active metallo-proteins
can be regenerated without biosynthesis of the protein which might be more time- and resource-

consuming.
Hydroxyurea (HU) is known to reduce the Y• of β2, generating inactive met-β2 (a form of

β2 in which the diferric center is intact but the Y• is reduced), resulting inactivation of RNR,

which can lead to cell death (27, 134).  In early 1980s Reichard and coworkers discovered that

Y• can be regenerated in vivo from HU-treated cells after removal of the HU (135).  To look for

components in crude cell lysate of E. coli that are responsible for the reintroduction of the Y• of

β2, a superoxide dismutase (SOD), an NAD(P)H:flavin oxidoreductsse (Fre), and an ill-defined

“Fraction B”, were isolated.  The function of Fre was initially proposed to generate reduced

flavins, which reduce the iron center of met-β2 to diferrous-β2, from which the active cofactor is

regenerated in the presence of O2.  The reduction requires NAD(P)H, a flavin, DTT and Fraction

B.  It was found that Fraction B can be substituted with ferrous iron (136, 137).  The postulated

role of SOD is to detoxify reactive O2 species generated from reactions between reduced flavins

and O2.

The use of flavins as a substrate rather than a cofactor in Fre is rather unusual.  The Km

for the flavins are between 0.6 to 2.2 µM (136, 138) and for NADH and NADPH is about 8-25

and 32-50 µM, respectively (136, 139).  A combination of riboflavin and NADPH shows the

highest rate of oxidation of NAD(P)H (kcat = 52 s-1 , kcat/Km = 21 µM-1s-1) (138).  Reasons for the

requirement of Fraction B for reduction of met-β2 by reduced flavins generated by Fre are not

well understood.  Despite heroic efforts, purification of a specific component from Fraction B
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that is responsible for its activity was not successful.  From subsequent studies it was proposed

that the role of Fraction B is to provide soluble aqueous ferrous iron for reduction of met-β2 in

the presence of the Fre system (137).

In addition to in vitro studies, the role of Fre in vivo was investigated by comparing the

growth rate in the presence of HU between wt E. coli K-12 and its isogenic fre deletion strain,

LS1312.  When cells were grown in M9 minimal medium, 14 and 38 mM HU were required to

cause 50% growth inhibition in LS1312 and K-12 wt, respectively, supporting the role of Fre in

the regeneration of the Y• in vivo (140).

Despite these studies, the role of Fre in the maintenance of the Y• was called into

question because of the slow turnover number (< 0.001 s-1) in reduction of met-β2.  Furthermore,

even though Fre is homologous to the C-terminal domain of MMOR, the fully functional

MMOR contains two domains: an FAD and NADH binding C-terminal domain and a [2Fe2S]

binding N-terminal domain that is homologous to ferredoxin.  The ferredoxin-like domain of

MMOR is the direct electron donor for MMO instead of the FAD-domain (141), which implies

that Reichard’s pathway utilizing Fre, while promising, was incomplete.  Therefore, while early

workers realized a maintenance pathway existed, they were unable to shed light on any details.
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Models for cofactor biosynthesis, maintenance, and regulation in vivo

Based on the studies on the cofactor assembly in vitro which requires the controlled

delivery of Fe2+, O2, and a reducing equivalent, and the cofactor maintenance which requires

reduction of met-β2 followed by delivery of O2 and a reducing equivalent, a working model for in

vivo biosynthesis (Pathway A), maintenance (Pathway B) and regulation (Pathway C) of the

diferric-Y• cofactor has been proposed (Figure 1-13) (142, 143).  In the biosynthetic pathway,

apo-β2 is first loaded with Fe2+ to generate diferrous-β2.  The source of iron and the control of

delivery of the two ferrous irons per active site of β2 monomer without the generation of

destructive metabolites of O2 are currently unknown.  Once the diferrous-β2 is formed, the active

cofactor can be assembled by addition of O2 and a reducing equivalent.

The Y• in the active cofactor is inherently unstable (half-life of the E. coli β2 Y• is several

days (44) while that of mouse β2 is 10 min (144)) and is also susceptible to one electron

reduction by small molecules such as hydroxyurea (HU) (44) or proteins inside the cell, resulting

an inactive met-β2 (135, 145).  Once this met-β2 is formed, there exists a maintenance pathway

(135) (Figure 1-13) in which the activity of β2 can be regenerated by reduction of the diferric

cluster to a diferrous cluster and this cluster is assembled to the active diferric-Y• cluster by the

biosynthetic pathway.

Finally a regulatory pathway (Figure 1-13) could have evolved to control the level of the

Y• as a mechanism for modulating RNR activity.  In this pathway the reduction of the Y• and its

regeneration might be carefully coordinated.  For example outside the S phase of the cell cycle

when DNA is not being replicated, RNR activity might be turned off by Y• reduction, and during

the S phase the Y• could instead be regenerated.  The regulatory mechanism may or may not

overlap with the maintenance pathway.
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In this model, there are three key elements that power these pathways in vivo.  The first is

the source of iron, which is the major unsolved problem in metallo-protein biosynthesis.  The

iron could come from membrane iron transporters, iron storage proteins, iron chaperones or iron-

chelating small molecules.  The second is the electron source required for the biosynthetic and

maintenance pathways.  The reducing equivalents may or may not be the same in these two

pathways.  The third element is the small molecules or proteins that reduce the Y• in vivo in the

regulatory pathway (Figure 1-13).  Looking for the first two elements will be the focus of this

thesis.

Our approach is heavily based on our knowledge on the in vitro cluster assembly, the iron

homeostasis pathways in E. coli, and the biosynthesis of FeS proteins.  Studies on the diferric-Y•

cofactor assembly in vitro provide the basis for us to formulate the mechanism of iron delivery

(Chapter 4 and 5) and source of reducing equivalents (Chapter 2 and 3).  Current understanding

of the iron homeostasis in E. coli provides the basis for us to design experiments to investigate

iron delivery pathways for β2 (Chapter 4).  Studies on the biosynthesis of FeS proteins provide

the basis for our experimental design to look for biosynthetic machineries (Chapter 2) and

investigate potential iron chaperones (Chapter 3 and 5).
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Figure 1-13.  A working model for biosynthesis, maintenance, and regulation of the
diferric-Y• cofactor of β2 in vivo.  In the biosynthetic pathway A (blue), apo-β2 forms active
β2 in the presence of ferrous iron, a reducing equivalent and O2.  The Y• of the active
diferric-Y• cofactor can be reduced and forms inactive met-β2.  Met-β2 can be reactivated by
reduction of the ferric iron in the cluster to diferrous-β2 (maintenance pathway B, green)
which can then form active-β2 through biosynthetic pathway.  The activity of RNR may be
modulated in vivo via a regulatory pathway (red) where proteins or small molecules mediate
Y• reduction. The met-β2 can be converted to the active diferric-Y• cofactor via the
maintenance and biosynthetic pathway (= regulatory pathway).  The reducing equivalent
may or may not be the same as the ones in the maintenance pathway.
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Chapter preview

At the beginning of this work, nothing was known about the biosynthesis of the diferric-

Y• cofactor of RNR.  Previous studies on the maintenance of the diferric-Y• cofactor left several

unanswered questions.  Multiple approaches have been applied to reveal machineries for

biosynthesis and maintenance of the diferric-Y• cluster in β2.   In Chapter 2, we report the

discovery of an open reading frame annotated [2Fe2S] ferredoxin (YfaE in E. coli) through

genome comparisons.  YfaE has been cloned, expressed, resolubilized, reconstituted

anaerobically with Fe2+, Fe3+, and S2-, and characterized by mass spectrometry, size-exclusion

chromatography as well as by Mössbauer, EPR, and UV-visible spectroscopies.  Characterization

has established that YfaE is a monomer and contains a redox active [2Fe2S]1+/2+ cluster.

We then investigate the role of YfaE in the maintenance of the diferric-Y• cofactor by

titration of met-β2 with [2Fe2S]1+-YfaE anaerobically.  The results indicate formations of an

equilibrium mixture of diferrous-β2 and [2Fe2S]2+-YfaE with one Fe reduced per YfaE oxidized.

At the end point of the titration, O2 was added to the mixture and the diferric-Y• was formed with

a stoichiometry of 2 Fe/Y• and a specific activity correlated with the amount of Y•.  Because no

excess reductant was present, the reducing equivalent required for diferric-Y• formation is

supplied by β2.  Under anaerobic conditions, stopped flow kinetics have been used to monitor the

reduction of the diferric-cluster and formation of [2Fe2S]2+-YfaE.  The titrations and kinetic

studies provide the first evidence for a protein involved in the maintenance pathway and likely

the biosynthetic pathway.

In Chapter 3, we further investigate the binding affinity and the nature of interaction

between YfaE and β2.  Different methodologies have been examined to determine the Kd

between YfaE and β2.  We first attempt to derive the Kd by stopped flow kinetic analyses.
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However, it was found that the interaction between [2Fe2S]1+-YfaE and met-β2 does not follow a

rapid binding equilibrium condition required for deriving the Kd by kinetic analysis.  We also test

applying isothermal titration calorimetry (ITC) and anaerobic ultrafiltration to determine the Kd

between [2Fe2S]1+-YfaE and apo-β2 but these experiment were unsuccessful.

We next investigate the nature of binding between YfaE and β2.  Based on the studies on

the binding interface between Δ9-desaturase (Δ9D) (a structural and functional homologue of β2)

and a plant ferredoxin (146), we hypothesize that electrostatic interaction could play an

important role for binding between YfaE and β2.  Different mutants of YfaE and met-β2 in which

the conserved charged residues on the surface potentially responsible for binding were mutated

into alanine and the rate of redox reaction between the two proteins was determined by stopped

flow (SF) spectroscopy.  The observed rate constants decrease ~250-fold in the reactions

between [2Fe2S]1+-YfaE and met-β2-K38A/K42A/K229A mutant compared to wt met-β2,

implying that these conserved lysines in β2 may play a role for interacting with YfaE.

Our interests then turn to the study of the role of YfaE in vivo.  To gain insight into

whether YfaE acts catalytically or stoichiometrically in reducing met-β2 in vivo, quantitative

Western blots on E. coli whole cells were carried out.  The [YfaE] was found to be at least 10

fold less than [met-β2], therefore YfaE is likely to act catalytically in vivo.  We then examine

potential candidates that can reduce [2Fe2S]2+-YfaE.  We first focus on the flavin reductase, Fre,

due to its association with Y• maintenance.  The results show that Fre is able to reduce YfaE.

Furthermore, we show that met-β2 can be reduced by consumption of NADPH in the presence of

catalytic amounts of YfaE, Fre and riboflavin, suggesting that YfaE and Fre could act together in

regenerating the Y• in vivo.  The role of YfaE in vivo is further supported by the growth of

ΔyfaE in the presence of hydroxyurea.  The results reveal a much slower rate of growth of ΔyfaE
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than the wild type.  Furthermore, Western blots analysis of HU treated cells reveals an up-

regulation of YfaE expression, supporting the role of YfaE in the maintenance of the Y• in vivo.

In Chapter 4, we focus on investigation of how iron is delivered into apo-β2 in vivo.  We

first examine whether CyaY can be an iron chaperone for apo-β2.  CyaY was overexpressed,

purified and reconstituted with Fe2+ under anaerobic conditions.  However, no Fe2+ loaded CyaY

was isolated.  We next developed a sensitive colorimetric assay to determine components in

fractionated crude cell lysate that are responsible for iron incorporation into apo-β2.  We use apo-

β2-W48F/F208Y, which forms Fe-catechol clusters in the presence of Fe2+ and O2 for the

colorimetric assay.  The formation of Fe-catechol complex can be monitored at A660nm, which is

away from background absorption of crude cell lysate.  However, in the presence of crude cell

lyaste and Fe2+, no Fe-catechol formation was observed in apo-β2-W48F/F208Y mutant,

implying that there might be molecules in the cell lysate that chelate the exogenous Fe2+ and the

availability of the ferrous iron pool inside the cells are tightly controlled.

We then searched for the existence of iron chaperones for β2 by protein co-purification.

We inserted a 6xHis or a StrepII affinity tag at different positions in β2 and compared the elution

patterns between wild type β2 and β 2-E115A, a mutant that remains in the apo-form.  No

difference between the elution patterns was observed.  Furthermore, in vivo cross-linking by

formaldehyde generates the same elution patterns between wt and E115A mutant, suggesting that

the nature of the interaction may be too weak or too transient, or the amount of the iron

chaperone, if any, is too low to detect by this method.

  Based on our studies which determined the concentration of Y• and β2 in vivo, we

turned to apply the whole cell EPR to investigate iron delivery pathways for apo-β2.  In this

approach, β2 is overexpressed in knockouts of Fe3+ or Fe2+ membrane transporters and the Y•
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signal in the whole cells is determined by EPR spectroscopy.  If the delivery of iron into apo-β2

relies on one or two major iron trafficking pathways, the deletion of that pathway may result in

less efficient iron delivery and a phenotype of lower Y• signal from the whole cells may be

observed.  The results suggest that a ferrous plasma membrane transporter (FeoB) might play a

major role in supplying the iron required for diferric-Y• cofactor assembly.

Last we apply Mössbauer spectroscopy to monitor the iron migration inside the cells in

the early stage of β2 expression.  By analyzing the iron species in the whole cells at different time

points after induction of β2, we were able to observe a decrease of Fe2+ species concomitantly

with an increase of the diferric cluster of β2, indicating that a Fe2+ pool(s) is the immediate iron

source for β2 biosynthesis.  This is the first direct observation of the source of iron for the

biosynthesis of β2 in vivo.  This result is also consistent with the observation that the Fe2+

transporter, FeoB, plays a major role in the iron delivery to apo-β2.

In Chapter 5, we investigate the possibility of YfaE as an iron chaperone for β2.  A

serendipitous observation was made when [2Fe2S]1+-YfaE was mixed with apo-β2 followed by

exposure to O2, small amounts of the Y• was formed.  Because no other iron source was

available, the iron must be coming from YfaE.  Mössbauer experiments using apo-β2 and

[257Fe2S]1+-YfaE demonstrate that the iron in the diferric cluster comes from YfaE after the

sample was exposed to O2.  The amount of the Y• form reached ~1 Y•/β2 after [2Fe2S]1+-YfaE

was mixed with apo-β2 and incubated aerobically at 37 ºC for ~4 h.  The formation of the Y• can

be facilitated by DTT.  Results from size-exclusion chromatography indicate the formation of

YfaE-dimer in the presence of DTT.  A model of how YfaE could function as an iron chaperone

for apo-β2 was proposed.
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Chapter 2

The Discovery of YfaE and the Characterization of its Role in the

Maintenance of the Diferric-Y• Cofactor

Adapted in part from Wu, C.-H., Jiang, W., Krebs, C., and Stubbe, J. (2007) YfaE, a Ferredoxin
Involved in Diferric-Tyrosyl Radical Maintenance in Escherichia coli Ribonucleotide Reductase,
Biochemistry 46, 11577–11588.
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INTRODUCTION

In bacteria, genes involved in the same biosynthetic pathways are usually organized in

operons.  Examination of the bacterial genomes that contain nrdAB (coding for α2 and β2 for

class Ia RNRs) revealed a conserved neighboring gene encoding a hypothetical 2Fe2S-

ferredoxin, YfaE in E. coli.  Because 2Fe2S-ferredoxins in biology mainly function as electron

carriers, we speculated that YfaE could play a role in providing the reducing equivalents

necessary for diferric-Y• cofactor assembly and maintenance.  These potential roles of YfaE are

further supported by the studies on methane monooxygenase (MMO) and Δ9-desaturase (Δ9D),

two proteins that are structurally and functionally homologous to β2.  Both enzymes use di-iron

cofactors in which the inactive, diferric form of the cofactor needs to be reduced to the active,

diferrous cofactor after each turn over, which is similar to the maintenance pathway for met-β2

(1, 2).  Reduction of the diferric cluster in MMO is carried out by methane monooxygenase

reductase (MMOR), which consists of two domains: a 2Fe2S-ferredoxin (Fdx) domain and

ferredoxin reductase (FdxR) domain that contains FAD and NADH binding sites (3, 4).  The

FdxR domain uses NADH to reduce its tightly bound FAD, and the resulting FADH2 reduces the

[2Fe2S]2+ cluster of the Fdx domain.  The reduced Fdx domain then provides the electrons

required for reducing the diferric cluster of MMO to the active, diferrous form.  The gene that

encodes MMOR resides in the same operon as MMO.

The inactive diferric cluster in Δ9D must also be reduced to the active diferrous cluster

by a plant Fdx (5).  The real physiological partner for recycling Δ9D and the Fdx reductase

partner for Fdx have not yet been established.  The diferrous form of MMO and Δ9D react with

O2 and the cofactor acts catalytically to oxidize substrate (methane or stearoyl-ACP) to product

(methanol or oleoyl-ACP).  Thus the reduction of a diferric cluster to a diferrous cluster followed
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by reaction with O2 resembles the maintenance pathway proposed for β2.  The major difference

between theses systems, however, is that the reduction of the ferric iron of β2 is not required for

each catalytic cycle and β2, a protein, is the substrate, in which tyrosine 122 (E. coli) is oxidized

to a tyrosyl radical (Y•).

If the catalytic cycles for MMO and Δ9D are models for cluster maintenance in β2, a Fdx

might be a likely candidate to deliver the reducing equivalents required to generate diferrous-β2

in the maintenance pathway and to supply the extra reducing equivalent in the biosynthetic

pathway (Figure 1-10, Chapter 1).  The analogy might further suggest that Fre, a flavin-

reducase proposed to be involved in the maintenance pathway could be part of a Fdx reductase

that acts in conjunction with YfaE.  In this chapter we report cloning, expression, refolding, and

purification of YfaE.  YfaE has been characterized by Fe and S quantitation, by UV-vis, EPR

and Mössbauer spectroscopies and shown to be a [2Fe2S]-ferredoxin.  The ability of the reduced

form of YfaE to reduce the diferric cluster of met-β2 has been examined by titration studies and

by stopped flow (SF) spectroscopy under anaerobic conditions.  Reassembly of the diferrous-β2

to the diferric-Y• β2 has also been examined.  The studies together support the importance of

reduced YfaE in the maintenance pathway.  The quantitative analysis demonstrates that only 2

Fe2+ are required per Y• generated, suggesting that β itself supplies the required reducing

equivalent.  A comparison of the specific activities of β2 produced in the absence/presence of

excess YfaE suggests that YfaE can also supply the extra reducing equivalent required in the

biosynthetic pathway.
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MATERIALS AND METHODS

Genomic analysis of genes contiguous to nrdAB

A subsystem of ribonucletide reduction in the genome database SEED

(http://theseed.uchicago.edu) was used to analyze the genes neighboring nrdB.  For genes

encoding unannotated hypothetical proteins neighboring nrdB, the amino acids sequences were

analyzed by BLAST searches to see if the open reading frames contained interesting sequence

motifs that might suggest their involvement in the biosynthesis or maintenance of the diferric-Y•

cofactor of β2.  For genomes that contain nrdB but lack contiguous yfaE, PHI-BLAST analyses

using the conserved Cys motif (CX4,5CX2CX28-35C) for the binding of [2Fe2S] clusters were

performed to identify other possible ferredoxins.

Cloning and expression of yfaE

YfaE was annotated in the E. coli K-12 genome as a putative 2Fe2S-ferredoxin.  Two

pr imer s ,  5′-CCGCAAGAATTC A T A T G G C C C G C G T T A C C C T G C G - 3 ′ and 5′-

ACTACAGGATCCTCACATCTCGATTTCAATATC-3′ containing NdeI (bold) and BamHI

(underlined) restriction enzyme sites were used to obtain yfaE from a single colony of wild type

(wt) E. coli K-12 (Yale E. coli Genetic Stock Center, New Haven, CT) using Taq polymerase

(Promega) and PCR following manufacturer’s protocol.  yfaE was then sub-cloned into pET11a

(Novagen) via the NdeI and BamHI sites (New England Biolab) using T4 DNA ligase (Promega)

with a vector to insert ratio of 1:8.  The sequence of yfaE was confirmed by DNA sequencing at

the MIT Biopolymers Lab.

To express YfaE, a single colony of BL21 Gold (DE3) cells (Stratagene) containing

pET11a-yfaE was inoculated into 5 mL of LB (100 µg/mL ampicillin in all growths) and the
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culture was grown at 37 ºC for 6 h in a roller drum.  The 5 mL culture was then transferred into 2

L LB in 6 L flasks and grown at 37 ºC, 180 rpm overnight (~16 h).  The overnight culture (A600nm

~2) was harvested by centrifugation at 12,000 g for 20 min, 4 ºC.  The cells from 6 L LB growth

were suspended in 100 mL of 100 mM Tris-HCl, 5% glycerol, pH 8.0, rapidly frozen in liquid

nitrogen, and stored at -80 ºC.  A typical yield was ~4 g cell paste/L culture.

Purification of inclusion bodies containing YfaE

The overexpressed YfaE was not soluble and formed insoluble inclusion bodies.

Modified procedures from the literature for the purification of inclusion bodies were followed

(6).  To purify YfaE inclusion bodies, the cell suspension (~20 g in 100 mL of 100 mM Tris-

HCl, 5% glycerol, pH 8.0) was thawed and the cell walls broken by two passages through a

French pressure cell at 16,000 psi followed by centrifugation at 17,000 g at 4 ºC for 20 min.  The

pellets were suspended in 120 mL of 100 mM Tris-HCl, 4% (v/v) Triton-X-100, 2M urea, pH 8.0

by sonication at 5 Watts output for 1 min in an ice-water bath (VirSonic 100, SP Industries

Company, Gardiner, NY).  The suspension was then pelleted by centrifugation at 17,000 g and 4

ºC for 20 min and the supernatant discarded.  This process was repeated an additional two times.

The pellet was then washed three times with 120 mL water. Aliquots of the purified inclusion

bodies were stored at -20 ºC. Typically  ~0.1 g inclusion bodies were obtained per g of cell paste.

Reconstitution and purification of YfaE under strictly anaerobic conditions

The reconstitution of 2Fe2S-YfaE and the following purification steps were carried out in

a custom-designed glove box (M.Braun, Newburyport, MA) in a cold room at 4 ºC.  All buffers

and resins for chromatography were degassed on a Schlenk line (stirring and evacuation for ~1 h
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followed by refilling with Ar for ~15 min, three times) before being brought into the glove box.

Inclusion bodies (~0.4 g for a typical purification) were suspended in 80 mL of 100 mM Tris-

HCl, 8 M urea and 100 mM DTT, at pH 7.8, stirred for 1.5 h for complete solubilization,

followed by addition of 80 µL of FeCl3 (100 mM stock solution in 10 mM HCl), 88 µL

Fe(NH4)2(SO4)2 (90 mM of stock solution in H2O) and 160 µL NaS (100 mM stock solution in 10

mM NaOH) over 10 min to give final concentrations of 100, 100, and 200 µM, respectively.  The

refolding of the protein was initiated by a rapid 4-fold dilution (from 80 mL to 320 mL) with 100

mM Tris-HCl, pH 7.8 and the refolding process was allowed to proceed for 18 h.  The sample

(320 mL) was then loaded onto a Q-Sepharose column (2.5 x 4 cm, High Performance,

Pharmacia Biotech) in the glove box at a flow rate of 3 mL/min, washed with 200 mL 100 mM

Tris-HCl, pH 7.8 and eluted with a 150 mL x 150 mL linear gradient from 0 to 1 M NaCl in 100

mM Tris-HCl, pH 7.8.  Fractions of 5.5 mL were collected and those with an A340/280nm > 0.6 were

pooled and concentrated to ~3 mL by a Millipore Amicon concentrator using a 45 mm PLBC3

membrane that had washed before use with 30 mL of 100 mM sodium dithionite, dd-H2O, and

100 mM Tris-HCl, pH 7.8 before use.  The concentrate (3 mL) was then loaded onto a Sephadex

G-75 column (2.5 x 45 cm, superfine, Sigma) at a flow rate of 25 mL/h and eluted overnight in

100 mM Tris-HCl, pH 7.8.   Fractions of 6.3 mL were collected and those with an A340/280nm > 0.7

were pooled and concentrated as above.  The YfaE concentration was determined using ε420nm =

11 mM-1cm-1 (7).  The yield was typically ~80 mg YfaE/g inclusion bodies.

Preparation of a 1:1 mixture of 57Fe2+ :57Fe3+ for Mössbauer analysis of [57Fe]-YfaE

To prepare the 57Fe3+ stock solution, 57Fe foil (~4 mg) was added to a mixture of 375 µL

12 N HCl and 125 µL 13 N HNO3 in a 10 mL pear shape flask for ~1 h at RT.  The solution was
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then degassed in vacuo for ~1 min with stirring and brought into the glove box.  The solution

was then neutralized by addition of ~0.4 mL 10 N NaOH.  To prepare the 57Fe2+ stock solution,

57Fe foil (~8 mg) was added into 800 µL 12N HCl in a 10 mL pear shaped flask fitted with a

greased glass stopcock.  The solution was degassed immediately for ~1 min on a Schlenk line

and then stirred in a 70 ºC oil bath overnight with the glass stopper closed.  The 57Fe2+ solution

was degassed again for ~1 min, brought into the glove box and neutralized by adding ~0.56 mL

10 N NaOH.  The concentration of each solution was determined by the ferrozine assay (8) in the

presence (Fe2+) or in the presence of ascorbate (Fe3+), respectively.  The reconstitution and

purification of 57Fe YfaE were then carried out as described above.

Characterization of YfaE

UV-visible spectroscopy:  Purified [2Fe2S]1+-YfaE was placed into a 0.7 mL cuvette in the glove

box and fitted with an air tight screw cap (Starna Cells, Atascadero, CA).  The cuvette was

removed from the glove box and the absorption spectrum was recorded using Varian Cary 3

spectrophotometer (Walnut Creek, CA).  The screw cap was then removed and O2 (Airgas,

Radnor, PA) was blown over the surface of the sample for 5 sec and the sample mixed by

inverting the cuvette.  The spectrum was then again recorded.

Iron and sulfide quantitation:  The amount of iron and sulfide per YfaE were determined

following the published procedures (8, 9).  To determine the amount of iron, concentrated

proteins (0.5-1 mM) were diluted in water in 1.5 mL eppendorfs to reach a final volume of 500

µL.  Two hundred and 50 µL of 0.6 N HCl, 2.25% (w/v) KMnO4 (prepared freshly by mixing

equal volume of 1.2 N HCl and 4.5% KMnO4 dissolved in dd-H2O) was then added, and the
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reaction mixture was incubated in a 60 ºC water bath for 2 h.  The samples were then cooled to

RT (~5 min), and 50 µL of a freshly prepared solution containing 6.5 mM ferrozine, 13.1 mM

neoupoine (Sigma), 2M ascorbic acid, 5M ammonium acetate was added followed by incubation

at RT for 30 min.  The iron concentrations were determined by A562nm (ε562nm = 27.9 mM-1cm-1).

To measure the amount of sulfide, protein samples (0.5-1 mM) were diluted in water to

reach a final volume of 300 µL, followed by addition of 1 mL 1% (w/v) zinc acetate and 50 µL

12% (w/v) NaOH.  The samples were mixed by vortexing and incubated for 2 h at RT before

addition of 250 µL of 0.1% (w/v) N, N-dimethyl-p-phenylene-diamine (dissolved in 5 N HCl)

and 50 µL of 23 mM FeCl3 (dissolved in 0.4 N HCl).  The samples were then incubated for 30

min at RT followed by centrifugation at 12,000 rpm for 5 min at RT.  The concentration of

sulfide is determined by A670nm (ε670nm= 28.54 mM-1cm-1).

EPR spectroscopy:  The purified YfaE (1.8 mM) was placed in an EPR tube inside the glove box

and frozen in liquid nitrogen.  EPR spectra were recorded using a Bruker ESP-300 X-band

spectrometer at 77 K.  The spin quantitation was carried out using a CuSO4 standard (10) and

Win-EPR software (Bruker).

Mass spectrometry:  The molecular mass of purified YfaE was determined by LC-MS with a

QSTAR Elite quadrupole-time-of-flight mass spectrometer in the Proteomics Core Facility of the

Koch Institute in MIT.  A protein microtrap (Michrom BioResources) was used to bind the YfaE

sample, which was subsequently desalted with aqueous HPLC buffer and then eluted

isocratically (50% water, 50% acetonitrile, 0.1% formic acid) for MS analysis.  The mass

spectrometer was calibrated with horse myoglobin just prior to sample analysis.
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Size exclusion chromatography (SEC):  [2Fe2S]1+-YfaE (50 µL, 155 µM) was centrifuged at

14000 g for 10 min before being brought out of the glove box and analyzed by SEC using a

Superose 12 column (10/300 GL, 25 mL, 10 x 300 mm, GE Healthcare, Little Chalfont, U.K.)

pre-equilibrated with 120 mL of 50 mM K2PO4, 150 mM NaCl, pH 7, which had been filtered

with a 0.2 µm, 47 mm Nylon membrane, followed by degassing with Ar over 20 min.  The flow

rate was maintained at 0.5 mL/min by Waters 2480 HPLC system (Waters).  Molecular mass

standards (Low molecular weight gel filtration standard, Bio-Rad) were run prior to each

experiment.

Mössbauer Spectroscopy:  Mössbauer spectra were recorded on spectrometers from WEB

Research (Edina, MN) operating in the constant acceleration mode in transmission geometry.

Spectra were recorded with the temperature of the sample at 4.2 K maintained by a liquid helium

cryostat.  For low-field spectra, the sample was kept inside a SVT-400 dewar (Janis,

Wilmington, MA) and a magnetic field of 53 mT was applied either parallel or perpendicular to

the γ-beam.  For high-field spectra, the sample was kept inside a 12SVT dewar (Janis,

Wilmington, MA), which houses a superconducting magnet that allows for application of

variable fields between 0 and 8 T parallel to the γ-beam.  The isomer shifts quoted are relative to

the centroid of the spectrum of a metallic foil of Fe at room temperature.  Data analysis was

performed using the program WMOSS from WEB Research (Edina, MN), using the spin

Hamiltonian given in equation (1), in which all symbols have their usual meaning (11).
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Simulations of the [2Fe2S]1+ cluster were carried out with respect to the total spin of the

ground state, S = 1/2.  The A-tensors in eq 1 are given with respect to the total spin.  They are

related to the intrinsic a-tensors by eq 2, in which +7/3 and -4/3 are the vector coupling

coefficients for the S = 1/2 ground state (12, 13).

           AFe(III) = +7/3 ⋅ aFe(III)    AFe(II) = -4/3 ⋅ aFe(II) (2)

It was assumed that the fluctuation of the electronic states is slow compared to the 57Fe

Larmor frequency.

Preparation of met-β2:  Wt-β2 (1 mL, ~0.4 mM, specific activity of 6500 nmol/min/mg and 1.1

Y• (14)) was incubated with 200-fold excess of hydroxyurea (HU, 80 mM, Sigma) at 4 ºC for 30

min (15).  The HU was removed by loading ~0.5 mL sample onto a Sephadex G-25 column (~7

mL, 1 x 10 cm, Sigma) in 100 mM Tris-HCl, pH 7.8.  Fractions of the eluent were collected

manually in a 96-well plate followed by measurements of A260, A280nm and A340nm in a plate reader

(Bio-Rad).  The protein-containing eluent (~2 mL) was concentrated to ~1 mL by Microcon

YM30 (Millipore), degassed with stirring on a Schlenk line and then brought into the glove box.

The concentration of the met-β2 was determined using ε280nm = 131 mM-1cm-1 (14).  The removal

of Y• was confirmed by A410nm and the iron content was determined by the ferrozine assay (8).

Titration of met-β2 with [2Fe2S]1+-YfaE

Reduction of met-β2 to diferrous-β2:  [2Fe2S]1+-YfaE (100 µM in 100 mM Tris-HCl, pH 7.8) was

placed into a 250 µL gas tight syringe fitted with a repeating dispenser (model PB600-1,

Hamilton) and the needle passed through the septum (12 mm Teflon/Silicon, Pierce) of the 0.7

mL cuvette.  The cuvette contained 360 µL of 10 µM met-β2 in 100 mM Tris-HCl, pH 7.8.  YfaE
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was added in 5 µL aliquots.  The spectra were recorded on Cary 3 spectrophotometer and a

difference spectrum was recorded and examined between each titration step.  The titration end

point was reached when the difference spectrum indicated the presence of reduced YfaE.  This

experiment was repeated 10 times on two separate batches of [2Fe2S]1+-YfaE.

Assembly of diferric-Y• β2  from diferrous-β2:  Once an end point was reached in the reduction of

β2, O2 was blown over the solution surface for ~ 5 sec and the sample was mixed by inversion of

the cuvette.  The spectrum was immediately recorded.  The procedure was repeated and no

further change in the spectrum was observed.  The amount of Y• generated was determined by

EPR spectroscopy and the specific activity of the enzyme was determined by the

spectrophotometric assay (14).

Calculation of Fe reduced and YfaE oxidized at the titration end point:  The amount of Fe

reduced during the titration is calculated by equation 3, assuming diferrous-β2 and met-β2 are the

only forms of β2 in the sample.  There are 3.4 irons/β2.  A320i and A320f are the absorption at 320

nm before and after the titration.  A320YfaE equals [YfaE]f × ε320nm (ε320nm = 13.3 mM-1cm-1, based on

ε420nm = 11 mM-1cm-1 (7); [YfaE]f is the concentration of YfaE at the end point of the titration).  Vi

and Vf are the initial and final volume of the titration (in µL).  ε320differousβ2 and ε320metβ2 are 1.6 and

11 mM-1cm-1, based on ε 280nm of diferrous-β 2 and met-β2 (120 and 131 mM-1cm-1,

respectively)(14, 16).
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Reduction of met-β2 with YfaE and assembly of diferric-Y• cofactor–Analysis of Y• by EPR and

activity:   Met-β2 (10 µM) was titrated with 14–200 µM YfaE in a final volume of 360 µL of 100

mM Tris-HCl, pH 7.8.  The assembly of diferric-Y• cofactor, EPR spectroscopic analysis and

determination of the specific activity of RNR were carried out as described above.

Quantitation of Fe2+ produced during reduction of met-β2 with [2Fe2S]1+-YfaE by the

ferrozine assay

[2Fe2S]1+-YfaE (100 µM in 100 mM Tris-HCl, pH 7.8) was titrated anaerobically into

360 µL containing 10 µM met-β2 and 100 µM ferrozine (100 mM Tris-HCl, pH 7.8).  The

amount of Fe2+-ferrozine complex formed was determined using ε562nm = 27.9 mM-1cm-1 (8).  The

A562nm of Fe2+-ferrozine generated concomitantly with [2Fe2S]1+-YfaE oxidation was obtained by

subtracting the A562nm of a titration in the absence of ferrozine and thus allowed removal of the

absorption features associated with YfaE and β2.

Characterization of met-β2 or wt-β 2 reduction by [2Fe2S]1+-YfaE by UV-visible SF

spectroscopy

The rates of met-β2 reduction and [2Fe2S]1+-YfaE oxidation were recorded on an Applied

Photophysics SX20 SF spectrometer with the cell thermostated at 37ºC.  The stopped flow lines

were washed with 20 mL of a 100 mM dithionite solution, 20 mL of anaerobic water and 20 mL

of anaerobic 100 mM Tris-HCl, pH 7.8.  Degassed met-β2 (10 µM in 100 mM Tris-HCl, pH 7.8)

was loaded into one syringe and reduced YfaE (3 to 90 µM in 100 mM Tris-HCl, pH 7.8) was

loaded into the second syringe in the glove box.  The connections of the syringes to the
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instrument were purged with nitrogen gas during the experiments.  The reaction was carried out

by mixing equal volumes from each syringe.  The reactions were monitored at 320 nm and at 465

nm, the reduction of the diferric cluster of met-β2 and the oxidation of YfaE, respectively, in the

single-wavelength photomultiplier mode.  Data (2000 points) were collected in a logarithmic

time scale (20 sec) and analyzed in KaleidaGraph (v. 3.6, Synergy Software).  Data points were

best fit to two single exponentials: A (t) = ΔA1 × e-k1 × t + ΔA2 × e-k2 × t + c, in which ΔA1 and ΔA2

are the amplitudes for the observed rate constants k1 and k2, respectively, t represents time, and c

is a constant which equals A (t) when t ~ ∞.  Typically 6–10 shots were averaged in each set of

experiments.

The amplitude of the kinetic traces at 320 nm and 465 nm were used to calculate the

stoichiometry between the amount of YfaE oxidized and Fe reduced in met-β2.  The amount of

YfaE oxidized was calculated from ΔA465nm/(ε465oxidizedYfaE - ε 465reducedYfaE).  The A465nm associated

with met-β2 and diferrous-β2 is ~2% of the total change at 465 nm and was excluded from the

calculation.  The amount of met-β2 reduced was calculated from ΔA320nm/(ε320diferrousβ2 - ε320metβ2),

assuming at the end of the reaction, β2 is in form of either met-β2 or diferrous-β2.  The amount of

iron reduced was calculated from the amount of met-β2 reduced times 3.4, the iron content of

met-β2 (3.4 Fe/β2).

The same procedures were carried out to determine rates of reactions between wt-β2 (10

µM in 100 mM Tris-HCl, pH 7.8) and [2Fe2S]1+-YfaE (90 µM in 100 mM Tris-HCl, pH 7.8)

under anaerobic conditions at 37 ºC.  Data (2000 points) were collected in a logarithmic time

scale (1000 sec) and averages of 10-12 shots monitored at 465 or 320 nm were analyzed.
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Reaction of YfaE-reduced met-β2 with O2 monitored by SF spectroscopy

To examine the formation of the transient WH+• after YfaE-reduced met-β2 is exposed to

O2, the SF instrument was made anaerobic as described above.  The O2 saturated buffer was

prepared by purging O2 into ~30 mL of 100 mM Hepes, 5% glycerol, pH 7.6 for ~1 h at 4 ºC,

and then loaded into a Hamilton gastight syringe.  To prepare YfaE-reduced met-β2, 30 µM met-

β2 was incubated with 60 µM [2Fe2S]1+-YfaE in 100 mM Hepes, 5% glycerol, pH 7.6 for ~15

min in the glove box at 4ºC and loaded into a 2 mL gastight syringe before being removed from

the glove box.  The reaction was carried out by mixing equal volumes of O2-saturated buffer and

YfaE-reduced met-β2. The formation of the transient WH+• was monitored at 560 nm (ε560nm =

3000 M-1cm-1) (17) in the single-wavelength photomultiplier mode.  Data (2000 points, average

of 6 shots) were collected in a logarithmic time scale (20 sec) and analyzed in KaleidaGraph (v.

3.6, Synergy Software).  The data analysis followed our published procedures (18, 19) using a

sequential reaction model involving two consecutive, first-order reactions (Scheme 2-1) (R,

reactants; I, intermediate; P, products. k1 and k2 represent the rate constants of the formation and

decay of the intermediate I, respectively).

Scheme 2-1

This sequential reaction model can then be described by Eq 2-1, in which A0, A∞,

represent absorbance at t = 0 and ∞, respectively, and A1 represents the amplitude for the

observed rate constant k1  (18).

Eq 2-1:   At = A∞ + A1 × e-k1 × t + (A0 - A∞ -A1) × e-k2 × t

R I (A560nm) P
k1 k2
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RESULTS

Genomic analysis of genes contiguous to nrdAB

Comparison of 181 bacterial genomes that have a nrdAB operon revealed that in 29%, a

gene encoding a hypothetical 2Fe2S ferredoxin was found 3′ to nrdAB.  For the genomes that do

not have an apparent ferredoxin adjacent to nrdB, a PHI-BLAST search using the YfaE sequence

and the conserved ferredoxin iron binding motif (CX4,5CX2CX28,35C) revealed that 38% contain

ferredoxin-like proteins.  For the remaining 33% of the genomes, alternative reductants such as

[4Fe4S] proteins, glutaredoxins or flavoproteins may be available which could function in a

capacity similar to YfaE.

The hypothetical 2Fe2S-ferredoxin, YfaE in E. coli has 84 amino acids with a molecular

weight of 9.3 kDa.  The size of YfaE is smaller than the Fd domain of MMOR (98 amino acids)

and the plant Fd (99 amino acids) that reacts with Δ9D.  Structural and biochemical information

on the Fd of MMOR or Δ9D suggest that the four cysteines of the 2Fe2S cluster are described by

a CX4CX2CX28-31C motif, which is also found in YfaE (20, 21).  After examining additional

annotated Fds in the E. coli genome, only the Fd in the isc operon, Fdx (111 amino acids),

possesses a similar motif (CX5CX2CX35C) (22).

Expression and purification of YfaE

To investigate the roles of YfaE, yfaE was cloned and the protein was overexpressed in

E. coli.  While over-expression of YfaE was successful, in all cases the protein was found in

inclusion bodies.  Efforts to obtain soluble YfaE by changing the growth temperature, adding

iron to the growth media, making different constructs with different affinity tags at the C or N

terminus (His6, GST, NusA) of the protein and co-expression with isc operon proteins (23) were
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all unsuccessful.  We thus decided to purify YfaE from inclusion bodies and reconstitute soluble

2Fe2S-containing YfaE in vitro using protocols that have been successful with other iron-sulfur

containing proteins (24).  The inclusion bodies were purified by repeated washing and

centrifugation steps and then brought into an anaerobic box and solubilized with 8 M urea.  A

1:1:2 mixture of Fe2+ and Fe3+ and sulfide were added to the denatured YfaE under anaerobic

conditions, rapidly diluted and refolded for ~18 h.  The solution was then applied to a Q-

Sepharose column, washed, and eluted using a salt gradient.  Figure 2-1A shows a typical

elution profile of YfaE.  Two peaks usually appear in the elution profile.  The fractions of the

first peak containing [2Fe2S]1+-YfaE were pooled and concentrated by the Amicon concentrator

with a PLBC3 membrane pre-washed with dithionite solution.  The concentrated sample was

then loaded onto a Sephadex G-75 column and the protein was eluted as a single sharp peak

(Figure 2-1B).  The desired fractions were pooled and concentrated by the PLBC3 membrane.

Washing the membrane with a dithionite solution prior to each concentration step is necessary to

prevent YfaE oxidation.  The yield of protein from each purification step is summarized in Table

2-1.  Typically ~80 mg of [2Fe2S]1+-YfaE can be isolated from 1 g of inclusion bodies. The

success of the purification procedures was judged by SDS-PAGE (Figure 2-2).  The LC-MS of

the purified YfaE shows a major peak at 9161 Da (Figure 2-3), consistent with an apo form of

YfaE with the first methionine having been cleaved off.  The purified protein is stable for about a

month in the glove box at 4 ºC.
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Figure 2-1.  Purification of YfaE by anion-exchange and SEC under anaerobic
conditions.  (A) Elution profile of YfaE from a Q-Sepharose column. Blue: A280nm,
orange: A340nm, green: NaCl gradient.  (B) Elution profile of YfaE from a Sephadex G-75
column.  Blue: A280nm, orange: A340nm.
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Table 2-1.  Summary of YfaE purification profile

Step Yield (mg) % yield A340nm/A280nm
a

Inclusion bodies 196 100 -

After Q-sehaprose 33 17 0.7

After Sephadex G-75 17 9 0.83
a oxidized form

M     1      2      3     4     5

6.0

14.4

21.5

31.0
36.5

kDa

55.4
66.3

Figure 2-2.  Purification of YfaE monitored by 15 % SDS-PAGE. M: molecular weight
markers, lane 1, whole cells; lane 2, cell lysate; lane 3, purified inclusion bodies; lane 4,
pooled protein from Q-Sepharose chromatography; lane 5, pooled protein from Sephadex
G-75 chromatography.
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UV-visible spectra of [2Fe2S]1+/2+-YfaE and sensitivity to O2

YfaE as isolated has the absorption spectrum shown in Figure 2-4 (blue line) which

reveals shoulders at 350, 390, 470, 550 nm, typical of reduced [2Fe2S]1+ clusters (3).  To

characterize the oxidized state of YfaE, O2 was blown over to the surface of the sample followed

with mixing by inverting the cuvette.  The resulting spectrum is shown in Figure 2-4 (red line).

The oxidized form has absorption features at 340, 420, and 460 nm with a broad shoulder at 550

nm and ratios relative to A280nm of 0.83, 0.60 and 0.60, respectively (3, 24).  This spectrum and its

isosbestic point (320 nm) are typical of previously reported 2Fe2S Fds (3).

In contrast with many oxidized Fds, however, [2Fe2S]2+-YfaE is not stable under aerobic

or anaerobic conditions.  At room temperature under aerobic conditions, oxidized features

associated with YfaE start to decrease after one hour and disappear over a 6 h period (Figure 2-

5).  During the oxidation, the oxidized YfaE aggregates.  The aggregate can be separated from

9161.00

91609120908090409000 9200 9240 9280 9320 9360
Mass, Da

5000

4000

3000

2000

1000

0

In
te

ns
ity

, c
ps

Figure 2-3.  Molecular mass of the purified YfaE determined by LS-MS with a quadrupole-
time-of-flight mass spectrometer.  A molecular mass of 9161 Da was obtained for purified
YfaE which is consistent with the mass of the apo form of YfaE with the first methionine at
the N-terminus having been removed.
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reduced YfaE by Sephadex G-75 chromatography.  While sodium dithionite can reduce oxidized

YfaE to its reduced state after initial exposure to O2, it fails to regenerate reduced YfaE from the

aggregate.  These results were the basis for our purification and storage of YfaE in an anaerobic

chamber.

Quantitation of the amount of Fe and S in the reduced YfaE requires a knowledge of the

extinction coefficient for the protein.  Absorbance at 280 nm is not a reliable basis for calculating

the protein concentration because the amounts and oxidation states of the FeS cluster affect the

absorption in this region.  Therefore, our quantitation is based on the reported extinction

coefficients for [2Fe2S]2+-Fds at 420 nm.  The numbers range from 9,500 M-1cm-1 to 11,000 M-

1cm-1 (3, 7).  All subsequent quantitation is based on the latter, with numbers based on 9500 M-

1cm-1 given in parenthesis.  Iron quantitation gave 2.2 ± 0.2 (1.9 ± 0.2) Fe/YfaE based on 7

determinations from 3 different batches of purified YfaE.  Sulfide quantitation gave 3.7 ± 0.2

(3.2 ± 0.2) S/YfaE based on 8 determinations from 3 different batches of purified YaE.  The iron

assay suggests the success of the reconstitution of one 2Fe2S cluster per YfaE.  The iron content

is also consistent with the Mössbauer analysis described subsequently.  The cause of the greater

than stoichiometric amount of sulfide observed is not understood, but could be associated with

persulfide formation with cysteines at the C-terminus of YfaE.
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Figure 2-4.  UV-visible spectra of oxidized (red) and reduced (blue) YfaE in units of mM-1
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Figure 2-5.  Lability of the [2Fe2S] cluster of oxidized YfaE.  YfaE (35 µM) purified
anaerobically was oxidized by blowing O2 over the surface of the solution followed by
mixing the solution by inverting the cuvette.  UV-visible spectra of the YfaE after
oxidation (thick blue line) were taken every 30 min (thin colored lines) for 6 h (thick
red line) at 25 ºC.  Inset: A420nm at different time points after exposed to O2.  The
decrease of A420nm with time indicates the decomposition of the [2Fe2S]2+ cluster in
YfaE.
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EPR spectrum of [2Fe2S]1+-YfaE

A further quantitation of the iron cluster has been made by analyzing the EPR spectrum

of [2Fe2S]1+-YfaE.  The result is shown in Figure 2-6.  The spin quantitation using a CuSO4

standard indicates 0.96 ± 0.03 (0.83 ± 0.03) spins per [2Fe2S]1+-YfaE (g values of 2.036, 1.944

and 1.884, which is very similar to previously reported quantitation for the plant 2Fe2S Fd (24)

and the Fd domain of MMOR (3)).

Characterization of the FeS clusters in reduced and oxidized YfaE by Mössbauer

spectroscopy

The types of FeS clusters in the reconstituted YfaE were further analyzed by Mössbauer

spectroscopy.  The Mössbauer spectra reveal that ∼80% of total Fe is in the form of a [2Fe2S]1+

2800 3100 3400 3700 4000

Magnetic Field [Gauss]

Figure 2-6.  X-band EPR spectrum of [2Fe2S]1+-YfaE (1.8 mM).  Recorded at 77 K in a liquid
nitrogen finger dewar, frequency = 9.4 GHz, microwave power = 1.0 mW, receiver gain =
3.17x104, modulation amplitude = 10 G.  The calculated g-values are 2.036, 1.944 and 1.844.
Spin quantitation showed 0.96 [2Fe2S]1+ cluster per YfaE.
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cluster and ∼20% of total Fe is in the form of a [4Fe4S]2+ cluster (figure 2-7). From these

numbers we conclude that 89% of YfaE harbors a [2Fe2S]1+ cluster (80% of total iron), and 11%

a [4Fe4S]2+ cluster (20% of total iron).  The 210-K/zero-field spectrum displays four lines

corresponding to overlapping quadrupole doublets.  The outer and inner lines have parameters

reminiscent of tetrahedrally Cys4-coordinated Fe2+ and Fe3+ sites, consistent with a [2Fe2S]1+

cluster.  The inner lines are broader and more intense, suggesting the presence of a third

quadrupole doublet overlapping with the quadrupole doublet of the Fe3+ site.  The high-energy

line of the additional component can be seen as a distinct shoulder at ∼1 mm/s (arrow in Figure

2-7).  The low-energy lines of the Fe3+ site and the third quadrupole doublet overlap, resulting in

the more intense second line.  The spectrum can be analyzed as a superposition of three

quadrupole doublets with parameters given in Table 2-2.  The red and blue spectra in Figure 2-7

have parameters expected for the Fe2+ and Fe3+ sites of a [2Fe2S]1+ cluster, respectively, and their

relative intensity was constrained to be the same during the fit.  The quadrupole doublet shown

in green has parameters reminiscent of [4Fe4S]2+ clusters.

Spectra recorded at 4.2 K in varying externally applied fields corroborate this assignment.

They can be analyzed as a superposition of 78% [2Fe2S]1+ and of 21% [4Fe4S]2+ subspectra

(Figure 2-8, black lines).  The individual contributions of the [4Fe4S]2+ and of the Fe2+ and Fe3+

sites of the [2Fe2S]+ cluster are shown for the 8-T and 53-mT spectra.  The simulation

parameters (Table 2-2) are similar to those observed for other [4Fe4S]2+ and [2Fe2S]1+ clusters

(25-27).  The isomer shift values decrease with increasing temperature, due to the second order

Doppler effect (11), and the quadrupole splitting of the Fe2+ site of the [2Fe2S]1+ cluster are

slightly temperature-dependent, as was observed for the [2Fe2S]1+ cluster from MMOR (26).
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We note that the large number of variables does not allow all parameters to be determined

unambiguously.

We also considered the possibility that the YfaE sample contained oxidized [2Fe2S]2+

cluster. This cluster form exhibits a diamagnetic ground state and thus gives rise to quadrupole

doublet spectra in zero or low applied fields.  High-field spectra of [2Fe2S]2+ clusters can be

predicted with good accuracy.  From analysis of the spectra, we can set an upper limit of ~7% for

the fraction of [2Fe2S]2+ in the sample.  Including a small amount of this cluster type does not

result in parameters significantly different from those in Table 2-2 and does not improve the

quality of the spectral simulations.  The spectrum of reconstituted YfaE that was exposed to

oxygen (Figure 2-9) exhibits a quadrupole doublet with parameters typical of a [2Fe2S]2+ cluster

(Table 2-2).  The upper limit of the fraction of Fe in form of [4Fe4S]2+ cluster in this sample is

∼10%, suggesting that the amount of this cluster type is variable, but small.  Thus the visible

spectrum, EPR spectrum and Mössbauer analysis suggest that the reconstitution of a folded

active YfaE has been successful.



111

Figure 2-7.  210-K/zero-field Mössbauer spectrum of reconstituted [2Fe2S]1+-YfaE.  The
simulations of the individual contributions of the Fe2+ and Fe3+ sites of the [2Fe2S]1+ cluster
(40% each) are shown in red and blue, respectively.  The contribution of the [4Fe4S]2+ cluster
(20%) is shown in green.  The sum of the simulations is shown in solid, black line overlaid
with the data (see Table 2-2 for parameters).  The arrow indicates a tiny shoulder contributed
by [4Fe4S]2+ cluster.  The vertical bar shows 1% of the magnitude of the γ-radiation source.
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Figure 2-8.  4.2-K Mössbauer spectra of reconstituted YfaE acquired in varying external
magnetic fields.  Simulations of the individual contributions from the Fe2+ and Fe3+ sites of the
[2Fe2S]1+ cluster (39% each) are shown in red and blue, respectively.  The contribution of the
[4Fe4S]2+ cluster (21%) is shown in green.  The solid lines (black) are overlaid with the data
and are the sum of the simulations (see Table 2-2 for parameters). The vertical bar shows 1%
of the magnitude of the γ-radiation source.  The strength (T or mT) and orientation (parallel or
perpendicular) of the magnetic field relative to the propagation direction of the γ-photons is
indicated adjacent to each spectrum.
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Figure 2-9.  4.2-K/53-mT Mössbauer spectrum of a sample of reconstituted
[2Fe2S]1+-YfaE that was exposed to O2.  The solid line is a simulation with parameters
given in Table 2-2.



114

Table 2-2. Mössbauer simulation parameters of the [4Fe4S]2+, [2Fe2S]1+, and [2Fe2S]2+ clusters
of YfaE. The g-values of the S = 1/2 ground state of the [2Fe2S]1+ cluster were taken from the
EPR spectrum. The electric field gradient and hyperfine tensors were assumed to be collinear.

Sample cluster Ground
state

Relative
amount site T

(K)
δ

(mm/s)
ΔEQ

(mm/s)
η A/gNβN (T)

Reconstituted
YfaE [2Fe2S]1+ S = 1/2 80% Fe3+ 4.2 0.33 0.78 -0.6 -38.5, -37.7, -

30.9

210 0.25 0.75 - -

Fe2+ 4.2 0.60 -3.13 -1 10.7, 10.1, 25.0

210 0.57 2.82 - -

[4Fe4S]2+ S = 0 20% Fe2.5 4.2 0.44 1.07 0 -

210 0.41 0.87 - -

Air-oxidized
YfaE [2Fe2S]2+ S = 0 >90% Fe3+ 4.2 0.28 0.58 n.d. -



115

Size-exclusion chromatography of YfaE

In addition to spectroscopic analyses for YfaE, the oligomeric state of YfaE was

examined by SEC to help us understand the reaction stoichiometries in the following

experiments.  Low molecular weight standards (1.35 to 670 kDa) from Bio-Rad were used to

calibrate the Superose-12 column.  There are small variations in the retention times of the same

sample between each run, especially when the experiments were performed on different days.

Thus the molecular weight standards were run each time before analysis of YfaE.  Figure 2-10

shows the elution profile of the gel filtration standards and the calibration curve generated by

plotting the retention time against the logarithm of the molecular mass.  The peaks that might be

associated with aggregation or degradation of the gel filtration standards were excluded.  YfaE

was taken from the glove box and analyzed immediately by SEC analysis to prevent extensive

formation of high molecular mass aggregates of oxidized YfaE.  The elution profile of YfaE

revealed a dominant single peak at 35.8 min, corresponding to a molecular mass of 9506 Da,

which aggrees with the predicted molecular mass of a 2Fe2S containing-YfaE monomer (9337.5

Da) (Figure 2-11).  The A340nm/A280nm of the dominant peak suggests YfaE is in its oxidized state.

The small peak eluted in the void volume of the column (~15.5 min) could be aggregates of

oxidized YfaE.  The results from SEC suggested that YfaE, like most of the ferredoxins, is a

monomer under physiological conditions.
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Figure 2-10.  Standard curves for Superose-12 size-exclusion chromatography.  (A) Elution profile
of the standards.  Blue, A280nm; pink, A340nm.  Peaks of the corresponding standards listed in B are
labeled in red.  (B) List of the molecular weight, retention time and logarithm of molecular weight
of each standard.  (C) Standard curve generated by plotting retention time of each standard against
logarithm of molecular weights.
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Titration of met-β2 with [2Fe2S]1+-YfaE

To determine if YfaE plays a role in the maintenance pathway of the diferric-Y• cofactor

of β2, we examined the ability of its [2Fe2S]1+ to reduce met-β2.  Wt-β2 (1.1 Y•, 3.4 Fe/β2 and

specific activity of 6500 nmol•min-1•mg-1) was reduced with hydroxyurea to produce met-β2 (3.4

Fe/β2).  Met-β 2 in deoxygenated Tris buffer at pH 7.8 was then titrated under anaerobic

conditions with [2Fe2S]1+-YfaE.  The titrations were repeated 17 times with a representative

titration shown in Figure 2-12.  The end point of the titration was assessed by monitoring the

difference spectrum recorded subsequent to each addition of [2Fe2S]1+-YfaE.  When additional

YfaE added remained in the reduced state, the titration was assumed to be complete.  At this end

point, YfaE reduced ~2.5 Fe2+ out of the 3.4 Fe3+ per met-β2, that is, ~75% of the total iron.
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Figure 2-11.  Superose-12 SEC of purified YfaE.  Purified YfaE was taken from an
anaerobic chamber and injected immediately onto a Superose-12 size-exclusion column.
Blue, A280nm; pink, A340nm.  The retention time of the dominant peak is 35.8 min,
corresponds to a molecular weight of 9506 Da, which is consistent with a YfaE
monomer with an intact [2Fe2S] cluster.
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Assuming that YfaE is 90-95% homogeneous based on the Mössbauer, 1 YfaE reduces 1 Fe

(Table 2-3, Titration A, average of 3 representative titrations).

To further examine the stoichiometry of YfaE oxidation and iron reduction of met-β2, a

similar anaerobic titration in the presence of ferrozine was carried out (repeated 3 times) (Figure

2-13, Table 2-3, Titration B).  After subtracting the absorption features associated with oxidized

YfaE and met-β2 at 562 nm, the analysis of the stoichiometry revealed that every YfaE oxidized

resulted in one iron reduced.  Control experiments in which YfaE was titrated into a solution

with ferrozine demonstrated that the ferrous ion in [2Fe2S]1+-YfaE is not chelated.  Results from

titration A and B (Table 2-3) indicate that YfaE is a chemically competent reductant of met-β2.
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Figure 2-12.  Titration of met-β2 with [2Fe2S]1+-YfaE under anaerobic conditions.  Met-
β2 (10 µM, black) was titrated with [2Fe2S]1+-YfaE (10 and 18 µM (final concetration),
orange) to an end point with 22 µM [2Fe2S]1+-YfaE (blue).  Upon completion of the
reduction, O2 was added to monitor cluster assembly (pink).  Insert: difference spectrum
between the end point of the YfaE titration and the O2 addition.
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Table 2-3. Stoichiometry between Fe reduced in met-β2 and the amount of YfaE oxidized.

Experiments
YfaE

oxidized
(nmol)

Fe
reduced
(nmol)

Fe
reduced/YfaE

oxidized

Activity
(nmol•min-1•mg-1) Y•/β2 Fe/Y•

Titration Aa 10.3 ± 0.3 8.9 ± 1.5 0.9 ± 0.2 6200 ± 500 1.24 ± 0.04 2.0 ± 0.3

Titration Ba 9.3 ± 0.3 9.3 ± 0.7b 1.0 ± 0.1 - - -

Stopped
Flow 2.4 ± 0.6 2.4 ± 0.3 1.0 ± 0.2 - - -

a Average of three titrations of met-β2 (3.6 nmol) with [2Fe2S]1+-YfaE in the absence (A) or in
the presence (B) of ferrozine. O2 was added at the end point of the titration (A). Different batches
of met-β2 or YfaE were used in titrations A and B.

b The amount of Fe reduced was calculated from ferrozine-Fe2+ complex formed in the titration,
assuming one Fe reduced per ferrozine-Fe2+ complex formed.
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Figure 2-13.  Ferrozine assay quantitation on the amount of iron reduced in met-β2 during the
titration with [2Fe2S]1+-YfaE.  In the presence of 100 µM ferrozine, met-β2 (10 µM, black) was
titrated with [2Fe2S]1+-YfaE (final concentration, 10, 18 µM, (orange) and 22 µM (purple)
under anaerobic conditions.  The amount of the Fe2+-ferrozine complex was determined by
A562nm (ε = 27.9 mM-1cm-1).
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Reassembly of diferric-Y• cluster from reduced met-β2

Once the end point for reduction of met-β2 to the reduced state was identified, O2 was

added to the cuvette and the visible spectrum recorded (Figure 2-12, blue line).  A difference

spectrum was obtained by subtracting oxidized YfaE (amount added at the end point of the

titration) from the spectrum generated in the presence of O2. Diferric cluster absorption features

at 325 and 365 nm and the Y• features at 390 and 410 nm are readily apparent (Figure 2-12,

insert).  The amount of Y• generated was determined by spin quantitation using EPR

spectroscopy.  From titration A in which 2.5 Fe2+s were generated, 1.2 Y• were produced (Table

2-3).  Thus, 2 Fe2+s are sufficient to generate 1 Y•.  Ten similar experiments were carried out

giving 2.0 ± 0.4 Fe2+/Y•.  Our chosen experimental conditions and a ferrozine assay established

that no excess reductant (such as Fe2+) was present to deliver the reducing equivalent required for

cluster assembly.  Thus the reducing equivalent required for cluster assembly must be derived

from β2 itself with the most likely candidate being the W48 (18, 19).

The observation that only ~75% of the iron of met-β2 had been reduced under these

conditions suggested an equilibrium mixture of species.  One would thus expect that addition of

increased amounts of YfaE would shift the equilibrium to the right, reduce more Fe3+s in met-β2

and lead to additional formation of Y• after addition of O2.  To test this hypothesis, met-β2 was

titrated with increasing amounts of YfaE (Table 2-4).  The amount of Fe2+ could not be

quantified by the spectral subtraction method (eq 3) due to the size of the extinction coefficient

of [2Fe2S]1+/2+-YfaE relative to met and diferrous-β2.  However, spin quantitation of Y•

generated subsequent to O2 addition (Table 2-4) supports this proposal.
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Table 2-4.  Reduction of met-β2 with increasing amounts of YfaE.

met-β2
(nmol)

YfaE
(nmol)

Activity
(nmol•min-1•mg-1) Y•/β2 Activity/(Y•/β2)

3.6 5 2700 ± 400 0.61 ± 0.16 4600 ± 800

3.6 10 5100 ± 200 1.16 ± 0.06 4400 ± 400

3.6 20 8200 ± 400 1.33 ± 0.05 6100 ± 400

3.6 50 9300 ± 600 1.40 ± 0.06 6800 ± 600

3.6 72 10300 ± 400 1.5 ± 0.1 6900 ± 700

Comparisons of experiments with stoichiometric and excess [2Fe2S]1+-YfaE might

provide further insight about the source of the reducing equivalent required for diferric-Y•

assembly.  When no excess [2Fe2S]1+-YfaE or Fe2+ is present, the reducing equivalent must

come from β2.  However, when excess YfaE is present, it could provide the reducing equivalent.

Measurement of the activity of β2 produced in the presence and absence of excess [2Fe2S]1+-

YfaE could test this hypothesis. In the former case, one might expect to observe maximal

enzymatic activity, unlike in the latter case, non-specific reduction of the WH+• might reduce

catalytic activity.  The activity assay is an independent measure of the Y• concentration as

previous studies have shown that the activity is directly correlated with the amount of Y• (28).

The specific activity per Y• regenerated per β2 was around 4000 nmol•min-1•mg-1 per Y•/β2 with

stoichiometric amounts of YfaE and around 6000 nmol•min-1•mg-1 per Y•/β2 in the presence of

excess YfaE (Table 2-4).  Recall that the activity of the starting β2 was 6500 nmol•min-1•mg-1

(1.1 Y•s, ~6000 nmol•min-1•mg-1 per Y•/β2).  Control experiments showed the presence of
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oxidized YfaE causes no significant change in the activity of β2.  Thus the observed activities

(Table 2-4) are in line with YfaE being able to protect β2 from protein radical damage.

The titration studies have a number of mechanistic implications.  First, the reduction of

iron in β2 by YfaE must occur cooperatively in one β.  If iron was statistically reduced, the

amount of Y• recovered, which requires a diferrous-β2, would be lower than 2 Fe/Y• observed.

Second, diferrous-β2 itself, upon exposure to O2, can rapidly deliver the reducing equivalent and

convert all the reduced Fe2+ into differic-Y•, despite the time taken for the titrations that could

potentially allow Fe2+ to dissociate from β.  The YfaE thus may inhibit Fe2+ dissociation and/or

enhance β’s delivery of the reducing equivalent.  Thus the assembly of the diferrous cluster

without excess reductant can now be studied.  Finally, the method of cluster assembly has

resulted in high levels of Y• as well as the highest specific activity to date and suggests that if 4

Fe2+s could be loaded into β2, 2 Y• could be generated.

The difference spectrum (Figure 2-12, insert) from the assembly process requires further

comment.  The spectrum reveals absorption features between 400 and 600 nm in addition to the

diferric Y• cofactor.  We found that these features varied when different batches of YfaE were

used in the titrations.  Thus these features are unlikely to be associated with an oxidized amino

acid residue in β.  They are most reasonably associated with the heterogeneity of the FeS clusters

in YfaE from the in vitro reconstitutions and the multiple spectral subtractions required to access

this spectrum.
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SF kinetics to monitor reactions between met-β2 and [2Fe2S]1+-YfaE

To provide further support for the role of YfaE in vivo, the kinetics of the reduction of

met-β2 by [2Fe2S]1+-YfaE have been examined by SF spectroscopy.  The reactions were carried

out under anaerobic conditions and monitored at 320 and 465 nm.  Changes at 320 nm, the

isosbestic point between oxidized and reduced YfaE, provide the best way to monitor the

reduction of the diferric cluster in β2.  Oxidation of YfaE was monitored at 465 nm as this

wavelength represents the biggest difference in absorption between reduced and oxidized YfaE.

In a typical experiment met-β2 is mixed with variable amounts of [2Fe2S]1+-YfaE under

anaerobic conditions at 37 °C.  To make the SF system anaerobic, extensive incubation of

sodium dithionite solutions followed by anaerobic water and anaerobic buffer washes of the SF

mixing lines are essential.  The results of a typical experiment are shown in Figure 2-14.  The

data from analysis of the first 5 sec at each wavelength were fit to two single exponentials giving

rise to kobs-fast of ~5 s-1 (50% of total amplitude) and kobs-slow ~2 s-1 (50% of total amplitude) at 465

nm and kobs-fast of ~4 s-1 (83% of total amplitude) and kobs-slow ~1 s-1 (17% of total amplitude) at 320

nm.  From the amplitudes of the SF data, the reaction stoichiometry between the amount of YfaE

oxidized and met-β2 reduced can also be calculated.  Consistent with the titration experiments,

the results suggest one Fe reduced per YfaE oxidized (Table 2-3).

To examine whether the observed rate constants are dependent on the concentrations of

[2Fe2S]1+-YfaE and met-β2, the reactions between 1.5, 2.5, 5 and 10 µM [2Fe2S]1+-YfaE and 5

µM met-β2 monitored by the SF at 37 ºC under anaerobic conditions.  Similar to the experiment

in Figure 2-14, the kinetic traces at A465nm can be well fit to two single exponentials (Figure 2-

15).  However, in contrast to the observations at higher [YfaE] in which the two observed rate

constants had similar amplitudes, the absorbance changes were dominated by the slower phase
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(Table 2-5).  Furthermore, the rate constants of the fast phase varied from ~7 s-1 to ~100 s-1,

which contributed to ~3-14% of the total amplitude.  Because of the inconsistency of the fast rate

constants with the concentrations of YfaE, these kobs-fast are likely to be artifacts from the SF

instrument.  We thus focus analysis on kobs-slow.

Figure 2-16 shows the correlations between kobs-slow and the concentration of YfaE.  The

results indicate that the observed rate constant is saturated at YfaE concentrations as low as 1.5

µM.  The same SF experiment was carried out at lower concentrations of YfaE (0.25 µM and 0.5

µM), but the signal was too noisy to analyze.  Therefore, 1.5 µM YfaE was determined to be the

lower limit of detection for the SF experiments.

Even though the reason for distinct kobs-fast and kobs-slow after different [YfaE] is not

understood, the rate constants for reduction of met-β2 are considerably faster than those

previously reported with Fre, Fraction B, DTT and NADPH (29) or with chemical reductants

(30-32), suggesting YfaE may be the  physiologically relevant reducant for met-β2.  Because

inside the cells there are other potential substrates for [2Fe2S]1+-YfaE such as wt-β2 and oxygen

that could potentially compete with met-β2 for the availability of reduced YfaE, the rates of

oxidation of YfaE by wt-β2 and air-saturated buffer were investigated by SF.
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Figure 2-14.  Reduction of met-β2 (5 µM) with 37.5 µM [2Fe2S]1+-YfaE monitored by
stopped flow spectroscopy. A: Oxidation of [2Fe2S]1+-YfaE was monitored at 465 nm (blue
circles); reduction of met-β2 was monitored at 320 nm (pink circles). The data were fit in both
cases to two exponentials (blue line: 465 nm, pink line: 320 nm). B. The residuals of the
fitting are shown.
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Table 2-5.  Kinetic parameters of YfaE oxidation by 5 µM met-β2.

µM YfaE ΔA465nm kobs-fast (s-1) % ΔA kobs-slow (s-1) % ΔA

1.5 0.0064 49 14 1.7 86

2.5 0.014 17 10 1.8 90

5 0.031 101 3 1.8 97

10 0.057 6.7 9 1.6 91

Time (sec) Time (sec)
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Figure 2-15.  Stopped flow kinetics of [2Fe2S]1+-YfaE oxidized by met-β2 (5 µM) at 37 ºC
under anaerobic conditions.  The same experimental procedures and data analysis for the
anaerobic SF experiments in Chapter 2 were followed.  Oxidation of [2Fe2S]1+-YfaE was
monitored at 465 nm.  Data points (blue, ~10 shots, 2000 points in logarithmic time scale for
20 sec) were averaged and the data of the first 5 sec were fit to two single exponentials (red
line).  Traces within the first one second are shown.  The concentrations of [2Fe2S]1+-YfaE
(1.5, 2.5, 5 and 10 µM) are indicated.
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SF kinetics to monitor oxidation of [2Fe2S]1+-YfaE by wt-β2 or O2

The rate of oxidation of [2Fe2S]1+-YfaE (15 µM) by air-saturated buffer at 37ºC is shown

in Figure 2-17.  The data was best fit to two single exponentials even though the product(s) of

the reactions and consequently the mechanism are unknown.  Nevertheless, the kobs from the

dominant amplitude (96%) is 0.018 s-1, which is much slower than the reactions with met-β2, and

suggests O2 does not compete with met-β2 for reduced YfaE.

Experiments of wt-β2 (5 µM) and [2Fe2S]1+-YfaE (45 µM) were also carried out as

described for met-β2 (Figure 2-18).  The oxidation of YfaE (blue circle), was best fit to two

single exponetials: kobs-fast = 0.03 s-1 and kobs-slow = 0.007 s-1.  Both reactions are ~100 fold slower

than those with met-β2.  Analysis of the lost in A320nm also was fit to two exponentials (Figure 2-
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Figure 2-16.  Concentration dependence of the rate of reaction between met-β2 (5 µM) and
[2Fe2S]1+-YfaE (1.5, 2.5, 5, 10 µM) under anaerobic conditions.  The oxidation of
[2Fe2S]1+-YfaE by met-β2 was monitored at 465 nm by UV-visible stopped flow
spectroscopy.  The data in Figure 2-15 were analyzed by Kaleidagraph to generate kinetic
parameters listed in Table 2-5.  The observed rate constants from the dominant ΔA465nm (>
90%) were plotted against the concentrations of [2Fe2S]1+-YfaE.
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18).  The fits to changes at 320 nm are in general more difficult to interpret as many changes

occur in this region and the sensitivity of instrument at this λ is poor.  From the total changes

observed at each wavelength, 16.7 µM of YfaE (Δε465nm = 6.6 mM-1cm-1) and 4.1 µM of wt-β2

(Δε320nm = 9.7 mM-1cm-1) were oxidized and reduced, respectively. At face value, 4.1 equivalent

of YfaE were oxidized per wt-β2 reduced.  Given that there are 3.4 Fe and 1.1 Y• per wt-β2,

theoretically 4.5 equivalents of YfaE could be reduced, which is in fair agreement with the

experimental results.

The slower oxidation rates of YfaE by wt-β2 and O2 suggest that met-β2 is the more

favored substrate in vivo.  This result supports our proposal that YfaE functions in cluster

maintenance for β2 in vivo.
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Figure 2-17.  Oxidation of [2Fe2S]1+-YfaE (15 µM) by air-saturated buffer monitored at
A465nm, 37 ºC by SF spectroscopy.  Data points (2000 points in 100 sec, average of 5 shots)
were fitting with two single exponentials with a k0bs1 = 0.6 s-1 (4% of total amplitude) and k0bs2
= 0.018 s-1 (96% of total amplitude).  The residual of the fitting is shown.
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Figure 2-18.  Reduction of wt-β2 (5 µM) with 45 µM [2Fe2S]1+-YfaE monitored by SF
spectroscopy at 37 ºC.  Oxidation of [2Fe2S]1+-YfaE and reduction of wt-β2 were monitored
at 465 nm (blue) and 320 nm (red), respectively.  Data points (~10 shots, 2000 points in 20
sec, logarithmic scale) were averaged and fitted with two single exponentials (blue line: 465
nm, red line: 320 nm).  The kinetic parameters determined from changes at 465 nm are kobs-fast
= 0.05 s-1 (27% of total amplitude), kobs-slow = 0.009 s-1, 73% of total amplitude) and at 320 nm
are kobs-fast = 0.6 s-1 (23% of total amplitude), kobs-slow = 0.02 s-1 , 77% of total amplitude).  The
residuals of the fitting are shown.
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Formation of transient WH+• monitored by SF spectroscopy in the reactions between YfaE-

reduced met-β2 and O2

To further support the proposal that the reducing equivalent required for cluster assembly

in β2 is provided by W48, the formation of the transient WH+• is monitored by SF spectroscopy at

A560nm (18).  Met-β2 was pre-reduced by [2Fe2S]1+-YfaE followed by reaction with O2-saturated

buffer at 4 ºC.  Because the oxidation of YfaE also changes A560nm, the reaction was carried out

using substoichiometric amounts of YfaE to reduce met-β2 (YfaE : met-β2 = 2 : 1).  From

experiments of met-β2 titrated with [2Fe2S]1+-YfaE, the reaction is close to completion at this

ratio, therefore, a maximum of 60 µM of Fe2+ (30 µM of Fe after being mixed with O2-saturated

buffer in SF) can be generated in met-β2 (3.4 Fe/β2, total ~102 µM Fe in 30 µM met-β2)

concomitant with complete oxidation of [2Fe2S]1+-YfaE.

The assembly of the diferric-Y• cofactor from diferrous-β2 was initiated by reacting with

equal volume of O2 saturated buffer and A560nm was monitored by SF (Figure 2-19).   The result

shows a rapid increase of A560nm that reaches a maximum at ~20 ms, followed by a slower

decrease until 0.5 s.  The data can be well fit to Eq 2-1 derived from a two consecutive, first-

order reaction model (Scheme 2-1), and generates two rate constants, k1 = 162 s-1 and k2
 = 10 s-1,

in good agreement with the reported rate constants (k1 = 200 s-1 and k2
 = 12 s-1) observed for the

WH+• formed in the reactions between diferrous-β2 (pre-loaded with Fe2+) and O2 (19).  Using

ε560nm = 3000 M-1cm-1 determined from pulse radiolysis experiments (17), we can calculate that

~11 µM WH+• was formed, which is ~73% of the theoretical value, 15 µM, assuming 2 Fe2+ in β2

generate one WH+• after reacting with O2.   These results support the proposal that the reducing

equivalent required for diferric-Y• cofactor assembly is provided by a W, likely W48 of β2.
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Figure 2-19.  Reaction of YfaE-reduced met-β2 with O2-saturated buffer monitored by
SF spectroscopy at 4 ºC.  Met-β2 (15 µM) was pre-reduced by 30 µM [2Fe2S]1+-YfaE
anaerobically and mixed with O2-saturated buffer.  Data points were fit to a sequential
R→I→P model (blue line, Scheme 2-1, Eq 2-1).  The rate of the formation and decay
of the intermediate I is 162 and 10 s-1, respectively.  Linear time scale (A) and
logarithmic time scale (B) of the plots are shown.
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DISCUSSION

The high occurrence of a conserved putative 2Fe2S-ferredoxin gene adjacent to the

nrdAB operon suggests that it might be a key player in generating and maintaining the diferric-β2

cofactor of active β2 in RNR.  The cloning and overexpression of this ferredoxin, YfaE in E. coli

was successful but the purification proved to be a challenge as the overexpressed protein formed

inclusion bodies.  Several attempts to express soluble protein were not successful thus we chose

to refold and reconstitute YfaE under strictly anaerobic conditions.  The protein was purified to

homogeneity judged by SDS-PAGE.  It was then characterized by quantitation of the amount of

iron and sulfide and by UV-visible, EPR and Mössbauer spectroscopies.  YfaE is predominantly

a monomer, but oxidized YfaE forms aggregate irreversibly.

Once the challenges of protein purification were overcome, we set out to investigate

whether YfaE might be involved in the biosynthesis and maintenance of the diferric-Y• cofactor.

As mentioned in the introduction, this hypothesis was derived in part due to the striking

similarity of the structure and chemistry of MMO and Δ9D (1, 2, 33).  YfaE shares ~29%

sequence identity with both the plant Fdx that can reactivate Δ9D and the ferredoxin domain in

MMOR (4, 5, 20).  This functional analogy and the studies with MMOR/MMO and Fdx/Δ9D,

provide compelling support for our proposed function of YfaE.

To study the ability of YfaE to reduce met-β2 to diferrous-β2, titration experiments under

anaerobic conditions were carried out.  These studies revealed the ability of YfaE to play this

role.  Quantitative analysis showed that every YfaE oxidized resulted in one iron reduced (Table

2-3).  Parallel titration experiments analyzing for Fe2+ using the ferrozine assay supported this

conclusion.  Thus YfaE is a chemically competent reductant of met-β2.  After the titration end

point was reached, the sample was exposed to O2 and the formation of diferric-Y• was observed
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within the 2 min required to scan the spectrum (Figure 2-12).  This cluster assembly occurred in

the absence of exogenous reducing reagents.  To further characterize the resulting diferric-Y•

cofactor, the amount of Y• generated from the titration experiments was quantitated by EPR

spectroscopy.  Interestingly, a stoichiometry of two iron reduced (two YfaE oxidized) per one Y•

generated was observed.  This result requires the reducing equivalent is provided by β2 and not

by Fe2+ that has dissociated from β2 during the titration.  From our previous studies on cluster

assembly in vitro, the W48 in β2 is the best candidate for the reducing equivalent, generating a

WH+• (18, 19).  This proposal is further supported by SF experiments in which YfaE-reduced

met-β2 was reacted with O2, generating a transient intermediate at A560nm, a typical absorption

feature of a WH+• (18, 19).

Furthermore, in the presence of excess YfaE, the amount of Y• generated is greater than

the amount of Y• observed in our way in reconstitution experiments for β2.  This result suggests

that YfaE reduction will allow us to generate Y• equivalent to half of the amount of iron.  The

met-β2 used in our experiments contained 3.4 irons, which means a theoretical maximum of 1.7

Y•/β2 could be obtained if all the iron is reduced.  Under conditions where the concentration of

[2Fe2S]1+-YfaE was 20× that of [met-β2], a reduction of 88% of the iron center and formation of

1.5 Y•/β2 was observed (Table 2-4).

While the titration data have clearly defined the reaction stoichiometry between YfaE and

met-β2, the rates of reaction must be determined to provide convincing support for the role of

YfaE.  SF kinetics monitoring both the reduction of met-β2 and the oxidation of [2Fe2S]1+-YfaE

under anaerobic conditions were carried out.  Since there are 3.4 irons in the met-β2 used in this

experiment and [2Fe2S]1+-YfaE can only deliver one electron at a time, the kinetics are

inherently complex (4).  The data in Figure 2-14 have been fit for the first 5 sec during which
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80% of the irons are reduced.  Two single exponentials give rate constants of 4 to 5 s-1 and 1 to 2

s-1 with similar amplitudes.  These numbers compare favorably with similar experiments carried

out on Δ9D and MMO.  In the former case when reduced Fdx is incubated with oxidized Δ9D,

the rate of product formation (1.5 products/dimer) is 3.4 s-1 in which the reduction step is likely

the rate-limiting step even though this has not been unambiguously verified (33).  In the case of

MMO, studies with the Fdx domain only (residues 1-98) show that it reduces oxidized MMO

with rate constants of 1 s-1 and 0.2 s-1 (4).  When both domains in MMOR are present, the rates

are greatly enhanced to 95 s-1, even though 10-40% of the MMO is not reduced in the in vitro

studies (4).

Our results, however, suggest the rates of reduction of met-β2 are rapid, relative to other

reductants previously reported (29, 31, 32).  There have been many studies investigating the

reduction of met-β2 to the diferrous-β2 using chemical reductants and “protein reductants” (29-

32, 34, 35).  Unfortunately, the actual rate constants are not readily accessible from the published

information.  In the case of the chemical reductants, dithionite and a dye mediator, deazaflavin

and light, DTT and Fe2+ etc, the rates of reduction are very slow on the order of several minutes

(30-32, 34).  In the case of a protein reductant, Fre, the reported data for reduction suggested that

the rate is also very slow (less than 0.001 s-1) (29, 32).  These results support the proposal that

YfaE is a physiologically relevant reductant for met-β2.

Inside the cell, active-β2 and O2 might compete with met-β2 for reduced YfaE, so their

rates of reduction by [2Fe2S]1+-YfaE were examined as control experiments.  In order to mimic

physiological conditions, oxidation of YfaE by O2 was carried out in air-saturated buffer at 37

ºC.  The results indicate that the rate is slow (~0.02 s-1) relative to rates of oxidation by met-β2

under similar conditions.  We then examined the oxidation of YfaE by the diferric-Y•-β2.  The



135

rate of oxidation of YfaE was 0.05 s-1.  Analysis of the UV-vis spectra during the reduction

process showed the diferric-cluster is lost concomitant with Y• reduction.  This behavior has

been observed in earlier studies with the chemical reductants hydrazine and phenylhydrazine

(36).  The proposed mechanism involves reduction of one Fe3+ to Fe2+ to form a transient mixed

valent cluster, which is then rapidly oxidized back to the diferric cluster concomitant with Y•

reduction (37).  The resulting met-β2 is then reduced as to diferrous-β2 as described above.

These results imply that met-β2 may be the more favored substrate for [2Fe2S]1+-YfaE in vivo.

In summary, we have identified a 2Fe2S-ferredoxin, YfaE, which can function in

reactivating met-β2 by reducing the diferric cluster to diferrous form.  The presence of O2, the

diferrous-β2 reassembles to form diferric-Y• cluster.  The immediate electron source for the

cluster assembly is provided by β2, possibly through formation of a W+•.  The kinetic studies

suggest YfaE can reduce met-β2 at a rate faster than reductants previously examined for this role

(30-32, 34).  Based on these results, the role of YfaE is incorporated into our model for

maintenance and biosynthesis pathways (Figure 2-20).
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biosynthesis of diferric-Y• cofactor (see Chapter 1).
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Chapter 3:

Studies on the Interactions between YfaE and β2 and the Physiological Role of

YfaE
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INTRODUCTION

In Chapter 2 we demonstrated the chemical competence of YfaE in reducing met-β2 and

regenerating the Y• in the presence of oxygen.  We were next interested in determining the

binding affinity and investigating the nature of interaction between the two proteins, which can

set the stage for designing kinetic experiments and evaluating the physiological relevance of the

proposed functions of YfaE.  The approaches we applied and the design of our experiments are

heavily based on the studies on MMO and Δ9D, the structural and functional analogues of β2.

In MMO, the reduction of the di-ferric center is carried out by MMOR, which contains a

[2Fe2S]-ferredoxin domain (MMOR-Fdx) and a reductase domain (MMOR-FAD) that has a

tightly bound FAD and a NADH binding site.  Lippard and coworkers have separated these two

domains and studied the interaction between the two domains and between MMOR-Fdx and

MMO in great detail (1-3).  By isothermal titration calorimetry (ITC), they have shown that two

MMOR-Fdxs bind to one MMO (α2β2γ2) with two binding constants of 0.6 and 3.2 µM (1).

Similar results were observed for binding between MMOR and MMO, with two dissociation

constants of 0.4 and 0.7 µM (4).  It should be noted that the ITC experiments were carried out at

~4 ºC under aerobic conditions, thus the iron in both proteins are in +3 state.  Furthermore, only

~70% of the MMO participated the binding to MMOR or MMOR-Fdx.  Kinetic studies of

reactions between dithionite-reduced MMOR-Fdx and MMO by SF spectroscopy under

anaerobic conditions have demonstrated that the reactions are bi-phasic with two observed rate

constants of 1.0 and 0.24 s-1.  Quantitative analysis revealed that 10-40% of MMO was not

reduced by MMOR-Fdx, similar to the observations in the ITC studies.

The nature of interaction between MMOR-Fdx and MMO was revealed by structural

studies of MMOR-Fdx by NMR spectroscopy (5).  By examination of line broadening in NMR
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spectra of MMOR-Fdx in the presence of MMO, a binding surface on MMOR-Fdx composed of

charged residues surrounded by hydrophobic patches was proposed.  Studies using MMOR

D26A and E73A mutants further showed that the binding affinity to MMO decreased 2-fold and

3-fold, respectively (1), suggesting the importance of electrostatic interactions between MMOR

and MMO.

The importance of electrostatic interactions between a diiron protein and its redox partner

has also been demonstrated in the studies by Fox and coworkers on the binding interface

between Δ9-desaturase (Δ9D) and a plant ferredoxin (p-Fdx) (6).  By chemical cross-linking, site-

directed mutagenesis, steady state kinetics and molecular docking studies, they identified three

surface lysines (K56, K60, K230) on Δ9D that are important for interacting with p-Fdx.  Single

alanine mutation on K56, K60 and K230 decreased the kcat/Km for p-Fdx by 22-, 4- and 2400-

fold, respectively.  The K56A/K60A double mutant and K56A/K60A/K230A triple mutant

decreased the kcat/Km for p-Fdx by 250- and 700,000-fold, respectively, indicating their roles for

interacting with the p-Fdx (6).  These lysines are located in close proximity to the postulated

electron transfer pathway (W62, H146, D228) to the iron center of Δ9D, which is structurally

conserved in β2 (W48, H118, D237).  Furthermore, a molecular docking model suggested a

conserved glutamate (E31) in p-Fdx that directly interacts with K60 in Δ9D, supporting the

proposal that the binding between Δ9D and p-Fdx is governed by electrostatic interactions.

One key difference between the studies on MMO and Δ9D is that for MMO, the

physiological redox partner is MMOR in which the Fdx domain is reduced by the FAD domain,

whereas for Δ9D, the physiological relevant Fdx and Fdx-reductase have not yet been

established.  If the analogy between MMO and β2 still holds for the mechanism by which the

diferric center of β2 is reduced, YfaE is likely to be cycled by a Fdx-reductase in vivo.
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 Our candidate for a YfaE-reductase came from experiments by Reichard, Fontecave, and

their coworkers.  Their studies on the identification of components in crude extracts of E. coli

that can reduce and regenerate the Y• in β2 have led to the isolation of Fre, which is proposed to

regenerate the Y• in the presence of flavin, NAD(P)H, DTT and a “fraction B” (7-9).  Despite

heroic efforts, the components in fraction B that facilitated the reduction of met-β2 could not be

purified (10).  Furthermore, it was found that fraction B could be replaced by Fe2+, thus a model

was proposed that Fe2+, which could be generated by reduced flavins generated inturn by Fre, is

responsible for reduction of met-β2.  However, this model is questionable given the reactivity of

both Fe2+ and reduced flavins with O2 to generate toxic O2 species.  Evidence for the involvement

of Fre in reactivation of the Y• in vivo was provided by studies on a Δfre E. coli K-12 strain

grown in the presence of hydroxyurea (HU), a radical scavenger specific for the Y• of β2 (11,

12).  The results showed that when the deletion strain was grown in M9 minimal medium, the

Δfre is three times more sensitive to HU (~40 mM) than the wild type cells, supporting a role for

Fre in the regeneration of the Y• in vivo (13, 14).  From these observations, we proposed a model

that in vivo met-β2 is directly reduced by YfaE, which can then be cycled by Fre (15).

Based on the studies on MMO and Δ9D, we have applied several methodologies in an

effort to determine the binding constant between YfaE and met-β, and used K→A mutants of β2

or a E→A mutant of YfaE to examine the role of electrostatic interactions between these two

proteins.  Fre was cloned and purified, and its ability in reducing [2Fe2S]2+-YfaE catalytically

was established.  Growth experiments using ΔyfaE in the presence of HU suggest that YfaE

plays a major role in the maintenance pathway.
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MATERIALS AND METHODS

Materials

E. coli BW25113 wt and isogenic strains with an in frame single gene deletion of yfaE,

fre, fdx or fpr were obtained from the Keio collection in the National Institute of Genetics,

Mishima, Japan  (16).  DNA primers were purchased from Invitrogen (Table 3-1).  Plasmids

pET24a, pET3a, pET28a and pET9d were purchased from Novagen (Table 3-1). PfuUltraII

DNA polymerase, E. coli BL21(DE3) and TOP10 cells were from Stratagene.  Restriction

enzymes were from New England Biolaboratory.  Tris(hydroxymethyl)aminomethane

hydrochloride (Tris-HCl) was from J.T. Baker.  Isopropyl-β-D-thiogalactopyranoside (IPTG)

was from Promega.  Immun-Blot Poly(vinylidene) difluoride (PVDF) membrane (0.2 µm), 10%,

15% and 18% Tris-HCl SDS-PAGE (1.0 mm) Criterion Precast Gels and Silver Stain Plus Kit

were from Bio-Rad.  Polyclonal rabbit antibodies (Abs) against β2, YfaE and Fre were produced

by Covance (Denver, PA).  Secondary Abs (Goat anti-rabbit conjugated horseradish peroxidase),

chemiluminescence reagent SuperSignal West Femto and Slide-A-Lyzer dialysis cassettes (0.5

mL capacity, 3.5 kDa cut-off) were from Thermo Scientific.  Protease inhibitors cocktail

(Complete Mini, EDTA-free) were from Roche.  Strep-Tactin Sepharose resin was from IBA

GmbH.  Amicon and Microcon ultrafiltration membranes (YM30, PM30, YM10, YM3, YM50

and PLBC3) were purchased form Millipore.  Bradford reagent and all other chemicals were

obtained in the highest purity available from Sigma-Aldrich.

Verification each gene deletion strain obtained from the Keio collection

The success of the gene deletion was verified by either sequencing the genomic DNA

purified from the knockout strains or by PCR using primers annealed ~50 bp upstream and
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downstream of the deleted gene and the purified genomic DNA as a template.  The cell growth

and the purification of genomic DNA were carried out according to manufacturer’s protocol

(Bacterial Genomic DNA purification kit, Sigma).  The sequences were confirmed at the MIT

Biopolymers Laboratory.  For PCR verification, the success of a deletion was judged using

agarose gels by the appearance of a ~1.5 kb PCR product containing the kanamycin resistance

gene and the disappearance of the target gene.  Lists of verification primers are shown in Table

3-1.  All knockout strains were confirmed.

Site-directed mutagenesis of β2 and YfaE

Mutants of β2 and YfaE were made by site-directed mutagenesis (SDM) PCR using

pBAD-C-S-nrdB (17) and pET11a-yfaE (15) as PCR templates, and PfuUltraII DNA

polymerases according to manufacturer’s protocol (Stratagene).  The PCR primers are listed in

Table 3-1.

Homology modeling of YfaE

Structures of β2 (pdb: 1AV8), Δ9D (pdb: 1AFR), and Fdx-Δ9D (pdb: 1FXA) were drawn

using the program PyMol (18).  A homology model of YfaE was generated by Swiss-Model

(http://swissmodel.expasy.org) by submitting the amino acid sequence of YfaE and the pdb file

of Fdx-Δ9D to the web site.  The generated homology model of YfaE was drawn using PyMol.

Anaerobic Stopped-flow (SF) spectroscopy

The purification of YfaE inclusion bodies and the refolding, reconstitution and

purification of YfaE were described in Chapter 2.  The protein production and purification of N-
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or C-terminus StrepII-tagged β2 followed our published protocols (17).  Procedures for the

preparation of met-β2 and stopped flow (SF) kinetics under anaerobic conditions were described

in Chapter 2.  The kinetic traces were fitted with single-, double- or multiple-exponential

equations using program KaleidaGraph.

SF spectroscopic studies on the concentration dependence of the observed rate of reaction

between met-β2 and [2Fe2S]1+-YfaE

 Reactions between met-β2 (0.75 µM) and [2Fe2S]1+-YfaE (5, 12.5, 25, 50 and 100 µM)

were monitored by SF spectroscopy at 37 ºC under anaerobic conditions (15).  Kinetic traces

were fit to a double-exponential equation using KaleidaGraph: A465nm (t) = ΔA465nm-1 × e-k1 × t +

ΔA465nm-2 × e-k2 × t + c, in which ΔA465nm-1 and ΔA465nm-2 are the amplitudes for the observed rate

constants k1 and k2, respectively, t represents time, and c is a constant which equals A465nm (t)

when t ~ ∞.  The observed rate constants, kobs, for the oxidation of [2Fe2S]1+-YfaE were plotted

as a function of [YfaE].  To test the possibility of obtaining binding constants between met-β2

and [2Fe2S]1+-YfaE from the plot (kobs v.s. [YfaE]), the data were fit to equations derived from a

two-step reaction model (Scheme 3-1).  This model only considers the binding of one YfaE to

one subunit of β2 (step 1) and the reduction of one Fe3+ in β (step 2).  In the SF experiment,

ΔA465nm comes from the redox reaction in step 2.

Scheme 3-1

The association and dissociation rate constants are k1 and k-1, respectively, between β and

[2Fe2S]1+-YfaE, whereas k2 and k-2 represents the forward and reverse rate constants of the redox

YfaEred + Fe3+-β YfaEred:Fe3+-β YfaEox:Fe2+-β
k1

k-1

k2

k-2
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reaction.  Under conditions in which [YfaE] >> [β] and the interaction between YfaE and β2 is

described by a rapid binding equilibrium: k1[YfaE] + k-1 >> k2 + k-2 (Scheme 3-1), kobs is

described by Eq 1 in which K1 = k1/k-1 = 1/Kd (Kd: dissociation constant) (19-21).  Eq 1 predicts

a hyperbolic relationship between kobs and [YfaE].  Under saturation conditions (K1[YfaE] >> 1),

kobs = k2 + k-2.

On the other hand, if the redox reaction is much faster than the rate of binding (k2 + k-2

>> k1[YfaE] + k-1), kobs is described by Eq 2, which predicts a linear relationship between kobs and

[YfaE].  The slope is k1 and the intercept is k-1/(K2 + 1), where K2 = k2/k-2.

Finally, if the rate of reaction in the two steps are similar (Scheme 3-1), kobs is described

by a generic equation (Eq 3).  Eq 3 also predicts a hyperbolic relationship between kobs and

[YfaE].  Among these cases, only under rapid binding equilibrium conditions (Eq 1) can the

binding affinity between YfaE and β be determined.

Eq 1        kobs = k2K1[YfaE]/(K1[YfaE] + 1) + k-2

Eq 2        kobs = k1[YfaE] + k-1k-2/(k2 + k-2)

Eq 3        kobs ≈ (k1[YfaE](k2 + k-2) + k-1k-2)/(k1[YfaE] + k-1 + k2 + k-2)

Binding affinity between [2Fe2S]1+-YfaE and apo-β2 monitored by anaerobic ITC

Sample preparations were performed in a glove box in a 4 ºC cold room.  Purification of

[2Fe2S]1+-YfaE and apo-β2 are described in Chapter 2 and Chapter 4, respectively.  MOPS (50

mM, pH 7.4) and apo-β2 (259 µM, 0.5 mL) were degassed on a Schlenk line according to the

procedures in Chapter 2.  Dialysis cassettes (Slide-A-Lyzer, 3.5 kDa cut-off, 0.5 mL size,

Thermo Scientific) were pre-soaked in 10 mM dithionite solution in the glove box for 1.5 h
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followed by incubation with stirring in 800 mL anaerobic water and 800 mL of 50 mM MOPS,

pH 7.4 for 12 and 6 h, respectively to remove residual dithionite.  Purified [2Fe2S]1+-YfaE and

apo-β2 (~0.5 mL) were then transferred into the dialysis cassettes and dialyzed in 2 L 50 mM

MOPS, pH 7.4 for 16 h.  The samples were then transferred into pear-shape flasks with glass

stopcocks (with vacuum grease) and taken out of the glove box.

To measure the binding constant under anaerobic conditions, the protein samples and the

ITC instrument (VP-ITC, MicroCal, Inc., Northampton, MA) were placed inside a glove bag

(Aldrich, AtomsBag polyethylene handbag) followed by 5 cycles of evacuation and refilling with

Ar to minimize the amount of O2.  The glove bag showed no sign of deflation after 2 h,

suggesting minimal leakage.  Apo-β2 (9.8 µM) was then transferred into a sample cell (1.430

mL) and titrated with 10 µL of 489 µM [2Fe2S]1+-YfaE every 5 min at 4 ºC with a stirring speed

of 310 rpm.

Attempts to use ultrafiltration to determine the Kd between [2Fe2S]1+-YfaE and apo-β2

Inside the glove box, 300 µL of 30 µM [2Fe2S]1+-YfaE was added to a YM30 (or YM3,

YM10, YM50) Microcon (0.5 mL size, Millipore, pre-washed with 350 µL of sodium dithionite,

water and 100 mM Tris-HCl, pH 7.8 buffer).  The YM30 Microcons were then centrifuged at

10,000g until more than 200 µL of filtrate was obtained (~7 min).  Filtrate (200 µL) and

concentrate (100 µL) were transferred into a new Eppendorf and the concentration of YfaE in the

filtrate and concentrate were measured by Bradford assay.  The integrity of YfaE before and after

centrifugation was monitored by UV-visible spectroscopy and no oxidation was found during the

centrifugal ultrafiltration.



150

Cloning of Fre, YqjH, Fdx and Fpr

To generate pET24a-fre, pET24a-yqjH, pET9d-fpr, pET3a-fdx and pET28a-fdx

constructs, genes encoding Fre, YqjH, Fpr and Fdx were PCR amplified from E. coli K-12 wt

(without isolation of genomic DNA) using the primers listed in Table 3-1.  To prepare PCR

templates, about 25 mg of the cell paste of E. coli K-12 wt was suspended in 1 mL water and

incubated in 100 ºC sand bath for 30 min followed by centrifugation at 14,000g for 10 min at

RT.  The PCR reaction mixture (total 50 µL) contained 23 µL of the supernatant, 1 µM forward

primer, 1 µM reverse primer, and 25 µL of 2X PCR MasterMix™ (Promega).  A temperature

touch down PCR program was used: 95 ºC, 30 sec, 1 cycle; 95 ºC, 30 sec, 65 ºC, 30 sec, 72 ºC,

60 sec, 2 cycles; 95 ºC, 30 sec, 63 ºC, 30 sec, 72 ºC, 60 sec, 2 cycles; 95 ºC, 30 sec, 61 ºC, 30

sec, 72 ºC, 60 sec, 2 cycles; 95 ºC, 30 sec, 59 ºC, 30 sec, 72 ºC, 60 sec, 2 cycles; 95 ºC, 30 sec,

57 ºC, 30 sec, 72 ºC, 60 sec, 2 cycles; 95 ºC, 30 sec, 55 ºC, 30 sec, 72 ºC, 60 sec, 20 cycles; 72

ºC, 10 min, 1 cycles.

The PCR products were purified by a commercial PCR purification kit (Qiagen) and

digested with 10 U of restriction enzymes and ligated with purified pET24a, pET9d, pET3a and

pET28a vectors (Novagen) pretreated with restriction enzymes using T4 DNA ligase (Promega)

in a vector to insert ratio of 1:3.  The sequences of the mutant proteins and the cloning constructs

were confirmed at the MIT Biopolymers Laboratory.

Purification of Fre

A single colony of BL21(DE3)-pET24a-fre was inoculated into 7 mL of LB-Kanamycin

(70 µg/mL) and grown overnight (~16 h) at 37 ºC in a roller drum.  The overnight culture (5 mL)

was inoculated into 2.6 L LB-kanamycin (70 µg/mL) and grown at 37 ºC, 200 rpm.  The protein
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production was induced by addition of 1 mM IPTG when the A600nm reached ~0.4.  The cells

were allowed to grow for additional 4 h before being harvested at 7,000g for 10 min at 4 ºC.  The

cell paste (10.2 g, 3.9 g/L) was flash frozen in liquid N2 and stored at –80 ºC.

Purification of Fre followed published procedures (14) with some modification.  The cell

paste of BL21(DE3)-pET24a-fre was suspended in 5 mL buffer F/g cell paste (buffer F: 25 mM

Tris-HCl, pH 7.5, 10% (v/v) glycerol, 30% (w/v) ammonium sulfate) and the cells were

disrupted by two passages through the French Press at 14,000 psi.  The cell debris was removed

by centrifugation at 48,000g, 4 ºC for 30 min.  The supernatant was loaded at a flow rate of 2

mL/min onto a 20 mL Phenyl Sepharose 6 Fast Flow column (2.5 × 4 cm, Amersham) pre-

equilibrated in buffer F.  The column was then washed with 200 mL buffer F followed by an

additional 160 mL buffer F containing 5% (w/v) ammonium sulfate.  The protein was eluted with

25 mM Tris-HCl, pH 7.5, 10% (v/v) glycerol and fractions of 2.8 mL were collected and assayed

for activity.

Fractions with activity >15 U from the Phenyl Sepharose column were combined and

concentrated using an Amicon YM10 concentrator to a final volume of 2.6 mL.  The concentrate

was then loaded at a flow rate of 10 mL/h onto a 100 mL Sephadex G-75 column (1.5 × 57 cm,

Sigma) pre-equilibrated with 25 mM Tris-HCl, pH 7.5, 10% (v/v) glycerol.  Fractions of 3.8 mL

were collected and those containing activity >200 U were combined and concentrated using a

YM10 Centricon (Millipore) to a final volume of 1.2 mL.  The concentration of the purified

protein was determined by ε280nm = 27.0 mM-1 cm-1 and the concentration of samples from each

purification steps were determined by Bradford assay using BSA as a standard.  Aliquots of the

protein were stored at –80 ºC.  A yield of 1.8 mg of purified Fre per g of cell paste was obtained.
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To assay Fre activity, the rate of NADPH reduction was monitored. The assay was

performed in 25 mM Tris-HCl, pH 7.5 containing 200 µM NADPH (Sigma, ε340nm = 6.22 mM-1

cm-1) and 25 µM riboflavin (Aldrich R170-6, ε373nm = 10.0 mM-1 cm-1) in a total volume of 500

µL.  The rate of ΔA340nm was measured before and after 2 µL of each fraction was added.  One unit

is defined as 1 nmol NADPH oxidation/min.  The specific activity of the purified Fre is 120,000

U/mg, which is the same as reported in the literature (14).

Western blotting on E. coli whole cells to determine the concentrations of YfaE, Fre and β2

Overnight cultures from a single colony of E. coli K-12 wt (2 mL) were inoculated into

500 mL LB without antibiotic and grown at 37 ºC, 200 rpm until A600nm reached 0.7 to 0.8.  The

cells were then spun down by centrifugation at 8500g for 10 min at 4 ºC.  The supernatant was

discarded and the cell paste was suspended in 5 mL PBS/g cell paste.  For cell counting, 10 fold

serial dilutions of the cell suspension into PBS at 4 ºC were made, plated onto LB-agar plates

without antibiotic and grown overnight at 37 ºC.  To prepare whole cell samples for Western

blotting, the cell suspension was mixed in a 1:1 ratio with 2× Laemmli buffer followed by

incubation in a 100 ºC sand bath for 10 min before flash freezing in liquid N2 and storage at –80

ºC.  The cell counting indicated 1.4 ± 0.1 x 107 cells per µL of the whole cell Laemmli samples

(8 measurements from two independent serial dilutions).

 The quantitative Western blotting was performed by following our published procedures

(17).  Purified wt-β2, [2Fe2S]1+-YfaE or Fre and the whole cell samples in Laemmli buffer were

loaded onto an 18-well Tris-HCl, SDS-PAGE (1.0 mm) Criterion Precast gels (Bio-Rad) (10%,

18% and 15% gel for blotting of wt-β2, YfaE and Fre, respectively).  The SDS-PAGE was run at

200 V for 40 min at 4 ºC.  The gel was then incubated in the blotting buffer (25 mM Tris, 195
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mM glycine, 15% (v/v) methanol, and 0.01% SDS for 30 min before blotting onto a PVDF

membrane (Bio-Rad) at 200 mA for 60 min at 4 ºC.  To examine the efficiency of transfer, a

second PVDF membrane was included and the gels after transfer were stained by Silver Stain

Plus (Bio-Rad).  The PVDF membranes were blocked in 3% casein in TAE buffer (40 mM Tris,

20 mM acetate, 1 mM EDTA, pH 8.0) for 30 min before treatment with primary antibodies

(10,000x, 500x and 5000x dilution of antibodies against wt-β2, YfaE and Fre) for 1 h followed

by washing with 100 mL PBS, 3 times.  Secondary antibodies solutions (HRP-conjugated goat

anti-rabbit antibodies, ThermoScientific, 2000x dilution in 3% casein in TAE buffer) were then

added to the membranes followed by 1 h incubation at room temperature.  After the PVDF

membranes were washed with 100 mL PBS 3 times, the membranes were developed using

FemtoWest chemiluminescence reagents (Thermo Scientific) and the Western signals were

detected using a CCD camera and quantified by QuantityOne program (Bio-Rad).

Reduction of YfaE and met-β2 in the presence of flavins, Fre and NADPH

Reduction of [2Fe2S]2+-YfaE by photoreduced FMN:  To prepare FMNH2, 0.4 mL of 0.2 mM

FMN, 2 mM sodium oxalate in 100 mM Tris-HCl, pH 7.8 was placed in a 0.7 mL quartz cuvette

fitted with an air-tight screw cap.  The cuvette was removed from the glove box, exposed to a

150-watts Kramer microscope lamp (Burlington, MA) for 3 min at room temperature and

brought back into the glove box (22).  To prepare oxidized YfaE, 800 µL of 36 µM [2Fe2S]1+-

YfaE in 100 mM Tris-HCl, pH 7.8 was removed from the glove box, exposed to oxygen,

followed by 5 cycles of evacuation with refill with argon on a Schlenk line and brought into the

glove box.  Similar anaerobic titration procedures to these described in detail in Chapter 2 were

followed.  In an anaerobic cuvette, [2Fe2S]2+-YfaE (360 µL, 39 µM in 100 mM Tris-HCl, pH
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7.8) was titrated with 216 µM FMNH2 (10 µL aliquots) until an end point was reached.  O2 was

then blown over the surface of the sample and the sample was mixed by inverting the cuvette.

The UV-visible spectrum was recorded on Cary 3 spectrophotometer (Varian).

Reduction of [2Fe2S]2+-YfaE by Fre, riboflavin and NADPH: Fre, riboflavin and NADPH

solution were degassed on a Schlenk line following the procedures described in the previous

section.  No precipitation of Fre was observed after the evacuation and refill cycles.  Inside a

glove box, a 0.7 mL quartz cuvette fitted with an air-tight screw cap and a Teflon/silicon septum

(Thermo Scientific) was filled with 506 µL of 18.5 µM [2Fe2S]2+-YfaE, 0.8 µM riboflavin and

0.8 µM Fre in 100 mM Tris-HCl, pH 7.8.  The cuvette was removed from the glove box and the

sample was titrated with 1 mM NADPH (2-10 µL aliquots) under anaerobic conditions.  At the

titration end point, the sample was oxidized as in the previous section.

Reduction of met-β2 by NADPH in the presence of catalytic amounts of YfaE, Fre and riboflavin:

In a 0.7 mL quartz cuvette fitted with an air-tight screw cap and a Teflon/silicon septum, 360 µL

of 20 µM met-β2, 0.5 µM [2Fe2S]1+-YfaE, 0.5 µM riboflavin and 0.5 µM Fre in 100 mM Tris-

HCl, pH 7.8 were titrated with 1 mM NADPH (2-10 µL aliquots) under anaerobic conditions.  At

the titration end point, the sample was oxidized as in the previous section.  A control titration in

the absence of YfaE was also carried out.
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Determination of the growth rate of BW25113-ΔyfaE, Δfre, Δfdx, Δfpr in the presence of

hydroxyurea (HU)

An overnight culture (150 µL from 5 mL culture) from a single colony of BW25113-

pET9a, BW25113-ΔyfaE, BW25113-Δfre, BW25113-Δfdx or BW25113-Δfpr was inoculated

into 30 mL M9 minimal medium (42 mM Na2HPO4, 22 mM KH2PO4, 19 mM NH4Cl, 9 mM

NaCl, 0.4% glucose, 20 mM MgSO4) or LB medium containing 30 µg/mL kanamycin in 125 mL

flasks and grown at 37 ºC, 200 rpm until A600nm reached ~0.1.  An aliquot of each culture (1 mL)

was then transferred into 24-well tissue culture plates (Corning) and HU (10, 30 and 50 µL of 1

M stock solution) was added into each well to reach a final concentration of 0, 10, 30 or 50 mM.

The cells were further grown at 37 ºC, 200 rpm and A630nm was recorded on a microplate reader

(Bio-Rad) every 30 min and 10 min for cells grown in M9 and LB media, respectively,.  Four to

six replicates of each condition were carried out.

Western blotting on E. coli whole cells to determine the concentration of YfaE, β2 and Fre

in the presence of HU

To examine the levels of expression of YfaE, β2 and Fre in the presence of HU, an

overnight culture (2.5 mL) from a single colony of E. coil BW25113-pET9d was inoculated into

500 mL of LB-kanamycin (30 µg/mL) in a 2.8 L baffled flask and grown at 200 rpm, 37 ºC until

A600nm ~ 0.55.  Aliquots (100 mL) of the culture were then transferred into 500 mL baffled flasks

and HU (1 M stock solution) was added to a final concentration of 10 and 30 mM.  The cells

were grown at 200 rpm, 37 ºC and at 1 h after addition of HU, 20 mL aliquots of the culture were

transferred into 50 mL Falcon tubes and incubated on ice for > 30 min followed by recording of

A600nm.
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To prepare whole cell samples in the Laemmli buffer, cultures containing 4 × 109 cells

(assuming 1 mL of cell culture at A600nm = 2 × 108 cells) were centrifuged at 3000 rpm at 4 ºC for

20 min.  The supernatant was removed and the cell paste was suspended in 200 µL of 2×

Laemmli buffer (2 × 107 cell/µL Laemmli sample), followed by incubation in a sand bath at 100

ºC for 10 min.  The same procedures described above for the determination of the concentration

of YfaE, β2 and Fre by Western blot analysis were carried out, using 5 µL of the whole cell

Laemmli sample (1 ×108 cells).
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Table 3-1.  List of primers used in this chapter

Site-directed mutagenesis primersa, b, c

β2-K38A CGCTACGATCAGCAAAAATATGACATCTTCGAAGCGCTGATCGAAAAGCA
GCTCTCTTTCTTCTGGC

β2-K42A CTTCGAAAAGCTGATCGAAGCGCAGCTCTCTTTCTTCTGGC
β2-K38A/K42A CGCTACGATCAGCAAAAATATGACATCTTCGAAGCGCTGATCGAAGCGCA

GCTCTCTTTCTTCTGGCGTCCG
β2-K229A CGCGAATTGATGGAAGGCAACGCCGCAATTATTCGCCTGATTGCCCG
YfaE-E26A TTCCCTTCTGGCGGCGCTGGCGTCCCACAATGTGGCGGTT

Cloning primersa, d

Fre-5-NdeI GAGAAAGCATATGACAACCTTAAGCTGTAAAGTG
Fre-3-XhoI TTTTTTCTCGAGTCAGATAAATGCAAACGCATC
YqjH-5-NdeI GCGATACATATGAATAACACCCCCCGCTAC
YqjH-3-XhoI TTTATACTCGAGTTACTTTGCGTGCCAGTAAGC
Fpr-5-NcoI CAGGAGAAAACCATGGCTGATTGGGTAACAGGCAAAG
Fpr-3-BamHI TAAGTGGATCCTTACCAGTAATGCTCCGCTG
Fdx-5-NdeI CGAGGTTTCCTATGCCAAAGATTGTTATTTTGC
Fdx-3-BamHI ACTAAGGATCCTTAATGCTCACGCGCATGGT

Knockout strain verification primersa

ΔyfaE-5′ ATTGACTCGGAAGTGGACAC
ΔyfaE-3′ TAAGCGTTGTATCTGGCACT
Δfre-5′ GATGCGCGTTTGTTTTGCCCT
Δfre-3′ CGCCTGTCAGGGGCGGGTTTT
Δfdx-5′ GTCGGTTCGTCGTGCGCTG
Δfdx-3′ GGTCCACTTAAGTCCCATAC
Δfpr-5′ GTTCGGAGAACGAAGATAAG
Δfpr-3′ CATCGTGCCGTTTATCGATA

a. sequences of all primers drawn from 5’ to 3’
b. The primers shown and their complementary pair were used for SDM
c. sites of mutations are in bold
d. restriction enzyme digestion sites are in bold; the start or stop codon are underlined
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RESULTS

Efforts to determine the Kd between [2Fe2S]1+-YfaE and met-β2 by SF kinetics

In the reactions between [2Fe2S]1+-YfaE and met-β2, the mechanism(s) is (are)

complicated because the reduction of met-β2 (3.4 Fe/β2) to diferrous-β2 requires multiple

association and dissociation steps between two proteins.  The possibility of cooperative binding

of two YfaEs with β2 or intramolecular electron transfer between β2 monomers to generate

reduced iron in the same β monomer, further complicate kinetic analysis (23).  A simplified

model for the redox reaction between [2Fe2S]1+-YfaE and met-β2 is shown in Scheme 3-1.  This

model represents the binding of YfaE to one subunit of met-β2 (step 1) and reduction of one

ferric iron in met-β2 (step 2).  In the SF spectroscopic experiments, the absorbance changes

monitor the redox chemistry in step 2.

Assuming this model, the kobs can be described by the four microscopic rate constants, k1,

k-1, k2, and k-2 using different equations formulated under different assumptions (Eq 3-1 to 3-3).

Under conditions in which [YfaE] >> [met-β2] and there is a rapid binding equilibrium between

YfaE and met-β2, the kobs can be described by Eq 3-1, which predicts a concentration dependence

of YfaE on kobs that follows a hyperbolic relationship.  The association constant K1 can be

derived directly if such a relationship is observed.  To examine whether the redox reaction

between [2Fe2S]1+-YfaE and met-β2 fulfills the criteria in Eq 3-1, SF spectroscopic experiments

using 0.75 µM met-β2 and increasing amounts 5, 12.5, 25, 50 and 100 µM [2Fe2S]1+-YfaE (~7-

130 fold excess) under anaerobic conditions were carried out (Figure 3-1).  Due to lower signal

to noise ratio at A320nm, which monitors the reduction of met-β2, only the A465nm changes, which

represents the oxidation of [2Fe2S]1+-YfaE, were analyzed.  The kinetic traces were best fit to a
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double-exponential equation.  The kinetic parameters from these fittings are summerized in

Table 3-2.
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Figure 3-1.  Stopped flow kinetics of [2Fe2S]1+-YfaE oxidized by met-β2 (0.75 µM) at 37 ºC
under anaerobic conditions.  Oxidation of [2Fe2S]1+-YfaE was monitored at 465 nm.  Data
points (blue, average of 10 shots, 2000 points per shot collected in logarithmic time scale for
20 sec) of the first 5 sec were fit to two single exponentials (red line).  The concentrations of
[2Fe2S]1+-YfaE (5, 12.5, 25, 50 and 100 µM) are indicated.
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Table 3-2.  Kinetic parameters of YfaE oxidation by 0.75 µM met-β2.

 [YfaE], µM kobs-fast (s-1) ΔA465nm kobs-slow (s-1) ΔA465nm

5 0.46 0.014 0.08 0.006

12.5 1.76 0.011 0.60 0.004

25 3.03 0.013 0.46 0.008

50 3.7 0.014 0.42 0.010

100 7.4 0.015 0.39 0.016
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Figure 3-2.  Concentration dependence of the kobs from reactions between met-β2 (0.75 µM)
and [2Fe2S]1+-YfaE (5, 12.5, 25, 50, 100 µM) under anaerobic conditions.  The kobs (blue,
kobs-fast; red, kobs-slow) from in Table 3-2 are plotted against [YfaE] and fit to Eq 3-1 (black
line).  (A) the kobs are plotted against 5-100 µM YfaE, (B) the kobs are plotted against 5-50
µM YfaE.
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Table 3-2 shows the kobs-fast increases with the [YfaE] with no sign of saturation, and the

kobs-slow increases with the [YfaE] at lower [YfaE] but decreases slightly at higher [YfaE].  The

amplitudes from the fast phase are very similar and represent ~90% reduction of the total iron in

met-β2.  The amplitudes of the slower phase increase with the [YfaE], and reach ~50% of total

amplitude at [YfaE] = 100 µM.  The source of oxidant that is responsible for this slower phase is

not clear.  It may be associated with multiple FeS species in the reconstituted YfaE.

To examine whether the concentration dependence of kobs follows a hyperbolic trend

defined by Eq 3-1, the kobs were plotted against [YfaE] and fit to Eq 3-1 (A, Figure 3-2).  The

results show that there is no good correlation between the data points and the trend lines.  A Kd

of 500 µM can be derived from the fitting on kobs-fast, which is highly unlikely given the known

[β2] in vivo (~2 µM) (17). A negative k-2 was derived from fitting on kobs-slow, which indicates the

inaccuracy of the equation.  The kobs from a different range of [YfaE] (5-50 µM) were also fit to

Eq 3-1 (B, Figure 3-2).  Even though the kobs-fast in this concentration range show a better

correlation with Eq 3-1, in both fast and slow kobs, a negative k-2 was derived, indicating the

inaccuracy of the equation.

The kobs-fast and kobs-slow were also fit to Eq 3-2 and Eq 3-3.  In neither case a correlation

between the data and curve fits were observed, suggesting that the simplified model in Scheme

3-1 is insufficient to describe the complicated redox reaction between [2Fe2S]1+-YfaE and met-

β2.  These results suggest that it is not feasible to derive the binding constants between

[2Fe2S]1+-YfaE and met-β2 from this simple kinetic analysis.
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Efforts to determine the Kd between [2Fe2S]1+-YfaE and apo-β2 by ITC

Due to the inability to determine the binding affinity between [2Fe2S]1+-YfaE and met-β2

by SF kinetic analysis, we decided to explore isothermal titration calorimetry (ITC) to determine

the Kd.  This method has been utilized to measure the Kd between MMOR and MMO, and

between a 2Fe2S-putidaredoxin and its redox partners, NADH-putidaredoxin reductase and

cytochrome P450cam (1, 24).  These experiments were carried out under aerobic conditions

using the oxidized form of 2Fe2S-proteins.  The instability of oxidized YfaEs suggested

however, that our titrations would need to be carried out under anaerobic conditions.  Anaerobic

ITC has been successful in determining the binding affinity of ferrous iron with frataxin (25, 26),

and our experimental approach was modeled based on these methods.

Since the reduced YfaE reduces met-β2, producing heat exchange not related to the

binding, the met-β2 was substituted with apo-β2.  Structural studies suggest that the overall

structure of apo-β2, diferrous-β2 and met-β2 are similar, so apo-β2 was used in the initial ITC

experiments (27-29).  In addition, Mn2+-loaded β2 was considered as an alternative for the ITC

experiments (23).  Initial experiments used conditions employed in the successful determination

of Kd between oxidized MMOR-Fdx and MMO (1).

Figure 3-3 shows the results of titrating ~10 µM apo-β2 with ~500 µM [2Fe2S]1+-YfaE.

The baseline is not stable (see first 30 min) and the signals from the injections are overwhelmed

by the drifting of the baseline.  After about 40 min, the baseline looks more stable but the signals

from each injection do not form the sharp peaks typically seen in ITC titration curves.  The

titration was carried out over 2 h and the sample was then transferred to a quartz cuvette fitted

with a gas-tight screw cap and the UV-visible spectrum was recorded (B, Figure 3-3).  The

spectrum indicated a mixture of apo-β2 and completely oxidized YfaE.  It is possible that the
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substantial baseline drift in first 30 min is associated with oxidation of YfaE, and subsequent to

its oxidation, the protein started to form insoluble aggregates judged observable precipitation.

This precipitation could explain the slow heat exchange observed in the signal between 40 to 120

min.  We suspected that the O2 contamination were from the impurities of the N2, so the N2 was

replaced by high-purity argon for the evacuation-refill cycles.  However, oxidation of YfaE still

occurred during the titration, causing an unstable baseline, which made data analysis impossible.

Even though there was no leakage observed in the glove bag, it is possible that the space inside

the ITC instrument may have trapped air that was difficult to exchange during the ~2 h

evacuation-refill cycles.

These results suggest the challenges in maintaining a strictly anaerobic environment to

measure the binding constant between [2Fe2S]1+-YfaE and apo-β2.  However, recent discoveries

that oxidized YfaE is relatively stable in the presence of DTT and that certain YfaE mutants

might remain soluble in the oxidized state could make the determination of binding affinity

between oxidized YfaE and mt-β2 by ITC possible (see Chapter 5).
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Figure 3-3.  Efforts to determine the binding constant between [2Fe2S]1+-YfaE and apo-β2 by
anaerobic ITC.  (A) Apo-β2 (10 µM, 1.430 mL in the calorimeter cell) was titrated with
[2Fe2S]1+-YfaE (489 µM in a 300 µL injection syringe) at 4 ºC in an anaerobic glove bag
filled with N2.  Each heat pulse corresponds to a 10 µL injection of YfaE in 5 min intervals
into the calorimeter cell.  (B) UV-visible spectrum of the sample at the end of the titration.
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Efforts to determine the Kd between [2Fe2S]1+-YfaE and apo-β2 by centrifugal

ultrafiltration

A third method to measure the binding constant is centrifugal ultrafiltration (30).  For this

method to be applicable in the determination of the binding constant between [2Fe2S]1+-YfaE

and apo-β2, a semi-permeable membrane that can separate YfaE from apo-β2 and YfaE-apo-β2

complex needs to be found.  Furthermore, the membrane cannot have any non-specific binding to

the proteins (30, 31).  We first tested whether YfaE could freely flow through a YM30

membrane, which is reoutinely used to concentrate β2.  Since YfaE is a monomer of ~9 kDa, it

was expected to pass freely through the YM30 membrane, which allows filtration of molecules

less than 30 kDa.  Figure 3-4 shows the results of the centrifugal ultrafiltration carried out in the

glove box in the cold room.  Unfortunately, most of the YfaE remained in the concentrate after

centrifugation.  The UV-visible spectra of the concentrate indicated that YfaE stayed in the

reduced form, therefore, the possibility of YfaE aggregates due to oxidation of YfaE can be ruled

out.  Furthermore, about 10% of YfaE was lost, probably due to non-specific binding to the

membrane.  Other membranes with different molecular mass cutoff (YM3, YM10 and YM50)

were also tested and the same results were obtained, suggesting that this method is not practical

for measuring the binding constant between YfaE and β2.
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Figure 3-4.  Evaluation of the anaerobic centrifugal ultrafiltration method for determination
of the binding constant between [2Fe2S]1+-YfaE and apo-β2.  In an anaerobic chamber at 4
ºC, 30 µM [2Fe2S]1+-YfaE was loaded into YM30 microcon pre-washed with sodium
dithionite solution and centrifuged at 10,000g for 7 min.  The amount of the protein retained
above the membrane and in the flow through were determined by Bradford assay using BSA
as a standard.  The amount of the protein that precipitates on the membrane was calculated
by subtracting the original amount of YfaE from the amount that was retained and eluted.
Results in percentage of original amount of YfaE are shown (four independent
measurements).
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Probing the binding sites between YfaE and β2 by site-directed mutagenesis

After failed attempts to determine the binding affinity between YfaE and β2, we were

next interested in understanding the surfaces defining the interactions of the two protein using

mutagenesis.  Previous studies of Fox et al established the binding surface between Δ9D and a

plant ferredoxin (6).  The similarities of the electron transfer (ET) to Δ9D reduction and that for

β2, provided the basis for this proposal that the surfaces interactions between YfaE and β2 might

be similar and largely governed by electrostatic interactions.  Studies on the surfaces interactions

between MMOR-Fd(1-98) and MMO also suggest the importance of electrostatic interactions (1,

5).  Figure 3-5 shows the structural model of Δ9D (32) with the three key lysines that have been

established to be important for interaction with p-Fdx and the proposed electron transfer pathway

to reduce the diferric center highlighted.  Two lysines, K56 and K60, are located in the same

unstructured strand with W62, a surface tryptophan in the proposed ET pathway.  A double

K56A/K60A mutant caused a 250-fold decrease in kcat/Km of Δ9D (250-fold increase in Km)

when using a p-Fdx as an electron donor.  A third conserved lysine, K230 is located on a

neighboring α-helix that also contains D228, which is proposed to modulate the reduction

potential of W62 in the ET pathway.  A single K230A mutation decreased the kcat/Km by 2400

fold (2100-fold increase in Km).  The triple mutant, K56A/K60A/K230A diminished the kcat/Km

of Δ9D by 700,000 fold (6).  These studies provided the basis for Fox’s proposal of the docking

surface between the two proteins.

Based on these observations, we examined the 16 lysines in β2 (Figure 3-6).  We

established by sequence alignments that 9 of these 16 lysines are conserved (Figure 3-7).  Three

of these lysines (K38, K42 and K229) are located in close proximity to the diferric-oxo cluster

and the conserved amino acids in the proposed ET pathway (B, Figure 3-6).  K42 and K229 are
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conserved, while K38 is highly conserved.  Analogous to the K56 and K60 in Δ9D, the K38 and

K42 in β2 are located in the α-helix connected to an unstructured region containing W48.  A

third lysine, K229, is located on the same α-helix as D237 in β2, the residue that hydrogen bonds

with W48.  The relative arrangements of the three conserved lysines are obviously not the same

in β2 and Δ9D.  This variation may define the specificity of each diiron protein for a specific

ferredoxin.

K60

K230

K56

Figure 3-5.  Key lysines in Δ9D (pdb file 1AFR) identified for interaction with Fdx.
Green: the conserved lysines proposed for binding with Fdx.  Red:  proposed electron
transfer pathway consist of W, H and D.  Orange CPK: ferric irons.
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K38
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Figure 3-6.  Lysines (green) in β2 (pdb file 1AV8) to determine a putative interaction
surface with YfaE.  Red:  proposed electron transfer pathway composed of W, H and D.
Orange CPK: ferric irons.  Red CPK: oxygen atom.  (A) shows all 16 lysines in β2.  (B)
shows the three conserved lysines near the diferric-oxo cluster and the proposed electron
transfer pathway.
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Figure 3-7.  Sequence alignment between Δ9D and a number of class Ia β2s.  ClustalW2
(http://www.ebi.ac.uk/tools/clustalw2) was used to align protein sequences of Δ9D and class Ia
β2s.  The conserved surface lysines (K38, K42, K229 in E. coli β2; K56, K60, K230 in Δ9D)
proposed to interact with ferredoxins are indicated in blue boxes.  The conserved residues (W48,
H118, D237 in E. coli β2; W62, H144, D228 in Δ9D) proposed to be in the electron transfer
pathways are labeled in red boxes.  Ec: Escherichia coli, Ac: Actinobacillus
actinomycetemcomitans, Ba: Buchnera aphidicola, Erc: Erwinia carotovora, Ng: Neisseria
gonorrhoeae, Pm: Pasteurella multocida, Sb: Salmonella bongori, Sf: Shigella flexneri, Vc:
Vibrio cholerae, Ye: Yersinia enterocolitica, Pa: Photorhabdus asymbiotica, Prm: Proteus
mirabilis.
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From the same binding studies by Fox and coworkers, a glutamate (E31) in the p-Fdx

was proposed to interact with K60 in Δ9D.  However, no experiment has been carried out to

verify this proposal.  Sequence alignments between YfaEs and the p-Fdx indicated that only one

glutamate is conserved (E26 inYfaE).  In addition, four cysteines proposed to be ligands with

2Fe2S cluster are also conserved (Figure 3-8).  To gain some insights as to whether E26 is

structurally conserved with the E31 in Fdx, a homology model of YfaE based on the crystal

structure of the p-Fdx was generated (Figure 3-9).  The four conserved cysteinyl ligands in YfaE

align in the same orientations as those in p-Fdx.  The conserved glutamate (red, Figure 3-9) is

located in a small α-helix at the same relative position to the FeS cluster in both YfaE and p-Fdx,

suggesting the E26 in YfaE could function in a similar capacity as that proposed for E31 in p-

Fdx.  Interestingly, the C-terminus of p-Fdx forms a small helix that is located adjacent to the

FeS cluster (red arrows, B, Figure 3-9).  This C-terminal α-helix does not exist in YfaE (red

arrows, A, Figure 3-9) as most of the YfaEs have only ~80 amino acids, compared to other

ferredoxins that commonly have ~100 amino acid.  This small C-terminal α-helix may contribute

to the stability of the 2Fe2S clusters in other ferredoxins.

In order to test the role of these surface charged residues in β2 and YfaE, site-directed

mutagenesis was performed and rates of the oxidation of YfaE and reduction of met-β2 were

measured by SF spectroscopy.  If these residues play a role in binding of the two proteins, a

decrease of the observed rate constant should be observed where YfaE does not saturate β2.  To

examine this model, StrepII-tagged β2 single (K38A, K42A and K229A), double (K38A/K42A)

and triple (K38A/K42A/K229A) mutants and a YfaE-E26A mutant were prepared.
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Figure 3-8.  Sequence alignment between YfaEs and Δ9D-ferredoxin.  Program ClustalW2
(http://www.ebi.ac.uk/tools/clustalw2) was used to align the protein sequence of plant
ferredoxin and YfaE-like ferredoxins.  The conserved cysteines  for [2Fe2S] cluster are
labeled in red boxes.  The conserved glutamate proposed for interaction with β2 or Δ9D are
labeled in blue box.  Ec: Escherichia coli, Ac: Actinobacillus actinomycetemcomitans, Ba:
Buchnera aphidicola, Erc: Erwinia carotovora, Ng: Neisseria gonorrhoeae, Pm:
Pasteurella multocida, Sb: Salmonella bongori, Sf: Shigella flexneri, Vc: Vibrio cholerae,
Ye: Yersinia enterocolitica, Pa: Photorhabdus asymbiotica, Prm: Proteus mirabilis
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Figure 3-9.  A homology model of YfaE (A) generated by the software Swiss-Model
(http://swissmodel.expasy.org) using the crystal structure of the plant ferredoxin (B, pdb:
1FXA) as a template for modeling.  Green: four conserved cysteine ligands for the 2Fe2S
cluster; red: conserved glutamate predicted to be important for interacting with β2 or Δ9D;
orange CPK: 2Fe2S cluster.  Red arrows indicate the C-terminal ends of YfaE and plant
Fdx.
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YfaE-E26A isolation and characterization:  As with the wt, YfaE-E26A was expressed in

inclusion bodies.  It was solubilized in 8 M urea and refolded in the presence of Fe2+, Fe3+ and S2-

under strictly anaerobic conditions.  However, unlike wt-YfaE, the E26A mutant was very

unstable. Efforts to further purify the protein via Sephadex G-75 chromatography were

unsuccessful as the process typically takes ~1.5 days.  Under these chromatographic conditions,

the cluster was found to decompose.  Therefore, YfaE-E26A was concentrated and characterized

immediately after elution from the Q-Sepharose column.  The UV-visible spectrum of YfaE-

E26A after anion-exchange chromatography is shown in Figure 3-10.  Features of the absorption

from the reduced YfaE-E26A are very similar to those observed for the wt YfaE.  The oxidized

YfaE-E26A showed absorption peaks at 330, 419 and 458 nm, in contrast to the wt enzyme with

features at 340, 420 and 460 nm.  Furthermore, ratio of the A280nm to 330, 419 and 458 nm were

0.67, 0.47 and 0.41, respectively, compared to 0.83, 0.60 and 0.60 for the wild type.  The lower

ratios for this mutant could be due to lower purity of the mutant because of the omission of the

Sephadex G-75 column.  Another distinguishing feature was ratio of A419nm:A458nm of 1.16,

compared with A420nm:A460nm of 1 in the wt enzyme (Figure 2-4).

Despite the purity of the mutant, its ability to reduce met-β2 was examined by SF

spectroscopy.  The protein concentration was determined from the A419nm, assuming an ε419nm = 11

mM-1cm-1.  The maximum absorption difference and the isosbestic point between oxidized and

reduced YfaE-E26A were shifted from the wt wavelengths to 460 and 317 nm, respectively.

Therefore, the oxidation of YfaE-E26A and the reduction of met-β2 were monitored at 460 and

317 nm in the SF experiments.



175

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

250 300 350 400 450 500 550 600 650 700 750 800

Ab
so

rb
an

ce

Wavelength (nm)

A

B

-0.001
-0.0005

0
0.0005
0.001

0.01 0.1 1 10

-0.001
-0.0005

0
0.0005

0.001

0.01 0.1 1 10

Time (sec)

Residual
460 nm

Residual
317 nm

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.635

0.64

0.645

0.65

0.655

0.66

0.665

0.01 0.1 1 10

A 
46

0 
nm

A 317 nm

Figure 3-10.  UV-visible spectrum of oxidized (red) and reduced (blue) YfaE-E26A (A)
and SF kinetics of reactions between 5 µM met-β2 and 45 µM of Q-Sepharose purified
[2Fe2S]1+-YfaE-E26A at 37 ºC (B).  The same data collection and analysis as Figure 3-
1 were followed except that the oxidation of YfaE and reduction of met-β2 were
monitored at 460 and 317 nm, respectively.
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The results of oxidation of [2Fe2S]1+-YfaE-E26A and reduction of met-β2 are shown in

Figure 3-10 (B) and the kinetic parameters are summarized in Table 3-3.  Similar to wt YfaE,

the SF traces were best fit to two single exponential functions.  The kobs-fast and kobs-slow at 460 and

317 nm were both 1-2 seconds slower than the corresponding kobs for wt-β2.  These results

indicate that under these conditions, the E26A mutation does not alter the reduction of met-β2

dramatically, suggesting affinity is not altered.  Because of the instability of YfaE-E26A, the

focus changed to lysine mutants of β2.

Preparation of K→A β2 mutants and characterization of their redox properties:  To facilitate the

rapid purification of β2 mutants, plasmid pBAD-C-S-nrdB with a C-terminal StrepII tag (17) was

used as the PCR template for site-directed mutagenesis.  The mutant proteins were expressed in

E. coli TOP10 cells by induction with 0.5 mM arabinose for 2 h and purified by our published

procedure (17).  Typically 0.7-1.0 Y•/β2 and ~3.0-3.4 Fe/β2 were obtained from the purified wt

and mutant β2 without in vitro reconstitution of the cluster.  Each purified β2 was then treated

with HU for ~30 min at 4 ºC to reduce the Y•, passed through a Sephadex G-25 column and

brought into the glove box after being degassed on a Schlenk line.  Met-β2 (5 µM) and [2Fe2S]1+-

YfaE (45 µM) were used as the initial conditions for the SF spectroscopic experiments because a

significant ΔA is expected, which facilitates the data analysis.

Figure 3-11 shows the SF kinetics traces between [2Fe2S]1+-YfaE and met-β2 (wt and

mutants) under anaerobic conditions.  In all cases the data are best fit to two single exponentials.

Kinetic parameters obtained from Kaleidagraph analysis are summarized in Table 3-3.  The data

indicate that the single K→A β2 mutants have lower kobs (2 to 10 fold) monitored by ΔA465nm and

ΔA320nm, in contrast with observations in Δ9D single mutants (Table 3-4).  In most cases the kobs
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for the slower phase is affected more by the single mutations than the fast phase.  A similar trend

is observed with β2-K38A/K42A double mutant.  The kobs-slow decreased by ~20 fold relative to wt

in both YfaE oxidation and met-β2 reduction, whereas the kobs-fast are similar to those in wt.  In the

β2-K38A/K42A/K229A triple mutant, both kobs-fast and kobs-slow are decreased 80 to 250 fold.

Nevertheless, the decrease is not as dramatic as in the Δ9D triple mutant in the steady state

measurements (Table 3-4).  These results suggest that the three conserved surface lysines in β2

play a role in redox reaction which could be related to binding to YfaE.

Table 3-3.  Summary of kinetic parameters from stopped-flow experiments of reactions between
[2Fe2S]1+-YfaE (45 µM) and met-β2 (5 µM).

Sample kobs-fast,

460nm

ΔA460nm

-fast

kobs-slow,

460nm

ΔA460nm

-slow,

kobs-fast,

317nm

ΔA317nm

-fast

kobs-slow,

317nm

ΔA317nm

-slow,

YfaE-E26A 2.9 0.028 1.0 0.039 3.5 0.011 0.57 0.012

Sample kobs-fast,

465nm

ΔA465nm

-fast

kobs-slow,

465nm

ΔA465nm

-slow,

kobs-fast,

320nm

ΔA320nm

-fast

kobs-slow,

320nm

ΔA320nm

-slow,

NS-β2
7.0 0.035 2.4 0.047 4.6 0.025 0.79 0.006

CS-β2
4.3 0.068 1.3 0.030 6.2 0.023 1.3 0.017

CS-β2-K38A 1.3 0.049 0.61 0.045 4.0 0.008 0.44 0.021

CS-β2-K42A 1.5 0.019 0.26 0.080 1.7 0.005 0.21 0.034

CS-β2-K229A 2.3 0.084 0.10 0.011 4.0 0.026 1.0 0.009

CS-β2-
K38A/K42A

3.8 0.016 0.06 0.045 2.6 0.006 0.052 0.019

CS-β2-
K38A/K42A/K229A

0.047 0.081 0.017 0.047 0.025 0.036 0.016 0.009
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Table 3-4.  Steady state kinetics for the Δ9D-catalyzed conversion of 18:0-ACP to 18:1-ACP
measured at varying concentrations of p-Fdx (Adapted from Ref. (6)).

Δ9D isoform kcat (min-1) Km (mM) kcat/Km (mM-1min-1)

wt 28 0.56 50

K56A 42 18 2.4

K60A 40 3.2 12

K230A 24 1194 0.02

K56A/K60A 30 140 0.2

K56A/K60A/K230A NDa NDa 0.00007

a: ND, not determined
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Figure 3-11.  SF kinetics of 5 µM met-β2 wt or mutants react with 45 µM [2Fe2S]1+-YfaE
at 37 ºC under anaerobic conditions.  The same data collection conditions and analysis as
Figure 3-1 were followed.  The kinetic parameters are summarized in Table 3-3.  Notice
the different time scales between experiments.
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Determination of concentration of YfaE in E. coli by quantitative Western blotting

 There are several studies on ferredoxins and their corresponding protein substrates in

vivo, however, few have determined the concentrations of the two proteins inside the cells.  In

one study on chloroplasts and root plastids in maize, the molar ratios of Fdx I (leaf) and Fdx III

(root) to a substrate, sulfite reductase were found to be 30:1 and 3:1, respectively, therefore,

these ferredoxins are likely to act stoichiometrically in reducing sulfite reductase in vivo (33).

Thus, prior to characterizing the YfaE/β2 interaction in detail, we decided to determine if YfaE

acts stoichiometrically or catalytically in vivo, and to investigate the proposal that Fre is the Fdx

reductase.

The method of choice for analysis of number of molecules of proteins under different

growth conditions is quantitative Westerns (17, 34).  Antibodies (Abs) to β2 have previously

been obtained and Abs to purified [2Fe2S]1+-YfaE were raised in rabbits.  E. coli K-12 wt cells

were grown in LB medium at 37 ºC until the culture reached mid-log phase (A600nm ~0.8), during

which the rapid cell division may demand higher [Y•] that can be activated/maintained by YfaE.

The cells were then harvested by centrifugation, suspended and serial diluted in PBS at 4 ºC for

cell counting.  The standard deviation was 7%, which contrast with 30% we previously reported.

The major difference is that in previous studies cells were grown to A600nm ~ 1.8.  It is possible

that the viability of the cells decreases after the culture is saturated, causing a higher standard

deviation in cell counting (17).

Because of the instability of oxidized YfaE that could aggregate and precipitate during

the preparation of crude cell lysate, the suspended E. coli K-12 wt cells were lysed directly and

completely in the Laemmli buffer and loaded directly onto gels for SDS-PAGE analysis.  To

verify the reliability of this procedure, the in vivo concentration of β2 was determined and
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compared to our published results.  Figure 3-12 shows a typical quantitative Western blot for β2.

Purified β2 was used to generate a standard curve following our published procedures (17).  Cells

were suspended and lysed in Laemmli buffer (1.4 × 107 cells/µL Laemmli buffer) and loaded (1

to 30 µL) onto the gel.  Western signals that fell within the range of the standard curve were

analyzed.  The results indicate the [β2] is 3.1 ± 0.3 µM (assuming 0.85 fL per cell) (35) or 1562 ±

150 β2 molecules per cell, which is in good agreement with our previous results (2.2 ± 0.4 µM)

(17).
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Figure 3-12.  Quantitative Western blot analysis to determine the in vivo concentration of
β2 in wt E. coli cells. Growth in LB to mid-log phase  (A) Western signals of purified β2

standards and whole cells of wt E. coli.  The amount of the protein standards in each lane
and the number of cells loaded are indicated above each lane.  (B) A standard curve
generated from densitometry analysis of the signals from purified β2 standards.
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The determination of [YfaE] in vivo turned out to be challenging due to the very poor

YfaE Abs.  Even at a 500-fold dilution of the YfaE Abs, the Western signal from 10 ng of

purified YfaE was very weak.  Attempts to increase the titer of the Abs through acetone powder

purification using ΔyfaE cells were unsuccessful.  Because [2Fe2S]-YfaE is ~9.4 kDa, too small

to generate sufficient immune response in rabbits, it was conjugated through its Cys or Lys to

Keyhole Limpet Hemocyanin and injected into rabbits with Freund’s Complete Adjuvant (FCA).

The conjugation and injection were performed by Covance.  It is possible that [2Fe2S]1+-YfaE

oxidized and precipitated during shipment or during preparation of the conjugated immunogen.

To avoid the problem associated with the instability of oxidized YfaE, purified [2Fe2S]1+-YfaE

was loaded onto 15% SDS-PAGE and the acrylamide gel bands of YfaE were sent to Covance to

mix with FCA directly for generating immune response in rabbits.  This alternative procedure

proved to be more effective and the new antibodies have much better affinity to YfaE under the

same dilution (500-fold).

Figure 3-13 shows the results of the quantitative Western blots for YfaE.  The new YfaE

antibodies can detect 1 ng of purified YfaE and the Western signals are linear to 12.5 ng.

However, in the whole cell samples suspended in Laemmli buffer that contain as high as 4.2 ×

108 cells, no signal of YfaE was detected.  Based on this result, the [YfaE] in vivo is < 0.3 µM

(~160 YfaE molecules per cell).  If this number is correct, then YfaE must act catalytically in

reducing met-β2 in vivo.
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Figure 3-13.  Quantitative Western blot analysis to determine the concentration of YfaE in
wt E. coli cells.  (A) Western signals of purified YfaE standards and wt E. coli cells.  The
amount of the protein standard and the number of cells loaded are indicated above each
lane.  (B) A standard curve generated from densitometry analysis of the signals from
purified YfaE standards.
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Cloning, expression and purification of Fre

In order to further examine whether YfaE can catalytically reduce met-β2, we cloned

three possible candidates, Fre, Fpr and YqjH that might be able to function as a YfaE-reductase.

Fre (233 a.a.) has been identified as a flavin reductase, which was proposed to play a role in the

maintenance of β2 diferric-Y• cofactor (7-9).  Ferredoxin-NADP reductase, Fpr (248 a.a., also

called Fnr, flavodoxin reductase) is an FAD containing protein that reduces ferredoxin and

flavodoxin by consumption of NADPH (36, 37).  YqjH (254 a.a.) is also an FAD-containing

protein that is postulated to be a cytoplasmic ferric-siderophore reductase (38).  Because of the

implications of Fre’s involvement in the cofactor maintenance from previous studies, we first

focused on determining whether Fre is able to reduce YfaE.

Fre was amplified from the genome of wt E. coli K-12 by PCR and cloned into pET24a.

The plasmid was transformed into BL21(DE3) cells grown in LB-kanamycin medium and the

protein expression was induced by 1 mM IPTG for 4 h.  Published protocols were followed for

purification of Fre (14).  Crude cell lysate was loaded onto a Phenyl Sepharose column and

washed with a buffer containing 30% ammonium sulfate followed by a second wash with buffer

containing 5% ammonium sulfate.  Fre was then eluted with buffer containing 0% ammonium

sulfate.  Fractions were collected and the activity of the eluent was determined by the rate of

NADPH consumption in the presence of riboflavin (Figure 3-14).  Based on the A280nm, the

majority of the protein eluted before fraction 20.  However, the activity assay indicates that the

majority of the “Fre” elutes in fractions 30 to 100.  Fractions 29 to 95 with activity higher than

15 units, were combined and concentrated by YM10 membranes.

Concentrated protein (13 mg/mL) was further purified by Sephadex G-75

chromatography.  The protein elution and activity profile are shown in Figure 3-14.  Fractions
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14 to 16 from the major peak, with highest activity, were combined and concentrated. SDS-

PAGE analysis indicates that Fre is nearly homogeneous and a UV-visible spectrum reveals that

it does not co-purify with flavin, consistent with previous reports (Figure 3-15).  Table 3-5

summarizes the purification protocol.  The specific activity of purified Fre is 120 µmol

NADPH·min-1·mg-1, which is consistent with the literature value (14).
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Figure 3-14.  Purification of Fre by Phenyl Sepharose 6 Fast Flow (A) and Sephadex G-
75 (B) chromatography.  Fractions were monitored by A280nm (red) and by activity (blue)
monitoring NADPH consumption (A340nm).
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Figure 3-15.  SDS-PAGE gel (15%) and UV-visible spectrum of Fre.  (A) Each
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after Sephadex G-75 purification.
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Table 3-5.  Purification Table of Fre

volume
(mL)

concentration
(mg/mL)

yield
(mg)

% yield
 (mg) activity % yield

 (activity)
specific
activity b

cell lysate 42 9.5 399 100 5600000 100 14

flow through 42 1.1 46.2 12 66000 1.2 1,400

wash 1a 200 0.04 8 2 13000 0.2 1.6

wash 2a 160 0.7 112 28 13000 0.2 0.12

Phenyl
Sepharose

2.6 13 34 8 2550000 46 75

G-75 1.2 15 18 5 2150000 38 120

a Buffers (25 mM Tris-HCl, pH 7.5, 10% glycerol) containing 30% and 5% ammonium sulfate
were used for wash 1 and wash 2 from the Phenyl Sepharose column, respectively.
b µmol·min-1·mg-1
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Reduction of YfaE by Fre

The capability of Fre to reduce oxidized YfaE was examined.  To prepare oxidized YfaE,

purified [2Fe2S]1+-YfaE was removed from the glove box and exposed to O2.  All solutions

including [2Fe2S]2+-YfaE, riboflavin, NADPH and Fre were then degassed and brought into the

glove box to prevent reoxidation of reduced YfaE and reduced flavin during the titration.

Riboflavin and NADPH were chosen as substrates for Fre as previous studies had shown that this

combination gives the highest kcat and kcat/Km (7, 14). To examine whether Fre can catalytically

reduce YfaE, a mixture of [2Fe2S]2+-YfaE (18.5 µM), riboflavin (0.8 µM) and Fre (0.8 µM) was

titrated with 1 mM NADPH in 2 to 10 µL aliquots under anaerobic conditions.  The

concentration of each reagent was chosen for ease in monitoring the disappearance of oxidized

YfaE at 420 nm with minimal interference from riboflavin.

The results of this titration are shown in Figure 3-16.  The results establish that YfaE is

reduced upon addition of NADPH.  The amount of YfaE (9.4 nmol) reduction was complete

after addition of 24 nmol NADPH, which theoretically can provide 48 nmol electrons.

Surprisingly no NADPH absorption at 340 nm was detected despite its presence in excess of that

required for reduction.  This result suggests that “O2” was not completely during degassing on

the Schlenk line and that reduced flavin was reoxidized by O2 and re-reduced by NADPH to

consume all the NADPH.  At the end point of the titration, the sample was exposed to oxygen

and features of the oxidized YfaE reappeared, indicating the redox cycle is reversible.

Despite the defect of O2 contamination in this experiment, the results establish that YfaE

can be catalytically reduced by the Fre reduction system.
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Figure 3-16.  Reduction of oxidized YfaE by NADPH, riboflavin, and Fre under anaerobic
conditions.  Oxidized YfaE (9.4 nmol, 18.5 µM) was incubated with 0.8 µM Fre and 0.8 µM
riboflavin (red) followed by titration with NADPH until an end point was reached.  Spectra
after addition of 12 nmol/24 µM (green) or 24 nmol/48 µM (orange, end point) NADPH are
shown.  After the titration end point was reached, the sample was oxidized by re-addition of
an O2 atmosphere to the cuvette (blue).  Changes in absorbance due to dilution were
normalized to the original volume.



190

Reduction of YfaE by photoreduced FMN

The flavin in Fre is not tightly bound, thus it is possible that the reductant of [2Fe2S]2+-

YfaE is free reduced riboflavin (RFH2) and not Fre•RFH2.  To examine whether [2Fe2S]2+-YfaE

can directly be reduced by reduced flavins, FMN was incubated with sodium oxalate under

anaerobic conditions and exposed to light to generate FMNH2 (Figure 3-17) (22).  Time course

studies indicated an exposure time of 3 min was sufficient to completely reduce FMN.

Oxidized YfaE (14 nmol) was then titrated with FMNH2 under anaerobic conditions.

Since FMN species do not absorb at λ > 510 nm, the reduction of YfaE was monitored at 550

nm.  The [YfaE] was chosen to have an A550nm > 0.2.  Upon addition of FMNH2, the absorbance

at 550 nm decreased concomitant with an increase at ~460 nm region, indicating reduction of

YfaE and oxidation of FMNH2, respectively (Figure 3-17).  A titration end point was reached

after addition of 16 nmol FMNH2 (32 nmol of e-).   Exposure to oxygen after the end point

resulted in complete re-oxidation of YfaE as judged by A550nm.  The oxidized sample also showed

a strong increase in absorption at the 460 nm region, indicating a proportion of FMNH2 added

was still in the reduced state and became oxidized after exposure to oxygen.  This is supported

by the stoichiometry observed in this titration in which 16 nmol FMNH2 was needed to reduce

14 nmol YfaE, suggesting an equilibrium mixture of FMNH2 and FMN existed during the course

of titration.  Semi-quinone FMNH• has absorption features around 600 nm region and was not

observed during the course of titration, judging from the spectra (39).  This experiment

demonstrates that YfaE is reduced directly by reduced flavins, suggesting direct contact with Fre

is not required during the Fre-mediated reductions.
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Figure 3-17.  Photoreduction of FMN by oxalate (A) and reduction of 39 µM (14 nmol)
oxidized YfaE by 216 µM FMNH2 (B).  (A) A mixture of 0.2 mM FMN and 2 mM sodium
oxalate was exposed to 150 W-tungsten lamp for 3 min to generated FMNH2.  Spectra
before (blue) and after (red) exposure to light are shown.  (B) Oxidized YfaE (blue) was
titrated with FMNH2 under anaerobic conditions.  Reduction of YfaE was monitored at
~550 nm region in which FMN does not absorb (red arrow).  A titration end point was
reached after addition of 16 nmol FMNH2, at which point, exposure to oxygen resulted a
complete oxidation of YfaE judged by A550nm.  The absorption between 300 to 500 nm
region indicates features from oxidized YfaE and FMN.  Spectra have been normalized for
dilution.
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Reduction of met-β2 in the presence of YfaE, Fre, riboflavin and NADPH

After showing that YfaE can be reduced by NADPH in the presence of catalytic amounts

of Fre and riboflavin, we investigated whether met-β2 can be reduced by a catalytic amount of

YfaE in the presence of the Fre reducing system.  Met-β2 (20 µM) was mixed with [2Fe2S]1+-

YfaE (0.5 µM), Fre (0.5 µM) and riboflavin (0.5 µM) and titrated with 1 mM NADPH in 1-2 µL

aliquots under anaerobic conditions.  The concentrations of each reagent were chosen to have

clear absorption features associated with met-β2 (A370nm > 0.15) and minimal interference from

YfaE, Fre or riboflavin (A370nm < 0.01).

Figure 3-18 shows the results of the titration.  Upon addition of 5 nmol NADPH, ~2.6

nmol met-β2 (~8.8 nmol Fe, as 3.4 Fe/β2) was reduced as judged from ΔA370nm.  The reaction was

complete within the 2 min, the time required to obtain the spectrum.  The titration end point was

reached after addition of 11 nmol NADPH.  Exposure to oxygen at this point resulted a

generation of 1.4 Y•/β2 quantitated by the dropline method (orange line, A, Figure 3-18) (40).

Because 11 nmol NADPH can provide 22 nmol reducing equivalent, the generation of 10.1 nmol

Y• implies a stoichiometry of 2 Fe reduced per Y• generated.  From the iron content of the

original β2 (3.4 Fe/β2), about 82% ((10.1 nmol Y• ×2)/(7.2 nmol met-β2 × 3.4)) of the total iron in

met-β2 was reduced at the titration end point, similar to results from the titration experiments

with [2Fe2S]1+-YfaE in Chapter 2.  Since there was no excess reductant, the extra reducing

equivalent required for generating the diferric-Y• cofactor was provided by β2 itself, which is

also consistent with the observations in Chapter 2.  Furthermore, unlike the previous two

experiments (Figure 3-16, 3-17) in which more than 50% of the reductants remained in reduced

form, more than 92% of NADPH added was oxidized, suggesting that in the presence of met-β2,

the equilibrium was shifted to favor the reduction of met-β2.
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To examine whether the reduction of met-β2 was mediated by YfaE or by reduced flavin

generated by Fre, a control experiment minus YfaE was carried out (B, Figure 3-18).  In contrast

to the results observed when the titration was done in the presence of YfaE, the addition of 5

nmol NADPH followed immediately by recording the spectrum (~2 min) resulted in an increase

of the absorption at 340 nm, suggesting that most of the NADPH remained reduced.  The

difference spectrum from the reaction mixture before and after addition of NADPH revealed

96% in the reduced state.  The 4% of NADPH oxidized (~0.2 nmol) could have been used to

reduce the 0.18 nmol riboflavin by Fre and not for the reduction of met-β2.  After 10 min of

incubation, a slight decrease of the absorption features between 320 to 375 nm was observed (B,

Figure 3-18).  If this absorption decrease was completely due to oxidation of NADPH, 0.85

nmol NADPH (~17% of total) was oxidized during the 10 min incubation time, in contrast to

~100% oxidation in less than 2 min in the presence of YfaE (A, Figure 3-18).

These results support the idea that the reduction of met-β2 in the presence of the Fre

reducing system is mediated by YfaE instead of direct reduction by reduced flavin generated by

Fre.  Furthermore, 20 µM met-β2 was reduced by 0.5 µM YfaE, 40-fold less, implying YfaE acts

catalytically in reducing met-β2 in the presence of the Fre reducing system.
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Figure 3-18.  Reduction of met-β2 by catalytic amounts of YfaE and Fre.  (A) Under anaerobic
conditions, 20 µM of met-β2 (7.2 nmol) was mixed with 0.5 µM (0.18 nmol) of YfaE, Fre, and
riboflavin (blue), followed by titration with 1 mM NADPH until an end point was reached.
Spectra after addition of 5 nmol (14 µM) (red) or 11 nmol (31 µM) (green, end point) NADPH
are shown.  After the end point was reached, the sample was oxidized by exposure to O2 (orange).
Changes in absorbance due to dilution were normalized to the original volume.  Inset: Difference
spectrum between the end point of NADPH titration (green) and the oxygen addition (orange).
(B) A control experiment, with the same conditions as in (A), except that YfaE was omitted.  A
mixture of met-β2 (7.2 nmol), riboflavin (0.18 nmol) and Fre (0.18 nmol) (blue) was titrated with
5 nmol NADPH (red) under anaerobic conditions.  Ten minute after addition of 5 nmol NADPH
(black).
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Determination of in vivo concentration of Fre by quantitative Western blotting

The titration experiment implies that the Fre reducing system catalytically cycles YfaE,

which reduces met-β2.  Because of the complexity of the reactions, which involve multiple

enzymes and reagents, knowing the relative ratio between Fre, YfaE and met-β2 in vivo could

help design in vitro kinetic experiments that reflect physiological conditions inside the cells.  The

concentration of Fre in vivo was determined by quantitative Western blots using the whole cell

samples of wt E. coli K-12 grown in LB to mid-log phase.  Figure 3-19 shows the results of the

quantitative Western blots.  From the densitometry analysis, the concentration of Fre is 3.6 ± 0.3

µM (1814 ± 151 Fre molecules per cell, four measurements).  This result implies YfaE is

limiting in the cell grown under these conditions and the maintenance of the Y• may be

controlled by regulating the expression of YfaE in vivo.
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Figure 3-19.  Quantitative Western blot analysis to determine the in vivo concentration of Fre
in wt E. coli K-12.  (A) Western signals of purified Fre standards and whole cells of wt E. coli.
The amount of the protein standard and the number of cells loaded are indicated above each
lane.  (B) A standard curve generated from densitometry analysis of the signals from purified
Fre standards.
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Effects of HU on the growth of BW25113-ΔyfaE

One common way to examine the role of a protein in vivo is to delete the gene and see

the effect of the gene deletion on the cell growth under different growth conditions.  In order to

examine the role of YfaE in vivo, E. coli K-12 BW25113-ΔyfaE was obtained from the National

Institute of Genetics, Japan.  The deletion was confirmed by PCR and DNA sequencing.  The

ΔyfaE was then grown in M9 minimal or LB medium in the presence of varying concentrations

of hydroxyurea (HU), an anti-tumor reagent used clinically that specifically reduces the Y• of

active β2, generating inactive met-β2.  If YfaE is involved in regenerating the Y• in vivo as

suggested from the in vitro experiments, the deletion of yfaE should lead to higher sensitivity to

HU.  In addition to ΔyfaE, effects of HU on the growths of BW25113-Δfre, Δfdx and Δfpr were

also examined.  The isogenic wt strain, E. coli K-12 BW25113 was included as a control.

Cell growth under these different conditions was measured with 4-6 replicates using the

following protocol.  An overnight culture from a single colony of a specific strain was inoculated

into M9 minimal or LB medium and grown at 37 ºC until early log-phase of growth (A600nm

~0.1).  Aliquots of the cell culture (1 mL) were then transferred into a 24-well plate containing 0-

50 mM HU and the cells were grown at 37 ºC with shaking (200 rpm).  The cell growth was

monitored at A630nm.  Since the deletion strains all contain a kanamycin resistant gene, 30 µg/mL

kanamycin was also included in media.  In order to avoid changes in growth rate associated with

kanamycin, the wt control was transformed with plasmid pET9d (empty) which contains the

kanamycin resistant gene.

Figure 3-20 shows the growth curves of wt E. coli and ΔyfaE, Δfre, Δfdx and Δfpr grown

in M9 or LB medium in the presence of HU (0. 10, 30 and 50 mM).  The cell growth in M9

medium was much slower so the A630nm was measured every 30 min for ~9 h after addition of
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HU.  For the cells grown in LB medium, the A630nm was measured every 10 min for ~4.5 h after

addition of HU.

In M9 medium in the presence of 10 mM HU, a significant difference on the cell growth

was observed in ΔyfaE and Δfre, with the ΔyfaE having the largest response.  The effect of 10

mM HU on Δfre seems to be diminished at the later stage of growth.  In the presence of 30 mM

HU, the wt, Δfdx, and Δfpr started to show sensitivity to HU and in the ΔyfaE and Δfre, the

growth was completely stopped.  In the presence of 50 mM HU, all the strains showed no sign of

cell growth.

In normal LB medium the addition of 10 mM HU caused a dramatic decrease in the

growth rate of ΔyfaE, whereas no significant difference was observed in Δfdx and Δfpr.  The wt

and Δfre showed a similar response to 10 mM HU.  The addition of 30 or 50 mM HU caused

similar responses among all the strains except for ΔyfaE, which had minimal growths as in the

presence of 10 mM HU.

In order to make a more quantitative comparison, the doubling times of each strain grown

under different conditions were analyzed.  Figure 3-21 shows the analysis of the effect of HU on

the doubling times.  Because at 30 and 50 mM HU, the cells basically stopped growing, only the

doubling times in the presence of 0 and 10 mM HU are reported.
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Figure 3-20.  Growth curves of wt E. coli and ΔyfaE, Δfre, Δfdx and Δfpr grown in M9 minimal
medium (A) or LB rich medium (B) in the presence of varying concentrations of HU.  Wt E. coli
and its isogenic gene deletion strains were grown in 24-well plates at 37 ºC, 200 rpm in the
presence of 0 mM ( ), 10 mM ( ), 30 mM ( ) and 50 mM ( ) hydroxyurea.  Cell growth was
monitored at A630nm.  Averages of 4-6 independent growths are shown.
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In M9 medium (A, Figure 3-21), the ΔyfaE shows ~75% increase in its doubling time in

the presence of 10 mM, whereas other strains show only ~10% increase.  Similar trends were

observed when the cells are grown in LB medium except for Δfre, in which the doubling time is

already longer than the other strains even in the absence of HU (B, Figure 3-21).  To normalize

for growth rate differences inherent to each strain, the growth rates (inverse of doubling times) at

10 mM HU were compared to that at 0 mM HU in each individual strain.  In this way, only the

effects associated with HU are highlighted (C, Figure 3-21).  The results show that under 10

mM HU, the cells demonstrated similar responses in M9 and LB medium.  The percentages of

growth rate decrease in the presence of 10 mM HU were between 5-20% in all strains except for

ΔyfaE which was ~40%.

These results support the role of YfaE in regenerating the Y• in vivo.  Furthermore, the

fact that the Δfre did not show as dramatic sensitivity to HU as ΔyfaE implies that YfaE may be

recycled by other ferredoxin reductases.  It is noticed that the sensitivity to HU of the Δfre

observed in this experiment is not as dramatic as the response reported in the literature using E.

coli K-12 L1312 (fre::kan) (13, 14).  About 35% decrease in the growth rate was reported, in

contrast to our observation (~20%) (both in M9 minimal medium, 10 mM HU).  However, no

detailed growth conditions were reported, so we have not been able to reproduce their results.
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Figure 3-21.  Doubling times of wt E. coli and ΔyfaE, Δfre, Δfdx and Δfpr strains grown in
M9 minimal medium or LB medium in the presence of HU.  (A) Doubling times of cells
grown in M9 minimal medium.  Black: 0 mM HU, blue: 10 mM HU.  (B) Doubling times of
cells grown in LB medium.  Black: 0 mM HU, red: 10 mM HU.  (C) Effect of HU on the rate
of cell growth in different strains.  The growth rates (inverse of doubling time) of each strain
at 10 mM HU are compared to cells with no HU (normalized to 100%).  Black: cells grown in
M9 medium, orange: cells grown in LB medium.
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Effects of HU on the expression of YfaE, β2 and Fre

The slower growth rates of ΔyfaE and Δfre compared to that of wt in the presence of HU

suggest the involvement of the two proteins in the maintenance of the Y• of β2 in vivo.  To

further examine this proposal, the expression levels of YfaE and Fre in the presence of HU were

examined.  If YfaE and Fre play roles in the reactivation of the Y• of β2, it is likely that the

expression of these two proteins is up-regulated inside the cell in the presence of HU to

counteract the detrimental effect of HU and to ensure cell survival.

Quantitative Western blot analysis on whole cells was employed to examine the

expression levels of YfaE, β2 and Fre.  Wild type E. coli BW25113 cells were grown in LB until

the early log growth phase was reached (A600nm ~ 0.55).  Different amounts of HU (10 and 30

mM) were then added into the culture and the cells were grown for another 1 h before the cell

growth was stopped by incubation on ice for > 30 min.  This time point was chosen based on the

observation that the differences in cell growth in LB (Figure 3-20) start to become more

prominent at ~ 1 h after addition of HU, after enough time has elapsed for HU to enter the cell

and reduce the Y•, and the time for the cell to respond to the diminished [Y•].  Since HU could

dramatically change the viability of the cell, the amounts of cells loaded on the SDS-PAGE were

quantitated based on A600nm instead of cell counting on LB-agar plates.

Figure 3-22 shows the results of Western blots.  In the absence of HU or in the presence

of 10 mM HU, no YfaE can be detected in the whole cells, which is similar to our previous

observations.  However, after treatment of 30 mM HU for 1 h, an observable signal appears,

suggesting a higher expression of YfaE under such conditions.  Based on the signal intensity of

YfaE (30 mM HU, 1 h) relative to YfaE standards (A, Figure 3-22), we can estimate that the

concentration of YfaE in vivo is ~ 1.3 µM (~655 molecule/cell) under these conditions, assuming
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a cell volume of 0.85 fL/cell (35).  Therefore, the concentration of YfaE has been up-regulated at

least 4-fold compared to in the absence of HU.

The Western signals of [β2] in the whole cells show that in the presence of 10 mM HU, in

contrast to YfaE, the expression of β2 increases (~2 fold) compared to without HU (Figure 3-

22).  The increased amount of HU (30 mM) does not seem to cause a further increase of the

expression of β2.  In the case of Fre, the expressions of Fre are very similar between 0 and 10

mM HU.  In the presence of 30 mM HU, ~2-fold increase of the Western signal is observed,

suggesting an up-regulation of expression of Fre under these conditions (Figure 3-22).  These

results indicate that in response to the diminished [Y•] in vivo caused by HU, cells are able to

up-regulate the expression of β2, YfaE and Fre, supporting the role of YfaE and Fre in vivo in the

regeneration of the Y• of β2.
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Figure 3-22.  Western blot analysis to determine the level of expression of YfaE, β2 and Fre
in wt E. coli cells grown in LB the presence of HU.  (A) Western signals of purified YfaE
standards (B) Western signals of YfaE, β2 and Fre of the whole cells grown in the absence or
presence of HU (10 and 30 mM) for 1 h.  Each lane represents ~1×108 cells estimated by
A600nm.  The relative intensity of the Western signal is indicated.
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DISCUSSION

Structural and kinetic studies on the interactions between Δ9D and a p-Fdx or MMO and

MMOR-Fdx have provided a rich paradigm for us to think about how β2 and YfaE might interact

(1-6, 41, 42).  Furthermore, in order to study reactions that are physiologically relevant, an

understanding of the binding affinity and the concentrations of each protein in vivo are critical in

evaluating whether the proposed functions from in vitro experiments are important in vivo.

Several strategies have been applied to determine the binding constant between YfaE and β2.  We

first examined the possibility of deriving Kd from a kinetic analysis of the redox reaction

between [2Fe2S]1+-YfaE and met-β2 monitored by SF spectroscopy.  The advantage of this

method is that the Kd is obtained from two proteins in the physiologically relevant oxidation

states, in contrast to the Kd measured from an ITC experiment in which both proteins are

oxidized to avoid the redox chemistry which would give rise to heat exchange associated with

chemistry in addition to binding.

In order to derive the Kd from kinetic analysis, the reaction between [2Fe2S]1+-YfaE and

met-β2 needs to meet certain criteria.  First, the reaction mechanism needs to be able to be

described by a simple two-step reaction (Scheme 3-1).  Second, the [YfaE] needs to be >> [met-

β2] to create a pseudo first order reaction conditions.  Third, the binding equilibrium between

[2Fe2S]1+-YfaE and met-β2 needs to be fast enough so that the observed rate constant can be

described as a function of the association constant.  Only the second condition can be controlled

experimentally, whereas the other two criteria are restricted by the inherent nature of the reaction

between YfaE and met-β2.  To examine whether the reaction between YfaE and met-β2 meet

these criteria, a 7 to 130 fold excess of [2Fe2S]1+-YfaE was reacted with met-β2 under anaerobic

conditions and the kobs was obtained from fitting the kinetic traces with two single exponentials.
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The results suggest that reaction between [2Fe2S]1+-YfaE and met-β2 does not follow the rapid

binding equilibrium and the simple two-step reaction model, therefore, the Kd could not be

derived from this kinetic analysis.

Because of our inability to determine this Kd by SF spectroscopy and the successful

example of measuring the Kd between MMOR-Fdx and MMO by isothermal titration calorimetry

(4), we next tried to measure the binding affinity between [2Fe2S]1+-YfaE and apo-β2 by ITC.

The major challenge for use of ITC is that unlike other oxidized ferredoxins, [2Fe2S]2+-YfaE,

during the time course required for such measurements, is unstable.  Efforts to set up ITC under

anaerobic conditions failed because of difficulty in removing contaminating O2, which could

potentially come from inside of the ITC instrument.  However, recent discoveries have shown

that oxidized YfaE remains stable in the presence of DTT (see Chapter 5).   Furthermore,

sequence alignments of YfaEs and homology modeling of YfaE with known ferredoxin

structures have revealed a highly conserved cysteine residue that might be responsible for the

instability of oxidized YfaE (see Chapter 5).  If this is true, we might be able to measure the

binding constant by ITC using these YfaE C→S mutants or by addition of DTT.  The ability to

use stabilized YfaE for ITC would also be valuable in determination of binding constant between

YfaE and Fre, Fpr or YqjH, which may help us identify the ferredoxin reductase that is the

physiological partner for YfaE.

To further understand the nature of binding between YfaE and β2, site-directed

mutagenesis coupled with SF spectroscopy were employed.  These studies were modeled after

studies on Δ9D by Fox et al (6).  We postulated the importance of three surface lysines in β2

(K38, K42 and K229) for electrostatic interaction with YfaE.  Single, double and triple mutants

of K→A were generated and their effect on the observed rate constants for oxidation of YfaE
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was used as a criteria for their importance in the reduction process.  Structural studies on the Fdx

domain of MMOR also suggest that in addition to hydrophobic interactions, electrostatic

interactions play a major role for interacting with MMO, which is distinct from the interactions

between MMO and its regulatory partner MMOB that is mainly hydrophobic (4, 5, 41).

However, comparisons between structural models of β2 and Δ9D indicate that the relative

positions of the predicted key lysines are not the same (Figure 3-5, 3-6), which may provide the

basis for distinguishing between different redox partners inside the cell (43, 44).  Sequence

alignments of YfaEs and homology modeling of YfaE indicate a conserved Glu that may be the

binding partner for the lysines in β2.  NMR titration studies on MMOR-Fdx domain also show

that an Asp (D26) on the same α-helix near the FeS cluster participates the interaction with

MMO (Figure 3-9) (5).  However, a YfaE-E26A mutant proved to be unstable, probably through

interference with the binding loops for the FeS cluster (5), making purification and SF

spectroscopic measurements difficult.

Kinetic studies on the β2 lysine mutants suggest the three conserved lysines are important

for interaction with YfaE.  The triple Lys mutant of β2 showed a 250-fold decrease in the

observed rate constants compared to wt under the same reaction conditions.  This change is not

as dramatic as reported in the Δ9D triple Lys mutant (~700,000 fold decrease in kcat/Km) (Table

3-4).  This difference could be due to distinct lysine positions between Δ9D and β 2.

Interestingly, from Table 3-3, the kobs from the slower phase seems to be affected more by the

lysine mutations compared to kobs in the fast phase.  It is tempting to speculate that the two

phases may be associated with the binding of YfaE to each subunit of met-β2, and these binding

on one subunit affects the binding on the other subunit.  Similar observations were reported that

the binding of MMOR or MMOB (1, 41, 45).
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Insight into the stoichiometric v.s. catalytic function of YfaE might be garnered by

measuring the concentrations of YfaE, β2 and Fre under a variety of growth conditions.

Quantitative Western blots revealed that for cells in mid-log phase, concentrations of β2 and Fre

are both ~3 µM and the concentration of YfaE is less than 0.3 µM.  If the dissociation constant

between YfaE and β2 is similar to that between MMOR-Fd and MMO, the maximum

concentration of YfaE-β2 complex in vivo is estimated to be 0.22 µM, assuming a Kd of 1 µM

and no binding competition from α2.  From the kobs in the SF experiment, if we assume the rate of

redox reaction between YfaE and β2 at physiological concentrations is ~0.1 s-1, a pool of 0.22

µM YfaE-met-β2 complex can regenerate an equivalent of 13 µM Y• in 20 min (0.1 s-1 × 0.22

µM ×  60 sec ×  20 min × 1 Y• generated/2 Fe reduced), which is much higher than the

concentration of β2 in vivo, implying that YfaE is kinetically competent to maintain Y• in vivo.

These estimations could also explain the low [YfaE] in vivo.  One assumption we made in the

calculation is that 0.3 µM YfaE is maintained in the reduced state, which means oxidized YfaE

needs to be recycled at a rate comparable to the rate of redox reaction with met-β2.

To look for evidence of the function of YfaE in regenerating the Y• in vivo, knockout

strains ΔyfaE, Δfre, Δfdx, and Δfpr were grown in minimal media and in LB in the presence of

HU and the growth rates were measured.  The results reveal in the former case that in the

presence of 10 mM HU, ΔyfaE and Δfre showed about 40% and 20% decrease in the growth

rates, respectively, whereas Δfdx and Δfpr showed similar sensitivity to HU as wt.  These

observations support the idea that YfaE plays a major role in the maintenance of the Y•.  Similar

experiments by Fontecave et al indicated that in M9 medium in the presence of 10 mM HU, Δfre

showed ~35% decrease in the growth rates, which is higher than our observation (20% decrease)
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(14).  Unfortunately details of conditions of cell growth conditions and determination of growth

rates were not reported, so we were not able to reproduce their results.

The role of YfaE in the maintenance of the Y• in vivo is further supported by the Western

analysis of the whole cells grown in the presence of HU.  The results show that for the first time,

a detectable Western signal of YfaE in the whole cells was observed when the cells were treated

with 30 mM HU and grown for an additional 1 h.  Analysis on the expression level of β2 and Fre

also indicate a higher expression level of these two proteins in the presence of HU, suggesting

cells could respond to the toxicity of HU by increasing the expression of β2 and the machineries

involved in regeneration of the Y•.  Based on the experiments in this chapter, another piece of

the puzzle for the maintenance of the diferric-Y• cofactor can be fit to the model (Figure 3-23).
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Figure 3-23.  Our model for the maintenance of the diferric-Y• cofactor of β2.  A mechanism
for recycling YfaE by Fre is added to the model (orange).  Oxidized YfaE can be reduced by
reduced flavin (either in solution or bound to Fre) generated by Fre with consumption of
NAD(P)H.
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Chapter 4:

Investigating How the Iron Required for Cofactor Assembly is Delivered into

Apo-β2

Adapted in part from Hristova, D., Wu, C.-H., Jiang, W., Krebs, C., and Stubbe, J. (2008)
Importance of the Maintenance Pathway in the Regulation of the Activity of Escherichia coli
Ribonucleotide Reductase, Biochemistry 47, 3989-3999.
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INTRODUCTION

In the previous three chapters we reported the discovery and characterization of YfaE, a

ferredoxin that can provide the reducing equivalents for the maintenance and biosynthetic

pathways for assembly of the diferric-Y• cofactor of β2.  Another unknown component in the

assembly of cofactor is the iron source.  In this chapter, we utilize several strategies to

investigate possible iron sources for β2 cluster assembly.  The experiments include: 1. study of an

iron chaperone candidate, CyaY; 2. development of a sensitive colorimetric assay that can

monitor Fe delivery to β2 from fractionated crude cell lysate that may contain iron chaperones; 3.

search for iron chaperons that co-purify with affinity tagged β2; 4. use of iron transport pathway

deletion strains and whole cell EPR spectroscopy to monitor Y• generation in an effort to

identify source of iron; and 5. use of whole cell Mössbauer spectroscopy to monitor the

migration of iron pools within the cell and specifically into the diferric center of β2.

Drawing on the extensive studies of FeS cluster biosynthesis and the literature on

cofactor biosynthesis in general, a protein chaperone may be required for cluster assembly in β2.

Same specific targets are assessed, such as CyaY, a frataxin analogue of the S. cerevisiae iron

chaperone involved in the FeS cluster biosynthesis.  Details of CyaY have been described in

Chapter 1.

In addition to investigation of specific iron chaperone candidates for β2 cluster assembly,

two generic “fishing” methods to look for iron chaperone are also explored.  To identify

machinery that might be involved in delivery of iron to β2, one needs a robust assay to allow

purification of this machinery from crude cell lysate and column chromatographies.  The method

we have investigated to monitor cluster assembly is based on the observation of Sjöberg and

coworkers that an iron catechol-like cluster is generated subsequent to loading of apo-β2-F208Y
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with iron and O2 (Eq 4-1) (2, 3).  The formation of this cluster does not require the reducing

equivalent necessary in the wt β2 cluster assembly.  Furthermore, the absorption peak of this

cluster is at ~660 nm, where the background absorption features from crude cell lysate are

minimal.  A more recent study has shown that the double mutant (β2-W48F/F208Y) in which the

critical W48 is replaced with F, also generates a Fe3+-catechol complex (ε660nm ~3 mM-1cm-1, 3

times the amount of Fe3+-catechol in β2-F208Y) (4).  The suitability of β2-W48F/F208Y for the

task of factor purification is explored.

Eq 4-1

The second generic method in fishing iron chaperones involves incorporation of an

“affinity” tag in β2 and look for potential protein binding partners that co-purify with β2.

Identification of binding partners would be carried out by SDS-PAGE separation, in-gel trypsin

digestion and mass spectrometry (LC-ESI/MS).  This strategy has been successful employed to

identify many protein-protein interactions (5-7).  In order to increase the probability of

identifying protein binding partners, the type and location of affinity tags and the expression

level of affinity tagged proteins need to be examined.  Therefore, a pBAD vector in which the

expression of the protein of interest can be modulated by concentration of arabinose was selected

(8).  A StrepII tag (WSHPQFEK) was chosen for its small size, its lack of metal binding ligands,

and high specificity for Strep-Tactin resin and consequently ease of purification (9, 10).

Furthermore, because the nature of interaction of β2 with its potential partners is unknown, the

Y208

OH Fe2+

Fe2+
+

Y208

O

Fe3+O
Fe3+O2

λmax = 660 nm
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affinity tag was placed in three different positions, the N-terminus, C-terminus and between

N179 and G180 of β2 (1), to preserve the interaction surface for binding of potential chaperones

(Figure 4-1).

To enhance the probability of detecting weakly bound chaperones, in vivo cross-linking

with formaldehyde (FA) was examined.  This method has been utilized in identifying binding

Figure 4-1.  The position of the internal 6×His tag (red) in β2.  The structure of the
modeled class Ia RNR complex is shown.  An internal 6×His tag is inserted between
N179 and G180 of β2 (dark black line).  Adapted from reference (1).
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partners in protein-protein and protein-DNA interactions in the yeast, mammalian cells and

prokaryotes (11-13).  FA is cell wall-permeable and reacts with two proper amino acid side

chains such as Lys that are within ~3 Å, forming a methylene bridge.  This reaction can be

reversed by incubation in electrophoresis buffer (Laemmli buffer) at 100 ºC (14, 15).  In this

strategy, different concentrations of FA is titrated into cell culture and the cells are grown for

different periods of time until the reactions are quenched by addition of glycine.  The

effectiveness of cross-linking can then be monitored by SDS-PAGE or Western blots.  After

reversing the cross-links, the identity of the binding partners can be determined by mass

spectrometry (7).

The affinity tag and ability to modulate β2 expression levels have also been used to allow

us to probe the concentration of Y• per β2 by rapid purification from crude cell lysate.

Specifically one potential mechanism of regulation of RNR activity is to control the

concentration of Y•.  The amount of Y•/β2 can also be assessed using whole cell EPR

spectroscopy, cell counting and quantitative Westerns.  These types of studies all have

successfully been carried out in different S. cerevisiae strains.  In contrast to our whole cell EPR

studies on S. cerevisiae and EPR studies by Sjöberg et al. on the E. coli β2 over-producing strain,

KK546, we were not able to quantitate the Y• in wt E. coli due to its low concentration (16, 17).

To overcome this problem, the levels of expression of β2 (µM to mM) were modulated by

concentrations of arabinose (18).  The ability of modulating the levels of expression of β2 made

the quantitation of Y• in vivo by EPR spectroscopy feasible.  Using isogenic strains of E. coli

with deletion strains in transporters or iron storage proteins, the concentration of Y• in these

deletion strains containing pBAD-nrdB could now be examined by whole cell EPR spectroscopy.
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Under conditions in which mM concentrations of β2 was expressed, whole cell EPR

spectroscopy revealed a very strong Y• signal.  This signal implies high iron loading in β2,

suggesting that monitoring the iron incorporation in β2 which has a unique diferric cluster by

whole cell Mössbauer spectroscopy might be feasible.  Conditions have been found where whole

cell Mössbauer spectroscopy can be applied to monitor iron movement within the cell into β2

(19-21).  With the development of these strategies together, we may be able to establish how

under different growth conditions apo-β2 obtains ferrous iron inside the cell as a first step in

active β2 formation.
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MATERIALS AND METHODS

Materials
Plasmid pET-cyaY was kindly provided by Dr. Pastore at the National Institute for

Medical Research, UK (22).  The sequence of the plasmid was confirmed by DNA sequencing

by the MIT Biopolymers Laboratory.  pR2-F208Y and pR2-W48F/F208Y were obtained from

Prof. Martin Bollinger Jr. at Pennsylvania State University (4).  The plasmids were amplified in

E. coli DH5α (pR2-F208Y) and BL21 (pR2-W48F/F208Y) and the sequences were determined.

The pR2-W48F/F208Y was correct based on the wt E. coli K-12 genome sequence, whereas the

pR2-F208Y has an additional mutation at V141I.  E. coli W3110 with a variety of iron

transporter gene deletions (Table 4-2) were kindly provided by Prof. Rensing at the University

of Arizona (23).  E. coli BW25113 wt and isogenic strains with a variety of in frame single gene

deletions were obtained from the Keio collection in the National Institute of Genetics, Mishima,

Japan (Table 4-2) (24).  The gene deletion was verified following the procedures in Chapter 3.

The primers used for sequence verification are listed in Table 4-3.  All gene deletion strains

were missing the appropriate gene.  Tris(hydroxymethyl)aminomethane hydrochloride (Tris-

HCl) and glycine (acid form) was from J.T. Baker.  Isopropyl-β-D-thiogalactopyranoside (IPTG)

was from Promega.  Protease inhibitors cocktail (Complete Mini, EDTA-free) was from Roche.

Strep-Tactin Sepharose resin was from IBA GmbH.  Formaldehyde (37%) was from

Mallinckrodt.  Bradford reagent and all other chemicals were obtained in the highest purity

available from Sigma-Aldrich.
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Purification and characterization of CyaY

Cell growth: Published procedures were followed for the purification of CyaY (22).  A single

colony of BL21(DE3)-pET-cyaY was inoculated into 30 mL LB-kanamycin (70 µg/mL) and

grown at 37 ºC, 150 rpm overnight (~16 h).  The overnight culture (20 mL) was inoculated into 2

L of LB-kanamycin (70 µg/mL) at 37 ºC, 180 rpm until A600nm reached ~0.8, at which point the

protein expression was induced by 0.5 mM IPTG and the cells were further grown for an

additional 4 h (A600nm ~1.7) before being harvested by centrifugation at 7000g for 30 min at 4 ºC.

The cell paste was stored at –80 ºC after flash freezing in liquid nitrogen.   Typically 2.5 g of cell

paste/L culture was obtained.

Purification of CyaY by affinity chromatography:  pET-cyaY contains a GST affinity tag

followed by a 6×His tag at the N-terminus of CyaY.  The published procedure to purify the

protein on a Ni-column was followed.  The cell paste (~4.9 g) was suspended in 25 mL of 20

mM Na2HPO4, 0.5 M NaCl, 10 mM imidazole, pH 7.4 including 1250 U of DNaseI (Roche).

The cells were cracked open by two passages through the French Press at 14,000 psi, 4 ºC

followed by centrifugation at 15,000 rpm for 30 min at 4 ºC.  The supernatant was transferred

into a 50 mL centrifuge tube containing 10 mL Ni-iminoacetic acid resin (Sigma) and the tube

was shaken gently at 4 ºC for 2 h.  The slurry was then loaded into a column (1.5 × 6 cm),

washed with 400 mL of 20 mM Na2HPO4, 0.5 M NaCl, 10 mM imidazole, pH 7.4 and eluted

with 20 mM Na2HPO4, 500 mM imidazole, 0.5 M NaCl, pH 7.4.  The eluent (~3.2 mL/fraction)

was assayed by Bradford reagent (Sigma) and A630nm was recorded on a multi-plate reader (Bio-

Rad).  Protein-containing fractions (3-8) were combined and loaded onto a Sephadex G-25

column (2.5 × 42 cm, 210 mL) pre-equilibrated in 50 mM Tris-HCl, pH 7.6, followed by elution
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in the same buffer at a flow rate of 2.6 mL/min.  The protein-containing fractions (10-16) judged

by the Bradford assay were combined and concentrated using an Amicon concentrator with a

YM30 membrane.  The protein was found to flow through the YM30 membrane despite its

predicted molecular mass of ~40 kDa.  The protein solution was concentrated again using an

Amicon concentrator with a YM3 membrane until reaching a final volume of 6.5 mL.  Aliquots

of the sample (60 mg/mL) were flash frozen in liquid nitrogen and stored at –80 ºC.  The iron

content of the purified GST-His-CyaY was determined by ferrozine assay (25).

Removal of a GST-His affinity tag from CyaY:  To cleave off the GST-His affinity tag from

CyaY, recombinant TEV protease (250 U, Invitrogen) was added to 275 mg of GST-His-CyaY

in a digestion buffer (50 mM Tris-HCl, 1 mM DTT, 0.5 mM EDTA, pH 8.0) and incubated in a

30 ºC water bath for ~24 h.  The digested sample (~6 mL) was loaded onto a Superdex-75

column (150 mL, 2.5 × 32.5 cm, Amersham, prep-grade) and eluted with 50 mM Tris-HCl, 100

mM NaCl, pH 7.6 at a flow rate of 0.85 mL/min.  The CyaY-containing fractions (12-14), judged

by 15% SDS-PAGE, were concentrated using an Amicon concentrator with a YM3 membrane to

~6 mL and re-chromatograph on the same Superdex-75 column under the same conditions to

completely remove residual GST-His tag contaminants.  Fractions (13-14) were combined and

concentrated by the Amicon concentrator with a YM3 membrane to ~2.5 mL.  Aliquots of the

protein were flash frozen in liquid nitrogen and stored at –80 ºC.  A final yield of ~6.5 mg CyaY

was obtained.

UV-visible spectroscopy and Mass spectrometry analysis:  The concentration of CyaY was

determined by A280nm (ε280nm = 29,970 M-1cm-1) (26).  The molecular mass of CyaY was
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determined by LC-ESI-MS in the MIT Biopolymers Laboratory (instrument: ABI 140C, column:

Michrom PLRP-S).

Reconstitution of CyaY under anaerobic conditions:  To reconstitute purified CyaY with Fe2+

under anaerobic reconstitution, 1 mL of purified CyaY (2.5 mM, in 10 mL pear shape flask), 800

mL of buffer A (50 mM Tris-HCl, 150 mM NaCl, pH 7.6) (in 2L round bottom flask), 0.392 g

of Fe(NH4)2(S04)2·6H2O (in 10 mL pear shape flask) and 5 g of Sephadex G-25 powder (in 200

mL round bottom flask) were degassed by three cycles of evacuation and refill with Ar (~30

min/cycle, except for CyaY, which was degassed by 10 cycles of evacuation (~30 sec) and refill

(~10 sec)) on a Schlenk line.  The samples were then moved into a glove box (M. Braun,

Newburyport, MA).  The Sephadex G-25 powder was suspended in buffer A and packed into a

column (~20 mL resin volume, 1 × 27 cm) followed by equilibration with 200 mL of buffer A.

The Fe(NH4)2(S04)2·6H2O was dissolved in 5 mL buffer Y and the concentration (180 mM) was

determined by the ferrozine assay (25).

To load CyaY with Fe2+, 110 µL of 180 mM Fe2+ (10× molar excess, assuming 2

Fe2+/CyaY) was added into 370 µL of 2.5 mM CyaY and the sample was mixed by pipetting

followed by incubation for 30 min at room temperature in the glove box.  The sample was then

loaded onto the Sephadex G-25 column (~20 mL resin volume, 1 × 27 cm) to separate the excess

Fe2+.  A280nm of the eluent (50× dilution) was recorded on a multi-plate reader (Bio-Rad) and the

iron content of the eluent (10× dilution) was determined by the ferrozine assay.
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Purification of apo-β2-W48F/F208Y

Cell growth:  Published procedures were followed for the purification of apo-β2-W48F/F208Y

(4).  A single colony of BL21(DE3)-pR2-W48F/F208Y was inoculated into 50 mL LB-

ampicillin (150 µg/mL) and grown at 37 ºC, 180 rpm for ~16 h.  The overnight culture (25 mL)

was inoculated into 2 L of LB-ampicillin (150 µg/mL) in a 6 L flask and grown at 37 ºC, 180

rpm for ~3 h until A600nm reached ~1.0.  The iron chelator, 1,10 phenanthroline (100 mM stock,

dissolved in 0.1 N HCl) was then added into the culture to reach a final concentration of 100 µM.

The cells were grown for another 20 min before being induced with 0.2 mM IPTG for 4 h.  The

cells were then harvested by centrifugation at 7000g for 20 min at 4 ºC.  About 2.8 g/L of cell

paste was obtained.  The cell paste was flash frozen in liquid nitrogen and stored at –80 ºC.

Protein purification:  To purify apo-β2-W48F/F208Y, 14 g of the cell paste was suspended in 56

mL of buffer B (50mM Tris-HCl, 5% (w/v) glycerol, 1 mM 1,10-phenanthroline, 0.25 mM

PMSF, pH 7.6 at 4 ºC).  One tablet of Roche complete mini protease inhibitor cocktail was added

into the cell suspension.  The cells were then disrupted by two passages through the French Press

at 14,000 psi followed by centrifugation at 15,000 rpm for 20 min at 4 ºC.  About 71 mL of crude

cell lysate was collected.  Streptomycin sulfate (15 mL, 6% (w/v) stock) was then added into the

cell lyaste to a final concentration of 1% followed by stirring for 20 min before centrifugation at

21,000 rpm for 20 min at 4 ºC.  About 83 mL of the supernatant was obtained.  Ammonium

sulfate (32.4 g) was then added slowly (~10 min) into the supernatant to reach 60% saturation

(0.39 g/mL) at 4 ºC.  The sample was stirred for another 30 min before being centrifuged at

18,000 rpm for 20 min at 4 ºC.  The supernatant was discarded and the pellet was dissolved in 12

mL buffer C.  An extra step of centrifugation was performed (21,000 rpm for 20 min at 4 ºC) to
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remove un-dissolved pellet.  A total of 15 mL supernatant was loaded onto a Sephadex G-25

column (2.5 × 45 cm, ~220 mL) at a flow rate of 4.5 mL/min.  Protein fractions (~93 mL,

monitored by the Bradford assay) were combined and loaded onto a DEAE Sepharose CL-6B (5

× 14 cm, ~280 mL), washed with 300 mL buffer B, then with 300 mL buffer B containing 80

mM NaCl.  The protein was eluted with a 900 × 900 mL linear gradient of buffer B with 80-600

mM NaCl.  Protein fractions (12 mL/fraction, 260 mL, monitored by 10% SDS-PAGE) were

then concentrated to ~100 mL using an Amicon concentrator with a YM30 membrane.  The

sample was then centrifuged at 21,000 rpm for 20 min at 4 ºC to remove the protein precipitate.

The supernatant was then diluted in 60 mL buffer B to reach a final [NaCl] of ~250 mM before

being loaded onto a Q-Sepharose column (5.5 × 4 cm, 75 mL).  The column was washed with

250 mL buffer B containing 250 mM NaCl followed by elution with a 750 × 750 mL linear

gradient of buffer B with 250-750 mM NaCl.  Protein-containing fractions (12 mL/fraction, ~60

mL) determined by Bradford assay and 10% SDS-PAGE were collected and concentrated by an

Amicon concentrator with a PM30 membrane to 20 mL before being loaded onto a Sephadex G-

25 column (2.5 × 45 cm, ~200 mL) pre-equilibrated with 100 mM HEPES buffer, pH 7.6.

Protein fractions (44 mL) were concentrated using an Amicon concentrator with a PM30

membrane to 9.3 mL, before flash freezing in liquid nitrogen and storage at –80 ºC.  The final

concentration of the apo-β2-W48F/F208Y is 0.48 mM determined by A280nm (ε280nm = 111 mM-

1cm-1) (4).

Examination of iron incorporation in apo-β2-W48F/F208Y

In HEPES buffer:  To test whether the purified apo-β2-W48F/F208Y is capable of forming an

Fe-catechol cluster upon addition of Fe2+, 50 µM apo-β2-W48F/F208Y was mixed aerobically at
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room temperature with 0, 100, 200 and 400 µM Fe(NH4)2(SO4)2 (prepared freshly in the glove

box by following the procedures in the previous section) in 100 mM HEPES, pH 7.6 in a total

volume of 100 µL.  Subsequent to the addition of Fe2+, the UV-visible spectrum of each sample

was recorded on a Varian Cary 3 spectrophotometer.

In crude cell lysate prepared by the French Press:  To prepare crude cell lyaste from E. coli K-

12 wt, an overnight culture (20 mL) from a single colony was inoculated into 1.2 L of LB

medium (w/o antibiotics) and grown at 37 ºC, 180 rpm for ~3.5 h (A600nm ~1.8), followed by

centrifugation at 4000 rpm for 10 min at 4 ºC.  Aliquots of the cell paste (~1g cell paste/tube)

were flash frozen in liquid nitrogen and stored at –80 ºC.  A yield of 5 g cell paste /L was

obtained.  The cell paste of wt E. coli K-12 (~1 g) was then suspended in 4 mL of 100 mM

HEPES, pH 7.6 (containing Roche protease inhibitor cocktail, without EDTA) and disrupted by

one passage through the French Press at 14,000 psi.  The cell debris was spun down at 21,000

rpm for 20 min at 4 ºC.  About 10 mg/mL crude cell lysate was obtained (by the Bradford assay

using BSA as a standard).

To monitor the iron incorporation in the presence of crude cell lysate, in a final volume of

100 µL, 50 µM of apo-β2-W48F/F208Y was incubated with ~15 mg/mL crude cell lysate (both

in final concentrations) at room temperature for 5 min and the UV-visible spectrum was

recorded.  To examine whether exogenous Fe2+ could be incorporated into apo-β2-W48F/F208Y

in the presence of crude cell lysate, 5 or 10 µL of 180 mM Fe2+ was added into the sample and

the UV-visible spectrum was recorded.
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In crude cell lyaste prepared by sonication:  Cell paste of wt E. coli K-12 (1.07 g) was

suspended in 2.14 mL 100 mM HEPES, pH 7.6 (containing Roche protease inhibitor cocktail,

without EDTA) followed by sonication using VirSonic 100 (SP Industries Co., Gardiner, NY) at

a power level 6 for 3 min in a 50 mL centrifuge tube in ice-water bath with stirring.  The cell

debris was removed by centrifugation at 21,000g for 10 min at 4 ºC.  About 12.4 mg/mL of crude

cell lysate was obtained (Bradford assay using BSA standards).  The same procedures as

described above were followed to monitor iron incorporation into apo-β2-W48F/F208Y.

In crude lysate prepared under anaerobic conditions:  To prepare oxygen-free samples, 10 mL

Novagen Bugbuster solution (with 1 tablet of Roche protease inhibitor cocktail, without EDTA,

250 U of Benzonase nuclease (Novagen, 25 unit/µL)) and ~190 µL of 0.48 mM apo-β2-

W48F/F208Y were degassed on a Schlenk line following the procedures in the section above.

The solutions were brought into the glove box in a 4 ºC cold room.  About 1 g cell paste of E.

coli K-12 wt was placed in a 50 mL tube and brought into the glove box with a hole on the cap

(punctured with an 18-G needle).  The cell paste was suspended in 5 mL Bugbuster solution and

transferred into a 35 mL centrifuge tube with a screw cap fitted with a vacuum-greased O-ring.

The cell suspension was shaken gently on a vortex mixer for 30 min, removed from the glove

box and centrifuged at 16,000g for 20 min at 4 ºC.  The centrifuge tube was brought back into

the glove box and the supernatant was transferred into a 15 mL tube.  The concentration of the

crude cell lysate was ~10 mg/mL determined by the Bradford assay using BSA as a standard.

To monitor iron incorporation into apo-β2-W48F/F208Y, in a final volume of 100 µL, 50

µM apo-β2-W48F/F208Y was mixed with ~10 mg/mL anaerobic crude cell lyaste with or

without a 400 µM Fe2+ (90 mM stock solution) in a 1.5 mL eppendorf tubes (final concentrations
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are indicated in all cases).  The eppendorf tubes were removed from the glove box and exposed

to oxygen.  The UV-visible spectrum was then immediately recorded.

Iron incorporation in wt apo-β2

WT apo-β2 was prepared by following published procedures (27).  Similar procedures for

monitoring iron incorporation in buffer or in the presence of crude cell lysates were followed as

described in the previous section.  WT apo-β2 (50 µM) was mixed with 1 mM Fe(NH4)2(SO4)2 in

100 mM HEPES, pH 7.6 under aerobic conditions and the UV-visible spectrum was recorded

(final concentrations are indicated in all cases).  Alternatively, wt apo-β2 (50 µM) was mixed

with ~10 mg/mL of crude cell lysate (prepared by sonication) under aerobic conditions and the

UV-visible spectrum was recorded (final concentrations are indicated in all cases).

Fe(NH4)2(SO4)2 solution was then added to this mixture to a final concentration of 1 mM and the

UV-visible spectrum was recorded again.  The quantitation of the tyrosyl radical was made by

the dropline method using ε410nm = 1.7 mM-1cm-1
 (28).

Cloning of nrdB with different affinity tags

pTB2-R2 was used as a PCR template (29).  To generate pBAD-Ν-S-nrdB (N-terminal

StrepII-tagged β2), a 5' primer containing a StrepII-tag (WSHPQFEK) and a five amino acid

linker (ALGGH) was used (5'-AAT TAA CCA TGG CGT GGA GCC ACC CGC AGT TCG

AAA AAT CTC TGG GCG GCC ATA TGG CAT ATA CCA CCT TTT CAC-3'.  The NcoI

restriction site including the start codon is in bold, the five amino acid linker is underlined, and

the StrepII-tag is shown in italics.  The 3' primer was 5'-AAC GCC TCG AGT CAG AGC TGG

AAG TTA CTC AAA TCG-3' (XhoI restriction site (bold) and the last 25 nucleotides of nrdB
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including the stop codon are underlined).  Pfu-Ultra DNA polymerase was used for PCR

following the manufacturer’s protocol (Invitrogen).  The PCR product and the pBAD-myc-HIS-

A vector (Invitrogen) were digested with a 10 fold excess of NcoI and XhoI and ligated with T4

DNA ligase (Promega) in a vector to insert ratio of 1:2.

To make pBAD-C-S-nrdB (C-terminal StrepII-tagged β2), the forward primer, 5'-AGG

ACA CAC CCA TGG CAT ATA CCA CCT TTT CAC-3' which contains a NcoI site (bold) and

the first 22 nucleotides of the nrdB (underlined) was used.  The reverse primer was 5'-AAC GCC

TCG AGT CAT TTT TCG AAC TGC GGG TGG CCC AGA GCT GGA AGT TAC TCA AAT

C-3' which contains a XhoI site (bold) followed by a stop codon, a StrepII tag gene (italics) and

the last 21 nucleotides of nrdB excluding the stop codon (underlined).  The cloning procedures

were the same as for the pBAD-N-S-nrdB.  To make pBAD-nrdB (with no tag), the forward

primer used to make pBAD-C-S-nrdB and the reverse primer to make pBAD-N-S-nrdB were

used, cut with the appropriate restriction enzymes and cloned into pBAD-myc-HIS-A.

To construct the internal affinity tagged nrdB, pBAD-nrdB was used as a PCR template

and the genes encoding affinity tags were introduced into nrdB (between N179 and G180 of β)

(1) by site-directed mutagenesis (SDM) PCR following the manufacturer’s protocol (Stratagene).

To make pBAD-I-S-nrdB (internal StrepII-tagged β2), a forward primer 5'-GTA CCC ACA CCG

TTA ACT GGA GCC ACC CGC AGT TCG AAA AAG GTA AAA CTG TGA CCG-3'

(underlined: StrepII tag gene) and its complementary reverse primer were used for SDM.  To

make pBAD-I-H-nrdB (internal His-tagged β2), a forward primer 5'-GTA CCC ACA CCG TTA

ACC ATC ATC ATC ATC ATC ATG GTA AAA CTG TGA CCG-3' (underlined: 6xHis tag

gene) and its complementary reverse primer were used for SDM.
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The nrdB constructs containing the E115A mutation, were made by using the

corresponding wild type plasmids (pBAD-N-S-nrdB, pBAD-C-S-nrdB, pBAD-I-S-nrdB, pBAD-

I-H-nrdB) as templates and a forward primer 5'-CCT GGG CGT TCT CAG CGA CGA TTC

ATT CCC GTT CC-3' and its complementary reverse primer for SDM PCR.  The sequences of

all constructs were confirmed by DNA sequencing at the MIT Biopolymers Laboratory.

Protein co-purification

Cell growth:  Overnight cultures (0.25 mL, 16 h growth) from a single colony of TOP10 cells

containing plasmid pBAD-N-S-nrdB, pBAD-C-S-nrdB, pBAD-I-S-nrdB, or pBAD-I-H-nrdB (wt

or E115A mutant) (Table 4-2) were inoculated into 50 mL LB-ampicillin (100 µg/mL) in 250

mL flasks and grown at 37 ºC, 200 rpm until A600nm was between 0.5 to 1.0.  Unless otherwise

specified, the expression of proteins was induced by 0.01 mM L-arabinose and grown for another

2 h before the cells were harvested by centrifugation at 4,000 rpm for 20 min at 4 ºC.  About 0.3

to 0.4 g of cell paste was obtained.  The cells were flash frozen in liquid nitrogen and stored at

–80 ºC.

Protein co-purification under aerobic conditions: The protein purifications were performed at

4 ºC.  Buffer C (100 mM Tris, pH 8.0 at 4 ºC, 150 mM NaCl, 5% glycerol) supplemented with

protease inhibitor cocktail (Roche, EDTA-free) was prepared.  The cell paste (~0.5 g) was

suspended in 5 mL buffer C/g of cell paste and cracked open by one passage through the French

Press at 16,000 psi followed by centrifugation at 21,000g for 30 min at 4 ºC.  The supernatants

were loaded onto Strep-Tactin Sepharose columns (0.2 mL resin volume, 0.4 × 1.5 cm, IBA

GmbH, St. Louis, MO) by gravity flow.  The column was washed with 2 mL of buffer C before
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being eluted with 2 mL of buffer C containing 2.5 mM desthiobiotin (Sigma).  Fractions (0.5

mL) of the wash and of the eluent (0.3 mL) were collected and analyzed on 15% SDS-PAGE and

the UV-visible spectra were recorded.  The iron content of the fractions with the highest protein

concentration was determined by the ferrozine assay (25).

Protein co-purification under anaerobic conditions:  To test for proteins that co-purify with

affinity tagged β2 under anaerobic conditions, the following four reagents were degassed with

stirring by three cycles of evacuation (~30 min) and refill with Ar (~10 min) on a Schlenk line

before being brought into the glove box in a cold room at 4 ºC: 1. Wash buffer: 100 mL of 100

mM Tris-HCl pH 8.0, 20% glycerol, 2.  Elution buffer: 50 mL of buffer C with 2.5 mM

desthiobiotin, 3. Lysis buffer: 10 mL Bugbuster solution (Novagen) containing one tablet of

protease inhibitor cocktail (Roche, complete-mini, EDTA-free) and benzonase nuclease (250 U,

Novagen), 4. 5 mL of Strep-Tactin resin (50% suspension in 100 mM Tris-HCl, 150 mM NaCl, 1

mM EDTA, pH 8.0).

About 0.5 g of the cell paste of TOP10-pBAD-C-S-nrdB (wt or E115A mutant; in 50 mL

Falcon tubes with a hole in the caps made by an 18-G needle) were brought into the glove box

after three cycles of evacuation (~10 min)-refill (with N2) in the antechamber.  The cell pastes

were suspended in 2.5 mL Bugbuster solution, transferred into 35 mL centrifuge tubes with

screw caps fitted with greased O-rings and shaken gently on a vortex mixer for 30 min in the

glove box before being taken out and centrifuged at 16,000g for 20 min at 4 ºC.  After the

centrifugation, the centrifuge tubes were brought back into the glove box and the supernatants

were loaded onto Strep-Tactin columns (~0.35 mL resin).  The columns were then washed with 5

mL 100 mM Tris-HCl, pH 8.0, 20% glycerol (1 mL/fraction) and eluted with 3.6 mL buffer C
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containing 2.5 mM desthiobiotin (0.6 mL/fraction).  From the cell lysis to elution of the protein

took ~1.5 h.  The fractions were analyzed by 15% SDS-PAGE and the Bradford assay.

Non-specific cross-linking by addition of formaldehyde into cell cultures: An overnight culture

 (0.75 mL, 16 h growth) from single colonies of TOP10-pBAD-N-S-nrdB or TOP10-pBAD-C-S-

nrdB (wt or E115A mutant) was inoculated into 150 mL LB-ampicillin (100 µg/mL) in 500 mL

flasks and grown at 37 ºC, 200 rpm until A600nm ~ 0.6.  At this point 5 mM L-arabinose was added

and the cells were grown for an additional ~3 h before 1% formaldehyde (Mallinckrodt, 37%

stock) was added into the culture.  Aliquots (50 mL) of the cell culture were taken 20 or 40 min

after addition of formaldehyde and glycine (acid form) was added to a final concentration of

0.125 M.  The samples were mixed in a roller drum at 37 ºC for 20 min followed by

centrifugation at 3,000 rpm for 10 min at 4 ºC.  The cells were lysed by the French Press and the

proteins were purified by the Strep-Tactin columns as described above.

Non-specific cross-linking by addition of formaldehyde to crude cell lysate:  To prepare the cell

lysis buffer, 10 mL of Bugbuster (primary amine-free, Novagen 70923) was added with 250 U

benzonase nuclease and one tablet of protease inhibitor cocktails (Roche, complete mini EDTA-

free).  Cell paste (~0.5 g) of TOP10-pBAD-C-S-nrdB (wt or E115A mutant) was suspended with

50 mL of PBS (Invitrogen) at 4 ºC followed by centrifugation at 4000 rpm for 15 min at 4 ºC.

The supernatant was discarded and the cell paste was suspended in 2.5 mL of the lysis buffer.

The cell suspension was shaken gently at room temperature for 20 min before centrifugation at

16,000g for 20 min at 4 ºC.  The cell crude lysate was then mixed with 3% formaldehyde

(Mallinkrodt, 37% stock) followed by incubation at room temperature for 20 min before addition
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of 0.125 M glycine (acid form, 2 M stock solution in water).  The crude cell lysate was incubated

at room temperature for another 1 h before being centrifuged at 4,000 rpm for 15 min at 4 ºC.

The supernatant was filtered through a 0.45 µm disc filter (Millipore) fit to a 3 mL syringe

before being loaded onto a Strep-Tactin column (0.2 mL resin).  The column was washed with 5

mL PBS and 1 mL fractions were collected.  The protein was then eluted with 2.5 mL buffer C

with 2.5 mM desthiobiotin and 0.5 mL fractions were collected.  The fractions were analyzed by

the Bradford assay and 15% SDS-PAGE.

Cell growth and protein co-purification with I-H-β2:  An overnight culture (0.3 mL, 16 h growth)

from a single colony of TOP10-pBAD-I-H-nrdB (wt or E115A mutant) was inoculated into 60

mL LB-ampicillin (100 µg/mL) in 250 mL flasks and grown at 37 ºC, 200 rpm until A600nm

reached ~0.9.  The protein expression was induced by 0.5 mM L-arabinose and the cells were

grown for another 3.5 h before being harvested at 3,500 rpm for 10 min at 4 ºC.  The cell paste

(0.3 g) was flash frozen in liquid nitrogen and store at –80 ºC.

To look for proteins that co-purify with I-H-β2, the cell paste was suspended in 1.5 mL

buffer D (50 mM Na2HPO4, pH 7.0, 10 mM imidazole) and the cells were cracked open by one

passage through the French Press at 14,000 psi, followed by centrifugation at 21,000g for 20 min

at 4 ºC.  The crude cell lysate was mixed with ~0.5 mL Ni-NTA agarose resin (Qiagen) and

shaken gently at 4 ºC for ~1 h before being loaded onto an empty column (0.5 cm diameter).

The column was washed with 4 mL buffer D (1 mL fractions were collected) and eluted with 2.5

mL buffer D containing 250 mM imidazole (0.5 mL fractions were collected).  The eluents were

analyzed by Bradford assay and 15% SDS-PAGE.
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Non-specific cross-linking of internal His-tagged β2 by addition of formaldehyde into the cell

culture:  An overnight culture (2.5 mL, ~16 h of growth) from a single colony of TOP-pBAD-I-

H-nrdB (wt or E115A mutant) was inoculated into 500 mL LB-ampicillin (100 µg/mL) in a 2.8 L

baffled flask and grown at 37 ºC, 200 rpm until A600nm reached ~0.5, at which point 0.05 mM L-

arabinose was added and the cells were grown for another 2 h.  Aliquots (45 mL) of the cell

culture were transferred into 250 mL flasks and formaldehyde was added to final concentrations

of 0.4, 1 and 3%.  The cells were grown for 15, 30 and 50 min at 37 ºC before the addition of

glycine (0.1, 0.5 and 1 mM, corresponding to the concentration of formaldehyde).  The culture

was grown for an additional 20 min at 37 ºC before centrifugation at 5,000 rpm for 10 min at 4

ºC.  Cell paste, 0.2~0.4 g, was obtained.

Because of the quantity of the samples, Ni-NTA spin columns (Qiagen) were used for

rapid co-purification.  The lysis buffer (buffer E: 50 mM NaH2PO4, 300 mM NaCl, 10 mM

imidazole, pH 8.0) was supplemented with the Roche protease inhibitor cocktail (complete mini,

EDTA-free) and the cell paste was suspended in 4 mL buffer E/g of cell paste followed by two

passages through the French Press at 14,000 psi.  The cell debris was spun down at 12,500 rpm

for 20 min at 4 ºC.  The supernatant (0.6 mL) was then loaded onto the spin columns (~0.2 mL

Ni-NTA resin, Qiagen), washed with 1.8 mL of buffer E containing 20 mM imidazole and eluted

with 0.4 mL of buffer E containing 250 mM imidazole.  The eluents were analyzed by Bradford

assay and 4-20% gradient SDS-PAGE.

Protein bands of cross-linked species on the SDS-PAGE were excised and sent to

Proteomics Core Facility of the Koch Institute in MIT for in-gel trypsin digestion and LC-

MS/MS analysis.
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Measuring Y• concentration in the whole cells by EPR spectroscopy

To prepare the cells for EPR spectroscopy, a single colony of cells (wt or deletion strains)

harboring pBAD-nrdB was inoculated into 7 mL LB-ampicillin (100 µg/mL) and grown at 37 ºC

in a roller drum for ~16 h.  The overnight culture (2.5 mL) was inoculated into 500 mL LB-amp

(100 µg/mL) in a 2.8 L baffled flask containing ~5 drops of antifoam reagent (Sigma) and grown

at 37 ºC, 200 rpm.  When A600nm reached ~0.8, L-arabinose was added to a final concentration of

0.5 mM and the cells were grown for additional 2 h before being harvested by centrifugation at

8500g for 20 min at 4 ºC.  The cell paste was then transferred into a 50 mL centrifuge tube and

centrifuged at 2000 rpm for 5 min at 4 ºC.  Residual liquid was removed by a pipetman before

the mass of cell paste was measured.  The cell paste was then suspended in 1 mL buffer C/g cell

paste by pipetting repetitively for ~2-3 min to ensure complete suspension.  The cell suspension

was then transferred into EPR tubes using a 12-inch Pasteur pipette followed by flash freezing in

liquid nitrogen before analysis.

In order to measure the consistency of the cell packing in the EPR tubes, the cell

suspension of the EPR samples was serial diluted 2000 fold and A600nm was measured on the HP

diode-array spectrophotometer (Agilent 8453).  The average A600nm from six different EPR

samples is 0.38 with a standard deviation of ~1.6% (A600nm ± 0.01), indicating the cell packing in

the EPR tubes was reproducible between samples.  The level of overexpression of β2 upon

arabinose induction was monitored by 4-20% gradient SDS-PAGE.

EPR spectra were recorded using a Bruker ESP-300 X-band (9.4 GHz) spectrometer at 77

K using a liquid nitrogen cooled finger dewar.  Typical parameters used to record the spectra

were: 9.38 GHz frequency, 0.05 mW power, 1.5 G modulation amplitude, time constant 2.52 ×
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103, and 10 to 20 scans.  The spin quantitation was carried out using a CuSO4 standard (30) and

Win-EPR software (Bruker).

Monitoring the iron loading in overexpressed β2 by whole cell Mössbauer spectroscopy

Preparation of whole cell Mössbauer sample:  A 57Fe3+ stock solution (158 mM) was prepared as

previously described in Chapter 2.  TOP10 cells were grown in LB media which contains ~12

µM 56Fe determined by the ferrozine assay.  An overnight culture of TOP10-pBAD-nrdB (1 mL)

was inoculated into 500 mL LB supplemented with 100 µg/mL ampicillin and 50 µM 57Fe3+ in a

2.8 L baffled flask.  The cells were grown at 37 ºC, 200 rpm until A600nm was ~0.5.  Arabinose

(0.5 mM) was added into the culture and the cells were grown for another 2 h (A600nm ~ 1.7)

before being harvested by centrifugation at 7000g for 20 min at 4 ºC.  The cell pastes were

packed directly into custom-designed Mössbauer cups (~450 µL, filled up to the top marker

inside the Mössbauer cups).  Scheme 4-1 shows the steps of packing the cell paste into

Mössbauer cups.  To ensure consistency of cell packing, a small aliquot of the cell paste was

taken using a metal spatula and transferred into the bottom of the Mössbauer cup.  This small

aliquot of the cell paste was then pushed gently to the corner of the Mössbauer cup to ensure no

bubbles were trapped inside the cup.  This step was repeated several times until the cell paste

was filled up to the first marker of the Mössbauer cup.  A control experiment was carried out

under identical growth conditions, but no arabinose was added.

Scheme 4-1
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Mössbauer spectroscopy: Mössbauer spectra were recorded on a spectrometer from Web

Research (Edina, MN), equipped with a SVT-400 cryostat from Janis Research Company

(Wilmington, MA).  Spectra were collected in constant acceleration mode in transmission

geometry.  Isomer shifts are quoted relative to the centroid of α-Fe at room temperature. Spectra

were analyzed with the program WMOSS from Web Research (Edina, MN).

Whole cell Mössbauer samples taken at different time points after arabinose induction

Test of different growth conditions for optimal β2 expression in short periods of time:  In order to

monitor the change of iron populations inside the cells during the early stage of β2 over-

production, optimal induction conditions which result in maximum increase of [Y•] with

minimum cell growth needed to be found.  Therefore, experiments with cells induced at different

growth stages by addition of 0.5 mM arabinose with growth continued for different amounts of

time were carried out.  An overnight culture (2 mL) from a single colony of TOP10-pBAD-nrdB

was inoculated into 500 mL LB-ampicillin (100 µg/mL) supplemented with 50 µM FeCl3 (50

mM stock in 0.01 N HCl) and grown in a 2.8 L baffled flask at 37 ºC, 200 rpm.  β2 expression

was induced by 0.5 mM L-arabinose at A600nm ~ 0.5, 1.0, and 1.5.  After 10 and 20 min (and 2 h

for the A600nm ~ 0.5 sample), aliquots (200 mL) of the culture were centrifuged at 8000g for 10

min at 4 ºC.  The cell paste was suspended in 1 mL buffer C/g cell pastes and loaded into EPR

tubes for analysis.

 Preparation of whole cell Mössbauer samples:  An overnight culture (7 mL) from a single

colony of TOP10-pBAD-nrdB was inoculated into 1.2 L LB-Amp (100 µg/mL) supplemented



237

with 50 µM 57Fe and grown in a 6 L flask at 37 ºC, 200 rpm until A600nm reached ~1.5.  Part of the

culture (300 mL) was taken as the zero time point sample before L-arabinose addition.  The

remaining 0.9 L of the cell culture was induced with 0.5 mM L-arabinose and grown for an

additional 10, 20, and 40 min.  For Mössbauer spectroscopy analysis, 250 mL of the cell culture

was centrifuged at 8,000g for 10 min at 4 ºC and the cell paste was packed directly into custom-

designed Mössbauer cups (~450 µL, filled up to the top marker inside the Mössbauer cups) as

described above.  For EPR analysis, 50 mL cell culture was centrifuged at 4,000 rpm for 15 min

at 4 ºC and the cell paste was resuspended in 1 mL buffer C/g cell paste and loaded into EPR

tubes.  Recordings of the Mössbauer and EPR spectra were carried out as described above.

Table 4-1.  List of common buffers used in this chapter

Buffers Composition

A 50 mM Tris-HCl, 150 mM NaCl, pH 7.6

B 50mM Tris-HCl, 5% (w/v) glycerol, 1 mM 1,10-phenanthroline, 0.25 mM PMSF,
pH 7.6 at 4 ºC

C 100 mM Tris, pH 8.0 at 4 ºC, 150 mM NaCl, 5% glycerol

D 50 mM Na2HPO4, pH 7.0, 10 mM imidazole

E 50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0
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Table 4-2.  List of E. coli strains and plasmids used in this chapter.

Strain or plasmid Description Reference

E. coli strains

K-12 Wild type (F+) E. coli genetic stock
center #7296

W3110 Wild type (F- λ- IN(rrnD-rrnE)1 rph-1) (31)

BW25113 K-12 derived: (lacIq rrnBT14 ΔlacZWJ16 hsdR514 ΔaraBADAH33
ΔrhaBADLD78)

(32)

TOP10 F- mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74 deoR recA1
araD139 ∆(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG

(33, 34)

BL21(DE3) F- ompT gal dcm lon hsdSB(rB
- mB

-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1
sam7 nin5])

(35)

GR536 W3110  fecABCDE::kan  zupT::cat  mntH  entC  feoABC (23)

GR537 W3110  fecABCDE::kan  mntH::cat  entC  feoABC (23)

GR538 W3110  fecABCDE::kan  zupT::cat  entC  feoABC (23)

GR499 W3110  zupT::cat  mntH  feoABC  entC (23)

ΔfepA BW25113 fepA::kan  (ferric-enterobactin outer membrane transporter) (24)

ΔfecA BW25113 fecA::kan  (ferric-citrate outer membrane transporter) (24)

ΔfhuA BW25113 fhuA::kan  (ferric-hydroxamate outer membrane transporter) (24)

ΔfhuE BW25113 fhuE::kan  (ferric-hydroxamate outer membrane transporter) (24)

ΔfeoB BW25113 feoB::kan  (ferrous iron inner membrane permease) (24)

ΔmntH BW25113 mntH::kan  (divalent cation inner membrane permease) (24)

ΔzupT BW25113 zupT::kan  (divalent cation inner membrane permease) (24)

Plasmids

pBAD-nrdB pBAD containing β (18)

pBAD-N-S-nrdB pBAD containing N-terminal StrepII-β (18)

pBAD-C-S-nrdB pBAD containing N-terminal StrepII-β (18)

pBAD-I-S-nrdB pBAD containing interal StrepII-β (inserted between N179 and G180 of
β)

This study

pBAD-I-H-nrdB pBAD containing interal 6×His-β (inserted between N179 and G180 of β) This study

pET-cyaY pET containing GST-6xHis-CyaY (22)

pR2-W48F/F208Y E. coli β2 W48F/F208Y mutant (4)

pR2-F208Y E. coli β2 F208Y mutant (with an additional V141I mutation) (4)
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Table 4-3.  List of primers for verification of single gene deletion strainsa.

Target gene primers Note

ΔfepA-5′

ΔfepA-3′

CTGCGTGTCTTTCAGGATCA

CGCACTTTGTCAACAATCTG

Ferric-enterobactin outer

membrane transporter

ΔfecA-5′

ΔfecA-3′

TCGTTCGACTCATAGCTGAA

AAAAGCCCGGCAAGCCGGGC

Ferric-citrate outer

membrane transporter

ΔfhuA-5′

ΔfhuA-3′

ATCATTCTCGTTTACGTTAT

GCACGGAAATCCGTGCCCCA

Ferric-hydroxamate outer

membrane transporter

ΔfhuE-5′

ΔfhuE-3′

CCTCCTCCGGCATGAGCCTG

CAGATGGCTGCCTTTTTTAC

Ferric-hydroxamate outer

membrane transporter

ΔfeoB-5′

ΔfeoB-3′

CTTATTAGAAGTGGAAGCGG

CAAATCGCGCACCTGAATAA

Ferrous iron plasma

membrane transporter

ΔmntH-5′

ΔmntH-3′

TTGGCATAGCATGAAACATA

CAATAGTGCCAGATGCGACG

Divalent cation plasma

membrane transporter

ΔzupT-5′

ΔzupT-3′

ATCCGGGTTCTTACTCCGCC

ACCGGATGGCACTCGCCATC

Divalent cation plasma

membrane transporter

aSequences of all primers depicted from 5′ to 3′
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RESULTS

I.  Purification and characterization of E. coli frataxin, CyaY

Because of the recent discoveries of the roles of frataxin in the iron delivery for

ferrochelatases, aconitases, or proteins requiring FeS clusters, we decided to evaluate whether a

Fe2+-loaded frataxin (CyaY in E. coli) can function as an iron chaperone in E. coli to deliver iron

to apo-β2 (36-38).  A construct, pET-cyaY, was obtained (22), that contains a GST tag, a 6xHis

tag, and a TEV (tobacco etch virus) protease restriction site before cyaY.  DNA sequencing

results revealed that the amino acid sequence in the N-terminal region of CyaY is -

ENLYFQGAMGND-, with the TEV protease site underlined and the first amino acid (Met) of

CyaY in bold.  An additional amino acid, Gly, was inserted between the first (Met) and the

second (N) amino acid of CyaY, probably for the purpose of cloning.  After TEV protease

treatment to cleave off the affinity tag, the N-terminus of CyaY contains GAMGND-, with the

additional amino acids indicated in bold.  The calculated molecular mass is 12416.6 Da with a

total of 109 amino acids including the three additional amino acids.

The pET-cyaY plasmid was transformed into E. coli BL21(DE3) cells and protein

expression was induced at A600nm~0.8 by addition of 0.5 mM IPTG and grown for an additional 4

h.  The induction gel is shown in Figure 4-2: leakage of protein expression was observed before

IPTG induction and the protein was further expressed after induction.  The predicted molecular

mass of GST-His-CyaY is ~40 kDa.  The GST-His-CyaY was purified on a Ni-affinity column

followed by a Sephadex G-25 column to remove the imidazole in the elution buffer for the Ni-

column.  The eluents from the G-25 column were first concentrated by an Amicon concentrator

with a YM30 membrane; most of the protein was found in the filtrate.  Therefore, an Amicon

concentrator with a YM3 membrane was used to concentrate the protein.  The purity and yield of
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protein purified in each chromatography step is shown in Figure 4-2 and Table 4-4.  A total of

390 mg of GST-His-CyaY was obtained from 2 L of LB culture (~4.9 g of cell paste).   

Table 4-4.  Efficiency of each purification step for GST-His-CyaY

 
Volume

(mL)
Concentration

(mg/mL)
Total protein

(mg) Yield (%)
Crude cell lysate 32 38.2 1222  

Flow through 46 5.4 248 20
Ni column 19 36.8 699 57

G-25 54 10.5 567 46
YM30 filtrate 45 9.6 432 35

YM3 concentrate 6.5 60 390 32

55.4
36.5
31.0

21.5

14.4
6

M 1 2

66.3

kDa

66.3
55.4
36.5
31.0

21.5

14.4

6

kDa M 5 6 7 8 93 4 M

Figure 4-2.  Induction and purification of GST-His-CyaY monitored by 15% SDS-
PAGE.  M: marker, lane 1: before induction, lane 2: after induction (0.5 mM IPTG),
lane 3: crude cell lysate, lane 4: Ni-column flow through, lane 5: after Ni-column, lane
6: after Sephadex G-25, lane 7: YM30 filtrate, lane 8 and 9: YM3 concentrate.
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Removal of the ~28 kDa GST-His tag was accomplished by TEV protease digestion.

According to the manufacturer’s protocol, one unit of TEV protease cleaves 85% of a 3 µg

control substrate in 1 h at 30 ºC.  Because the actual cleavage efficiency depends on the

substrates, different amounts of TEV protease and GST-His-CyaY were tested for complete

digestion and the results examined by 15% SDS-PAGE.  The optimal digestion condition was

found to be 0.7 unit of TEV per mg of GST-His-CyaY.  A large-scale digestion was performed

and the cleaved GST-His tag was separated from CyaY by passage through a Ni-column.  The

purification of CyaY was not successful due to incomplete digestion of the protein.

A higher TEV:GST-His-CyaY ratio was tested (1 U TEV/mg GST-His-CyaY) but

incomplete digestion, (~55 mg scale) still persisted.  Therefore, size-exclusion chromatography

was used to purify CyaY.  Figure 4-3 shows the elution profile and the components of eluent

analyzed by SDS-PAGE.  In order to completely remove the residual GST-His tag contaminant,

the concentrated CyaY was re-chromatographed on the same column; highly pure CyaY was

isolated (Figure 4-4).

The purified CyaY was characterized by UV-visible spectroscopy and LC-ESI-MS

spectrometry (Figure 4-5).  The UV-visible spectrum showed no feature at ~350 nm that is

indicative of Fe3+-binding (38) and a ferrozine assay analysis detected no Fe.  The LC-ESI-MS

spectrometry shows a single peak corresponding to a CyaY monomer.  The measured molecular

mass (12418.5 Da) is about 2 Da higher than the predicted molecular mass (12416.6 Da,

including the three extra amino acids), which could be due to a different protonation state of the

protein or errors from calibration of the instrument.
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Figure 4-3.  Purification of CyaY from GST-His tag by size-exclusion
chromatography.  Purified GST-His-CyaY was treated with rTEV protease to cleave
the GST-His affinity tag.  The protein was purified on a Superdex-75 column (A) and
the eluents were examined on a 15% SDS-PAGE (B).  Fractions in (A) that were
loaded onto the SDS-PAGE are labeled in red.
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Figure 4-4.  Re-chromatography of CyaY on a Superdex-75 column.  Fractions (12 to 14)
in Figure 4-3 were combined, concentrated and loaded on to the same size-exclusion
column to completely remove the residual GST-His tag in the sample.  The eluents were
analyzed by A280nm (A) and 15% SDS-PAGE (B).  The corresponding fractions in (B) are
labeled on (A) in red.
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Figure 4-5.  UV-visible (A) and LC-MS (B) spectra of CyaY.  (A) No feature that may
be associated with Fe-binding was observed in the UV-visible spectrum of CyaY.  Inset:
blow up at the UV region.  (B) LC-ESI-MS of CyaY shows a single peak at 12418.5 Da,
which is close to the theoretical molecular mass of CyaY (12416.6 Da).
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Because the iron delivered to apo-β2 needs to be in the ferrous form, we first tested

whether a ferrous iron-loaded CyaY could be isolated.  CyaY was incubated with a 10-fold

excess Fe2+ (assuming 2 Fe2+ bind to 1 CyaY) in 50 mM Tris-HCl, 150 mM NaCl, pH 7.6, for 30

min at room temperature under strict anaerobic conditions.  The sample was then passed through

a Sephadex G-25 column to remove unbound Fe2+.  A280nm of the eluents was recorded on a multi-

plate reader and a ferrozine assay of each fraction was carried out.  No Fe was detected in the

protein fractions, suggesting that Fe2+ had dissociated from CyaY during the Sephadex G-25

chromatography due to its high Kd (~4 µM) (26).

Even though the purification of Fe2+-CyaY was not successful in our hands, isolation of

Fe2+-CyaY was reported a year later by incubation of a 15-fold molar excess Fe2+ with CyaY for

2 h at 4 ºC followed by passage through a commercial Sephadex G-25 column (NAP-10, GE

Healthcare) (38).   The successful isolation of Fe2+-CyaY could be due to higher [Fe2+] (15-fold

vs 10-fold), longer incubation time (2 h vs 30 min), lower incubation temperature (4 ºC vs room

temperature), or a smaller Sephadex G-25 column (1 mL (sample size unknown) vs 20 mL (0.48

mL sample)).  A ferrozine assay showed a stoichiometry of ~2.5 Fe2+/CyaY.  However, the Fe2+

was found to dissociate from CyaY upon repeated dilutions (1.5-fold each time, three times), or

treatment with 60-fold excess EDTA or citrate; therefore, an Fe3+-loaded CyaY in the presence of

chemical reductants was used to demonstrate its iron chaperone activity by these workers (see

Chapter 1) (38).

More recently, an Fe2+-loaded frataxin from Drosophila was shown to deliver its Fe2+ into

ISU, an FeS cluster scaffold protein (39).  However, the Fe2+-frataxin was prepared by 1:1

mixture of 100 µM Fe2+ and frataxin (Kd ~6 µM) without further purification.  In their case, a

faster observed rate constant of the formation of [2Fe2S]2+-ISU was observed in the presence of
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frataxin (~0.1 min-1) relative to its absence (< 0.02 min-1), suggesting a frataxin-mediated iron

delivery into apo-ISU.  However, given the fast self-assembly of apo-β2 in the presence of Fe2+

and O2, it may be challenge to distinguish whether the incorporation of Fe2+ in apo-β2 is mediated

by CyaY or delivered from Fe2+ in solution that has dissociated from CyaY.  Therefore, the Fe3+-

CyaY with different reductants may be a better choice for investigation whether CyaY can be an

iron chaperone for apo-β2.  These studies warrant further investigation given these evidence for

the role of frataxin as an iron chaperone.

II.  Developing assays for detection of iron incorporation into apo-β2

A classical biochemical method for finding factor(s) required for diferric-Y• assembly in

vivo, require a sensitive assay for fractionation of cell lysate.  Two approaches for assay

development were taken: both involved monitoring color changes associated with iron cluster

assembly.  A β2 double mutant, W48F/F208Y, was previously shown to generate a Fe3+-catechol

complex upon addition of Fe2+ and O2.  The long wavelength absorption features of this Fe3+-

catechol (λmax = 660 nm, ε660nm = 3 mM-1cm-1) allow monitoring of its formation even with

“colored” crude cell lysate.  As a first step, experiments were carried out to examine the

suitability of this approach.  Apo-β2-W48F/F208Y was overexpressed in E. coli BL21(DE3) cells

subsequent to induction with 0.2 mM IPTG for 4 h in the presence of an iron chelator, 1,10-

phenanthroline (100 µM) (Figure 4-6).

The protein was purified and a final yield of ~500 mg protein was obtained from 14 g of

cell paste (5 L culture in LB) (Figure 4-6, Table 4-5).  It should be noted that during when

concentrating the protein, an Amicon concentrator with a PM30, rather than a YM30 membrane

should be used to avoid precipitation.
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 To test for formation of a Fe3+-catechol complex, Fe2+ was added to apo-β2-W48F/F208Y

under aerobic conditions (A, Figure 4-7).  The solution turned purple immediately, and the UV-

visible spectrum showed a broad peak at A660nm.  From the published spectrum, this absorption

feature extended to over 960 nm: no baseline was observed (4). Several minutes after addition of

Fe2+, Fe3+ precipitated.  To test the stoichiometry of Fe3+-catechol formation, different amounts of

Fe2+ were titrated into apo-β2-W48F/F208Y under aerobic conditions and the increased A660nm

was measured (B, Figure 4-7).  The results revealed that the maximal amount of Fe-catechol

complex is formed at a ratio of four ferrous irons per apo-β2-W48F/F208Y.

A number of experiments were carried out to determine if Fe3+-catechol formation could

be detected when crude cell lysate was added to apo-β2.  Experiments with extract generated via

cell wall disruption with a French Press or by sonication gave no Fe3+-catechol product.  Even

when Fe2+ was added to the crude cell lysate, which was in turn added to apo-β2, no 660 nm

feature was detected.  To eliminate the possibility that endogenous or exogenous Fe2+ was

oxidized, preventing binding to apo-β2, the experiment was repeated under anaerobic conditions,

followed by O2 addition.  The experiment was also unsuccessful.
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Table 4-5.  Purification of apo-β2-W48F/F208Y.

Sample concentration
(mg/mL)

volume
(mL) yield (mg) % yield

crude cell lysate 13 71 923  
after streptomycin sulfate 11 83 913 74
after ammonium sulfate 57 15 855 70
after Sephadex G-25 12 93 1116 91
after DEAE 2.2 260 572 47
DEAE concentrate (YM30) 3 156 468 38
Q-Sepharose concentrate (PM30) 11 20 220 18
after G-25 9.9 44 436 35
G-25 concentrate (PM30) 53 9.3 493 40

M     1    2
kDa

66.3
55.4

36.5
31.0

M  3    4    5    6    7    8    9   10  11
kDa

66.3
55.4

36.5

31.0

Figure 4-6.  Induction and purification of apo-β2-W48F/F208Y monitored by 10% SDS-
PAGE.  M: maker, lane 1: after 0.2 mM IPTG induction for 4 h, lane 2: before induction, lane
3: crude cell lysate, lane 4: after purification by streptomycin sulfate, lane 5: after purification
by ammonium sulfate precipitation, lane 6: after desalting by Sephadex G-25, lane 7: after
purification by DEAE ion-exchange chromatography, lane 8: after concentration by an
Amicon concentrator with a YM30 membrane, lane 9: after purification by Q-Sepharose
chromatography and concentration by an Amicon concentrator with a PM30 membrane, lane
10: after buffer exchange by Sephadex G-25, lane 11: after concentration by an Amincon
concentrator with a  PM30 membrane.
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Figure 4-7.  Looking for iron incorporation into apo-β2 by monitoring Fe3+-catechol
formation at 660 nm in apo-β2-W48F/F208Y.  (A) Test the formation of Fe-catechol by
adding Fe2+ (400 µM) into 50 µM apo-β2-W48F/F208Y under aerobic conditions.  After
addition of Fe2+, a peak with A660nm was observed.  (B) Determining the stoichiometry of the
formation of Fe-catechol complex.  Different amounts of Fe2+ (0, 100, 200, 400 µM) were
added to 50 µM apo-β2-W48F/F208Y under aerobic conditions and the A660nm was
measured.  An absorption maximum was reached when the ratio of Fe2+ to apo-β 2-
W48F/F208Y is 4 to 1.
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One possible explanation for the failure to detect Fe3+-catechol formation is that the

components that can deliver Fe2+ to apo-β2 can differentiate mutant from wt.  To test this

possibility the mutant was replaced by apo-β2 wt and the experiments were repeated.  Fe2+ added

to apo-β2 under aerobic conditions revealed the diferric-Y• cofactor formation (Figure 4-8) (28).

Quantitation of the Y• by the drop-line method (28) indicated ~1 Y•/β2.  Apo-β2 wt was then

added to crude cell lysate prepared by sonication and the formation of the diferric-Y• was

monitored (Figure 4-8).  No significant changes of the spectrum after addition of apo-β2 wt were

observed initially; however, after spectra normalization for dilutions and subtraction of spectrum

of crude cell lysate, features of the Y• were observed (B, Figure 4-8, inset).  These results

suggest that endogenous iron in the crude cell lysate can be incorporated into apo-β2 wt.  For the

addition of ferrous iron to crude cell lysate resulted in a further increase in the A410nm, indicative

of increased formation of Y•.  These results imply that there are unknown components inside the

cells that can distinguish mutant apo-β2 from wt apo-β2 and can deliver iron specifically to the wt

apo-β2.  While the sharp absorption feature at 410 nm from the formation of diferric-Y• cofactor

could provide a means of fractioning factors capable of delivery of iron to apo-β2, the sensitivity

is very low.  Thus this method was abandoned.
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Figure 4-8.  Looking for iron incorporation into wt apo-β2 by monitoring the Y•
formation at 410 nm.  (A) WT apo-β2 (50 µM, blue line) was added with Fe(NH4)2(SO4)2
(1 mM, red line) under aerobic conditions.  Inset: Difference spectra between before and
after addition of Fe2+.  (B) Looking for iron incorporation into wt apo-β2 from crude cell
lysate.  Crude cell lysate from E. coli K-12 wt (~10 mg/mL) was mixed with 50 µM wt
apo-β2 followed by addition of 1 mM Fe(NH4)2(SO4)2 under anaerobic conditions.  The
UV-vis spectra of crude cell lysate (blue) and after addition of apo-β2 (red) or 1 mM
Fe2+ (green) are shown.  The absorbance was adjusted for dilution. Inset:  Difference
spectra between after and before addition of apo-β2 (red) and between after and before
addition of Fe2+ (green) are shown.  Features of the Y• were observed in both cases.
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III.  Looking for iron chaperone by protein co-purification

In addition to developing sensitive colorimetric assays to monitor iron delivery to apo-β2,

we have also developed techniques to monitor protein co-purification.  Our working hypothesis

is that iron loaded chaperone protein(s) is(are) likely to have a higher affinity for apo-β2 than

iron-loaded β2.  It is also likely that iron is transferred from the “iron chaperone” to apo-β2 in its

+2 oxidation state.  In addition, from studies of the FeS cluster biosynthesis, the interaction

between scaffold proteins and apo-recipient proteins appears to be weak (40).  Therefore, we

designed our affinity purification schemes to maximize detection of a co-purified protein.

(a) used a β2-E115A mutant that is isolated in the apo-form to increase the chance of

binding to iron loaded chaperone protein(s).

(b) placed affinity tags in three different positions within β2 to prevent possible

interference of tags on binding to a chaperone protein(s).

(c) eluted proteins from an affinity column with buffers containing different [NaCl] to

maximize the prospects of finding a weakly bound protein.

(d) prepared crude cell lysate under anaerobic conditions to minimize Fe2+ oxidation.

(e) used non-specific formaldehyde cross-linking to increase the chance of co-purifying

proteins with weak interactions.

A. Construction of wt and E115A β2 with different affinity tags at various positions:  An eight-

amino acid StrepII tag was placed at the N- and, in a separate construct, the C-terminus of β2 wt

or E115A mutant to facilitate protein co-purification.  To prevent potential interference of tags at

the ends of β2, constructs with an internal StrepII or independently a 6×His tag inserted between

N179 and G180 of β2 was also prepared.  In order to be able to control the level of protein
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expression, these tagged constructs were inserted into an arabinose-inducible pBAD vector and

expressed in E. coli TOP10 cells in which the arabinose metabolism was abolished (Table 4-2)

(8, 18, 41).  The cells with the different constructs were grown in LB at 37 ºC until early log

phase, at which time various concentrations of arabinose were added into the cell culture, to

induce the expression of affinity tagged β2.  The cells were then grown for different amounts of

time.  The protein was purified by affinity chromatography.  Figure 4-9 shows the UV-visible

spectrum of purified wt and E115A C-S-β2.  The spectrum of E115A β2, as expected, does not

have features associated with the diferric-Y• cofactor, in contrast to the spectrum of wt β2.  A

ferrozine assay of E115A β2 indicates a low iron content (< 0.1 Fe/β2).

B.  Protein co-purification with StrepII-tagged β2:  We next tested the binding affinity of the

different StrepII tagged constructs to a Strep-Tactin column to determine which construct would
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Figure 4-9.  UV-visible spectra of purified C-terminal StrepII-tagged β2.  The
expression of C-S-β2 was induced by 0.01 mM ara for 2 h and the protein purified by
Strep-Tactin affinity chromatography.  Extinction coefficients of C-S-β2 wt (blue) and
C-S-β2-E115A (red) were calculated using ε280nm from wt-β2 (131 mM-1cm-1) and apo-
β2 (120 mM-1cm-1).  No feature from the diferric cluster was observed in the E115A
mutant.  Only the region between 300 nm and 500 nm was recorded.
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be most appropriate to look for protein co-purification.  We found that the C-S-β2 has both

higher expression and better affinity for the Strep-Tactin column compared with the N-S-β2 (#1-

3, Table 4-6 and Figure 4-10).  The I-S-β2 did not bind to the Strep-Tactin column (#4, Table

4-6).

Our choice of tagged E115A-β2 to look for chaperone protein co-elution was based on

studies which have demonstrated that Fe loading status effects protein-protein affinity.  Because

the binding of proteins we are interested in is likely to be weak, we therefore also run a control

with wt-β2.  We then compared the protein elution profiles monitored by SDS-PAGE and looked

for differences between the two experiments.  However, a comparison of the elution profiles on

SDS-PAGE from wt and E115A mutant gave no obvious difference with either C- or N-terminal

Strep-tagged β2 (#1-3, Figure 4-10).  To test whether overexpression of β2 could lead to protein

co-purification, 5 mM arabinose was used to induce the expression of C-S-β2.  The results

demonstrate similar co-purification patterns compared to studies observed with low arabinose

induction (#7, Table 4-6, Figure 4-10).

C. Elution with lower [NaCl]:  Because the wash buffer for the Strep-Tactin columns contained

150 mM NaCl, which could potentially facilitate dissociation of weakly bound proteins, the

experiments were repeated in the absence of NaCl.  The results indicate no difference in the

elution patterns between wt and E115A of C-S-β2 induced by 0.01 mM arabinose (#5, Table 4-6,

Figure 4-10).

D.  Crude cell lysate prepared under anaerobic conditions:  To examine whether the oxidation

of Fe2+ to Fe3+ in crude cell lysate is the cause for the lack of co-purified proteins with β2 E115A,
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cells were cracked open under anaerobic conditions using a Bugbuster solution.  The Bradford

assay of the crude cell lysate indicates that the Bugbuster solution has comparable cell-lysis

efficiency as the French Press.  Despite these efforts, the co-purification patterns between wt and

E115A β2 are very similar (#6, Table 4-6, Figure 4-10), indicating oxidation was not the cause.

E. Protein co-purification with 6×His tagged β2:  To examine the possibility that a Strep tag at

the N- or C-terminus of β2 interfered with the binding of a chaperone protein(s) to wt and E115A

β2, internal 6×His tagged β2 was expressed and purified by Ni-affinity chromatography.  The

results show no obvious additional protein(s) co-purified with the tagged E115A β2 (#8, Table 4-

6, Figure 4-10).

F. Protein co-purification with N-S-β2 after non-specific cross-linking by formaldehyde:  The

results described above may imply that the binding of iron loaded chaperones to E115A mutant

is too weak or too transient to be detected by co-purification under the conditions examined.  To

overcome the challenge of co-purifying proteins that are weakly bound, non-specific cross-

linking by formaldehyde (FA) on the whole cells was tested (7, 13, 42).  We first examined the

cross-linking using the N-S-β2.  The cross-linking conditions, % of FA, incubation time and

temperature, are protein dependent and needs to be optimized (13).  We first selected 3% FA for

20 min at 4 ºC as our initial condition as these conditions have been successfully used to cross-

link proteins in E. coli (11, 42).  The protein expression was induced with 0.01 mM arabinose for

2 h and then treated with FA.  The crude cell lysate from the cells disrupted by the French Press

looked paler than the normal brownish crude cell lysate.  After loading the samples and washing

the Strep-Tactin column, no protein eluted from the column (#10, Table 4-6).



257

The failed protocol might be associated with the choice of concentration of FA for our

system and the potential cross-linking of Strep tag to proteins inside the cell, preventing access to

the Strep-Tactin column.  Therefore, the concentrations of arabinose (5 mM) and FA (1%) were

varied.  In no case was β2 bound to the affinity column (#11, 12, Table 4-6).
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Figure 4-10.  Comparisons of protein co-purification profiles between wt and E115A β2 on
SDS-PAGE.  The growth and purification conditions of affinity-tagged wt or E115A β2 are
listed in Table 4-6.  The numbers of the corresponding experiments in Table 4-6 are shown.
Experiment #9 was analyzed on 4-20% gradient SDS-PAGE, whereas all the others were
analyzed on 15% gradient SDS-PAGE.
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Table 4-6.  Conditions tested for tagged β2 expression and protein co-purification.

# Constructsa Induction conditions.
[arabinose], time

Formaldehyde cross-
linking conditionsb

Wash
conditionsc

Elute
conditionsd Notese

1 CS-β2 0.01 mM, 2 h - A F

2 NS-β2 1 mM, 2 h - A F

3 NS-β2 0.01 mM, 2 h - A F

4 IS-β2 0.01 mM, 1.5 h - A F I

5 CS-β2 0.01 mM, 3 h - B F

6 CS-β2 0.01 mM, 3 h - B F II

7 CS-β2 5 mM, 3 h - B F

8 IH-β2 0.5 mM, 3.5 h - D G

9 IH-β2 0.05 mM, 2 h - E H

10 NS-β2 0.01 mM, 2 h 3% FA, 20 min, 4 ºC A F I

11 NS-β2 5 mM, 2.5 h 1% FA, 20 min B F I

12 NS-β2 5 mM, 2.5 h 1% FA, 40 min B F I

13 CS-β2 5 mM, 3 h 1% FA, 20 min B F

14 CS-β2 5 mM, 3 h 1% FA, 40 min B F

15 CS-β2 0.01 mM, 3 h 3% FA, 20 min, RT C F III, I

16 IH-β2 0.05 mM, 2 h 0.4% FA; 15 min E H

17 IH-β2 0.05 mM, 2 h 0.4% FA; 30 min E H

18 IH-β2 0.05 mM, 2 h 0.4% FA; 50 min E H

19 IH-β2 0.05 mM, 2 h 1% FA; 15, 30, 50 min E H I

20 IH-β2 0.05 mM, 2 h 3% FA; 15, 30, 50 min E H I

a: abbreviations for the constructs: NS-β2, N-terminal StrepII-tagged β2; CS-β2, C-terminal
StrepII-tagged β2; IS-β2, Internal StrepII-tagged β2; IH-β2, Internal 6xHis-tagged β2.

b: Formaldehyde (FA). All the cross-linking experiments were carried out at 37 ºC.
c:  A: 100 mM Tris, pH 8.0, 150 mM NaCl, 5% glycerol, B: 100 mM Tris-HCl, pH 8.0, 20%

glycerol, C: PBS (50 mM K2HPO4, 150 mM NaCl, pH 7.4), D: 50 mM Na2HPO4, pH 7.0, 10
mM imidazole, E: 50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0.

d: F: 100 mM Tris, pH 8.0, 150 mM NaCl, 5% glycerol, 2.5 mM desthiobiotin, G: 50 mM
Na2HPO4, pH 7.0, 250 mM imidazole, H : 50 mM NaH2PO4, 300 mM NaCl, 250 mM
imidazole, pH 8.0.

e: I: Protein did not bind to the column, II: Cells were lysed anaerobically by Bugbuster, III:
Cells were lysed aerobically by Bugbuster (primary amine-free) followed by FA cross-
linking.
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G. Protein co-purification with C-S-β2 after non-specific cross-linking by formaldehyde:

Another explanation for the lack of protein elution from the Strep-Tactin columns could be due

to weak affinity of the N-terminal StrepII tag.  These cross-linking experiments were thus re-

examined with the C-terminal StrepII-tagged β2.  Expression of C-S-β2 was induced by 5 mM

arabinose for 3 h, followed by incubation with 1% FA for 20 and 40 min.  To examine the effect

of FA on the proteins inside the cells, E. coli cells before and after arabinose induction and after

6
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66.3
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1      2      3      4      1      2      3      4

Figure 4-11.  Effects of formaldehyde on the E. coli whole cells monitored by 15% SDS-
PAGE.  Expression of C-S-β2 was induced by 5 mM arabinose for 3 h, after which 1% FA
was added into the culture and the cells were grown for another 20 or 40 min at 37 ºC.
The same amounts of the cells judged by A600nm were suspended in 2x Laemmli buffer,
boiled in 100 ºC sand bath and loaded onto a 15% SDS-PAGE.  Lane 1: before arabinose
induction, lane 2: after arabinose induction, lane 3: 20 min after addition of formaldehyde,
lane 4: 40 min after addition of formaldehyde.
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FA treatments were loaded directly onto 15% SDS-PAGE after being boiled in Laemmli buffer

(Figure 4-11; #13, 14, Table 4-6).  The result shows that C-S-β2 is over-produced after

arabinose induction, however, the total amount of protein decreases after FA treatment, probably

due to low efficiency of cell lysis, which could explain the lack of protein eluted from the Strep-

Tactin columns using N-S-β2.  Since there was a reasonable amount of C-S-β2 after 1% FA

treatment, the FA treated cells (20 min sample) were disrupted by the French Press and the crude

cell lysate was loaded onto a Strep-Tactin column.  Purified C-S-β2 was obtained from the

eluent, however, no difference in the co-elution pattern between wt and E115A β2 was observed

(#13, Figure 4-12, Table 4-6).  To test whether a direct FA treatment in the crude cell lysate

could increase cross-linking efficiency, the crude cell lysate from C-S-β2 induced by 0.01 mM

arabinose was purified and treated with 3% FA.  However, C-S-β2 loses its affinity toward the

Strep-Tactin column (#15, Table 4-6), implying that the StrepII tag may be cross-linked to other

proteins in the crude cell lysate, which would prohibit its binding to the column.  In addition,

dilution required to crack open the cells is likely to disrupt weak protein-protein interactions.

H. Protein co-purification with I-H-β2 after non-specific cross-linking by formaldehyde:  To test

the proposal that decreased affinities of binding tags is due to cross-linking of the tag by FA to

other proteins, the internal 6×His-tagged β2 was used.  The I-H-β2 was expressed by 0.05 mM

arabinose induction for 2 h, followed by addition of 0.4. 1 and 3% FA and the cells were grown

for 15, 30 and 50 min before the reaction was quenched by addition of glycine.  Because of the

number of conditions tested, Ni-NTA spin columns were used for rapid analyses.  The result of

the spin-column purification of the I-H-β2 without FA treatment is shown in Figure 4-10 (#9,

Table 4-6).  Pure I-H-β2 was obtained from the spin columns.  No difference in the co-
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purification pattern is observed between wt and E115A β2.  After 0.4% FA treatment for 30 or 50

min, the overall yields of the purified protein are less than those with only 15 min treatment

(#16-18, Table 4-6, Figure 4-12).  Furthermore, the co-purification patterns between wt and

E115A β2 on the 30 and 50 min samples appear to be the same (#17, 18, Figure 4-12).

However, in the 15 min sample, there is a protein band of higher molecular mass in the E115A

β2, not present in the wt sample (#16a, Figure 4-12).  After the sample was boiled to reverse the

cross-linking, an extra band of lower molecular mass was observed (#16b, Figure 4-12).

This gel band was excised and submitted to the Proteomics Core Facility of MIT for in-

gel trypsin digestion and LC-MS/MS analysis to determine the identity of the protein that cross-

linked to I-H-β2-E115A (Table 4-7).  After examination of the proteins identified through

peptide matching in a database search, the result seems to indicate that the “new” band is

truncated β2.

Despite the various approaches employed to increase our chances of finding an iron

chaperone protein(s), no additional protein that co-purifies with E115A β2 was found.  The lack

of protein co-purification could be due to low concentration and/or weak binding of chaperone

proteins.  In the former case, silver staining of the SDS-PAGE could reveal proteins not detected

by the Coomassie blue staining.  To overcome problems associated with a weak binding,

examine of washes with increasing salt concentrations needs to be carried out; cross-linking

reagents with different lengths of linkers between cross-linking functional groups may increase

the chance of insolating proteins that co-purify with affinity tagged β2.  Future experiments are

required to examine these proposals.
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Figure 4-12. Comparisons of protein co-purification profiles between wt and E115A β2
after non-specific cross-linking in vivo by FA.  The growth, cross-linking and purification
conditions of affinity-tagged wt or E115A β2 are listed in Table 4-6.  The numbers of the
corresponding experiments in Table 4-6 are shown.  Experiment #13 was analyzed on
15% SDS-PAGE, whereas experiment #16-18 were analyzed on 4-20% gradient SDS-
PAGE. (16a) The eluents were diluted in 2x Laemmli buffer without incubation at 100 ºC
before being loaded onto the gel.  The black arrow indicates a stronger band of higher
molecular mass in E115A-β2.  (16b) Similar to 16a but the Laemmli samples were
incubated in 100 ºC sand bath for 20 min before being loaded onto the gel.  The boiling
step reverses the cross-linkages and separates the cross-linked products.  The red arrow
indicates the new band formed in I-H-β2-E115A that is absent in wild type after
incubation at 100 ºC.
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Table 4-7.  List of the identification of proteins that cross-linked to internal His-tagged β2-
E115A by in-gel digestion with trypsin, LC-MS/MS analysis and database search.

Protein Probability
Number of
different
peptides

MW

TPIS_ECOLI (P0A858) Triosephosphate isomerase 2.01E-11 8 26954.8
RS3_ECOLI (P0A7V3) 30S ribosomal protein S3 6.81E-10 4 25967.2
GRPE_ECOLI (P09372) Protein grpE (Heat shock protein B25.3,
HSP-70 cofactor) 1.96E-09 1 21784.2
GPMA_ECOLI (P62707) 2,3-bisphosphoglycerate-dependent
phosphoglycerate mutase 3.03E-09 3 28538.8
RIR2_ECOLI (P69924) Ribonucleoside-diphosphate reductase 1
subunit beta 5.63E-08 6 43489.8
RL1_ECOLI (P0A7L0) 50S ribosomal protein L1 7.05E-08 2 24714.3
GNTY_ECOLI (P63020) Protein gntY (predicted gluconate transport
associated) 7.77E-08 2 20984.3
UDP_ECOLI (P12758) Uridine phosphorylase 1.35E-07 4 27141.9
EFTU_ECOLI (P0A6N1) Elongation factor Tu 1.78E-07 2 43286.4
NARL_ECOLI (P0AF28) Nitrate/nitrite response regulator protein
narL 3.01E-07 1 23911.7
OMPR_ECOLI (P0AA16) Transcriptional regulatory protein ompR 3.39E-07 1 27336.2
TRMJ_ECOLI (P0AE01) tRNA 3.82E-07 2 27030.9
YDCF_ECOLI (P34209) Hypothetical protein ydcF 4.61E-07 1 29687.0
RS4_ECOLI (P0A7V8) 30S ribosomal protein S4 8.17E-07 2 23454.6

Note 1: Database search was carried out in a protein database of wt E. coli K-12.  The probability
means the odds of a random peptide sequence that happens to match the identified protein.  The
smaller the number, the better the fit.  The number of different peptides identified that are
matched to the target proteins is shown.  The more peptides that match to the target protein, the
more confident one is about the accuracy of the protein identification.
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IV. Using whole cell EPR spectroscopy in an effort to identify iron delivery pathways for β2

Our recent studies using whole cell EPR spectroscopy and quantitative Western analyses

of E. coli TOP10 cells containing pBAD-nrdB showed that up to 4.4 mM Fe (76% of total iron)

can be directed or redirected to load into β2 after 0.5 mM arabinose induction for 2 h, which is

~3.2-fold of the total cellular iron (~1.4 mM) without arabinose induction (18).  A robust and

efficient iron delivery system is required to redirect such high amount of iron. Even though the

iron delivery pathways for β2 are likely growth dependent and redundant, there might only be a

few of them that play a dominant role for the cluster biosynthesis of β2.  If this hypothesis is

correct, it may be possible to observe a decrease in Y• signal in the whole cells when β2 is

overexpressed in mutant strains in which the genes encoding proteins involved in the key iron

delivery pathways are deleted.  To test this hypothesis, we first grew E. coli TOP10 cells in M9

minimal medium in order to control the growth conditions.  However, cells grown in the minimal

medium resulted in poor β2 expression, and consequently resulted in weak Y• signals that could

not be quantitatively assessed by whole cell EPR spectroscopy.  Therefore, we decide to carry

out experiments in LB medium.

We first focused our efforts on iron transporter deletion strains (Table 4-1).  From our

previous studies (18), induction of β2 expression by 0.5 mM arabinose in LB medium generated

~33% of β2 in the apo-form, suggesting that the rate of production of β2 exceeds the iron-

delivering capacity inside the cells.  Under these growth conditions, if a major iron transporter

associated with the iron delivery pathway for apo-β2 is deleted, a decrease in the whole cell EPR

signal of Y• might be observed, assuming that the Y• signal is proportional to the Fe-loading in

β2 in the different deletion strains.
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Whole cell EPR spectroscopy of single transporter deletion strains:  Single gene deletion strains

of seven membrane transporters that are known to involve iron transport were obtained from

Japan Keio collection (Table 4-1) (24).  The accuracies of these gene-deletion strains were

confirmed by PCR and DNA sequencing.

Initially the growth of the different deletion strains subsequent to β2 induction was

examined to evaluate whether there is any observable growth defect due to the deletion of each

iron transporter.  The growth curves from three independent cultures started from a single colony

are shown in Figure 4-13.  All strains have similar growth rates, except for ΔfepA, which grew

slower than the others.  This observation could be due to the importance of the ferric-

enterobactin transporter, causing a shortage in iron supply.  In addition to examining the growth

curves, production of β2 after induction with 0.5 mM arabinose was monitored by SDS-PAGE.

The induction gels are shown in Figure 4-14.  The results indicate that β2 is overexpressed in the

wt cells and in all the mutant strains, suggesting that the arabinose induction system is not

affected by defects in iron transports and implying that variations of the whole cell EPR signal, if

observed, may not be associated with different expression levels of β2 between different strains.

The growth curves and the ability to overexpress β2 in each strain, set the stage for

monitor Y• by whole cell EPR.  The Y• is assumed to be correlated with the extent of iron

loading of apo-β2.
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Figure 4-13.  Growth curves of wt E. coli and iron transporter deletion strains
overexpressed with β2.  An overnight culture (2.5 mL) of wt E. coli or iron transporter
deletion strains containing pBAD-nrdB was inoculated into 500 mL LB-ampicillin and
grown at 37 ºC, 200 rpm until A600nm reached ~0.8-0.9, at which time 0.5 mM arabinose was
added into the culture and the cells grown for another 2 h before being harvested.  A600nm of
each culture was monitored at different time points during the course of growth.
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Figure 4-14.  Induction gel of β2 overexpressed in different host cell lines.  Whole cells
from experiments in Figure 4-13 were loaded onto 4-20% gradient SDS-PAGE (A: 2 h
after induction, B: before induction).  In all cases β2 was overexpressed after arabinose
induction.
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Figure 4-15.   EPR signals of Y• in whole cells with β2 overexpressed.  Cells harvested
from the experiments in Figure 4-13 were suspended in 1 mL buffer C/g cell paste (buffer
A: 100 mM Tris-HC, 150 mM NaCl, 5% glycerol, pH 7.6) and packed into EPR tubes.  The
EPR spectrum from 4 to 6 independent cell growths was recorded at 77 K, microwave
power = 0.05 mW, receiver gain = 2.5 × 103, modulation amplitude = 1.5 G. The relative
signals of the Y• in the whole cell samples compared to wt are shown.
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Figure 4-15 shows the results from 4 to 6 independent cell growths of the whole cell Y•

signals relative to wt β2.  A factor that could result in variations of the whole cell EPR signals is

cell loading in the EPR tubes.  To examine whether the same numbers of cells were loaded into

the EPR tubes, the whole cell EPR samples (1 mL buffer C/g cell paste) were serial diluted

(2000×) and A600nm were recorded.  The results show a very consistent A600nm (A600nm = 0.38 ±

0.01, six independent EPR samples) with a standard deviation of ~1.6%, suggesting the

consistency of the cell loading in the EPR tubes.

The Y• signal from the ferrous transporter deletion strain, ΔfeoB, shows the most

dramatic decrease (~40%) compared to wt.  The ferric-citrate transporter (FecA) and the non-

specific divalent cation transporter (ZupT) deletion also show ~20% decrease of the Y• signals

compared to wt.  The ferric-hydroxamate transporter (FhuE) and the other non-specific divalent

cation transporter (MntH) deletion show no change in the intensity of Y• signals from the whole

cells.  The other ferric-hydroxamate transporter (FhuA) knockout has a slight increase of the

EPR signal.  Interestingly, the ferric-enterobactin transporter (FepA) knockout shows a dramatic

increase (~60%) of the whole cell Y• signal compared to wt.

These results imply that the ferrous iron transporter FeoB could play a major role for the

iron delivery into apo-β2 and the ferric-citrate transporter FecA and the ZupT-transporter could

function as backup systems for the cluster assembly of β2.  An increase of the whole cell Y•

signal in ΔfepA is rather puzzling, which might be associated with its slower growth rate and/or

defects in iron-uptake which in turn triggers alternative pathways that can generate the Y• more

effectively.  Future experiments using atomic absorption spectroscopy and Western blots to

quantitate the iron-uptake and β2 expression levels inside the cell, respectively, may help us to

gain some insight into the mechanisms that cause variations in the Y• signal.
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Whole cell EPR spectroscopy on multiple iron transporter deletion strains:  In addition to single

iron transporter deletion strains, we also investigated multiple iron transporter deletion strains in

an effort to gain insight about iron delivery pathways for apo-β2.  This strategy requires

construction of a multiple deletion of every known iron transport system, and comparisons of the

Y• of strains with only one functional iron transport system.  If this specific iron transport system

is required for iron delivery for β2, the addition of this system could result in an increase of the

whole cell Y• signal.

To test this strategy, multiple transporter deletion strains were obtained from Prof.

Rensing (Table 4-1) (23).  The strain, GR536, contains deletions of two non-specific divalent

cation transporters (ZupT and MntH), the major ferrous transport system (FeoABC), a protein

essential for enterobactin biosynthesis (EntC), and the ferric-citrate uptake system (FecABCDE).

The strains GR499, GR537 and GR538 contain deletions of these five transport systems but an

intact ferric-citrate uptake system, ZupT and MntH, respectively (Table 4-1).  Experiments to

monitor Y• by whole cell EPR spectroscopy were carried out using methods described above for

the single deletion strains (0.5 mM arabinose induction for 2 h in LB medium).

Figure 4-16 shows the level of the Y• signals relative to W3110 wt.  Deletions of the five

iron transport systems (GR536) causes about 80% decrease of the Y• signal compared to wt

strain.  The addition of either ZupT or MntH back to this strain does not show a recovery of Y•

signal.  The addition of the ferric-citrate transport system results in a 40% recovery of Y• signal

compared to GR536, suggesting the ferric-citrate transport system is one of the pathways for iron

delivery into apo-β2.  This result is consistent with the observations in the single ferric-citrate

transporter deletion strain ΔfecA which also shows a decrease in the Y• signal compared to the
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wt strain (Figure 4-15).  These results suggest the potential of using multiple deletion strains to

gain insight about iron delivery pathways for β2.
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Figure 4-16.  EPR signals of Y• in whole cells with β2 overexpressed in multiple iron
transporter deletion strains.  The EPR spectra (A) and the relative [Y•] (B) compared to wt are
shown.  WT: E. coli W3110, Δ5 (GR536, table 4-2): deletion of five iron transporters, ZupT+-
Δ4 (GR537, table 4-2): deletion of four iron transporters with only ZupT functioning, MntH+-
Δ4 (GR538, table 4-2): deletion of four iron transporters with only MntH functioning, Fec+-Δ4
(GR499, table 4-2): deletion of four iron transporters with only ferric-citrate transporter
functioning.  The same growth conditions and EPR parameters in Figure 4-15 were followed.
See Table 4-2 for the genetic backgrounds of the deletion strains.
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V. Whole cell Mössbauer spectroscopy after arabinose induction

Our previous studies using whole cell EPR spectroscopy and quantitative Western blots

of cells grown subsequent to induction of β2 with 0.01, 0.02, 0.05 or 0.5 mM arabinose indicate

substoichiometric amount of Y• (0.26-0.5 Y•/β2) inside the cell (18).  To gain some insight to the

iron loading of β2 and the population of β2 species (active β2, met-β2 and apo-β2) in vivo, the

crude cell lysate from cells grown under these different conditions (induction with 0.01, 0.02,

0.05 mM arabinose) were titrated with [2Fe2S]1+-YfaE followed by exposure to O2.  Strikingly,

the quantitation of [β2] and [Y•] after the titration showed a stoichiometry of 2 Y•/β2, indicating

that β2 is fully loaded with iron (4 Fe/β2).  This also suggests that active β2 and met-β2 are the

only two β2 species inside the cell when the [β2] in vivo is <122 µM.  In the case of β2 induction

with 0.5 mM arabinose, up to ~1.7 mM of β2 was expressed inside the cell but the Y•/β2 drops to

1.3, suggesting that the cell had reached its limit to deliver Fe to β2 and a population of apo-β2

was generated.  In this experiment, quantitation of β2 and iron revealed that up to 4.4 mM Fe2+ is

directed (redirected) to load β2 (18), which is ~3-fold of total iron inside the cell without β2

overexpression (~1.4 mM).  These results imply an up-regulation of the Fe uptake into the cells

for the cofactor assembly of β2.  To establish that the loading with iron occurred in vivo and not

from exogenous Fe in growth media, buffers or glassware, etc, Mössbauer spectroscopy was

used to monitor the diferric-β2 in the whole cell samples supplemented with 57Fe.

Whole cell Mössbauer spectroscopy: detection of diferric-β2 at 0.5 mM arabinose.  The spectrum

of whole cells packed into a Mössbauer cup after 0.5 mM arabinose induction for 2 h is shown in

Figure 4-17 (A) and is dominated by two quadupole doublets, which are assigned to the diferric

cluster of β2.  In addition, there is a small peak at +2.8 mm/s, which is typical of the high-energy
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line of high-spin Fe(II), and a shoulder at +0.9 mm/s (indicated by an arrow).  These features are

also observed in the spectrum of the control sample (B, Figure 4-17) in which cells were grown

under the same conditions except that no arabinose was added.  The observed signals are the

superposition of the spectral features of all Fe-species present in the cell, according to their

relative concentrations.  Approximately 40% of the iron is high-spin Fe(II) (δ ≈ 1.3 mm/s, ΔEQ ≈

2.9 mm/s) and the remainder represents several overlapping quadrupole doublets, which may

include FeS cluster-containing proteins (primarily [4Fe-4S]2+ and [2Fe-2S]2+), low-spin Fe(II)

hemes, and possibly fast-relaxing high-spin Fe(III) species.  These features can be approximated

as a broad quadrupole doublet with δapp of 0.46 mm/s and ΔEQapp of 0.94 mm/s which accounts

for ~60% of the total iron.  Subtraction of the features observed in the control spectrum (B,

Figure 4-17) (15% of Fe(II) and 9% of the broad quadrupole doublet) from the spectrum

resulting from arabinose induction (A, Figure 4-17) yields the spectrum of diferric species

assumed to be associated with β2, which accounts for 76 ± 4% of total iron (C, Figure 4-17).

The spectrum can be simulated with parameters (δ(1) = 0.46 mm/s, ΔEQ(1) = 2.40 mm/s, δ(2) =

0.54 mm/s, ΔEQ(2) = 1.65 mm/s) that are similar to those reported for diferric cluster of β2 (27,

43).  These experiments demonstrate high iron loading of β2 and suggest that subsequent to

arabinose induction that iron uptake is enhanced.  They also suggest that whole cell Mössbauer

spectroscopy may be a useful tool to monitor iron movement in vivo.
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Figure 4-17: Mössbauer spectra of a sample of whole cells grown in a 57Fe-
supplemented medium.  The production of β2 was induced with 0.5 mM arabinose (A)
and the cells grown for an additional 2 h.  The control sample (B) is identical to A except
that arabinose was omitted.  The solid lines in (B) represent two quadrupole doublets,
one associated with high-spin Fe(II) species and the second with all other Fe species in
the cell (see text for parameters).  Removal of the spectral component of these Fe species
from the experimental spectrum (A) yields a spectrum of the diferric cluster of β (C),
which can be simulated with two quadrupole doublets (solid line) using the parameters
given in the text.
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Monitoring iron migration in vivo by whole cell Mössbauer spectroscopy: optimization of

induction conditions:  Growth conditions were optimized in which β2 is expressed under minimal

cell growth so that iron loading of induced β2 occurred from an iron pool within the cell, not

from iron uptake.  To find these conditions cells were induced by 0.5 mM arabinose at different

growth phases (A600nm ~ 0.5, 1.0 or 1.5) and grown for an additional 10 or 20 min (Table 4-8).

Cell growth was monitored by A600nm and the results indicates that under the same induction time

(10 or 20 min) the cell culture induced at A600nm = 1.5 has the least cell growth compared to

cultures induced at A600nm ~0.5 or 1.0.  Furthermore, under the same induction time, the cell

culture induced at A600nm = 1.5 has the strongest Y• signal, suggesting the highest β2 expression.

Therefore, the best growth condition for monitoring the iron migration inside the cell is to induce

the β2 expression by 0.5 mM arabinose at A600nm ~ 1.5 for at least 10 or 20 min.

Sample preparation for time course study to be acquired by whole cell Mössbauer spectroscopy:

After the growth conditions were chosen, the cells were grown in LB containing 50 µM 57Fe

(~80% enrichment of the total iron in the culture medium) and β2 expression was induced by 0.5

mM arabinose at A600nm ~ 1.5.  The cells were grown for 10, 20 and 40 min and harvested by

centrifugation.  Some of the cell paste was packed directly into Mössbauer cups and some was

suspended in 1 mL buffer C/g cell paste and loaded into EPR tubes for analysis.

 Figure 4-18 shows the induction gel (A) and the whole cell EPR spectra of the Y• (B).

No Y• signal was observed before addition of arabinose.  The gel monitoring β2 induction and

the whole cell EPR spectra indicate a gradual increase with time of the expression of β2 and the

intensity of the Y• signal, respectively.  The spin quantitation shows a ratio of 1:2.2:4.2 of the Y•

signal after 10, 20 and 40 min induction, respectively.
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Table 4-8.  Cell growth and Y• signal of E. coli TOP10-pBAD-nrdB induced with 0.5 mM
arabinose at different A600nm.

Induction
condition

Induction time
(min)

A600nm % cell growth [Y•], µM a

A600nm ~0.5 0 0.52 - -
10 0.58 12 11
20 0.64 23 28

A600nm ~1.0 0 1.02 - -
10 1.15 13 13
20 1.30 27 30

A600nm ~1.5 0 1.52 - -
10 1.63 7 17
20 1.78 17 41

a  concentrations of Y• in the EPR sample was determined by spin quantitation using a Cu-
standard.
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Figure 4-18.  β2 expression and Y• formation measured subsequent to arabinose induction.  E.
coli TOP10 cells containing pBAD-nrdB were grown at 37 ºC, 200 rpm until A600nm reached ~1.5.
Expression of β2 was then induced by 0.5 mM arabinose.  Aliquots of the culture were taken
before induction or 10, 20, and 40 min after induction and the cells were spun down by
centrifugation at 8,000g for 10 min at 4 ºC.  The cell paste was suspended in 1 mL buffer C per
gram of cell paste for analysis by EPR spectroscopy.  (A) Expression of the β2 was examined by
4-20% gradient SDS-PAGE.  The arrow indicates the expression of β2.  (B) EPR signals of Y•
from the whole cell samples.
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Figure 4-19 shows the corresponding Mössbauer spectra at different time points after

arabinose induction.  Before arabinose induction, the whole cell sample shows features

associated with high spin ferrous and ferric iron, similar to the observations in Figure 4-17.  The

spectrum at 10 min after arabinose induction looks very similar to the one before arabinose

induction despite a small increase in the Y• signal.  Features from diferric-β2 begin to appear at

20 min and are more prominent at 40 min.  As analyzed below, the decrease of signals from the

original Fe2+ and Fe3+ species accompany the increase of the diferric-β2 signals.

Figure 4-19.  Mössbauer spectra of TOP10-pBAD-nrdB induced with arabinose for indicated
periods of time.  Cell paste from the experiment described in Figure 4-18 was packed into
Mössbauer cups and frozen in liquid N2 for analysis.  Mössbauer spectra of the whole cells
with 0.5 mM arabinose induction for 0, 10, 20 and 40 min (black) and simulations of diferric
cluster from β2 (blue) are shown.



278

The analysis of the Mössbauer spectra is shown in Figure 4-20 and the parameters are

summarized in Table 4-9.  The green, red and blue lines indicate the simulations of Fe2+, Fe3+

and diferric-β2, respectively.  Before arabinose induction, 50% of the total iron inside the cells is

Fe3+ and 46% of the total iron is Fe2+.  The remaining 4% of the total iron could be in the forms

of FeS clusters, which are present in insufficient amounts to simulate with good accuracy.  The

spectrum of 20 min sample after arabinose induction shows the appearance of diferric-β2 signal,

which represents 10% of the total cellular iron.  Of this 10% iron, 8% comes from ferrous iron

pools and 2% comes from ferric iron pools.  Forty minutes after arabinose induction, the diferric-

β2 represents 26% of the total cellular iron, and 18% comes ferrous iron pools and 7% comes

ferric iron pools.

These results show that in the early stage (20 min) of expression of β2, higher ratio of

Fe2+ (Fe2+:Fe3+ ~ 4:1) is delivered into β2 than in the later stage (40 min) (Fe2+:Fe3+ ~ 2.6:1).  One

possible explanation is that ferrous iron pools are more direct iron sources for the assembly of

differic cluster in β2 in vivo.  The over-production of apo-β2 depletes specific ferrous iron pools

associated with supplying the iron to β2 and the ferric iron species inside the cells are converted

to ferrous iron for the biosynthesis of the diferric cluster of β2.  This hypothesis is also in line

with the observations in the whole cell EPR spectroscopic experiments on iron transporter

deletion strains, which imply a ferrous iron transporter, FeoB that may play a role in the iron

delivery pathways for the cofactor biosynthesis of β2.

In addition, the results also show the first evidence that both Fe2+ and Fe3+ inside the cell

can be delivered to apo-β2 and suggest that one or more reductants are present that make Fe3+

delivery possible.  By applying whole cell Mössbauer spectroscopy on deletion of potential ferric
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reductases could reveal pathways for the reduction of Fe3+ pools to supply the Fe2+ required for

β2 diferric-Y• cofactor assembly.

A
0 min

B
20 min

C

D

A
0 min

B
40 min

C

D

Figure 4-20.  Analysis of Mössbauer spectra of TOP10-pBAD-nrdB induced with arabinose
for different periods of time.  The Mössbauer spectra (black) and simulations of Fe2+

(green), Fe3+ (red) and diferric-β2 (blue) are shown.  (A) Before arabinose induction.  (B) 20
min (left) or 40 min (right) after induction.  (C) Difference spectra between after and before
arabinose induction.  (D) Difference spectra after the diferric-β2 feature in C is subtracted.
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Table 4-9.  Mössbauer simulation parameters of Fe3+, Fe2+ and diferric cluster of β2 in the whole
cells induced with arabinose for different periods of time.

Sample Specie Relative
amount (%)

δ (mm/s) ΔEQ (mm/s)

Fe3+ 50 0.50 0.850 min
Fe2+ 46 1.27 3.03
Fe3+ 48 0.50 0.85
Fe2+ 39 1.27 3.03

20 min

diferric-β2 10 0.46
0.54

2.40
1.65

Fe3+ 2 0.50 0.85Δ-20 min
Fe2+ 8 1.27 3.03
Fe3+ 44 0.50 0.89
Fe2+ 28 1.23 2.97

40 min

diferric-β2 26 0.46
0.54

2.40
1.65

Fe3+ 7 0.50 0.76Δ-40 min
Fe2+ 18 1.34 3.07

Note: “Δ-20 min” and “Δ-40 min” indicate the changes of iron species after arabinose induction.
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DISCUSSION

In order to elucidate how iron is delivered to β2, several strategies have been employed,

including investigating the function of CyaY, looking for iron chaperones by developing assays

to monitor iron incorporation in apo-β2 and by protein co-purification.  Unfortunately these

strategies were unsuccessful.  On the other hand, results from whole cell EPR and Mössbauer

spectroscopies indicate the potential of these tools in revealing pathways for iron delivery to β2.

Comparisons of the whole cell Y• signal between single deletion strains of iron

transporters reveal that the ferrous transporter FeoB plays a significant role in iron delivery to β2.

This Fe2+ system is encoded by the feoABC operon in E. coli (44, 45).  FeoA (8 kDa) and FeoC

(9 kDa) are small proteins with elusive function, and FeoB is an 85-kDa plasma membrane

protein with a tight binding to Fe2+ (Kd ~0.5 µM) (46).  Deletion of FeoA decreases the Fe2+

uptake by FeoB, whereas FeoC is not essential for the function of FeoB (47, 48).  FeoB has been

shown to have a GTPase activity and the binding of GTP is required for efficient Fe2+ uptake;

however, the mechanism of how GTPase activity controls the Fe2+ transport remains to be

established (49).  Studies on ΔfeoB showed a 10-fold decrease compared to the wt of the iron

uptake using 55FeCl2 or 55Fe-citrate as the only iron source in minimal media (46).  The fact that

Fe3+-citrate uptake is affected by ΔfeoB suggests that the Fe2+ that is transported by FeoB could

also come from the reduction of ferric-citrate or other ferric-siderophore complexes in the

periplasm.

To prevent toxic Fenton chemistry by free Fe2+, it is likely that there exist specific Fe2+

chelators or protein chaperones that interact with FeoB and transfer Fe2+ to specific targets (50).

This model is supported by the observation that Fe2+ transported through a magnesium

transporter (CorA) under low [Mg2+] is toxic to the cell under aerobic conditions, implying a lack
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of an appropriate Fe2+ chelation mechanism to prevent its reaction with O2 species (51).  It should

be noted that it has been reported that Fe2+ cannot be transported by CorA when the cell is in the

stationary phase, indicating the Fe2+ uptake system is sensitive to growth conditions (52).

The identity of the Fe2+ and Fe3+ pools inside the cell has been of great interest.  Studies

by Matzanke et al on the whole cell Mössbauer spectroscopy of wt E. coli K-12 indicates that the

majority of the iron inside the cells are composed of ~1:1 ratio of Fe2+ and Fe3+ species that have

parameters (isomer shift and ΔEQ) distinct from haem iron, FeS clusters, bacterioferritin or

ferritin (21).  The ratio of the Fe2+ to Fe3+ pools decreases under glucose starvation but is restored

after the addition of glucose, indicating a dynamic, interconvertible relationship between these

pools.  Of these Fe2+ pools, the existence of a “labile” or “chelatable” Fe2+ pool has been

postulated and is estimated to be ~0.2-10 µM (53-55), which is only ~1% of the total Fe2+ pools

in vivo (18).  It has been proposed that a phosphorylated sugar derivative (56, 57) or glutathione

(58) could be related to the maintenance of the labile Fe2+ pool, but no strong, direct

experimental evidence has been provided to support either hypothesis.

Our whole cell Mössbauer experiments also show Fe2+ and Fe3+ pools inside the cell,

which comprises over 96% of total cellular iron.  Both pools are able to provide the iron for β2

diferric cluster assembly.  The observation that a higher percentage of the iron delivered to β2

comes from the Fe2+ pool and the requirement that iron needs to be in the ferrous form for cluster

assembly suggest that maybe the Fe2+ pool is a more direct iron supplier for β2 and when the Fe2+

is depleted, the intracellular Fe3+ is reduced to furnish more Fe2+ and reestablish equilibrium.

Our results show that the reduction of Fe3+ occurs even when only part of the total Fe2+ pool is

consumed, implying that there might be a subset of Fe2+ pool specific for cluster assembly of β2
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and that a specific ferric redutase in the cytosol is responsible for maintaining the equilibrium

between Fe2+ and Fe3+ subpools.

The existence of Fe2+ and Fe3+ subpools specific for β2 cofactor biosynthesis could be

examined by the whole cell Mössbauer spectroscopy.  E. coli cells can be grown in 57Fe enriched

media until A600nm ~1.5 and then switched to Fe-limiting media subsequent to β2 overexpression.

If these specific Fe2+ and Fe3+ subpools exist, only a certain ratio of Fe2+ and Fe3+ is expected to

be depleted after overexpression of β2.  Similarly, the existence of specific ferric reductases

responsible for balancing the Fe2+ and Fe3+ pools can be examined by whole cell Mössbauer

spectroscopy using deletion strains of potential candidates such as Fre, sulfite reductase,

ferrisiderophore reductase, or ferredoxin reductase (59-62).  If the β2-specific reduction of a Fe3+

subpool is carried out by a specific ferric reductase, the deletion of this gene could abolish the

consumption of the Fe3+ pool after β2 expression.

The tools we developed can also be applied to verify the proposed identity of the Fe2+

pool.  For example, to examine the relationship between the labile iron pool and cellular

glutathione, β2 can be overexpressed in the deletion strains in which the glutathione pool is

diminished (58).  The Y• signal and the iron migration of these deletion strains can then be

monitored by whole cell EPR and Mössbauer spectroscopies.  If the labile iron pool is related to

a pool of cellular glutathione, a decrease of the whole cell Y• signal and diferric-β2 signal in EPR

and Mössbauer spectra, respectively, could be observed in those deletion strains.

Based on the results in this chapter, another piece of the puzzle for the iron source for the

biosynthesis of the diferric-Y• cofactor can be fit to the model (Figure 4-21).
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Figure 4-21.  Model of the iron delivery pathways for the assembly of diferric-Y•
cluster in β2.  Fe2+ plasma membrane transporters such as FeoB and Fe3+ outer
membrane transporters such as FecA are involved in the iron delivery pathways for
apo-β2.  Both Fe2+ and Fe3+ pools inside the cell can provide Fe2+ for apo-β2.
Mechanisms of reduction of the Fe3+ must exist to enable the Fe3+ pools function in
this capacity.  The iron pools could directly or mediated by iron chaperones to supply
the ferrous iron for apo-β2.
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Chapter 5:

Investigation on the Role of YfaE as an Iron Chaperone for β2
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INTRODUCTION

In Nature FeS clusters can exist in multiple forms in the same proteins in response to

different growth environments.  It has also been established both in vitro and in vivo that these

multiple forms modulates the function of the FeS-containing protein.  In both cases clusters are

known to undergo interconversion between [2Fe2S] and [4Fe4S] units.  This work provides a

potential mode for how YfaE can not only serve as a reductant, but perhaps as an Fe chaperone.

In the studies in vitro of the FeS cluster assembly scaffold protein IscU, the isolated IscU

contains one [2Fe2S]2+ or two [2Fe2S]2+ clusters per dimer.  The two [2Fe2S]2+ clusters can then

convert to one [4Fe4S]2+ cluster per dimer (1).  This process can be facilitated by dithionite or

reduced ferredoxin (2).  The [4Fe4S]2+ cluster in IscU is labile and degraded upon exposure to

oxygen.  Interestingly, only the [4Fe4S]2+-IscU, but not the [2Fe2S]2+-IscU, is able to transfer the

FeS cluster into apo-aconitase which requires a [4Fe4S] cluster for its functions (3).  In vivo, the

process of transferring [2Fe2S] or [4Fe4S] clusters from scaffold proteins into recipient apo-

proteins is facilitated by the presence of DTT, ferredoxins and/or molecular chaperones (see

Chapter 1).

This interconversion between [2Fe2S] and [4Fe4S] clusters have been observed in other

FeS proteins.  For example, in the transcription regulator FNR (fumurate nitrate reduction), the

[4Fe4S]2+ clusters in FNR is rapidly degraded after being exposure to air and forms a [2Fe2S]2+-

FNR in which the DNA binding activity is diminished (4).  However, the active [4Fe4S]2+-FNR

can be restored from [2Fe2S]2+-FNR in the presence of Fe, DTT, cysteine and cysteine

desulfurase, NifS.  This interconversion process has also been observed in whole cells by

Mössbauer spectroscopy.  When E. coli cells with overexpressed-FNR were grown aerobically in

57Fe-enriched media, the Mössbauer spectra of the whole cells showed a dominant [2Fe2S]2+-
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FNR species.   When the cells were shifted to an anaerobic environment, the [4Fe4S]2+-FNR was

regenerated (5).

Studies on the synthetic analogues of FeS clusters also demonstrate the chemical

feasiblility of this conversion (6).  In the binuclear 2Fe2S analogues, the [2Fe2S]1+ cluster

undergoes spontaneous conversion to a structurally more stable, cubane-type [4Fe4S]2+ cluster

(Eq 5-1).  Since both clusters have the same oxidation state, no redox reaction occurs at the Fe

sites.  For the oxidized [2Fe2S]2+ cluster, it can also proceed slowly by internal redox reaction to

form a [4Fe4S]2+ cluster (Eq 5-2).  In this case, the reducing equivalent for reduction of two

ferric irons is provided by formation of a disulfide bond (7).

Eq 5-1 2 [Fe2S2(SR)4]3-  →  [Fe4S4(SR)4]2-  +  4 RS- 

Eq 5-2 2 [Fe2S2(SR)4]2-  →  [Fe4S4(SR)4]2-  +  2 RS-  +  RSSR

(R = alkyl or aryl ligand)

The unusually labile [2Fe2S] cluster of YfaE (8) and the serendipitous observation that

diferric-Y• cofactor was formed after incubation of apo-β2 with [2Fe2S]1+-YfaE followed by

oxidation led us to speculate if YfaE could function as an iron chaperone for β2.  Mössbauer

studies on 57Fe-reconstituted YfaE mixed with apo-β2 demonstrated the transfer of 57Fe into apo-

β2, possibly from [4Fe4S]2+ clusters in YfaE.  This formation of the diferric-Y• cluster from apo-

β2 incubated with [2Fe2S]2+-YfaE is facilitated by the presence of DTT.  SDS-PAGE and size-

exclusion chromatography analyses show the presence of YfaE dimer and aggregates that may

be produced though disulfide bond and/or [4Fe4S]2+ cluster formations.  A working hypothesis

for the mechanism by which YfaE could deliver the iron into apo-β2 is proposed.
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MATERIALS AND METHODS

Materials

Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) was from J.T. Baker.

Dithiothreitol (DTT) was from Promega.  57Fe was kindly provided by Prof. Carsten Krebs at

Pennsylvania State University.  Acrylamide/Bis, N,N,N,N-tetramethyl-ethylenediamine

(TEMED), beta-mercaptoethanol (β-ME), and low molecular weight gel filtration standards were

from Bio-Rad.

Preparation of YfaE and apo-β2

Procedures described in Chapter 2 were followed for the purification and reconstitution

of YfaE and [57Fe]-YfaE (8).  Procedures in Chapter 4 were followed for the purification of apo-

β2.  The concentrations of YfaE and apo-β2 were determined by ε420nm = 11 mM-1cm-1 and ε280nm =

117 mM-1cm-1, respectively.  The amount of iron in the proteins was determined by the ferrozine

assay (9).

Y• formation from apo-β2 in the presence of YfaE and O2 monitored by UV-visible

spectroscopy

In a custom-designed glove box (M. Braun, Newburyport, MA) located in a cold room at

4 ºC, a 300 µL sample containing apo-β2 (10 µM) and [2Fe2S]1+-YfaE (40 µM) in 100 mM Tris-

HCl, pH 7.8 with or without 10 mM DTT was brought out of the glove box in a 0.7 mL cuvette

fitted with a gastight screw cap.  The sample was then oxidized by blowing O2 over the surface

of the sample for ~5 sec followed by mixing the sample by inverting the cuvette.  UV-visible

spectra of the sample were recorded at room temperature in a Varian Cary 3 spectrophotometer
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(Walnut Creek, CA).  For UV-visible spectra recorded at 37 ºC, the cuvette holder of the

spectrophotometer was connected to a 37 ºC water bath and the sample was allowed to

equilibrate for ~10 min before being oxidized, after which the spectra were recorded every 10

min for 360 min.  The sample was then taken out of the cuvette and frozen in an EPR tube

(Wilmad) in liquid N2 for analysis by EPR spectroscopy.

EPR spectroscopy

EPR spectra were recorded on a Bruker ESP-300 X-band (9.4 GHz) spectrometer at 77 K

using a liquid N2 finger dewar.  The parameters: 0.05 mW microwave power, 2.5 × 103 receiver

gain, 1.5 G modulation amplitude, 10-20 scans were used for recording the Y• signal, and 1.0

mW microwave power, 3.17 × 104 receiver gain, 10 G modulation amplitude, 10 scans were used

for recording the [2Fe2S]1+-YfaE signal.  A CuSO4 standard and the Win-EPR program (Bruker)

were used for spin quantitation (10).

Monitoring diferric cluster formation in apo-β2 in the presence of YfaE and O2 by

Mössbauer spectroscopy

A sample of 550 µL of 307 µM apo-β2 with 1.23 mM [257Fe2S]1+-YfaE in 100 mM Tris-

HCl, pH 7.8 was taken out of a glove box in a 4 ºC cold room and O2 was blown over the surface

of the sample for ~30 sec followed by mild vortexing for ~10 sec.  This oxidation procedure was

repeated 4 times to ensure complete oxidation of the sample.  Part of the oxidized sample (450

µL) was transferred to a custom-designed Mössbauer cup and frozen in liquid N2 for Mössbauer

analysis.  The other 50 µL of the oxidized sample was diluted into 200 µL of 100 mM Tris-HCl,

pH 7.8, packed into an EPR tube and frozen in liquid N2 for analysis by EPR spectroscopy.  One
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control with the same sample composition, but without exposure to O2, and a second control with

only [257Fe2S]1+-YfaE (1.9 mM) were prepared and frozen anaerobically in liquid N2 for analysis

by Mössbauer and spectroscopies.

Mössbauer spectroscopy

Mössbauer spectra were recorded at 4.2 K with a magnetic field of 53 mT applied parallel

to the γ-radiation source.  Details of instrument setup and data analysis are described in Chapter

2.

Size exclusion chromatography of oxidized YfaE incubated with DTT

In a final volume of 200 µL, oxidized YfaE (125 µM) was mixed 10 mM DTT in 100

mM Tris-HCl, pH 7.8 centrifuged at 21000 g for 10 min at 4 ºC.  The supernatant (50 µL) was

injected into a Superose 12 gel filtration column (10/300 GL, 25 mL, 10 x 300 mm, GE

Healthcare, Little Chalfont, U.K.) pre-equilibrated with 120 mL of 50 mM K2HPO4, 150 mM

NaCl, pH 7.0, which had been filtered with a 0.2 µm, 47 mm Nylon membrane, followed by

degassing with Ar over 20 min.  The flow rate was maintained at 0.5 mL/min by Waters 2480

HPLC system (Waters) and A280nm and A340nm were monitored.  Molecular mass standards

(thyroglobulin: 670 kDa, gamma globulin: 158 kDa, ovalbumin: 44 kDa, myoglobin: 17 kDa,

vitamin B-12: 1.35 kDa) were run prior to each experiment.
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RESULTS

Formation of Y• from apo-β2 in the presence of YfaE and O2

Our previous studies on reconstituted [2Fe2S]1+-YfaE have shown that about 20% of the

total iron is in a [4Fe4S]2+ form, which represents ~11% of the total FeS clusters in YfaE (8).

Furthermore, the quantitation of sulfide showed 3.2 ± 0.2 S/YfaE (8 determinations from 3

different batches of purified YfaE), which is higher than 1.9 ± 0.2 Fe/YfaE by the ferrozine

assays (7 determinations from 3 different batches of purified YfaE).  The higher sulfide content

may be due to formation of persulfides with cysteines at the C-terminus of YfaE.  Could the

[4Fe4S]2+ cluster and the unusual higher sulfide content come from artifacts of in vitro

reconstitution or could YfaE play a role other than providing electrons for cluster biosynthesis

and maintenance?  To investigate the this possibility, the reconstituted [2Fe2S]1+-YfaE (40 µM)

was mixed with apo-β2 (10 µM) anaerobically.  The UV-visible spectrum of the sample shows

normal features of [2Fe2S]1+-YfaE.  However, when the sample was exposed to O2, a small peak

that resembles diferric-Y• cofactor appeared (Figure 5-1).  The EPR spectrum confirmed the

formation of the Y• and the quantitation of the signal gave ~0.3 Y•/β2.  The iron content of apo-

β2 (determined by ferrozine assay) was less than 0.1 Fe/β2, which could maximally generate 0.05

Y•/β2 if the Y• was formed from YfaE reduction of met-β2.  Therefore, the remaining iron in

apo-β2 cannot account for the amount of the Y• formed.  The only possible iron source for cluster

assembly is YfaE.  Since the [2Fe2S]1+ cluster in YfaE is relatively stable, the iron may be

coming from decomposition of the [4Fe4S]2+ cluster in YfaE.  If 10% of YfaE contains a

[4Fe4S]2+ cluster, then 40 µM of YfaE would contain ~4 µM of [4Fe4S]2+ (~8 µM of ferrous

iron).  If this ferrous iron was used to form diferric-Y• cofactor of β2, ~4 µM Y•, equivalent to
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~0.4 Y•/β2 could be generated, which is in fair agreement with the observed EPR results (~0.3

Y•/β2).
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Figure 5-1.  Formation of diferric-Y• cofactor in apo-β2 (10 µM) after mixing with [2Fe2S]1+-
YfaE (40 µM) followed by exposure to oxygen.  (A) UV-visible spectrum of the apo-β2/YfaE
mixture right after exposure to oxygen.  The red arrow indicates the small bulge at ~410 nm
on top of the absorption peaks of oxidized YfaE.  (Inset) difference spectrum after subtracting
the spectrum of 40 µM oxidized YfaE from the oxygen-exposed apo-β2/YfaE mixture.  The
feature in the difference spectrum is similar to that of the diferric-Y• in β2.  (B) EPR spectrum
(9.4 GHz) of the apo-β2/YfaE mixture right after exposure to oxygen.  The spectrum is
recorded at 77 K, microwave power = 0.05 mW, receiver gain = 2.5 × 103, modulation
amplitude = 1.5 G.  The feature of the spectrum is identical to that of the diferric-Y• in β2.
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Therefore, the amount of [4Fe4S]2+ could account for the observed Y• in this experiment.  The

same experiments were repeated several times and the formation of the Y• was reproducible.  In

order to confirm that the iron in the diferric-Y• cofactor is coming from YfaE and verify the role

of [4Fe4S]2+ in the cluster formation, Mössbauer spectroscopy was applied to monitor the

changes of FeS species in YfaE in the presence of apo-β2.

Assembly of diferric-Y• cluster from apo-β2 in the presence of YfaE and O2 monitored by

Mössbauer spectroscopy

 To verify the role of YfaE in the cluster assembly of apo-β2, YfaE was reconstituted in

the presence of 57Fe2+, 57Fe3+ and S2- following our published procedures (8).  Samples of

[257Fe2S]1+-YfaE (1.23 mM) with apo-β2
 (307 µM) with or without exposure to oxygen were

prepared.  The reproducibility of Y• formation using 57Fe-reconstituted YfaE was confirmed by

EPR spectroscopy.  The EPR spectrum from the sample containing YfaE and apo-β2 without

exposure to oxygen shows features associated with reduced YfaE and the lack of features from

the Y•, indicating the sample was oxygen free (A, Figure 5-2).  On the other hand, after the

YfaE/apo-β2 mixture was exposed to O2, the Y• was observed in the EPR spectrum (B, Figure 5-

2).  The Y• quantitation indicates formation of ~60 µM Y• (~0.5 Y•/β2) which would require at

least 120 µM of iron be delivered into apo-β2.  Assuming 10% of YfaE contains a [4Fe4S]2+

cluster (~123 µM), ~246 µM Fe2+ is available for cluster assembly.  The amount of Y• generated

suggests only ~50% of the Fe2+ in the [4Fe4S]2+ is transferred to apo-β2.
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Figure 5-2.  EPR spectra of apo-β2 mixed with 57Fe-reconstituted [2Fe2S]1+-YfaE
without (A) or with (B) exposure to O2.  Apo-β2 (307 µM) was mixed with 57Fe-
reconstituted [2Fe2S]1+-YfaE (1.23 mM) (apo-β2 : YfaE = 1: 4) anaerobically followed
by loading the sample into EPR tubes with or without oxidation.  Features of the
reduced YfaE and the Y• were observed in (A) and (B), respectively.
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The results from the Mössbauer experiments are shown in Figure 5-3 and the parameters

of simulations are summarized in Table 5-1.  The reconstituted YfaE contains ~11% [4Fe4S]2+

(20% of total Fe) which is consistent with our previous studies (8), suggesting the reproducibility

between reconstitutions.  Furthermore, ~6% [2Fe2S]2+ can be simulated in the spectrum (Table

5-1), in line with an upper limit of 7% [2Fe2S]2+ in the reconstituted [257Fe2S]1+-YfaE reported in

our previous reconstitution of YfaE (8).

Compared to the spectrum of the [257Fe2S]1+-YfaE only, the addition of apo-β2 causes the

decomposition of ~50% of [4Fe4S]2+ cluster into [2Fe2S]1+ and [2Fe2S]2+ clusters (B, Figure 5-

3), in line with the prediction from Y• quantitation.   Because the YfaE : apo-β2 is 4:1, assuming

one YfaE binds to one subunit of apo-β2, ~50% of the YfaE can be in direct contact with apo-β2.

Therefore, one possible explanation for only 50% of the [4Fe4S]2+ was decomposed upon

addition of apo-β2 is that the decomposition of [4Fe4S]2+ is triggered by direct interaction with

apo-β2.

Upon exposure to O2, an upper limit of 5% diferric-β2 can be simulated (~125 µM iron),

which is in excellent agreement with the EPR quantitation of the Y• (~60 µM) (C, Figure 5-3).

These results suggest that the YfaE-mediated diferric-Y• cluster formation has a stoichiometry of

one Y• formed per two irons delivered.  Interestingly, the quadruple splitting of the oxidized

YfaE (ΔEQ = 0.67 mm/s) is significantly different from the oxidized YfaE in the absence of β2

(ΔEQ = 0.58 mm/s) (8), suggesting a conformational change of the [2Fe2S]2+ cluster in YfaE

triggered by the presence of β2.
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C

Figure 5-3.  4.2-K Mössbauer spectra of apo-β2 mixed with 57Fe-reconstituted [2Fe2S]1+-YfaE
with or without exposure to O2.  Mixtures of apo-β2 (307 µM) and 57Fe-reconstituted
[2Fe2S]1+-YfaE (1.23 mM) (total 450 µL, apo-β2 : YfaE = 1: 4) were loaded anaerobically
into Mössbauer cups and frozen in liquid N2 with or without exposure to O2.  (A) [2Fe2S]1+-
YfaE only (1.9 mM).  (B) [2Fe2S]1+-YfaE mixed with apo-β2 prior to exposure to O2.  (C)
[2Fe2S]1+-YfaE mixed with apo-β2 followed by exposure to O2.  Red: [2Fe2S]1+, green:
[2Fe2S]2+, blue: [4FeS]2+, purple: diferric-β2.  Simulation parameters are listed in Table 5-1.
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 Table 5-1.  Mössbauer simulation parameters of apo-β2 mixed with 57Fe-reconstituted
[2Fe2S]1+-YfaE with or without exposure to O2.

Sample Cluster Relative
amount (%)

Site δ (mm/s) ΔEQ (mm/s)

YfaE [2Fe2S]1+ 74 Fe3+ 0.33 0.78

Fe2+ 0.60 -3.13

[2Fe2S]2+ 6 Fe3+ 0.28 0.58

[4Fe4S]2+ 20 Fe2.5 0.44 1.07

YfaE + apo-β2 [2Fe2S]1+ 80 Fe3+ 0.33 0.78

Fe2+ 0.60 -3.13

[2Fe2S]2+ 10 Fe3+ 0.28 0.58

[4Fe4S]2+ 10 Fe2.5 0.44 1.07

YfaE + apo-β2 + O2 [2Fe2S]2+ 95 Fe3+ 0.28 0.67

diferric-β2 5 Fe3+ 0.46
0.54

2.40
1.65
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Monitoring YfaE-mediated Y• formation at 37 ºC in the absence of DTT

Although the Mössbauer experiment confirmed the iron source is supplied by YfaE and

could potentially come from the [4Fe4S]2+ cluster, sub-stoichiometric amounts of Y•/β2 were

obtained, which could result from the “slow” and incompletely understood oxidation process of

the reduced cluster.  Our earlier studies have demonstrated that [2Fe2S]2+-YfaE is “very”

unstable and that the FeS clusters in YfaE decomposes within a few hours at room temperature

(Figure 2-5, Chapter 2).  Because the same lability of a [2Fe2S]2+ cluster has been observed in

the endogenously purified scaffold protein [2Fe2S]2+-IscU (11), we thought that this lability

could be associated with the iron delivery to apo-β2.  To address this question, the same

experiment described in Figure 5-1 was conducted except that the oxidized sample was

incubated at 37 ºC and the UV-visible spectrum of the sample was monitored every 30 min for 4

h (Figure 5-4).  Surprisingly, formation of the Y• concomitant with the decay of the FeS cluster

in oxidized YfaE was observed.  Quantitation by EPR spectroscopy showed ~0.8 Y•/β2 was

formed, which is higher than 0.3-0.5 Y•/β2 in our earlier experiments.

Because the iron needs to be in the ferrous state to be delivered to apo-β2, a reduction

mechanism must exist to reduce ferric iron of the oxidized YfaE.  One special feature of YfaE

compared to other ferredoxins is the additional cysteines at the C-terminus of YfaE (C72 and

C73, see Figure 3-8 in Chapter 3).  One might postulate that the intermolecular disulfide bond

formation between these cysteines might provide the electrons for reduction of Fe3+.  To look for

evidence of disulfide bond formation, SDS-PAGE of the sample from the experiment described

in Figure 5-4 with or without incubation with β-mercaptoethanol (β-ME) was carried out

(Figure 5-5).  The results show that in the absence of β-ME, a high molecular mass aggregate of

YfaE was observed which disappeared in the presence of 2-ME.  This disappearance was
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concomitant with the appearance of YfaE, suggesting the aggregation occurred through disulfide

bond formation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

300 350 400 450 500 550 600 650 700 750 800

0.2

0.25

0.3

0.35

0.4

0.45

0.5

375 425 475

Ab
so

rb
an

ce

Wavelength (nm)

0 h

4 h

Figure 5-4.  UV-vis spectra of apo-β2 (10 µM) incubated with [2Fe2S]1+-YfaE (40 µM) at
37 ºC after exposure to O2 and monitored over time.  Apo-β2 was mixed with [2Fe2S]1+-
YfaE anaerobically, then O2 was blown over the sample.  Spectra were recorded every 30
min (thin lines) at 37 ºC subsequent to O2 exposure (thick blue line).  The last spectrum
was recorded 4 h after the oxidation began (thick red line).  The spectra show concomitant
decay of the [2Fe2S]2+-YfaE with the formation of the Y•.  Inset: blow-ups of the spectra.
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Figure 5-5.  SDS-PAGE of apo-β2 (10 µM) mixed with [2Fe2S]1+-YfaE (40 µM) after
exposure to O2 for 6 h at 37 ºC.  Oxidized apo-β2/YfaE mixture (10 µL) was loaded
into a 15% SDS-PAGE gel with Laemmli buffer in the presence β-ME (lane 1) or with
β-ME omitted (lane 2).  The gel shows a dominant band from β2 monomer (43.5 kDa).
The green arrow indicates the YfaE monomer (9.4 kDa), which is absent in the
samples without β-ME (lane 2).  The sample without incubation with β-ME shows
high molecular mass species on top of the gel (red arrow).
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Monitoring YfaE-mediated Y• formation at 37 ºC in the presence of DTT

If the disulfide bond formation between YfaE monomers really is associated with its

ability to deliver iron apo-β2, the presence of DTT could potentiate the iron transfer process.  An

experiment similar to that described in Figure 5-4 was carried out except that 10 mM DTT was

added to the apo-β2/YfaE mixture.  Excitingly, the formation of the Y• is much faster than that

without DTT, further supports a correlation between disulfide bond formation and the Y•

formation (Figure 5-6).  Spin quantitation of the Y• by EPR spectroscopy also gave 0.8 Y•/β2,

the same observed in the absence of DTT (Figure 5-4), suggesting that DTT facilitates the

formation of Y• instead of changing the stoichiometry of the reaction.  A control experiment

without addition of apo-β2 shows that oxidized YfaE is stable in the presence of DTT, indicating

the presence of apo-β2 triggers the dissociation of the FeS cluster in YfaE.

Both disulfide formation between YfaE monomer or DTT oxidation could provide the

reducing equivalent for ferric iron reduction.  However, the product of reduction still remains to

be determined.  One possibility is that [2Fe2S]2+ cluster is reduced to [2Fe2S]1+ cluster and the

[2Fe2S]1+ provides the Fe2+ for apo-β2.  However, longer incubation of apo-β2 with [2Fe2S]1+-

YfaE does not result in higher Y• formation, suggesting [2Fe2S]1+ cluster is not the iron donor.

Furthermore, there is only one ferrous iron in each [2Fe2S]1+ cluster, which implies the formation

of one diferric-Y• cluster would require dissociation and association of YfaE to furnish two

ferrous iron in one subunit of β2.  This is highly unlikely given the weak binding of ferrous iron

to apo-β2 and the reactivity of ferrous iron with O2 in the solution.  The possibility of that

[2Fe2S]2+ is reduced to [2Fe2S]0 seems unlikely as the reduction potential for [2Fe2S]1+/0 is too

low (-410 to -840 mV) (12, 13) to be carried out by DTT oxidation or disulfide bond formation (-

200 to -300 mV) (14, 15).
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Based on the studies on synthetic analogues of FeS complex and FeS proteins that

contain interconvertable [2Fe2S]2+ and [4Fe4S]2+ clusters, one possibility is that the electrons

provided by disulfide formation are used to reductively couple two [2Fe2S]2+ clusters to form

one [4Fe4S]2+ cluster (2, 4, 6).  The [4Fe4S]2+ cluster then contains two ferrous irons that can be

delivered into apo-β2 from a single YfaE.  The [4Fe4S]-mediated iron delivery would also be

consistent with the observations in the Mössbauer experiment (Figure 5-3) in which [4Fe4S]2+

clusters in YfaE decompose after addition of apo-β2.
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Figure 5-6.  Changes in UV-vis spectra of apo-β2 (10 µM), [2Fe2S]1+-YfaE (40 µM)
and DTT (10 mM) mixture at 37 ºC after exposed to O2.  Apo-β2 was mixed with
[2Fe2S]1+-YfaE and DTT anaerobically and then O2 was blown over the reaction
mixture.  Spectra were recorded every 30 min (thin lines) at 37 ºC after O2 oxidation
(thick blue line).  The last spectrum was recorded 4 h after the oxidation of the sample
(thick red line).  Inset: blow-ups of the spectra.
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Size-exclusion chromatography revealed formation of YfaE dimer in the presence of DTT

The proposed reductive coupling between two [2Fe2S]2+ to form one [4Fe4S]2+ implies

that two YfaE monomers would associate to form a dimer.  Because in the absence of DTT,

oxidized YfaE forms high molecular mass aggregates (Figure 5-5), investigation to confirm the

existence of YfaE dimers was carried out in the presence of DTT.  Size-exclusion

chromatography (SEC) was employed to look for presence of a YfaE dimer (Figure 5-7).

[2Fe2S]2+-YfaE incubated in an O2 atmosphere for ~1 h was mixed with 10 mM DTT and

immediately injected onto a SEC column.  The SEC trace showed a peak corresponding to

oxidized YfaE aggregate, eluted in the void volume, and a peak that corresponds to the YfaE

monomer (A, Figure 5-7).  Excitingly, after the same sample was incubated with 10 mM DTT

for ~1 h, the SEC trace showed a small decrease of the YfaE monomer peak concomitant with

the appearance of a new peak in which the calculated molecular mass is equivalent to a YfaE

dimer (red arrow, B, Figure 5-7).  Furthermore, because the A340nm/A280nm ratio can be used to

evaluate the integrity of FeS clusters, a A340nm/A280nm of 0.84 in the monomer YfaE suggests the

presence of intact [2Fe2S]2+ clusters and a A340nm/A280nm of 0.66 in the aggregation peak indicates

some decomposition of the cluster.  Interestingly, the A340nm/A280nm of the YfaE dimer peak was

0.67, which could be due to a YfaE dimer that contains substoichiometric amounts of [2Fe2S]2+

clusters and/or a [4Fe4S]2+ cluster.  In summary, these results support a model in which DTT

facilitates the reductive coupling between two [2Fe2S]2+ clusters to form a [4Fe4S]2+ cluster and

the dimerization of YfaE.  This [4Fe4S]2+ cluster at the interface of the two YfaE monomers

could potentially be the species which delivers iron into apo-β2.
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Figure 5-7.  SEC of oxidized YfaE in the presence of DTT.  Oxidized YfaE (~16 µM)
was mixed with 10 mM DTT and injected onto Superose-12 size-exclusion column
immediately after mixing (A) or 1 h after the mixing (B).  A280nm (blue) and A340nm (pink)
were monitored.  The oxidized YfaE aggregates eluted in the void volume (~16 min),
whereas the YfaE monomers eluted at ~38 min.  The red arrow in (B) indicates the peak
corresponding to a molecular mass of a YfaE dimer (~35 min).  The Superose-12
column was equilibrated in 50 mM K2HPO4, 150 mM NaCl, pH 7.0 at a flow rate of 0.5
mL/min.
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Homology model of YfaE

Because it was suspected that the two cysteines (C72, C73) in YfaE might play a role in

the formation of a [4Fe4S]2+ cluster and/or in the assembly of the diferric-Y•, a homology model

of YfaE was generated.  When generating a homology model, the sequence identity between the

target protein and the template protein determines the accuracy of the model.  A BLAST search

on the available structures in the Protein Data Bank using E. coli YfaE as the search vehicle

indicates that a ferredoxin (pdb: 1IUE) (16) from the human malaria parasite (Plasmodium

falciparum) has the highest sequence identity (34%).  Based on the sequence alignment between

YfaE and P. falciparum Fdx, a homology model was generated.

Figure 5-8 shows the resulting homology model of YfaE.  There are seven cysteines in

YfaE.  The four conserved cysteinyl ligands (C36, C41, C44, C71) for the 2Fe2S cluster are

located in loops, similar to the cysteine ligands in all 2Fe2S-ferreodxins (17, 18).  The two

additional cysteines (C72, C73) are located in a flexible loop right next to the FeS cluster binding

motif.  The seventh cysteine (C14) is not conserved among other YfaE-like ferredoxins (Figure

3-8, Chapter 3).  From the sequence alignment (C, Figure 5-8) the malaria Fdx has cysteines that

are equivalent to C14 and C73 in YfaE.  Interestingly, the malaria Fdx was purified by anion-

exchange and size-exclusion chromatographies under aerobic conditions, suggesting that the

oxidized Fdx is relatively stable (16, 19).  Furthermore, from the homology model, C72 has

sufficient surface exposure to be able to form intermolecular disulfide bonds.  Therefore, it

appears that C72 could be involved in the reductive coupling or aggregation of YfaE, and may

also play a role in transferring ferrous iron into apo-β2 given its proximity to the 2Fe2S cluster.

This model suggests that a cysteine-mediated ligand exchange may provide a mechanism for

delivering the ferrous iron to apo-β2 without exposing the metal to solvent or O2.
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Figure 5-8.  Homology model of YfaE (A) generated using software Swiss-Model
(http://swissmodel.expasy.org) and the crystal structure of the malaria ferredoxin (B, pdb:
1IUE) as a template for modeling.  Green, four conserved cysteines (C36, C41, C44 and C71
in YfaE) in the 2Fe2S cluster; pink, additional cysteines; B: orange spheres, ions of the 2Fe2S
cluster.  (C) ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2) sequence alignment between
YfaE and P. falciparum Fdx.
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This model suggests that a cysteine within β2 might also be involved in iron delivery.

Recent studies of Yee in our lab on C268S-β2 have demonstrated unexpectedly that a high Y•

content (~1.6 Y•/β2) in this mutant upon its reconstitution with Fe2+ and O2 (20).  Thus the

position of C268 relative to the proposed docking surface for YfaE and C72 was examined

structurally.  The relative position of C268 to the conserved lysines (K38, K42, K229) thought to

provides the interaction surface with YfaE, suggests C268 does not play a role in cysteine-

mediated metal transfer (Figure 5-9).  Furthermore, results from a ferrozine analysis showed the

iron content of C268S-β2 was similar to wt-β2 (~3.3 Fe/β2), suggesting the higher Y• content is

not due to higher iron loading (20).  Therefore the C268 may not be involved the process of iron

delivery.  No other cysteine within β2 is near the conserved lysines, indicating a cysteine-

mediated ligand exchange for the iron delivery from YfaE to apo-β2 is unlikely.

Another possibility for iron delivery from YfaE would involve two cysteines in ligating

an extra FeS cluster.  Recent studies on mono- or di-thiol glutaredoxins have revealed a labile

[2Fe2S]2+ cluster formed between two gluraredoxin monomers through active site cysteines and

reduced glutathiones (GSH) (21, 22).  This labile [2Fe2S]2+ cluster decomposes when the GSH

ligands are oxidized to GSSG under oxidative stress conditions.  Thus, it has been proposed that

this [2Fe2S] cluster acts as a redox sensor (23).  Recently it was also discovered that the [2Fe2S]

cluster in a plant monothiol glutaredoxin (Grx4) can be transferred to apo-ferredoxin

anaerobically in vitro in the presence of DTT at a rate (20,000 M-1min-1) that is 25-fold faster

than the cluster transfer in vitro from scaffold protein IscU (800 M-1min-1) (22, 24).  It is however

unlikely that the same mechanism occurs during the process of iron delivery from YfaE.  The

2Fe2S-ferredoxins are structurally distinct from glutaredoxins and the cysteine ligands for the

FeS clusters have different geometrical patterns between ferredoxins and glutaredoxins (25, 26).
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Furthermore, the 2Fe2S clusters in glutaredoxins show a single broad absorption feature at ~415

nm in the UV-visible spectrum, which has not been observed in YfaE.  Thus, these results

suggest that the diferric-Y• cofactor is not assembled through a glutaredoxin-like 2Fe2S

intermediate in YfaE (22, 23).  Interestingly, the conserved protein, NrdH in the operons of class

Ib RNRs shares the same CXXC motif as glutaredoxins (27).  Whether a 2Fe2S cluster can be

assembled between NrdH monomers and be delivered into NrdF (the small subunit of RNR)

remains to be elucidated.

C268

C268

K229

K42

K38

90º

Figure 5-9.  The position of C268 of E. coli β2 (pdb: 1AV8) relative to the proposed
binding site for YfaE.  Orange spheres, iron of diferric cluster; green, conserved lysine
residues proposed to interact with YfaE (K38, K42, K229), yellow, C268; pink, conserved
amino acids for the electron transfer pathway (W48, H118, D237).
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DISCUSSION

Based on the model and experimental support for the FeS cluster assembly onto scaffold

proteins, a working hypothesis for a mechanism by which YfaE could deliver the ferrous iron

into apo-β2 is proposed (Figure 5-10).  The model starts with two monomers of [2Fe2S]2+-YfaE

coming together and forming a [4Fe4S]2+ cluster at the interface between the two monomers

(Step 1, Figure 5-10).  The two electrons required for the formation of a [4Fe4S]2+ cluster could

come from DTT.  In the absence of DTT the electrons could be supplied through the formation

of a disulfide bond between YfaE monomers or between two of the cysteine ligands released

from the [2Fe2S]2+ binding.  Studies in model systems have shown that a thiol-ligated [4Fe4S]2+

complex can be self-assembled from two thiol-ligated [2Fe2S]2+ complexes with the formation of

the disulfides (6, 7).  A similar reductive coupling without exogenous reducing agents has been

observed between two [2Fe2S]2+-IscU monomers even though the rate of formation was very

slow (several hours) and the source of the electrons was unclear (1).  However, when using

dithionite or reduced ferredoxin as reductants, the formation of [4Fe4S]2+-IscU was accelerated,

similar to our observations in the experiments with DTT (2).

After the [4Fe4S]2+ cluster is formed in YfaE, the decomposition of the cluster could be

triggered by the presence of apo-β2 and the dissociated ferrous iron could incorporate into apo-β2

to form diferrous-β2 which in the presence of O2 forms active-β2 with the diferric-Y• cofactor

(Step 2, Figure 5-10).  The dissociation of the ferrous iron from [4Fe4S]2+ cluster and its

delivery into apo-β2 could be mediated by the cysteines (C72, C73) at the C-terminus of YfaE.

Finally, DTT helps the oxidized YfaE remain soluble and in the absence of DTT aggregates of

YfaE are formed through intermolecular disulfide bonds (Step 3, Figure 5-10).
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Figure 5-10.  Working hypothesis for a mechanism by which YfaE could deliver ferrous
iron to apo-β2.  The model is based on experimental observations in this chapter and our
knowledge of [2Fe2S] and [4Fe4S] cluster assembly in IscU.  The first step of this
mechanism is reductive coupling of two [2Fe2S]2+ clusters to form a [4Fe4S]2+ cluster.  DTT
could provide the electrons for this reductive coupling (Pathway B).  In the absence of DTT
(Pathway A), the electrons could come from formation of a disulfide bond between cysteine
residues (C72, C73) at the C-terminus tail of YfaE.  In the second step, two ferrous irons
from the [4Fe4S]2+ cluster are transferred to apo-β2 which forms active β2 in the presence of
O2 (green).  The two sulfides from the [4Fe4S]2+ cluster could dissociate from the protein or
form persulfides or polysulfides with the cysteines (C72, C73) which could lead to
aggregation of YfaE through disulfide formation (Step 3).  The presence of DTT could
prevent this aggregation and maintain the solubility of YfaE.
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        In this model, the key steps are the formation of a [4Fe4S]2+ between two YfaE

monomers for the iron delivery to apo-β2 and the formation of YfaE aggregates through disulfide

bonds.  Mutational studies on C72 and C73 could test the function of these cysteines and their

relationship to the formation of YfaE aggregates.  The creation of a YfaE mutant that is stable in

an oxidized state will be very helpful for binding studies using isothermal titration calorimetry.

The Mössbauer studies have shown that the iron in the diferric-Y• cluster are coming from YfaE.

Quantitative analysis of the amount of the Y• formed and the amount of the [2Fe2S]2+ destroyed

could help us understand the stoichiometry of the reaction.  The real challenge will be to

“enrich” the amount of [4Fe4S]-YfaE.  This might be achieved by a combination of the right

YfaE cysteine mutants and the choice of reducing conditions (28).  Even though DTT seems to

be able to facilitate the Y• formation, presumably through faster [4Fe4S]2+ formation by

reductive coupling, other reductants such as dithionite and photoreduced deazaflavin could be

useful for [4Fe4S]2+ formation (2, 29).  Reducing equivalents in vivo such as thioredoxin,

glutathione or ferredoxin could also be used to reductively couple the clusters.

Once a [4Fe4S]2+-YfaE can be reconstituted in vitro, studies by UV-vis, EPR and

Mössbauer spectroscopies could help us reveal the mechanisms of the iron delivery.  The next

question would be whether the [4Fe4S]2+-YfaE is physiologically relevant.  The controls on the

formation of [4Fe4S]2+-YfaE in vivo could be made by carrying out a gene replacement

experiment with a mutant YfaE in vivo that is stable in oxidized state and by modulating the

growth conditions (11).  Similar studies have been done to study the interconversion between

[2Fe2S] and [4Fe4S] clusters in FNR (fumurate nitrate reduction) in vivo under different growth

condition (5).
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It should be noted, however, that our results from quantitative Western blot analysis on

the whole cells indicate low [YfaE] in vivo (< 0.3 µM) compared to β2 (~3 µM).  Therefore, the

efficiency of iron delivery by YfaE has to be greatly enhanced in vivo or the expression of YfaE

needs to be up-regulated under certain growth conditions to meet the rate of cluster biosynthesis

of β2.  Furthermore, a ClustalW2 sequence alignment of YfaE-like ferredoxins from a BLAST

search shows that only the four cysteines in the 2Fe2S cluster are absolutely conserved.  Thus,

the proposed role of the “additional” cysteines in the C-terminus of YfaE may not be general

among all YfaEs.

If YfaE really can function as an iron chaperone, the results in our previously published

paper in which YfaE was titrated into crude cell lysate to generate 2 Y•/β2 needs to be re-

interpreted (30).  The Y• could be formed from apo-β2 by iron loading from YfaE instead of

from met-β2 by YfaE reduction.  In either case the ability to generate 2 Y•/β2 with excess YfaE is

unquestionable.  Whether the 2 Y•/β2 is physiologically relevant and whether there are other

components inside the cells that assist in the loading of 4 Fe/β2 remain to be established.

Why would the class Ia RNR use an FeS protein as an iron chaperone?  It is believed that

FeS proteins appeared at the early stages of evolution under anaerobic conditions before the

oxygen catastrophe caused by photosynthesis.  The presence of oxygen facilitates the

degradation of the FeS clusters (31).  It is tempting to speculate that during the evolution of an

oxygen and iron dependent RNR, the RNR took advantage of the lability of FeS clusters and

“hijacked” the already existing iron homeostasis pathways dependent on FeS chemistry instead

of evolving its own iron delivery system (32).  Why not?
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Appendix I

Plasmid Maps
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Available mutants:  E26A, E26K, E33A, C71A, C72A, C73A, C72A/C73A, C72S/C73S

NdeI
BamHI
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NdeI
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His-tag
S-tag

NcoI
BamHI
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His-tag
S-tag

XhoI
PshAI(AfeI)
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His-tag
S-tag

PshAI(NaeI)
XhoI
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Note: Compatible with pBR322 plasmids

NcoI
BamHI
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Available mutant:  E115A

NcoI

XhoI
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Available mutant:  E115A

NcoI

XhoI
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Available mutants:  E115A, K38A, K42A, K229A, Y122F, Y356F, K38A/K42A,

K38A/K42A/K229A

NcoI

XhoI
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Available mutant:  E115A

NcoI

XhoI



347

Appendix II
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Five hundred bacterial genomes in the RNR database (http://rnrdb.molbio.su.se/, last update on

January 23, 2009) which contain both nrdA and nrdB (encoding class Ia RNR) were used for

BLAST search of YfaE-like proteins.  Summary of the analysis is shown below.

500 bacterial genomes

139 YfaE
(28%)

215 YfaE-like
(43%)

146 no YfaE
(29%)

41 not 
fully sequenced

(8%)

105 
fully sequenced

(21%)

71 contain
other RNRs

(14%)

34 no
other RNRs

(7%)
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Organism
Fully

sequenced
Class

Ib
Class

II
Class

III YfaE-like Note
Acaryochloris marina MBIC11017 Y Y Y ferredoxin (99)
Acidiphilium cryptum JF-5 Y Y Y Y ferredoxin (356)
Acidithiobacillus ferrooxidans
ATCC 53993 Y Y Y ferredoxin (114)
Acidothermus cellulolyticus 11B Y Y Y ferredoxin (161)
Acidovorax avenae subsp. citrulli
AAC00-1 Y Y Y ferredoxin (99)
Acidovorax sp. JS42 Y Y Y Y ferredoxin (97)
Acinetobacter baumannii ACICU Y Y flavodoxin reductase (318)
Acinetobacter baumannii ATCC
17978 Y Y oxidoreductase (271)
Acinetobacter baumannii AYE Y Y ferredoxin (317)
Acinetobacter baumannii SDF Y Y oxidoreductase (318)
Acinetobacter sp. ADP1 Y Y oxidoreductase (353)
Actinobacillus pleuropneumoniae
L20 Y Y Y oxidoreductase (339)
Actinobacillus pleuropneumoniae
serovar 1 str. 4074 Y Y flavodoxin reductase (339)
Actinobacillus pleuropneumoniae
serovar 3 str. JL03 Y Y Y oxidoreductase (339)
Actinobacillus pleuropneumoniae
serovar 7 str. AP76 Y Y Y oxidoreductase (339)
Actinobacillus succinogenes 130Z Y Y Y YfaE (85)
Aeromonas hydrophila subsp.
hydrophila ATCC 7966 Y Y Y Y YfaE (81)
Aeromonas salmonicida subsp.
salmonicida A449 Y Y Y Y YfaE (106)
Alcanivorax borkumensis SK2 Y Y oxidoreductase (344)
Alcanivorax sp. DG881 Y oxidoreductase (372)
Algoriphagus sp. PR1 Y ferredoxin (151)
Aliivibrio salmonicida LFI1238 Y Y YfaE (91)
Alpha proteobacterium HTCC2255 Y Y YfaE (88)
Alteromonadales bacterium TW-7 Y YfaE (90)
Alteromonas macleodii 'Deep
ecotype' Y Y Y YfaE (90)
Anaerostipes caccae DSM 14662 Y
Anaplasma marginale str. St.
Maries Y succinate dehydrogenase (262)
Anaplasma phagocytophilum HZ Y succinate dehydrogenase (262)
Aquifex aeolicus VF5 Y Y ferredoxin (96)
Arcobacter butzleri RM4018 Y Y fumarate reductase (243)
Azotobacter vinelandii AvOP Y Y oxidoreductase (353)
Bacillus coagulans 36D1 Y Y FeS protein (441)
Bacillus halodurans C-125 Y Y
Bacillus selenitireducens MLS10 Y Y
Bacillus sp. NRRL B-14911 Y Y hypothetical protein (79)
Bacillus sp. SG-1 Y Y hypothetical protein (78)
Bacteroides fragilis NCTC 9343 Y Y Y Y quinone reductase (423)
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Organism
Fully

sequenced
Class

Ib
Class

II
Class

III YfaE-like Note
Bacteroides fragilis YCH46 Y Y Y Y quinone reductase (423)
Bacteroides vulgatus ATCC 8482 Y Y Y Y quinone reductase (424)
Baumannia cicadellinicola str. Hc Y Y YfaE (88)
Bdellovibrio bacteriovorus HD100 Y Y Y Y hypothetical protein (95)
Bordetella avium 197N Y Y ferredoxin (113)
Bordetella
bronchiseptica
RB50 Y Y ferredoxin (113)
Bordetella
parapertussis Y Y ferredoxin (113)
Bordetella pertussis
Tohama I Y Y ferredoxin (113)
Bordetella petrii DSM 12804 Y Y Y ferredoxin-reductase (341)
Bradyrhizobium japonicum USDA
110 Y Y Y ferredoxin-reductase (336)
Brevundimonas sp. BAL3 Y Y succinate dehydrogenase (265)
Buchnera aphidicola str. APS
(Acyrthosiphon pisum) Y Y YfaE (87)
Buchnera aphidicola str. Bp
(Baizongia pistaciae) Y Y YfaE (87)
Buchnera aphidicola str. Sg
(Schizaphis graminum) Y
Burkholderia ambifaria IOP40-10 Y oxidoreductase (343)
Burkholderia ambifaria MC40-6 Y Y Y ferredoxin (321)
Burkholderia ambifaria MEX-5 Y ferredoxin (100)
Burkholderia cenocepacia AU
1054 Y Y ferredoxin (100)
Burkholderia cenocepacia HI2424 Y Y ferredoxin (100)
Burkholderia cenocepacia J2315 Y Y Y ferredoxin (100)
Burkholderia cenocepacia MC0-3 Y Y ferredoxin (100)
Burkholderia cenocepacia PC184 Y Y ferredoxin (100)
Burkholderia cepacia AMMD Y Y ferredoxin (100)
Burkholderia cepacia R1808 Y Y ferredoxin (117)
Burkholderia cepacia R18194 Y ferredoxin (100)
Burkholderia dolosa AUO158 Y Y Y Y ferredoxin (343)
Burkholderia fungorum LB400 Y Y Y ferredoxin (120)
Burkholderia graminis C4D1M Y ferredoxin (105)
Burkholderia mallei ATCC 10399 Y Y Y Y ferredoxin (381)
Burkholderia mallei ATCC 23344 Y Y Y Y ferredoxin (381)
Burkholderia mallei NCTC 10229 Y Y Y Y ferredoxin (380)
Burkholderia mallei SAVP1 Y Y Y Y ferredoxin (380)
Burkholderia multivorans ATCC
17616 Y Y Y ferredoxin (105)
Burkholderia oklahomensis C6786 Y Y Y ferredoxin (329)
Burkholderia oklahomensis EO147 Y Y Y ferredoxin (98)
Burkholderia phymatum STM815 Y Y Y ferredoxin (129)
Burkholderia phytofirmans PsJN Y Y Y ferredoxin (103)
Burkholderia pseudomallei 1106b Y Y Y ferredoxin (96)
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Organism
Fully

sequenced
Class

Ib
Class

II
Class

III YfaE-like Note
Burkholderia pseudomallei 112 Y Y ferredoxin (96)
Burkholderia pseudomallei 14 Y Y ferredoxin (96)
Burkholderia pseudomallei 1710b Y Y Y Y ferredoxin (96)
Burkholderia pseudomallei 7894 Y Y Y ferredoxin (96)
Burkholderia pseudomallei DM98 Y Y Y ferredoxin (96)
Burkholderia pseudomallei K96243 Y Y Y Y ferredoxin (96)
Burkholderia pseudomallei NCTC
13177 Y Y Y ferredoxin (96)
Burkholderia pseudomallei S13 Y Y Y Y ferredoxin (88)
Burkholderia sp. 383 Y Y ferredoxin (100)
Burkholderia sp. H160 Y Y ferredoxin (126)
Burkholderia thailandensis Bt4 Y Y Y ferredoxin (96)
Burkholderia thailandensis E264 Y Y Y Y ferredoxin (96)
Burkholderia thailandensis
MSMB43 Y Y Y ferredoxin (96)
Burkholderia thailandensis
TXDOH Y Y Y ferredoxin (96)
Burkholderia ubonensis Bu Y Y ferredoxin (83)
Burkholderia vietnamiensis G4 Y Y Y ferredoxin (117)
Burkholderia xenovorans LB400 Y Y Y ferredoxin (120)
Caminibacter mediatlanticus TB-2 Y fumarate reductase (322)
Campylobacter coli RM2228 fumarate reductase (241)
Campylobacter concisus 13826 Y Y fumarate reductase (239)
Campylobacter curvus 525.92 Y Y fumarate reductase (239)
Campylobacter fetus subsp. fetus
82-40 Y Y fumarate reductase (246)
Campylobacter jejuni RM1221 fumarate reductase (241)
Campylobacter jejuni subsp. doylei
269.97 Y fumarate reductase (241)
Campylobacter jejuni subsp. jejuni
260.94 fumarate reductase (241)
Campylobacter jejuni subsp. jejuni
81-176 Y fumarate reductase (241)
Campylobacter jejuni subsp. jejuni
CF93-6 fumarate reductase (241)
Campylobacter jejuni subsp. jejuni
CG8421 fumarate reductase (241)
Campylobacter jejuni subsp. jejuni
NCTC 11168 Y fumarate reductase (241)
Campylobacter lari RM2100 Y fumarate reductase (241)
Campylobacter upsaliensis
RM3195 fumarate reductase (241)
Campylobacterales bacterium GD
1 Y fumarate reductase (247)
Candidatus Amoebophilus asiaticus
5a2 Y
Candidatus Blochmannia
floridanus Y Y YfaE (95)
Candidatus Blochmannia
pennsylvanicus

Y Y YfaE (96)
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pennsylvanicus

Organism
Fully

sequenced
Class

Ib
Class

II
Class

III YfaE-like Note
Candidatus Blochmannia
pennsylvanicus str. BPEN Y Y YfaE (96)
Candidatus Pelagibacter sp.
HTCC7211 Y ferredoxin (120)
Candidatus Pelagibacter ubique
HTCC1002 succinate dehydrogenase (257)
Candidatus Pelagibacter ubique
HTCC1062 Y Y succinate dehydrogenase (257)
Candidatus Vesicomyosocius
okutanii HA Y Y ferredoxin (87)
Caulobacter crescentus CB15 Y Y succinate dehydrogenase (260)
Caulobacter sp. K31 Y Y Y oxidoreductase (669)
Cellulophaga sp. MED134 succinate dehydrogenase (248)
Cellvibrio japonicus Ueda107 Y succinate dehydrogenase (234)
Chromobacterium violaceum
ATCC 12472 Y Y Y Y oxidoreductase (342)
Chromohalobacter salexigens DSM
3043 Y Y Y ferredoxin (322)
Citrobacter koseri ATCC BAA-895 Y Y Y Y YfaE (84)
Clostridium acetobutylicum ATCC
824 Y Y Y
Clostridium beijerinckii NCIMB
8052 Y Y Y
Clostridium bolteae ATCC BAA-
613 Y Y hypothetical protein (166)
Clostridium botulinum A str.
ATCC 3502 Y Y Y FeS protein (576)
Clostridium botulinum A3 str.
Loch Maree Y Y Y FeS protein (576)
Clostridium botulinum B str.
Eklund 17B Y Y Y oxidoreductase (384)
Clostridium botulinum B1 str. Okra Y Y Y FeS protein (576)
Clostridium botulinum Bf Y Y FeS protein (576)
Clostridium botulinum C str.
Eklund Y Y ferredoxin ? (277)
Clostridium botulinum E3 str.
Alaska E43 Y Y Y oxidoreductase (384)
Clostridium botulinum F str.
Langeland Y Y Y FeS protein (576)
Clostridium botulinum NCTC 2916 Y Y FeS protein (576)
Clostridium butyricum 5521 Y
Clostridium nexile DSM 1787 Y
Clostridium novyi NT Y Y sulfite reductase (263)
Clostridium perfringens ATCC
13124 Y Y oxidoreductase (326)
Clostridium perfringens E str.
JGS1987 Y oxidoreductase (326)
Clostridium perfringens SM101 Y Y oxidoreductase (326)
Clostridium perfringens str. 13 Y Y oxidoreductase (326)
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Organism
Fully

sequenced
Class

Ib
Class

II
Class

III YfaE-like Note
Clostridium phytofermentans ISDg Y Y dihydroxy-acid dehydratase (573)
Clostridium ramosum DSM 1402 Y hypothetical protein (572)
Clostridium scindens ATCC 35704 Y Y hypothetical protein (533)
Clostridium sporogenes ATCC
15579 Y Y hypothetical protein (576)
Collinsella intestinalis DSM 13280 Y
Collinsella stercoris DSM 13279 Y
Colwellia psychrerythraea 34H Y Y Y YfaE (106)
Comamonas testosteroni KF-1 Y Y ferredoxin (100)
Congregibacter litoralis KT71 Y fumarate reductase (258)
Coxiella burnetii 'MSU Goat Q177'
Coxiella burnetii CbuG_Q212 Y
Coxiella burnetii Dugway Y
Coxiella burnetii RSA 493 Y
Crocosphaera watsonii WH 8501 Y ferredoxin (99)
Cupriavidus taiwanensis Y Y Y ferredoxin (99)
Cyanothece sp. ATCC 51142 Y Y ferredoxin (99)
Cyanothece sp. CCY 0110 Y ferredoxin (99)
Cyanothece sp. PCC 7424 Y ferredoxin (111)
Cyanothece sp. PCC 8801 Y ferredoxin (99)
Cyanothece sp. PCC 8802 Y ferredoxin (99)
Cytophaga hutchinsonii ATCC
33406 Y fumarate reductase (250)
Dehalococcoides sp. VS Y ferredoxin (640)
Delftia acidovorans SPH-1 Y Y Y ferredoxin (117)
Dichelobacter nodosus VCS1703A Y Y
Ehrlichia canis str. Jake Y succinate dehydrogenase (258)
Ehrlichia chaffeensis str. Arkansas succinate dehydrogenase (258)
Ehrlichia chaffeensis str. Sapulpa succinate dehydrogenase (158)
Ehrlichia ruminantium str. Gardel Y succinate dehydrogenase (264)
Ehrlichia ruminantium str.
Welgevonden Y succinate dehydrogenase (258)
Enterobacter cancerogenus ATCC
35316 Y Y Y YfaE (81)
Enterobacter sakazakii ATCC
BAA-894 Y Y Y Y YfaE (84)
Enterobacter sp. 638 Y Y Y Y YfaE (84)
Erwinia carotovora subsp.
atroseptica SCRI1043 Y Y Y Y YfaE (86)
Erwinia tasmaniensis Et1/99 Y Y YfaE (86)
Erythrobacter sp. NAP1 succinate dehydrogenase (260)
Erythrobacter sp. SD-21 Y oxidoreductase (185)
Escherichia albertii TW07627 Y Y Y YfaE (84)
Escherichia coli 101-1 Y Y Y YfaE (84)
Escherichia coli 536 Y Y Y Y YfaE (84)
Escherichia coli 53638 Y Y Y YfaE (84)
Escherichia coli APEC O1 Y Y Y YfaE (84)
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Organism
Fully

sequenced
Class

Ib
Class

II
Class

III YfaE-like Note
Escherichia coli ATCC 8739 Y Y Y Y YfaE (84)
Escherichia coli B171 Y Y Y YfaE (84)
Escherichia coli B7A Y Y Y YfaE (84)
Escherichia coli CFT073 Y Y Y Y YfaE (84)
Escherichia coli E110019 Y Y Y YfaE (84)
Escherichia coli E22 Y Y Y YfaE (84)
Escherichia coli F11 Y Y Y YfaE (84)
Escherichia coli HS Y Y Y YfaE (84)
Escherichia coli K12, MG1655 Y Y Y Y YfaE (84)
Escherichia coli O157:H7 Y Y Y Y YfaE (84)
Escherichia coli O157:H7 EDL933 Y Y Y Y YfaE (84)
Escherichia coli O157:H7 str.
EC4024 Y Y Y YfaE (84)
Escherichia coli O157:H7 str.
EC4045 Y Y Y YfaE (84)
Escherichia coli O157:H7 str.
EC4206 Y Y Y YfaE (84)
Escherichia coli O157:H7 str.
EC4501 Y Y Y YfaE (84)
Escherichia coli SMS-3-5 Y Y Y Y YfaE (84)
Escherichia coli W3110 Y Y Y YfaE (84)
Eubacterium dolichum DSM 3991 Y
Exiguobacterium sibiricum 255-15 Y Y
Exiguobacterium sp. AT1b Y
Faecalibacterium prausnitzii M21/2 Y
Fervidobacterium nodosum Rt17-
B1 Y Y Y oxidoreductase (369)
Finegoldia magna ATCC 29328 Y Y Y hypothetical protein (525)
Flavobacteria bacterium BAL38 succinate dehydrogenase (253)
Flavobacteria bacterium BBFL7 Y flavodoxin reductase (347)
Flavobacteriales bacterium ALC-1 Y FeS protein (357)
Flavobacteriales bacterium
HTCC2170 Y succinate dehydrogenase (249)
Flavobacterium johnsoniae UW101 Y Y Y ferredoxin (350)
Flavobacterium psychrophilum
JIP02/86 Y fumarate reductase (254)
Flavobacterium sp. MED217 Y Y ferredoxin (154)
Francisella novicida GA99-3548
Francisella philomiragia subsp.
philomiragia ATCC 25017 Y succinate dehydrogenase (233)
Francisella tularensis subsp.
holarctica FSC022 Y succinate dehydrogenase (233)
Francisella tularensis subsp.
novicida GA99-3548
Francisella tularensis subsp.
novicida U112 Y succinate dehydrogenase (233)
Francisella tularensis subsp.
tularensis SCHU S4 Y succinate dehydrogenase (233)
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Organism
Fully

sequenced
Class

Ib
Class

II
Class

III YfaE-like Note
Francisella tularensis subsp.
tularensis WY96-3418 Y succinate dehydrogenase (233)
Fusobacterium nucleatum subsp.
nucleatum ATCC 25586 Y Y
Fusobacterium nucleatum subsp.
polymorphum ATCC 10953 Y Y
Fusobacterium nucleatum subsp.
vincentii ATCC 49256 Y
Gemmata obscuriglobus UQM
2246 Y ferredoxin (250)
Geobacillus kaustophilus HTA426 Y Y Y hypothetical protein (117)
Geobacillus sp. WCH70 Y
Geobacillus sp. Y412MC10 Y Y Y ferredoxin (129)
Geobacillus thermodenitrificans
NG80-2 Y
Gluconacetobacter diazotrophicus
PAl 5 Y succinate dehydrogenase (260)
Gluconobacter oxydans 621H Y Y xanthine dehydrogenase (486)
Gramella forsetii KT0803 Y Y Y oxidoreductase (349)
Granulibacter bethesdensis
CGDNIH1 Y Y flavodoxin reductase (249)
Haemophilus ducreyi 35000HP Y Y
Haemophilus influenzae 22.4-21 Y Y YfaE (82)
Haemophilus influenzae 3655 Y Y YfaE (82)
Haemophilus influenzae 86-028NP Y Y Y YfaE (82)
Haemophilus influenzae PittAA Y YfaE (82)
Haemophilus influenzae PittEE Y Y Y YfaE (82)
Haemophilus influenzae R2846 Y Y YfaE (82)
Haemophilus influenzae R2866 Y Y YfaE (82)
Haemophilus influenzae R3021 Y Y YfaE (82)
Haemophilus influenzae Rd KW20 Y Y Y YfaE (82)
Haemophilus parasuis 29755 Y fumarate reductase (256)
Haemophilus somnus 129PT Y Y Y YfaE (85)
Haemophilus somnus 2336 Y Y Y YfaE (85)
Hahella chejuensis KCTC 2396 Y Y Y flavodoxin reductase (384)
Helicobacter acinonychis str.
Sheeba Y fumarate reductase (245)
Helicobacter hepaticus ATCC
51449 Y fumarate reductase (247)
Helicobacter pylori 26695 Y fumarate reductase (245)
Helicobacter pylori G27 Y fumarate reductase (234)
Helicobacter pylori HPAG1 Y fumarate reductase (245)
Helicobacter pylori
HPKX_438_AG0C1 fumarate reductase (66)
Helicobacter pylori J99 Y fumarate reductase (245)
Helicobacter pylori P12 Y fumarate reductase (245)
Helicobacter pylori Shi470 Y fumarate reductase (245)
Herminiimonas arsenicoxydans Y Y Y oxidoreductase (342)
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Organism
Fully

sequenced
Class

Ib
Class

II
Class

III YfaE-like Note
Hydrogenivirga sp. 128-5-R1-1 Y Y ferredoxin (96)
Hyphomonas neptunium ATCC
15444 Y Y Y xanthine dehydrogenase (216)
Idiomarina baltica OS145 Y YfaE (87)
Idiomarina loihiensis L2TR Y Y Y YfaE (86)
Janthinobacterium sp. Marseille Y Y YfaE (86)
Klebsiella pneumoniae subsp.
pneumoniae MGH 78578 Y Y Y Y YfaE (84)
Kordia algicida OT-1 Y hypothetical protein (357)
Lawsonia intracellularis
PHE/MN1-00 Y FeS protein ? (437)
Legionella pneumophila str. Corby Y Y oxidoreductase (627)
Legionella pneumophila str. Lens Y Y hypothetical protein (318)
Legionella pneumophila str. Paris Y Y hypothetical protein (627)
Legionella pneumophila subsp.
pneumophila str. Philadelphia 1 Y Y hypothetical protein (657)
Lentisphaera araneosa HTCC2155 Y ferredoxin (97)
Leptothrix cholodnii SP-6 Y Y Y ferredoxin (111)
Limnobacter sp. MED105 Y ferredoxin (381)
Listeria innocua Clip11262 Y Y
Listeria monocytogenes EGD-e Y Y
Listeria monocytogenes str. 1/2a
F6854 Y
Listeria monocytogenes str. 4b
F2365 Y Y
Listeria monocytogenes str. 4b
H7858 Y
Listeria welshimeri serovar 6b str.
SLCC5334 Y Y
Lyngbya sp. PCC 8106 Y ferredoxin (112)
Mannheimia haemolytica PHL213 Y Y
Mannheimia succiniciproducens
MBEL55E Y Y Y YfaE (87)
Maricaulis maris MCS10 Y Y Y succinate dehydrogenase (259)
Marine gamma proteobacterium
HTCC2080 succinate dehydrogenase (235)
Marine gamma proteobacterium
HTCC2143 succinate dehydrogenase (235)
Marinobacter algicola DG893 Y Y oxidoreductase (353)
Marinobacter aquaeolei VT8 Y Y Y oxidoreductase (330)
Marinobacter sp. ELB17 Y Y ferredoxin (364)
Marinomonas sp. MED121 Y ferredoxin (110)
Marinomonas sp. MWYL1 Y Y YfaE (98)
Methylibium petroleiphilum PM1 Y Y Y Y ferredoxin (108)
Methylobacillus flagellatus KT Y Y Y YfaE (139)
Methylococcus capsulatus str. Bath Y Y Y ferredoxin (122)
Microcystis aeruginosa NIES-843 Y Y ferredoxin (122)
Microcystis aeruginosa PCC 7806 Y ferredoxin (122)
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Microscilla marina ATCC 23134 Y oxidoreductase (354)
Moritella sp. PE36 Y Y YfaE (87)
Myxococcus xanthus DK 1622 Y Y Y ferredoxin reductase (322)
Neisseria gonorrhoeae FA 1090 Y Y YfaE (96)
Neisseria meningitidis 053442 Y Y YfaE (96)
Neisseria meningitidis FAM18 Y Y YfaE (96)
Neisseria meningitidis MC58 Y Y YfaE (96)
Neisseria meningitidis Z2491 Y Y YfaE (96)
Neorickettsia sennetsu str.
Miyayama Y succinate dehydrogenase (254)
Nitratiruptor sp. SB155-2 Y Y Y succinate dehydrogenase (254)
Nitrococcus mobilis Nb-231 Y Y oxidoreductase (345)
Nitrosococcus oceani ATCC 19707 Y
Nitrosomonas europaea ATCC
19718 Y Y oxidoreductase (348)
Nitrosomonas eutropha C71 Y Y oxidoreductase (348)
Nitrosospira multiformis ATCC
25196 Y Y oxidoreductase (349)
Novosphingobium aromaticivorans
DSM 12444 Y Y FeS protein (169)
Oceanicaulis alexandrii HTCC2633 Y succinate dehydrogenase (261)
Oceanobacillus iheyensis HTE831 Y
Oceanobacter sp. RED65 Y Y YfaE (159)
Oceanospirillum sp. MED92 Y YfaE (88)
Orientia tsutsugamushi Boryong Y succinate dehydrogenase (263)
Orientia tsutsugamushi str. Ikeda Y succinate dehydrogenase (261)
Paenibacillus larvae subsp. larvae
BRL-230010 Y Y dihydroxy-acid dehydratase (556)
Parachlamydia sp. UWE25 Y Y YfaE (88)
Parvibaculum lavamentivorans DS-
1 Y Y fumarate reductase (259)
Pasteurella multocida subsp.
multocida str. Pm70 Y Y Y YfaE (82)
Pedobacter sp. BAL39 Y Y Y oxidoreductase (356)
Peptostreptococcus micros ATCC
33270 Y
Phenylobacterium zucineum HLK1 Y Y succinate dehydrogenase (260)
Photobacterium profundum 3TCK Y Y Y ferredoxin (95)
Photobacterium profundum SS9 Y Y Y Y ferredoxin (95)
Photobacterium sp. SKA34 Y Y ferredoxin (98)
Photorhabdus asymbiotica subsp.
asymbiotica ATCC 43949 Y Y YfaE (88)
Photorhabdus luminescens subsp.
laumondii TTO1 Y Y Y Y YfaE (88)
Plesiocystis pacifica SIR-1 Y Y ferredoxin (98)
Polaribacter irgensii 23-P Y oxidoreductase (348)
Polaromonas naphthalenivorans
CJ2 Y Y Y ferredoxin (103)
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Polaromonas sp. JS666 Y Y Y ferredoxin (110)
Polynucleobacter necessarius
STIR1 Y Y oxidoreductase (348)
Polynucleobacter sp. QLW-
P1DMWA-1 Y Y oxidoreductase (348)
Proteus mirabilis HI4320 Y Y Y Y YfaE (92)
Providencia stuartii ATCC 25827 Y Y Y YfaE (74)
Pseudoalteromonas atlantica T6c Y Y YfaE (90)
Pseudoalteromonas haloplanktis
TAC125 Y Y YfaE (90)
Pseudoalteromonas tunicata D2 Y YfaE (87)
Pseudomonas aeruginosa C3719 Y Y Y Y hypothetical protein (366)
Pseudomonas aeruginosa PA7 Y Y Y Y oxidoreductase (355)
Pseudomonas aeruginosa PACS2 Y Y Y oxidoreductase (321)
Pseudomonas aeruginosa PAO1 Y Y Y Y oxidoreductase (318)
Pseudomonas aeruginosa UCBPP-
PA14 Y Y Y Y ferredoxin (366)
Pseudomonas entomophila L48 Y Y oxidoreductase (366)
Pseudomonas fluorescens Pf-5 Y Y oxidoreductase (366)
Pseudomonas fluorescens PfO-1 Y Y oxidoreductase (366)
Pseudomonas mendocina ymp Y Y ferredoxin (309)
Pseudomonas putida F1 Y Y ferredoxin (316)
Pseudomonas putida W619 Y Y ferredoxin (316)
Pseudomonas stutzeri A1501 Y Y Y Y oxidoreductase (730)
Pseudomonas syringae pv.
phaseolicola 1448A Y Y oxidoreductase (312)
Pseudomonas syringae pv. syringae
B728a Y Y oxidoreductase (312)
Pseudomonas syringae pv. tomato
str. DC3000 Y Y oxidoreductase (312)
Psychrobacter arcticus 273-4 Y Y YfaE (86)
Psychrobacter cryohalolentis K5 Y Y YfaE (88)
Psychrobacter sp. 273-4 Y YfaE (86)
Psychrobacter sp. PRwf-1 Y Y YfaE (85)
Psychroflexus torquis ATCC
700755 Y Y oxidoreductase (347)
Psychromonas ingrahamii 37 Y Y Y YfaE (83)
Psychromonas sp. CNPT3 Y Y YfaE (82)
Ralstonia eutropha H16 Y Y Y Y oxidoreductase (352)
Ralstonia eutropha JMP134 Y Y Y oxidoreductase (354)
Ralstonia metallidurans CH34 Y Y Y Y oxidoreductase (351)
Ralstonia pickettii 12D Y Y Y ferredoxin (320)
Ralstonia pickettii 12J Y Y Y Y ferredoxin (316)
Ralstonia solanacearum GMI1000 Y Y Y Y ferredoxin (328)
Ralstonia solanacearum UW551 Y Y ferredoxin (328)
Reinekea sp. MED297 Y Y succinate dehydrogenase (235)
Rhodoferax ferrireducens DSM
15236 Y Y Y Y ferredoxin (323)
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Rhodospirillum centenum SW Y Y Y succinate dehydrogenase (260)
Rhodospirillum rubrum ATCC
11170 Y Y Y Y ferredoxin (127)
Rickettsia akari str. Hartford Y succinate dehydrogenase (261)
Rickettsia bellii OSU 85-389 Y succinate dehydrogenase (261)
Rickettsia bellii RML369-C Y succinate dehydrogenase (261)
Rickettsia canadensis str. McKiel Y succinate dehydrogenase (261)
Rickettsia conorii str. Malish 7 succinate dehydrogenase (261)
Rickettsia felis URRWXCal2 Y succinate dehydrogenase (261)
Rickettsia massiliae MTU5 Y succinate dehydrogenase (261)
Rickettsia prowazekii str. Madrid E Y succinate dehydrogenase (261)
Rickettsia rickettsii Y succinate dehydrogenase (261)
Rickettsia rickettsii str. 'Sheila
Smith' Y succinate dehydrogenase (261)
Rickettsia sibirica 246 succinate dehydrogenase (261)
Rickettsia typhi str. Wilmington Y succinate dehydrogenase (261)
Rickettsiella grylli succinate dehydrogenase (261)
Robiginitalea biformata
HTCC2501 Y Y oxidoreductase (349)
Rubrivivax gelatinosus PM1 Y Y Y oxidoreductase (341)
Ruminococcus gnavus ATCC
29149 Y
Ruminococcus torques ATCC
27756 Y
Saccharophagus degradans 2-40 Y Y ferredoxin (366)
Salinibacter ruber DSM 13855 Y Y Y ferredoxin (127)
Salinispora arenicola CNS-205 Y Y Y oxidoreductase (384)
Salinispora tropica CNB-440 Y Y Y ferredoxin (330)
Salmonella enterica subsp. arizonae
serovar 62:z4,z23:-- Y Y Y Y YfaE (84)
Salmonella enterica subsp. enterica
serovar Choleraesuis str. SC-B67 Y Y Y Y YfaE (84)
Salmonella enterica subsp. enterica
serovar Gallinarum str. 287/91 Y Y Y YfaE (84)
Salmonella enterica subsp. enterica serovar
Kentucky str. CDC 191 Y Y YfaE (84)
Salmonella enterica subsp. enterica
serovar Paratyphi A str. ATCC
9150 Y Y Y Y YfaE (84)
Salmonella enterica subsp. enterica
serovar Typhi Ty2 Y Y Y Y YfaE (84)
Salmonella enterica subsp. enterica
serovar Typhi str. CT18 Y Y Y Y YfaE (84)
Salmonella typhimurium LT2 Y Y Y Y YfaE (84)
Serratia proteamaculans 568 Y Y Y Y YfaE (86)
Shewanella amazonensis SB2B Y Y Y YfaE (117)
Shewanella baltica OS155 Y Y Y YfaE (140)
Shewanella baltica OS195 Y Y Y YfaE (163)
Shewanella baltica OS223 Y Y YfaE (140)
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Shewanella benthica KT99 Y Y YfaE (124)
Shewanella denitrificans OS217 Y Y Y YfaE (134)
Shewanella frigidimarina NCIMB
400 Y Y Y YfaE (133)
Shewanella halifaxensis HAW-
EB4 Y Y Y YfaE (127)
Shewanella loihica PV-4 Y Y Y YfaE (126)
Shewanella oneidensis MR-1 Y Y Y YfaE (144)
Shewanella pealeana ATCC
700345 Y Y Y YfaE (136)
Shewanella putrefaciens CN-32 Y Y Y YfaE (151)
Shewanella sediminis HAW-EB3 Y Y Y YfaE (116)
Shewanella sp. ANA-3 Y Y Y YfaE (136)
Shewanella sp. MR-4 Y Y Y YfaE (136)
Shewanella sp. MR-7 Y Y Y YfaE (136)
Shewanella sp. W3-18-1 Y Y Y YfaE (136)
Shewanella woodyi ATCC 51908 Y Y Y YfaE (125)
Shigella boydii CDC 3083-94 Y Y Y Y YfaE (84)
Shigella boydii Sb227 Y Y Y Y YfaE (84)
Shigella dysenteriae Sd197 Y Y Y Y YfaE (84)
Shigella flexneri 2a str. 2457T Y Y Y Y YfaE (84)
Shigella flexneri 2a str. 301 Y Y Y Y YfaE (84)
Shigella flexneri 5 str. 8401 Y Y Y Y YfaE (84)
Shigella sonnei Ss046 Y Y Y Y YfaE (84)
Sodalis glossinidius str. 'morsitans' Y Y YfaE (86)
Sorangium cellulosum 'So ce 56' Y Y ferredoxin (103)
Sphingomonas sp. SKA58 Y hypothetical (636)
Sphingomonas wittichii RW1 Y Y ferredoxin (769)
Sphingopyxis alaskensis RB2256 Y Y ferredoxin (179)
Stenotrophomonas maltophilia
K279a Y Y oxidoreductase (369)
Stenotrophomonas maltophilia
R551-3 Y Y ferredoxin (215)
Stigmatella aurantiaca DW4/3-1
Streptomyces avermitilis MA-4680 Y Y Y oxidoreductase (366)
Streptomyces clavuligerus ATCC
27064 Y Y ferredoxin (351)
Streptomyces coelicolor A3(2) Y Y oxidoreductase (364)
Streptomyces griseus subsp.
griseus NBRC 13350 Y Y Y oxidoreductase (360)
Streptomyces jumonjinensis
Streptomyces microflavus
Streptomyces pristinaespiralis
ATCC 25486 Y Y Y ferredoxin (370)
Streptomyces sp. Mg1 Y Y Y oxidoreductase (381)
Streptomyces sp. SPB74 Y Y ferredoxin (724)
Streptomyces sviceus ATCC 29083 Y Y Y oxidoreductase (312)
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Sulfurovum sp. NBC37-1 Y Y fumarate reductase
Symbiobacterium thermophilum
IAM 14863 Y Y Y ferredoxin (233)
Synechococcus sp. PCC 7002 Y Y ferredoxin (122)
Synechocystis sp. PCC 6803 Y Y ferredoxin (97)
Tenacibaculum sp. MED152 Y ferredoxin reductase (348)
Thermus aquaticus Y51MC23 Y
Thermus thermophilus HB27 Y Y
Thermus thermophilus HB8 Y Y
Thioalkalivibrio sp. HL-EbGR7 Y Y oxidoreductase (340)
Thiobacillus denitrificans ATCC
25259 Y Y Y Y flavin-reductase (345)
Thiomicrospira crunogena XCL-2 Y Y ferredoxin (83)
Thiomicrospira denitrificans ATCC
33889 Y Y Y ferredoxin (378)
Treponema denticola ATCC 35405 Y Y
Treponema pallidum subsp.
pallidum str. Nichols Y
Verminephrobacter eiseniae EF01-
2 Y Y Y ferredoxin (323)
Vibrio alginolyticus 12G01 Y Y ferredoxin (93)
Vibrio angustum S14 Y Y ferredoxin (98)
Vibrio campbellii AND4 Y Y YfaE (92)
Vibrio cholerae MO10 Y Y ferredoxin (89)
Vibrio cholerae O1 biovar El Tor
str. N16961 Y Y Y YfaE (92)
Vibrio fischeri ES114 Y Y Y YfaE (92)
Vibrio harveyi ATCC BAA-1116 Y Y Y YfaE (92)
Vibrio parahaemolyticus RIMD
2210633 Y Y Y YfaE (92)
Vibrio shilonii AK1 Y Y YfaE (91)
Vibrio sp. Ex25 Y Y Y flavodoxin reductase (605)
Vibrio sp. MED222 Y Y Y YfaE (92)
Vibrio splendidus 12B01 Y Y YfaE (92)
Vibrio vulnificus CMCP6 Y Y Y YfaE (92)
Vibrio vulnificus YJ016 Y Y Y YfaE (92)
Vibrionales bacterium SWAT-3 Y Y YfaE (92)
Wolbachia endosymbiont of
Drosophila ananassae Y succinate dehydrogenase (270)
Wolbachia endosymbiont of
Drosophila melanogaster Y succinate dehydrogenase (270)
Wolbachia endosymbiont strain
TRS of Brugia malayi Y succinate dehydrogenase (262)
Wolbachia pipientis Y
Wolinella succinogenes DSM 1740 Y Y Y hypothetical protein (99)
Xanthomonas axonopodis pv. citri
str. 306 Y Y oxidoreductase (306)
Xanthomonas campestris pv.
campestris str. ATCC 33913

Y Y oxidoreductase (326)
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Xanthomonas campestris pv.
vesicatoria str. 85-10 Y Y oxidoreductase (319)
Xanthomonas oryzae pv. oryzae
KACC10331 Y Y oxidoreductase (364)
Xanthomonas oryzae pv. oryzae
MAFF 311018 Y Y oxidoreductase (358)
Xanthomonas oryzae pv. oryzae
PXO99A Y Y oxidoreductase (358)
Xanthomonas oryzae pv. oryzicola
BLS256 Y oxidoreductase (358)
Xylella fastidiosa 9a5c Y succinate dehydrogenase
Xylella fastidiosa Ann-1 succinate dehydrogenase
Xylella fastidiosa Dixon succinate dehydrogenase
Xylella fastidiosa Temecula1 Y succinate dehydrogenase
Yersinia bercovieri ATCC 43970 Y Y Y YfaE (85)
Yersinia enterocolitica subsp.
enterocolitica 8081 Y Y Y Y YfaE (81)
Yersinia frederiksenii ATCC
33641 Y Y Y YfaE (85)
Yersinia intermedia ATCC 29909 Y Y Y YfaE (85)
Yersinia mollaretii ATCC 43969 Y Y Y YfaE (88)
Yersinia pestis Angola Y Y Y YfaE (85)
Yersinia pestis CO92 Y Y Y Y YfaE (85)
Yersinia pestis KIM Y Y Y Y YfaE (85)
Yersinia pestis biovar Medievalis
str. 91001 Y Y Y Y YfaE (85)
Yersinia pseudotuberculosis IP
32953 Y Y Y Y YfaE (85)
Zymomonas mobilis subsp. mobilis
ZM4 Y Y Y oxidoreductase (105)


