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Abstract

The oxygen reduction reaction (ORR) on platinum over yttria-stabilized zirconia
(YSZ) is examined via electrochemical impedance spectroscopy (EIS) for oxygen par-
tial pressures between 10−4 and 1 atm and at temperatures between 475 and 700�.
Use of photolithographic techniques in electrode fabrication renders a precise geom-
etry of the Pt electrodes. Circular electrode design leads to cylindrical symmetry so
that models may be applied exactly to the experimental geometry. Interpretation of
EIS spectra is carried out by reducing and then extending existing models, and is
consistent with the postulate that ORR is rate-limited jointly by two surface chem-
ical processes, namely, sorption/dissociation of molecular O2 into Oδ−

a over Pt, as
well as surface diffusion. Further, the novel experimental design, in conjunction with
streamlined analysis techniques, provides accurate surface characterization within the
electrochemical environment and allows for a more transparent comparison to rele-
vant literature data. An adsorption coverage isotherm is extracted, and the surface
diffusion coefficient is obtained for a number of experimental conditions. Extracted
diffusivities fell between 2 × 10−2 and 2 × 10−7 cm2/s, in agreement with literature
values for the indicated temperature range.

Thesis Supervisor: Yang Shao-Horn
Title: Associate Professor
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Chapter 1

Introduction

This work will not solve the world’s energy crisis. It will not reverse global warming.

It will not help to conserve the world’s precious oil reserves. It will not, by itself,

make fuel cells a commercially viable technology. But perhaps it is a humble step

in the right direction. It is my belief that science proceeds by myriad small steps,

notwithstanding the occasional major breakthrough to generate renewed interest and

ideas. And it is my hope that applied science will play a role in the solution of the

challenges faced by the global society.

Most likely, the reader of this work has also chosen a career in the applied sci-

ences, and agrees with these statements. And for this reason, I feel compelled to

state something else: though we may believe in the ability of our profession to bring

about social change while extending the grasp of the human mind, it is important for

us to remember that the solution to society’s great challenges will not come entirely

from the laboratory. And, in the sense that we who have chosen technical and scien-

tific professions are perhaps in a better position to understand how this technology

affects, or might affect, our world, it is our responsibility to educate the society at

large about how it can improve its lot, both in the present and in the future. It is

therefore exceedingly important for the scientific community, and particularly the ap-

plied science community, to work together with government officials and other public

servants at every level - municipal, state or provincial, national, and multinational

- to better implement existing technological solutions and to prepare for long-term
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changes. Imagine how much energy could be saved if governments made a real effort

to enforce or reward the use of compact fluorescent lamps rather than incandescents1,

or of small heaters inside truck cabs. And imagine the possibilities of planning a

comprehensive, sustainable energy infrastructure now, rather than twenty years from

now.

This stated, I will proceed to the subject of the present work. The primary goal of

this thesis is to characterize the oxygen reduction reaction on platinum over the solid

electrolyte, yttria-stabilized zirconia (YSZ). Electrochemical impedance spectroscopy

(EIS) is used to characterize the ORR, in conjunction with novel microfabrication

techniques which render possible the precise control of electrode geometry. In charac-

terizing ORR, I hope to demonstrate quantitatively that dissociative adsorption and

surface diffusion together colimit the oxygen reduction reaction (ORR). This concept

of colimited ORR on Pt has existed within the electrocatalysis community since at

least as early as 1990, but the quantitative validation of the model is as yet incomplete

[2].

1.1 Technological Context

Fuel cells stand alongside batteries, supercapacitors, flywheels, and many other de-

vices as energy storage technology. The fuel of a fuel cell, whether hydrogen gas or

methanol or some other chemical, always comes from elsewhere. These fuels, espe-

cially hydrogen, may serve as chemical energy storage media, whether as a means

of making portable the mains power from large, centralized fission or fusion power

plants, or for smoothing output from distributed renewable systems with irregular

power generation, as wind or tidal turbines or solar panels. The fuel cell’s role is to

provide an efficient means of utilizing the energy stored within these chemical media,

namely, by converting the chemical energy into electrical energy. Fuel cells are readily

scalable, so that the same or similar technology might power a single small electronic

1Indeed, the U.S. has recently made major legislation in the regulation of lighting technology [13,
sec. 321], as have many other nations.
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device or an entire vehicle, a room in a house or a large hospital, and so forth. The

technology is potentially portable, as both fuel and fuel cell can be taken onboard

the device.

Within the family of fuel cell technologies, the solid oxide fuel cell (SOFC) has

emerged as a promising candidate technology for small- to medium-scale power plants,

especially in the capacity of a secondary power source, as, for example, a stationary

backup generator or a source of electricity for large fossil-fuel powered vehicles. Be-

cause it requires high-temperatures (currently around 800� [26]) for operation, it

is also ideal for use in combined-cycle power sources, where excess heat from the

conventional power systems, whether electrical generators or large vehicle engines, or

industrial operations may be used to elevate SOFC systems to operating tempera-

tures.

The technology is distinguished by its use of oxygen ions passing through a solid

oxide electrolyte (here, YSZ) as the ion conductor, rather than hydrogen ions (pro-

tons) as in the low-temperature proton-exchange membrane fuel cell (PEMFC). Major

strides have been made in the technology by using thinner electrolyte layers to reduce

electrolyte resistance. However, a slow oxygen reduction reaction still limits device

performance.

But the oxide materials that make possible oxygen ion transport are also responsi-

ble for the requirement of a high operating temperature for SOFC devices. This high

operating temperature has presented a major challenge to the technology’s commer-

cial deployment, particularly with regard to sealing the system and separating fuel

and oxygen/air flows. Platinum is the best naturally available catalyst for ORR, and

is widely used for proton-exchange membrane fuel cells [26], as well as industrially

in CO oxidation [44]. Its use in SOFCs might allow lower operating temperatures.

While it is more likely that mixed conductor oxide systems, as lanthanum strontium

manganate (LSM) or lanthanum strontium ferrate (LSF) will see eventual use in com-

mercial SOFCs [26], the study of platinum in the SOFC system is still of fundamental

importance.
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1.1.1 Previous Work

A shortcoming of many of the Pt/YSZ studies in the literature is that model param-

eters are often estimated only at the level of order-of-magnitude accuracy. Specific

examples of this appear in the excellent body of work by Mitterdorfer and Gauck-

ler, where the triple-phase boundary length, ℓ, is only estimated roughly for the

study’s porous electrodes [36, 37, 38]. Studies performed in the Electrochemical En-

ergy Laboratory here at MIT, as well as in other laboratories, have sought to im-

prove this situation by using photolithography to precisely define square electrodes,

thereby specifying by design the geometrical parameters (chiefly perimeter length,

area, and height above the YSZ substrate). However, in-plane studies have led to

non-uniformity and uncertainty in the activity of different regions on the electrode2.

The square-electrode through-plane scheme improves upon this situation, as the field

distribution and current flow through the YSZ will have four-fold symmetry. How-

ever, the fields and currents at the corners of the electrode will be complex, and the

surface problem will not reduce to one dimension. For larger square electrodes, this

issue becomes less objectionable, but it is still troublesome.

The approach taken here is to use photolithography to precisely define cylindrically-

symmetric geometries. The electrode radii studied are 12.5, 25, 50, 100, and 200 µm

- multiple sizes are intended to help discern scaling behavior of the impedance (in

particular, whether the scaling of each impedance contribution depends on perimeter

or area of the electrode).

Cylindrical symmetry makes the triple phase boundary (TPB) universally uni-

form, and reduces the modeling problem from two dimensions to one. This eliminates

a potential source of error in the analysis unrelated to the physical interpretation of

the processes in the ORR pathway, allowing focus to remain on whether the envisioned

reaction pathway, as encapsulated in the governing PDEs, adequately describes the

actual pathway.

2Here, in-plane refers to the scheme where the electrode and counterelectrode sit in the same plane
over the YSZ substrate, and oxygen ions travel laterally through the YSZ electrolyte. Through-plane
refers to placing the electrode and counterelectrode on opposite sides of the solid electrolyte.
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Figure 1-1 summarizes the evolution of microelectrode geometries from porous

electrodes to the proposed cylindrically-symmetric variants. It should be noted that

these other microelectrode designs are not without merit; the point emphasized here

is that the proposed cylindrical geometry is the best scheme for the present purposes.

1.2 Goals of the Study

It has been stated that the primary goal of this work is to demonstrate that the

oxygen reduction reaction on Pt over YSZ is colimited by dissociative adsorption and

surface diffusion. In the process of achieving this goal, this work generates coverage

isotherms for oxygen on polycrystalline Pt; such isotherms are difficult to find in the

literature (see section 2.4.1), despite intense study of oxygen adsorption on Pt, and so

the coverage data presented here is a potentially unique contribution. Also, diffusivity

data is produced via analysis of EIS spectra. Again, while diffusion of oxygen on Pt

has been extensively studied, diffusivity data is limited largely to high-vacuum, low-

temperature conditions, with a few notable exceptions. Diffusivity data for oxygen on

thin film polycrystalline Pt over a range of pressures and temperatures is therefore an

important output of this work. Together, coverage and diffusivity data collected over

a range of thermodynamic states provide a means of investigating the details of the

platinum-oxygen system. Understanding this system is a key element in the design

and synthesis of new catalyst materials for ORR, as the goal of of this design work

might be interpreted in many ways as recreating the Pt-O system without using Pt3.

Aside from these products of the study, the methodology presented here is also

novel in many ways, and may be exported for the analysis of other similar, or per-

haps not-so-similar, material systems. In particular, the use of microfabrication tech-

niques to create experimental testbeds whose geometries are amenable to theoretical

investigation represents a useful paradigm that may be emulated in other charac-

terization studies. Further, the test system need not precisely recreate conditions

in commercially-viable versions of the technology and material set in order to char-

3effectively alchemy!
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acterize the processes in these systems; indeed, it may be essential to simplify the

experimental picture to extract any useful information. In addition, the power of

analysis via electrochemical impedance spectroscopy, and the ability of this class of

experiments to isolate and inform on physical processes, is demonstrated.

Lastly, the thesis records a number of useful theoretical results, among them

models of impedance spectra, coverage isotherms, and diffusivity functions from first

principles at the level of statistical mechanics. Detailed derivations of this work are

present in the appendices.

1.3 Outline

The remaining chapters of this thesis consist of

� an outline of the theoretical framework used to interpret EIS spectra,

� a presentation of details on the experimental implementation and analysis,

� a discussion of the results of the experiments,

� a proposal for future work related to the project, and

� concluding remarks.

The appendices include

� a list of symbols used in the work,

� derivations from statistical mechanics,

� derivations of electrochemical spectra for several different geometries and com-

parison with spectra previously derived elsewhere,

� a description of some of the mathematical details and useful tools of the fitting

procedure,
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� a generalization of a theoretical result obtained by Mitterdorfer and Gauckler

[36] regarding the coverage value which maximizes current for a given temper-

ature, and

� a set of tables containing estimates found in the literature of a number of model

parameters from this study.

These bodies of work are connected; the theoretical picture generated is used

to help design a better experiment, and to predict experimental outcomes prior to

data collection. And as experimental realities present themselves, the theoretical

picture is modified to focus on those aspects of the physical processes which might

be understood from the available data and given uncertainties.
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Figure 1-1: Evolution of microelectrode geometries leading to current configuration.
Dark green-yellow represents porous Pt paste; light yellow is solid polycrystalline Pt.
Not to scale. (a) Porous electrode in through-plane configuration (used in [36, 37, 38]).
Porous electrodes, while more realistic to actual electrocatalyst design, are not ideal
test platforms, as contact length and area are hard to determine, as are the effects of
gas traveling through micropores in order to reach the catalytically-active region. (b)
In-plane and (c) through-plane square electrode geometries with solid (non-porous)
microstructure, defined by photolithography, allow for precise determination of ge-
ometrical parameters, but are still hard to analyze due to limited symmetries. (d)
Circular microelectrodes in the through-plane configuration, with a uniform ground-
plane on the electrolyte underside, creates cylindrical symmetry, reducing the dimen-
sionality of the Pt surface analysis problem from two to one. In this case, error in
the ORR modeling may be conclusively attributed to inadequacies in the proposed
scheme of governing physical processes rather than an inexact solution to the PDE
problem.
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Chapter 2

Theory

2.1 Introduction

The purpose of this chapter is to arrive at a context for understanding electrochemical

impedance spectra. Experiments described in subsequent chapters are designed in

such a way as to reinforce the quantitative relationships described here.

An outline of the chapter is as follows: first, a model is introduced which proposes

a set of physical processes at work during EIS experiments. These processes include

gas adsorption onto a metal surface, transport of adsorbate on the surface, and charge

transfer at the metal-electrolyte boundary. Subsequently, the chapter demonstrates

how impedance expressions are derived from these first principles. Finally, assump-

tions inherent in the model, as well as the model’s major shortcomings, are included

in the discussion.

2.2 Model

2.2.1 Physical Processes

Adsorption/Desorption and Isotherm

Theoretical treatment of gas adsorption onto metals begins with the seminal model

of Irving Langmuir, which dates to 1916 [28, see also [51]]. The theory likens the
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adsorption process to a chemical reaction,

Agas + αs
kads−−⇀↽−−
kdes

αAads (2.1)

Here, “reactants” in the model are the gas molecules, Agas, and vacant adsorption

sites on the surface, s; the “products” consist of the adsorbate population, Aads.

Parameter, α, represents the stoichiometry of the adsorption reaction and allows for

the description of dissociation and association in the surface reaction. kads and kdes

are the rate constants for the adsorption and desorption reactions. The law of mass

action applied to 2.1 produces kinetic relations which can be solved for the equilibrium

case to produce an isotherm relating gas concentration to adsorbate coverage.

In the Langmuir model is found most of the essential concepts of adsorption -

adsorption site limitation (by reaction with empty sites, s, which may be related to

adsorbate coverage as s = Γ − Aads, where Γ is the total number of surface sites),

association/dissociation, and adsorption/desorption activation (through appropriate

interpretation of kads and kdes). It may be further extended by adding additional

reactions to create a kinetic hierarchy, which might be used to treat multi-step re-

actions, multilayer adsorption, and so forth. Its two main shortcomings are its phe-

nomenological nature, which renders interpretation of parameters (particularly the

rate constants) somewhat imprecise, and its inability to gracefully handle interac-

tions between adsorbates (which would manifest themselves in a dependence of the

rate constants on Aads)
1.

The application of the Langmuir model to the present case is demonstrated in the

initial studies of ORR on Pt by Mitterdorfer and Gauckler; there, the model takes

the form [36, 37],

P + 2Γ(1 − θ)
kads−−⇀↽−−
kdes

2Γθ (2.2)

where P is the O2 gas partial pressure. The use of the gas partial pressure instead of

1The Langmuir model also assumes a uniform surface; it is conceivable that additional coupled
reactions might be added to describe a nonuniform surface. However, despite the fact that nonuni-
form surfaces are the rule rather than the exception, for simplicity’s sake, they are generally excluded
from the discussion herein.
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the gas concentration results in different units for each of the reaction rate constants,

but in general there is some ambiguity as to the choice of Agas, as the gas exists

in a different medium than the surface concentration. One option would be to let

Agas be a sticking probability, with kads representing the number of oxygen atoms

impinging on the surface per unit time; then the rate constants may be compared

more naturally.

More recent theoretical descriptions of adsorption have extended the kinetics ap-

proach of the Langmuir model [12], blended the kinetics approach with principles

from statistical mechanics [25], used state transition theory and Fermi’s Golden Rule

to analyze the adsorption step [16], and conducted first-principles simulations to an-

alyze stable states [49], among other contributions. Tang et al. have created a phase

diagram showing the stable phases of chemisorbed atomic O on the Pt(111) surface

[49]. This is a very useful reference for understanding the structure of the adsorbate

layer; also useful is its set of energetics data with interaction energies for the first

several diagrams of a diagram expansion.

The work by Kreuzer et al. is particularly suitable for the purposes of this pa-

per in that it incorporates and explains experimentally-determined parameters, in

particular, chemisorption and physisorption binding energies, dissociation barriers,

and sticking coefficients [25] (see Appendix F for literature-recorded values of these

parameters). The authors combine a kinetics and equilibrium statistical mechanics

approach to model the sorption process; this scheme is typified by the expression,

(

dθ

dt

)

ad−des

= S(θ, T )

[

as
λ

h
(P − P )

]

, (2.3)

where as = 1
Γ

is the area per adsorption site so that as
λ
h
P is the total flux rate of im-

pinging particles per adsorption site, λ = h/
√

2πmO2
kBT is the thermal wavelength

of the oxygen gas with mO2
the mass of an oxygen molecule, P is the instantaneous

gas pressure and P the pressure corresponding to equilibrium at the instantaneous

coverage, and S the sticking coefficient (the probability that an impinging particle will

adsorb). An advantage of this scheme is that data for S exists from surface studies
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[20, 17, 56, 54, 58, for example]. For our purposes, we might more conveniently de-

fine the instantaneous, linearized adsorption rate, α, in the perturbation limit where

∆P = P −P is small, and θ̃ is a small perturbation in coverage, as (see Appendix C)

(

dθ

dt

)

ad−des

= −αθ̃ = −S(θ, T )

[

as
λ

h

(

∂P

∂θ

)

dθ

]

. (2.4)

The quantity, ∂P
∂θ

, is readily evaluated from the coverage isotherm (see Appendix

B),

(

θ

1 − θ
eβu0θ

)2

= e2βǫ
z2

v,ads

zv,r,gas

Pλ3

kBT
(2.5)

as

dP

dθ
= 2P

(

βu0 +
1

θ(1 − θ)

)

. (2.6)

u0 relates to the energetics of adsorbate-adsorbate interactions; it is positive when

reactions are repulsive and negative when they are attractive. Also, β ≡ 1/(kBT ).

A detailed derivation of the coverage isotherm from statistical mechanics first

principles appears in Appendix B; see also [22, 25, 9] for methods2. Implicit in the

use of this quantity is the statement that the rates of adsorption and desorption

are equal at equilibrium. As such, the desorption process need never be modeled

explicitly so long as the equilibrium rate of adsorption is known at the instantaneous

coverage.

While seemingly more complex, 2.3 actually does not introduce a greater number

of parameters than present in the Langmuir sorption expression in 2.2. What’s more,

all parameters present in 2.3 may be extracted or estimated from surface studies in

the literature [17, 18, 20, 25, 29, 54, 56]; Appendix F lists many parameter values

found in the literature. This and other similar modifications to 2.2 help to make the

results of EIS data analysis more transparent with respect to the current body of

2It may seem odd to take the derivative of pressure with respect to coverage when, in fact,
pressure is an experimental control variable. However, we are interested in an approximation for the
relative difference of pressure from that which would give equilibrium at the instantaneous coverage,
and for this purpose, the derivative above is appropriate.

32



10
0

10
5

10
−5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

P [Pa]

α 
[r

ad
/s

]

u
0
=0.12 eV

 

 

10
−5

10
0

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

P [Pa]

α 
[r

ad
/s

]

u
0
=−0.21 eV

 

 

600oC

650oC

700oC

750oC

800oC

Figure 2-1: The linearized net adsorption rate, α, against pressure for several tem-
peratures. The plot on the left displays the parameter when interactions between
adsorbates are repulsive according to the interaction energy listed in [56]; on the
right, when interactions are attractive according to the interaction energetics in [49]
for the p(2 × 2) configuration.

existing work.

Figure 2-1 plots the linearized net adsorption rate against pressure for several

temperatures. Behavior is monotonic in pressure for repulsive interactions between

adsorbates, but can go through a maximum and a minimum when interactions are

attractive.

Transport

Once oxygen molecules adsorb and dissociate on the surface, they must migrate to the

Pt-YSZ interface. Platinum is not an ion conductor, so we can expect surface diffusion

to be the dominant mechanism of transport. The starting point for a theoretical

interpretation of diffusion phenomena is the phenomenological Fick’s law,
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J = −D∇C

∂θ

∂t
= ∇ [D(θ)∇θ]

(2.7)

which states that the diffusion flux, J , is proportional to, and flows down, the concen-

tration gradient, and that the total particle number is conserved3, ∇C. The constant

of proportionality, D, is called the diffusion coefficient or the diffusivity. Fick’s law

may be derived by considering Brownian motion of non-interacting particles [32], and

is mathematically identical to Fourier’s law of heat diffusion and a family of related

phenomenological relations. For non-interacting particles undergoing random walks

(e.g. molecules in a dilute gas, phonons, etc.), D is constant with respect to concen-

tration. In fact, even for uniform media, D should not be expected to be a constant

with respect to C so long as non-hard-core interactions between diffusing particles

exist4. The effect of concentration (density) on the diffusion coefficient has been the

subject of a number of theoretical studies [42, 4, 9, 57], one of the more influential

of which is that by Reed and Ehrlich from 1981 [42], which pointed out that the

driving force for diffusion is a gradient in the chemical potential. To help understand

the mechanisms that result in a dependence of D on concentration, Reed and Ehrlich

introduced a factorization, now standard in the literature [9, 57], of the form (in one

dimension, x),

J = −LT
∂µ

∂x
(2.8)

where LT is a phenomenological transport coefficient. By comparison with 2.7,

3In reviewing literature and in communications with colleagues, I have found that there is oc-
casional confusion as to how Fick’s law applies to situations in other than three dimensions. The
general rule is that the flux represents flow normal to a differential unit of dimension d− 1, where d
is the number of dimensions. C is the concentration per unit d-dimensional volume, and is in units
of number/lengthd. The diffusivity, D, always has units of length2/time. Here, we are interested in
surface phenomena; consequently, the flux is per unit length, and concentration per unit area.

4There might also exist strong interactions between diffusing particles and the medium, but these
might be viewed as “indirect” interparticle interactions, and could be treated as such mathematically.
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J = −LT
∂µ

∂x
= −LT kBT

(

∂µ/kBT

∂θ

)(

∂θ

∂x

)

, (2.9)

we can now identify the diffusion coefficient as

D = −LT kBT

(

∂µ/kBT

∂θ

)

(2.10)

This can be further decomposed into a tracer diffusion prefactor,

D0 = −LT kBT (2.11)

and a dimensionless thermodynamic factor,

χt =
∂µ/kBT

∂θ
, (2.12)

related to the mean square concentration fluctuation over the spatial domain. D0 is

the diffusion coefficient which arises when particle-particle interactions are negligible

(in which case χt tends to unity).

Using an extension of this theory by Bokun et al. [9], and simplifying their results

with the mean field approximations used throughout this paper, we can get a simple

analytical expression for D highlighting the dependence of D on θ:

D(θ) = D0e
−βǫeθβu0 (1 + βu0θ(1 − θ)) (2.13)

ǫ is the adparticle binding energy to the surface. The diffusion energy barrier is

contained in D0. A derivation of this expression is given in Appendix B.

Figure 2-2 displays the dependence of D on coverage predicted by this result. D

increases with θ for repulsive interactions between adsorbates (u0 > 0) and decreases

with θ for attractive interactions (u0 < 0). This behavior might be intuited by rea-

soning that adsorbates tend to stick together with attractive interactions, slowing

down transport, and to push each other apart when interactions are repulsive, speed-

ing up transport. When u0=0, hard-sphere interactions still exist by merit of the
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site-limiting requirement (each lattice site can only support one adsorbate). How-

ever, in this limit, there is no change in D with respect to θ, as shown in [42]. It

is noteworthy that when −βu0 > 4, the expression predicts values for D less than

zero. This is not necessarily unphysical - it simply states that transport proceeds up

the concentration gradient instead of down because high-concentration clumps are

finally energetically-favorable enough to defeat random motions in determining the

evolution of concentration. However, in this case, interactions are the dominant driv-

ing force of transport instead of a correction to Brownian motion, and as such, the

simple diffusivity expressions presented here are probably fairly inaccurate beyond

the qualitative description given above.

It is reassuring that the diffusion data reported by Mitterdorfer and Gauckler tend

to reproduce the behavior seen in Figure 2-2, although those authors are skeptical

of the accuracy of this particular work [37] due to the simplicity of the adsorption

isotherm used in their modeling.

Za luska-Kotur et al. take a different approach from [9], invoking a Markovian

master equation for the hopping model to derive an analytical expression for the

chemical diffusion coefficient without the Reed-Ehrlich factorization [57]. However,

care must be exercised in applying the results from this and other studies based

around the hopping model, as diffusion by a Markov process is only realistic for

thermal energies sufficiently lower than the migration energy barrier. For the high-

temperatures of the present work, this is an important limitation to these kinds of

lattice-hopping models of diffusion [4] (of which the model derived from Bokun et al.

is one).

There is a lot of excellent experimental work on surface diffusion in general, and

oxygen diffusion on Pt in particular; however, extensive data of diffusion dependence

on coverage, particularly in the temperature and coverage regimes relevant to this

experiment, are hard to find in the literature [4, 30, 53]. In 2.5.2, we will examine

some of the data provided by Mitterdorfer and Gauckler in their EIS study of ORR

on Pt-YSZ [37].

Appendix F lists diffusivity parameters for O2 on Pt found in the literature and
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Figure 2-2: Dependence of diffusion coefficient on coverage after mean-field approach
to account for adsorbate interactions. D increases with coverage when interactions
are repulsive and decreases when interactions are attractive.

used here in theoretical calculations.

Charge Transfer

Upon adsorption, oxygen picks up a quantity of charge from the Pt surface - this

quantity depends on the state into which the oxygen adsorbs [14]. There is some un-

certainty as to how much charge the oxygen ions pick up on polycrystalline Pt, and

how much must be transferred before incorporation into the YSZ solid electrolyte,

and, indeed, what steps are involved in the incorporation process [2]. However, if

a single charge transfer/incorporation step is assumed which (a) adjusts the oxygen

oxidation state until it is appropriate to enter or exit the electrolyte and (b) ac-

counts for oxygen ions entering or leaving a vacancy in the YSZ, we might write a

phenomenological kinetic relation accounting for the charge transfer step as
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Γθ + V..
O + (×− δ−)e−

k1−−⇀↽−−
k
−1

O×
O + Γ(1 − θ). (2.14)

where k1 is the forward electrochemical rate constant, k−1 the backward, V..
O is the

oxygen vacancy concentration inside the YSZ (material constant), O×
O the oxygen ions

concentration, (×− δ−)e− is representative of a final charge transfer before adsorbate

incorporation into the YSZ, and the term, Γ(1 − θ) is the empty-site concentration

on the surface. Here, × is the oxidation state of oxygen in the electrolyte, and δ−

that on the Pt surface. This formulation is employed in the work of Mitterdorfer and

Gauckler [36, 37, 38], and leads to an expression for the flux of oxygen ions into the

YSZ:

φ(rtpb)into YSZ = Γθk1V
..
O − Γ(1 − θ)k−1O

×
O (2.15)

The electric current into the YSZ is simply the flux multiplied by the total TPB

length, ℓ, and the total charge transferred by each oxygen anion incorporation, −nqe

(here, n=2):

I = −nqeℓφ(rtpb)into YSZ = nqeℓΓ((1 − θ)k−1O
×
O − θk1V

..
O) (2.16)

where θ here is evaluated at the triple phase boundary.

This provides a constraint relating Faradaic current and coverage, and will provide

a boundary condition in the determination of the coverage profile on the surface.

2.2.2 Perturbation Formalism

The premise of electrochemical impedance spectroscopy is that the applied sinusoidal

voltage is sufficiently small so as only to perturb the system in a linear manner.

The natural place to enforce this requirement is the only time-varying state variable:

coverage. It is convenient to decompose the coverage as

θ = θ̄ + θ̃ ≈ θ̄, (2.17)
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where θ̄ is the mean or equilibrium coverage and θ̃ is a small, time-varying perturba-

tion.

To extend the small-signal formalism to parameters that depend upon coverage,

we carry out a Taylor series expansion for any such quantity, f(θ), in θ about θ̄,

f(θ) =
∞
∑

n=0

1

n!

[

dnf

dθn

]

θ̄

θ̃n = f(θ̄) +

[

df

dθ

]

θ̄

θ̃ + · · · (2.18)

Assuming the series is well-ordered such that the higher-order terms decay, we

desire that f(θ) = f(θ̄) +
[

df
dθ

]

θ̄
θ̃ + O(θ̃2) ≈ f(θ̄), or

f(θ̄) ≫
[

df

dθ

]

θ̄

θ̃ (2.19)

This is the zeroth-order approximation for coverage-dependent values; the model

parameters for which this approximation is employed are the diffusion coefficient, D,

and effective net adsorption rate, α. More will be said on the applicability of this

approximation in 2.5.2.

Rewriting the governing differential equations from the previous sections with the

perturbation scheme, we obtain

(

∂θ̃

∂t

)

transport

≈ D(θ̄)∇2θ̃ (2.20)

(

dθ

dt

)

ad−des

= S(θ̄, T )

[

as
λ

h
(P − P )

]

, (2.21)

2.2.3 Synthesis of Governing Equations

When the adsorption and diffusion relations are combined with charge transfer at

the triple phase boundary within the perturbation limit, the result is the following

governing differential equation,

∂θ̃

∂t
= D(θ̄)∇2θ̃ − α(θ̄)θ̃ (2.22)
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with boundary conditions,

1. φr(Re; t) =
I

nqeℓ
= −D(θ̄)Γ∇θ̃ Flux condition at Pt-YSZ interface

2. φr(0) = 0 Flux condition at origin

(2.23)

Here, φr is the radial component of the oxygen ion flux over the Pt surface (number

per unit length per unit time), Re the radius of the circular electrode, and ℓ = 2πRe

the triple phase boundary length5. The tangential component of the flux is zero by

symmetry. We will make use of the reaction in 2.14 for the Faradaic current, I, at

the Pt-YSZ interface,

I = nqeℓΓ
[

k−1O
×
O(1 − θ) − k1V

..
Oθ
]

(2.24)

where the forward and backward electrochemical rate constants, k−1 and k1, are

defined as

k−1 = k−1,0e
b
−1v (2.25a)

k1 = k1,0e
b1v (2.25b)

with

b−1 ≡
qe

kBT
(1 − ζ) (2.26a)

b1 ≡ − qe

kBT
ζ. (2.26b)

v is the overpotential above the equilibrium voltage, v = V − Veq, and ζ ∈ [0, 1] is

the charge transfer coefficient6 between the forward and backward reactions, and is

usually around ½.

5These are two Neumann boundary conditions, and so only the relative changes of θ̃ are specified.
However, these relative shifts in θ̃ must be about zero by merit of the fact that this quantity is defined
as the perturbation about θ̄.

6or Tafel constant, symmetry factor
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2.3 Solution and Impedance

Detailed derivations for the expressions given below appear in Appendix C. This

appendix also includes derivations for two other geometries and boundary conditions,

and places the results in a more general context.

2.3.1 Solution to Governing Equations

The governing differential equation found above may be solved exactly in certain

restricted cases. One of these is the case of a circular electrode geometry. The

circular symmetry, combined with the negative sign before the coefficient, α, suggests

that the solutions will be in the form of a zeroth-order modified Bessel function of

the first kind, M0(x) 7. The solution is written as

θ̃(r) =
Ĩ

nqeΓℓD/ξ

M0(r/ξ)

M1(Re/ξ)
(2.27)

where r is the radial coordinate,

ξ ≡
√

D

jω + α
(2.28)

is the length-scale of the decay in perturbations from the triple phase boundary, and

M1 is the first-order modified Bessel function of the first kind.

It is noteworthy that θ̃ is proportional to Ĩ, where the tilde over the current

represents this quantity’s phasor-domain transform. This proportionality holds across

multiple geometries and boundary conditions.

7The traditional notation for the modified Bessel function uses an I [1]; however, an M is utilized
here to avoid confusion with current. Also, it is the negative sign before α which distinguishes the
solution as a modified Bessel function; this is just for convenience. In general, the modified Bessel
function of the first kind is related to the Bessel function of the first kind via Mp(x) = Jp(jx)/jp,
where j is the imaginary number (also otherwise referred to as −i, and again renamed as per the
electrical engineering convention to avoid confusion with current!).
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2.3.2 Impedance

Finally, by expanding the Faradaic current to first order in both θ and the overpo-

tential, v, substituting the previously-determined relations for the derivatives, and

taking advantage of the fact that θ̃ ∝ I, we arrive at an expression for impedance for

the cylindrical geometry,

Zcyl = Rct

(

1 +
M0 (Re/ξ) ∂I/∂θ

nqeℓΓM1 (Re/ξ) D/ξ

)

(2.29)

where

Rct ≡
(

∂I

∂v

)−1

(2.30)

Using the expression for Faradaic current in 2.24, the charge transfer resistance is

calculated as

Rct ≡
(

∂I

∂v

)−1

=
[

nqeℓΓ
(

b−1k−1O
×
O (1 − θ) − b1k1V

..
Oθ
)]−1

(2.31)

and for ∂I
∂θ

,
∂I

∂θ
= nqeℓΓ

(

k1V
..
O + k−1O

×
O

)

. (2.32)

When the Faradaic current is nominally zero, a useful simplification is obtained

from 2.24, namely,

θ (Re)

1 − θ (Re)
=

k−1O
×
O

k1V..
O

, (2.33)

where θ (Re) is the coverage at the edge of the electrode, with Re the electrode radius.

Invoking the perturbation approximation everywhere on the surface of the electrode,

θ = θ̄ + θ̃ ≈ θ̄, θ (Re) ≈ θ̄. The quantity,

Rct
∂I

∂θ

1

nqeℓΓ
,

becomes
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1

nqeℓΓ
qe

kBT
θ̄(1 − θ̄)

so that the frequency-dependent part of the cylindrical-electrode impedance is

Zcyl,f =
M0 (Re/ξ)

nqeℓΓ
qe

kBT
θ̄(1 − θ̄)M1 (Re/ξ) D/ξ

(2.34)

The benefit here is that the electrochemical rate constants, k1 and k−1, are8 re-

moved from the problem, and are replaced by terms involving only the coverage and

other known quantities. The coverage is already required in other parts of the model,

and as such, we have lowered the number of model parameters by one9, a huge sav-

ings in computational effort. Further, while it is difficult to determine the coverage

precisely, there are a number of theoretical and experimental methods for estimating

it [25, e.g.], whereas the electrochemical rate constants are much more complicated

quantities to work with.

Another interesting property of this simplification is that we have entirely removed

the electrolyte from the description of the frequency-dependent impedance compo-

nent. As such, within a frequency-independent offset, the same Faradaic component

of the impedance spectrum should arise regardless of the electrolyte identity. This is

a result of allowing the system to reach equilibrium; the equilibrium potential rela-

tive to a consistent reference electrode may vary from electrolyte to electrolyte, but

the behavior is the same for all electrodes for perturbations around this equilibrium

point. This is a readily testable claim, but is not investigated experimentally in the

present work (see Chapter 5).

8or, more precisely, their ratio is
9two if the individual rate constant values are never sought
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2.4 Interpretation of Results

2.4.1 Coverage Isotherm

Despite the fact that sorption of oxygen on platinum has been intensively studied

using surface methods [14, 17, 18, 30, 20, 44, 48, 49, 53, 54, 56], there is very little

data available on the coverage isotherm. Légaré et al. report an isotherm10 limited

to three values of coverage [29]; those authors believe that they are the first to pub-

lish such a finding. Kishimoto et al. condense the findings of Mizusaki et al. into

an isotherm [23], though in the work of Mizusaki et al., coverage is determined in-

directly via electrochemical measurements [40] (as opposed to using one of various

surface techniques, as low energy electron diffraction (LEED), or secondary ion mass

spectrometry (SIMS)). Similarly, Mitterdorfer and Gauckler, using indirect electro-

chemical techniques, report a coverage isotherm for one temperature in [37], and use

parameters extracted from their studies to simulate constant coverage contours for

various temperatures and pressures [38].

The coverage isotherm derived in Appendix B might be used to get an idea of

the coverages to be encountered in the experimental conditions here. Figure 2-3

shows the calculation from this coverage isotherm using parameters from literature

corresponding to the Pt(111) surface. It roughly agrees with the limited coverage

data available in [29]. The reference to θmax = 1/4 relates to an assumed saturation

in the (2×2) configuration; other configurations are possible, including (2×1) with a

saturation coverage of ½ [49]; however, (2 × 2) seems more prevalent in the literature

and ought to be more stable [17, 18, 49].

In the present work, we have a means for estimating coverage independently at

each temperature and pressure for which an electrochemical impedance spectrum is

collected. We also have a theoretical reference with which to compare these observa-

tions (see Section 2-3). As such, we have the opportunity to expand on the limited

coverage data available in the literature.

It should be noted that the exact number of available sites on the polycrystalline

10in fact, isocoverage - perhaps isokalypsi or isostroma
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Figure 2-3: Coverage isotherm for oxygen on Pt(111). Binding (1.6 eV) and net
interaction (0.12 eV) energies are from [56] (net repulsive interaction); vibrational
frequencies for adsorbed oxygen from [48]. The isotherm without interactions is also
shown. The effect of repulsive interactions is to depress the isotherms such that
higher pressures are needed to achieve the same coverages; the phenomenon is more
pronounced at higher coverages, and vanishes as θ → 0, as expected. Attractive
interactions pull up the isotherms toward lower pressures.

Pt surface is not known from literature. Mitterdorfer and Gauckler estimate the

value at 1×1019 m−2, which is the number of Pt atoms per square meter on the

Pt(111) surface. While this may cause difficulties in calculating accurate estimates

for model parameters based on first principles (in particular, α), it does not hamper

efforts to extract these parameters from EIS data, though it requires multiple spectra

at different thermodynamic states to ensure proper normalization for coverage from

trends in the data.
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2.4.2 Diffusion Coefficient

Analysis of the diffusion coefficient provides a number of rich topics of inquiry. To

begin, literature data themed on oxygen adsorption on Pt typically record repulsive

interactions between adsorbates [25, 56], while diffusion dependence on coverage for

this system suggests attractive interactions [4, 37, 42, 53]. In fact, interactions between

adsorbates show both attractive and repulsive interactions depending upon position

and configuration according to quantum-level studies [49]. As such, studying diffusion

gives insight into the interplay between adsorbate-surface and adsorbate-adsorbate.

Accurate estimation of this parameter also gives indirect information about de-

fect properties of the surface, and as such provides a means to characterize different

electrode treatments. And there are a number of fundamental questions that re-

main regarding surface diffusion of adsorbed gas on transition metals [4] - diffusivity

data from higher temperatures and pressures would be a valuable resource for this

endeavor, where many studies are carried out under high vacuum.

Figure 2-4 shows the diffusion coefficient calculation using repulsive interaction

energies from literature, as well as a plot with an arbitrary attractive energy which

more closely resembles literature diffusivity trends.

It should be remembered, however, that the simple picture of diffusion described in

this chapter and in Appendix B is likely far from quantitatively accurate. A number

of exotic behaviors, including ballistic motion coupled to adsorption and dissociation

events as well as other forms of long jumps, are not accounted for [4]. Fortunately, the

bulk surface diffusivity that appears in the EIS expressions assumes nothing about

diffusion mechanisms; only that diffusion is Fickian and the diffusivity is roughly equal

to its equilibrium value everywhere on the surface. As such, the diffusion coefficient

determined from EIS data may well provide insight into how transport is affected by

the presence of these interesting behaviors.
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Figure 2-4: (Top) Arrhenius plot of diffusion coefficient and dependence on coverage
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2.4.3 Rate-Limiting Steps

One of the principle goals of this study is to determine which, if any, physical processes

are dominant in controlling the rate of oxygen reduction on Pt.

A recent contribution to the long-lived debate on this subject was made by Robert-

son and Michaels in 1990 [2]. These authors suggested that diffusion and adsorption

together colimit the oxygen reduction reaction. By “colimit”, it is meant that both

of these physical processes - transport and sorption - are important in determining

the overall rate.

With the impedance model we have presented, we are already in a position to

gauge the validity of this idea11. The approach will be to take the limit as diffusion

becomes infinitely fast or very slow relative to adsorption, and vice versa. This is

accomplished by taking the limit of the impedance as D → 0 and D → ∞ and as

α → 0,∞. We’ll focus on the frequency-dependent impedance in 2.34, since this is

where D and α appear explicitly.

In taking the limit as D → ∞, it is useful to take a mathematical detour to

examine the series expansions defining the Bessel functions,

Mp(x) = Jp(jx)/jp =
∞
∑

n=0

(−1)n (jx/2)(2n+p)

n!(n + p)!jp

=
∞
∑

n=0

(x/2)(2n+p)

n!(n + p)!

=
1

p!

(x

2

)p

+
1

(1 + p)!

(x

2

)2+p

+ · · ·

(2.35)

where Jp is the pth-order Bessel function of the first kind. Then the initial expansion

terms for the zeroth- and first-order modified Bessel functions are,

11It should be noted that Adler [2] already defends the notion of a colimited reaction from an
EIS perspective examining the same physical processes considered in this work - here, the discussion
extends to the case of finite geometry.
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M0(x) = 1 +
x2

4
+ · · · (2.36a)

M1(x) =
x

2
+

x3

16
+ · · · (2.36b)

If x = Re/ξ, with ξ ≡
√

D
jω+α

then to first order in x, the limit of D → ∞
(x = Re/ξ → 0 such that electrode is small compared to length scale of the coverage

perturbation) gives for the frequency-dependent impedance

Zcyl,f =
M0 (Re/ξ)

nqeℓΓ
qe

kBT
θ̄(1 − θ̄)M1 (Re/ξ) D/ξ

=
2

nqeℓΓ
qe

kBT
θ̄(1 − θ̄)ReD/ξ2

=
2

nqeℓΓ
qe

kBT
θ̄(1 − θ̄)Re(jω + α)

(2.37)

D has entirely vanished from the impedance expression, so that only the sorption

parameter remains.

The impedance in this limit is the same as that for a parallel combination of a resis-

tor and capacitor with effective capacitance, Ceff = Re/(2Rct
∂I
∂θ

1
nqeℓΓ

) = nqeℓΓ
qe

kBT
θ̄(1−

θ̄)Re/2, and effective resistance, Reff = 1/(αCeff ) = 2/[αnqeℓΓ
qe

kBT
θ̄(1−θ̄)Re], where,

again, Re is the electrode radius. Because ℓ ∝ Re, Ceff scales with the square of the

electrode radius, and Reff with the inverse square.

When D becomes very small, x = Re/ξ → ∞ such that the perturbations in

coverage are localized to the edge of the electrode and cannot sense its size. We take

advantage of

lim
x→∞

M0(x)

M1(x)
= 1 (2.38)
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In this case, the frequency-dependent impedance becomes

Zcyl,f =
M0 (Re/ξ)

nqeℓΓ
qe

kBT
θ̄(1 − θ̄)M1 (Re/ξ) D/ξ

=
1

nqeℓΓ
qe

kBT
θ̄(1 − θ̄)D/ξ

=
1

nqeℓΓ
qe

kBT
θ̄(1 − θ̄)

√

D(jω + α)

(2.39)

where this expression has obtained a term, 1/
√

jω + α, characteristic of the “Gerischer”

impedance element, which models a system with processes behaving as a distributed

reaction in conjunction with diffusion for a one-dimensional, semi-infinite domain [2].

Now, the impedance at ω = 0 scales as the inverse of Re, as compared with R−2
e for

Reff .

It is important to point out that at low frequencies where ω ≪ α, the limit where

D → ∞ is the same as the limit where α → 0+. Likewise, the limit where D → 0+

is the same as that where α → ∞. It is for this reason that ORR on Pt has been

termed “colimited” by diffusion and sorption. The understanding we obtain from the

colimiting concept is that the ORR rate12 is tied to the ratio, lδ ≡
√

D/α, termed

the utilization length by Adler [2]. The impedance response has distinctive shapes

depending on the value of lδ relative to the electrode dimensions, Re.

Figure 2-5 displays the Nyquist (complex plane) and Bode plots in the three

regimes, lδ ≪ Re, lδ ≫ Re, and lδ ∽ Re. The different lines show the effect of

changing only the electrode radius from below the utilization length, lδ, to above.

The figure does not show the fact that, in addition to the shape change, there is also

a shift in impedance magnitude because ℓ ∝ Re. Here, the offset, Rct + Rysz, the

sum of the charge transfer and ohmic electrolyte resistances, has been set to zero for

all plots to reveal in the Bode plot the angle at which the Nyquist loci depart from

the real axis. Further, the precise dependence of Rysz on the electrode radius, Re, is

likely complicated and afield from the primary interests of this work.

When lδ is much smaller than the electrode dimensions, only the edge of the

12at least, in the linearized perturbation limit
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the Gerischer-like response as the radius is increased. (b) Bode magnitude and phase
plots of cylindrical impedance element. The phase angle plot shows the frequency at
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electrode close to the triple phase boundary participates in delivering oxygen ions

to the electrolyte - for these semi-infinite electrodes, the situation approaches that

for which the Gerischer model applies, and indeed, the impedance expression attains

such a form. For lδ → ∞, the entire electrode surface participates in the ORR.

Coverage on the surface is then everywhere uniform, as diffusion occurs infinitely

fast relative to sorption to smooth out any irregularities. And the ORR rate is then

controlled by sorption. The impedance response in this limit appears capacitive,

with a semicircular Nyquist plot. When the utilization length is on the same scale

as the electrode dimensions, lδ ∽ Re, an intermediate case appears; this is identified

graphically in the Nyquist plot by the 45° line in the high-frequency limit characteristic

of the Gerischer response, along with a semicircular tail at lower frequencies. In fact,

the high-frequency region of the Nyquist plot will always rise from the real axis at

45° for the ideal system, but the transition between “Gerischer” and semicircular

shapes is more apparent when lδ ∽ Re.

The details of the transition between “Gerischer” and “semicircular” shapes are

apparent from the Bode phase plot in Figure 2-5b, where, since the real offset (i.e.

Rct + Rysz) has been zeroed, the angle seen in the Nyquist plot is visible exactly.

Impedance spectra which will appear semicircular display a phase angle of magnitude

greater than 45°. As lδ is increased, more and more of the higher frequencies fall along

the 45° line. For lδ ≫ Re, the phase plot displays an angle ≤ 45° everywhere. Further,

the corner frequency in the phase plot begins to shift slowly upward again, perhaps

asymptotically.

Some properties, like the lower corner frequency in the Bode plots, are expected

to be independent of Re. The figure does not show the spread in the high-frequency

real-axis intercept in the Nyquist plots; this is to help reinforce an understanding

of the effect of utilization length on the overall spectrum shape. Also, the ohmic

resistance through the electrolyte, Rysz, changes with Re in a nontrivial fashion, and

so we are not in a position to understand scaling of the high-frequency intercept with

electrode radius given the work presented so far.

It should be noted that the electrochemistry at the Pt-YSZ interface has been
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left out of this discussion. The present study, in fact, is not designed to examine the

charge transfer steps at the interface, and least of all in the high overpotential regime

(this study only examines perturbations about zero overpotential). However, there

is a growing body of evidence that in the temperature range from 600� to 800�,

sorption and transport are the more important processes [2], so that the simplified

picture of charge transfer included in the model may be admissible.

2.4.4 Utilization Length

Having established the meaning and importance of the utilization length, we are now

in a position to discuss how it might be determined from the present work. Figure 2-6

displays the utilization length predicted by the theory described above over a number

of temperatures and pressures.

Using the expressions for D and α listed above and assuming that the sticking
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coefficient, S = S0(1 − θ)2 [17, 54, 58] (see Appendix F)13, results in the following

relation for the utilization length:

lδ =

√

Γ
D0h

2S0

√
P

zv,ads√
zv,r,gas

√

λ

kBT
. (2.40)

To first order in βu0, lδ does not depend upon interaction energies between ad-

sorbates. It’s pressure dependence is P−1/4; the dependence on temperature hinges

on the relative values of the activation energies for the zero coverage diffusion and

sticking coefficients.

For comparison, we can analyze Mitterdorfer and Gauckler’s data from [37]14;

this places the utilization length for polycrystalline Pt at around 100-200 nm for a

temperature of around 730�, increasing with oxygen partial pressures for P between

10−3 and 1 atm. Based on this, Adler estimates the utilization length to typically lie

between 50 and 500 nm [2]. The numbers from Figure 2-6 range from 200 nm to 6

µm in the temperature and pressure range of interest, and decrease with pressure. It

should be noted that the plot reflects properties of the Pt(111) surface, and Mitter-

dorfer and Gauckler’s study analyze polycrystalline Pt. Nevertheless, the differences

are dramatic, particularly the opposite trends with pressure.

The fact that the impedance shape depends upon the ratio of Re/lδ allows for a

simple estimation of lδ. If a number of spectra have been obtained under identical

conditions but for differently-sized electrodes, then lδ might be determined by finding

the electrode size at a given set of experimental conditions at which the impedance

transitions from a Gerischer to a finite-length, semicircular shape. Performing this

analysis on data from previous studies of square electrodes by Dr. S. Naci Koc15,

we see a much larger utilization lengths, with lδ between 10 and 200 µm, and in-

creasing with oxygen partial pressure16. Figure 2-7 demonstrates this crossover for

13Hopster et al. suggest a more complicated S(θ) ∝ exp−A θ3/2

kBT
dependence, though their view

is not popular in the literature
14Appendix Section C.10 shows that, using the Langmuir isotherm from [37], α = 2Γ

√
kakdP ,

where ka and kd are the adsorption and desorption kinetic rate constants.
15formerly a member of the Electrochemical Energy Laboratory, now an associate professor at

Istanbul University
16To get an idea of why the same general characteristics of the impedance spectra are shared by
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the temperature of 700� and an oxygen partial pressures of 10−5 and 1 atm, and

shows an increase in utilization length from the lower to the higher partial pressure.

Continuing this analysis on the data set also suggests that utilization length falls with

increasing temperature, as predicted by the theoretical picture above. However, the

temperature dependence from the data set seems stronger than than predicted from

theory (lδ falls by a factor of 3 to 6 in the dataset at various pressures between 800

and 600�, whereas theory would suggest a dropoff by a factor of only 2 to 3).

Technological Impact Revisited: Catalyst Design and the Utilization Length

For lδ ≫ Re, the impedance response is no longer dependent upon electrode size; the

“active” region of the electrode which participates in capturing and funneling oxygen

to the triple phase boundary is smaller than the electrode, itself. This suggests a

design principal: for catalysts that are not mixed conductors, no point on the catalyst

should be more than two to three utilization lengths from the triple phase boundary.

Any other catalyst surface area beyond the active region is effectively “dead weight”

and could be better utilized as a thin extension of the electrode, or as a separate

electrode. The idea that an electronically (but not ionically) conductive catalyst is

more effective with a longer triple phase boundary was established at least as early

as the 1920s [2]; the concept of the utilization length gives an idea of the extension

of useful catalyst away from the triple phase boundary, and puts an upper bound

on catalyst width to accompany the design imperative of maximizing triple phase

boundary length17.

the square and circular electrode geometries, visit Appendix C.
17The utilization length does not provide an idea for the length scale of activities specific to the

triple phase boundary, itself (charge transfer, incorporation). The width of the triple phase boundary
was assumed by Mitterdorfer and Gauckler to be 10 nm [37]. Bright regions around the Pt-YSZ TPB
in secondary ion mass spectrometry images are between 4 and 5 µm wide [23]. For the purposes of
this paper, the triple phase boundary is assumed to constitute a boundary line, and has no width;
the electrode dimensions pertaining to the experiments described in the next chapter are sufficiently
larger than either of these estimates of TPB extension to bear out this simplification.
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Figure 2-7: Data obtained by Dr. Serkan Naci Koc using square-shaped thin-film
Pt electrodes and a long in-plane counterelectrode. The Pt is deposited on top of
a thin-film of polycrystalline YSZ (∽200 nm thick). Top spectra were measured at
700� at an oxygen partial pressure of 1 atm; bottom spectra at 700� and P = 10−5

atm. Right spectra show blow-up of high-frequency region. Used with Dr. Koc’s
permission.
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2.5 Assumptions

A number of simplifying assumptions are employed in this model. In particular, it is

assumed that

1. there is only one species on the surface,

2. the coverage variation during EIS is a small perturbation about the steady-state

value,

3. all parameters (including diffusion coefficient) may be evaluated at the steady-

state value,

4. the charge transfer and incorporation of oxygen ions into the electrolyte is a

single-step process well-described by the reaction in 2.14.

In the following, the validity of these assumptions is discussed. The scale of

coverage variations is left to the next chapter, where the experimental capabilities

are introduced. The single-step charge transfer reaction is treated in Section 2.6.1.

2.5.1 One Species on Surface

A number of studies show that molecular-precursor-mediated adsorption is an impor-

tant pathway to oxygen dissociation on Pt [14, 17, 18, 54]. The first assumption does

not necessarily conflict with this view; rather, it pertains to a certain limit where

dissociation proceeds so rapidly that no physisorbed or chemisorbed [14] molecular

oxygen precursors stay on the surface long enough to interfere with further adsorp-

tion. As such, only monatomic oxygen sits on the surface. The existence of this

limit is verified in experimental studies [17, 18, 54] and employed in theoretical work

[25]. It is conceivable that multiple monatomic oxygen species may develop, differ-

entiated perhaps by charge state [2], especially when comparing adsorbed oxygen

upon different Pt surfaces. However, for polycrystalline Pt, the multiplicity of grains

should provide for a single average surface species to be sufficiently representative of

all possible configurations.
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2.5.2 Evaluating Parameters at Steady-State Coverage

In Section 2.2.1, basic theoretical calculations of D suggested that D varies rapidly

over a narrow transition between lower and middle to high coverage; this may be

visualized from Figure 2-2. Mitterdorfer and Gauckler’s EIS study for ORR on Pt-

YSZ also suggested very strong dependence of D on θ for θ <∽ 0.25, where D falls

almost an order of magnitude with increasing coverage. The same behavior is seen in

the study by von Oertzen et al.[53] The relevant question here is whether the diffusion

coefficient may be safely approximated at a single value for the coverage fluctuations

induced by the EIS experiment. If coverage fluctuations are as large as the upper

bound listed in Section 3.5, then most likely the single-valued estimate for D will be

inaccurate for coverages lower than 0.25. This means that D will vary appreciably

both with position and time, resulting in distortions in the current waveform from

the fundamental frequency, as well as errors in physical parameter estimates.

2.6 Major Shortcomings of the Model

The basic physical processes described above are standard in the literature for non-

mixed-conductor electrodes in general, and the Pt-YSZ system in particular [2, 36, 39],

and are generally able to provide qualitative insight into understanding electrochem-

ical spectra for Pt-YSZ. Despite this, there are several weaknesses in the scheme

used to transcribe the qualitative physical description to a quantitative model. And

from the opposite perspective, it is also possible that the correct impedance relation

was derived from an incorrect physical understanding. In the following, some of the

potential difficulties with the model scheme are discussed.

2.6.1 Single-step charge transfer

Charge transfer is treated here in 2.14. This scheme assumes a single-step charge-

transfer process whereby oxygen picks up additional charge while it is simultaneously

incorporated into the electrolyte. It is doubtful that this process truly occurs in one
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step, but the actual kinetics of the process are not well understood [2, p. 4802].

Allowing that the one-step approach is valid for an individual set of experimental

conditions, it is conceivable that the charge-transfer process which is rate-limiting at

one state may be different from that which is limiting at another state.

Having chosen to focus on the electrode surface rather than the electrode-electrolyte

interface, we are allowed some latitude in the specific charge-transfer processes so long

as the one-step approach is still admissible. In this case, we look to the connection be-

tween the surface processes and the interface for potential problems. That connection

took the form of equating the flux from Fickian diffusion with that that constituting

current into the YSZ. Suppose that some of the oxygen does not enter the electrolyte

at the boundary, but spills onto the electrolyte surface, forming an oxygen reservoir.

Such a situation would appear as a capacitive contribution to the electrochemical

impedance. Perhaps this reservoir is drained at higher overpotentials than that at

the YSZ boundary, contributing to nonlinearities in the I-V relationship. While this

conjecture may not be accurate, other activities at the electrode-electrolyte interface

and surrounding area, especially relating to the electrolyte, may cause deviations from

the picture presented previously.

2.6.2 Oxide formation

At the high temperatures of these experiments, we should expect some subsurface

oxide formation on the Pt [17, 18, 54]. Because the model employed here is not

material-specific, but process-specific, oxide formation only presents a problem if the

three physical processes employed in the model, as well as the assumptions upon

which the model is built, do not effectively describe the oxygen reduction reaction

on the oxide. However, if oxide formation proceeds during experimental runs, it

contributes to nonstationarity in physical the properties of the system. In this case,

comparisons between different spectra or with literature data for Pt and YSZ lose

their meaning. Further, oxidation might constitute a parallel distributed reaction on

the surface, operating in tandem with sorption. This would contribute anomalous

features to the spectra not anticipated by the models given above.

59



2.6.3 Nonuniformity of Surface

It is a fundamental assumption of this model that, at equilibrium, the Pt surface is ev-

erywhere uniform, so that the same surface properties and coverage exists everywhere.

There are several reasons why this is may not be true. Firstly, it is conceivable that

temperature and pressure may vary over the surface of the electrode; indeed, mea-

surements of temperature via a thermocouple along a surface in the experimental

setup indicate fluctuations in the mean temperature of as much as 20� over the

0.5 cm × 0.5 cm area of a sample YSZ slab (much larger than the area of a single

microelectrode), and 10 to 15 degree temperature swings at a single location over

time.

Another factor contributing to nonuniformity is the fact that the Pt surface

presents many different types of adsorption sites. Indeed, even a single crystal facet

may present different adsorption sites [14, 53]; the presence of these multiple site vari-

eties has important consequences regarding sorption and diffusion [50, 53]. Similarly,

the presence of steps and defects on the surface also results in significant changes in

surface properties [17, 20]. These issues may, in fact, be somewhat mitigated if a

polycrystalline surface is used in view of the idea that this surface might effectively

randomize all of the defects and nonuniformities on a scale sufficiently smaller than

the microns to tens and hundreds of microns of interest here. On the other hand, pro-

cessing nonuniformities may exceed this scale boundary and again render inaccurate

the uniformity assumptions (see the next chapter for a discussion on the processing

used in microelectrode fabrication).

2.6.4 Alternative Explanations

Other pathways may be envisioned for the ORR. For example, we might imagine

that oxygen adsorbs and diffuses along the exposed solid electrolyte surface rather

than the Pt electrode, while still undergoing charge transfer and incorporation at

the triple phase boundary interface. Another scheme might involve oxygen travelling

inward from the TPB along the interfacial area between the Pt and YSZ. In this case,
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charge transfer is now a distributed reaction across the interfacial area and sorption

at the TPB constitutes a boundary condition on oxygen coverage18, where before,

sorption was taken to be the distributed reaction with charge transfer and incorpo-

ration imposing a boundary condition. Because these alternative explanations still

propose similar generic mechanisms - a distributed reaction, transport by diffusion,

and a single-step reaction at the boundary - they may result in the same generic forms

of impedance relations. How, then, might we identify one model from the other as

correct?

The question is resolved to some degree by noting that we have the ability to pre-

dict trends in the impedance spectra with temperature, pressure, electrode geometry,

and so forth. These trends vary from model to model. For example, Section C.9

demonstrates that the lower corner frequency from the impedance in 2.29 is closely

tied to the distributed reaction in the model. If this distributed reaction is sorption,

as assumed in the original derivation of 2.29, then the corner frequency ought to

depend on pressure, and be fairly independent of the electrode-electrolyte interface

properties. By contrast, if the distributed reaction is charge transfer and incorpora-

tion, the opposite should be true: the corner frequency should depend primarily on

the properties of the interface and not on pressure.

Further, it is the hope of this study that the spectra may be collected so as to

extract model parameters with quantitative accuracy; these may then be compared

with literature values.

However, there will always be some uncertainty associated with the interpretation

of EIS spectra, as these spectra are indirect means of probing the myriad physical

processes which control them.

18Distributed reaction refers to a reaction taking place over the entire problem domain, whether
this domain constitutes the electrode surface or the electrode-electrolyte interfacial area, or perhaps
the electrode bulk for the case of mixed conductors.
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Chapter 3

Procedure

3.1 Introduction

This chapter outlines the steps involved in setting up and performing the experiments

and analyzing the resulting data. It first reviews the method and equipment used

to fabricate the microelectrodes, and then discusses the apparatus for obtaining EIS

data at various temperatures and pressures. Finally, a discussion is included which

clarifies how the impedance expressions found in Chapter 2 might be used to extract

physical parameters from the measured impedance spectra.

3.2 Fabricating Electrodes

Figure 3-2 outlines microelectrode fabrication visually. The first step in the pro-

cess is to define the geometry. In this work, we select a circular geometry for each

electrode, with radii of 12.5, 25, 50, 100, and 200 µm. Microelectrodes must be

adequately spaced so as to avoid spurious data due to coupling between the mi-

croelectrodes (e.g. electromagnetic coupling, unwanted participation of neighboring

microelectrodes, etc.). Toward this end, a design rule is implemented that no two

electrodes are closer to one another than three of the larger of the two diameters.

Using multiple radii helps to identify the pathway of oxygen reduction - whether the

oxygen adsorbs onto the electrode and travels across its surface or through its bulk.
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Since Pt is not an oxygen ion conductor, and since the Pt electrodes here are dense

and not porous, we might expect a scaling of low- or high-frequency conductance

with the perimeter of the electrode, which should be exactly the triple phase bound-

ary length, ℓ, at which charge transfer occurs. However, the actual dependence of the

high-frequency conductance, a quantity dominated by ohmic transport through the

YSZ, is complicated even in the cylindrical geometry used here (see Section 2.4.3).

Also, as discussed in Section 2.4.3, the scaling behavior of the low-frequency inter-

cept - the limiting (real) impedance as ω → 0 - transitions between between R−1
e and

R−2
e as Re/lδ is modified from ≫ 1 to ≪ 1. This transition is witnessed in Figure

2-5. Nonetheless, impedance ought always to decrease, and conductance to increase,

as the electrode radius is increased, all else equal. As such, a basic test of the the-

oretical framework employed here is to verify this scaling behavior in the low- and

high-frequency intercepts of the EIS spectra; this analysis is performed in Section 4.2.

In addition, we have seen in Chapter 2 that, by reducing the electrode scale length

to the size of the utilization length, lδ, finite-length effects become apparent. This is

advantageous in analysis as (a) it provides a crude way to estimate the utilization

length via observing at what radius finite length effects appear, and (b) improving

identifiability of model parameters. Previous unpublished work performed in this lab-

oratory on square, dense Pt electrodes over YSZ begin to show finite-length behavior

for electrode dimensions between 10 and 100 µm; this has motivated the selection of

microelectrode radii listed above.

The design is drafted via Computer Aided Design (CAD) software package (e.g.

SolidWorks, etc.); Figure 3-1 shows this actual CAD image created from this process.

The electrodes’ substrate plays the role of electrolyte. For this task, we use 8%-

molar single-crystal (100) yttria-stabilized zirconia (YSZ) wafers (MTI Corp., Rich-

mond, CA)1. Ohmic ion conduction through the YSZ electrolyte will register as a

1Yttria-stabilized zirconia refers to cubic zirconia, ZrO2, (the high-temperature form of the oxide
crystal and popular diamond simulant) which is stabilized at room temperature by the addition of
another oxide, yttria (Y2O3). The molar percentage given refers to the degree to which the zirconia
is doped by the yttria, and the crystalline plane is that which is exposed on the surface of the
substrate. YSZ is an oxygen ion conductor, and so it is a key element in many solid oxide fuel cells
as the (solid) electrolyte [26].
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Figure 3-1: Geometry of microelectrodes. The largest microelectrodes are 200 µm in
radius, the smallest are 12.5 µm, and the cell size is 0.5 cm × 0.5 cm. Design drafted
in SolidWorks by Ethan Crumlin, Electrochemical Energy Laboratory, MIT.

component of the electrochemical impedance spectra. Calculating this contribution

from theory is a challenging but solvable problem (in the author’s opinion); however,

it will be left to future studies. Instead, we will employ the approximation that the

ohmic contribution to impedance is frequency-independent2, and focus attention upon

the frequency-dependent component of each electrochemical impedance spectrum. By

obtaining spectra from several YSZ substrates of different thicknesses, we may gauge

the accuracy of this assumption. It might also be possible to attempt to capture the

dependence of the ohmic electrolyte resistance on the electrode radius, Re, and YSZ

thickness, t, beyond the t/σπR2
e estimate; however, this investigation is not carried

out in this work. We use three YSZ thicknesses: 250 (260), 500 (520), and 1000

(1040) µm (the numbers in parentheses are averages of three thickness measurements

taken with a micrometer at different locations of the slab).

Before patterning the microelectrodes onto the substrate, the counterelectrode is

2valid for low-frequencies for which the YSZ may be envisioned as a good conductor, where the
skin depth, δ = 1/

√
πfµσ, is much larger than the flow dimensions, with f as the signal frequency, µ

the magnetic permeability (≈ µ0), and σ the ion conductivity [52]. A quick estimate at the highest
experimental frequency of 20 kHz using properties of YSZ gives δ ≈ 10 m, much bigger than the
system dimensions.
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created. Here, we desire a counterelectrode that constitutes a uniform ground plane

on the underside of the YSZ substrates so that the oxygen ion flow-path is through the

plane of the substrate. This maintains cylindrical symmetry for each electrode. At

the same time, the counterelectrode’s contribution to the impedance spectrum must

be distinguishable or negligible so that the impedance properties of the patterned

electrodes may be ascertained. To realize these goals, the YSZ slab undersides are

first brushed with a Pt ink (66.4% Pt in terpineol matrix, BASF Part. No. 6082,

BASF Catalysts, NJ) as uniformly as possible. Finally, the ink is set via firing at

1100� for 60 min. We have seen in Chapter 2 that electrochemical impedance scales

inversely as the triple-phase boundary length; the microporous structure effectively

creates a very large TPB length, resulting in low impedance. Finally, after casting the

microelectrode geometry from a digitized form into a real mask for photolithography

(Advance Reproductions Corp., North Andover, MA), microelectrodes are fabricated

on top of the YSZ substrates by

1. spin coating negative photoresist (Clariant, Switzerland) upon the substrate,

2. exposing under a mask patterned with the desired geometry,

3. developing the resist,

4. sputtering Pt on top of the developed resist at 100 W for twenty minutes in a

pure argon atmosphere, and

5. removing excess Pt by photoresist lift-off via dissolution in acetone.

The deposition of Pt electrodes follows the procedure described in [26, 27] regarding

the deposition of Pt counterelectrodes.

Before and after experiments, microelectrodes are inspected carefully under an

optical microscope (FS70, Mitutoyo, Japan).
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(a)

(b)

Figure 3-2: (a) Step-by-step procedure used in microelectrode fabrication. (b) Photo-
graph of a patterned sample and porous Pt counterelectrode on the sample underside
next to a US quarter. YSZ single-crystal thickness is about 0.26 mm.
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3.3 Obtaining EIS Data

EIS spectra must be obtained in situ, as the test platforms must rest in environments

with controlled temperature and O2 partial pressure. The experimental apparatus

used for carrying out these measurements in this study is the SUSS MicroTec PM5

150 mm Manual Probe System. The setup is as follows: test samples are placed within

a small, temperature-controlled furnace (manufactured by Linkam with TMS94 con-

troller); this sits inside a water-cooled, enclosed (but not air-tight), glass-topped

chamber. Temperature gradients exist within the furnace; as such, temperature con-

trol is calibrated independently via a small thermocouple. Oxygen pressure control

is achieved by pumping into this chamber a continuous flow of gas at fixed oxygen-

argon mixes, displacing atmospheric air in the chamber. One additional set of data

points can be taken from exposing the electrodes to atmospheric air. The electrodes

and counterelectrode are contacted by Pt-coated tungsten microprobes (needles with

tip radii of 0.6 µm when undamaged) which penetrate through the enclosure via

small holes; the flowed oxygen-argon mixes escape through these holes, keeping the

chamber’s total pressure at approximately 1 atm. The roof of the chamber is a trans-

parent glass and allows visual inspection and alignment with the help of the Mitutoyo

FS70 optical microscope included in the PM5 Probe System. The probes are then

positioned manually via SUSS PH150 High-Resolution Manual Probehead� manipu-

lators. Once connectivity is established, EIS spectra are obtained using a Solartron Sl

1260 Impedance/Gain-Phase Analyzer in conjunction with a Solartron 1296 Dielectric

Interface, the latter of which makes possible measurements of very high impedance

(>100 TΩ) and at very low currents (1 fA) [46]. To ensure consistency, multiple

spectra are taken regularly for individual temperature and pressure points (thermo-

dynamic states).

Figure 3-3 shows a probe contacting a 200 µm-radius electrode. There is an

additional probe tip visible in the micrograph; this is used only to pin the sample in

place.

Spectra are obtained at four decades of pressure, visiting oxygen contents both
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Figure 3-3: Optical micrograph of a probe contacting a 200 µm-diameter microelec-
trode. A second probe tip is visible underneath; it is used to help stabilize the sample.

above and below that at atmospheric conditions, and at roughly 50�-increments be-

tween 475� and 700�. Lewis and Gomer find that 500� marks the onset of a faster

diffusion regime of O on Pt [30]; not surprisingly, impedance spectra at lower temper-

atures must probe at lower frequencies to capture the slower time scales of physical

processes, requiring measurement times of several hours for each spectrum. Further,

the higher temperatures are of more technological relevance: 650� remains an ambi-

tious and much-sought-after goal for SOFC technology, where operating temperatures

are routinely at 800� [26].

Frequencies are sampled between 1 mHz and 1 MHz with five data points per

decade. Previous studies in EEL using square electrodes have shown that frequen-

cies of interest for determining Faradaic processes are typically well below 10 kHz
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for given materials and geometries; however, the higher frequencies are useful in sep-

arating other simultaneous processes from the data, including double-layer effects

[5]. Measurements may be made by specifying a fixed number of cycles over which

impedance points are integrated, or by specifying a fixed integration time. Bias errors

may be reduced by integrating over multiples of the excitation period, but a fixed in-

tegration time allows for an averaging of wide-spectrum random noise that is uniform

for all data points. I generally prefer the former method to avoid bias, but the lat-

ter is also effective. Measurement errors are gauged experimentally by repeated EIS

measurement at a single temperature and pressure; however, a more complete, if less

detailed, error estimate is provided in the Solartron literature for the 1296 analyzer,

and suggests impedance errors on the order of one degree in phase and one percent

in magnitude [45, 47].

3.4 Data Fitting Procedures

3.4.1 Total Impedance and Unique Parameters

The impedance expression for polar (cylindrical) geometry is (see Appendix C and

Equation 2.29)

Zcyl = Rct

[

1 +
∂I
∂θ

nqeΓℓ
√

D(jω + α)

M0 (Re/ξ)

M1 (Re/ξ)

]

. (3.1)

However, there are other contributions to impedance besides the Faradaic sources

described in this equation. Certainly, there will be an ohmic contribution from ionic

conduction through the electrolyte, as well as capacitive contributions resulting from

the Pt/YSZ interface and electrode-counterelectrode coupling. Further, some of the

model parameters are not uniquely identifiable from a single EIS spectrum because

they are mixed together in products.

Figure 3-4 shows a more realistic circuit diagram useful for fitting; the shaded

boxed component is the Faradaic (cylindrical) impedance. This particular circuit
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Figure 3-4: Randles circuit capturing major contributions to total impedance. Rysz

is the ohmic impedance of the YSZ electrolyte; Cdl is a parallel capacitance often
attributed to the double layer, and Rct + Z(ω) is the Faradaic capacitance (e.g.
Zcyl). The dashed lines are not part of the typical Randles circuit; they show the
additional capacitance due to electromagnetic coupling between the electrode and
counterelectrode.

topology is known as a Randles circuit and is commonly employed in electrochemical

fitting analysis (see [2, p. 4797-8] and [34, p. 74], for example). In order to properly

extract the Faradaic impedance, ZF , from an impedance spectrum, the ohmic elec-

trolyte resistance, Rysz, and the double layer (and electronic) capacitance must be

known. Methods exist for extracting each of these parameters from one or multiple

spectra [5, e.g. for Cdl]. Further, Rysz may be calculated numerically (and perhaps

analytically) using known YSZ ionic conductivity3.

By careful experimental design, the capacitive contribution to the impedance may

be minimized. The value for the specific double layer capacitance for the Pt/YSZ

interface is 10−6-10−5 F/cm² [2, 37]. The maximum proposed electrode radius is 200

µm, corresponding to an area of 1.26 × 10−3 cm². This gives a maximum double

layer capacitance of around 1× 10−8 F. At the 20 kHz upper bound of the frequency

band most important for data analysis4, this results in an imaginary impedance of

approximately Zc = 1/(jωC) ≈ −j630Ω. However, the smallest electrodes, with

3The boundary conditions in this mixed-conductor problem are an interesting topic by themselves.
4Previous studies in EEL with similar configurations have shown that Faradaic effects are well-

characterized by frequencies below this limit - see previous discussion on frequency range.
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radius 12.5 µm (200/16), have area ∽ 5×10−6 cm2, so that the capacitive impedance

at 20 kHz would be 162 times larger, or ∽ 160 kΩ, likely large enough to be neglected.5

The electronic capacitance should be smaller than the double layer capacitance

- if the dielectric constant ǫr ≈ 10 for ceramic YSZ 6, then for a 100 µm-thick YSZ

wafer, the electronic capacitance might be estimated as Cspecific = 10 × 8.85 × 10−12

F/m /(10−4m) ≈ 10−10 F/cm². Since the electromagnetic displacement current offers

an alternate pathway between electrode and counterelectrode than ionic conduction

through the YSZ, electronic capacitance appears in parallel to the empirical Randles

configuration in Figure 3-4. However, because it is very small, it is not expected to

appear prominently in impedance spectra except at very high frequencies (as, perhaps,

a small, high-frequency semicircle appended to the tip of the spectrum).

For the moment, it is an open question as to whether capacitive impedance is small

enough to participate in the parallel combination shown in Figure 3-4. However,

it would appear that larger electrodes may display a capacitive character in their

impedance spectra, while the very smallest electrodes may be less affected.

The total impedance, Zt, might be captured in terms a set of fit parameters, γ,

uniquely identifiable by fitting to a single EIS spectrum as

Zt = Rysz +
ZF

ZF (jωCdl) + 1

ZF = γ1 +
γ2√

jω + γ3

M0

(

γ4

√
jω + γ3

)

M1

(

γ4

√
jω + γ3

) .

(3.2)

The correspondence between the fit parameters, γ, and the model parameters is as

5Faradaic conductance scales with triple phase boundary length, and therefore electrode radius,
as opposed to double layer capacitance, which scales with the Pt/YSZ interfacial area as the square
of the radius.

6This is a conservative estimate; in reality, the relative permittivity is perhaps around half this
value.
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follows:

γ1 = Rct =
[

nqeℓΓ
(

b−1k−1O
×
O

(

1 − θ̄
)

− b1k1V
..
Oθ̄
)]−1

γ2 = Rct
∂I/∂θ

nqeΓℓ
√

D
= Rct

k1V
..
O + k−1O

×
O√

D
≈ 1

nqeℓΓ
qe

kBT
θ̄(1 − θ̄)

√
D

γ3 = α = S(θ̄, T )

[

as
λ

h

(

∂θ

∂P

)−1
]

γ4 =
Re√
D

(3.3)

Rysz is the ohmic resistance of the YSZ electrolyte - it is typically taken from high-

frequency impedance data as the limiting impedance. The expression for γ3 is ex-

plained in Section C.11 in the appendix and will be discussed below. The diffusion

coefficient, D, has been included in two separate fit parameters in anticipation of

the limit where M0

(

γ4

√
jω + γ3

)

/M1

(

γ4

√
jω + γ3

)

→ 1, which ought to occur for

the larger electrode radii for which the impedance expression approaches that of the

Gerischer form seen in Equation C.38. In this particular regime, identification of

D becomes challenging; however, because the diffusion coefficient is, at this scale,

a property of the surface and not of the electrode radius, the parameter might be

bootstrapped from calculations done with the smaller radii, for which the sensitivity

for γ4 should be greater.

3.4.2 Fitting Procedure

The problem of fitting parameters of a curve to data ultimately reduces to one of

minimization. There are multiple ways of approaching this task; they are often dis-

tinguished by the scheme used to map the vector quantity of residuals to a scalar

norm. The problem is then to minimize this norm. Classic methods involve mini-

mizing residuals in a least-squares sense. From the perspective of fitting a curve to

data, it becomes important to be sensitive to errors in measurement. One way to

accomplish this is through the chi-square minimization [43]. Define G(x; γ) to be a

function of the n-component vector, x, which defines the “input” at each data point,
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but parameterized by the k-component vector, γ, with k < n. Next, let y be the

vector of data points, and w = {w1 · · ·wn} = {1/σ2
1 · · · 1/σ2

n} be the vector of inverse

variances corresponding to measurement errors at each of the n data points. Then

the goal of the minimization is to pick the elements of γ such that G(x; γ) approaches

y as closely as possible. The chi-square scheme defines “as closely as possible” in the

following way: choose γ = {γ1, γ2, · · · , γk} such that χ2 is minimized, where

χ2 ≡
n
∑

ν=1

wν [yν − G(x; γ)]2 (3.4)

The particular γ for which this condition is satisfied is denoted by γ∗.

It is natural to try to find γ∗ by solving the k-component vector equation,

∂χ2

∂γi

= 0, (3.5)

i from 1 to k. However, the requirement that γ∗ be at a global minimum does not

make such a problem definition general (i.e. it does not pick out global minima from

local minima, nor does it ensure that the critical point found is, indeed, a minimum,

nor does it determine minima at domain boundaries). Nonetheless, it is a useful

starting point, and one that will be employed herein.

The reader may be familiar with least-squares formalism - that is, choosing the

parameters such that the sum of the square of the residuals is minimized. The chi-

square scheme introduced here is a kind of least-squares minimization. Its key feature

is that the residuals are weighted by the inverse of the variances associated with

measurements at each of the n data points. The result is to give preference in fitting

the theoretical curve to those data values with the smallest error in measurement. It

is important to note that this scheme is based on the assumption that measurements

are associated with a normal distribution about the “true” value of the measured

quantity - a non-normal distribution requires an alternative setting of the problem

[43].

Due to the fact that impedance magnitudes vary by many orders of magnitude
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between low and high-frequency data points, the low-frequency, larger-impedance

data is given undue weight in the fitting. For this reason, each residual is normalized

by the magnitude of the impedance; this normalization is carried out through the σ

parameter.

For a single EIS spectrum, x is identified as the frequencies, ω, sampled. y is the

vector of (complex) impedance measured at each data point. G(x; γ) is the parame-

terized total impedance in 3.2, Zt(ω; γ). Because each impedance measurement is a

complex quantity, there are multiple (two) data points corresponding to each yν in

Equation 3.4. One way to handle these additional data values is to include in the

sum of 3.4 one residual for the real part of the impedance and one for the imaginary;

this is carried out in the present work.

Determination of w is possible to some degree via instrumentation documentation

[45, 46, 47], where the dependence of uncertainty upon both frequency and impedance

magnitude is given. But we will instead approximate variances by taking repeated

measurements at a single set of experimental conditions and determining a separate

impedance distribution for each sampling frequency.

Further details regarding the fitting procedure are given in D, including expres-

sions for the Jacobian matrix for the Faradaic impedance, a definition and evaluation

of the Hessian matrix in the context of error propagation and estimation, and a useful

approximation for the ratio of Bessel functions given large arguments.

3.4.3 Extracting the Diffusion Coefficient and Coverage Isotherm

It is the stated goal of this thesis to obtain (a) the diffusion coefficient and (b) a

coverage isotherm for this system at a number of thermodynamic states. Provided

the ratio of Bessel functions is appreciably greater than unity in Equation 3.2, its

presence allows for a straightforward extraction of D as7 D = (Re/γ4)
2. The coverage

is somewhat less accessible, but as discussed in Section 2.3.2, a useful simplification

arises by taking the current to be nominally zero for perturbations about equilibrium.

7This is an improvement over other studies and is due to the cylindrical geometry employed here
- see Appendix C.
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In particular,

γ2|I=0 =
1

nqeℓΓ
√

D qe

kBT
θ̄(1 − θ̄)

(3.6)

so that

θ̄ =
1

2
±
√

1

4
− 1

nqeℓΓ
√

D qe

kBT
γ2

(3.7)

Both solutions are admissible since θ̄(1− θ̄) is symmetric about ½. However, it should

be possible to eliminate one based on considerations of pressure, as the coverage

should be monotonically increasing with pressure.

But γ3 provides a second means of estimating the coverage. From Section C.11,

γ3 = S(θ̄, T )

[

as
λ

h

(

∂θ

∂P

)−1

T,θ̄

]

(3.8)

where S is the sticking probability alluded to in the literature of oxygen adsorption

over Pt [17, 54, 20, 25], λ is the thermal wavelength, h is Planck’s constant, and

as = 1
Γ

is the area per adsorption site. The quantity, ∂θ
∂P

, might be estimated from

the coverage isotherm obtained in Appendix B,

(

θ

1 − θ
eβu0θ

)2

= e2βǫ
z2

v,ads

zv,r,gas

Pλ3

kBT
, (3.9)

as

∂θ

∂P
= 2e2βu0θ θ(1 + βu0(θ − θ2))

(1 − θ)3

λ3

kBT
. (3.10)

In conjunction with 3.8 and with an approximation of the sticking probability as

proportional to the square of the number vacancies S(θ, T ) ≈ S0(T )(1−θ)2 [54]8, this

gives an implicit equation for θ,

2γ3θ̄(1 + βu0(θ̄ − θ̄2))e2βu0θ̄ = (1 − θ̄)5S0as
λ

h
, (3.11)

8since two vacancies are needed per oxygen molecule adsorption/dissociation event
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which might be solved numerically. In fact, computing the derivative directly gives

an equivalent expression which is explicit in θ,

θ̄3 − 2θ̄2 + θ̄(1 − 1 + A

βu0

) +
1

βu0

= 0 (3.12)

where

A ≡ γ3

2S0as
λ
h
P

(3.13)

Data exists in the literature for S [54, 17, 20] and, in an indirect form, for u0 [49],

allowing an estimate for θ̄ from Equation 3.11 which might be compared to that of

3.7. Alternatively, an estimate for θ̄ may be taken from this relation and used in 3.7

to check the value of D against that obtained from γ4.

The key point of this development is that we have a means for estimating D and

θ from each individual EIS spectrum. In particular, through the use of D = (Re/γ4)
2

and Equation 3.7, these two important quantities are extracted without assuming

anything with regard to their functional dependence on experimental parameters. The

extracted dependencies may then be independently compared with those expected

from theoretical considerations (see Equations B.29 and B.48).

3.5 Small-Scale Fluctuations in Coverage

The formal requirements for the validity of the perturbative limit were recorded in

Section 2.2.2. This section begins to address the degree to which these requirements

are satisfied for the EIS experiments outlined in this chapter.

To determine the validity of the perturbation assumption in coverage, it is useful

to estimate (a) the variation in current and (b) the resultant variation in coverage

- we desire a coverage variation on the order of 10−2. The Solartron 1296 dielectric

interface, in conjunction with the 1260 frequency analyzer, has a variable voltage

amplitude with an output range between 0 and 3 V, and a 1 fA input current resolu-

tion. For the present, we’ll assume a 1 mV voltage amplitude, ṽ, about a zero-voltage

mean. In EIS spectra from previous tests with 200 µm square Pt microelectrodes,
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the smallest zero-frequency impedance approached 375 kΩ, which appeared at atmo-

spheric pressure and a temperature of 800�. This corresponds to a normalized current

variation of Ĩ/ℓ = ṽ/(Rℓ) ≈ (1mV/375kΩ)/(4 × 200 × 10−6m) = 1
3
× 10−5A/m, or

about 3.3 µA/m. Even for the smallest microelectrodes used in this study, with

ℓ = π(12.5µm) ≈ 40µm, this results in a current well within the femtoamp tolerance.

This represents an oxygen flux of

φ̃O =
Ĩ

nqeℓ
=

1

3

10−5µA

2 × 1.6 × 10−19C
= 1.04 × 1011 #

ms
.

This may seem like a lot, but the actual variation in coverage is, in fact, small, since

θ = #adatoms/Γ, where Γ ≈ 1019m−2 is the number of oxygen sites per square meter

of Pt surface, and the normalized flux (per site) is

φ̃O

Γ
=

1.04 × 1011 #
ms

1019m−2
= 1.04 × 10−8 m

s
.

To estimate variations in surface coverage, we return to the solution for coverage on

the surface in 2.27 and C.32,

θ̃(r) = a0M0(r/ξ)

where a0 is a constant defined from application of Fick’s law at the electrode boundary

as

a0 =
Ĩ

nqeΓℓD/ξM1(Re/ξ)
(3.14)

with ξ defined again as

ξ ≡
√

D

jω + α
. (3.15)

Time-varying fluctuations may then be approximated directly from the solution for

θ by using the phasor formalism,

θ = ℜ(ejωtθ̃) (3.16)
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as

∂θ

∂t
= ℜ(jωejωtθ̃)

= ℜ(jωejωta0M0 (Re/ξ)).

(3.17)

The phasor, θ̃, is the (complex) magnitude of an assumed sinusoidal θ solution. Vari-

ations are greatest at the electrode boundary, r = Re, so the quantity in 3.17 will

be evaluated there for the smallest electrodes (Re = 12.5 µm). Such a calculation

requires estimation of the parameters, D and ξ, at an appropriate frequency, ω, and

triple phase boundary length, ℓ. ω = 0 is a convenient value which is conservative in

that it is the lower frequency bound, where fluctuations in θ are greatest. An estimate

for α at T=800� from previous experiments with square Pt electrodes is around 30

rad/s. 9 Finally, we want to choose a large value of D. An appropriate estimate at

T=800� is D = 1.57 × 10−7 m2/s [53]10. With ĨF /ℓ = (1/3) × 10−5 A/m, we find

a0 = 0.00553; ξ = 7.23 × 10−5; θ̃ = 0.00558

This value is adequately small for our perturbation assumptions11. However, at

T=600�, with α ≈ 0.03 and a smaller current response, these values become

a0 = 0.0833; ξ = 1.50 × 10−4; θ̃ = 0.0834,

for which the coverage variation at the edge is not acceptable given the perturbation

requirements. As such, it would be best to reduce the perturbation voltage from 1

mV to 0.1 mV. With DC resistances as high as 109Ω for ℓ ≈ 78.5µm, DC current

amplitudes would then fall to 10−13, still within the 10−15 tolerance of the instrumen-

9It may seem inappropriate to take this parameter from a different experimental setup. However,
it turns out that this same parameter is ubiquitous across the solutions of the governing PDEs for
various geometries (see Appendix C). It corresponds to the corner frequency of the response, and
contains information about the relative rate of the adsorption process (the distributed reaction).

10In fact, a Taylor expansion of θ̃ at ξ → ∞ gives θ̃ ∽ 2Ĩ
nqeℓΓαRe

to first order in Re/
√

D/α, so

that θ̃ is independent of D in this limit.
11though less so at low coverage, not because θ̃/θ̄ ≫ 1, but because at low coverage (θ < 0.2), D

is very sensitive to θ, varying by a factor of six between θ ≈ 0.02 and 0.2 [37]

79



tation.

In practice, the voltage amplitude ought to be selected such that only the fun-

damental frequency of the voltage signal appears in the current signal12, and the

impedance response does not vary with the sinusoidal voltage amplitude, in which

case the coverage signal may be adequately modeled as a perturbation about the

mean. If, in adjusting the voltage amplitude such that the higher-order harmonics

vanish, the current signal dips below 1 fA, then these data are of dubious quality. We

have seen that the low-temperature measurements are potentially problematic in this

respect, and so discretion must be used in their analysis.

12or the amplitudes of non-fundamental Fourier components are appreciably small, say 5% or less
of the amplitude of the fundamental frequency
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Chapter 4

Results and Discussion

4.1 Comments on Fabrication and Measurements

Layers of porous platinum were measured to be approximately 15 to 40 µm thick.

The pore structure is discernible from Figure 4-1. Crude estimates of density of the

film run between about 5 and 10 g/cm3; by comparison of the density of platinum

near room temperature, 21.45 g/cm3, we conclude that Pt takes up between 20 and

50 percent of the space in the film.

To ensure that the porous Pt layer contributes only a small impedance to the

total spectrum, EIS tests were performed on YSZ slabs coated on either side with

porous platinum. The resulting spectra were characterized by a fairly low impedance

dominated by the ohmic contribution of oxygen ion flow through the YSZ, as verified

through proper scaling of impedance with YSZ thickness and area. This suggests that

the porous platinum achieved the stated design goals. However, it is troubling that the

activation energy of the YSZ ionic conductivity extracted from these measurements

is around 0.55 eV, where the literature records an activation energy of about 1.2

eV for (100) single-crystal YSZ [19]. The discrepancy may be caused in part by a

vertical gradient in temperature through the YSZ bulk (about 25-30� per millimeter

thickness).

Data was taken at oxygen partial pressures of 102, 103, 104, and 106 ppm, and at

temperatures between approximately 475 and 700�, as determined by a calibration
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Figure 4-1: Optical micrographs of porous platinum counterelectrode, 100× magni-
fication. Left: firing temperature of 850 �; Right: firing temperature of 1100 �. In
the present study, samples fired at 1100 � are used.

via a thermocouple independent from the thermostat. Unless otherwise noted, all

data referred to in this chapter was taken from samples with a YSZ thickness of

approximately 0.25 mm.

4.1.1 Instability at High Temperatures

While the use of patterned, dense, thin film electrodes allows for precise control

of geometry, it is also prone to nonstationarity which destroys this precision. In

particular, the dense Pt electrodes are unstable at high temperatures, and tend to

pit, perhaps as they transition toward a porous structure. The time scale of this

degradation process depends upon temperature and processing conditions, but visible

signs begin to appear within an hour of exposure to 800�. An EIS measurement

typically takes between ten minutes and one hour, depending upon temperature and

pressure, to sufficiently probe the frequency range of interest.

This kind of electrode degradation presents several difficulties to data analysis.

If a pore forms that reveals the underlying electrolyte, then additional triple phase

boundary will have been created, and no longer can the perimeter of the electrode

be used as an estimate for the total triple phase boundary length. Ideally, there

would not be any sufficient changes to surface characteristics, so that the deviation in

EIS response from an undegraded sample would be purely due to geometry. Indeed,
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practical catalysts for SOFCs, including Pt, are porous, and the technical utility of

this study hinges upon its ability to capture the properties of Pt in this configura-

tion. However, it is more likely that the additional surface roughening does alter the

diffusivity and adsorption parameters (perhaps due to the increased concentration of

surface defects) at least to the point where quantitative comparison between differ-

ent spectra may not be possible. This is particularly problematic in that it implies

that errors due to degradation begin to appear as soon as the electrodes reach high

temperatures, and before any deep pits form.

Figure 4-2 displays optical micrographs that show the evolution of degradation

after exposure to 800�. Microelectrodes are not raised to this temperature during

experiments, and the sample is changed long before any of the larger pits seen in

the optical micrographs form. Nonetheless, this degradation puts an upper tempera-

ture bound on the EIS experiments which is below temperatures used in the current

iteration of SOFC technology.

4.1.2 Temperature Gradients on Sample Surfaces

The setup of these experiments rendered isolating temperatures a very difficult task.

Variations between electrodes within a single row were typically less than ±10� from

the mean, but global differences on the sample could reach as high as 30� or more.

While imperfect, these “near isotherms” may be more informative than a three-

dimensional rendering, and perhaps no less accurate than attempts to extrapolate

a true isotherm.

Again, vertical temperature gradients through the YSZ were also present - they

were measured at approximately 25-30� per mm YSZ. Such gradients render difficult

accurate measurement of YSZ properties from EIS spectra. However, the contribution

to impedance by YSZ is a constant real resistance, and since all parameter extraction

was carried out for samples with a uniform thickness of 0.25 mm, these gradients are

not expected to impact this investigation.

Table 4.1 shows the mean, minimum and maximum temperatures for the isotherms

used in Section 4.3.
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(a)

(b)

(c)

Figure 4-2: Optical micrographs showing the degradation of a 400 µm-diameter mi-
croelectrode. Middle and right-most images are after one and two cycles from room
temperature to 800� at 17�/min. Note that the electrodes were not deposited in
the same batch, and may be of different thicknesses, so difference in degradation
may not be due thin polycrystalline YSZ film. (a) Electrode deposited directly on
single-crystal YSZ. (b) Electrode deposited on polycrystalline YSZ (grayscale). (c) A
damaged 400 µm-diameter electrode; pitting is a result of prolonged exposure to high
temperatures, and the gash is due to contact with a probe tip - the gash is atypically
large. Testing on this electrode was stopped well before this level of damage had
accrued.
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Table 4.1: Mean, minimum, and maximum temperatures for every isotherm series.

Mean Temperature (�) # Data Points Minimum (�) Maximum (�)
476 1 476 476
531 2 524 537
560 3 557 564
605 4 603 610
646 4 638 655
689 2 680 698

It should be noted that the probe tip, itself, acts as a heat sink applied directly

to the electrode surface. Temperature calibration was performed using a separate,

external thermocouple which did not take this fact into account, though temperature

gradients around probe tips were observed during calibration.

4.1.3 Triple Phase Boundary

It is a fundamental assumption of this work that the triple phase boundary length

is the perimeter of the electrode. This perimeter may be estimated from the design

parameters of the electrodes, but due to processing limitations and edge roughness,

the actual perimeter ought to differ from this estimate. To address this disparity,

scanning electron micrographs were taken of several 50 µm-radius electrodes. With

the help of edge filtering algorithms, the perimeter was then estimated for these

electrodes; the electrodes’ radii were also estimated by fitting a circle to the extracted

electrode edge points. Figure 4-3 briefly illustrates how this was accomplished. It

should be noted that noise in the pixelated perimeter causes a tendency to overshoot

the actual perimeter. On the other hand, the presence of microstructural features on

a scale below the resolution of the image would suggest that the estimated perimeter

is too small. As such, it is hard to say whether the method used to extract the

electrodes’ perimeters underestimates or overestimates the value.

It is conceivable that thermal and electrochemical cycling may affect the triple

phase boundary length. To address this possibility, high-resolution scanning electron

micrographs were obtained for two microelectrodes on the sample YSZ substrate, one
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Figure 4-3: Steps of extracting the perimeter of the electrode from digital scanning
electron micrographs. The original image is run through an edge filter; the edge of
the microelectrode is extracted from this display manually, and the outer points are
then selected as representative of the electrode edge.
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Figure 4-4: A 100 µm-diameter (50 µm radius) electrode at 800× magnification after
an electrochemical impedance spectrum has been obtained. The measurement was
run at about 700�, and the surface was exposed to atmosphere. The gash in the
surface is left by the probe tip, and is large relative to usual damage caused by the
probe; its Pt-YSZ contact length is about 19 µm, or about five percent of the electrode
perimeter.

exposed to a thermal cycle but never having undergone an EIS measurement, and

the other submitted to an EIS test during the thermal cycle. Table 4.2 shows the

perimeters and radii extracted from this set of images. The change in perimeter and

radius is probably negligible in either case, though it is perhaps noteworthy that the

best-fit radius, a parameter more insensitive to noise because it averages over all edge

data points, increases slightly in both measurements after a thermal cycle. Further,

both electrodes are characterized by an actual radius slightly larger than the design

goal of 50 µm, and by a perimeter about 10 to 15 % larger than that of an ideal circle

with the best-fit radius.

While the perimeter of the electrodes did not change appreciably after one thermal
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Table 4.2: Actual perimeters and radii of two ∼50 µm-radius electrodes.

Before Cycle [µm] After Cycle [µm]
One thermal cycle, no EIS measurements

Radius 51.8 52.3
Perimeter 377 374

Thermal Cycle, one EIS measurement
Radius 51.9 52.8

Perimeter 359 362

cycle, the gash in the Pt thin film left by the probe tip constitutes a marked difference

in the surface. The gash does not form immediately as the probe tip is placed down;

the SUSS manual probeheads allow sufficient vertical resolution such that the probe

might be extended until contact is observed, and then retracted quickly without

significantly damaging the surface. Rather, the gash forms over the duration of the

EIS measurement (usually 10 to 20 minutes). Probe tip vibration or creep might

be speculated as the mechanisms behind this slow destruction; regardless, it surely

contributes to bias error within a single electrochemical impedance spectrum, and

makes the lower-frequency data (which are measured last and take the longest time

to gather) less reliable.

Figure 4-4 shows a scanning electron micrograph of a 50 µm-radius electrode after

a single EIS run at around 700�. The gash is clearly visible in the upper-right-

hand corner of the electrode; its Pt-YSZ contact length is about 19 µm, equivalent

to roughly five percent of the electrode’s external perimeter as measured from the

technique described above.

4.2 Basic Scaling Analysis

Scaling analysis is a fundamental and essential technique to examine the behavior of

the spectra, and can be used to rapidly assess the validity of the proposed model.

Further, the use of microlithography to create solid, non-porous electrodes allows for

accurate knowledge of electrode geometry. This makes conclusions drawn from scaling

more reliable relative to those drawn from experiments using electrodes created from
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Figure 4-5: Scaling behavior of the low-frequency intercept in the complex impedance
plane for three thermodynamic states.
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Figure 4-6: Scaling behavior of the high-frequency intercept in the complex impedance
plane for three thermodynamic states.
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platinum paste (as in[37], for example).

The theoretical picture presented in Chapters 2 and 3 supply expected behaviors of

the spectra with respect to electrode size. One convenient way to probe the success of

this picture in predicting data is to analyze the scaling dependence of the limiting low-

and high-frequency intercepts of the spectra with the real axis in the complex plane.

Some care is needed to extract the value of these intercepts. Here, the low-frequency

intercept of the spectrum with the real axis, Rlf , is estimated by fitting a circle to the

data in the complex plane - a reasonable empirical fit in the low-frequency regime.

The high-frequency intercept, Rhf , is found by extending a line at 45° from the real

axis to the impedance point of smallest real value (the high-frequency intercept of

the cylindrical impedance contribution is masked by electromagnetic capacitance and

interfacial capacitance - see Section 4.3.1).

As expected, both the low- and high-frequency intercepts decrease monotonically

with electrode radius. Notice that the high-frequency intercept does not depend

strongly on pressure, but does decrease significantly as temperature is increased.

This is consistent with the view that the low-frequency intercept is dominated by the

contribution from the ohmic resistance of the electrolyte.

Rhf follows the electrode radius between R−1.2
e and R−1.6

e . As discussed in Section

2.4.3, such variation is not unexpected due to the complicated problem presented by

ohmic conduction across the Pt/YSZ interface and through the YSZ bulk1.

The observed scaling of Rlf with Re is more-pronounced than that measured for

Rhf . Best fits of Rlf ∝ Ra
e show a between -1.9 and -3.1. In Section 2.4.3, a was pre-

dicted to fall between -1 and -2 depending on the ratio, Re/lδ, which defines whether

the system is in the “Gerischer” (Re/lδ ≫ 1), transition (Re/lδ ≈ 1), or semicircular

(Re/lδ ≪ 1) regimes. As such, the observed dependence of Rlf on Re seems too

strong in some cases. However, a transition between a steeper size dependence for

1It might be helpful to envision a cone of ion conduction extending down from a point on the
perimeter of the electrode to the semi-infinite counterelectrode; the three-dimensional geometry
through which the ions flow might then be estimated by revolving this cone around all points on
the electrode perimeter. Thinking in this way, as the ratio of electrode radius to thickness, Re/t,
is increased, the ohmic resistance ought to appear as transitioning from being fairly independent of
Re to suddenly becoming strongly dependent, before leveling off to ∝ R−1

e . With this in mind, the
observed dependence on Re is reasonable.
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small Re (i.e. Re ≪ lδ) to a shallower size dependence for larger Re (i.e. Re ≫ lδ) is

recognizable, especially for the 600� and 104 ppm data series, and occurs on a length

scale between 10 and 100 µm, slightly smaller but on a similar scale as observed in Dr.

Koc’s data in Figure 2-7 for the larger temperature of 700�. Again, the electrode size

at which the transition between scaling dependencies occurs is indicative of the scale

of the utilization length, lδ. The scale of lδ for solid, sputtered thin-film Pt observed

here, consistent with data collected for square electrodes by Dr. Koc, is two to three

orders of magnitude larger than that reported elsewhere for porous Pt [2].

It is also of note that Rlf depends strongly on both temperature and pressure, pro-

viding evidence to the importance of sorption in the determination of the impedance

for this frequency range.

4.3 Results of Fitting

Fitting was carried out in two steps. In the first pass, the trial function included

a double-layer capacitance in parallel and electrolyte resistance in series with the

Faradaic impedance. Based on the least-squares fits for Cdl and Rysz, the Faradaic

impedance was extracted from the raw data, and a second pass fit was carried out

for only the Faradaic impedance parameters using the values from the first pass as

initial guesses. For most spectra, the double-layer capacitance was small enough to

be ignored.

Initial guesses were painstakingly determined by hand via trial and error; typically,

least-squares minimization of these initial guesses resulted in stable solutions, but

occasionally, multiple local minima were found for multiple initial guesses within the

same vicinity of one another. Further, for many spectra, the low-frequency corner-

frequency, controlled through γ3, was fixed, as this parameter is readily identified

from a Bode plot of the spectrum. In some cases, the initial guesses better captured

the corner frequencies and general shape of the impedance spectrum, even though

the least-squares solution resulted in a lower norm of residuals. Because it is assumed

that the corner frequencies of the Bode plot are more reliable than individual data
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points and therefore deserve a greater weight in the fitting, in these cases, the initial

guess were retained as best fit.

4.3.1 Double layer and Electromagnetic Capacitance

Double layer capacitances were as large as 9.5 nF, corresponding to about 1.2×10−4

F/cm2 for this particular 50 µm-radius electrode, but typically much smaller by sev-

eral orders of magnitude so as to be negligible. This maximal capacitance value has

also been captured in EIS experiments elsewhere [2]. Again, there is significant scatter

in reported double layer values [2]; this may be due to the fact that, strictly speaking,

the measured parameter is the interfacial capacitance, which depends not only on

double layer effects, but on chemical processes, as well [19].

Figure 4-9 illustrates how the double layer capacitance appears in the impedance

spectrum. The Nyquist plot shows a bulge at the high-frequency end which increases

the curvature of the locus of impedance points such that the angle at which the locus

intersects the real axis is no longer 45°. The effect is distinct from the semicircular

limit of the cylindrical-geometry Faradaic impedance model because this model will

produce a Nyquist plot where the locus of impedances always intersect the real axis

at 45° if high-enough frequencies are probed.

If the basic Randles circuit accounted for all impedance contributions, then the

impedance spectrum ought always to intersect the real axis at an angle of 90° on the

Nyquist plot at high-enough frequencies, as the double layer capacitance will eventu-

ally short out the Faradaic component2. However, the electromagnetic capacitance -

caused by field, or “displacement current”, coupling of the electrode with the coun-

terelectrode - introduces another semicircle in the Nyquist plot, as visible in Figure

4-10 for the lowest-temperature series. While the total impedance is not exactly a

superposition of the two semicircles, they nonetheless combine in a transition region

which modifies the high-frequency intercept angle3. Unfortunately, in the presence

2though at some point, modeling the double layer’s effect as a capacitor will no longer be accurate
3In fact, the impedance locus does not really intercept the real axis in this transition region,

though it comes close to doing so.
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of these additional contributions to impedance, it becomes difficult to extract any

information about Faradaic processes from the highest-frequency data.

The fact that these small secondary capacitances are more visible at low temper-

atures is a consequence of a higher Faradaic impedance magnitude at these temper-

atures. The shunt paths these secondary capacitances create between electrode and

counterelectrode have high impedances for the frequencies under investigation. As

such, they only modify the observed impedance spectrum in a sensible way when the

Faradaic impedances are also very large.

Because the double layer exists over the entire area of the Pt-YSZ interface, the

double layer capacitance scales as R2
e, while the Faradaic impedance contribution

scales as Re. As such, double layer capacitance data might be analyzed for proper

scaling in order to verify whether the understanding of this impedance behavior is

correct. However, as these capacitive effects are not visible in every spectrum, double

layer data is incomplete, and so such an analysis has not been carried out.

4.3.2 Representative Electrochemical Impedance Spectra

The following Nyquist and Bode plots in Figures 4-7, 4-8, and 4-9 demonstrate good

fits to data in both the semicircular and Gerischer regimes. Figures 4-7 and 4-8

illustrate a spectrum which is primarily in the “transition” regime between the semi-

circular and Gerischer limits. In the Nyquist plot, 4-7, this is visible from the bulge

in the spectrum at low frequencies and large impedances and the clear high-frequency

asymptote along the 45° line. The detail of the Nyquist plot shows additional curva-

ture in the locus at very high frequencies; this is due to the double layer capacitance.

The Randles-circuit fit to the data is able to capture most of the behavior of

the spectrum. To provide a sense of how close initial guesses ought to be to ensure

convergence, the initial guess is plotted alongside the data and least-squares fit. The

Bode plot, Figure 4-8, provides more detail regarding the accuracy of the fit with

respect to frequency. In particular, the phase plot shows where the model has trouble

accommodating the measured spectrum. Further, the measured spectrum seems to

be somewhere in between those of the initial guess and the least-squares minimum,
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illustrating the difficulty and ambiguity inherent in the process of data extraction.

It should be noted that these plots show only the first-pass in the fitting procedure,

for which the Randles circuit is used. In the next pass, the Faradaic impedance

is extracted from the measured spectrum using the fitted double layer capacitance

and electrolyte resistance values, and another least-squares pass on this Faradaic

impedance is performed to produce the final set of parameter values.

With a temperature about 75� lower than in 4-7, but with the same pressure and

electrode radius, the spectrum in Figure 4-9 appears much more Gerischer-like, with

an elongated 45° high-frequency asymptote and no visible bulge. Alongside the raw

data is shown the Faradaic impedance extracted after the first-pass fit; it appears

even more Gerischer-like as some curvature at higher frequencies has been removed.

The double-layer capacitance, Cdl, found in this case was 4.35 nF, corresponding to

5.54×10−5 F/cm2 for this 50-µm-radius sample. Finally, the second pass fit is shown

to satisfactorily describe the measured impedance spectrum.

It is worthwhile to comment on the differences between these two spectra. For the

same electrode radius, the spectrum has shifted from a predominantly semicircular

shape to that of a Gerischer (teardrop). In the language of the colimited ORR model

presented here, this would be consistent with a shortening of the utilization length,

lδ =
√

D/α. The change was effected by lowering temperature while holding all other

experimental variables constant. Whereas both dissociative adsorption and diffusion

are thermally activated processes, both might be expected to be reduced after the

temperature reduction; however, it is very plausible that the change in D is much more

pronounced in α, as the activation energy of dissociative adsorption is significantly

smaller than the adsorption energy (see [18], where the dissociation energy of 0.38 eV

compares to and a binding energy of 2.6 eV]). Following the rule-of-thumb suggestion

of Hopster et al. in estimating the diffusion barrier at one half the desorption energy

[20], the observed transition toward a more Gerischer-like appearance in impedance

spectra as the temperature is lowered, all else equal, is entirely consistent with the

colimited ORR model and its concept of the utilization length.

To underscore this point, Figure 4-10 superimposes the high-frequency regimes
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Figure 4-7: Nyquist plots of data taken at T≈640�, P=1 atm, for an electrode with
radius, 50 µm. The data is primarily in the semicircular regime, but still displays the
characteristic high-frequency 45° asymptote. (a) Nyquist plot; (b) Nyquist detail.
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Figure 4-8: Bode plot of data taken at T≈640�, P=1 atm, for an electrode with
radius, 50 µm. Complements Figure 4-7.
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Figure 4-9: Nyquist plots of data taken at T≈564�, P=1 atm, for an electrode with
radius, 50 µm. An additional fitting step including the double-layer capacitance and
electrolyte resistance is shown - the raw data is shown alongside the data after a best-
fit contribution from Cdl and Rysz are extracted. The spectrum is in the “Gerischer”
regime.
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of the Nyquist representation of several impedance spectra, each with a different

temperature but with all other experimental conditions the same. Again, the spectra

appear more Gerischer-like at lower temperatures, and more semicircular at higher

temperatures. As discussed earlier, the figure also illustrates how the double-layer and

electromagnetic capacitances modify the measured spectra, and shows these effects

to be more pronounced in the lower-temperature series.

4.3.3 Estimation of Utilization Length by Visual Inspection

Figure 2-7 demonstrated the ability to extract the utilization length, lδ, from EIS

data by comparing spectra taken at the same temperature and pressure, but for

different electrode radii; lδ is estimated by identifying the electrode size marking the

transition from semicircular to Gerischer-like forms. However, the same trend was not

clearly identified here. Figures 4-11, 4-12, and 4-13 superimpose Nyquist and Bode

plots of impedance spectra for multiple radii. The high-frequency real impedance

intercept (asymptote) has been extracted from each spectrum; this is done so that

the high-frequency phase angle matches the angle above the real axis in the Nyquist

plot. The expected trend was shown in Figure 2-5, where the 45° portion of the

Nyquist plot elongates (or the high-frequency corner frequency at 45° in the phase

plot becomes smaller) as the Nyquist plots tend toward a Gerischer shape. This trend

is perhaps viewed in the phase plot of 4-11, but not convincingly. Further, Figure

4-13 pairs the 25 and 200 µm as having approximately the same high-frequency corner

frequency in the phase plot, as well as the 50 and 100 µm corner frequencies. The

absence of the expected trend is not likely due to temperature differences between

the measurements, as the 25 and 50 µm spectra show the opposite of the expected

trend (the 50 µm spectrum has a smaller high-frequency corner frequency than the

25 µm sample).

On the other hand, the low-frequency corner-frequency remains largely invariant

with respect to electrode radius, as expected (see Section C.44). Further, scaling

trends in the low-frequency intercept seen in Figure 4-5 do potentially reveal the

scale of the utilization length, placing the parameter between 10 and 100 µm for the
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Figure 4-10: (a) Nyquist plots showing impedance spectra taken at several tempera-
tures with a pressure of 104 ppm O2. (b) Detail around high-frequency (HF) region.
As temperature (T ) increases, spectra become more semicircular, consistent with the
idea that the active region on the electrode is extended due to a greater diffusivity.
The Cdl tends to round out the 45° line in the HF region to a semicircular shape, and
the electromagnetic capacitance creates a second, semicircular feature at very high
frequencies; these effects appear prominently in the lowest T series.
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temperatures and pressures shown.

4.3.4 A Note on Reproducibility and Error Estimation

In the following sections, error bars are displayed in the figures for each parameter

of interest that has been extracted from the data. The method used to calculate

this error is discussed in detail in Section D.2.2 in the appendix. Variances for each

data point of the electrochemical impedance spectra were estimated by obtaining ten

spectra consecutively from the same electrode and calculating the standard deviation

at each frequency sampled; the resulting normalized standard deviation was then

assumed to apply for any spectrum at any condition. Figure 4-14 shows EIS spectra

from two different electrodes used to calibrate the error estimation. The color of the

series distinguishes one electrode’s data from the other’s. The spectra demonstrate

generally good reproducibility, both from a single electrode and between different

electrodes. The Bode plot in Figure 4-14b confirms nearly identical corner frequencies

for each spectrum. Figure 4-14a renders the data in a Nyquist plot; here, the solid lines

link impedances measured at the same frequency, and roughly indicate the order in

which the data was taken. Variation in the Nyquist plot is relatively random about a

fixed mean, confirming the unbiased assumption; however, in the blue series, the final

three to four data points for each frequency may witness a trend toward decreasing

impedance magnitude with time. A detail at the high-frequency limit shows smaller

percentage error in this regime; this is also confirmed by a decreased spread in the

Bode plot for frequencies greater than about 1 kHz.

Due to contraction on the logarithmic axes in many of the plots, error bars are

often so small as to be invisible. In general, however, the average normalized stan-

dard deviations, less extreme outliers, are as follows: for the linearized adsorption

rate, α, ±5%; for diffusivity, D, ±5%; for the utilization length, lδ, ±3.3%. These

error estimates might seem optimistic; however, it should be emphasized that they

refer only to the unbiased error implied by extracting physical parameters given the

inherent experimental variation in impedance spectra. Systemic inaccuracies in the

models used to infer physical parameters indirectly from electrochemical impedance
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Figure 4-11: (a) Nyquist and (b) Bode plots of impedance spectra taken at P = 104

ppm O2, T=512-524�. Spectra from electrodes with three different radii are shown,
but the expected trend as displayed in Figure 2-5 is not clearly exhibited.
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Figure 4-12: (a) Nyquist and (b) Bode plots of impedance spectra taken at P = 104

ppm O2, T=597-616�, for for different radii. The inset in (a) shows a detail of the
high-frequency portion of the Nyquist plot.
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Figure 4-13: Nyquist and Bode plots of impedance spectra taken at P = 106 ppm
O2, T=597-612�. Again, spectra from electrodes with three different radii are shown,
and the expected trend as displayed in Figure 2-5 is not clearly exhibited.
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Figure 4-14: (a) Nyquist and (b) Bode plots of error calibration data. In each figure,
ten spectra are shown for each of two different 100 µm-diameter electrodes. The
electrodes were exposed to air, and the surface temperature was about 525�. Green
and blue color distinguishes one electrode’s data from the other. In error calculations,
standard deviations from only the green dataset are used.
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spectra are not included, and neither are errors associated with uncertainty in the

state variables, temperature and pressure, as well as in the triple phase boundary

length. Variation between properties of different electrodes should also be expected

due to non-idealities in materials processing. Nevertheless, the low error estimates

demonstrate a natural robustness of EIS analysis which results from the fact that

many frequency points are sampled in each spectrum, and each extracted parameter

includes information from all of these measurements4.

4.3.5 Coverage Isotherm

In Chapter 3, two methods were outlined for determining the coverage. While both are

valid in theory, that described by 3.7 has the advantage of requiring fewer literature

parameters, in particular regarding the adsorption process. It is also much simpler

to implement.

The coverage obtained from this scheme is shown in Figures 4-15 and 4-16. Figure

4-15 displays both the lower and upper roots of 3.7. Those roots yielding a trend of

generally increasing θ with pressure and decreasing θ with temperature, all else equal,

were selected as the “true” coverage, and are displayed in 4-16. Certainly, there is a

degree of interpretation in this selection process.

Also, the two points with coverage equal to ½ are of dubious quality, as the roots

of 3.7 included imaginary components (not shown). Further, the accuracy of this

coverage data is limited by that of the parameter, Γ. Γ, the number of surface sites

per unit area, is taken to be 1019 m−2, as per [36, 37, 38], which is the approximate

number of Pt atoms on a clean Pt(111) surface. This approximation is likely only

accurate to an order of magnitude for polycrystalline Pt.

The isotherm with the cleanest shape is that at 605�. The shape of this isotherm

compares favorably with theoretical calculations. However, the lowest-temperature

4It is useful to remember that the standard error associated with the mean of a data series scales
as 1/

√
N , where N is the number of samples in the series; this is a consequence of the central limit

theorem, and holds for any population of identically-distributed random variables with finite mean
and variance. As such, accurate information may be obtained even from very noisy data simply by
taking a sufficient number of data points. While the situation presented here is more complicated,
the lesson of decreasing error with increasing sample size is still valid.
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Figure 4-15: (a) Lower roots in 3.7. (b) Upper roots.

105



(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.2

0.4

0.6

0.8

1

P [Pa]

θ

Coverage Isotherms (Combined)

 

 

476 oC

531 oC

560 oC

605 oC

646 oC

689 oC

(b)

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Pressure [Pa]

C
ov

er
ag

e,
 θ

/θ
m

ax
, θ

m
ax

=
1/

4

(Theory) Solid Line u
0
=0.12 eV, Broken u

0
=0

 

 

476oC

531oC

560oC

605oC

646oC

689oC

ε=1.1 eV

Low T High T

Figure 4-16: (a) Coverage isotherm extracted from impedance spectra, merged from
data in Figure 4-15 by selecting the coverage values which produce an isotherm mono-
tonically increasing with pressure. Temperatures shown are averages of each series;
variation about each average is < ±10�. (b) Coverage isotherm from theory shown
in Figure 2-3 with repulsive interactions, u0 = 0.12 eV, and chemisorption energy,
ǫ = 1.1 eV.
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data point seems too high, and the high-temperature, low-pressure data points are

arranged in an unexpected fashion. At these low pressures, it would be expected that

the coverage has converged to nearly zero, suggesting that the observed scatter is just

experimental error. It is possible that these data represent a more endemic problem

in the interpretation of the EIS spectra. The higher temperature and pressure data

do indicate the expected trend of increased coverage with increased pressure, all else

equal, and decreased coverage with increased temperature, all else equal. Further,

the data points in this range of temperatures and pressures sample nearly the entire

coverage space, allowing for visualization of coverage effects on other parameters.

A possible manifestation of this might be marked non-Arrhenius behavior in the

diffusion coefficient for the highest-pressure isobar.

It is noteworthy that the simulated isotherms in Figure 2-3, for which the binding

energy was taken to be ǫ = 1.6 eV [56], fail to capture the extracted coverage isotherms

with quantitative accuracy, and it would appear that the isotherms have been shifted

between data and theory along the pressure scale by many orders of magnitude.

However, the simulated isotherms in Figure 4-16 are in much better agreement with

the data. These were generated using ǫ = 1.1 eV [25], and the same repulsive lateral

interaction energy, u0 = 0.12 eV. Other combinations of ǫ and u0 might also reproduce

the data with reasonable accuracy. Further, impurities on the Pt surface that create

a marked difference between the properties of the polycrystalline Pt used here and

the Pt(111) surfaces used in some of the literature may account for discrepancies in

the capacity of the surface to bind oxygen. Despite this, the simple mean field theory

employed to derive the coverage isotherm performs surprisingly well.

4.3.6 Linearized Adsorption Rate

Section 4.3 discussed the extraction of the linearized adsorption rate, α = γ3, from

impedance spectra. The parameter is the “stiffness” defining how fast the coverage

value tends to restore itself in response to a perturbation about its equilibrium value,

and considers only sorption processes. Because this parameter controls the location

of the low-frequency corner frequency in spectra, it is perhaps the least difficult to
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Figure 4-17: (a) Extracted linearized adsorption rate, α, isobars in an Arrhenius
plot; (b) α as calculated in mean field theory model.
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Figure 4-18: (a) Extracted linearized adsorption rate, α, isotherms against pressure;
(b) α as calculated in mean field theory model.
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Figure 4-19: Extracted linearized adsorption rate, α, isotherms against coverage.

estimate by hand.

However, the extracted values of the adsorption rate seem hard to reconcile with

the mean field theory model derived in Chapter 2 (see Equation C.48). In particular,

the extracted adsorption rates are very slow so as to require a large binding energy

in the MFT model to account for their order of magnitude. Further, the dependence

on temperature seen in Figure 4-17 is confusing, especially for the 1000 ppm isobar.

Figure 4-18 shows α against pressure alongside isotherms predicted from MFT, and

Figure 4-19 shows these isotherms against the extracted coverage values. The higher-

pressure data (104 ppm ≈ 103 Pa) show α increasing with pressure, but lower pressures

show a fairly flat curve against P . Such variations in α with respect to pressure would

be more consistent with attractive, rather than repulsive, lateral interactions between

adsorbates, as shown in Figure 2-1, though even allowing for this, the observed trends

against P are not precisely reproduced.

Because the extraction of α depends largely on obtaining accurate low-frequency

data, it is likely that the quality of extracted α values falls off as α becomes smaller,
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Figure 4-20: Literature value of linearized adsorption rate based on the work of
Mitterdorfer and Gauckler in [37]. The values are found based on least-squares fits
for adsorption and desorption rate constants, ka and kd, carried out in [37] that are
valid for the coverage range, 0.2 < θ < 0.75 (implicit in the temperature and pressure
range shown here). The correspondence between Mitterdorfer and Gauckler’s ka and
kd and the linearized adsorption rate of this work, α, is α = 2Γ

√
kakdP (see Section

C.10).
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since observation may start to approach the time scale of sample degradation or

other slow measurement drift processes at these lower-frequency measurements5. Ex-

amining Figures 4-17 and 4-18, trends do seem more reasonable for α > 0.1 [rad/s].

However, this would be a very unfortunate degree of experimental error, essentially

nullifying the validity of low-frequency information for a large portion of data.

It is of note that α and the lower-frequency corner frequencies found in these

experiments were generally lower than those found in the work of Dr. Koc (see Section

2.4.4), even by as much as an order of magnitude. As the materials, processing,

and fabrication in these two sets of experiments were basically the same, and as α

is considered to be generally a function of only thermodynamic state and surface

properties, this difference is hard to understand. It suggests that the actual Pt

surfaces used in these experiments do differ from those used in earlier works, and that

electrode surface properties are very sensitive to processing and fabrication details.

Comparing the values of α extracted here to those determined in Mitterdorfer and

Gauckler’s analysis for porous Pt shows an even greater disparity [37]. Figure 4-20

shows level set curves for α based on [37] for the range of temperatures visited in the

present experiments and for pressures corresponding to 0.2 < θ < 0.75. Comparison

with the α values extracted from the present work shows this work’s values between

one to four orders of magnitude lower than those recovered from [37]. Also, oddly,

the data of Mitterdorfer and Gauckler would suggest that α monotonically decreases

with increasing pressure, as their kinetic adsorption and desorption rate constants,

ka and kd, are both reported to decrease monotonically with coverage, and α =

2Γ
√

kakdP (see Section C.10 in the appendix). It would be expected that lateral

interactions between adsorbates would tend to cause a falling trend against coverage in

one parameter and a rising trend in the other. The authors address this inconsistency

in a later work by proposing a precursor-mediated adsorption model [38].

5Section C.9 suggests that the low-frequency corner frequency is proportional to, but more than
an order of magnitude smaller than, α.
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4.3.7 Diffusion Coefficient

Figure 4-21a displays an Arrhenius plot of the diffusion coefficient, D, along several

isobars. Diffusivity values typically fell between 2 × 10−2 and 2 × 10−7 cm2/s. It is

clear from the plot that (a) diffusivity depends strongly upon oxygen partial pressure

and (b) that non-Arrhenius behavior is exhibited over a single isobar. Within the

theoretical framework introduced in Chapter 2, these characteristics are attributed

to coverage dependence in D.

For comparison, the same Arrhenius plot based upon theory and literature values

has been displayed alongside that extracted from data. Extracted diffusivity values

are typically much smaller than those obtained from theory. However, the extracted

values are of comparable magnitude as in several experimental studies carried out on

single-crystal Pt surfaces in high vacuum [4].

Figure 4-22 displays Arrhenius plots based upon empirical diffusion parameters

obtained by von Oertzen et al. [53] for oxygen on Pt(110). This study is useful

for comparison in particular because it involves long range surface transport at ap-

preciable and varied coverages, and because the measurement technique is based

on coarse-grained photographs and not on individual atom trajectories. However,

marked differences are anticipated between diffusion on an anisotropic single-crystal

Pt surface and the polycrystalline Pt employed here. Further, von Oertzen et al. took

measurements at temperatures between 600 and 670 K (about 330 and 400�); the

empirical parameters they report may not be valid for extrapolation at the higher

temperatures visited in this work. And it should be noted that the uncertainty cited

by von Oertzen et al. results in three to four orders of magnitude difference in their

diffusivity values; further, the scatter between all of the various Pt-O surface diffusion

studies in the literature is large [4]. These cautionary remarks notwithstanding, the

correspondence in magnitude between this study and that of von Oertzen is satisfying.

Already, the dependence of the diffusion coefficient on coverage may be inferred

by the realization of marked non-Arrhenius behavior in the highest-pressure isobar, as

predicted from analysis of the coverage isotherms. However, while the Arrhenius plot
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Figure 4-21: (a) Arrhenius plot of several diffusion coefficient isobars extracted
from impedance spectra according to the method outlined in Chapter 3. Exhibits
non-Arrhenius behavior; this is expected. (b) Same plot as predicted from theory
combined with literature data (u0 = −0.21 eV; ǫ = 1.1 eV).
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Figure 4-22: Empirical Arrhenius fits to data extracted by von Oertzen et al. [53].
The lines illustrate the data extracted at low and high coverages; there is a very large
difference between these two cases.
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is a classic tool for analysis of diffusivity data, isotherms displaying diffusivity against

pressure and against coverage provide a more direct method of examining coverage

dependence. These are shown in Figures 4-23 and 4-24. As before, the isotherms

are, in fact, near isotherms, as the temperature varies by as much as 15� along each

series.

The data show a trend of generally decreasing diffusivity with increasing coverage.

This is indicative of an attractive interaction between adsorbates according to the

mean field theory proposed in Chapter 2. While the mean field theory model derived

for the diffusion coefficient arrives at values of D with the same order of magnitude

as those values extracted from the data, it is unable to capture the qualitative shape

of the D isotherms. In particular, the mean field theory predicts a leveling off of

the D isotherms at higher coverages, but this was not observed in the extracted D

isotherms. However, as there is only limited high-coverage data from this work, it is

very possible that this predicted trend is, in fact, accurate, and that the experimental

analysis failed to capture it.

Once more, it is interesting to comment on the fact that the coverage isotherm

seems to present evidence for repulsive interactions among adsorbates, while the dif-

fusivity isotherms suggest attractive interactions. This dual personality of u0 was

discussed in Section 2.4.2. Most likely, it is a consequence of the oversimplification re-

alized in the mean field theory schemes commonly used to handle lateral interactions,

and a testament to the complexity of the adsorbate-adsorbate and adsorbate-surface

relationship.

4.3.8 Utilization Length

The utilization length is calculated through its definition, lδ =
√

D/α, where α = γ3.

Figures 4-25, 4-26, and 4-27 show the results of these calculations in three different

ways. Figure 4-25 does not display any consistent trend with respect to temperature.

Figure 4-26, however, does show a tendency toward decreasing lδ with increasing

pressures above about 1000 Pa (104 ppm O2), and weaker pressure dependence below

1000 Pa. The calculation may be checked for consistency by using other methods to
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Figure 4-23: Plot of diffusion against pressure. (a) Data. Standard deviation of
temperature in pressure series indicated in legend as σ. (b) Simulated from theory
using parameters from literature.
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Figure 4-24: (a) Diffusivity vs. coverage as extracted from impedance spectra; (b)
same plot as calculated from theory with u0 = −0.21 eV.
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Figure 4-25: Arrhenius plots of utilization length isobars.
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Figure 4-26: Utilization length against pressure, isotherms.
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Figure 4-27: Utilization length against coverage, isotherms.

estimate lδ. Section 4.3.3 mentioned that the utilization lengths were not clearly iden-

tified by visual inspection of the spectra; however, scaling analysis of low-frequency

impedance intercepts shown in Figure 4-5 had suggested a scale for lδ between 10

and 100 µm for a temperature of about 600� and oxygen partial pressures between

104 and 106 ppm. The value of lδ extracted from EIS spectra for this temperature

and these pressures fall within or close to this range, as seen in Figure 4-25. The

518� and 104 ppm data series in Figure 4-5 did not clearly indicate a scale length for

lδ; this, too, is consistent with the extracted value of about 2 mm for this temperature

and pressure - a size out of the reach of the scaling analysis performed here. It is of

note that for all but the 106 ppm data series, the utilization length is much larger

than initially predicted by theory.

The coverage isotherms show coverage leveling off to a small value for the pressures

below 1000 Pa. This observation suggests a strong correlation of lδ to coverage, and

indeed, this very correlation is appreciated in Figure 4-27. Curiously, the isotherm at

531� suddenly seems out of place in the lδ vs. θ plot, where it lay on top of the other

data series in 4-26. Further, two points from the 646� series also seem anomalous
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given the rest of the data. Nonetheless, lδ is seen to decrease rapidly with increasing

coverage with fairly weak temperature dependence.

The discussion in 2.2.1 showed that α, and hence lδ, is dependent on pressure not

only through coverage, but also through the rate at which oxygen molecules impinge

upon the surface. In fact, the expression for lδ in 2.40 displays no explicit coverage

dependence. As such, the behavior of lδ is expected to be displayed most clearly when

plotted in isotherms against pressure as in Figure 2-6 6, which illustrated the model’s

P−1/4 trend and the weaker, but still important, temperature dependence. However,

the extracted values of lδ do not conform to this picture. For higher pressures, the

data follow pressure between P−0.33 and P−0.55, and again, lose this dependence at

lower pressures. In fact, the absence of an explicit coverage dependence for lδ in

Equation 2.40 is probably a severe weakness of this first-order approximation, and

the observed deviation from this prediction is likely genuine.

4.3.9 Considering Context-Specific Interactions

Given the aforementioned dichotomy of u0 in the contexts of adsorption and diffusion,

it might be helpful to allow different interaction energies for the diffusion and sorption

models. Figure 4-28 shows what happens to the theoretical calculation of lδ when this

is done. Immediately, a new behavior can be seen in that the strict P−1/4 dependence

predicted earlier is lost in the intermediate pressure and coverage regime, reaching

P−1/2. The steeper dependence on P in this region is reminiscent of the higher-

pressure trends in lδ seen in the data in Figure 4-26, though the flat plateau in the

data is still unaccounted for. Making this modification in the interaction energies

(as well as the binding energy) has not changed the fact that the calculated values

for lδ are several orders of magnitude below the extracted values; indeed, the gap

has widened as compared to that with Figure 2-6. Insofar as the mean field theory

models have achieved at least order-of-magnitude accuracy in predicting the diffusion

coefficient, D, the disparity ought to lie in the adsorption rate, where the theory

6in contrast to D, for which the behavior was expressed most clearly when plotted against coverage
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Figure 4-28: (Theory) Utilization length against pressure when ǫ is 1.1 eV and u0

is 0.12 eV (repulsive) in the sorption/coverage calculations, but u0 = −0.21 eV when
appearing explicitly in the expressions for D. Note the loss of a constant P−1/4

dependence.
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Figure 4-29: (Theory) Arrhenius plot of diffusivity isobars when different interaction
energies are allowed in the diffusion and sorption contexts. Again, ǫ is 1.1 eV and u0

is 0.12 eV (repulsive) in the sorption/coverage calculations, but u0 = −0.21 eV when
appearing explicitly in the expressions for D. Compare to 4-21b.
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predicts much greater rates than actually measured7.

The same idea might be applied to the calculation of D vs. θ; the result is shown

in Figure 4-29 8. The highest and lowest pressures correspond to the asymptotes

reached at the highest and lowest coverages; the experimental range of temperatures

and pressures falls in between these limits.

4.4 Comments on Colimited Reaction

Section 2.6.4 included a discussion regarding the non-uniqueness of the impedance

model derived for the cylindrical geometry. The primary message was that it is

necessary, but not sufficient, to demonstrate an impedance spectrum which has the

same qualitative shape (i.e. a 45° phase angle at high frequencies if real impedance

offset is zeroed, and an alternatingly semicircular or Gerischer (teardrop) shape for a

given state depending on electrode size) in order to argue for a colimited reaction. In

response to this non-uniqueness, it was suggested that, by comparing quantitatively

the physical parameters extracted from this model to those recorded in the literature,

a conclusion regarding the colimited reaction might be made with more certainty.

Since coverage isotherms are not widely available in the literature in a form convenient

for comparison9, focusing on the diffusion coefficient is a more straightforward way

to seek verification of the colimiting hypothesis.

Insofar as demonstrating the expected qualitative forms of the derived cylindrical

impedance model, the data do exhibit both cylindrical and teardrop shapes in the

Nyquist plot, and they do show a 45° phase angle at high frequencies after zeroing

the high-frequency real intercept. Yet the expected transition from semicircular to

Gerischer-like spectra with an isolated increase of electrode radius was not observed

for all data. As this transition is more a result of geometry than ORR mechanisms,

and as its analog in the square electrode studies has already been observed (see Figure

2-7), its absence here is puzzling and potentially damning with regard to the validity

7In the impedance spectra, this corresponds to especially small low-frequency corner frequencies.
8Note that there is no change in the D vs. θ plot, as the coverage is given in this case.
9especially those not obtained from EIS spectra
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of the postulated interpretation.

Nonetheless, most diffusivity values extracted from data seem reasonable relative

literature values, as do at least several of the coverage isotherms. And there is some

qualitative correspondence between these EIS-spectra-derived parameters and the

first principles models created for them. Quantitative accuracy was achieved to some

degree with regard to diffusivity values. Correspondence between theoretical and

extracted coverage isotherms was achieved after choosing different energetics values,

and particularly chemisorption binding energy, listed in the literature. But as the

variation in binding energies in the literature is significant (see Appendix F), it is

prudent to be skeptical of the quantitative accuracy of the mean field theory models.

Utilization length values calculated from theory were far from those extracted from

the data; the qualitative agreement between theory and experiment was improved

somewhat by allowing for attractive lateral interactions in the diffusion context and

repulsive in the adsorption context, but there was no improvement in quantitative

accuracy after this change was employed. Discrepancies between data and model

derive principally from differences in linearized adsorption rate, α.

In summary, the data do not present entirely conclusive evidence for the colimited

model of the oxygen reduction reaction on Pt, but are consistent with this model in

many respects. As such, it seems worthy to continue this line of research to move

closer to a more definitive solution to the interesting puzzle of ORR processes on

platinum.

4.5 Catalyst Design

Finally, this work leads to the contemplation of several valuable lessons for catalysis

material selection. Firstly, this work suggests a tangible difference in the properties

of the Pt thin film surface as compared to the porous Pt surface. As an example,

Mitterdorfer and Gauckler report surface diffusivities in the range from 3 × 10−6

to 3 × 10−7 cm2/s for oxygen over porous Pt for an electrode exposed to air at a
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temperature of around 730� 10. By contrast, this study of thin film Pt yields surface

diffusivities from 3 × 10−7 cm2/s at a temperature and oxygen partial pressure of

530� and 106 ppm to 10−2 cm2/s for 650� and 104 ppm, and diffusivities even

higher than this.

Along the same lines, Adler, analyzing the data of Mitterdorfer and Gauckler for

the porous platinum/YSZ system, estimates a scale range for lδ of 50 to 500 nm [2, 37].

Interestingly, using the same analysis scheme on data from Luerssen et al. for a thin

film Pt electrode at 700� and high vacuum, Adler finds a much larger utilization

length of 80 µm [2]. The estimates for lδ determined in the present work range from

10 µm at 560� and 106 ppm to 2 mm and even greater at higher temperatures and

lower pressures.

This line of inquiry suggests that surface diffusion is greatly enhanced on the

dense, sputtered-on thin film Pt as compared to porous Pt, while the linearized net

adsorption rate, α, is also reduced. It is hard to propose a mechanism for such a

difference based on this study. Generically, however, the diffusion barrier would seem

lower on the thin film surface; it can be speculated that this is due to the presence

of favorable surface defects, or perhaps to a weaker binding between oxygen and the

surface. Whereas a lower binding energy leads to a comparatively reduced coverage

for the same temperature and pressure, we would expect a coverage isotherm for thin

film Pt that is depressed downward from that of porous Pt should the latter of these

two suggestions be true. Comparing the coverage isotherm shown in Figure 4-16a to

those in the work of Mitterdorfer and Gauckler or Mizusaki for porous Pt, this, indeed,

is seen to be the case11. A weaker binding energy might also be consistent with a

reduced linearized net adsorption rate through a relatively smaller sticking coefficient,

though the additional impact on coverage makes this statement more tenuous.

10However, it should be noted that, subsequent to the study carried out in [37], the authors
greatly modified the model used to analyze their EIS data such that in their following publication,
they assume a simple thermally-activated diffusivity and no longer attempt to extract the parameter
from EIS data [37].

11[37, Fig. 12] and [38, Fig. 6], and for example, for 600� and 106 ppm, θ ≈ 0.4 ± 0.05 here
versus ≈ 0.6 in [38]. The analysis of Kishimoto et al. [23] of Mizusaki’s work [39, 40] reports fully
saturated coverage at all experimental temperatures visited here for pressures greater than or equal
to 7 × 10−4 ppm.
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Furthermore, recently, there has been much excitement in the catalysis commu-

nity over attempts at an ab initio explanation of the Sabatier principle - a century-old

heuristic due to Nobel laureate Paul Sabatier which holds that the catalytic activity

of a surface is related to the binding energy of reactants to the surface, and that the

binding energy should be strong enough to capture reacting particles while not too

strong so as to prevent their eventual release. Notable work in this area using quan-

tum perturbation theory as well as density functional theory calculations has been

performed by Nørskov, Hammer, Mavrikakis, Hu, and others [8, 35]. The relevance

to the present work is that in this study, energetics on the surface are demonstrated

both theoretically and experimentally to depend not only upon the identity of the

materials, but also upon the thermodynamic state that the surface is operated at. In

particular, the stability of adsorbates on a surface is dependent upon coverage. As

such, binding energies may be tuned not only by manipulating material compounds

or growing material sets epitaxially in an interpolative manner [21], but also simply

by varying the temperature and pressure to which the surface is exposed. Similarly,

a surface which is selected because of good catalytic properties at one reference con-

dition may not be as active under different conditions. As such, it is imperative to

consider the operating state of the catalyst when making design decisions regarding

material selection.
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Chapter 5

Suggestions for Future Work

This iteration of EIS experiments of ORR on Pt represents an improvement over

earlier versions, as discussed in the introduction. However, as always, the scheme

might be revised to extend its utility and accuracy. With regard to the experimental

method, I suggest a departure in the contact of the electrodes. Whereas the electrodes

are already created via microfabrication, it seems natural to use thin microstrip con-

ductors, perhaps also of Pt for simplicity, to carry voltage signals to electrodes. These

conductors may be buried under a layer of polycrystalline YSZ such that only the

circular electrodes are exposed to atmosphere. The dimensions of the electrodes (25

µm in diameter or larger) are such that the microelectrodes may be 5 µm while still

being significantly smaller than the electrodes; at these sizes, adequate feature align-

ment ought to be achieved given the tolerances of the microfabrication equipment

encountered in university laboratories. The microstrips may then run signals out to

the periphery of the YSZ slide, perhaps to large contact pads. These pads may couple

with a reusable cover plate with a mirrored-set of contact pads; this cover might fit

over the sample slide so as to simultaneously contact the slide while preventing at-

mosphere from reaching the contact pads. In this way, only the electrodes contribute

to the electrochemical reaction.

The entire system may be placed inside a tube furnace, for example, and an

external switch connected to a Pt wire bundle running into the furnace might be

used to select individual electrodes. Moreover, future “lab-on-a-chip” designs might
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be created with high-temperature integrated circuitry to realize this switching feature

on the chip itself, so that only a single pair of signal wires and a control wire need

be run into the tube furnace. Such configurations might also include thermocouples

nearby every electrode and other features to improve the accuracy and validity of

data interpretation.

The benefit of this scheme is that it no longer requires microneedle contacts and

the associated complex system of microadjusts and microscopes. Contacts are fabri-

cated from the beginning, and will always be the same for any measurement so long

as the integrity of the thin-films is maintained. The electrode is no longer damaged

via contact for each measurement. And because all contacts are already in place, EIS

experiments may be carried out more rapidly and in a more automated fashion, as

there is no longer a need to readjust needles to contact different electrodes. Not only

is this a more convenient and reliable scheme of operation for the researcher, but it

also limits the time that a sample slide is exposed to the experimental environment.

Chapter 3 demonstrated that prolonged exposure of sample slides to high tempera-

tures resulted in damage of the thin film features; as such, the possibility of speeding

up the measurement process is very important.

Beyond these design changes, an investigation into the effects of varying the ma-

terials at the electrode-electrolyte interface is needed. Experimental samples with

a thin film of ceria on top of the YSZ slab were prepared for this work; however,

analysis of these samples has yet to be carried out. It should appear in a future

work. As the coverage isotherms and diffusivities are properties of the platinum sur-

face, these parameters should not change if the substrate material is modified; their

stationarity in the presence of this material swap would be very strong evidence in

favor of the proposed colimited model. Indeed, the perturbation theory leading to the

derived impedance expression rendered all parameters, γ, independent of the identity

of the electrolyte material with the exception of the charge transfer resistance, γ1;

as such, this model would predict the same Faradaic impedance spectra, but for a

different high-frequency real-axis intercept, regardless of the substrate material. This

is a readily testable hypothesis, and again its verification would lend credence to the
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proposed ORR processes.

Finally, the uncertainties in extracted parameters quoted in Chapter 4 represented

only uncertainties due to variations in measurements of impedance spectra (assum-

ing a zero bias). There are many other sources of error which might be considered,

including uncertainty in temperature, pressure, triple phase boundary length, signal

frequencies, and the number of surface sites per unit area on the thin film platinum,

among other system parameters.in was carried out to a there still remains significant

work to be carried out with regard to error analysis. The theoretical framework for

this effort was presented in Chapter 3; the implementation of this analysis remains to

be completed. For accurate determination of the true error bars of the extracted diffu-

sivities, utilization lengths, linearized adsorption rates, and coverages, this extended

analysis is essential.
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Chapter 6

Conclusion

This body of work was concerned with the oxygen reduction reaction on solid, thin

film Pt over a YSZ substrate. By combining microfabrication techniques with electro-

chemical impedance spectroscopy, it sought to quantitatively characterize the reaction

in order to verify that ORR is colimited by dissociative adsorption and surface diffu-

sion of oxygen on the Pt surface. As byproducts of the work, coverage isotherms and

diffusivity data were produced. These parameters, in themselves, are of value due to

the fact that they are not widely available in the literature for the thermodynamic

states probed here. And their analysis yields insight into the Pt-O system, the under-

standing of which is essential to the synthesis of new ORR catalyst materials. Finally,

a body of theoretical work used to understand and interpret the physical processes

was created; this effort serves as a bridge to connect EIS studies with other work

in the literature regarding oxygen on Pt, as well as helping investigators to intuit

and understand in a qualitative and, to some degree, quantitative way the physical

processes at work in ORR.

Insofar as accomplishing the stated goal, the thesis provided some evidence in

favor of the colimited nature of ORR on Pt, but the evidence was not conclusive.

In order to truly validate the postulated thesis, further investigation is necessary. In

particular, extended study into the effect of changing the solid electrolyte material,

at least at the interface, would help to uniquely identify the proposed physical pro-

cesses as those truly generating the observed EIS spectra. Further, whereas expected
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scaling behavior was not observed in all data, it would be worthwhile to make an-

other effort at acquiring measurements under better controlled conditions. If, after

this repetition, the expected scaling behavior is still not observed, then there would

be evidence against the proposed ORR processes. Lastly, several improvements to

the experimental setup have been suggested which might improve the quality of the

results.

Nonetheless, the thesis was able to demonstrate the expected forms of EIS spectra.

Further, reasonable estimates of diffusivity, and, to a lesser extent, coverage isotherms,

were generated, demonstrating the promise of the methodology to yield useful physical

parameters that may be checked against other sources in the literature. Finally, an

analysis of the O/thin-film-Pt/YSZ characterization provided insight into SOFC ORR

catalyst design with regard to material selection and operation.

As promised, the work has certainly not solved the world’s energy crisis! But it

is, perhaps, an incremental step along the way.
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Appendix A

List of Symbols

Table A.1: List of Symbols

Symbol Name(s) Description [Units]

α linearized net ad-

sorption rate

[s−1]

β inverse temperature 1/(kBT ) - a convenience parameter ubiquitous in sta-

tistical mechanics.

γ parameters vector of all cylindrical impedance model parameters;

elements are indexed with right subscripts

Γ surface site density number of adsorption sites per unit surface area; for

Pt(111), about 1019 [m−2]

ǫ binding energy binding energy of a single oxygen atom with the surface

relative to a ground state in gaseous molecular oxygen

[eV]

θ coverage [unitless or monolayers]

θ̄ coverage mean or equilibrium coverage [unitless or monolayers]

θ̃ coverage perturbation coverage [unitless or monolayers]

Continued on next page
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Symbol Name(s) Description [Units]

λ thermal wavelength defined through h/
√

2πmkBT ; roughly the average de

Broglie wavelength and a ubiquitous normalization fac-

tor in statistical mechanics.

ξ frequency-dependent length-scale of the decay in per-

turbations from the triple phase boundary [s−1]

ω angular frequency [radians/s]

as area per adsorption

site

defined through 1/Γ; for Pt(111), about 10−19 [m2]

Cdl double layer capaci-

tance

more properly, interfacial capacitance - capacitances as-

sociated with interfacial area between Pt and YSZ [F,

F/m2]

Ce electromagnetic

capacitance

capacitance associated with electromagnetic coupling

between electrode and counterelectrode [F, F/m2]

D diffusion coefficient,

diffusivity

[cm2/s] or [m2/s]

EIS Electrochemical

Impedance Spec-

troscopy

I current [A]

k−1, k1 backward, forward

electrochemical rate

constants

kB Boltzmann constant ≈ 1.381 × 10−23 [J/K] ≈ 8.617 × 10−5 [eV/K]

lδ utilization length scale length over which perturbations in coverage decay

from the triple phase boundary [m]

ℓ triple phase bound-

ary length

[m]

Continued on next page
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Symbol Name(s) Description [Units]

M0() modified Bessel func-

tion

modified Bessel function of the first kind, zeroth order

M1() modified Bessel func-

tion

modified Bessel function of the first kind, first order

n number of electrons exchanged per electrolyte-

incorporation reaction (2 for ORR)

P gaseous oxygen par-

tial pressure

[atm or parts per million (ppm) or Pa] (1 atm = 106

ppm ≈ 105 Pa)

qe electron charge [C]

Re electrode radius [m]

Rhf high-frequency inter-

cept

on a Nyquist plot (complex impedance plane), the point

on the real axis toward which the impedance locus tends

at very high frequencies [Ω]

Rlf low-frequency inter-

cept

on a Nyquist plot (complex impedance plane), the point

on the real axis toward which the impedance locus tends

at very low frequencies (dc limit) [Ω]

Rct charge transfer resis-

tance

[Ω]

Rysz electrolyte resistance impedance contribution associated with ohmic conduc-

tion of oxygen ions through the solid electrolyte

S sticking coefficient sometimes decomposed with a zero-coverage prefactor,

S0 [s−1 = Hz]

T temperature [� or K]

u0 interaction energy defined through u0 ≡
∑Γ

i=1 v(ri); interaction energy of

an adsorbate with a full monolayer [eV]

ṽ phasor voltage [V]

v̄ polarization voltage 0 for the EIS experiments performed in this study [V]

Continued on next page
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Symbol Name(s) Description [Units]

V voltage [V]

YSZ yttria-stabilized zir-

conia

cubic zirconia; the solid electrolyte used in this study

zv, zv,ads vibrational partition

function

local, single-site, vibrational partition function

zv,r,

zv,r,gas

single-molecule par-

tition function

Z electrochemical

impedance

complex-valued [Ω]

partition function in the statistical mechanics context.

Zcyl cylindrical

impedance

impedance relation derived for cylindrically-shaped,

solid, blocking electrodes [Ω]

ZG Gerischer impedance

element

impedance element corresponding to semi-infinite

medium

Zi imaginary component of impedance [Ω]

Zr real component of impedance [Ω]
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Appendix B

Selected Derivations in Statistical

Mechanics

B.1 Introduction

The purpose of this appendix is to catalogue a number of the more involved derivations

of the present work. Many of the formulations below derive from statistical mechan-

ics. Some knowledge of statistical mechanics is assumed, but brief explanations are

included for readers unfamiliar or long-separated from the field. A fun textbook on

this subject is that of the MIT Physics Department’s Professor Mehran Kardar [22],

but there are many other excellent references, among them one by Richard Feynman.

B.2 Coverage Isotherm

In deriving the coverage isotherm, the program will be to first calculate the partition

function for adsorbates on the surface, and then to use the partition function to obtain

the grand partition function. The grand partition function leads to the chemical

potential, a result that shall be used again for the diffusion coefficient. Next, imposing

equilibrium conditions forces the chemical potential of the surface species to be related

to that of the gas phase oxygen.
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Let us write a Hamiltonian for N adsorbates:

H =
N
∑

i=1

(−ǫ + uvib) +
∑

i<j

v (ri − rj) (B.1)

where ǫ is the adsorption energy per adsorbate (positive when a site on the surface is

more stable occupied than empty), uvib is the energy associated with vibrations, {ri}
are the coordinates of all adsorbates, and v(ri−rj) is a pairwise potential between the

ith and jth particles. N is the number of adsorbates on the surface, so that θ = N/Γ.

It will be assumed throughout that adsorbates are point particles - in the physical

system under study, these particles correspond to the oxygen anions. We do not

consider the added rotational degrees of freedom of molecular adsorbates; while the

molecular adsorbate is an important precursor in the adsorption/dissociation step,

there is ample evidence that molecular precursors are not long-lived on the surface at

the elevated temperatures relevant to these experiments [17, 18, 54].

The non-interacting portion of the Hamiltonian (those terms with no coupling

between adsorbates) may be written as

H0 =
N
∑

i=1

(−ǫ + uvib) (B.2)

Assuming uniformity over the surface1, this becomes

H0 = −Nǫ + Nuvib. (B.3)

Statistical mechanical quantities may be evaluated exactly when the elements of

the system are decoupled (do not interact with one another). However, interactions

are the rule rather than the exception, and useful approximation schemes are a neces-

sary tool. One of the simplest schemes is the mean field approximation, wherein the

particle distribution is assumed to be unperturbed from the uniform distribution of

1certainly, the polycrystalline surface is not uniform at the grain-size scale, or perhaps even below
this, but it is hoped that uniform average quantities arise from polycrystallinity over the scales of
interest
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the non-interacting system. The interaction energy resulting from this approximation

is labelled as U0, so that,

H = H0 + U ≈ H0 + U0, (B.4)

To evaluate U0, we first start with the definition of U ,

U =
Γ
∑

i=1

i−1
∑

j<i

σiσjv (ri − rj) (B.5)

The sum is now over sites, as opposed to adparticles. As such, we now require an

occupation variable, σi, at each site, zero when a site is empty and unity when it is

occupied. Also, the {ri} are now the coordinates of the surface sites, as opposed to

the adsorbates. The expected value of U is then

〈U〉 =
Γ
∑

i=1

i−1
∑

j<i

〈σiσj〉v (ri − rj) (B.6)

The mean field approximation takes the occupation of one site as approximately

independent of that of all other sites; then

〈σiσj〉 ≈ 〈σi〉〈σj〉 ≈ 〈(σi)〉2 (B.7)

But the occupation probability of a single site is exactly the coverage, 〈sigmai〉 =

θ = N/Γ. We then define U0 as an approximation to 〈U〉,

U0 ≡
(

N

Γ

)2 Γ
∑

i=1

i−1
∑

j=1

v(ri − rj) =

(

N2

2Γ

)

u0, (B.8)

where

u0 ≡
Γ
∑

i=1

v(ri), (B.9)

and a spherical (circular) symmetry has been assumed for v(r) = v(|r|). 2

The next step is to calculate the partition function, Z - the normalization constant

2Note: when u0 is positive, the interaction between adsorbates is repulsive; when negative, it is
attractive.
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for configuration probabilities in the canonical ensemble3. This is written as

Z = tr
{

e−βH} , (B.10)

where, for convenience, β ≡ 1
kBT

, and tr{} (trace) is used here a shorthand for

summing over all the allowed configurations of the system. Now, with the mean field

approximation, Z becomes

Z ≈ tr
{

e−βH0−βU0

}

, (B.11)

First, note that if there are N particles on the surface and Γ available sites, then

there are





Γ

N



 ways to arrange these particles on the surface. While in general,

we would expect some variation in the Hamiltonian from each of these configurations,

the mean field approximation ignores such variation. As such,

Z ≈





Γ

N



 eNβǫ−βN2u0/(2Γ)tr
{

e−βNuvib
}

vib
, (B.12)

where the notation, tr{}vib refers to the sums (or integrations) over all allowed vi-

brational states. For the moment, the precise details of the vibrations will be put

aside, and we will simply label (zv)N ≡ tr
{

e−βNuvib
}

vib
, where zv represents the local

(single-site) vibrational partition function. Then, all together, the partition function

is written as

Z ≈





Γ

N



 eNβǫ−βN2u0/(2Γ)(zv)N . (B.13)

Next, for convenience, we’ll introduce

x ≡ β [ǫ + ln (zv) /β] . (B.14)

3The partition function is a fundamental quantity in statistical mechanics, containing information
about the Boltzmann weights for all allowed configurations. Thermodynamic quantities are obtained
from its logarithm (free energy) and various derivatives (entropy, internal energy, etc.). Later, we’ll
see the grand partition function, which plays the same role for the grand canonical ensemble that
the partition function does for the canonical ensemble.
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Now,




Γ

N



 =
Γ!

N !(Γ − N)!
, (B.15)

so that

Z = exp

[

−β
N2u0

2Γ
+ xN + ln

(

Γ!

N !(Γ − N)!

)]

. (B.16)

Introducing the Sterling approximation for the factorial,

ln(A!) ≈ A ln(A) + A (B.17)

when A is large, we now approximate





Γ

N



 ≈ Γ ln(Γ) − N ln(N) − (Γ − N) ln(Γ − N). (B.18)

Then

Z ≈ exp

[

−β
N2u0

2Γ
+ xN + Γ ln(Γ) − N ln(N) − (Γ − N) ln(Γ − N)

]

. (B.19)

We now have a working approximation for the partition function, Z; this allows us to

calculate the free energy, F = −kBT ln(Z), the internal energy, 〈H〉 = −∂ ln(Z)/∂β,

the entropy, S = −∂F/∂T |N , and various other quantities. For now, we will concern

ourselves with the grand partition function, which is found from

Q =
Γ
∑

N=0

eβµNZ, (B.20)

where µ is the chemical potential. Now, Q can be expressed as

Q =
Γ
∑

N=0

exp

[

βµN − β
N2u0

2Γ
+ xN + Γ ln(Γ) − N ln(N) − (Γ − N) ln(Γ − N)

]

.

(B.21)

This sum of exponentials may be approximated with its largest term, so we will
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maximize the argument to the exponential in the summation index, N :

0 =
∂

∂N

[

βµN − β
N2u0

2Γ
+ xN + Γ ln(Γ) − N ln(N) − (Γ − N) ln(Γ − N)

]

, (B.22)

from which results the following constraint,

θ

1 − θ
= exeβµe−βθu0 , (B.23)

where we have recognized N/Γ = θ. The quantity, ex, is

ex = zve
βǫ, (B.24)

so we can write
θ

1 − θ
= zve

βµeβ(ǫ−θu0), (B.25)

A brief summary is in order. Starting with a Hamiltonian, we utilized a mean field

approximation to account for interactions between adsorbates. This, in conjunction

with the Sterling approximation, was used to obtain an expression for the partition

function, which, in turn, was used to evaluate the grand partition function. We

realized that the sum of exponentials defining the grand partition function might be

approximated by its largest term, so we maximized the argument of the exponential

with respect to the total number of adsorbates on the surface, N . This gave us an

expression relating coverage to ǫ, u0, µ, and zv. It may seem odd to obtain the key

relation as a side effect of calculating another quantity, Q, whose value we are not

interested in at the present. In fact, what we have done is to select the value of

coverage which gives the correct grand partition function under the constraint that

the chemical potential is held constant. By allowing the surface to reach equilibrium

with gaseous oxygen above, this condition is physically realized, and we may have

some faith in the result just obtained.

The last step is to establish this equilibrium with the diatomic oxygen gas. The

equilibrium condition is given from
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µgas = 2µadsorbates, (B.26)

since the diatomic gas dissociates into two adsorbates. The chemical potential for a

classical dilute (non-interacting) monatomic gas is

µmonatomic = −kBT ln

(

kBT

Pλ3

)

, (B.27)

where P is the gas pressure, λ = h/
√

2πmkBT is the thermal wavelength of the gas

with m the mass of each gas constituent and h Planck’s constant [22]. We will account

for molecular (rotational and vibrational) degrees of freedom for the diatomic gas on

a quantum level with

µgas = −kBT ln

(

zv,r
kBT

Pλ3

)

, (B.28)

where zv,r is the single-molecule partition function. That we can do this follows from

the same set of steps which led to the introduction of zv for the adsorbates (see B.25).

From this follows the coverage isotherm,

(

θ

1 − θ
eβu0θ

)2

= e2βǫ
z2

v,ads

zv,r,gas

Pλ3

kBT
. (B.29)

This style of isotherm is sometimes called the Frumkin isotherm.

B.29 may be compared with a similar expression found in [25]. It is also instructive

to compare to the Langmuir isotherm, which might be written in the formalism of

Mitterdorfer and Gauckler [36, 37] as,

(

θ

1 − θ

)2

=
ka

kd

P, (B.30)

with ka the adsorption rate constant and kd the desorption rate constant. B.30

explicitly reproduces the correct dependence of coverage on the experimental state

variable, P ; temperature dependence is masked inside the phenomenological rate con-

stants. Our isotherm reduces to the Langmuir situation when there is no interaction

between adsorbates, or u0 = 0. It should be noted that the Langmuir isotherm shown
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above was obtained from a very different method involving kinetic equations from a

model adsorption-desorption reaction4.

B.2.1 Single-Element Partition Functions, zv,ads and zv,r,gas

The quantities, zv,ads and zv,r,gas, account for the additional degrees of freedom asso-

ciated with vibrational and (in the case of the molecular gas) rotational degrees of

freedom of the adsorbate and the diatomic oxygen gas. In the case of the adsorbate,

the vibrations here refer to oscillations on and out of the Pt surface plane; the di-

atomic gas molecules have vibrational modes along their longitudinal axis. As such,

we can attribute vibrational contributions for both gas molecules and adsorbates to

strong, molecular interactions (envisioning the chemisorption of oxygen onto Pt as a

quasimolecular bond). Presently, we’ll treat these degrees of freedom in a standard

manner [22].

We start with a Hamiltonian for a classical simple harmonic oscillator,

Hc
v =

d
∑

i=1

[

1

2
m(ωiri)

2 +
p2

i

2m

]

, (B.31)

where p is momentum, ωi is the angular vibrational frequency of the oscillator in the i

direction, ri is the ith position component, and d is the number of dimensions in which

the simple harmonic oscillator vibrates5. The partition function is then calculated

directly as

4Historically, it was from this kinetic standpoint that Langmuir originally derived the isotherm
in 1916 [28], as discussed in 2.2.1.

5For oxygen on the the Pt surface, d = 3 - two in-plane modes and one out-of-plane mode
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zv =

∫ ∫

d3rd3p

h3
e−βH

=

∫ ∫

ddrddp

hd
exp

(

−β

d
∑

i=1

[

1

2
m(ωiri)

2 +
p2

i

2m

]

)

=
1

λd

(
√

2π

mβ

)

∏

i=1

dω−1
i

=
∏

i=1

d

(

kBT

~ωi

)

(B.32)

where ~ ≡ h/2π.

In the quantum mechanical treatment, the energy levels of the simple harmonic

oscillator are quantized. Assuming that we can quantize each vibrational mode inde-

pendently, the resulting Hamiltonian is

Hq
v =

d
∑

i=1

~ωi

(

n +
1

2

)

(B.33)

If each vibrational mode occurs with probability proportional to its Boltzmann weight

[22],

zq
v =

∞
∑

n=0

eβ
Pd

i=1
~ωi(n+1/2) =

∞
∑

n=0

d
∏

i=1

e−β~ωi(n+1/2) =
d
∏

i=1

e−β~ωi/2

1 − e−β~ωi

=
d
∏

i=1

1

2 sinh
(

~ωi

2kBT

)

(B.34)

In the high-temperature limit, this expression approaches that obtained from the

classical treatment. Defining a characteristic temperature, Tv,i ≡ ~ωi

kB
, associated with

the quantization of the vibrational modes, we can write

zv =
d
∏

i=1

1

2 sinh
(

Tv,i

T

) , (B.35)
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with zv ≈∏d
i=1 T/Tv,i for T ≫ Tv,i.

The classical Hamiltonian for rotations of the gas molecules is [22]

Hc
rot =

1

2I

(

pθ +
p2

φ

sin2(θ)

)

(B.36)

where I is the moment of inertia, θ and φ are the polar and azimuthal spherical angles,

and pθ, pphi are the corresponding angular momenta. This gives for the classical

rotational partition function [22]

zr =
1

h2

∫ π

0

dθ

∫ 2π

0

(d)φ

∫ ∞

−∞

∫ ∞

−∞
dpθdpφ exp

[

−β
1

2I

(

pθ +
p2

φ

sin2(θ)

)]

=
2IkBT

~2

(B.37)

It is convenient to define a characteristic temperature associated with the quan-

tization of rotational degrees of freedom, just as has been done for the vibrational

degrees of freedom,

Trot =
2IkBT

~2
. (B.38)

Then zc
r = T/Tr.

Quantum mechanics dictates that the angular momentum is quantized according

to L2 = ~
2ℓ(ℓ + 1), with ℓ = 0, 1, 2, · · · , with each state having a degeneracy of 2ℓ + 1

[22]. As such, the quantum mechanical partition function is written as the discrete

summation [22],

zq
r =

∞
∑

ℓ=0

exp

[

−β~
2ℓ(ℓ + 1)

2I

]

(2ℓ + 1) =
∞
∑

ℓ=0

exp

[

−Trℓ(ℓ + 1)

T

]

(2ℓ + 1). (B.39)

For diatomic oxygen, mO = 16 amu with a bond length of about 121 pm [31],

leading to a moment of inertia of IO2
= mO(ℓbond/2)2 ≈ 1.945 × 10−46. Substituting

this value into B.38 gives TO2

rot ≈ 2.07 K, well below the experimental range of temper-
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atures. As such, we may safely employ the classical approximation for the rotational

contribution to the partition function.

Values are available for the vibrational fundamental frequencies of monatomic

oxygen on Pt(111): νin−plane = 800 cm−1 and νout−of−plane = 480cm−1 [48]. These

result in vibrational temperatures of Tin ≈ 1150 K and Tout ≈ 691 K. Further, the

characteristic temperature for quantized longitudinal vibration in diatomic oxygen

is 2274 K [25]. As these temperatures are either close to or surpass those of the

experiment, the quantum-mechanical treatment for the partition function is necessary.

B.3 Diffusion Coefficient

The following section gives an estimate for the diffusion coefficient from a lattice

hopping-model. It is based on an application of the work of Bokun et al [9] for the

specific approximations and chemical potential already introduced in Section B.2.

Bokun’s work inherits from that of Zhdanov, and has a conceptual anchor in an

influential work by Reed and Ehrlich [42]. Other schemes for computation of D may

be found in [57, 24], as well as in [4].

It should be noted that such lattice hopping models are based upon an assumption

of a Markovian model of motion that is, motion proceeds by uncorrelated “hops”, so

that an adsorbates position in the next instant of time only depends on where it

is instantaneously6 This condition is not satisfied at high temperatures when the

thermal energy, kBT , approaches or exceeds the migration barrier energy, Em; a good

rule of thumb is that the Markovian assumption may be invoked when kBT < 1
5
Em

[4]. Applying this basic test, we note that the heat of adsorption for oxygen on

Pt(111) ranges from somewhat less than 1.7 eV at intermediate coverage to 5.2 eV at

low coverage [18]. Ibach et al record another rule of thumb of estimating the diffusion

migration barrier by halving the desorption/adsorption energy [20]; doing this gives a

range of 0.8 to 2.6 eV for Em. By comparison, the highest thermal energy at 800� is

6Actually, a Markovian framework may still be used as long as an adsorbates next movement
only depends upon its history for a finite number of steps backward in time.
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about kBT ≈ 0.093 eV < 1
5
Em, so the Markovian hypothesis is appropriate, and the

lattice hopping models are a valid interpretation of atomic oxygen diffusion on the

Pt surface.

One further comment before continuing: it is not apparent how the lattice model

that will be presented here maps to the actual surface lattice of oxygen on Pt. For

example, there is an overwhelming body of evidence that oxygen sits in a p(2 × 2)

ordering on the Pt(111) surface at coverage of around 1/4 monolayers (relative to (1×
1) ordering) for temperatures between around 150 K to about 700 K [17, 18, 48, 49],

and evidence that it occupies a (2 × 1) ordering on Pt(110) [53, 54]. How should

we interpret the “lattice” in each of these cases? Ought we to consider only, say,

the p(2 × 2) sites on Pt(111)? What effect, then, do the interstitial sites of the

underlying Pt surface have? And how do we compensate for the fact that the actual

Pt under study is polycrystalline? The answer to these questions is, in some sense,

that the lattice hopping model is clearly a major simplification, as many of the modern

experimental and simulation surface studies demonstrate [4], and as such, it is not

particularly informative to chase after any exact representation of the polycrystalline

surface with the crude methods employed here. Still, insofar as it is desirable to have

some rationale in comparing the experimental results derived in this work with those

already in the literature7, some thought must be given to this matter.

In their 1980 work, Reed and Ehrlich pointed out that the diffusion flux, J , is

driven not by a gradient in concentration, but in chemical potential[42]

J = −LT
∂βµ

∂x
(B.40)

where DJ is a phenomenological transport coefficient and, again, β ≡ 1/(kBT ). This

results in an expression,

J = −DJ(
∂µ/kBT

∂ ln(θ)
)(

∂θ

∂x
). (B.41)

By comparison with 2.7, we can now identify the diffusion coefficient as

7e.g. interaction energetics may be estimated from these experiments, and such data exists in
the literature for oxygen on Pt(111) [49]
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D = DJ(
∂βµ

∂ ln(θ)
) (B.42)

This can be further decomposed into a tracer diffusion prefactor, DJ , related to the

hopping rate into empty sites, and a dimensionless thermodynamic factor,

χT = (
∂βµ

∂ ln(θ)
), (B.43)

related to the mean square particle number fluctuation. DJ is the diffusion coefficient

which arises when particle-particle interactions are negligible (in which case χT tends

to unity).

Bokun et al rederive an expression for DJ due to Zhdanov under more general

conditions [9],

DJ = D0
eβµF (0, 0)

θ
(B.44)

with D0 = zw0a
2/(2d), where z is the coordination number of the lattice, w0 is the

transition rate scale, a is the lattice spacing, and d is the number of dimensions.

F (0, 0) is the probability that two neighboring sites are both unoccupied8 Within

the mean field approximation, the occupation probability on the surface is unmodi-

fied from the non-interacting system; therefore F (0, 0) = F (0)F (0) = (1 − θ)2; more

precise (and complicated) methods exist for evaluating the joint non-occupation prob-

ability [9, 22]. A value for D0 might be obtained from estimating w0 using the atomic

vibration frequencies found in [48] (e.g. 800 cm−1), but we will ultimately leave D0

as a free fit parameter.

We obtained an expression for eβµ in B.25, which was

eβµ =
θ

1 − θ
eβ(θu0−ǫ)z−1

v . (B.45)

8The hopping model employed here assumes nearest neighbor (NN) transitions, only; there is
evidence in the literature of long-distance hops for surface diffusion [4], but as our goal here is
mostly to obtain a qualitative dependence of the diffusion coefficient on state variable, we will
ignore this potentially important correction. Bokun et al provide some details for how to include
such longer transitions into a lattice hopping expression for D [9].
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Applying it here gives

DJ = D0
θ

1 − θ

1

zv

eβθu0e−βǫ(1 − θ)2

θ

= D0(1 − θ)eβθu0e−βǫz−1
v

(B.46)

For the thermodynamic factor, the same expression for eβµ may be used,

χT =
∂βµ

∂ ln(θ)
= θ

∂

∂θ

[

eβµ
]

/eβµ

= θ
∂

∂θ
ln

[

θ

1 − θ
eβθu0

]

= θ

[

1

θ(1 − θ)
+ βu0

]

=
1 + βu0θ(1 − θ)

1 − θ

(B.47)

Putting these two results together gives for the diffusion coefficient,

D(θ) = DJχT = D0e
βθu0e−βǫz−1

v [1 + βu0θ(1 − θ)] (B.48)

resulting in a very compact estimate for D which captures much of the interesting

behavior of this parameter. Examining the behavior of D, we first see an increase

with θ for repulsive interactions (u0 > 0) and a decrease with θ for attractive inter-

actions (u0 < 0). This behavior follows from adsorbates tending to stick together

with attractive interactions, and to push each other apart for repulsive interactions9.

Differentiating D with respect to θ shows that D always has critical points at θ = 1,

leveling off after a sharp change at low coverage. More precise treatments do not

retain a slope of exactly zero at θ = 1, but nonetheless show the same behavior of a

greater dependence at low coverage than high [9, 42]; such behavior is also seen in the

diffusion data of Mitterdorfer and Gauckler [37]. There is another root in the slope

9Note that without interactions beyond the one-adsorbate-per-site limit (u0=0), there is no

change in D with respect to θ, as shown in [42].
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at θ = −2/(βu0); this shows that for attractive interactions (u0 < 0) of sufficiently

large magnitude −βu0 > 2, D goes through a minimum at an intermediate coverage,

a behavior also seen in other work [9, 42]. However, there is no corresponding maxi-

mum for repulsive interactions. Lastly, the expression predicts D to be less than zero

down for attractive interactions when −βu0 > 4. There is a physical significance as-

sociated with this situation: when attractive interactions between are dominant over

random thermal motion in determining the evolution of the coverage profile (ener-

getics dominates over statistics), diffusing particles will actually tend to move up the

concentration gradient, rather than down, so that particles can be closer together.
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Appendix C

Selected Electrochemical

Derivations

C.1 Introduction

This appendix details the solution (and creation) of the partial differential equations

used to describe the oxygen reduction reaction. It also compares the model used here

with that found in Mitterdorfer and Gauckler’s work [36, 37], and shows how the

system of equations used by Mitterdorfer and Gauckler actually produce an electro-

chemical impedance which may be written analytically in the Gerischer form.

C.2 Generalized Model

All electrochemical impedance measurements are based upon a perturbation about

some steady state by a small voltage signal. This is a physical manifestation of

linearizing a very nonlinear response of current due to voltage, as the impedance

corresponds to the fundamental terms in the harmonic series of the current response.

It is entirely possible to measure the higher-order harmonics and thus probe the

nonlinearity of the electrochemical system, and some work has been done in this area

[6]. However, an impedance study implies a focus on the fundamental terms, only.

This motivates the creation of a system of equations which generalizes the lin-
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earized response of current due to voltage. The value in such a generalized model

results from the fact the mathematical description of many different, nonlinear sys-

tems will assume this same general form upon linearization. One consequence of this

is that it is not possible to pinpoint the physics and chemistry of a particular sys-

tem simply by identifying the impedance response as conforming to this general form

[2, 10]; as such, a more careful interpretation of impedance results is necessary.

C.2.1 Transport

Fick’s first law of diffusion is

φ = −D∇ρ (C.1)

where φ is the flux, D is the diffusion coefficient (or diffusivity) and ρ is the density

(or concentration). In two dimensions, phi has units of number per unit time per unit

length, and ρ has units of number per unit area (note that D always has units of unit

area per unit time). Because we are dealing with a lattice gas (i.e. we envision that

particles can only occupy a finite number of fixed sites), it is convenient to normalize

by the total number of sites per unit area, Γ. Then ρ/Γ = θ, the coverage, ∈ [0, 1],

and φ/Γ = φθ is a flux for the coverage quantity.

Appendix B discussed a subtlety of this phenomenological constitutive relation

which resulted in an implicit dependence of the diffusion coefficient, D, on the cover-

age. Here, we will continue to use Fick’s formalism keeping this proviso in mind.

Other transport processes might be envisioned (e.g. ohmic drift, tunneling, bal-

listic diffusion, etc.), but for a wide-class of situations, and in particular situations

involving surfaces, diffusion ought to be the dominant, if not the only, transport

mechanism.

C.2.2 Sorption

There is also a generation/annihilation process: adsorption and desorption. For now,

we will not specify the details of this process, but will leave it in a generic form, g:
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∂ρ

∂t

∣

∣

∣

∣

sorption

= g(ρ, T ) (C.2a)

∂θ

∂t

∣

∣

∣

∣

sorption

= g(ρ, T )/Γ = gθ(θ, T ) (C.2b)

(C.2c)

Here, it is assumed that g only depends on the state variables, coverage, θ and

temperature, T (note that the three relevant intensive variables, temperature, pres-

sure, and number, are related through an equation of state, the coverage isotherm).

A uniformity of the surface is implicit in this assumption. For simplicity, it is as-

sumed that g is time-independent; any time-dependence of g should be associated

with changes to the surface due to annealing, oxide formation, and so forth, processes

which, at the least, are expected to occur on a timescale longer than an individual

EIS measurement.

Henceforth, the temperature dependence will be suppressed in the expression of

g for the sake of convenience.

C.2.3 Synthesis of Governing Partial Differential Equation

Applying the conservation of particle number,

∂ρ

∂t
+ ∇ · φ = g (C.3)

where g is a local generation term which here corresponds to the sorption process.

Using Fick’s constitutive law for the flux term gives

∂ρ

∂t
= ∇ · (D∇ρ) + g(ρ) (C.4)

In normalized form, this becomes

∂θ

∂t
= ∇ · (D(θ)∇θ) + gθ(θ) (C.5)
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where the dependence of D on θ is now shown explicitly.

This is a very generic governing partial differential equation, as g may have other

interpretations besides sorption (e.g. incorporation into the surface, surface reaction

leading to synthesis of diffusing particles, etc.).

C.3 Linearization

It will next be assumed that the coverage is only modified by a small amount,

θ = θ̄ + δθ ≈ θ̄ (C.6)

Carrying out a Taylor series expansion for any quantity, f(θ), in θ about θ̄,

f(θ) =
∞
∑

n=0

1

n!

[

dnf

dθn

]

θ̄

δθn = f(θ̄) +

[

df

dθ

]

θ̄

δθ + · · · (C.7)

Assuming the series is well-ordered such that the higher-order terms decay, we desire

that f(θ) = f(θ̄) +
[

df
dθ

]

θ̄
δθ + O(δθ2) ≈ f(θ̄), or

f(θ̄) ≫
[

df

dθ

]

θ̄

δθ (C.8)

The quantities that will be linearized are D and g. In the first case, we will keep only

the zeroth-order term of D, D(θ̄). This allows the diffusion coefficient to be pulled

outside of the divergence operator in C.5, since any variation in θ, spatial or temporal,

is only in δθ. For g, physical intuition suggests that the sorption process acts to return

θ to its equilibrium value, θ̄. As such, the zeroth-order term in the expansion should

vanish, and the first-order term should move in the opposite direction as δθ (negative

feedback). Then it is natural to construct a linearized form of g as

gθ(θ̄ + δθ) ≈ −αδθ (C.9)

These linearizations allow the governing partial differential equation to be written
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as
∂θ

∂t
= D(θ̄)∇2(δθ) − α(δθ) (C.10)

This is the linearized governing partial differential equation we had been after.

C.4 Phasor Representation

Because we are only working with the fundamental modes of oscillations, it is conve-

nient to work in the formalism of phasors. Here, a quantity, f(t; x), is related to its

complex amplitude (phasor), f̃(x), by

f(t; x) = ℜ(ejωtf̃(x)) (C.11)

Transforming C.10 to the phasor domain gives

jωθ̃ = D(θ̄)∇2θ̃ − αθ̃ (C.12)

where θ̃ is the phasor of δθ.

Henceforth, the tilde superscript, ∽, will be used to indicate a phasor quantity.

C.5 Solution in One-Dimensional, Semi-Infinite Ge-

ometry

In order to solve the governing differential equations, we need boundary conditions.

These depend both on the physical processes occurring at the boundaries and on the

geometry of the system. In a one-dimensional geometry in a semi-infinite space, these

boundary conditions are as follows:
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φ̃

Γ
= −D∇θ̃ (C.13a)

θ̃(r → ∞) = 0 (C.13b)

(C.13c)

Here, the triple phase boundary is placed at position r = 0. The second boundary

condition states that very far from the TPB, the perturbation in coverage vanishes.

The first boundary condition corresponds to applying Fick’s first law at the TPB.

But at this point, we might write a charge incorporation step [36, 37],

Γθ + V..
O + ×e−

k1−−⇀↽−−
k
−1

O×
O + Γ(1 − θ) (C.14)

where k1 is the forward electrochemical rate constant, k−1 the backward, V..
O is the

oxygen vacancy concentration inside the YSZ (material constant), O×
O the oxygen ions

concentration, ×e− is representative of a final transfer before adsorbate incorporation

into the YSZ1, and the term, Γ(1− θ) is the empty-site concentration on the surface.

This leads (by mass action) to an expression for the flux of oxygen ions into the YSZ:

φ(rtpb)into YSZ = Γθk1V
..
O − Γ(1 − θ)k−1O

×
O (C.15)

The electric current into the YSZ is simply the flux multiplied by the total TPB

length, ℓ, and the charge carried by each oxygen anion, −nqe (here, n=2):

I = −nqeℓφ(rtpb)into YSZ = nqeℓΓ((1 − θ)k−1O
×
O − θk1V

..
O) (C.16)

where θ here is evaluated at the triple phase boundary.

The forward and backward electrochemical rate constants, k−1 and k1, are defined

1Oxygen is likely already reduced upon adsorption, but the degree to which it is reduced is subject
to debate [2]. As such, ×e− is included here to represent “whatever is left” to reduce oxygen to its
charge state inside the YSZ bulk. The term does not appear in the kinetic equations because the
electron concentration is essentially unlimited, and the rate of transfer is implicit in k1, k−1.
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as

k−1 = k−1,0e
b
−1V (C.17a)

k1 = k1,0e
b1V (C.17b)

with

b−1 ≡
qe

kBT
(1 − ζ) (C.18a)

b1 ≡ − qe

kBT
ζ (C.18b)

where V is the overpotential above the equilibrium voltage, V = Vexternal − Veq,

and ζ ∈ [0, 1] is the charge transfer coefficient2 between the forward and backward

reactions, and is usually around ½. The overpotential may be a foreign term for some

readers; it is a convenient quantity to work with in light of the fact that there is

generally a nonzero voltage between the terminals of an electrochemical device at

equilibrium (zero current), just as occurs across the metallic junction in a pn-diode.

Shortly, the quantity ∂I/∂θ will appear; it is calculated here as

∂I

∂θ
= −nqeℓΓ(k−1O

×
O + k1V

..
O) (C.19)

In one dimension, the natural eigenfunctions of C.10 are exponentials,

θ̃ = Aer/ξ + Be−r/ξ (C.20)

where

ξ ≡
√

D(θ̄)

jω + α
(C.21)

is a characteristic length of the perturbation extent.

The boundary condition at r → ∞ requires A = 0. B is defined through the

2or Tafel constant, symmetry factor
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remaining boundary condition,

φ̃(rtpb)into YSZ = Γ(θ̃k1V
..
O − (1 − θ̃)k−1O

×
O)

= −D
dΓθ̃

dr

=
D

ξ
Γθ̃

= − Ĩ

nqeℓ

=⇒ θ̃(r = 0) = B =
k−1O

×
O

k1V..
O + k−1O

×
O − D/ξ

= − Ĩ

nqeΓℓD/ξ

(C.22)

Finally, θ̃ is

θ̃(r) = − Ĩ

nqeΓℓD/ξ
e−r/ξ (C.23)

Note that θ̃ is proportional to Ĩ; this fact will be useful later.

C.6 Solution in One-Dimensional, Finite Geome-

try

The next iteration in one dimension is to solve for a finite-length geometry. To do

this, we will now place the triple-phase boundary at a position, Re, and we will impose

a zero-flux boundary condition, φ = 0, at r = 0 3. Mathematically,

3This is a rather artificial boundary condition, as the “other end” of the electrode probably
has a charge-transfer reaction as at Re, but the impedance expression it develops has an intuitive
correspondence to that which will develop for the cylindrical geometry. One situation in which it
might arise is for two identical electrode edges (TPBs) at r = ±Re; then the flux at r = 0 should
be equal in both directions by symmetry, so it must be zero.
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φ̃

Γ

∣

∣

∣

∣

∣

r=Re

= −D∇θ̃(Re)

φ̃(r = 0) = 0

(C.24)

In this case, it is more convenient to express the eigenfunctions of C.12 in terms of

hyperbolic trigonometric functions,

θ̃ = A cosh

(

r

ξ

)

+ B sinh

(

r

ξ

)

(C.25)

where ξ is defined in C.21. The boundary condition at r = 0 requires that B = 0,

while that at Re gives for A

φ̃(rtpb)into YSZ = Γ(θ̃k1V
..
O − (1 − θ̃)k−1O

×
O)

= −D
dΓθ̃

dr

=
D

ξ
ΓA sinh

(

Re

ξ

)

= − Ĩ

nqeℓ

=⇒ A = − Ĩ

nqeΓℓ sinh(Re/ξ)D/ξ

(C.26)

Then θ̃ is expressed as

θ̃(r) = − Ĩ

nqeΓℓD/ξ

cosh(r/ξ)

sinh(Re/ξ)
. (C.27)

C.7 Solution in Finite Cylindrical Geometry

Having become comfortable with two one-dimensional solutions, we can now inves-

tigate solutions in two dimensions. Perhaps the most accessible is that pertaining

to cylindrically-symmetric geometry. In this case, the interface between the Pt elec-
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trode and YSZ electrolyte occurs at r = Re, where now r is the radial coordinate. A

zero-flux boundary condition may be imposed at r = 0 based upon symmetry.

φ̃

Γ

∣

∣

∣

∣

∣

r=Re

= −D∇θ̃(Re)

φ̃(r = 0) = 0

(C.28)

It is instructive to rewrite C.12 so that the Laplacian (axial symmetry) is shown

explicitly in terms of partial derivatives in φ and r:

jωθ̃ = D(θ̄)

(

∂2θ̃

∂r2
+

1

r

∂θ̃

∂r

)

− αθ̃

=⇒ 0 =
∂2θ̃

∂r2
+

1

r

∂θ̃

∂r
− ξ2θ̃

(C.29)

Now, the natural eigenfunctions are modified Bessel functions of the first kind, so

classified because of the negative sign before adsRate. As sinusoidal functions become

hyperbolic sinusoidal functions when given an imaginary argument, modified Bessel

functions are sometimes called hyperbolic Bessel functions4. The comparison is useful

in understanding the properties of the modified Bessel function, as well as how the

geometry effects the solutions and, later, the impedance expressions. We will try as

a solution

θ̃ = AJ0(jr/ξ) = AM0(r/ξ) (C.30)

where J0 is the zeroth-order Bessel function of the first kind, M0 is the zeroth-order

modified Bessel function of the first kind, and the imaginary argument to J0 is traced

back to the sign before ξ2. The gradient of θ̃ in cylindrical coordinates with axial

symmetry is just r̂∂θ̃/∂r (r̂ denotes the radial unit vector). Since ∂J0(x)/∂x =

−J1(x), ∂M0(x)/∂x = M1(x), and since M1(0) = 0, the zero-flux boundary condition

4In general, the Bessel function of the first kind is related to the modified Bessel function of the
first kind by Mp(x) = Jp(jx)/jp.
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at r = 0 is satisfied. At the triple phase boundary,

φ̃(rtpb)into YSZ = Γ(θ̃k1V
..
O − (1 − θ̃)k−1O

×
O)

= −D
dΓθ̃

dr

= −j
D

ξ
ΓAJ1

(

Re

ξ

)

= − Ĩ

nqeℓ

=⇒ A = j
Ĩ

nqeΓℓJ1(jRe/ξ)D/ξ

(C.31)

Then θ̃ is, in cylindrical coordinates,

θ̃(r) = j
Ĩ

nqeΓℓD/ξ

J0(jr/ξ)

J1(jRe/ξ)
. (C.32)

C.8 Electrochemical Impedance

To obtain an expression for impedance from these solutions, let us first express the

current, I, and voltage across the device, V , as perturbations,

I = ī + R(ejω ĩ) (C.33a)

V = v̄ + R(ejωṽ) (C.33b)

(C.33c)

Then the variation in I is expanded to first order as

ĩ =
∂I

∂θ

∣

∣

∣

∣

θ̄,v̄

dθ +
∂I

∂V

∣

∣

∣

∣

θ̄,v̄

dV + · · · (C.34)

But dθ = θ̃ and dv = ṽ; then
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ĩ =
∂I

∂θ

∣

∣

∣

∣

θ̄,v̄

θ̃ +
∂I

∂V

∣

∣

∣

∣

θ̄,v̄

ṽ + · · · (C.35)

where it is understood that θ̃ refers to the coverage perturbation at the boundary.

The quantity,
(

∂I
∂V

)−1
is called the charge transfer resistance, Rct. ∂I/∂θ is given in

C.19.

Now, we have seen that θ̃ is proportional to −ĩ for all of the cases investigated

here. As such, we might factor out −ĩ

ĩ

[

1 +
∂I

∂θ

∣

∣

∣

∣

θ̄,v̄

θ̃

−ĩ

]

= (Rct)
−1ṽ. (C.36)

This leads to the Faradaic impedance, ZF ≡ ṽ/̃i,

Z = Rct

[

1 +
θ̃

−ĩ

∂I

∂θ

]

(C.37)

The term, “Faradaic impedance”, is used to distinguish this component of impedance

from the total impedance measured across the device terminals.

From here, we can substitute the solutions for θ̃ directly into C.37 to obtain

Faradaic impedance expressions for each case.

For the one-dimensional semi-infinite case, with the triple-phase boundary at r =

0,

ZG = Rct

[

1 +
∂I
∂θ

nqeΓℓ
√

D(jω + α)

]

(C.38)

where D/ξ has been written explicitly. This takes the form of the well-known

“Gerischer” impedance [2]. The salient feature of this impedance expression is the

1/
√

jω + α factor in the frequency-dependent component. For ω ≫ adsRate, this

term has equal real and imaginary parts, leading to a forty-five-degree line in the

Nyquist plot (locus of points for all ω in the complex-Z plane). The low-frequency

portion of the Nyquist plot more resembles a semicircle. This leads to a familiar

“teardrop” shape.
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In the one-dimensional finite-length case, with triple-phase boundary at r = Re,

ZFL = Rct

[

1 +
∂I
∂θ

nqeΓℓ
√

D(jω + α)
coth (Re/ξ)

]

(C.39)

This expression is similar to the form of the “finite-length Warburg” impedance ele-

ment, also well-known in electrochemical impedance spectroscopy [2], except that in

this element, the coth is replaced by a tanh. The finite-length Warburg would have

appeared exactly if the boundary condition at r = 0 had been θ̃ = 0 instead of φ̃ = 05.

Finally, for the cylindrical case, again with triple-phase boundary at r = Re,

Zcyl = Rct

[

1 +
∂I
∂θ

nqeΓℓ
√

D(jω + α)

M0 (Re/ξ)

M1 (Re/ξ)

]

. (C.40)

It is noteworthy that both finite-length expressions, ZFL and Zcyl, approach the

Gerischer form for the case when the utilization length, lδ ≡ ξ(ω = 0) (see [2] for

introduction of this term), becomes very small6. This is very reasonable, and should

be expected in general, since perturbations are restricted to a narrow region very

close to the triple-phase boundary have no way of knowing about the geometry of

the electrode (i.e. the electrode is effectively infinitely large for the short-range per-

turbations, satisfying the Gerischer conditions). Further, the finite-length impedance

in one-dimension closely parallels that in cylindrical coordinates, as coth(Re/ξ) and

M0 (Re/ξ) /M1 (Re/ξ) behave similarly, though the latter decays much more slowly

than the former.

It must be pointed out that if θ̄ is independent of position, ∇θ̄ = 0, then by Fick’s

first law, ī = 0, so that the perturbation must be carried out about equilibrium. For

this condition to be met, v̄ = 0. It would be desirable to run EIS experiments under

nonzero polarization; however, in order to do this, it necessary to know precisely

how the diffusion coefficient depends upon coverage. As the estimates conducted in

5This boundary condition is, perhaps, even more artificial than the one we used.
6This happens when D ≪ α, corresponding to slow diffusion relative to the linearized net sorption

rate.
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Figure C-1: Bode magnitude and phase plots for the cylindrical impedance element.
Figures show response when utilization length, lδ, is less than, equal to, and greater
than the electrode radius. High-frequency real asymptote has been zeroed to reveal
45° phase angle. Reprise of Figure 2-5b.

Appendix B are crude at best, we are not in a position to proceed in this direction.

C.9 Frequency Responses and Bode Plots

Graphical analysis provides intuition as to the behavior of these impedance elements.

All three frequency responses show a low- and high-frequency value with varyingly-

steep transition regions in between. It is typical in the experiments comprising this

study for there to be several orders of magnitude difference between these low- and

high-frequency limits, as depicted in the plots.

Defining γ analogously to 3.3 for the Gerischer case as
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γ1 = Rct =
[

nqeℓΓ
(

b−1k−1O
×
O

(

1 − θ̄
)

− b1k1V
..
Oθ̄
)]−1

γ2 = Rct
∂I/∂θ

nqeΓℓ
√

D
= Rct

k1V
..
O + k−1O

×
O√

D
≈ 1

nqeℓΓ
qe

kBT
θ̄(1 − θ̄)

√
D

γ3 = S(θ, T )

[

as
λ

h

(

∂θ

∂P

)−1
]

(C.41)

the observation of the large difference between low- and high-frequency impedance

limits is captured via parameter relations through the statement, γ2/
√

γ3 ≫ γ1.

Expressions for the magnitude, |Z|, and phase, φ, real, and imaginary parts of the

Gerischer impedance are written below:

|ZG| = R1 +
R2√
A

= R1

√
A + R2/R1√

A

φ ≡ ∠Z = arctan

[

−
R2√

A
sin
(

δ
2

)

R1 + R2√
A

cos
(

δ
2

)

]

ℜ{Z} = R1 +
R2√
A

cos

(

δ

2

)

ℑ{Z} = − R2√
A

sin

(

δ

2

)

(C.42)

where

A2 ≡ ω2 + α2

tan(δ) ≡ ω

α
.

(C.43)

A useful result for the Gerischer impedance regarding the lower corner frequency7

follows:

ωc,g =

√

(

4γ2

(γ2/
√

α) − 2R1

)4

− α2 ≈
√

255α2
3 ≈ 16α (C.44)

7The corner frequency is variously defined as a kink in the Bode plots; traditionally, it is the point
where the magnitude of the transfer function under study drops by a factor of ½, or approximately
3 dB, from some important limiting value, and this is the definition used here.
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As such, the corner frequency may be used to rapidly estimate this adsorption-

related model parameter. For the other geometries and boundary conditions, the

corner frequency ought to track with α in approximately the same way.

C.10 Kinetics-Based Model of Mitterdorfer and

Gauckler

The work above is generalized from the model of Mitterdorfer and Gauckler only

in the treatment of sorption. However, where Mitterdorfer and Gauckler chose a

numerical, state-space solution to calculate the impedance, we have chosen to restrict

ourselves to simple geometries and write analytical solutions.

Sorption is handled in Mitterdorfer and Gauckler by a Langmuirian surface reac-

tion,

PO2,gas + 2Γ(1 − θ)
ka−⇀↽−
kd

2Γθ. (C.45)

where PO2,gas = P is the oxygen gas partial pressure and ka and kd are the adsorption

and desorption rate constants. This gives rise to a coverage isotherm,

θ =
1

1 +
√

kd/(kaP )
(C.46)

When linearized, this model exactly corresponds to the generalized case above

for α = 2Γ
√

kakdP , as can be seen by writing the kinetic equations resulting from

C.45 and linearizing the quadratic terms. As such, the electrochemical impedance

of the Mitterdorfer-Gauckler model is exactly of the Gerischer analytical form. The

numerical solution carried out in their original work is, with appropriate generalized

differential operators, extensible to a number of other arbitrary geometries, in which

case the Gerischer form does not arise exactly8. In fact, in analysis of their data,

Mitterdorfer and Gauckler only apply their model within a one-dimensional semi-

infinite framework[36, 37, 38], where their numerical solution ought to reproduce a

8though much of the same qualitative behavior ought to exist, as observed for the finite-length
and cylindrical cases above.
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Gerischer impedance.

C.11 Model Used Here

The model used in the present study differs from that of Mitterdorfer and Gauckler

only in the sorption terms. In B, a coverage isotherm is derived from a statistical me-

chanics framework. This may then be used in conjunction with a kinetics-motivated

expression that is more standard with respect to surface studies for oxygen on Pt

[25, 54, 20, 17]. In particular, as seen in an expression typifying the work of Kreuzer

et al [25],

(

dθ

dt

)

ad−des

= S(θ̄, T )

[

as
λ

h
(P − P̄ )

]

, (C.47)

where λ is the thermal wavelength (see B), as = 1
Γ

is the area per adsorption site

so that as
λ
h
P is the total flux rate of impinging particles per adsorption site, P is

the instantaneous oxygen gas partial pressure and P (θ) the pressure corresponding

to equilibrium at the instantaneous coverage, and S the sticking coefficient - the

probability that an impinging particle will adsorb. An advantage of this scheme is

that data for S exists from surface studies [54, 20, 17, e.g]. For our purposes, we

might more conveniently define the instantaneous adsorption rate in the perturbation

limit where ∆P = P − P̄ = −(P (θ̄ + dθ) − P (θ̄)) ≈ − ∂P/∂θ|T,θ̄ dθ is small as

(

dθ

dt

)

ad−des

= −S(θ̄, T )

[

as
λ

h

(

dP

dθ

)

T,θ̄

dθ

]

. (C.48)

Then α is identified immediately as α = S(θ̄, T )
[

as
λ
h

(

dθ
dP

)−1
]

, a quantity which

is ultimately positive because ∂θ/∂P |T is positive (as can be seen in the Langmuir

isotherm of Mitterdorfer and Gauckler).

171



172



Appendix D

Fitting Details

D.1 Introduction

In the following, several derivations are worked out pertaining to the numerical fitting

process. Important results include the Jacobian matrices used in the fitting proce-

dure; while it is possible to calculate these matrices numerically, exact closed-form

expressions lead not only to faster, but also more stable, fitting. As a matter of prac-

tically, methods are reviewed and recorded for approximating the ratio of modified

Bessel functions, which occur in the cylindrical impedance element expressions. Fi-

nally, some discussion is devoted to parameter sensitivity and error analysis so that

the accuracy of predictions made from this procedure may be gauged.

D.2 Jacobians of Fitting Expressions

In a number of numerical schemes for the solution to 3.4, the Jacobian matrix of Zcyl

is an item of central importance.

The Jacobian matrix for an n-component vector function, G(x; γ), is the n × k

matrix whose columns are the partial derivatives of each of the n components of G

with respect to the parameters in γ,

173



J =

















∂G(x1;γ)
∂γ1

∂G(x1;γ)
∂γ2

· · · ∂G(x1;γ)
∂γk

∂G(x2;γ)
∂γ1

∂G(x2;γ)
∂γ2

...
. . .

∂G(xn;γ)
∂γ1

∂G(xn;γ)
∂γk

















(D.1)

In a compact notation, the µνth element of this matrix is written as Jµν = ∂G(xµ;γ)

∂γν
.

Fortunately, it is possible to write an analytical expression for this Jacobian, a

fact which assures increased speed and robustness of the numerical procedure.

Define the ratio of zero to first order modified Bessel functions of the first kind as

f(x) ≡ M0(x)/M1(x). Then f ′(x) ≡ df(x)/dx = 1 − f(x)[f(x) − 1/x].

With this definition, the column vectors of the Jacobian matrix for the Faradaic

impedance in the cylindrical geometry are written as follows:

Jall,1 = 1, (D.2)

Jall,2 =
f(x)√
jω + γ3

, (D.3)

Jall,3 =
1

2
γ2

xf ′(x) − f(x)

(
√

jω + γ3)3
, (D.4)

and

Jall,4 = γ2f
′(x), (D.5)

where 1 is a vector of all ones.

D.2.1 Error Estimation and the Hessian Matrix

The Jacobian matrix contains the function first derivatives about every data point;

this provides an essential tool for numerical minimization schemes. The second deriva-

tives are also useful, especially in estimating errors. For a scalar function, F(γ), the
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Hessian matrix operator, H, contains the second derivatives. In a shorthand notation,

H{F(γ)}µν =
∂2F(γ)

∂γµ∂γν

. (D.6)

The matrix is symmetric.

The reason that the Hessian matrix is useful in error estimation is that the second

moment of a probability distribution provides information about deviation about the

mean (or first moment and first cumulant) of the distribution. Because the matrix

contains all permutations of second derivatives, it might be intuited that it contains

information about the correlation coefficients, and this is indeed the case.

D.2.2 Error Propagation in Derived Parameters of Interest

The final step in obtaining estimates for the stated parameters of interest is to deter-

mine the errors in these estimates associated with measurement precision. Assuming

the errors are small, a Taylor expansion may be used to map errors from one set

of random variables to another. Specifically, a quantity of interest, G(γ), that is a

function of a set of random variables, γ = {γ1, γ2, · · · , γk}, might be approximated

by the Taylor series [43]

G(γ) ≈ G(γ̄) +
∂G

∂γ1

∣

∣

∣

∣

γ̄

(γ1 − γ̄1) +
∂G

∂γ2

∣

∣

∣

∣

γ̄

(γ2 − γ̄2) + · · · = G(γ̄) + ∇γG· (γ − γ̄) + · · ·

(D.7)

where γ̄ is the expected value of the initial set of random variables.

Then the variance of this derived random variable is, for small fluctuations in γ

about the mean [43],

σ2
G =

(

G − Ḡ
)2

=
n
∑

i,j=1

∂G

∂γi

∣

∣

∣

∣

γ̄

∂G

∂γj

∣

∣

∣

∣

γ̄

(γi − γ̄i)(γj − γ̄j). (D.8)

Here, (γi − γ̄i)(γj − γ̄j) is the ijth correlation coefficient, Cij. It can be shown that

[43, chap. 14.1]
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C−1
ij =

1

2
E

{

∂2χ2

∂γi∂γj

}

(D.9)

where E{} denotes the expectation value of a quantity and χ2 is defined in Equation

3.4. But this is none other than half the ijth element of the Hessian matrix of

scalar norm, χ2. From equation D.6, we approximate D.8 in terms of the Hessian

matrix, H(χ2
ex), evaluated using the experimentally-determined values for the inverse

variances1, w

σ2
G =

(

G − Ḡ
)2

=
n
∑

i,j=1

∂G

∂γi

∣

∣

∣

∣

γ̄

∂G

∂γj

∣

∣

∣

∣

γ̄

(2[H(χ2
ex)]−1

ij ) (D.10)

which may be written in a compact matrix notation as

σ2
G = 2 (∇γG)T [H(χ2

ex)
]−1

(∇γG) (D.11)

where (∇γG) is the column vector containing all the partial derivatives with respect

to each individual γ and where all quantities are evaluated at the expected values of

the parameters, γ∗.

The task of estimating errors is then reduced to evaluating D.11 for each derived

quantity of interest (e.g. G → D, where D = (Re/γ4)
2, etc.).

In order to calculate the error propagated to the extracted real-valued parameters,

it is necessary to construct a norm for the error which is positive definite, which

would require some generalization of 3.4 due to the fact that the trial function - the

impedance - is complex-valued. For the purposes of fitting, it was proposed that the

same formalism might be appled for both the real and imaginary components of Z,

and this is, inded, is the method employed here in fitting calculations. However, it is

now convenient to redefine χ2 to be

χ2 =
n
∑

k=1

wk(yk − Z(ωk; γ))(yk − Z(ωk; γ))∗, (D.12)

1This is an approximation because the experimental w are used.
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where the superscript asterisk indicates the complex conjugate transpose.

The Hessian matrix for χ2 is determined as follows:

H
{

χ2
}

µν
= H

{

n
∑

k=1

wk |yk − Z(ωk; γ)|2
}

µν

=
n
∑

k=1

wk[H {Z(ωk; γ)}µν (Z(ωk; γ) − yk)∗ + H {Z∗(ωk; γ)}µν (Z(ωk; γ) − yk)

+ J {Z∗(ωk; γ)}kµJ {Z(ωk; γ)}kν + J {Z(ωk; γ)}kµJ {Z∗(ωk; γ)}kν ],

(D.13)

where Jkµ{} is the kµth component of the Jacobian matrix operator as defined in

Equations D.2 to D.5. Because J {Z∗} = (J {Z})∗ and H{Z∗} = (H{Z})∗,

H
{

χ2
}

µν
= 2

n
∑

k=1

wkR

[

H {Z(ωk; γ)}µν (Z(ωk; γ) − yk)∗ + J ∗
kµJkν

]

, (D.14)

with R[A] is the real part of A. 2 H {Z(ωk; γ)} is a 4 × 4 matrix symmetric about

the main diagonal. Its elements are:

H11 = H12 = H13 = H14 = H22 = 0

H23 =
1

2(jω + γ3)

(

f ′(x)γ4 −
f(x)√
jω + γ3

)

H24 = f ′(x)

H34 =
1

2

γ2γ4f
′′(x)√

jω + γ3

H33 =
1

2

1

jω + γ3

(γ4H34 − 3γ2H23)

H44 = γ2

√

jω + γ3f
′′(x),

(D.15)

where x ≡ γ4

√
jω + γ3 and f ′′(x) = 2f 3(x) − 3

x
f 2(x) − 2f(x) + 1

x
, and again,

2It is also useful to point out that Z∗(ω;γ) = Z(−ω;γ).
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f(x) = M0(x)
M1(x)

. The rest of the elements are known from symmetry. For complete-

ness, the parameter gradients for the diffusivity, linearized adsorption rate, coverage,

and utilization length are given below.

∇γD =

















0

0

0

−2R2
e/γ

3
4

















(D.16)

∇γα =

















0

0

1

0

















(D.17)

∇γθ =























0

±1
2

(

1
4
− γ4

nqeℓΓRe
qe

kBT
γ2

)−1/2(

γ4

nqeℓΓRe
qe

kBT
γ2

2

)

0

∓1
2

(

1
4
− γ4

nqeℓΓRe
qe

kBT
γ2

)−1/2(

1
nqeℓΓRe

qe
kBT

γ2

)























(D.18)

∇γlδ = ∇γ

√

D/γ3 =
1

2

√

1

γ3D

(

∇γD − D

γ3

∇γγ3

)

= −1

2

1√
γ3D

















0

0

D/γ3

2R2
e/γ

3
4

















(D.19)

Lastly, it should be noted that the errors estimated from this procedure are only

those resulting from the limit of experimental precision in measurements and setup;

these estimates say nothing about how accurate the underlying theory is. To address

this issue, we compare the experimentally-determined results with available literature

data and our crude first-principles estimates.
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D.3 Approximation for Ratio of Modified Bessel

Function

In the expression for the cylindrical Faradaic impedance, C.40, there is a term pro-

portional to the ratio of the zeroth- and first-order modified Bessel functions of the

first kind, f(x) ≡ M0(x)/M1(x), where x is a real number and Jn(jx)/jn = Mn(x),

with Jn the nth-order Bessel of the first kind and Mn the nth-order modified Bessel

function of the first kind. Because this is the ratio of the lowest-order eigenfunction

in cylindrical coordinates and its first derivative, it may be compared to a ratio of

hyperbolic functions like tanh or coth, and indeed its behavior is similar to that of

coth, but with a stronger singularity at zero argument and a slower convergence to

unity. A convenient tool for calculating the ratio of Bessel functions does not seem to

exist in MATLABr, and the individual modified Bessel functions exceed the maxi-

mum size of double precision quantities when the real portion of the argument exceeds

700. However, a ratio of tabulated polynomial approximations for the modified Bessel

function may be used to approximate the function for large arguments [1].

For the convenience of future users of this method, the coefficients used to estimate

the ratio in f(x) are tabulated below in order of highest-order coefficient to zero-order.

These coefficients are calculated from those provided in [1] for the individual modified

Bessel functions. The numbers of given as MATLAB code; the reader may implement

the code as a MATLAB function:

cRatio=[0.00005552948079670...

-0.00055797090136633...

0.00235024942138674...

-0.00556183154959959...

0.00835900945593707...

-0.00851043374776648...

0.00621119175968176...

-0.00264779529352971...

0.01272310887399821...
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-0.06705071494922321...

0.12212359788455404...

-0.10069929872563232...

0.04812819010930715...

-0.00404265668853017...

0.02804446259747899...

0.13326780004365546...

1.00000000000000000];

%Use approximation for arguments > 700

index = find(real(x) > 700, 1, ’last’);

if(isempty(index))

y = besseli(0,x) ./ besseli(1,x) ;

else

y( 1:index,1 ) = polyval( cRatio, (3.75./x( 1:index )) );

y(index+1:length(x),1)=besseli(0,x(index+1:length(x)))./ ...

(besseli(1,x(index+1:length(x))));

end

Figure D-1 displays the accuracy of the approximation for purely real arguments

less than 700, as compared to the native modified Bessel functions in MATLAB. Note

that the approximation is only used for arguments with real components greater than

700.
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Figure D-1: Absolute error of polynomial approximation to ratio of zeroth- and first-
order modified Bessel functions of the first kind, f(x) against real input, x. The value
for this range of arguments is close to unity.
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Appendix E

Generalization of Result in

Mitterdorfer and Gauckler:

Coverage at Maximum i0

The following generalizes a result obtained in Mitterdorfer and Gauckler [36] - namely,

that the exchange current density is maximized at a given temperature by the value,

1 − ζ, where ζ is the energy exchange coefficient (or Tafel constant).

A basic relation in electrochemistry relating Faradaic current, IF , to overpotential,

v, is the Butler-Volmer equation, which in two dimensions is written as

IF = i0ℓ
(

eb
−1v − eb1v

)

, (E.1)

where the b’s are defined in C.18a.

By comparison with 2.24, we see that the Butler-Volmer equation arises when

k−1,0O
×
O(1 − θ) = k1,0V

..
Oθ. In this case,

i0 = nqeΓk−1,0O
×
O(1 − θ) = nqeΓk1,0V

..
Oθ. (E.2)

In general, we might subtract an offset from the overpotential, η to enforce this

relationship, where η is defined through
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k−1,0 = k−1,ce
−b

−1η

k1,0 = k1,ce
−b1η

(E.3)

such that 2.24 can be written as

IF = nqeℓΓ
[

k−1,ce
b
−1(v−η)O×

O(1 − θ) − k1,ce
b1(v−η)V..

Oθ
]

. (E.4)

To convert this expression to Butler-Volmer form, we require

k−1,ce
−b

−1ηO×
O(1 − θ) = k1,ce

−b1ηV..
Oθ. (E.5)

This constrains η to be

η =
1

b1 − b−1

ln

(

k1,cV
..
O

k−1,cO
×
O

θ

1 − θ

)

. (E.6)

Now, the forward and backward current under the Butler-Volmer condition be-

come

i0 = nqeΓk−1,ce
−b

−1ηO×
O(1 − θ) = nqeΓk1,ce

−b1ηV..
Oθ. (E.7)

In Mitterdorfer and Gauckler’s work, an expression for i0 is obtained by taking

the square root of the product of the forward and backward exchange currents at

equilibrium [36]1,

i0 = nqeΓ
√

e(−(b
−1+b1))ηk−1,cO

×
Ok1,cV..

Oθ(1 − θ) (E.8)

It is subsequently demonstrated in [36] that, for the specific case of Langmuir

adsorption, the equilibrium surface concentration at which i0 is maximized occurs at

θ∗ = 1 − ζ. (E.9)

1I am not altogether sure that this is a valid operation, but the goal here is to generalize the
development of these authors.
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In fact, this result is more general. Using Mitterdorfer and Gauckler’s procedure

for obtaining i0, E.9 is seen to be a consequence of the charge transfer model employed,

and not the isotherm (so that any isotherm might be employed without changing the

value for θ∗ so long as the same style of charge transfer reaction, 2.24, is used). To

see this, substitute the expression for η into E.8:

i0 = nqeΓ

√

(

k1,cV..
Oθ

k−1,cO
×
O(1 − θ)

)(b
−1+b1)/(b

−1−b1)

k−1,cO
×
O(1 − θ)k1,cV..

Oθ (E.10)

Noting that (after considering C.18a)

b−1 + b1

b−1 − b1

= 1 − 2ζ, (E.11)

we find

i0 = nqeΓ

[

k1,cV
..
Oθ

(

k−1,cO
×
O(1 − θ)

k1,cV..
Oθ

)ζ
]

= nqeΓ
[

(k1,cV
..
Oθ)1−ζ (k−1,cO

×
O[1 − θ]

)ζ
]

.

(E.12)

The desired quantity is the coverage which maximizes the exchange current den-

sity, i0, at a given temperature. As such, we maximize E.13 with respect to the other

control (and state) parameter, pressure, P . We will take the k’s to be electrochemical

constants, and all other parameters except θ to be independent of pressure.

(

∂i0
∂P

)

T

= nqeΓ
[

(k1,cV
..
O)1−ζ (k−1,cO

×
O

)ζ
] d

dP

[

θ1−ζ(1 − θ)ζ
]

= 0 (E.13)

This requires

d

dP

[

θ1−ζ(1 − θ)ζ
]

= θ′
d

dθ

[

θ1−ζ(1 − θ)ζ
]

= 0, (E.14)

after application of the chain rule, where θ′ ≡ dθ/dP . The key step is not to

specify the isotherm through leaving unknown the functional dependence of θ on P .
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The only constraint made on the isotherm is that θ′ is not zero (which would be

very unrealistic for the given situation). Then the other term in E.14 must be zero,

namely,

d

dθ

[

θ1−ζ(1 − θ)ζ
]

= (1 − ζ)

(

1 − θ

θ

)ζ

− ζ

(

1 − θ

θ

)ζ−1

= 0 (E.15)

The only allowable root of this constraint, θ∗, is θ∗ = 1 − ζ. As such, we have

demonstrated that, using the same starting point as in Mitterdorfer and Gauckler,

the result that θ∗ = 1− ζ is valid independently of the isotherm used, so that it must

be a consequence of the model used to describe the charge transfer step.
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Appendix F

Selected Literature Values For

Model Parameters

The following tables list literature values from multiple sources for several model

parameters.

F.1 Sticking Probability

Most experimental works observe and argue for a coverage dependence of the oxygen

sticking probability according to S(θ) = S0(1 − θ)2[17, 54, 58, 15]; this corresponds

to a site-limited view of adsorption. Hopster et al. suggest a more complicated

S(θ) = S0 exp−A θ3/2

kBT
dependence from their studies, and estimate S0 at 0.018 with

A = 3.2 eV; this model was employed by Sales et al. in their studies of oxygen

adsorption [44], but is otherwise not popular in the literature.

Table F.1 shows zero-coverage sticking coefficients obtained from the literature for

several different experimental conditions. All of the data pertains to clean or stepped

single-crystal surfaces. The authors use a wide variety of techniques, including Auger

spectroscopy [20] to single crystal adsorption calorimetry [56] and second harmonic

generation [15].
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Table F.1: Zero-Coverage Sticking Coefficient: Values in the Literature

Source Value Description
[15] 0.054 On clean Pt(111) at 300 K

0.023 On clean Pt(111) at 600 K
0.02 High temperature asymptote, with monotonic decay from

low to high temperatures
[17] 0.05 On clean Pt(111) at 200 K

0.4 On stepped Pt(S)-12(111)×(111) surface at 200 K
[54] 0.14 On Pt(110) at room temperature (300 K)
[56] 0.05 On clean Pt(111) at room temperature (300 K)
[58] 0.03 On clean Pt(111) at 160 K
[20] 0.02 On clean Pt(111) at 550 K using Auger spectroscopy

0.03 On stepped Pt(S)-14(111)×(111) at 550 K, argue S(θ) =

S0 exp−A θ3/2

kBT
, S0 = 0.018, A = 3.2 eV for O2 on Pt(111)

F.2 Chemisorption Energies

There is significant scatter in the literature among adsorption energies for oxygen on

Pt(111). This may be due to differences in sample preparation and experimental con-

ditions, as well as inaccurate means of assessing coverage, presence of contaminants,

and so forth. To give some context to these numbers, we might use the adsorption

isotherm model without including lateral interactions. For the lowest temperature

visited in the experiments carried out in this work, 476�, a binding energy of 1.1 eV

[25] would require a pressure of about 105 Pa (about 1 atm oxygen partial pressure)

to reach 95 % saturation coverage; by contrast, a binding energy of 2.6 eV would

reach 95 % saturation coverage at around 10−15 Pa [18].

One lesson to be learned from this tremendous spread in energetics data is that

caution should be exercised when comparing energetics values obtained by differ-

ent methods of analysis. Fits to data as in Wilf et al.[54], Kreuzer et al.[25], and

other works may not necessarily correspond to those values obtained by ab initio

calculations [7, 33, 8]. This is especially important when looking for trends in adsorp-

tion/desorption energy; in this case, it is perhaps more instructive to compare trends

determined by several data sets all using the same analysis method.
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Another key point is that the model used here, which uses a single binding and a

single interaction energy, is an extreme simplification from the complexities of actual

oxygen sorption on Pt. Lynch and Hu examine four different binding configurations

on Pt(111) alone [33]; Lewis and Gomer report on local Pt{100} sites acting as traps

to diffusion along Pt{111} facets [30]. But it is important to remember our purpose in

examining sorption, which is to get an idea of how coverage depends upon temperature

and pressure, rather than to determine precise atomic details which, aside from which,

are best analyzed by more direct means (e.g. low-energy electron diffraction, etc.).

And we desire the simplest model possible which will nonetheless describe these trends

with some degree of quantitative accuracy. Ideally, the complex microscopic details

will be sufficiently “washed out” from a macroscopic (i.e. micrometer scale) statistical

point of view to make our simplified model adequate.

The format in which binding energy is reported varies. Some sources give the

energy relative to a ground state of isolated monatomic oxygen. This is especially

true in DFT studies, for which it is convenient to calculate energies with oxygen

atoms separated from the Pt surface at the bond length, and then again at a large

separation, taking the binding energy to be the difference of the two states. Because

this method is employed by Nørskov et al.[8, see p. 257], and because the binding

energies reported in the other DFT studies [7, 33, 49], as well as some experimental

studies [18], approach the value shown by Nørskov, it is assumed that the ground state

in these works is also isolated monatomic oxygen. However, the thermodynamic model

employed here identifies ½O2 and O/Pt as the only two states available for oxygen

atoms. As such, it is appropriate to use 1
2
O2 as the ground state. To convert from

the binding energy relative to monatomic gaseous oxygen, Va, to that relative to half

diatomic gaseous oxygen, ǫ, we use the heat of fission of gaseous O2, Dg
e = 5.28 eV

[31, for about 900 K ≈ 630 �] (5.26 eV, [25]) ǫ = (2Va − Dg
e)/2.

(Key to abbreviations: LEED = Low-Energy Electron Diffraction, EELS = Elec-

tron Energy Loss Spectroscopy, TDS = Thermal Desorption (mass) Spectroscopy,

AES = Auger Electron Spectroscopy, UPS = Ultraviolet Photoemission Spectroscopy,

DFT = Density Functional Theory (an ab initio technique for quantum calculations).)
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Table F.2: Chemisorption Binding Energetics Per Atomic O on Pt, Relative to

½ Gaseous O2 (Estimates for ǫ)

Source Value [eV] Description

[56] 1.6 On clean Pt(111) at room temperature (300 K) - single crys-

tal adsorption calorimetry; quote energy of 3.16 eV as en-

ergy difference between O2,gas and 2Oads/Pt

[25] 1.1 On clean Pt(111), fitting from TDS data by [3]. This value

results from stressing recovery of accurate zero-coverage des-

orption energy; when first TDS peak is stressed, a binding

energy of 1.4 eV results. Value is probably most appropriate

for this work since the model employed is similar to the one

used here. Should not, as such, necessarily be interpreted

as a true Pt-O binding energy.

[18] 2.6 On Pt(111) at zero coverage using LEED, EELS; Gland et

al. actually report the desorption energy for O on Pt(111) as

5.2 eV; converted to relative 1
2
O2 through method described

above.

[15] 2.1-2.2 For Pt(111), citing work of Campbell et al., Winkler et al.,

and Parker et al. Desorption energies, not, strictly speaking,

binding energies, as may include an activation.

[40] 2.3 Porous Pt; value determined by analysis of dc electrode

conductivities, σE, under both anodic and cathodic polar-

izations and measured at temperatures between 370 and

800� and oxygen partial pressures between 10−4 and 1 atm.

Analysis carried out according to [39] and involves examin-

ing Arrhenius behavior of pressure which minimizes σE.

Continued on next page
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Source Value [eV] Description

[54] On Pt(110), TDS with LEED and AES, 400-1000 K (330-

730�), high vacuum (10−9 Torr) even during O2 dosing.

Isotopic mixing of O16 and O18 in O2 formed after desorp-

tion implies dissociative adsorption. Identify two desorp-

tion phases, β1 and β2, distinguished by first-order (direct)

and second-order (associative) desorption kinetics. Num-

bers found by Arrhenius fitting to TDS peaks.

1.4 β1 desorption activation energy

1.3 β2 desorption activation energy

[49] 1.79 On clean Pt(111) at fcc site, DFT study (0 K); again, quote

energy of 4.43 eV; converted to relative 1
2
O2 through method

described above.

[7] 1.79 clean Pt(111), p(2 × 2) ordering, DFT study (0 K); quote

energy of 4.43 eV; converted to relative 1
2
O2 through method

described above.

[33] DFT study on Pt(111) using a p(2×2) unit cell. Chemisorp-

tion energies given for four potential binding sites on

Pt(111) surface.

1.15 hcp hollow

1.62 fcc hollow (most stable)

0.99 bridge

-0.01 top (slightly unstable relative to 1
2
O2)

F.3 Lateral Interactions

As a point of clarification, lateral interactions here refer to the interactions between

adsorbates which modify the energetics of adsorbed particles in a thermodynamic

sense.
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There is an important conceptual difference in the treatment of lateral interac-

tions in this work and those listed in the table below. Many of the works in the

literature, and all of those referred to in Table F.3, attempt to isolate interaction en-

ergies between specific configurations of chemisorbed atoms (always nearest-neighbor

pairs except in [49]). This assumes a specific form of the interaction potential. An

advantage of the mean field theory is that it does not make assumptions about the

interaction potential, but rather approximates the occupation probability as being

roughly independent of the coverage (see B.2). The parameter, u0, which controls the

contribution of lateral interactions in this model is simply the total interaction energy

of one adsorbate with all particles on a completely covered surface. The correspon-

dence between these two points of view is found by calculating the total interaction

energy for a surface at saturation coverage given the potential used in the determina-

tion of the interaction energy. For all of the energetics data reported below with the

exception of that from [49], the correspondence with u0 is either exactly or nearly six

times the energy, where six is the number of nearest neighbors on the Pt(111) surface

and the p(2 × 2) covering.

(Note: positive values in the energetics values below indicate repulsive interac-

tions; negative values, attractive.)

F.4 Diffusion

(Key to abbreviations: PEEM = Photoemission Electron Microscopy)
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Table F.3: Interaction Energies Between Chemisorbed Oxygen Atoms

Source Value [eV] Description
[49] From DFT calculations on Pt(111); a set of various inter-

action combinations used together in diagram expansion to
treat interactions more comprehensively.

0.237 Isolated nearest-neighbor pairwise interaction on (1×1) sur-
face.

0.0395 Isolated pairwise interaction, nearest-neighbor on (
√

3×
√

3)
surface, second-nearest-neighbor on (1 × 1).

-0.00581 Isolated pairwise interaction, nearest-neighbor on p(2 × 2),
third-nearest-neighbor on (1 × 1).
Three-way interactions are also included in [49].

[56] 0.228 On clean Pt(111) at room temperature (300 K) - single
crystal adsorption calorimetry. The number is obtained
by fitting to data via Monte Carlo simulations assuming
nearest-neighbor interaction, only, in a p(2 × 2) ordering
on the surface. Actually report 1.68 eV as the energy dif-
ference between a fully covered and a clean surface where
1.68/6 ≈ 0.28 eV.

[25] 0.023 From thermodynamic model fits to TDS spectra by [3],
which refers to clean Pt(111). They reference 0.072 eV
[11, 41] and 0.038 eV [55] for comparison.
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Table F.4: Diffusion Activation Energy

Source Value [eV] Description
[30] Pt(111) and (100) field emitter tips, high vacuum. Pt(111)

more mobile than Pt(100).
1.2 450-500 K (180-230�) and high coverage.
1.5 > 500 K (230�) and low coverage.

[20] 1.6 × θ3/2 see Table F.1; claim that Ed can be estimated as half desorp-
tion energy, and report 3.2 × θ3/2 eV as heat of adsorption.

[40] 1.8 See Table F.2
[53] Single-crystal Pt(110) at 606-668 K, use PEEM; grow oxy-

gen islands on a CO monolayer, then raise temperature so
that CO desorbs completely while oxygen islands stay; sub-
sequently, image in real time diffusion of oxygen islands.
Argue that change in diffusion activation energy at θ = 0.2
is related to adsorption occurring on valley sites of (2 × 1),
where before, it occurred primarily at ridge sites. [11̄0] is
the preferred direction.

1.3 ± 0.17 low coverage (θ < 0.2)
1.7 ± 0.86 high coverage (0.2 < θ < 0.7)

Table F.5: Diffusion Preexponential Factor

Source Value [cm2/s] Description
[30] 2.5 see Table F.4
[53] see Table F.4

2 × 103±1 low coverage (θ < 0.2)
2 × 105±0.5 high coverage (0.2 < θ < 0.7)
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Figure G-1: The author at age 24 in Zurich, Switzerland, en route to MEET, July
2008.
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