
Volume holographic pupils in ray, wave, statistical

optics, and Wigner space

by

Se Baek Oh

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2009

c⃝ Massachusetts Institute of Technology 2009. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Mechanical Engineering

January 9, 2009

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
George Barbastathis
Associate Professor

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
David E. Hardt

Chairman, Department Committee on Graduate Students



2



Volume holographic pupils in ray, wave, statistical optics,

and Wigner space

by

Se Baek Oh

Submitted to the Department of Mechanical Engineering
on January 9, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis explores various aspects of the volume holographic pupils to better under-
stand and implement multi–dimensional imaging. A full description and applications
of volume holographic pupils are presented in ray, wave, statistical optics, and Wigner
space. Volume holograms have both a shift variant nature and multiplex capabil-
ity, which can efficiently extract specific information of multi–dimensional objects
by engineering imaging kernels with shift variant point spread functions and using
post–processing.

Based on the k–sphere formulation, an efficient computation method of analyz-
ing volume diffraction is developed. It is integrated with the ray tracing software
ZEMAXr whose built–in analysis and optimization features provide a great ver-
satility for analysis, design, and optimization of novel volume holographic imaging
systems. For a plane wave reference hologram, the shape of the Bragg diffraction
image is analyzed in detail, where the shape is a distorted ellipse.

The wave optics formulation of volume diffraction is revisited and further devel-
oped into statistical optics. The partially coherent response of a volume holographic
imaging system is derived. Based on spatial coherence measurements, new passive
binary depth detection is proposed, which is a special case of multi–dimensional imag-
ing. Spatially incoherent two objects at two distinct depths are discriminated: focused
objects in the foreground and defocused objects in the background. The passive de-
tection is demonstrated for featureless uniform objects under quasi–monochromatic
light by measuring mutual intensity with a volume holographic imager. By exploit-
ing cross spectral density measurement, the passive binary depth detection is also
demonstrated under white light illumination.

Finally, the Wigner distribution function for volume holographic pupils is intro-
duced. The space–spatial frequency characteristics of volume holograms are analyzed
with linear systems approach. Wigner representations of two volume holograms are
examined: plane and spherical wave reference holograms. Then, various axial imag-
ing systems, which measure the depth of objects from intensity images, are explored
by the Wigner analysis. Two important conditions for axial imaging are established:

3



1) shift variant objects and 2) properly designed integration kernels. Based on these
conditions, a shift variant imaging kernel is shown to be necessary for axial imaging.

Thesis Supervisor: George Barbastathis
Title: Associate Professor
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Chapter 1

Introduction

In the real world, three–dimensional scenes are observed through imaging systems.

If the wavelength of light is considered, natural scenes should be described in 4–

dimensional space. To obtain this multi–dimensional information, the imaging pro-

cess should inevitably include multi–dimensional measurements. However, many tra-

ditional imaging systems such as photographic cameras, microscopes, and telescopes

use two–dimensional detectors, where the measurements are limited in their dimen-

sionality due to a space–bandwidth product.

To measure multi–dimensional information with imaging systems of limited di-

mensionality, one could use shift variant imaging kernels as well as multiplexing tech-

niques. While a shift variant imaging kernel is considered to be undesirable in tradi-

tional imaging process, it may extract specific information of a scene more efficiently

because system responses can be tuned to be more sensitive to some features of a

scene. Typically, multiplexing is implemented by multiple imaging kernels operating

in parallel (e.g., extra cameras or holograms recorded by multiple exposures), where

individual imaging kernels are modified to yield different responses for specific fea-

tures of a scene. Hence, engineering these two features, shift variant and multiplexed

imaging, would be extremely useful for achieving multi–dimensional imaging.

Another motivation for using the shift variant/multiplexed imaging approach is

rapidly growing computational power. As demonstrated in wavefront–coding sys-

tems [1], engineering point spread functions and using computational post–processing
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provide greater functionalities such as defocus tolerance to imaging processes. Al-

though the wavefront–coding system does not exactly use shift variant/multiplexed

imaging approach, it suggests that computation becomes an essential part of the imag-

ing process and would be more effective in shift variant/multiplexed imaging because

more controls on imaging systems are available. A similar effort of using computa-

tional approaches has been used in different research areas such as computational

photography [2] and computational imaging [3, 4].

Volume Holographic Imaging(VHI), i.e., imaging incorporated with volume holo-

grams, is a shift variant as well as multiplexed imaging method. VHI encodes the

multi–dimensional information of objects through Bragg diffraction; the captured in-

formation is properly decoded with post–processing. Raw images from VHI systems

are not identical to the ones from traditional imaging systems, but the processed

final outputs may contain more information. Moreover, the characteristics of the

shift variant response and multiplexing can be controlled in various ways: e.g., dif-

ferent recording geometry, wavelength, and exposure times, etc., hence VHI provides

more flexibility in engineering system responses. VHI is a convenient and effective

method to implement shift variance/multiplexed imaging and to explore the multi–

dimensional imaging process. In this thesis, we present a sequence of analysis frame-

works of VHI responses, demonstrate how to achieve passive depth ranging with

volume holograms based on spatial coherence measurements, and establish a better

understanding of the multi–dimensional imaging process with Wigner analysis.

1.1 Fundamentals of volume holographic imaging

1.1.1 Volume holograms

Volume holograms are thick gratings whose axial extent is much longer than for thin

gratings. They exhibit Bragg diffraction [5], which is very different than diffraction

from a thin grating. Photorefractive crystals such as LiNbO3, BaTiO3, BSO, BGO,

KTN, and SBN are often used, while photopolymers or other materials also can be
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(a) recording (b) probing

Figure 1-1: Recording and probing a volume hologram

used as long as a refractive index modulation can be introduced in them [6]. In

photorefractive crystals, exposure to a modulated light wavefront in turn modulates

the refractive index of the material. Generally, interference patterns from two or

more mutually coherent light beams are constructed inside the material to create

the refractive index modulation. This optical recoding method is relatively easy and

flexible for changing the period of the phase modulation. By this recording process,

the wavefront information of the interfered beams is stored as shown in Fig. 1-1(a).

Typically, two–beam interference is used, where one beam is called a reference wave

(Er) and the other is called a signal wave (Es). The refractive index modulation is

proportional to

∆ϵ(r) ∝ E∗
f (r)Es(r), (1.1)

where r denotes the spatial coordinate [7]. After developing and fixing if necessary,

the volume hologram becomes a thick phase grating.

The refractive index modulation generates volumetric diffraction when the volume

hologram is exposed to a probe wavefront. If the probe wavefront is exactly identical

to the reference wave, the diffraction efficiency reaches the maximum, where the entire

probe wavefront satisfies the Bragg condition [5] as shown in Fig. 1-1(b). In the case of

volume hologram recorded by the symmetric geometry as shown in 1-2(a), the Bragg

condition states the relation between the period of the hologram, the wavelength, and
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(a) Angular deviation of a probe beam
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Figure 1-2: Angle Bragg selectivity. As ∆θ deviates from θ, the Bragg diffraction
varies as sinc2 fashion. In (b), λ = 488 nm, L = 1 mm, and θs = 40◦.

the angle of the reference/signal waves as

Λ =
λ

2L sin(θs/2)
, (1.2)

where Λ is the period of the refractive index modulation in the volume hologram, λ

is the wavelength of the reference and signal waves, L is the thickness of the volume

hologram, and θs is the angle between the reference and signal waves.

Volume holograms have enormous information storage/processing capacity. For

this reason, they have been extensively applied to holographic data storage [8–11],

optical interconnects [12], and artificial neural networks [13].

Angular selectivity

In the case of the plane wave reference hologram recorded by a symmetric geometry

as shown in Fig. 1-2(a), if a probe wave deviates by ∆θ with respect to the reference

wave, then the diffraction efficiency changes as

η ∼ sinc2

(
2L∆θ sin(θs/2)

λ

)
, (1.3)

where ∆θ denotes the deviation angle of the probe beam with respect to θs. As the
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deviation increases, the Bragg diffraction decreases as shown in Fig. 1-2(b). At the

first null of the sinc2 function, the volume hologram does not diffract. This is called

the angular Bragg selectivity, which is defined by

(∆θ)B =
λ

2L sin (θs/2)
. (1.4)

As the Bragg condition indicates, a similar relation occurs when the wavelength of

a probe beam deviates from the wavelength of the reference wave. Hence, volume

holograms strongly diffract by the specific probe beam that has a correct angle and

wavelength relation.

Wavelength degeneracy

As the Bragg condition eq. (1.2) implies, the period of the refractive index modula-

tion is determined by both the angle and wavelength. Deviation in either the angle

or wavelength reduce the diffracted power, but if both angle and wavelength change

in a way that satisfies the Bragg condition then the volume hologram still diffracts

strongly. Equivalently, the identical interference period can be generated with dif-

ferent combinations of λf and θs as shown in Fig 1-3, which is termed wavelength

degeneracy. Hence, light of different wavelengths can be Bragg matched simultane-

ously if they have the correct angles.

Figure 1-3: Wavelength degeneracy of a plane wave reference volume hologram
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Multiplexing capability

Volume holograms exhibit multiplexing capability, in which multiple different wave-

fronts can be stored in a hologram. As shown in Fig. 1-4, during each exposure,

different configurations can be used.

(a) first exposure (b) second exposure

Figure 1-4: Multiplexing of two volume holograms

To avoid crosstalk during the read out process, the angular separation between

each configuration should be equal to integral multiples of the angular selectivity.

The diffraction efficiency decreases as the number of multiplexed holograms increases

as

η ∝ (M#)2

M2
, (1.5)

where M# (pronounced “M–number”) depends on the properties of the holographic

material and the optical system and M is the total number of multiplexed holograms.

The typical values of M# are in the range of 0.1–10 [14].

1.1.2 Volume Holographic Imaging

Volume holographic imaging (VHI) is a newly developed multi-dimensional imaging

technique utilizing wavefront information stored in volume holograms [7]. As shown

in Fig. 1-5, VHI systems use the volume hologram as a 3D optical element. The strong

shift variance and multiplexing capability produce special responses that conventional
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Figure 1-5: The concept of volume holographic imaging systems

imaging systems cannot easily achieve. The 3D spatial and spectral information is

encoded by the Bragg selectivity and mapped onto photodetector arrays. Previous

research has demonstrated that the responses of VHI systems can be engineered to

achieve various novel imaging processes, which has found many applications [7, 15–25].

By utilizing strong angular/wavelength selectivity, depth selective and hyper–spectral

imaging have been achieved [7, 16, 23]. Moreover, with multiplexed holograms, several

imaging channels can be implemented simultaneously. This feature has been used for

3D imaging of fluorescent beads [17] and biological tissues [25]. In conjunction with

conventional imaging platforms, various multi–dimensional imaging systems such as

volume holographic telescopes and microscopes have been built and demonstrated [7,

15, 22].

To present the principle of the VHI, we explain how depth selective imaging is

achieved in the 4–f VHI system reported in Ref. [7]. During the recording process,

two mutually coherent plane waves construct interference fringes inside a volume

hologram and create refractive index modulations. The reference wave is a collimated

plane wave which originates from a point source, and the signal wave is also a plane

wave but propagating with an angle of θs with respect to the optical axis as shown

in Fig. 1-6(a). By attaching a collector lens and CCD camera behind the volume

hologram, the whole system behaves as a depth selective imaging system for point

objects. If a point object is located at the front focal plane of the system as shown
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(a) Recording geometry

(b) Imaging of a focused point object

(c) Imaging of a defocused point object

Figure 1-6: Schematic of VHIs for depth selective imaging

in Fig. 1-6(b), then the wavefront from the point object is collimated by the lens and

becomes completely identical to the reference wave, in which strong Bragg diffraction

occurs. However, if the point object is defocused by δz as shown in Fig. 1-6(c), then

the Bragg diffraction is significantly attenuated because the incoming wavefront on

the volume hologram is not perfectly matched with the stored reference wave. Focused

illumination emulates a point source on an object, the 3D profile is recovered with

lateral and longitudinal scannings of either the system or the objects.

1.2 Outline of the thesis

This thesis explores different aspects of volume holographic pupils. In Chapter 2, two

different frameworks of volumetric diffraction are presented: the k–sphere method

and the Fourier optics method. The k–sphere method is a geometrical construction of

the Bragg match/mismatch calculation. It is very simple and intuitive, which could
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be useful for analyzing even complicated volume holograms, e.g., holograms with

shift variant grating vectors. To maximize the computation efficiency, the k–sphere

method is integrated with the commercial ray tracing software suite ZEMAXr. This

allows using various built–in analytical and optimization tools, which leads to better

performance and efficient design of VHI systems. The k–sphere method is extended in

3D space and the Bragg diffraction images are examined in detail. Then, the Fourier

optics formulation of volume diffraction is revisited. The difference of traditional and

VHI systems are examined.

In Chapter 3, the previously derived VHI responses are further developed into

statistical optics and the partially coherent response of VHI systems are analyzed.

Then, a new passive depth detection method based on spatial coherence measurements

is proposed. As the van Citter–Zernike theorem describes, for spatially incoherent

light, the spatial coherence increases as propagation. An interferometric measure-

ment system is cascaded to the volume holographic pupil. For quasi–monochromatic

light, theoretical analysis and experimental verification are presented. To improve the

depth resolving capability under broadband illumination, the cross spectral density

measurements are implemented. Through a series of experiments, discrimination of

uniform featureless objects at two different depths is demonstrated.

In Chapter 4, space–spatial frequency analysis, the Wigner distribution function is

introduced for volume holograms and VHI systems. The basic concept and property

of the Wigner distribution function are summarized. Using a linear systems approach,

the Wigner representation of volume holograms and VHI systems are derived. Also

the different behaviors of shift varian/invariant systems with defocus are investigated

and two major conditions for implementing systems with axial imaging capability,

i.e., ability to obtain depth information from captured images, are established.

In Chapter 5, this thesis is concluded by summarizing all topics. Advantages and

limitations are discussed and future direction of research is presented.
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Chapter 2

Volume diffraction framework for

volume holographic pupils

In this chapter, two frameworks for volume diffraction are presented: ray and wave–

optics formulations. The first one is called the k–sphere method, which computes the

Bragg match/mismatch vector with geometrical constructions. The k–sphere method

is implemented in the commercial ray tracing software suite ZEMAXr, which allows

efficient simulation of volume diffraction. We examine the Bragg diffraction patterns

on the image plane in more detail by using the k–sphere method .

The second framework for volume diffraction is based on Fourier optics analysis,

which is reported in Ref. [26, 27]. The result is briefly revisited and discussed. This

formulation will be extended into statistical optics in Chap. 3.

2.1 Geometrical construction for analysis of vol-

ume diffraction

2.1.1 Introduction

To design VHI systems, the Bragg diffraction from volume holograms should be ana-

lyzed. Analytical models of volume holograms have already been reported [7, 8, 27].

However, since they are based on wave optics, they are not straightforward for use
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in the design process. Also, if a volume hologram has shift variant imaging prop-

erties, analytical approaches become tedious and often fail to provide intuition. In

this section, we describe a ray tracing implementation of volume hologram modeling.

In modern optical system design, ray tracing software packages have become essen-

tial tools because they provide various analytical features and optimization routines,

which makes the whole design process much more efficient and agile.

2.1.2 k–sphere formulation

A volume hologram is considered as a phase grating, but being significantly thicker

than conventional diffraction gratings; it is subject to volumetric diffraction and shows

strong wavefront selectivity when exposed to a probe beam. A mathematical model of

volumetric diffraction has been derived from scalar diffraction theory and Born’s first

order approximation [14]. The k–sphere formulation is the geometrical representation

of the previously derived model; it is often referred to the Ewald sphere and originates

from a method used in crystallography and solid-state physics [28]. Figure 2-1 shows

the concept of the k–sphere formulation. In this particular case, the volume hologram

is assumed to be recorded by plane waves for simplicity.

The wavelengths of the recording and probe waves are denoted by λf and λp,

respectively. Let kf and ks denote the reference and signal wavevectors, respectively

(|kf| = |ks| = 2π/λf), while kp denotes the probe wavevector (|kp| = 2π/λp). As

shown in Fig. 2-1(a), the grating vector Kg is obtained as

Kg = ks − kf. (2.1)

To determine the diffracted field in the Bragg regime, the vector kp + Kg should be

examined [8]. The direction of the wavevector kd of the diffracted field is specified by

requiring that the lateral component of kd equals the lateral component of kp + Kg,

and that the tip of kd lies on the k–sphere (i.e., the condition for a propagating field);
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(a) Construction of the grating
vector from the recording wave
vectors

(b) Bragg matched reconstruc-
tion

(c) Bragg mismatch (d) Wavelength degeneracy

Figure 2-1: Geometric construction of volumetric diffraction using the k–sphere
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that is,

kd · x̂ = (kp + Kg) · x̂, (2.2)

kd · ŷ = (kp + Kg) · ŷ, and (2.3)

|kd| = 2π/λp. (2.4)

These constraints are obtained assuming that the lateral size of the hologram is much

larger than the hologram thickness. If kp + Kg satisfies the above conditions, then

kd ≡ kp +Kg, and the probe is Bragg–matched as shown in Fig. 2-1(b). If the Bragg

matching condition is not satisfied, kd is still obtained from eqs. (2.2)–(2.4) but the

diffraction efficiency is decreased according to

η ∝ sinc2

(
L(kp + Kg − kd) · ẑ

2π

)
= sinc2

(
Lδkd · ẑ

2π

)
, (2.5)

where L is the hologram thickness. The vector

δkd ≡ kp + Kg − kd (2.6)

is referred to as the Bragg mismatch vector; clearly, Bragg matching requires δkd = 0,

whereas if δkd ̸= 0 the diffraction efficiency is determined directly by the magnitude of

δkd (Fig. 2-1(c)). It is evident from the geometrical construction that the Bragg condi-

tion can be fulfilled at an infinite number of combinations of probe beam wavevectors

kp and probe wavelengths λp. The locus of the kp vector’s tip as a function of λp

constitutes the wavelength degeneracy curve of the volume hologram (Fig. 2-1(d)).

It should be noted that the k–sphere formulation can be applied either to slanted

(θs ̸= θf) or unslanted holograms (θs = θf). Both reflection holograms (|θs − θf| > 90◦)

and transmission holograms (|θs − θf| < 90◦) can be described by the k–sphere for-

mulation.

Typically, for holograms recorded by non–plane waves, the k–sphere formulation

is not frequently used, because the direction of the grating vector (Kg in Fig. 2-1) is
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not uniquely defined. However, ray tracing softwares handle this situation efficiently

through parallel processing. Once the local grating vector is defined where the incident

ray hits the volume hologram, the diffracted ray can be computed by the k–sphere

formulation. In our implementation described in the next section, two options are

prepared to compute grating vectors: 1) holograms recorded by either plane waves

or spherical waves and 2) holograms that have arbitrary grating vectors. In the first

case, from descriptions of angle/position of a plane wave or point source, the grating

vector is computed analytically, which is useful for a plane or spherical wave reference

hologram. In the second case, the hologram is discretized into a grid and local grating

vectors are assigned on the grid. Then, the implementation interpolates local grating

vectors based on the assigned ones. A similar approach has been used to model

non–plane wave reference holograms using coupled mode theory [29, 30].

Figure 2-2 shows various geometries of VHI systems with different volume holo-

gram configurations. These figures are produced by ZEMAXr with our volume

hologram model. Fig. 2-2(a), (b), and (c) use plane reference wave volume holo-

grams, and Fig. 2-2(d), (e), and (f) have spherical wave reference volume holograms.

Fig. 2-2(a), (b), and (d) have transmission holograms and Fig. 2-2(c), (e) and (f)

have reflection holograms. Figure 2-2(a) uses an unslanted hologram and the rest

use slanted ones. Both plane waves and spherical waves can be used for either the

reference or signal wave as shown in Fig. 2-2(d), (e), and (f).

2.1.3 Implementation of the k–sphere formulation in ZEMAXr

In the k–sphere implementation with ZEMAXr, a User Defined Surface (UDS) was

used. The UDS feature allows making users’ own optical elements; one can even

define special refraction, reflection, or diffraction laws. The UDS is represented by

a Microsoft Windowsr Dynamic Link Library (DLL), the file which contains func-

tions invoked by ZEMAXr during design and simulation. Besides ZEMAXr, other

commercial ray tracing software suites also provide customizable features; hence, this

approach can be easily integrated in other software packages with proper minor mod-

ifications.
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(a) Unslanted plane wave reference–
plane wave signal transmission VH (θf =
θs = 20◦)

(b) Slanted plane wave reference–plane wave
signal transmission VH (θf = 0◦, θs = 20◦)

(c) Plane wave reference–plane wave signal
reflection VH (θf = 0◦, θs = 240◦)

(d) Spherical wave reference–plane wave sig-
nal transmission VH (df = −60 mm, θs =
20◦)

(e) Spherical wave reference–plane wave sig-
nal reflection VH (df = −60 mm, θs = 220◦)

(f) Spherical wave reference–spherical wave
signal reflection VH (df = −60 mm, ds =
−60 mm, θs = 40◦)

Figure 2-2: Layouts of several VHI systems with different volume hologram config-
urations. Images are produced by ZEMAXr with a realistic bi–convex lens (BK7,
f = 30 mm). In (d), (e), and (f), df and ds are distances from the volume hologram
to point sources, which specify the origins of spherical wavefronts.
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Figure 2-3: Schematic of volume hologram UDS implementation in ZEMAXr, where
Kg is the local grating vectors, η0 is the local diffraction efficiency at (x, y, z), kp and
kd are the k–vectors of the incident and diffracted ray, respectively. kd is computed
by the k–sphere formulation. The intensity I of the diffracted ray is η0 × η, where η
is computed by eq. (2.10).

Figure 2-3 describes how the ZEMAXr UDS computes Bragg diffraction. First,

a volume hologram is considered as an infinitesimally thin surface. The thickness

of the hologram is taken into account when the diffraction efficiency is computed.

ZEMAXr chooses a single ray arriving on the hologram UDS. Then ZEMAXr com-

putes the local grating vector Kg and the k–vector of the incident ray by using direc-

tion cosines (l, m, n) and wavelength as

kp =


l

m

n

 2π

λp

. (2.7)

Using the geometrical relationships of the k–sphere, the diffracted ray vector kd and

the Bragg mismatch vector δkd are identified to be

kd =


kp,x + Kg,x

kp,y + Kg,y√
(2π

λp
)
2 − (kp,x + Kg,x)

2 − (kp,y + Kg,y)
2

 (2.8)
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and

δkd = kp + Kg − kd. (2.9)

The diffracted ray vector kd is normalized and the result is directly written into the

ray data structure of diffracted rays.

The decrease of diffraction efficiency as a result of Bragg mismatch is taken into

account by δkd in eq. (2.5). The normalized diffraction efficiency is equivalent to

the relative transmittance of the surface for the given ray and the corresponding

parameter of the data structure is rel surf tran, defined as

rel surf tran = η0sinc2
(Lδkd · ẑ

2π

)
, (2.10)

where η0 is the local diffraction efficiency. This feature allows the overall efficiency to

be changed locally. Manufacturers typically provide hologram efficiency maps, hence

the data can be substituted into η0(x, y). Note that kp,Kg,kd and rel surf tran

are computed for every ray being traced.

2.1.4 Examples

In this section, simulated results produced by ZEMAXr and our volume hologram

model are presented. First the previously reported experimental data [7] are repro-

duced by simulation, then new directions of using ZEMAXr in VHI system design

are addressed.

Depth selectivity

In the case of the VHI system with a plane wave reference hologram as shown in

Fig. 2-2(a) and (b), maximum Bragg diffraction is achieved when the light from a

point source is collimated and the resulting plane wave enters the volume hologram at

the Bragg matched angle. If the point source leaves the front focal plane and moves

along the optical axis, the wavefront entering the volume hologram is no longer a

plane wave due to the defocus, causing attenuated Bragg diffraction. This example
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(a) Ray-tracing in ZEMAXr (b) Analytical model and experiment (from
Ref. [7])

Figure 2-4: Longitudinal PSF of a 4–f VHI system (see text for parameters)

demonstrates how the Bragg condition can be exploited to achieve depth selective

imaging with volume holograms. We used a 4–f VHI system as shown in Fig. 2-2(b)

(focal lengths f1 = f2 = 50.2mm) with a slanted volume hologram (radius a = 3.5mm,

θf = 0◦, θs = 12◦, L = 2 mm) at the Fourier plane; the wavelength of recording and

probe beam is 532 nm.

Figure 2-4(a) shows the ray-tracing simulated plot of the total diffracted intensity

at the detector plane versus the defocus of the point source. The longitudinal PSF is

defined [7] as the normalized diffraction efficiency with respect to defocus. Figure 2-

4(b) shows an analytical simulation, overlayed with an experimental result [7] for the

comparison showing good agreement.

Note that the asymmetry of the experimental longitudinal PSF in Fig. 2-4(b) is

caused by vignetting due to the finite aperture stop. The ZEMAXr implementation

in Fig. 2-4(a) includes the vignetting effect and produced the asymmetric longitudinal

PSF.

Effect of geometrical aberrations in volumetric diffraction

An important advantage of the ray-tracing approach over analytical methods is that

aberrations can be accounted for in a straightforward fashion. In the analytical model

[7], the paraxial approximation and rotational symmetry were assumed for expressing
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Figure 2-5: Longitudinal PSFs with a paraxial and aberrated lens, where f1 =
50.2 mm, L = 2 mm, θs = 23.1◦, λf = λp = 532 nm.

the wavefront inside the volume hologram; this prohibited aberrations other than

spherical to be taken into account. Generally, one might expect that aberration

reduces the Bragg diffraction efficiency and, consequently, the depth and wavelength

selectivity of VHI systems is degraded. The ability to model aberration is essential

for making full use of analysis and optimization tools in the design process.

Figure 2-5 presents a simple example showing the effect of aberration on the

longitudinal PSF. In this case, two VHI systems with the ideal volume hologram

represented by one Kg vector are considered with two different objective lenses: 1)

an ideal thin lens (which, observing the paraxial approximation, does not introduce

any aberration in ZEMAXr), and 2) a realistic bi-convex lens made of BK7. The

effective focal lengths of the two lenses are identical at a wavelength of 532 nm.

The aberrated lens yields slightly lower Bragg diffraction than the paraxial lens;

unexpectedly, the FWHM(Full Width Half Maximum) of the longitudinal PSF is

improved by 10% after the normalization. This implies that the depth resolution (de-

fined as FWHM of the longitudinal PSF) can be engineered by managing aberrations,

where the use of aberration potentially improves the depth characteristics.

Now another simple example is presented to demonstrate the capabilities of the

ray tracing model in conjunction with the built-in analysis features of ZEMAXr. In

the paraxial 4–f system, the first lens was replaced with an aberrated lens of constant
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focal length and various q factor (or shape factor), defined by

q =
R1 + R2

R1 − R2

, (2.11)

where R1 and R2 are the radii of curvature of the front and back surfaces of the lens,

respectively [31]. We conducted a simulation where both radii of curvature of the

surfaces are changed while maintaining the focal length. It is well known that the

severity of the spherical aberration is a function of q in this case. Fig. 2-6 shows

three snapshots of the movie in Ref. [32], which shows the transformation of the first

lens through different stages of a shape factor, a resulting diffraction pattern and a

ray-fan diagram to quantify the severity of aberration.

Optimization example

As in any optical system, VHI requires careful optimization of all the optical ele-

ments in the system. In particular, the objective lens, which transforms the incoming

wavefront to be matched to the volume hologram, is important as described in the

previous example. This example demonstrates a simple optimization of a VHI system

with respect to aberration. First, for both a regular 4–f system and VHI system, the

optimization with the same merit function is run. Intuitively, the optimization would

yield different results because both systems have somewhat different characteristics.

Then we try to obtain similar results with different merit function, in which additional

constraints are required for VHI system optimization.

The default merit function was used first, which minimizes the overall optical path

length of the evaluated rays at 18 predefined points on the pupil plane. Both radii

of curvature of the aberrated lens are selected as the parameters to be optimized.

Column “DMF” (Default Merit Function) of Table 2.1 shows the result after 1, 000

iterations.

In this particular example, the point source is on the optical axis and thus spherical

aberration is dominant. With a singlet, the minimum spherical aberration is achieved
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Diffraction Image Lens Shape Ray Fan

(a) q = 1.5975

Diffraction Image Lens Shape Ray Fan

(b) q = 0.0054

Diffraction Image Lens Shape Ray Fan

(c) q = −1.4935

Figure 2-6: Diffraction image, lens shape, and ray fan for various q–factors [32]
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Parameters
4–f system VHI system

Initial DMF Initial DMF DMF+IMAE
R1 [mm] 30.5 123.892 30.5 34.416 68.815
R2 [mm] -30.5 -19.774 -30.5 -31.362 -21.910

Shape factor q [a.u.] 0 0.724 0 0.0464 0.5170
Merit function value [a.u.] 20.132 2.231 21.167 10.869 11.891
Diffraction efficiency [%] – – 3.566 23.746 33.264

Table 2.1: Optimization of the 4–f and VHI system using the default merit function.
The last column is computed by the IMAE operand in the merit function.

when the shape factor is

qmin.SA =
−2(n2 − 1)

n + 2
, (2.12)

where n is the refractive index of the lens [33]. For BK7 glass (n=1.5195 @532.8 nm),

qmin.SA is 0.7437. Note that in the regular 4–f system, the optimized shape factor

(0.7240) is very close to qmin.SA, while the shape factor of the VHI system is only

0.0464. This is because of the merit function chosen; all rays diffracted by the holo-

gram have the same weighting values with respect to the optimization goal. Note

that the optimization results in different shape factors for the VHI systems.

Instead of using the default merit function, a more practical choice is to increase

the intensity of the diffracted beams. Hence, the merit function was modified to

give less weight to the rays attenuated due to Bragg mismatch. In ZEMAXr, this

can be done by defining the merit function to maximize the IMAE operand, which

measures the integrated intensity at the detector plane. The rightmost column la-

beled “DMF+IMAE” of Table 2.1 shows how the modified merit function leads to an

improved overall diffraction efficiency of the VHI system. Note the optimized shape

factor (0.5170) with IMAE operand is much closer to qmin.SA than the value (0.0464)

computed with the default merit function only.

2.1.5 Discussion

A ray tracing approach for the simulation and optimization of VHI systems has been

described. The model for volumetric diffraction is based on the k–sphere formulation,
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whose applicability is verified by comparison with results of our previous model [8].

The ZEMAXr User Defined Surface was utilized to demonstrate how the model

can be easily integrated into current commercial ray-tracing softwares. The k–sphere

module integrated in ZEMAXr can simulate various volume holograms including

reflection, transmission, slanted, and unslanted holograms. Moreover, the module

computes the local grating vector analytically or numerically from given data, which

allows simulating not only plane or spherical wave reference holograms but also holo-

grams with arbitrary grating vectors. Using the local efficiency parameter η0, we also

account for absolute diffraction efficiency changes resulting from material properties

or index variation. Through several examples, it is demonstrated how ray-tracing

based analysis and optimization tools are used in conjunction with our model to

assist in the design process of VHI systems. The implemented model is ready to

simulate aberrations in VHI systems and it is shown that optimization tools can be

applied to mitigate the effects of aberration or even benefit from them. This approach

can be integrated with other ray tracing software packages.

2.2 k–sphere formulation in 3D space

In Fig. 2-1, kf, ks, kp, kd and Kg are in plane (x–z plane) vectors, and the k–

sphere appears as a circle. In this section, we consider an out–of–plane kp whose

y–component is not zero, extending the formulation into 3D space. The image of

the Bragg diffraction probed by out–of–plane probe beams is particularly interesting.

For spherical wave reference holograms, it has previously been observed that the

Bragg diffraction image has a curvature [7, 34, 35]. Previously reported analytical

methods [7, 8, 27] assume a paraxial approximation, which predict a straight–line

Bragg diffraction image lying along the y–axis in the case of plane wave reference

holograms. In this section, the k–sphere method is used in 3D space and the Bragg

diffraction images are verified to have a curved shape even in the case of plane wave

reference holograms. An analytical expression of the curvature is also derived.
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Figure 2-7: The k–sphere representation in 3D space, where the grating vector Kg is
constructed by ks and kf.

2.2.1 Bragg diffraction from out–of–plane probe beams

As shown in Fig. 2-7, the plane wave reference hologram is considered, which is

recorded by two mutually coherent waves whose k–vectors are ks and kf in 3D space.

Both k–vectors are on the x–z plane, where their angles to the z axis are θs and θf,

respectively. Note that θf = −θs for an unslanted hologram.

Throughout this section, the geometry shown in Fig. 2-8 is considered, where

the collector lens behind the volume hologram is perpendicular to ks and the Bragg

matched beam is focused at x′ = y′ = 0 on the image plane.

Next out–of–plane kp and kd are considered, whose y–components are non–zero.

Since the tip of the grating vector Kg should be on the k–sphere to satisfy the Bragg

condition, the only possible arrangement is that Kg forms a cylinder and the tip of

kp and kd are on the edges of the cylinder as shown in Fig. 2-9.

To find the Bragg diffraction images, two angles ϕx′ and ϕy′ are defined first, and

later they are converted into the image plane coordinates x′ and y′, where ϕx′ is the

angle between kd and the sagittal plane of the FT lens (the plane consisting of ks

and the y–axis) and ϕy′ is the angle between k′
d and the x–z plane as shown in Fig.

2-10, where kd is the Bragg matched diffracted beam and k′
d is the projection of kd

onto the sagittal plane (the y′–z′ plane) of the collector lens.
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Figure 2-8: The geometry of the collector lens and image plane (side–view from y–
axis)

Figure 2-9: The trajectory of Kg that satisfies the Bragg condition
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(a) side–view from the y-axis (b) 3–D view

Figure 2-10: The definition of ϕx′ and ϕy′ . The trajectory of kd as ky increases.

Figure 2-11: The geometrical representation of ϕx′
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Figure 2-12: The coordinate transform from ϕx′ and ϕy′ to θx′ and θy′

From the geometry shown in Fig. 2-11, we obtain the relation between ϕx′ and ϕy′

which satisfies

ϕx′ = sin−1

[
λp sin

(
θs−θf

2

)
λf cos (ϕy′)

]
−

(
θs − θf

2

)
. (2.13)

Then ϕx′ and ϕy′ are converted to θx′ and θy′ , where θx′ and θy′ are defined as the

angles with respect to the x′ and y′ axes as shown in Fig. 2-12; θx′ and θy′ directly

correspond to the x′ and y′ coordinates on the image plane. Then, we obtain

sin θx′ = cos ϕy′ sin ϕx′ , and (2.14)

sin θy′ = sin ϕy′ . (2.15)

By using eqs. (2.13)– (2.15), the Bragg diffraction pattern on the image plane is

computed. Figure 2-13 shows the trajectory of maximum intensity in the Bragg

diffraction images with volume holograms of θf = −20◦ and θf = −40◦ for different

values of θs. In the paraxial region where y′ is small, the trajectory is almost a

straight line. However, as y′ increases, the Bragg diffraction images become more

curved crescents.

Figure 2-14 shows the trajectory of the maximum intensity in the Bragg diffraction

images for various unslanted holograms. Note that even an unslanted hologram with

a constant Kg produces curved Bragg diffraction images while previous theoretical
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Figure 2-13: The trajectory of the maximum intensity of the Bragg diffraction on the
image plane for various θs and θf when λp = λf
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Figure 2-14: The trajectory of the maximum Bragg diffraction on the image plane of
unslanted holograms (θf = −θs)
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Figure 2-15: The maximum kdy of a Bragg matched diffracted beam

models predicted a straight line. There is also a cut–off in the trajectories which

implies the existence of a maximum kdy. Figure 2-15 shows the condition of the

cut–off, where kdy,max decreases as θs increases.

In the reflection hologram (θs = 90◦ and θf = −90◦), kdy,max is zero as shown in

Fig. 2-16. There is no other possible arrangement of kd except the one identical to ks;

even small deviation of kpy prohibits the Bragg diffraction and the angular selectivity

is maximized.

The crescent shape of the Bragg diffraction image is also dependent on the wave-

length of the probe beam. Different wavelengths create k–spheres of different radii as

shown in Fig. 2-17. A probe beam with longer wavelength produces a k–sphere of a

shorter radius, which produces more curved Bragg diffraction images. Similarly the

probe beam with longer wavelength requires larger θf and θs for Bragg matching, and

thus the crescent should be more curved as kpy increases.

Figure 2-18 shows the trajectory of the maximum intensity in the Bragg diffraction

images for three different wavelengths. Due to the wavelength degeneracy, the center

of the crescent is shifted as shown in Fig. 2-18(a). For comparison, the crescents are

shifted at the center in Fig. 2-18(b). Note that the longer wavelength produces more

curved trajectories as expected.
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Figure 2-16: The k–sphere for an unslanted reflection hologram

Figure 2-17: The k–spheres for three different wavelengths
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Figure 2-18: The trajectories of the maximum intensity of Bragg diffraction at the
image plane, where the wavelength of the reference beam is 532 nm. In (a), they
appeared shifted due to the wavelength degeneracy. For each comparison of the
curvatures, they are centered at the origin in (b). The hologram is an unslanted
hologram with θs = −θf = 40◦.

2.2.2 Analytical solution of the k–sphere method for the curved

Bragg diffraction images

In this section, the analytical solution of the curved Bragg diffraction images is de-

rived. The geometry is identical to Fig. 2-7. The grating vector Kg is written as

Kg = ks − kf =
2π

λ
[x̂ (sin θs − sin θf) + ẑ (cos θs − cos θf)] , (2.16)

and the wavevector of the probe beam is written as

kp =
2π

λ
(x̂ cos αx + ŷ cos αy + ẑ cos αz) , (2.17)

where αx, αy, and αz are the direction cosines of kp with respect to the x, y, and z

axes, respectively. The angles θpx and θpy are defined as

cos αx ≡ sin θpx, and (2.18)

cos αy ≡ sin θpy. (2.19)
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The wavevector components of the Bragg diffracted ray vector kd are

kdx =
2π

λ
(sin θs − sin θf + sin θpx) , (2.20)

kdy =
2π

λ
sin θpy, and (2.21)

kdz =

(
2π

λ

) [
1 − k2

dx − k2
dy

]1/2

=

(
2π

λ

) [
1 − (sin θs − sin θf + sin θpx)

2 − sin2 θpy

]1/2
. (2.22)

Using the small angle approximation,

θpy = θ′y (2.23)

θpx = θf + θ′x, (2.24)

where θ′x ≪ 1 and θ′y ≪ 1, we obtain

sin θpx = sin(θf + θ′x) ≈ sin θf + θ′x cos θf, and (2.25)

sin θpy ≈ θ′y. (2.26)

Then, kdz is approximated as

kdz =
2π

λ

[
1 −

(
sin θs − sin θf + sin θf + θ′x cos θf

)2

− θ′2y

]1/2

=
2π

λ

[
1 − sin2 θs − cos2 θfθ

′2
x − 2 sin θs cos θfθ

′
x − θ′2y

]1/2

=
2π

λ

[
cos2 θs − 2 sin θs cos θfθ

′
x −

(
cos2 θfθ

′2
x + θ′2y

)]1/2

≈ 2π

λ
cos θs

[
1 − 2

sin θs cos θf

cos2 θs

θ′x −
cos2 θfθ

′2
x + θ′2y

cos2 θs

]1/2

. (2.27)

A Taylor series expansion can be applied to further simplify kdz. A general form of

eq. (2.27) is given by

f(ϵ1, ϵ2) =
√

1 + α1ϵ1 + β1ϵ2
1 + β2ϵ2

2. (2.28)
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Using the Taylor series with respect to ϵ1 and ϵ2 expands eq. (2.28) as

f(ϵ1, ϵ2) ≃ f(0, 0) +
∂f

∂ϵ1

ϵ1 +
∂f

∂ϵ2

ϵ2 +
1

2

∂2f

∂ϵ2
1

ϵ2
1 +

1

2

∂2f

∂ϵ2
2

ϵ2
2 +

∂2f

∂ϵ1∂ϵ2

ϵ1ϵ2 + . . . , (2.29)

at ϵ1 = ϵ2 = 0, which is simplified to

f(ϵ1, ϵ2) ≃ 1 +
α1

2
ϵ1 +

4β1 − α2
1

8
ϵ2
1 +

β2

2
ϵ2
2. (2.30)

Thus, for small θ′x and θ′y, eq. (2.27) is approximately written as

kdz =
2π

λ
cos θs

[
1 − 2

sin θs cos θf

cos2 θs

θ′x −
cos2 θfθ

′2
x + θ′2y

cos2 θs

]

≃ 2π

λ
cos θs

[
1 − sin θs cos θf

cos2 θs

θ′x −
1

2

(
cos2 θf

cos2 θs

+
sin2 θs cos2 θf

cos4 θs

)
θ′2x − 1

2

1

cos2 θs

θ′2y

]
.

(2.31)

The Bragg mismatch vector is

∆kdz =

(
2π

λ

)
(cos θs − cos θf + cos αz) − kdz. (2.32)

By using the small angle approximation again, cosαz is simplified as

cos αz =
√

1 − sin2 θpx − sin2 θpy ≃
√

1 − (sin θf + θ′x cos θf)
2 − θ′2y

= cos θf

√
1 − 2 sin θf cos θf

cos2 θf

θ′x −
(

θ′2x +
1

cos2 θf

θ′2y

)
≈ cos θf

[
1 − sin θf cos θf

cos2 θf

θ′x −
1

2

(
1 +

sin2 θf

cos2 θf

)
θ′2x − 1

2

θ′2y
cos2 θf

]
(2.33)

Finally, the Bragg mismatch vector is written as

∆kdz =

(
2π

λ

) [ (
sin θs cos θf

cos θs

− sin θf

)
θ′x +

1

2

(
1

cos θs

− 1

cos θf

)
θ′2y

+
1

2

(
cos2 θf

cos θs

+
sin2 θs cos2 θf

cos3 θs

− cos θf −
sin2 θf

cos θf

)
θ′2x

]
. (2.34)
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If ∆kdz = 0, then the trajectory of θ′x and θ′y in eq. (2.34) represents the deviation

angles of the probe beam that create the strongest Bragg diffraction, whose general

form is a quadratic curve as

aθ′2x + 2bθ′x + cθ′2y = 0, (2.35)

where

a =
cos2 θf

cos θs

+
sin2 θs cos2 θf

cos3 θs

− cos θf −
sin2 θf

cos θf

=
cos2 θf

cos3 θs

− 1

cos θf

, (2.36)

b =
sin θs cos θf

cos θs

− sin θf = cos θf tan θs − sin θf, and (2.37)

c =
1

cos θs

− 1

cos θf

. (2.38)

For −π/2 < (θs, θf) < π/2, the ratio of a and c never becomes negative as

a

c
=

cos2 θf

cos3 θs

− 1

cos θf

1

cos θs

− 1

cos θf

=
cos2 θf + cos θf cos θs + cos2 θs

cos2 θs

≥ 0. (2.39)

This result indicates that the trajectory of θ′x and θ′y is indeed an ellipse. Note that

for unslanted holograms (θf = −θs), a = 0, b = 2 tan θs, and c = 0, which means that

θ′x = 0 for all θ′y. Therefore the curve becomes a straight line along the y axis in the

object space. Thus, in the case of unslanted volume hologram, the field of view, the

object points that produce strong diffraction, forms a straight line.

To examine the Bragg diffraction pattern on the image plane, we compute kdx

and kdy for given θ′x and θ′y. Since kdx and kdy are defined with respect to the x and

y axes, they should be converted in the x′ and z′ coordinates. From the geometry

shown in Fig. 2-19, we obtain the coordinate transform from (x, y) to (x′, y′) as

 x′

z′

 =

 cos θs − sin θs

sin θs cos θs

 x

z

 . (2.40)

Using eqs. (2.40) and (2.34) with ∆kdz = 0, we obtain the trajectory of the maximum
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Figure 2-19: The coordinate transform from θ′x and θ′y to θx′ and θy′ , where all angles
are defined with respect to the x, y, x′, and y′ axes.

intensity of the Bragg diffraction on the image plane, which is a distorted ellipse.

Comparisons

In Fig. 2-20, the results from the k–sphere method and the analytical solution are

plotted together for θf = −20◦ and θf = −40◦. As expected, the two results are in

good agreement.

Figure 2-21(a) shows the curved Bragg diffraction images captured in experi-

ments [36]; multiplexed holograms produced 5 diffraction images. The center curve

is the diffraction image from a plane reference hologram. The simulated Bragg diff-

raction image with identical parameters as the experiments is plotted in Fig. 2-21(b).

2.2.3 Discussion

The shape of the Bragg diffraction images are examined in detail; the general form

of the curved Bragg diffraction image is a distorted ellipse. Generally, as the angle

between the reference and signal beams increases, the Bragg diffraction image be-

comes more curved. However, this formula only holds for the plane wave reference

hologram. Again, for holograms with shift variant grating vectors, it is difficult to
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Figure 2-20: The comparison of the k–sphere method (solid line also shown in Fig. 2-
13) and the analytic solution (circles) computed from eqs. (2.35) and (2.40). The
colors of the lines represent different θs.
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Figure 2-21: The crescent shape of the Bragg diffraction image. The experimental
images are obtained from a multiplexed hologram. The curve at the center in (a) is
the Bragg diffraction image of a plane reference wave hologram. (θs = −θf = 34◦,
L=2.11 mm, NA=0.55, f2=20 mm, CCD pixel size is 16 µm, and total number of the
pixels are 512 × 512 [36].)
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Figure 2-22: Geometry of a 4–f system. A volume hologram is inserted at the Fourier
plane.

obtain analytical expressions of the Bragg diffraction images; the integrated k–sphere

method with ZEMAXr handles this situation much more efficiently.

2.3 Wave optics formulation of volume holographic

imaging systems

In this section, we revisit the scalar diffraction theory of VHI systems that are re-

ported in Ref. [26, 27]. Due to the finite extent of the longitudinal dimension of

volume holograms, the VHI systems have 3D pupils, which produces a strongly shift

variant PSF. This result will be further developed in the context of statistical optics

in Chap. 3.

2.3.1 3D pupil formulation

The geometry of the system under consideration is shown in Fig. 2-22. Two positive

lenses construct a 4–f system in which two lenses share the same focal plane [5].

The shared focal plane is the Fourier plane of the system; the volume hologram is

located at the Fourier plane. The input plane of the system is the front focal plane

of the first lens, and the output plane is the back focal plane of the second lens. The

focal lengths of the two lenses are f1 and f2. The goal of this section is to derive the

transfer function between the input field p(x, y) and output field q(x′, y′). Since the
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volume hologram at the Fourier plane has a finite longitudinal extent, the volumetric

field near the Fourier plane should be considered, which is computed as

P (x′′, y′′, z′′) = exp

{
i2π

z′′

λp

} ∫∫
p(x, y) exp

{
−i2π

xx′′ + yy′′

λpf1

}
× exp

{
−iπ

x2 + y2

λpf2
1

z′′
}

dxdy,

(2.41)

where λp is the wavelength of a probe beam. The refractive index of a volume holo-

gram is defined as

ϵ(x′′, y′′, z′′) = ϵ0 exp {iKg · r′′} s(x′′, y′′, z′′), (2.42)

where r′′ ≡ (x′′, y′′, z′′) is the Cartesian coordinate vector, ϵ0 is the baseband of refrac-

tive index modulation which is assumed to be constant in this case, Kg is a grating

vector, and s(x′′, y′′, z′′) describes physical dimensions of the volume hologram [27].

According to the 1st-order Born approximation [8], the secondary scattering is

small and these terms are ignored. Then the modulated refractive index is illuminated

by P (x′′, y′′, z′′) as

g(x′′, y′′, z′′) = ϵ(x′′, y′′, z′′)P (x′′, y′′, z′′) (2.43)

at each point (x′′, y′′, z′′) inside the volume hologram. The output field is

gb(x
′′′, y′′′, z′′′) =

∫∫∫
V

g(x′′, y′′, z′′)G(x′′′ − x′′, y′′′ − y′′, z′′′ − z′′)dx′′dy′′dz′′, (2.44)

where V indicates the region inside the volume hologram, G(x, y, z) is the Green’s

function which describes a point scatterer, and (x′′′, y′′′, z′′′) are the Cartesian coordi-

nate at an arbitrary plane behind the volume hologram. The most convenient choice

for z′′′ is z′′′ = f2 since a collector lens is located at the focal distance. The field at

the output plane, the back focal plane of the collector lens, is given by the Fourier
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transform of the field q(x′′′, y′′′, f2) as

q(x′, y′) = exp

{
iπ

x′2 + y′2

λf2

} ∫∫
exp

{
−i2π

x′x′′′ + y′y′′′

λf2

}
gb(x

′′′, y′′′, f2)dx′′′dy′′′.

(2.45)

By assuming that the paraxial approximation is valid and combining eq. (2.44) and

(2.45), eq. (2.43) becomes

q(x′, y′) =

∫∫
g(x′′, y′′, z′′) exp

{
−i2π

x′x′′ + yy′′

λpf2

}
× exp

{
−i2π

(
1 − x′2 + y′2

2f 2
2

)
z′′

λp

}
dx′′dy′′dz′′. (2.46)

Inserting eq. (2.41) into eq. (2.46), we obtain quintuple integrals. Interchanging the

integration order and performing the triple integrals of dx′′, dy′′, and dz′′, the output

field is obtained as

q(x′, y′) =

∫∫
p(x, y)dxdy

×

[∫∫∫
ϵ(x′′, y′′, z′′) exp

{
−i

2π

λp

(
x

f1

+
x′

f2

)
x′′

}
exp

{
−i

2π

λp

(
y

f1

+
y′

f2

)
y′′

}

× exp

{
−i

π

λp

(
x2 + y2

f 2
1

− x′2 + y′2

f 2
2

)
z′′

}
dx′′dy′′dz′′

]

=

∫∫
p(x, y)E

[
1

λp

(
x

f1

+
x′

f2

)
,

1

λp

(
y

f1

+
y′

f2

)
,

1

λp

(
x2 + y2

2f2
1

− x′2 + y′2

2f2
2

)]
dxdy,

(2.47)

where E(u, v, w) is the 3D spatial Fourier transform of the refractive index ϵ(x′′, y′′, z′′).

Equation (2.47) can be understood in terms of input-output relations as

q(x′, y′) =

∫∫
p(x, y)h(x′, y′; x, y)dxdy, (2.48)

where h(x′, y′; x, y) is the shift variant impulse response.

Note that E
[

1
λp

(
x
f1

+ x′

f2

)
, 1

λp

(
y
f1

+ y′

f2

)
, 1

λp

(
x2+y2

2f2
1

− x′2+y′2

2f2
2

)]
is a 2D manifold of
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Figure 2-23: Shape of the 2D manifold of E(u, v, w)

E(u, v, w), shown in Fig. 2-23. In traditional 4–f systems without volume holograms,

the field PSF is the 2D Fourier transform of the 2D pupil function [5], whereas the

PSF of the 4–f VHI system is the 2D manifold of the 3D Fourier transform of the 3D

pupil function. This additional dimensionality introduces shift variance to systems.

2.3.2 Slab–shaped holograms

In practice, a slab–shaped hologram recorded by two plane waves is often used; it is

interesting to examine in more detail. In this Section, the previously derived result is

applied to the slab–shaped hologram and the point spread function is examined. The

dimension of the hologram is a× b× L depicted in Fig. 2-22. Denoting Ef(x
′′, y′′, z′′)

and Es(x
′′, y′′, z′′) as the reference and signal wave, respectively, where

Ef(x
′′, y′′, z′′) = exp

{
−i

2π

λf

z′′
}

, and (2.49)

Es(x
′′, y′′, z′′) = exp

{
−i

2π

λf

(
θsx

′′ +

[
1 − θ2

s

2

]
z′′

)}
, (2.50)
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the 3D pupil function is computed as

ϵ(x′′, y′′, z′′) = ϵ0 exp

{
i
2π

λ

(
θsx

′′ − θ2
s

2
z′′

)}
rect

(
x′′

a

)
rect

(
y′′

b

)
rect

(
z′′

L

)
,

(2.51)

and the 3D spatial Fourier transform of the 3D pupil is obtained as

E(u, v, w) = ϵ0abLsinc

{
a

(
u − θs

λf

)}
sinc {bv} sinc

{
L

(
w +

θ2
s

2λf

)}
. (2.52)

The output field is expressed as

q(x′, y′) = ϵ0abL

∫∫
p(x, y)sinc

{
a

(
x

λpf1

+
x′

λpf2

− θs

λf

)}
sinc

{
b

λp

(
y

f1

+
y′

f2

)}
× sinc

{
L

2

(
x2 + y2

λpf 2
1

− x′2 + y′2

λpf 2
2

+
θ2

s

λf

)}
dxdy, (2.53)

where the shift variant impulse response is

h(x′, y′; x, y) = sinc

{
a

(
x

λpf1

+
x′

λpf2

− θs

λf

)}
sinc

{
b

(
y

λpf1

+
y′

λpf2

)}
× sinc

{
L

2

(
x2 + y2

λpf 2
1

− x′2 + y′2

λpf2
2

+
θ2

s

λf

)}
. (2.54)

The first two sinc functions are caused by the rectangular aperture of the volume

hologram, which indicates the Gaussian image point as in traditional imaging systems.

The third sinc function results from the longitudinal extent of the volume hologram,

which makes the system strongly shift variant.

2.3.3 Discussion

The general form of the point spread function of VHI system has been derived by using

scalar diffraction theory. Specifically, the VHI system with a slab shape hologram is

examined in detail. Since the pupil function of the VHI systems is a 3D function due

to the volume hologram, the point spread function is the 3D Fourier transform of the

pupil function, as expected. The PSF of the VHI system will be used in Chapter 3 and
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4. Although this formulation represents the system characteristics in great detail, it is

difficult to include the aberrations and to analyze volume holograms with complicated

refractive index modulations. A more detailed analysis including OTF can be found

in Ref. [27].

In terms of numerical computation of volume diffraction, this 3D Fourier transform

method is more straightforward than the one used in Ref. [7, 14], in which the volume

diffraction is computed by the Lommel function [37]. This Lommel function based

approach is slow due to numerical integrations; pre–computed lookup tables and

interpolation can speed up the computation time [38]. The 3D Fourier transform

method described in this section requires huge computational resources to compute

the 3D Fourier transform; it is implemented in Ref. [36].

2.4 Conclusion

Two frameworks of volume diffraction have been presented: the k–sphere and Fourier

optics method. In Sec. 2.1, the k–sphere method was integrated into a ray trac-

ing software, which allows the use of built–in analysis and optimization tools; this

implementation brings great advantages and versatility to the design process. The

most important feature is the capability to simulate shift variant volume holograms

efficiently. The feasibility of the implemented method was demonstrated with three

examples: calculating the longitudinal point spread function, exploiting the effect

of aberrations, and optimizing an objective lens to obtain higher Bragg diffraction

efficiency. Specifically, the effects of aberrations have not been considered in earlier

research. They may be even positive, e.g., potentially improving the depth selec-

tivity of VHI system, as demonstrated. Multiplexed holograms can be modeled with

multi–configuration features in ZEMAXr, however, the crosstalk between holograms

are not taken into account. To include absolute diffraction efficiency, more rigorous

analysis such as coupled mode theory [39] should be included.

In Sec. 2.2, the k–sphere analysis has been extended in 3D space. Considering

out–of–plane probe beams, curved Bragg diffraction images were observed. Analytical
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expression of the curved shape is presented, resulting a distorted ellipse, in general.

In Sec. 2.3, the scalar diffraction theory for volume diffractions in VHI systems

was revisited. By including the effect of the finite longitudinal extent of the volume

hologram, the general form of the field PSF was derived, which is the 3D Fourier

transform of the 3D pupil. This result revealed the shift variant nature of the VHI

system and will be further developed using statistical optics in Chap. 3 and in Wigner

space in Chap. 4.
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Chapter 3

Volume holographic imaging

systems in statistical optics

This chapter extends the analysis of VHI systems into statistical optics. By using

coherence theory, the partially coherent responses of VHI systems are derived. As an

application of the partially coherent responses, a passive depth detection method is

particularly interesting, which is a special case of multi–dimensional imaging. A new

passive depth detection method based on spatial coherence is proposed by assuming

spatially incoherent objects and binarizing the depth. Theoretical analysis and exper-

imental verification for quasi–monochromatic, spatially incoherent light are presented.

Later, the system is improved to be operated under broad illumination and its binary

depth resolving capability for featureless white uniform objects is demonstrated.

3.1 Partially coherent response of VHI

3.1.1 Coherence function response of general VHI systems

The response of the volume holographic imaging system of Fig. 2-22 to partially

coherent illumination is derived. The input plane is the front focal plane of the first

lens, and the output plane is the back focal plane of the second lens. The input and

output planes are represented by Cartesian coordinates (x, y) and (x′, y′), respectively.
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The imaging system of Fig. 2-22 is probed by a quasi–monochromatic, partially

coherent field expressed in phasor notation as

P (x, y, t) = Re
{
p(x, y)e−jωpt

}
, (3.1)

where p(x, y) is the complex amplitude and ωp is the frequency of the field. We use

lower cases for phasors and capitals for time–varying oscillatory signals. The mean

probe wavelength is λp = 2πc/ωp.

Let Q(x′, y′, t) denote the field at the output plane. The mutual coherence function

of the input and output fields are, respectively, [40]:

ΓP(x1, y1, x2, y2, τ) = ⟨P (x1, y1, t + τ)P ∗(x2, y2, t)⟩, and (3.2)

ΓQ(x′
1, y

′
1, x

′
2, y

′
2, τ) = ⟨Q(x′

1, y
′
1, t + τ)Q∗(x′

2, y
′
2, t)⟩, (3.3)

where ⟨ ⟩ indicates ensemble average and τ denotes time delay. Using the ergodic-

ity and quasi–monochromaticity assumptions, the coherence function is sufficiently

described by the mutual intensity J, defined as the mutual coherence at zero time

delay:

Jp(x1, y1, x2, y2) = ⟨p(x1, y1)p
∗(x2, y2)⟩, and (3.4)

Jq(x
′
1, y

′
1, x

′
2, y

′
2) = ⟨q(x′

1, y
′
1)q

∗(x′
2, y

′
2)⟩. (3.5)

In the special case of spatially coherent input p(x, y), the impulse response has

been derived in Sec. 2.3.1 as

q(x′, y′) =

∫∫
dxdy p(x, y)

× E
[

1

λp

(
x

f1

+
x′

f2

)
,

1

λp

(
y

f1

+
y′

f2

)
,

1

λp

(
x2 + y2

2f 2
1

− x′2 + y′2

2f 2
2

)]
, (3.6)

where E is the 3D Fourier transform of the 3D pupil function. Applying the mutual
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coherence function definition, we obtain

ΓQ(x′
1, y

′
1, x

′
2, y

′
2, τ) =

∫∫∫∫
dx1dx2dy1dy2 ΓP(x1, y1, x2, y2, τ)

× E
[

1

λp

(
x1

f1

+
x′

1

f2

)
,

1

λp

(
y1

f1

+
y′

1

f2

)
,

1

λp

(
x2

1 + y2
1

2f2
1

− x′2
1 + y′2

1

2f 2
2

)]
× E∗

[
1

λp

(
x2

f1

+
x′

2

f2

)
,

1

λp

(
y2

f1

+
y′

2

f2

)
,

1

λp

(
x2

2 + y2
2

2f 2
1

− x′2
2 + y′2

2

2f 2
2

)]
. (3.7)

By letting τ = 0, the mutual intensity response is found as

Jq(x
′
1, y

′
1, x

′
2, y

′
2) =

∫∫∫∫
dx1dx2dy1dy2 Jp(x1, y1, x2, y2)

× E
[

1

λp

(
x1

f1

+
x′

1

f2

)
,

1

λp

(
y1

f1

+
y′

1

f2

)
,

1

λp

(
x2

1 + y2
1

2f2
1

− x′2
1 + y′2

1

2f 2
2

)]
× E∗

[
1

λp

(
x2

f1

+
x′

2

f2

)
,

1

λp

(
y2

f1

+
y′

2

f2

)
,

1

λp

(
x2

2 + y2
2

2f 2
1

− x′2
2 + y′2

2

2f 2
2

)]
. (3.8)

The intensity distribution on the output plane can be found as eq. (3.14) by letting

x′
2 = x′

1 = x′ and y′
2 = y′

1 = y′:

Iq(x
′, y′) =

∫∫∫∫
dx1dx2dy1dy2 Jp(x1, y1, x2, y2)

× E
[

1

λp

(
x1

f1

+
x′

f2

)
,

1

λp

(
y1

f1

+
y′

f2

)
,

1

λp

(
x2

1 + y2
1

2f2
1

− x′2
1 + y′2

2f2
2

)]
× E∗

[
1

λp

(
x2

f1

+
x′

f2

)
,

1

λp

(
y2

f1

+
y′

f2

)
,

1

λp

(
x2

2 + y2
2

2f 2
1

− x′2 + y′2

2f 2
2

)]
. (3.9)

3.1.2 VHI system with a slab-shaped volume hologram

Next, we consider a slab–shaped hologram as in Sec. 2.3.2. The dimensions are

a × b × L and the hologram is recorded by two mutually coherent plane waves. The

refractive index modulation in the paraxial approximation is

ϵ(x′′, y′′, z′′) = ϵ0 exp

{
i
2π

λf

(
θsx

′′ − θ2
s

2
z′′

)}
rect

(
x′′

a

)
rect

(
y′′

b

)
rect

(
z′′

L

)
,

(3.10)
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where ϵ0 is a constant, and (x′′, y′′, z′′) are the Cartesian coordinates in the vicinity

of the pupil. The response for a spatially coherent input p(x, y) is given by

q(x′, y′) = ϵ0abL

∫∫
dxdy p(x, y)sinc

{
a

(
x

λpf1

+
x′

λpf2

− θs

λf

)}
× sinc

{
b

λp

(
y

f1

+
y′

f2

)}
sinc

{
L

2

(
x2 + y2

λpf2
1

− x′2 + y′2

λpf2
2

+
θ2
s

λf

)}
. (3.11)

Using the same procedure presented in Sec. 3.1.1, the transfer function of mutual

coherence, mutual intensity, and intensity are obtained as follows:

ΓQ(x′
1, y

′
1, x

′
2, y

′
2, τ) = ϵ2

0(abL)2

∫∫∫∫
dx1dx2dy1dy2 ΓP(x1, y1, x2, y2, τ)

× sinc

{
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)}
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2
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)}
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)}
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(3.12)

Jq(x
′
1, y

′
1, x

′
2, y

′
2) = ϵ2

0(abL)2

∫∫∫∫
dx1dx2dy1dy2 Jp(x1, y1, x2, y2)

× sinc

{
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,

(3.13)
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and

Iq(x
′, y′) = ϵ2

0(abL)2

∫∫∫∫
dx1dx2dy1dy2 Jp(x1, y1, x2, y2)

× sinc

{
a

(
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λpf1

+
x′
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)}
sinc
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)}
× sinc
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+
y′
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× sinc
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L

2

(
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1
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− x′2 + y′2
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+
θ2
s
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sinc

{
L

2

(
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2 + y2
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λpf2
1

− x′2 + y′2

λpf2
2

+
θ2
s

λf

)}
.

(3.14)

In eqs. (3.13) and (3.14), the first four sinc functions correspond to the standard lateral

point spread function of a finite–aperture hologram [5], whereas the last two sinc

functions express the Bragg selectivity of the volume grating. The spatial coherence

at the output plane can be computed with this formulation; i.e., for a given degree

of coherence at the input plane, we can compute the spatial coherence at the output

plane.

3.2 Passive binary depth detection system

As an application of the partially coherent response of the VHI system, passive depth

imaging is particularly interesting, which is a special case of multi–dimensional imag-

ing. By exploiting the volume holographic pupils and binarizing the imaging scenario,

a passive binary depth detection system is implemented.

3.2.1 Introduction

Depth ranging is one of the primary applications in optical metrology, and it can be

categorized as active or passive depending on the requirement of specifically mod-

ulated illumination [41]. In active methods, objects are illuminated by spatially or

temporally modulated light, and depth information is obtained from decoding the

reflected or scattered light. LIDAR [42], confocal microscopy [43], rainbow volume

holographic profilometry [24], photometric stereo [44], and 3D photography using

shadows [45] are representative examples of active methods. Active methods can eas-
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ily achieve high resolution in depth, hence they are extensively being used in task

based imaging such as product inspection; however, active imaging is less desirable

in adversarial imaging scenarios (e.g., military reconnaissance).

Instead of using specific illumination, passive methods rely on changes of object

features as a function of depth with respect to a known depth–dependent imaging

kernel. Stereo vision or camera array systems use additional cameras to obtain dif-

ferent perspectives [46, 47]. Depth from focus/defocus monitors variations of blur

in sharp edges [48, 49]. An alternative elegant approach is to use a phase mask im-

plementing a depth–dependent OTF or PSF with a priori–known information about

the target [50]. For passive methods in general, unless enough change of the object

features occurs with depth, the detection is not guaranteed to have accurate results.

We have worked on volume holographic imaging during the past few years; a

new multi–dimensional imaging technique which exploits angular/wavelength selec-

tivity of volume holograms to achieve depth discrimination [7, 15–17, 23, 24, 51].

All our prior works were based on active methods detecting irradiance at the output

plane using a standard array of photodetectors (e.g., a CCD camera). It was shown

recently that extending the volume holographic imaging to passive (spatially incoher-

ent illumination) provides no depth discrimination capability if classical detection is

used [38].

In this section, a new method is implemented to resolve the limitation of passive

depth measurements by cascading a spatial coherence measurement system after the

volume holographic imager. Spatial coherence is measured by the cross–correlation

of a random light field and it changes with light propagation distance and source

size. Among many applications of spatial coherence to imaging, a notable one is

coherence imaging [52–56], which is appropriate for passive 3D imaging. The idea

is based on the van Cittert–Zernike theorem [57, 58], which states that the spatial

coherence function is a 2D spatial Fourier transform of the intensity distribution of a

quasi–monochromatic incoherent source. This is generalized to 3D by incorporating

the quadratic phase function due to Fresnel propagation in the proof of the van

Cittert–Zernike theorem [53, 55]. Therefore, measuring the 3D spatial coherence
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Figure 3-1: The schematic of the experimental setup. IR: variable iris, VH: volume
hologram, L1,L2: lenses, M: mirror, RP: roof–prism, BS: beam splitter, PZT: piezo
stage.

function allows purely passive 3D imaging. However, the applicability of this method

in practice is limited due to the small fringe visibility of interference in coherence

measurements [59].

To overcome the fringe visibility limitation, we propose to binarize the problem,

i.e., detect whether the object is within the depth of field of the imaging system or

not. Even though we sacrifice depth resolution with this approach, discrimination of

two depths is still very useful for a variety of applications such as replacing blue screen

matting [60–64]. By repeating a sequence of similar binary measurements, each with

a different focal distance, one can in principle recover finer depth resolution, albeit

with an increased acquisition time.

3.2.2 Passive Depth Detection by Spatial Coherence

In this section, it is explained how to discriminate two objects at different depths

based on the previously derived coherence response of VHI systems. Interferometric

measurement is necessary to utilize coherence nature of light and partially coherent

response. To implement it, we cascaded a wavefront folding interferometer [56] to a

VHI telescope as shown in Fig. 3-1. The volume holographic imager consists of an

objective, collector and volume hologram. Bragg diffracted light is then directed to a
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wavefront folding interferometer, which has a planar mirror and roof prism to generate

mirror–flip shear [56]. The shear is parallel to the Bragg selectivity direction. A piezo

actuator is installed on the planar mirror to modulate the optical path difference.

The system of Fig. 3-1 measures the mutual intensity of the output field. Jq is an

indirect measurement of the desired quantity Jp, the mutual intensity of the input

field, which carries depth information [53, 55]. According to eq. (3.13), the relation-

ship between Jq and Jp is a convolution with narrowed sinc kernels, whose width is

determined by the hologram dimensions a, b, and L. Despite the blur introduced to

the measurement by the convolution, binary depth detection for extended objects is

still possible based on the measurement of Jp.

Since the imaging scenario is binarized, there are only two depths. The foreground

(FG) object is assumed to be located at the input plane, i.e., the focal plane of the

objective lens (or near the focal plane, as long as it is within the depth of field).

The background (BG) object is located at a distance δz away from the input plane,

assumed to be larger than the depth of field, away from the input plane. We assume

that both objects radiate quasi–monochromatic and spatially incoherent fields and

their intensity I0 is uniform.

For the FG object, by the definition of the incoherent source [40], the mutual

intensity is written as

Jp,FG(x1, y1, x2, y2) = I0δ(∆x, ∆y), (3.15)

where ∆x = x2 − x1 and ∆y = y2 − y1.

For the BG object, even though the object itself is spatially incoherent, the field

at the input plane becomes partially coherent due to the propagation by δz according

to the van Cittert–Zernike theorem [40]. Hence, the mutual intensity at the input
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plane is computed as

Jp,BG(x1, y1; x2, y2) =
1

(λpδz)
2 exp

{
−j

2π

λpδz

(
x2

2 + y2
2 − x2

1 − y2
1

)}
×

∫∫
Is(ξ, η) exp

{
−j

2π

λpδz

(∆xξ + ∆yη)

}
dξdη, (3.16)

where Is is the intensity distribution of the BG object, and (ξ, η) are the spatial

coordinates of the BG object. As eq. (3.16) indicates, at the input plane, the degree

of coherence of the light from the BG object depends on the size of the BG object

and the propagation distance δz. As the propagation distance increases, the degree

of coherence is improved. Even though the infinitely extended source produces a

completely incoherent field in principle, the effective maximum size of the BG object

is determined by the NA of the system. Moreover, spatial frequencies outside the

Bragg angular acceptance of the volume hologram are not diffracted and thus they

do not contribute to the degree of coherence at the output plane. In practice, both

the FG and BG objects may have non–uniform intensity distributions. In the volume

holographic imaging system with quasi–monochromatic light, only a slit–like portion

of the FG object is imaged due the Bragg selectivity [7]. The slit is oriented along the

x–dimension, the same as the angular detuning of the roof prism in the interferometer

(see Fig. 3-1). Thus, the intensity of the FG object can be considered locally uniform.

However, for the BG object, a much larger area is imaged and if the intensity were

non–uniform, it would increase the degree of coherence even further. Therefore, it

is always true that the light arriving at the input plane from the BG object is more

coherent than the FG object. The difference between the degree of coherence of the

FG and BG fields is mapped to the degree of coherence at the output plane according

to eq. (3.13). It follows that measuring spatial coherence at the output plane allows

us to decide whether the object is at the FG or BG plane.

We now proceed to describe the operation of the cascaded wavefront folding inter-

ferometer in Fig. 3-1. The light diffracted by the volume holographic pupil is divided

by the beam splitter. One of the split beams is reflected by the mirror and the other
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one is reflected by the roof–prism. The reflectivities of the mirror and the prism are

assumed to be identical. If the output field coming from the mirror is denoted by

q(x′, y′) as in eq. (3.11), then the field returned by the prism is q(−x′, y′) due to the

spatial inversion (shear) by the prism. Hence, the intensity of the interference at the

CCD is written as

I(x′, y′) = |q(x′, y′)|2 + |q(−x′, y′)|2 + 2Re {q∗(x′, y′)q(−x′, y′)}

= |q(x′, y′)|2 + |q(−x′, y′)|2 + 2|Jq(x
′, y′,−x′, y′)| cos

(
2π

λp

d + ϕ

)
, (3.17)

where d is the optical path difference generated by the PZT actuator, and ϕ is the

unknown phase of Jq. The fringe visibility is defined as

V(x′, y′) =
Imax(x

′, y′) − Imin(x
′, y′)

Imax(x′, y′) + Imin(x′, y′)
, (3.18)

where Imax and Imin are the maximum and minimum intensities, respectively. The

complex coherence factor, or normalized mutual intensity, is

µ(x′, y′,−x′, y′) =
Jq(x

′, y′,−x′, y′)

|q(x′, y′)||q(−x′, y′)|
. (3.19)

The magnitude of the complex coherence factor is equal to the fringe visibility [40].

Note that a CCD pixel at x′ measures the spatial coherence between x′ and −x′,

which corresponds to a shear ∆x′ = x′ − (−x′). As the CCD pixel distance away

from the shearing center x′ = f2θs increases, the visibility generally decreases. Near

∆x′ = 0, the field coherence is maximal, and larger intensity variations in intensity

are observed as the PZT is dithered.

Figure 3-2 shows a raw image on the CCD camera (FastQcam 12–bit camera,

Qcamera, Canada) and cross sections of the interference fringes along x′ obtained

experimentally for different longitudinal positions of the PZT. A slit–like image, ap-

proximately 70 pixels wide, is clearly observable in Fig. 3-2. This is due to the angular

Bragg selectivity of the hologram. The slit is mostly invariant to PZT motion, except

near the center where the field coherence is maximal, as noted earlier in the discus-
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Figure 3-2: Exemplary images from experiments. In (a), a raw image is plotted. In
(b) 30 cross sections of the interference fringes along the x′–axis obtained from thirty
corresponding longitudinal positions of the PZT actuator are plotted. Since the center
part of the fringe is more spatially coherent, the interference fringes oscillate near the
center but the oscillations die out away from the center where the field becomes
incoherent.

sion of the result eq. (3.17). Ideally, the visibility at ∆x′ = 0 should be 1. However,

because of the finite size of the CCD pixel [65, 66] and other practical reasons that

will be described later, the visibility in experiments can be smaller than 1.

Next, the visibility of the interference fringes produced from the FG and BG

objects is simulated. By using eqs. (3.15) and (3.16), eq. (3.13) was numerically

integrated in MATLABr and the visibility was computed, including the effect of

vignetting of the system, finite CCD pixel size, and finite aperture size. Figure 3-3

shows the simulated visibility with various aperture sizes for a given CCD pixel size.

The aperture dependence is explained because at the two extremes of vanishingly

small and infinitely large aperture incoming fields become perfectly coherent and in-

coherent, respectively and, hence, cannot be discriminated; depth discrimination can

be achieved only with partially coherent fields produced by an intermediate aperture.

At the 25 mm aperture size and δz = 180 mm, the visibility of the FG object is

0.4507 while the visibility of the BG object is 0.5221. The difference in visibility is

0.0714.

The dependence on pixel size is explained with the help of Fig. 3-4. A very small
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Figure 3-3: Simulation results of visibility and aperture size for the FG object (blue
solid line) and the BG object (green dashed line), where δz = 150 mm, λ = 532 nm,
the CCD pixel size is 5 × 5 µm, L=1.5 mm, θs = 30◦, and f1 = f2 = 200 mm. (Top
right) Zoom–in at small apertures.
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Figure 3-4: Zoom–in of Fig. 3-2. Discrimination ability is lost with pixels which are
too small or too large.

pixel would sample only the coherent part of the field near x′ = 0; on the other hand,

the measurement with a very large pixel would be overwhelmed by the incoherent

part of the field. An intermediate pixel size maximizes discrimination ability between

FG and BG fields. The optimal CCD pixel size turns out to be approximately the

lateral PSF of the imaging system preceding the interferometer, i.e., λf2/a, as one

might have intuitively expected.

To verify the simulation result in our experiment, a rotational diffuser is placed at

either the FG or the BG plane and illuminated by an expanded laser beam (a doubled

Nd:YAG laser, λ̄ = 532 nm). The fringe visibility for the two cases are compared, as

shown in Fig. 3-5.

For the smallest aperture, the visibility is slightly larger than 0.8, while it is close

to 1 in the simulations. The deviations between experiments and simulations are

explained as follows: 1) Non–perfect optical surfaces of the beam splitter, planar

mirror and prism, especially the vertex of the prism, generate wavefront distortion

and degrade the visibility. 2) In practice, the reflectivity of the mirror and the prism

are not identical. 3) Aberrations from the collector lens also result in lower visibility.

These effects become more critical as the aperture increases.

In Fig. 3-5, the red dotted line is the experimental result with the laser only and

73



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

aperture [mm]

V
is

ib
ili

ty
 [a

.u
.]

 

 

FG(exp)
BG(exp)
Laser(exp)

Figure 3-5: Experimental results of visibility and aperture size for the FG (blue solid
line) and BG object (green dashed line), where δz = 180 mm, λ = 532 nm, CCD pixel
size of 5 × 5 µm. The red dotted line is the result with the laser only without using
the rotational diffuser. Other parameters are identical to the simulation in Fig. 3-3.

without the rotating diffuser. This experiment indicates the maximum achievable

visibility in the experimental setup, which is also approximately 0.8. Considering this

offset, the experimental results are in good agreement with the simulations in Fig. 3-3.

At the 25 mm aperture size, the visibility of the FG object is 0.2801 ± 0.0304 (mean

± standard deviation), while the visibility of the BG object is 0.3478 ± 0.0244. The

visibility difference is 0.0677, while the relative difference is 19.47% at δz = 180 mm.

To decide whether the imaged object is at the FG or BG plane according to our

hypothesis, Bayesian estimation is performed [67], which minimizes the conditional

decision error. Fig. 3-6 shows the histogram of the visibility of the experimental

result at 25 mm aperture size in Fig. 3-5. The histograms plotted in Fig. 3-6 are

assumed to be Gaussian probability density functions, and the optimum threshold

VTH is computed. It is found to be 0.3175 with a false decision probability of 18%.

Next two objects are placed at the FG and BG planes simultaneously. The two

objects were identical sheets of white, diffuse paper. A white light source with a

band–pass filter (the center wavelength: 532 nm and bandwidth: 10 nm) was used to
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Figure 3-6: The histogram of the experimental result for the 25 mm aperture size
of Fig. 3-5. The FG object (blue line with circles) and the BG object (green line
with squares) are plotted together. The red dotted line indicates the best visibility
threshold computed by Bayesian estimation.

avoid laser speckle. Due to the spatial–inversion of the roof–prism, the light reflected

by the mirror and the roof–prism disperse in opposite directions at the image plane.

The resulting spectral blur decreases the difference in visibility between the FG and

BG, as expected.

Figure 3-7 shows the result of the experiment with both FG and BG objects.

Figure 3-7(a) shows the raw image of the two objects. The upper part is the BG

object and the bottom part is the FG object. The slit image is wider than the one

with the laser due to the bandwidth of the light source. Since the incident intensities

on both objects are controlled to be identical and uniform, the FG and BG object

cannot be discriminated based on this image. Subsequently, the fringe visibility at

∆x′ = 0 along the y′–axis, which is marked by the red arrow, was measured and the

intensity and the visibility are plotted in Fig. 3-7(b). The measured visibilities of

the FG and BG object are 0.0899 ± 0.0084 and 0.1219 ± 0.0101, respectively. The

visibility difference is 0.032 and the relative difference is about 26%.
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Figure 3-7: Experiment with the FG and BG object simultaneously present, where
f1 = f2 = 200 mm, L = 1 mm, δz = 200 mm, and θs = 30◦. (a) Raw image on the
CCD camera (left) and zoom to the slit–like visible region (right). The red arrow
indicates the location where fringe visibility is maximum. (b) Intensity profile (blue
dashed line, left–axis) and visibility (green solid line, right–axis) of the two objects.
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3.2.3 Discussion

While the proposed system is able to discriminate the FG and BG object as long

as they are both quasi–monochromatic and spatially incoherent, it is limited by the

fringe visibility change and narrow field of view.

For quasi–monochromatic light, the field of view is easily extended by mechanical

scanning or by using multiplexed holograms with multiple interferometers. For broad-

band light, the wavelength degeneracy also can extend the field of view without any

scanning or loss of light as in the rainbow volume holographic holographic profilom-

etry [24], where unused portions of spectrum are utilized. Equivalently, the volume

hologram imposes a dispersive virtual slit at the input plane and the wavelength

which is Bragg matched varies as the lateral coordinate.

However, as the experiment in Fig. 3-7 shows, the wide spectral bandwidth of

the illumination reduces the fringe visibility due to spectral blur, which is described

in Fig. 3-8. At the input plane, the different wavelengths from different positions

are Bragg matched by the volume hologram. These are traced separately through

the mirror and prism path. At the output plane, the dispersed light is imaged; the

dispersion directions are opposite with each other. No interference could be observed

except near ∆x = 0, where 532 nm light, corresponding to the optical axis, is located.

Even near ∆x = 0, the continuous spectrum smears, hence the visibility is severely

reduced. This spectral blur needs to be compensated to extend the field of view by

exploiting the wavelength degeneracy, as we show in the next section.

3.3 Binary depth detection with broadband illu-

mination

In this section, the system configuration is modified to increase the field of view

and compensate the spectral blur simultaneously. The wavelength degeneracy of the

volume hologram is fully utilized to separate light spatially and spectrally.
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(a) Reflection from the mirror

(b) Reflection from the prims

Figure 3-8: Illustration of the spectral blur. The dispersion directions of the split
paths are opposite with each other at the image plane.
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3.3.1 Spectral degree of coherence

The complex coherence factor, which is the normalized mutual intensity, is used

to describe the spatial coherence of quasi–monochromatic light in the simulations

and experiments. Now the concept of the spatial coherence should be extended in

broadband light, in which the spatial coherence at different frequencies is introduced.

Let V (r, t) denote the analytic signal, representing the fluctuating optical field at the

space–time point (r, t) [68]. Then V (r, t) denotes a Fourier integral with respect to

time:

V (r, t) =

∫ ∞

0

Ṽ (r, ν)e−i2πνtdν. (3.20)

The cross spectral density W (r1, r2, ν) of the light disturbances at points r1 and r2

at frequency ν is defined by

⟨Ṽ ∗(r1, ν)Ṽ (r2, ν
′)⟩ = W (r1, r2, ν)δ(ν − ν ′), (3.21)

where ⟨ ⟩ indicates ensemble average. Equation (3.21) indicates that the cross spectral

density is a measure of the correlation between the spectral amplitudes of any partic-

ular frequency component of the light vibrations at the points r1 and r2. According

to the generalized Wiener–Khintchine theorem [68], the mutual coherence and the

cross spectral density are Fourier transform pairs:

Γ(r1, r2, τ) =

∫ ∞

0

W (r1, r2, ν)e−i2πντdν, (3.22)

W (r1, r2, ν) =

∫ ∞

−∞
Γ(r1, r2, τ)ei2πντdτ. (3.23)

In the special case when the two points r1 and r2 coincide, the cross spectral density

becomes a function of the location of only one point and of the frequency, which

represents the spectral density (the power spectrum) of the light:

S(r, ν) = W (r, r, ν). (3.24)
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By using eqs. (3.22) and (3.23), we have

Γ(r, r, τ) =

∫ ∞

0

S(r, ν)e−i2πντdν, (3.25)

S(r, ν) =

∫ ∞

−∞
Γ(r, r, τ)ei2πντdτ. (3.26)

It is useful to normalize the cross spectral density by setting

µ(r1, r2, ν) =
W (r1, r2, ν)

[W (r1, r1, ν)]1/2 [W (r2, r2, ν)]1/2
. (3.27)

Similar to the case of γ(r1, r2, τ), we have

0 ≤ |µ(r1, r2, ν)| ≤ 1 (3.28)

for all values of the arguments r1, r2, and ν. We refer to µ(r1, r2, ν) as the spectral

degree of coherence at frequency ν of the light at the point r1 and r2 [68]. It is

sometimes also referred to as the complex degree of spatial (or spectral) coherence at

frequency ν [69–72].

3.3.2 Modified system configuration

As described in Sec. 3.2.3, multi–color operation is limited by field of view and spectral

blur. In this section, the wavelength degeneracy of the volume hologram is exploited

to solve these problems simultaneously.

First the field of view is examined; the lateral field of view is limited by the

Bragg condition, which applies constraints to wavelengths and lateral positions (cor-

responding angle). For a given x coordinate, the Bragg matched wavelength is given

by

λp = λf
sin (θs/2 − x/f1)

sin(θs/2)
. (3.29)

The lateral coordinates are encoded in wavelengths; decoding wavelength information

from the cross spectral density allows us to recover the lateral information. This is a

unique property of volume holograms. Note that the field of view is limited by the
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Figure 3-9: New system configuration for operation under broadband illumination.
A diffraction grating just behind the volume hologram compensates the dispersion so
that different wavelengths of light propagate in parallel. Scanning the OPD and taking
the Fourier transform decodes the mixed spectral information which corresponds to
the lateral information.

spectral bandwidth of the light. For example, if an extended object is illuminated by

a narrow bandwidth, then the field of view is still limited.

To avoid spectral blur in the interferometer, all light should be normally incident

on the interferometer regardless of wavelength. One solution is compensating the

dispersion caused by the volume hologram; using a diffraction grating of the exactly

opposite dispersion can cancel the dispersion induced by the volume hologram. Even

though a portion of light is lost, a diffraction grating is inserted behind the volume

hologram as shown in Fig. 3-9. The dispersion of the grating is easy to control by

adjusting the grating pitch.

In this new system configuration, the dispersed Bragg diffraction from the volume

hologram is re–diffracted by the grating, collimating the 1st order diffraction over the

entire spectral bandwidth. The wavefront folding interferometer works identically

as in the previous setup (Fig. 3-1), and the light is focused on the image plane.

Equivalently, the function of the grating is to control the width of the rainbow shown

in Fig. 3-8(a) and (b), as the wavefront folding interferometer still produces the

desired flipping for all wavelengths. If the grating is perfectly matched with the
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(a) quasi–monochromatic setup (b) broadband setup

Figure 3-10: Comparison of sampled spectral density. W (∆x, x̂, λ) is plotted instead
of W (x1, x2, ν) which is measured in each system. Note that ∆x = x1 − x2 and
x̂ = (x1 + x2)/2.

volume hologram, the rainbows are shrunk down to the focus and all wavelengths

are mixed. Note that, even though the recombined light at the focal line appears

to be white, its color components originate from different locations at the object

plane. The mutual coherence measured in the interferometer with optical path delay

modulation gives the cross spectral density after a Fourier transform operation. The

cross–spectral measurement is commonly used in Fourier spectroscopy [73].

In terms of the cross spectral density, the two systems are compared in Fig. 3-10:

the one without the grating (Fig. 3-1) and the one with the grating (Fig. 3-9). As

shown in Fig. 3-10(a), the quasi–monochromatic setup (the one without the grating),

measures the spatial coherence only near x̂ = 0, ∆x = 0, and λ = 532 nm. The

broadband setup (with the grating) measures along a strip, which is confined near

∆x = 0 but extended along λ and x̂ as shown in Fig. 3-10(b). Again, the depth

information of a scene is encoded in the ∆x dimension of the cross spectral density.

The lateral spatial information is carried in λ dimension, coupled with x̂.

Next the specification of a diffraction grating that perfectly compensated the

dispersion of the volume hologram is calculated. A diffraction grating is inserted

behind the volume hologram as shown in Fig. 3-11. The dispersion of the volume
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Figure 3-11: Geometry for perfect dispersion compensation between a volume holo-
gram and diffraction grating, where ΛV H and ΛGT are the period of the volume
hologram and the grating, respectively. θ is diffraction angle of the volume hologram,
and α and β are the incident and diffraction angle to the grating. ϕ denotes the
orientation difference of the volume hologram and the grating. Note that β should
be identical over wavelength.

hologram and grating are given by [74]

Volume hologram → λ = 2 (ΛV H) sin(α − ϕ), and (3.30)

Grating → λ = (ΛGT ) (sin α + sin β) . (3.31)

Note that the diffraction angle θ of the volume hologram is replaced by α−ϕ due to the

geometry. To compensate for dispersion, the diffraction angle β should be constant

regardless of λ and α. One obvious solution is ϕ = 0, β = 0, and 2ΛV H = ΛGT , which

suggests that the grating and volume hologram are oriented parallel to each other

and the direction of the diffracted light is perpendicular to the grating. If the two

conditions are satisfied, for the volume hologram used in our experiments, the desired

grating period is 1356 nm (equivalent to 737.46 grooves/mm).

As proposed, the wavelength degeneracy allows us to extend the field of view as

well as to reduce the spectral blur. However, there are several limitations: 1) The

spectral bandwidth must be broad enough to fill the entire field of view. 2) The

spectral bandwidth of the FG and BG objects are assumed to be identical. If the two
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Figure 3-12: The volume holographic interferometer with a grating and telescope for
dispersion matching; f1 = 200 mm, f2 = 30 mm, f3 = 38 mm, f4 = 150 mm, and
ΛGT = 1/600 mm.

objects at FG and BG have different spectral bandwidths, then the spectral band-

widths need be known. In the experiments described in Sec. 3.3.3, both the FG and

BG objects are white and illuminated by two identical broadband sources; therefore,

the field of view is maximized and the two objects are discriminated longitudinally

as well as laterally.

3.3.3 Experiments

Although the diffraction grating whose dispersion is identically matched with the

available volume hologram can be fabricated with conventional manufacturing tech-

niques, an off the shelf diffraction grating (GT50–06V, pitch: 1/600 mm, Thorlab,

NJ) was used for the proof of concept experiment. The actual experimental system is

shown in Fig. 3-12. To match the dispersion, two additional lenses (L2, L3 in Fig. 3-

12) were used. The third lens (L3) is a zoom lens (H6Z0812, Computar, Japan),

whose focal length is adjustable to ensure the best dispersion matching. The disper-
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Figure 3-13: Dispersion errors and lateral focus shift on the image plane. In (a), the
blue line (left–axis) is the incident angle to the grating and the red circles (left–axis)
are the dispersion of the grating over wavelength. The dispersion error (the difference
between the incident angle and actual dispersion of the grating) is plotted with a
dashed green line (right–axis). In (b), the lateral focus shift due to the dispersion
error is plotted.

sion error is shown in Fig. 3-13. In Fig. 3-13(a), three lines are plotted: the incident

angle to the grating from the third lens (L3), the desired incident angle whose diffrac-

tion angle is zero, and the difference between them. Note that the small error (green

dashed line in Fig 3-13(a) indicates that the incident angle onto the interferometer

varies slightly over wavelength, which produces a small lateral focal shift as shown in

Fig. 3-13(b). Note that dispersion matching is improved by inserting the grating and

two lenses. To avoid the material dispersion of the roof prism, we replaced it with

a roof mirror (RM–10–05, PLX, NY). We also substituted the open–loop PZT stage

with a feed–back controlled PZT (NF5DP20S and BPC201, Thorlab, NJ) to modu-

late the optical path difference precisely. During the measurement, the total scanned

optical path length was 40 µm in 50 nm increments, corresponding to a wavelength

resolution of 9.4 nm at 532 nm.

In the first experiment, depth discrimination was demonstrated as follows: two

flat sheets of diffuse white paper were placed at FG and BG planes simultaneously.

With two identical white light sources (250W Tungsten Quartz Lamp, CUDA, FL),

the intensities on both objects were controlled to be as equal as possible. Figure 3-14

shows the result when the FG object is located in the upper region of the field of
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(c) cross spectral density

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

vertical CCD [pixel]

cr
os

s−
sp

ec
tr

al
 d

en
si

ty
 [a

.u
.]

 

 

λ=539 nm

(d) cross–section of the cross spectral density

Figure 3-14: The experimental result when the FG object is located in the upper
region and the BG object is in the lower region of the field of view.

view. As expected, the lower region, which corresponds to the BG object, yields

higher cross spectral density values while the intensity on both objects are similar,

shown in Fig. 3-14(b). The intensity profile is taken from the first frame; the optical

path difference is far longer than the coherence length of the source. In the next

experiment, the vertical position of the BG object was switched, i.e., the BG object

was located in the lower region of the field of view, and the cross spectral density

was measured again. As Fig. 3-15 shows, the cross spectral density is also switched

vertically.

Next lateral discrimination capability was demonstrated. The situation was simi-

lar to the previous experiments except the FG object partially covers the lower region

of the field of view as well as entire upper region of the field of view. The cross spectral
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Figure 3-15: The experimental result when the FG object is located in the lower
region and the BG object is in the upper region of the field of view.
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(d) BG lamp on

Figure 3-16: The measured cross spectral density when the two objects are overlapped
laterally in the lower region of the field of view.

density measured in this situation is shown in Fig. 3-16. The lamp that illuminates

the BG object was turned off, and the measured cross spectral density is shown in

Fig. 3-16(c); an edge is shown clearly. The lamp was turned on and the cross spectral

density was measured again, shown in Fig. 3-16(d). The same experiment was re-

peated with the flipped FG object; the result is shown in Fig. 3-18. As demonstrated,

the cross spectral density encodes the defocus as well as lateral information.

Finally, a simple experiment was demonstrated to show the difference of regular

intensity images and cross spectral density images measured by the proposed method.

As shown in Fig. 3-18(a), one sheet of a white, diffuse paper was placed at the BG

plane and another sheet of identical paper at the FG plane. The FG object had a

small rectangular window, which the BG object can be seen through the window. Two
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(d) BG lamp on

Figure 3-17: The measured cross spectral density when the two objects are overlapped
laterally in the upper region of the field of view
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(a) Actual scene
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(b) Vertical profile of intensity (blue,
left–axis) in (f) and cross spectral den-
sity (green, right–axis) in (d)
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(c) Cross–spectral density image with
the BG lamp off
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(d) Cross–spectral density image with
the BG lamp on

(e) regular intensity image with the BG
lamp off

(f) Regular intensity image with the BG
lamp on

Figure 3-18: Comparisons of regular intensity images and cross spectral density im-
ages. Note they have different magnifications.
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white light sources were used to illuminate the two objects. Figure 3-18(c) and (e)

are images when the BG lamp was off, and Fig. 3-18(d) and (f) are images when the

BG lamp was on. The profiles of the regular intensity image and the cross spectral

density image are plotted in Fig. 3-18(b). In the regular image, shown in Fig. 3-

18(f), there is no sense of depth without prior knowledge of the spatial frequency of

the paper texture. In the cross spectral density image, the BG region at the center

yields slightly higher values in the cross spectral density image, shown in Fig. 3-18(d)

although the intensity is slightly lower in the central region as shown in Fig. 3-18(b).

3.4 Conclusion and Discussion

For VHI systems, the partially coherent response has been formulated by using statis-

tical optics. For a specific case, the VHI system with a slab–shape volume hologram

is examined.

Then, a new passive depth detection method based on spatial coherence measure-

ments was proposed. The system cascades a wavefront folding interferometer with

a VHI system; the volume hologram separates light spatially and spectrally and the

cross spectral density is measured by interferometric measurements. Assuming spa-

tially incoherent objects, a spatial coherence change of the FG and BG object was

detected and binary depth detection for flat featureless objects was demonstrated.

To extend the field of view and to improve the depth resolving capability by reduc-

ing spectral blur, the wavelength degeneracy of volume holograms was exploited. A

diffraction grating and two lenses were inserted to compensate the dispersion caused

by the volume hologram and the cross spectral density measurements were imple-

mented. The new system operates under broadband illumination, and not only lon-

gitudinal but also lateral discrimination abilities were demonstrated.

The role of the volume hologram in this approach is understood as follows: 1)

The volume hologram separates the light spectrally and spatially not only to improve

the fringe visibility but also to encode the lateral spatial information. 2) The lateral

point spread function becomes narrower, which yields better contrast.
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One principal difference between the presented method and prior coherence imag-

ing approaches is that by binarizing the problem the number of required measure-

ments has been reduced. That is, we explicitly shy away from measuring the entire

coherence function; rather we measure as few of its values as possible to obtain an

answer to the binary detection problem.

The second major difference is the use of a volume holographic filter at the pupil

plane of a telescope which precedes the wavefront folding interferometer. The entire

concept appears to go against one of the motivations which has often been cited

for coherence imaging, namely, lensless image formation; in return we obtain other

benefits. The volume holographic pupil effectively acts as a dispersive slit [7] and thus

reduces the background in the interference measurement. Since the proposed systems

has a imaging configuration in the y–axis, the quality of images is better than the

ones in coherence imaging.

By introducing these new concepts, depth detection of relatively uniform objects

can be dealt with, i.e., case where lateral spatial frequency content is lacking. Such

objects have been traditionally considered “difficult” in the fields of both coherence

imaging, because of the background noise, and in computer vision, because of the lack

of features to associate with depth. The foreground vs. background discrimination

experiment of Sec. 3.3.3 is a good example of such an object.

An ultimate goal is definitely to discriminate multiple depths. Since our method

relies on the difference in the degree of coherence, and the fact that the change in

spatial coherence with depth is limited, detecting multiple depths is challenging. If

the degree of coherence of objects are identical so that the spatial coherence changes

monotonically or if they are priori–known, then multiple depth detection may be

possible provided that we achieve accurate and sensitive enough measurements.

The same method is applicable if multiple objects and/or spatially non–uniform

objects are present in the scene. As long as the degree of coherence of the light from

non FG objects is higher than the degree of coherence of FG objects, it should be

possible to order the objects by their distance from the entrance pupil. It would also

be interesting to investigate the transition of the degree of coherence between FG and
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BG, which is shown as Fig. 3-7. These topics are left as future research.
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Chapter 4

Space–spatial frequency analysis of

volume holographic pupils and

axial imaging

While spatial frequency analysis is extremely useful, all local spatial information is

lost due to the nature of the Fourier transform. Using local spatial frequency instead

of the global spatial frequency could be useful because it contains both spatial and

frequency information [5]. In this chapter, the Wigner distribution function (WDF)

is introduced, which is a space–spatial frequency representation of light, and it is

applied to volume holograms and VHI systems to characterize shift variant behavior.

Axial imaging, which measures depth information from images, is a particularly inter-

esting example of multi–dimensional imaging. Hence, the Wigner analysis is applied

to axial imaging to explore the various axial imaging methods and characterize invari-

ant/variant imaging kernels. Finally two main conditions for axial imaging capability

are established.

4.1 Introduction

Although the Wigner distribution function (WDF) was originally introduced in quan-

tum mechanics [75], it has been useful in optics because it describes simultaneous both
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the space domain and spatial frequency information of optical signals [76]. The WDF

of an optical field g(x) is defined as

W(x,u) =

∫
g(x + ξ/2)g∗(x − ξ/2) exp {−i2πu · ξ} dξ, (4.1)

where g(x) is a scalar function of a position vector x, ξ is a dummy variable for

the integration (indeed, Fourier transform), and u is a local spatial frequency vector.

Here, some of important properties of the WDF are summarized [77].

1. Frequency domain definition: if G(u) is the Fourier transform of g(x), then the

WDF of g(x) is equivalently defined as

W(x,u) =

∫
G

(
u +

u′

2

)
G∗

(
u − u′

2

)
exp {i2πx · u′} du′. (4.2)

2. Inversion: The original function can be recovered from its WDF within a phase

factor as

g(x) =
1

g∗(0)

∫
W(x/2,u) exp {i2πx · u} du. (4.3)

3. Realness: The WDF is a real function, but not always positive.

4. Interference: The WDF of the sum of two signals f(x) + g(x) is expressed as

Wf+g(x,u) = Wf (x,u) + Wg(x,u) + 2Re [Wf,g(x,u)] , (4.4)

where the last term is a cross term or interference term because of the bilinear

nature of the WDF.

5. Intensity: The integral along the spatial frequency, equivalently the projection

of the WDF along u, is the intensity of the signal as

I(x) =

∫
W(x,u)du. (4.5)
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(a) point source (b) plane wave (c) spherical wave

Figure 4-1: Various optical waves in the space domain and their corresponding Wigner
distribution functions

(a) Fresnel propaga-
tion

(b) Chirp modulation
(lens)

(c) Fourier transform (d) Fractional Fourier
transform

Figure 4-2: Representation of various optical transforms in optics in Wigner space,
where the blank rectangles indicate input fields and solid rectangles represent trans-
formed fields

The local spatial frequency corresponds to the angle of a ray in geometrical optics [5];

hence, the WDF may be thought of as a connection between ray and wave optics.

More importantly, the WDF is extremely useful to analyze how light behaves as

it propagates, because many optical fields and transforms are described as simple

geometrical relations. Figures 4-1 and 4-2 show the WDFs of various optical fields

and transforms. Note that the Fresnel propagation and chirp modulation correspond

to x and u shear, respectively. Using these geometrical relations and knowledge of

local spatial frequency, the WDF analysis allows us a better understanding and a

different perspective of light phenomena.

It is worth mentioning that the ambiguity function, the 2D Fourier transform

of the WDF, also exhibits similar properties and is useful for many applications

such as optimization of wavefront coding systems for extended depth of field [1, 78].

Specifically, the WDF and the ambiguity function are related through the Fourier
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slice theorem. For example, in a linear shift invariant imaging system, the intensity

PSF and the OTF are the Fourier transform pair, and they are decided by a pupil

function. In Wigner space, the WDF of the pupil characterizes both. The intensity

PSF is the projection of the WDF of the Fourier transformed pupil along u; this

is equivalent to the projection of 90◦ rotated WDF of the pupil. Since the Fourier

transform of the intensity PSF (projection of the WDF) is the OTF, the slice of the

ambiguity function of the pupil is indeed the OTF. As mentioned, the free–space

propagation corresponds to x–shear, the WDF and the ambiguity function describes

with the intensity PSF and the OFT for different defocus at the same time.

The WDF also can deal with partially coherent light [79]. The Wigner analysis

has been used in 3D display [77], digital holography [80, 81], the generalized sampling

problem [81], and superresolution [82].

The WDF of a thin transparency such as a lens, phase mask, aperture, or grating

can be found in [83–85]. However, the volume hologram has a finite longitudinal

extent; because of that, it is not straightforward to express volume holograms in

Wigner space. In the next section, Wigner representations of the volume hologram

and VHI systems are derived.

4.2 Wigner distribution function of volume holo-

grams

In a linear optical system, an output field E(x2, y2) is a superposition of impulse

responses weighted by an input field E(x1, y1), written as

E(x2, y2) =

∫
E(x1, y1)h(x2, y2; x1, y1)dx1dy1, (4.6)

where h(x2, y2; x1, y1) is the system response at the output plane (x2, y2) generated by

an impulse input at (x1, y1). If the impulse response is laterally shift invariant, then

the output field is a convolution of the impulse response and the input field. Using
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Figure 4-3: Geometry of the 4–f volume holographic imaging system. The focal
length of the two lenses are f1 and f2, respectively.

eqs. (4.1) and (4.6), the input–output relation in the WDF space is written as [86]

W2(x2, u2, y2, v2) =

∫∫∫∫
Kh(x2, u2, y2, v2; x1, u1, y1, v1)W1(x1, u1, y1, v1)dx1du1dy1dv1

(4.7)

where

Kh(x2, u2, y2, v2; x1, u1, y1, v1) =

∫∫∫∫
e
−i2π

“

u2x′
2+v2y′

2−u1x′
1−v1y′

1

”

dx′
2dx′

1dy′
2dy′

1

× h
(
x2 +

x′
2

2
, y2 +

y′
2

2
; x1 +

x′
1

2
, y1 +

y′
1

2

)
h∗

(
x2 − x′

2

2
, y2 − y′

2

2
; x1 − x′

1

2
, y1 − y′

1

2

)
, (4.8)

and ui and vi are the local spatial frequencies corresponding to the spatial coordinates

xi and yi for i = 1 and 2, and Kh is the double Wigner distribution function of the

impulse response. Once the impulse response is known, the WDF representation

can be computed by eq. (4.8); the space–spatial frequency characteristics are fully

described by the Wigner presentation. Since the impulse response of the 4–f system

is previously derived in Sec. 2.3, the Wigner representation is derived first. Then the

Fourier transform relation is exploited to obtain the Wigner representation of volume

holograms; in the 4–f volume holographic imaging system, shown in Fig. 4-3, the

input and output planes are the front and back focal plane of the first and second

lens, respectively.

A volume hologram is located at the Fourier plane. For a probe beam whose

wavelength λ is the same as the wavelength of the reference and signal waves, the
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impulse response of the system is given by

h(x2, y2; x1, y1) = E
[

1

λ

(
x1

f1

+
x2

f2

)
,
1

λ

(
y1

f1

+
y2

f2

)
,
1

λ

(
x2

1 + y2
2

2f 2
1

− x2
2 + y2

2

2f 2
2

)]
, (4.9)

where E is the 3D Fourier transform of the 3D pupil. By substituting eq. (4.9) into

eqs. (4.7) and (4.8), the Wigner representation of the 4–f VHI system is obtained as

W2(x2, u2, y2, v2) =

∫∫∫∫
KVHI(x2, u2, y2, v2; x1, u1, y1, v1)

×W1(x1, u1; y1, v1)dx1du1dy1dv1, (4.10)

where

KVHI(x2, u2; x1, u1) =

∫∫∫∫
dx′

1dx′
2dy′

1dy′
2e

−i2π
“

u2x′
2+v2y′

2−u1x′
1−v1y′

1

”

× E

[
1

λ

(
x1 +

x′
1

2

f1

+
x2 +

x′
2

2

f2

)
,
1

λ

(
y1 +

y′
1

2

f1

+
y2 +

y′
2

2

f2

)
,

1

λ

(
(x1 +

x′
1

2
)2 + (y1 +

y′
1

2
)2

2f 2
1

−
(x2 +

x′
2

2
)2 + (y2 +

y′
2

2
)2

2f 2
2

)]

× E∗

[
1

λ

(
x1 − x′

1

2

f1

+
x2 − x′

2

2

f2

)
,
1

λ

(
y1 − y′

1

2

f1

+
y2 − y′

2

2

f2

)
,

1

λ

(
(x1 − x′

1

2
)2 + (y1 − y′

1

2
)2

2f 2
1

−
(x2 − x′

2

2
)2 + (y2 − y′

2

2
)2

2f 2
2

) ]
. (4.11)

Next, we compute the Wigner representation of the volume hologram. In the 4–f VHI

system, the incident field onto and the diffracted field from the volume hologram are

Fourier transform conjugates to the input and output field, respectively, as shown in

Fig. 4-3. Although we treat the volume hologram as a thin transparency in this case,

the longitudinal extent of the volume hologram is already taken into account when

we compute eqs. (4.9) and (4.11). In the Wigner space, the Fourier transform of the

field corresponds to 90◦ rotation of the WDF [82], which is equivalent to interchange
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of the space and spatial frequency variables [76]; the relations are

W3(x3, u3, y3, v3) = F [W1(x1, u1, y1, v1)] , and (4.12)

W4(x4, u4, y4, v3) = F−1 [W2(x2, u2, y2, v2)] , (4.13)

where (x3, y3) and (x4, y4) are the spatial coordinates just before and after the holo-

gram, as shown in Fig. 4-3. Interchanging the variables x1 = −λf1u3, u1 = x3/(λf1),

x2 = λf2u4, u2 = −x4/(λf2), y1 = −λf1v3, v1 = y3/(λf1), y2 = λf2v4, and

v2 = −y4/(λf2) results in

W4 (x4, u4, y4, v4) =

∫∫∫∫
KVH(x4, u4, y4, v4; x3, u3, y3, v3)

×W3 (x3, u3, y3, v3) dx3du3dy3dv3, (4.14)

where

KVH(x4, u4, y4, v4; x3, u3, y3, v3)

= KVHI

(
u4

λf2

,−λf2x4,
v4

λf2

,−λf2y4;−
u3

λf1

, λf1x3,−
v3

λf1

, λf1y3

)
. (4.15)

Using this procedure, once the refractive index modulation and physical dimensions

of volume holograms are known, the Wigner representation of volume holograms can

be derived.

In Sec. 4.2.1 and 4.2.2, we use the derived formulae to evaluate the Wigner repre-

sentations of plane and spherical wave reference volume holograms [7], whose record-

ing geometries are shown in Fig. 4-4. For simplicity, only one–dimensional geometry is

considered throughout the derivation, but the extension to two–dimensional geometry

is straightforward.

4.2.1 Plane wave reference volume hologram

A slab shape of volume hologram (a × L) recorded by two plane waves, shown in

Fig. 4-4(a), is assumed. The 3D volume holographic pupil (albeit neglecting the

101



(a) plane wave reference hologram (b) spherical wave reference hologram

Figure 4-4: Recording geometries of volume holograms

second lateral dimension) is given by [27]

ϵ(x′′, z′′) = exp

{
i
2π

λ

(
θsx

′′ − θ2
s

2
z′′

)}
rect

(
x′′

a

)
rect

(
z′′

L

)
, (4.16)

where x′′ and z′′ are the spatial coordinate inside of the volume hologram. By using

the Fourier transform with the proper kernels as in eq. (4.9), the impulse response is

h(x2, y2; x1, y1) = sinc

{
a

λ

(
x1

f1

+
x2

f2

− θs

)}
sinc

{
L

2λ

(
x2

1

f 2
1

− x2
2

f2
2

+ θ2
s

)}
. (4.17)

In practice, the lateral size of the volume hologram is much larger than the longi-

tudinal extent (a ≫ L); the first sinc function is approximated as a δ–function, which

is equivalent to neglecting diffraction due to the lateral aperture of the hologram.

However, the longitudinal extent of the hologram is still taken into account. Also for

notational simplicity, f1 = f2 = f are used. Then the impulse response is expressed

as

h(x2; x1) ≈ δ (x1 + x2 − fθs) sinc

{
L

2λf 2

(
x2

1 − x2
2 + f 2θ2

s

)}
. (4.18)

By using eqs. (4.8) and (4.18), for the 4–f VHI system with the plane wave reference
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hologram, the double WDF of the impulse response is written as

KVHI(x2, u2; x1, u1) =

∫∫
dx′

2dx′
1e

−i2π
“

u2x′
2−u1x′

1

”

×δ
([

x1 +
x′
1

2

]
+

[
x2 +

x′
2

2

]
− fθs

)
sinc

{
L

2λf 2

([
x1 +

x′
1

2

]2

−
[
x2 +

x′
2

2

]2

+ f2θ2
s

)}
×δ

([
x1 − x′

1

2

]
+

[
x2 − x′

2

2

]
− fθs

)
sinc

{
L

2λf2

([
x1 − x′

1

2

]2

−
[
x2 − x′

2

2

]2

+ f 2θ2
s

)}
.

(4.19)

In eq. (4.19), the two δ–functions can be rewritten as

δ
([

x1 +
x′
1

2

]
+

[
x2 +

x′
2

2

]
− fθs

)
δ
([

x1 − x′
1

2

]
+

[
x2 − x′

2

2

]
− fθs

)
= δ (x1 + x2 − fθs) δ (x′

1 + x′
2) . (4.20)

By using eq. (4.20), eq. (4.19) is simplified to

KVHI(x2, u2; x1, u1) =

∫∫
dx′

1dx′
2e

−i2π
“

u2x′
2−u1x′

1

”

δ (x1 + x2 − fθs) δ (x′
1 + x′

2)

× sinc

{
L

2λf2

[(
x2

1 − x2
2

)
+ (x1x

′
1 − x2x

′
2) +

(
x′2

1

4
− x′2

2

4

)
+ f2θ2

s

]}
× sinc

{
L

2λf2

[(
x2

1 − x2
2

)
− (x1x

′
1 − x2x

′
2) +

(
x′2

1

4
− x′2

2

4

)
+ f 2θ2

s

]}
= δ (x1 + x2 − fθs)

∫
sinc

{
L

2λf 2

[(
x2

1 − x2
2

)
+ (x1 + x2)x

′ + f 2θ2
s

]}
× sinc

{
L

2λf2

[(
x2

1 − x2
2

)
− (x1 + x2)x

′ + f 2θ2
s

]}
e−i2π(u2+u1)x′

dx′. (4.21)

Equation (4.21) is indeed the Fourier transform of the sinc x′ with respect to (u1+u2);
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Figure 4-5: Geometrical representation of the two rect functions in eq. (4.23)

it can be expressed as

KVHI(x2, u2; x1, u1) = δ (x1 + x2 − fθs)

∫
sinc

{
L

2λf 2
(x1 + x2)

(
x′ +

x2
1 − x2

2 + f 2θ2
s

x1 + x2

)}
× sinc

{
L

2λf2
(x1 + x2)

(
x′ − x2

1 − x2
2 + f2θ2

s

x1 + x2

)}
e−i2π(u2+u1)x′

dx′

= δ (x1 + x2 − fθs)

(
2λf 2

L(x1 + x2)

)2
[
rect

{
u1 + u2

L
2λf2 (x1 + x2)

}
e
i2π

(x2
1−x2

2)+f2θ2
s

x1+x2
(u1+u2)

]

⊗
∣∣∣
(u1+u2)

[
rect

{
u1 + u2

L
2λf2 (x1 + x2)

}
e
−i2π

(x2
1−x2

2)+f2θ2
s

x1+x2
(u1+u2)

]
, (4.22)

where ⊗ denotes convolution. By using δ(x1+x2−fθs) and defining M = Lθs/ (2λf),

u = u1 + u2, g(u) = rect
(

u
M

)
, and ϕ = 2x1, a simpler expression for the convolution

part of eq. (4.22) is obtained as

{
g(u)ei2πϕu

}
⊗

{
g(u)e−i2πϕu

}
=

∫
g(u′)ei2πϕu′

g(u − u′)e−i2πϕ(u−u′)du′

=

∫
rect

(
u′

M

)
rect

(
u − u′

M

)
ei2πϕ2u′

e−i2πϕudu′

= rect
( u

2M

)
e−i2πϕu

∫
rect

(
u′ − u/2

M − |u|

)
ei2πϕ2u′

du′

= MΛ
( u

M

)
sinc {(M − |u|) 4x1} , (4.23)

where Λ(x) is a triangle function [5]. Note that the geometrical relation as shown in

Fig. 4-5 is used to simplify the two rect functions in eq. (4.23).
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(a) An illustration of KVHI in x1 and
u2 at a particular x2 and u2.
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(b) Integration kernel in eq. (4.25) at x2 = fθs

and u2 = 0.

Figure 4-6: Wigner representation of the VHI system with a plane wave reference
hologram. In (b), f = 50 mm, λ = 0.5 µm, θs = 30◦, and L = 1 mm.

By using eq. (4.23), the WDF representation of the VHI system is

KVHI(x2, u2; x1, u1) =

(
2λf

Lθs

)
δ (x1 + x2 − fθs) Λ

(
2λf

Lθs

(u1 + u2)

)
× sinc

{(
Lθs

λf
− 2|u1 + u2|

)
2x1

}
. (4.24)

Finally, the WDF representation of the 4–f volume holographic imaging system is

W2(x2, u2) =

∫∫
KVHI(x2, u2; x1, u1)W1(x1, u1)dx1du1

=
2λf

Lθs

∫
Λ

(
u1 + u2

Lθ/(2λf)

)
sinc

{
2

(
Lθs

λf
− 2|u1 + u2|

)
x1

}
W1(x1, u1)du1, (4.25)

where x2 = fθs − x1.

For a given x2 and u2, x1 is equal to −x2 + fθs. The triangle function limits the

range of the integration of u1 to −u2 − M < u1 < −u2 + M as shown in Fig. 4-6(a).

If u1 + u2 = 0, the scale factor of the sinc is maximized and the width is minimized.

Figure 4-6 shows the integration kernel of eq. (4.25) at x2 = fθs and u2 = 0. Note

that the sinc function is only dependent on x1 not x2−x1, which indicates the strongly

shift variant nature of the system, and that some values of KVHI are negative.

For the plane wave reference volume hologram, the Wigner representation of the
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(a) An illustration of KVH in x3 and
u3 at a particular x4 and u4.
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(b) Integration kernel in eq. (4.27) at x4 = 0 and
u4 = θs/λ.

Figure 4-7: Wigner representation the plane wave reference volume hologram. In (b),
parameters are λ = 0.5 µm, θs = 30◦, and L = 1 mm.

impulse response is obtained by using eq. (4.15) as

KVH(x4, u4; x3, u3) =

(
2

Lθs

)
δ

(
u4 − u3 −

θs

λ

)
Λ

(
x3 − x4

Lθs/2

)
sinc {2 (Lθs − 2|x3 − x4|) u3} .

(4.26)

Hence, the Wigner representation of the plane wave reference volume hologram is

W4(x4, u4) =

∫∫
KVH(x4, u4; x3, u3)W3(x3, u3)dx3du3

=

(
2λf

Lθs

) ∫
Λ

(
x3 − x4

Lθs/2

)
sinc

{
2 (Lθs − 2|x3 − x4|)

(
u4 −

θs

λ

)}
W3

(
x3, u4 −

θs

λ

)
dx3.

(4.27)

For a given x4 and u4, u3 is equal to u4 − θs/λ due to the δ–function. The triangular

function limits the integration range of x3 within x4 − Lθs/2 < x3 < x4 + Lθs/2

as shown in Fig. 4-7(a). This range of integration is dependent on the hologram

thickness L and the angle θs. Note that eq. (4.27) is a multiplication along u4 but a

convolution along x4. Figure 4-7(b) shows the integration kernel of eq. (4.27), which

describes the space–spatial frequency response of the plane wave reference volume

hologram. Since the hologram is recorded by two plane waves, the double WDF of

the hologram has high values near u3 = 0 and u4 = θs/λ, as expected.
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In the Wigner space, the intensity is the projection of the WDF along the u–

axis [76]. Thus, the Bragg diffraction intensity image of the 4–f VHI system can be

calculated from eqs. (4.25) and (4.24). Assuming the input wave is infinitely extended

incoherent light (W(x1, u1) = 1), then

I2(x2) ∼
∫∫

Λ

(
2λf

Lθs

(u1 + u2)

)
sinc

{(
Lθs

λf
− 2|u1 + u2|

)
2(fθs − x2)

}
du1du2

∼ sinc2

{
Lθs

λf
(fθs − x2)

}
, (4.28)

which agrees with the previously reported result [26]. A detailed derivation can be

found in Appendix A.

4.2.2 Spherical wave reference volume hologram

A spherical wave reference volume hologram is recorded by a plane signal wave and

spherical reference wave [7] as shown in Fig. 4-4(b). The signal wave is a plane wave

propagating with an angle θs with respect to the optical axis, and the reference wave

is a spherical wave originating from a point source. It is interesting that the grating

vector of the spherical wave reference hologram is shift variant. Hence, the Wigner

representation, which describes both spatial and frequency characteristics, provides

detailed characteristics of the shift variant Bragg diffraction.

The 2D volume holographic pupil function of the spherical wave reference holo-

gram is written as [7]

ϵ(x′′, z′′) = exp

{
−i

π

λ

x′′2

z′′ − zf

}
exp

{
−i

π

λ
θ2
s z

′′
}

exp

{
i
2π

λ
θsx

′′
}

× rect

(
x′′

a

)
rect

(
z′′

L

)
, (4.29)

where zf is the distance from the hologram and the point source radiating the spherical

wave on the optical axis and other parameters are identical the plane wave reference

hologram. Similar to the plane reference wave hologram, f1 = f2 = f and large a are

assumed, and the diffraction due to the lateral aperture of the hologram is ignored
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for convenience. For the 4–f VHI system with the spherical wave reference hologram,

the impulse response is given by

h(x2; x1) = exp

{
−i

π

λ

zf

f2
(x1 + x2 − fθs)

2

}
sinc

{
L

λf2
(x1 + x2) (x2 − fθs)

}
. (4.30)

The double Wigner representation of the impulse response is computed as

KVHI(x2, u2; x1, u1) =

∫∫
dx′

2dx′
1e

−i2π(x′
2u2−x′

1u1)

× exp

{
−i

2π

λ

zf

f 2
(x′

1 + x′
2) (x1 + x2 − fθs)

}
× sinc

{
L

λf2

(
x1 + x2 +

x′
1+x′

2

2

) (
x2 +

x′
2

2
− fθs

)}
× sinc

{
L

λf2

(
x1 + x2 − x′

1+x′
2

2

) (
x2 − x′

2

2
− fθs
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. (4.31)

KVHI(x4 = 0, u4 = θs/λ; x3, u3) is numerically integrated for the spherical wave refer-

ence hologram whose L=1 mm and θs = 30◦ and plotted in Fig. 4-8(a).

Using eqs. (4.15) and (4.31), the double WDF of the volume hologram is obtained

as

KVH(x4, u4; x3, u3) =

∫∫
dx′

3dx′
4e

−i2π(u′
4x4−u′

3x3)

× exp

{
−i2πλzf (u′

3 + u′
4)

(
−u3 + u4 −

θs

λ

)}
× sinc

{
Lλ

(
−u3 + u4 +

u′
3 + u′

4

2

)(
u4 +

u′
4

2
− θs

λ

)}
× sinc

{
Lλ

(
−u3 + u4 −

u′
3 + u′

4

2

) (
u4 −

u′
4

2
− θs

λ

)}
. (4.32)

KVH(x4 = 0, u4 = θs/λ; x3, u3) is numerically integrated with zf = 50 mm, L = 1, and

θs = 30◦. In Fig. 4-8(b), since x4 = 0 and u4 = θs/λ, strong Bragg diffraction is

generated and x3 and u3 should be confined near x3 = u3 = 0. Note that the WDF is

not horizontal, which indicates the incoming wave should be a spherical wave. Thus,

this system requires a spherical wave to be Bragg matched, as expected.

Comparing the Wigner representation of the plane and spherical wave reference
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(b) KVH(x4 = 0, u4 = θs/λ, x3, u3).

Figure 4-8: Wigner representation of the spherical wave reference hologram and VHI
system with λ = 0.5 µm, θs = 30◦, zf = 50 mm, and L = 1 mm.

hologram, a few differences are noticed. As the WDF of both input and output field

are 4D quantities of (x, u, y, v), the input–output relation is an 8D transform as in

eq. (4.7). However, in the plane wave reference hologram, KVH and KVHI are related

by a multiplication in one direction and convolution in the other direction, which

ends up with a 6D transform. The spherical reference volume hologram is still an 8D

transform as shown in eqs. (4.31) and (4.32).

4.3 Shift variance vs. axial imaging capability

In this section, the axial imaging process, i.e., imaging methods that are able to

extract depth information of a scene, are explored with the Wigner analysis. In

traditional imaging systems such as photographic cameras, the point spread functions

are designed to be as shift invariant as possible. In other words, identical images are

formed regardless of the lateral position of objects. Although many optical imaging

systems in practice are not precisely shift invariant, they often are assumed to be

shift invariant for easier analysis, which allows the use of linear shift invariant system

approaches or frequency analysis, such as OTF.

Stein and Barbastathis conjectured that axial imaging requires a shift variant

point spread function [87]. A few examples were presented to support their claim;

confocal microscopes and stereo vision systems have strongly shift variant imaging
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Figure 4-9: Axial imaging scenario. At the input plane, the defocus δz produces
x–shear of the WDF. At the output plane, a array of photodetectors are placed.

kernels with respect to defocus. While the claim is reasonable, it was not proven in

that early work. In this section, the Wigner analysis is applied to the axial imag-

ing process and the Stein–Barbastathis claim is rigorously proven. Although only

one–dimensional lateral geometry is considered throughout the analysis, the exten-

sion to two–dimensional geometry is straightforward. Incoherent incoming light is

also assumed because most conventional imaging systems, especially passive imaging

systems, work under incoherent light.

First an imaging scenario as shown in Fig. 4-9 is considered. The imaging system

is given by Kh(x2, u2; x1, u1), which is the double Wigner distribution function of the

impulse response h(x2; x1) [86]. Since shift variance/invariance are being investigated,

a photodetector array camera is presumably located at the output plane to measure

intensity. At the input plane, the defocus produces the x–shear of the WDF; hence,

the goal of axial imaging is to measure the slope of the sheared WDF from intensity

measurements at the output plane.

Next it is investigated how differently the shift invariant/variant kernels affect the

imaging process. Detailed derivations can be found in Appendix B.
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4.3.1 Shift invariant system

If the system is shift invariant, then the output field is a convolution of the input field

and the impulse response as

E2(x2) =

∫
E1(x1)h(x2 − x1)dx1. (4.33)

By applying the definition of the WDF to both sides of eq. (4.33), the input–output

relation is expressed in Wigner space as

W2(x2, u2) =

∫
Ksi(x2 − x1, u2)W1(x1, u2)dx1, (4.34)

where

Ksi(x2 − p, u2) =

∫
h(x2 − p + t

2
)h∗(x2 − p − t

2
)e−i2πu2tdt. (4.35)

Note that the WDF of the output field is a convolution of Ksi and W1 in x and a

multiplication in u. The intensity of the output field is computed as

I2(x2) =

∫
W2(x2, u2)du2 =

∫∫
Ksi(x2 − x1, u2)W1(x1, u2)dx1du2. (4.36)

4.3.2 Shift variant system

For a shift variant system, the input–output relation is represented as an integral

with a shift variant impulse response as

E2(x2) =

∫
E1(x1)h(x2; x1)dx1. (4.37)

By applying the definition of the WDF to both sides of eq. (4.37) as in Sec. 4.3.1, the

input–output relation in Wigner space is obtained as

W2(x2, u2) =

∫∫
Ksv(x2, u2; x1, u1)W1(x1, u1)dx1du1, (4.38)
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where

Ksv(x2, u2; x1, u1) =

∫∫
h(x2 + ξ

2
; x1 + η

2
)h∗(x2 − ξ

2
; x1 − η

2
)e−i2π(u2ξ−u1η)dξdη. (4.39)

The WDF of the output field is computed by the double integrations of Ksv and W1.

The intensity of the output field is

I2(x2) =

∫
W2(x2, u2)du2 =

∫∫∫
Ksv(x2, u2, x1, u1)W1(x1, u1)dx1du1du2. (4.40)

4.3.3 Comparison in the WDF space

Comparing eqs. (4.34) and (4.38), two main differences are noticed: 1) Ksv is the

double WDF whereas Ksi is a single WDF. 2) In eq. (4.34), there is no dependency

on u1. In other words, the variation of W1 along u appears directly in W2 for shift

invariant systems. However, in eq. (4.38), Ksv is dependent on both u1 and u2.

To clearly understand these differences, the concept of the forward/backward

imaging process is brought up, as shown in Fig. 4-10. In forward imaging, the input

WDF is transformed by the imaging system and mapped to the output plane. In our

imaging scenario, an array of photodetectors at the output plane measures intensity,

which corresponds to the projection of the output WDF along the u direction. De-

pending on the size and spacing between the photodetector pixels, integration kernels

corresponding to each photodetector pixel are constructed. Now the backward imag-

ing process, where the integration kernels are back–projected onto the input plane, is

considered. Depending on the characteristics of the imaging system, the integration

kernels at the input plane could have arbitrary shapes or even multiple segments.

In the context of this forward/backward imaging, the difference between the shift

variant and invariant imaging kernels can be visualized as Fig. 4-10. Since Ksi is

independent on u1, at the input plane the integration kernels of every photodetector

pixel are all identical except for a lateral shift along x1. Even though each kernel

may have variations along u1, all kernels have the same variation and identical extent

along u1 as shown in Fig. 4-11(a). On the contrary, in shift variant systems, Ksv is
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Figure 4-10: Forward/Backward imaging in Wigner space. The intensity integration
kernels at the output plane are back–projected onto the input plane.

dependent on u1, which implies that the integration kernel at the input plane also

depends on u1 (and x1). Every integration kernel may be different from each other

as shown in Fig. 4-11(b).

4.3.4 Axial imaging conditions in the WDF space

In this section, we investigate axial imaging systems, which estimate the depth infor-

mation from intensity measurements; two conditions for axial imaging are established.

In the backward imaging process, the shape and configuration of the integration ker-

nels are particularly interesting. In computer vision and graphics, a concept similar

to the Wigner distribution function has been used, referred to as light field. Levin

et al. used the light field concept to analyze the trade–off of various camera sys-

tems [88], which is identical to the integration kernels appeared at the input plane in

the backward imaging process. Figure 4-12 shows the light field analysis for various

camera systems. In the light fields formulation, the vertical axis is the second plane,

which corresponds to u in Wigner space.

In the same context of the backward imaging, the color coded rectangles indicate

the integration kernels of the individual photodetector arrays at the input plane. In

the object space, three objects are assumed (Fig. 4-12(a)): one in focus, one behind

the focus and one in front. The light fields of the three objects are shown in Fig. 4-

12(b), where three different strips with different slopes exist. The integration kernels
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(a) shift invariant (b) shift variant

Figure 4-11: Comparison of shift invariant and variant kernels. In shift invariant
systems, (a), the integration kernels are all identical. In shift variant system, (b), the
kernels could be different in shape, offset, weighting, and size.

Figure 4-12: Light field analysis of various axial imaging methods for three depths [88]
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for a pin–hole camera are shown in Fig. 4-12(c). Vertical extent of the kernel is

very limited; it explains why pin–hole cameras have infinite depth of field because

the shear of the WDF does not affect intensity patterns. Figure 4-12(d) shows the

integration kernels of traditional cameras. All the kernels are vertically straight and

equally spaced. Due to the finite aperture, each integration kernel has a limited range

in the u–direction. Figure 4-12(e) shows the integration kernels of traditional cameras

with focus change. Since the defocus corresponds to x–shear in the WDF domain, the

integration kernels get sheared. Fig. 4-12(f) corresponds to a stereo vision system [46],

in which two cameras have different perspectives. Since the integration kernels sample

different u–components, the stereo vision cameras can estimate the slope of the WDF.

Figure 4-12(g) shows the integration kernels of the plenoptic cameras [89, 90], in

which the system sacrifices spatial resolution and acquires more angular information

of incoming rays. Similar to the stereo vision system, the plenoptic camera is also

able to measure the slope of the WDF. Figure 4-12(h) shows the integration kernels

of a coded aperture system [91, 92]. The idea is to produce different scale of blurs

depending on the defocus (the slope of the WDF), where the depth could be inferred

for priori–known objects; for example, particle imaging. Figure 4-12(i) shows the

integration kernels of the cubic phase mask system [1, 93], where the cubic phase

mask produces curved integration kernels so that the intensity change is less sensitive

to the shear of the WDF.

As explained in Fig. 4-9, to achieve axial imaging, the system should be able to

estimate the slope of the WDF. The stereo vision system shown in Fig. 4-12(f) and the

plenoptic camera in Fig. 4-12(g) have axial imaging capability for extended objects.

The coded aperture camera shown in Fig. 4-12(h) may be used for inferring depth,

but it inherently has an ambiguity between depth and objects with specific patterns.

Hence, the integration kernels should be distributed along the u axis in Wigner space

to implement axial imaging. One typical arrangement is, as demonstrated by stereo

vision and plenoptic cameras, that at least two integration kernels should exist at a

given x position.

Based on this analysis, two major conditions are established for achieving axial
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imaging:

1. Objects must be either shift variant or localized.

2. Shift variant imaging kernels must be properly located in Wigner space.

The first condition is obvious; if the object is featureless, then the sheared WDF

cannot be traced, where intensity based passive axial imaging fails. To create shift

variance (or localization) of objects, active illumination can be used as in confocal

microscopes [43] or laser triangulation [94], or objects are assumed to have some

features, patterns, or structures in passive vision methods. The second condition is

described in the earlier discussion. The imaging kernels should be properly distributed

along u direction in Wigner space to estimate the slope of the sheared WDF, which

requires shift variant imaging kernels because integration kernels should have different

variation along u. Note that the shift variant imaging kernel is just a necessary

condition; not all shift variant systems are able to achieve axial imaging.

4.4 Conclusion

In this chapter, Winger analysis, which describes both space and spatial frequency

information of light, is introduced. The Wigner representation for VHI systems and

volume holograms are derived. The Wigner analysis fully describes the shift variant

Bragg diffraction property of volume holograms. Then, the Wigner analysis was

extended to axial imaging. Since defocus introduces the x–shear in Wigner space, on

axial imaging capability requires estimating of the slope of the sheared WDF. The

concept of the backward imaging was introduced and the imaging kernels of various

imaging systems were investigated. It turned out that axial imaging requires two

conditions: 1) shift variant objects and 2) properly designed shift variant imaging

kernels. Hence, axial imaging necessitates the shift variant imaging kernels.

The shift variance property of volume holograms can be tuned by recording pro-

cess, which is a posteriori motivation for their use in axial imaging. In the context of

116



backward imaging, there are two interesting future research topics: 1) how to deter-

mine desired integration kernels for a given imaging scenario, and 2) how to design

imaging kernels to achieve the desired integration kernels.
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Chapter 5

Conclusion

As semiconductor fabrication technology progresses, a variety of sensors and cameras

with different formats, spectral ranges, and space–bandwidth products are available

in commercial markets. Powerful computational resources enable various complicated

post–processing methods. This progress will be exploited in multi–dimensional imag-

ing; smart sensors and computational cameras are representative examples.

Shift variant and multiplexed imaging are efficient ways to implement multi–

dimensional imaging because multi–dimensional information can be transformed and

compressed in a way that post–processing can decode the captured information. Since

volume holograms exhibit both properties, it is interesting to analyze the behavior of

volume holograms as they are exploited in different imaging platforms. In this thesis,

various aspects of volume holograms have been explored. Traditionally, volume holo-

grams have been used in holographic data storage [8–11], optical interconnects [12],

and artificial neural networks [13]. However, as shown in our earlier research, volume

holograms can be used as 3D optical elements as well. By specifically engineering the

shift variance and multiplexing, novel multi–dimensional imaging systems have been

implemented [7, 15–25]. Based on the analysis and implementation as presented, we

hope that volume holograms can be used more actively in various multi–dimensional

imaging systems: computational cameras, computational imaging, and space imaging.

To conclude this thesis, all the presented topics are summarized and intended

future research directions are presented.
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5.1 Summary

5.1.1 Volume diffraction formulation

Two formulations of analyzing volume diffraction were presented: the k–sphere method

and wave optics approach. The k–sphere method is a geometrical construction of the

Bragg match/mismatch, which is a fast and intuitive method. The k–sphere method

was integrated with the ray tracing software ZEMAXr. The built–in analysis tools

and optimization routines provide a greater versatility and flexibility in the design

process. Three examples were demonstrated: reproducing a longitudinal PSF of the

4–f VHI system, analyzing the effect of aberration, and optimizing an objective lens

to exhibit stronger Bragg diffraction. The implementation can handle both trans-

mission and reflection holograms as well as slanted and unslanted holograms. More

importantly, the integrated k-sphere model computes Bragg diffraction efficiently for

shift variant holograms, which is not easy for the wave optics based formulations.

The k–sphere formulation was examined in 3D space to understand why the Bragg

diffraction images are curved. By solving the k–sphere method analytically, the equa-

tion of the curved Bragg diffraction images were derived; generally, the form is dis-

torted ellipses, depending on the optical system parameters.

The scalar diffraction theory was revisited. By using this formulation, a general

form of the shift variant impulse response of VHI systems was derived. The result

clearly explains the difference between traditional and VHI systems, in which the

volume holographic element behaves as a 3D pupil and the additional dimension

introduces a strong shift variant response to the VHI systems.

5.1.2 Passive binary depth detection

For VHI systems, by extending the scalar diffraction theory into statistical optics, the

partially coherent response was derived. Specifically, the VHI system with a slab–

shaped hologram was examined in detail. As an application of the partially coherent

responses of VHI systems, a new passive depth detection method was proposed, based
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on spatial coherence measurements. If objects are spatially incoherent, the degree of

coherence increases as light propagates. Our method detects the spatial coherence

change due to defocus. The imaging scenario was binarized with the intention of dis-

criminating two depths, foreground and background. The volume hologram imposes

a spatially variant wavelength filter on the input plane and separates light spatially

and spectrally. From an experimental setup with a volume holographic interferom-

eter, spatial coherence measurements were implemented for quasi–monochromatic

light. For broadband light, the system was modified to improve the field of view and

spectral blur by inserting a diffraction grating. Then the cross spectral density was

recovered by taking the Fourier transform. The cross spectral density of the field dif-

fracted by the volume hologram encodes both depth and lateral information of a scene.

The binary depth discrimination capability has been demonstrated for flat uniform

featureless objects under both quasi–monochromatic and broadband illumination.

5.1.3 Wigner analysis

The Wigner distribution function for volume holograms was introduced. Basic prop-

erties and advantages of using the Wigner analysis were presented. While the Wigner

representations of thin transparencies such as lenses, gratings, apertures, and phase

masks have already been reported, the Wigner representation of volume holograms

has not been derived because the volume holograms are volumetric optical elements.

Using a linear system approach, we established how to derive the Wigner representa-

tion of volume holograms and VHI systems. The WDF of volume holograms describes

well the shift variant nature of volume holograms in Wigner space.

The Wigner analysis was applied to explore the axial imaging process, in which

depth information of a scene is obtained from captured intensity images. We explored

the shift variant/invariant imaging kernels in Wigner space. The backward imaging

and integration kernels are introduced; the shift invariant systems have identical

integration kernels at the input plane whereas the shift variant systems have shift

variant integration kennels, especially along the spatial frequency axis. By using the

same analysis, various imaging systems were examined and two important conditions

121



for achieving the axial imaging were established: 1) shift variant (or localized) objects

and 2) properly designed shift variant imaging kernels. The previously reported

conjecture, that axial imaging necessitates the loss of shift invariance, was proved

rigorously.

5.2 Future work

5.2.1 Volume diffraction formulation

• Absolute efficiency in the k–sphere method: Although the current com-

putational module can handle many different holograms including the ones with

shift variant grating vectors, the diffraction efficiency is still a relative quantity.

To include the absolute efficiency, more rigorous analysis such as coupled wave

theory [39] which computes the absolute diffraction efficiency from material

parameters and hologram specifications should be integrated.

• Crosstalk between multiplexed holograms in the k–sphere method:

The current module handles multiplexed holograms independently; in practice

crosstalk between holograms exists. The crosstalk should be taken into account

in a way that all the multiplexed holograms are probed by a probe beam si-

multaneously. Optimization routines can then utilize optical design tools to

minimize crosstalk.

• WDF representation in the k–sphere method: Using the WDF represen-

tation of the volume hologram, the WDF potentially can be integrated in ray

tracing software as well.

• Faster computation of the 3D Fourier transform approach: As pointed

out, the 3D Fourier transform method described in Sec. 2.3 is a straightforward

method; however, enormous computational resources are required. To reduce

the computational complexity, some constraints such as symmetry of the refrac-

tive index modulation may be exploited.
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5.2.2 Passive binary depth detection

• More rigorous system performance characterization: Even though the

passive binary depth detection was demonstrated, the effect of system param-

eters still has not been well characterized. The depth resolving capability de-

pends on many parameters such as the degree of coherence of imaged objects,

defocus distance, object size, the size of the aperture, focal lengths of the lenses,

and the noise characteristics of the interferometric measurements. Also it de-

pends on the current detection method, which measures spatial coherence at

the shear center ∆x = 0. A full-blown design methodology and optimization

has been outside the scope of the thesis; the topic itself is very rich and can

form the basis of several graduate theses in the future.

• Better dispersion matching: Currently, an off the shelf diffraction grating

and two additional lenses were used to compensate the dispersion caused by

the volume hologram; it is not perfectly matched. To achieve better disper-

sion matching, either the volume hologram or the diffraction grating should be

customized, including joint maximization of their diffraction efficiencies.

• Non–uniform/multiple objects: Although the depth resolving capability

was demonstrated for featureless objects, many objects in real world have fea-

tures. It is worthwhile to explore how the system performs differently for non–

uniform scene including scenes with multiple objects.

• Spectra of objects: In the experiments, the FG and BG objects had identical

spectra. If they have different spectra then the spectrum of the each object

should be measured for calibration as pointed in Sec. 3.3.2.

• Robust design and hybrid system: The cross spectral density measure-

ments are inherently interferometric measurements. In field applications, this

limits the practicability because the interferometer is very sensitive to environ-

mental factors: vibrations, temperature changes, air flows, etc. Thus, there

needs be a smarter structure which is more robust to disturbances or a com-
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pletely different system configuration. To bring more practicability and versa-

tility into applications, we might consider hybrid systems, in which traditional

imaging systems are combined with the proposed depth sensitive measurement.

Another possibility is to use the zeroth diffraction order. Currently, the zeroth

order diffraction is not used at all and the space bandwidth product of the CCD

is not fully used, and it could be utilized to measure regular intensity images

or spectrum of light with the zeroth order or CCD pixels not being used.

5.2.3 Wigner analysis

• Wigner representation of multiplexed holograms: The current repre-

sentation does not include multiplexed holograms. If multiplexed holograms

are described in Wigner space, the space–spatial frequency characteristics of

crosstalk can be investigated.

• New applications: The WDF can be used for analyzing and designing new

optical systems such as 3D displays or digital holographic particle imaging. It

would be interesting to explore the wavefront coding systems with both ampli-

tude and phase masks, in which the WDF and the ambiguity function could be

exploited.

• Analysis of partially coherent light: The current formulation only deals

with coherent light. Since the WDF can be used with partially coherent light,

it would be very interesting to explore the spatial coherence change in various

imaging systems.

• Depth resolution in Wigner space: The depth resolution in Wigner space

may be defined as the minimum slope change of the WDF that the system

can resolve. It would be interesting to investigate the depth resolution of vari-

ous axial imaging systems in Wigner space, especially in connection with their

respective amount of shift variance.
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Appendix A

Derivation of Eq. (4.28)

This derivation demonstrates how the intensity of the Bragg diffraction image is

obtained from the Wigner analysis in the 4–f VHI system.

I(x2) =

∫
W(x2, u2)du2 =

∫∫
Λ

(
u1 + u2

M

)
sinc {(M − |u1 + u2|) 4x1} du1du2

=

∫ [∫ −u1

−u1−M

(M + u1 + u2) sinc {(M + u1 + u2) 4x1} du2

+

∫ −u1+M

−u1

(M − u1 − u2) sinc {(M − u1 − u2) 4x1} du2

]
du1

=

∫ [
1

4πx1

∫ −u1

−u1−M

sin {4πx1 (u1 + u2 + M)} du2

− 1

4πx1

∫ −u1+M

−u1

sin {4πx1 (u1 + u2 − M)}

]
du1

=

∫
1

16π2x2
1

{2 − 2 cos (4πx1M)} du1

= M2sinc2 (2x1M)

∫
du1 ∼ sinc2

(
Lθs

λf
x1

)
, (A.1)

where
∫

du1 is a constant because of the finite aperture of the system.
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Appendix B

Wigner representation of shift

variant/invariant systems

B.1 Shift invariant system

If the system is shift invariant, then the output field is computed by a convolution of

the input field and the impulse response as

E2(x2) =

∫
E1(x1)h(x2 − x1)dx1. (B.1)

Then, the WDF of the output field is computed as

W2(x2, u2) =

∫
E2(x2 + ξ

2
)E∗

2(x2 − ξ
2
)e−j2πu2ξdξ

=

∫ [∫
E1(x1)h(x2 + ξ

2
− x1)dx1

] [∫
E∗

1(x
′
1)h

∗(x2 − ξ
2
− x′

1)dx′
1

]
e−i2πu2ξdξ

=

∫∫ [∫
h(x2 + ξ

2
− x1)h

∗(x2 − ξ
2
− x′

1)e
−i2πu2ξdξ

]
E1(x1)E

∗
1(x

′
1)dx1dx′

1,

(B.2)
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where ξ is a dummy variable to compute the WDF, and x1 and x′
1 are dummy variables

from eq. (B.1). By defining new variables as

x1 = p +
q

2
, and (B.3)

x′
1 = p − q

2
, (B.4)

x1 and x′
1 are substituted to p and q:

W2(x2, u2) =

∫∫ [∫
h(x2 + ξ

2
− p − q

2
)h∗(x2 − ξ

2
− p + q

2
)e−i2πu2ξdξ

]
× E1(p + q

2
)E∗

1(p − q
2
)dpdq

=

∫∫ [∫
h(x2 − p + ξ+q

2
)h∗(x2 − p − ξ−q

2
)e−i2πu2ξdξ

]
E1(p + q

2
)E∗

1(p − q
2
)dpdq

=

∫∫ [∫
h(x2 − p + ξ+q

2
)h∗(x2 − p − ξ−q

2
)e−i2πu2(ξ−q)dξ

]
E1(p+ q

2
)E∗

1(p−
q
2
)e−i2πu2qdpdq.

(B.5)

In the first integration, ξ is integrated from −∞ to ∞ for a given q in the third

integral. A new variable t = ξ − q is used, where the integration with respect to t is

still from −∞ to ∞. Then, eq. (B.5) is simplified as

W2(x2, u2) =

∫∫
E1(p + q

2
)E∗

1(p − q
2
)e−i2πu2qdpdq[∫

h(x2 − p + t
2
)h∗(x2 − p − t

2
)e−i2πu2tdt

]
=

∫∫
Ksi(x2 − p)E1(p + q

2
)E∗

1(p − q
2
)e−i2πu2qdpdq, (B.6)

where

Ksi(x2 − p, u2) =

∫
h(x2 − p + t

2
)h∗(x2 − p − t

2
)e−i2πu2tdt. (B.7)
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Note that Ksi is the WDF of the impulse response. Since one integral is the WDF of

the input field, we obtain

W2(x2, u2) =

∫
Ksi(x2 − p)

[∫
E1(p + q

2
)E∗

1(p − q
2
)e−i2πu2qdq

]
dp,

=

∫
Ksi(x2 − p, u2)W1(p, u2)dp. (B.8)

Since p is dummy variable, replacing p with x1 leads to the final equation.

W2(x2, u2) =

∫
Ksi(x2 − x1, u2)W1(x1, u2)dx1. (B.9)

B.2 Shift variant system

For a shift variant system, the input and output are represented as integrals with a

shift variant impulse response as

E2(x2) =

∫
E1(x1)h(x2; x1)dx1. (B.10)

Applying the definition of the WDF to the output field and substituting x1 and x′
1

into p and q gives

W2(x2, u2) =

∫
E2(x2 + ξ

2
)E∗

2(x2 − ξ
2
)e−i2πu2ξdξ

=

∫ [∫
E1(x1)h(x2 + ξ

2
; x1)dx1

] [∫
E1(x

′
1)h(x2 − ξ

2
; x′

1)dx′
1

]
e−i2πu2ξdξ

=

∫∫ [∫
h(x2 + ξ

2
; p + q

2
)h∗(x2 − ξ

2
; p − q

2
)e−i2πu2ξdξ

]
E1(p + q

2
)E∗

1(p − q
2
)dpdq.

(B.11)

Since h(x2; x1) is a function of two input arguments, the double Wigner distribution

function of the impulse response [86] is defined as

Ksv(x2, u2; x1, u1) =

∫∫
h(x2 + ξ

2
; x1 + η

2
)h∗(x2− ξ

2
; x1− η

2
)e−i2π(u2ξ−u1η)dξdη, (B.12)
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and equivalently we have

∫
h(x2 + ξ

2
; p + q

2
)h∗(x2 − ξ

2
; p − q

2
)e−i2πu2ξdξ

=

∫
Ksv(x2, u2; p, u1)e

−i2πu1qdu1. (B.13)

Note that the inverse Fourier transform with respect to η in eq. (B.12) moves to the

right hand side in eq. (B.13). Substituting eq. (B.13) into eq. (B.11), we finally have

W2(x2, u2) =

∫∫ [∫
Ksv(x2, u2; p, u1)e

−i2πu1qdu1

]
E1(p + q

2
)E∗

1(p − q
2
)dpdq

=

∫∫
Ksv(x2, u2; p, u1)

[∫
E1(p + q

2
)E∗

1(p − q
2
)e−i2πu1qdq

]
du1dp

=

∫∫
Ksv(x2, u2; p, u1)W1(p, u1)dpdu1. (B.14)

Replacing the dummy variable p with x1 leads to the final equation.

W2(x2, u2) =

∫∫
Ksv(x2, u2; x1, u1)W1(x1, u1)dx1du1. (B.15)
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