
Development of Control and Autonomy

Algorithms for Docking to Complex Tumbling

Satellites

by

Amer Fejzić

Bachelor of Science

University of Washington, 2006

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .

Department of Aeronautics and Astronautics
August 27, 2008

Certified by. .

David W. Miller
Professor of Aeronautics and Astronautics

Thesis Supervisor

Certified by. .
Alvar Saenz-Otero

Research Scientist, Aeronautics and Astronautics
Thesis Supervisor

Accepted by .

Prof. David L. Darmofal
Associate Department Head

Chairman, Committee on Graduate Students

2

Development of Control and Autonomy Algorithms for

Docking to Complex Tumbling Satellites

by

Amer Fejzić

Submitted to the Department of Aeronautics and Astronautics
on August 27, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

The capability of automated rendezvous and docking is a key enabling technology
for many government and commercial space programs. Future space systems will
employ a high level of autonomy to acquire, repair, refuel, and reconfigure satellites.
Several programs have demonstrated a subset of the necessary autonomous docking
technology; however, none has demonstrated online path planning in-space necessary
for safe automated docking. Particularly, when a docking mission is sent to service an
uncooperative spacecraft that is freely tumbling. In order to safely maneuver about an
uncontrolled satellite, an online trajectory planning algorithm with obstacle avoidance
employed in a GN&C architecture is necessary.

The main research contributions of this thesis is the development of an efficient
sub-optimal path planning algorithm coupled with an optimal feedback control law to
successfully execute safe maneuvers for docking to tumbling satellites. First, an au-
tonomous GN&C architecture is presented that divides the docking mission into four
phases, each uniquely using the algorithms within to perform their objectives. For
reasons of safety and fuel efficiency, a new sub-optimal spline-based trajectory plan-
ning algorithm with obstacle avoidance of the uncooperative spacecraft is presented.
This algorithm is shown to be computationally efficient and computes desirable tra-
jectories to a complex moving docking port of the tumbling spacecraft.

As a realistic space system includes external disturbances and noises in sensor
measurement and control actuation, a closed-loop form of control is necessary to ma-
neuver the spacecraft. Therefore, several optimal feedback control laws are developed
to track a trajectory provided by the path planner. Performance requirements for the
tracking controllers are defined for the case of two spacecraft docking. With these re-
quirements, the selection of a controller is narrowed down to a phase-plane switching
between LQR and servo-LQR control laws.

The autonomous GN&C architecture with the spline-based path planning algo-
rithm and phase-plane controller is validated with simulations and hardware experi-
ments using the Synchronized Position Hold Engage and Reorient Satellites (SPHERES)
testbed aboard the International Space Station (ISS). Utilizing the unique space en-

3

vironment provided by the ISS, the experiment is the first in-space demonstration of
an online path planning algorithm. Both the flight and simulation tests successfully
validated the capabilities of the autonomous control system to dock to a complex
tumbling satellite. The contributions in this thesis advance and validate a GN&C
architecture that builds on a legacy in autonomous docking of spacecraft.

Thesis Supervisor: David W. Miller
Title: Professor of Aeronautics and Astronautics

Thesis Supervisor: Alvar Saenz-Otero
Title: Research Scientist, Aeronautics and Astronautics

4

Acknowledgments

There several people that helped me throughout my graduate life and supported my

research endeavors in this thesis.

First of all, I would like to thank Professor David Miller and Dr. Alvar Saenz-

Otero for their guidance and support for me to do the research that I love. In

addition, I would like to extend my gratitude to my fellow colleagues at the MIT Space

Systems Laboratory: Christophe Mandy, Swati Mohan, Jacob Katz, Brent Tweddle,

Christine Edwards, and Georges Aoude from the ACL. In particularly I thank the

wisest research scientist I have known, Dr. Simon Nolet, for his many advices in

research and life that has significantly helped me in achieving great research. Also

to mention my two officemates, Andrzej Stewart and Jaime Ramirez for providing

the in-depth discussion of the many ideas that came around. I thank the SPHERES

team and Aurora Flight Sciences for the extraordinary opportunity to validate my

algorithm in space. This was remarkable. Finally, my last special thank you goes to

the Assistant Dean for Graduate Student Christopher Jones, for all the assistance he

provided when the times where tough and for the MSRP program that helped bring

into this wonderful institution. Thank you all.

5

6

Contents

1 Introduction 15

1.1 Motivation . 16

1.2 Docking Scenarios . 16

1.3 Thesis approach . 22

2 Autonomous GN&C Architecture 25

2.1 Previous GN&C Architecture . 25

2.2 GN&C Architecture Modules . 26

2.2.1 Algorithms of the GN&C Architecture 27

2.2.2 Capabilities of Previous Algorithms 31

2.2.3 Previous Mission & Vehicle Management Module 31

2.3 Advancements in Module Algorithms 37

2.3.1 Advancements in MVM Module 39

2.3.2 Conclusion of Advancements 42

2.4 Summary . 42

3 Trajectory Planning 45

3.1 Path Planning Problem Formulation 46

3.1.1 Optimal Path Planning Problem Formulation General 50

3.2 Path Planning Problem Formulation for Docking 51

3.2.1 Cost Functional for Docking 52

3.2.2 State Transition Equation for Docking 53

3.2.3 Terminal States for Docking 55

7

3.2.4 Obstacles for Docking . 63

3.2.5 Planning Problem Formulation for Docking Summary 65

3.3 Variational Technique to Optimal Path Planning 66

3.3.1 Euler-Lagrange Equations General 66

3.3.2 Euler-Lagrange Equations for Docking 69

3.4 Spline-Based Trajectory Planning Algorithm 80

3.5 Comparison of Trajectory Planning Algorithms 92

3.5.1 Docking to Fixed Target Facing Forwards 95

3.5.2 Docking to Fixed Rotating Target In-Plane 101

3.5.3 Docking to Fixed Coning Target Facing Backwards 109

3.5.4 Comparison Summary . 115

3.6 Summary . 115

4 Trajectory Tracking 117

4.1 PD/PID Controllers . 120

4.2 LQR Controller . 126

4.3 Servo-LQR Controller . 131

4.4 Phase-Plane LQR Controller . 135

4.5 Summary . 141

5 Simulation and Experimental Autonomous Docking 143

5.1 Simulation Docking . 147

5.1.1 Docking to Rotating Spacecraft Out-of-Plane 148

5.1.2 Docking to Coning Spacecraft backwards 153

5.2 Experimental Docking aboard the ISS 157

5.2.1 Docking to Fixed Non-Tumbling Spacecraft Facing Backwards 158

5.3 Summary . 166

6 Conclusions and Recommendations 167

6.1 Thesis Summary . 167

6.2 Issues and Recommendations . 168

8

List of Figures

1-1 Tumbling Dynamics of Target Spacecraft and its Docking Port Axis Motion 18

1-2 Docking Scenarios of a Tumbling Spacecraft 21

2-1 Previous GN&C Architecture for Autonomous Docking [10] 27

2-2 Glideslope Approach Velocity Profile [10] 30

2-3 Docking to a Fixed Target Satellite Facing Forward 32

2-4 Docking to a Rotating Target Satellite Out-of-Plane 35

2-5 Docking to a Coning Target Satellite Facing Backwards. 36

2-6 Docking to a Coning Target Satellite Facing Forward 36

2-7 Hierarchical Depiction of the GN&C Architecture for Autonomous . . 38

2-8 2D Example of Docking to a Rotating Target Satellite In-Plane . . . 40

2-9 Attitude Planning Logic for Autonomous Docking 41

3-1 State Planning with Differential Constraints 47

3-2 Infinite Feasible State Trajectories . 48

3-3 Optimal State Trajectory . 49

3-4 Optimal State Trajectory Satisfying Control and State Constraints . 51

3-5 Hill’s Relative Equations of Motion 54

3-6 Hill’s Equations and Double Integrator Bode Plots [12] 56

3-7 Docking Port Vector in Body and Global Coordinates 61

3-8 Example of the Transformation to the Final State of a Rotating. . . . 62

3-9 Modeling Obstacles for Docking of Two Spacecraft 64

3-10 Relative Distance Obstacle Cost Penalization 72

3-11 Relative Velocity Obstacle Cost Penalization 74

9

3-12 Obstacle Sphere and Way-Points Depiction 82

3-13 Process of the Spline-Based Planning Algorithm 83

3-14 Cubic Spline Interpolation Algorithm 86

3-15 Minimum Distance Along Trajectory to Obstacle 87

3-16 Introducing the First Waypoint . 89

3-17 Docking Scenarios for Path Planner Comparison 94

3-18 State Trajectory of Docking to Fixed Target Facing Forwards 98

3-19 Control and Energy Profile for Docking to Fixed Target Facing 99

3-20 3D Trajectory of Docking to Fixed Target Facing Forwards 100

3-21 Invalid 3D Trajectory of Docking to Fixed Rotating Target In-Plane . 102

3-22 State Trajectory of Docking to Fixed Rotating Target In-Plane 106

3-23 Control and Energy Profile for Docking to Fixed Rotating Target. . . 107

3-24 3D Trajectory of Docking to Fixed Rotating Target In-Plane 108

3-25 State Trajectory of Docking to Fixed Coning Target Facing Backwards 112

3-26 Control and Energy Profile for Docking to Fixed Coning Target . . . 113

3-27 3D Trajectory of Docking to Fixed Coning Target Facing Backwards . 114

4-1 Maximum Tracking Error Dependent On The Closest Distance 120

4-2 PD Controller Performance . 123

4-3 PID Controller Performance . 125

4-4 LQR Controller Performance . 130

4-5 Servo-LQR Controller Performance 134

4-6 Phase-Plane LQR Controller . 136

4-7 Phase-Plane LQR Controller Performance 139

5-1 Block Diagram of Trajectory Planning, Control, and Estimation . . . 146

5-2 Planned and Actual State Trajectories for Docking to Rotating 150

5-3 State Differences for Docking to Rotating Target Out-of-Plane 151

5-4 3D State Trajectories for Docking to Rotating Target Out-of-Plane . 152

5-5 Planned and Actual State Trajectories for Docking to Coning 154

5-6 State Differences for Docking to Coning Target Facing Backwards . . 155

10

5-7 3D State Trajectories for Docking to Coning Target Facing Backwards 156

5-8 SPHERES testbed aboard the ISS . 157

5-9 State Estimates of Chaser Spacecraft from Experimental Test of . . . 162

5-10 State Estimates of Target Spacecraft from Experimental Test of . . . 163

5-11 3D Plot of Computed and Actual Trajectories of Chaser Spacecraft . 164

5-12 State Differences between Both Spacecraft from Experimental Test . 165

11

12

List of Tables

2.1 MVM phases for docking to fixed target. 33

2.2 MVM phases for docking to rotating target. 37

2.3 MVM phases for any docking scenario. 39

2.4 Attitude planning. 41

3.1 Summary of Trajectory Planning Problem Formulation for Spacecraft 65

3.2 Variational Technique to Optimal Trajectory Planning Algorithm . . 79

3.3 Docking to Fixed Target Facing Forwards Scenario Planning Inputs. . 96

3.4 Energy Cost and Computation Time for Fixed Target Facing 97

3.5 Docking to Fixed Rotating Target In-Plane Planning Inputs. 103

3.6 Energy Cost and Computation Time for Fixed Rotating Target . . . 104

3.7 Docking to Fixed Coning Target Facing Backwards Planning Inputs. . 110

3.8 Energy Cost and Computation Time for Fixed Coning Target Facing 111

4.1 PD/PID Controller Gains Selection. 122

4.2 PD/PID Controller Performance Summary. 124

4.3 LQR Controller Performance Summary. 129

4.4 Servo-LQR Controller Performance Summary. 132

4.5 Phase-Plane LQR Controller Performance Summary. 140

5.1 MVM maneuvers for any docking scenario. 145

5.2 Parameters for DP Axis Alignment and Inline Approach phases . . . 147

5.3 Parameters for DP Axis Alignment and Inline Approach phases for . 159

13

14

Chapter 1

Introduction

The first successful docking of two spacecraft was performed on March 16, 1966,

when the Gemini 8 capsule docked to an Agena Target Vehicle. To this date, most

of the spacecraft docking relies on the same methods performed 40 years ago. This

includes having the on board astronauts manually control the last executions of a

docking maneuver. This thesis contributes to the current endeavor to supersede this

method with an autonomous on board solution that requires little or no human-in-

the-loop supervision. In addition, the GN&C architecture and algorithms presented

focus on docking scenarios to a tumbling satellite. This refers to a spacecraft that

lost control authority about at least one of its axes and so may be tumbling in free

space. Missions such as servicing damaged satellites fall under this category. The

work focuses on the “terminal” phase of a docking mission, this refers to the last 100

meters [10] before maneuvers are executed for physical mating of the docking ports.

It continues off from a GN&C architecture developed by Nolet [10] and presents

new algorithms that provide the autonomous system the ability to consider obstacles

and dock from any initial configuration of the two spacecraft. The new autonomous

control system is tested in hardware on the Synchronized Position Hold Engage and

Reorient Satellites (SPHERES) [11] testbed aboard the International Space Station

(ISS). The experimental test demonstrated the first in-space online path planning

algorithm developed in this thesis. The contributions advance and validate a GN&C

architecture that builds on a legacy in autonomous docking of spacecraft.

15

1.1 Motivation

The capability of automated rendezvous and docking is a key enabling technology

for many government and commercial space programs [21, 9, 13]. Future space sys-

tems will employ a high level of autonomy to acquire, repair, refuel, and reconfigure

satellites. Several programs have demonstrated a subset of the necessary autonomous

docking technology; however, none has demonstrated online path planning in-space

necessary for safe automated docking. Particularly, when a docking mission is sent

to service an uncooperative spacecraft that is freely tumbling.

DARPA’s Orbital Express Advanced Technology Demonstration [?]orbital) is the

most autonomous system tested in-space to this date. It demonstrated technologies

for autonomous docking to cooperative satellites, such as close proximity maneuver-

ing, sensor technology, and automatic robotic capture. However, the mission did not

employ any online path planning with collision avoidance and was used only on a non-

tumbling spacecraft. A mission in which a spacecraft would tumble is if a spacecraft

was damaged and lost control authority of its attitude stabilization. The external

disturbances in space would initiate a tumble on the satellite. If a servicing mission

is desired for repair, an autonomous technology that can avoid obstacles is necessary.

1.2 Docking Scenarios

In order to build the appropriate algorithms for a GN&C architecture, an under-

standing of the potential docking scenarios of a tumbling spacecraft is necessary. A

docking scenario is composed of two parts. First is the motion of the docking port

(DP), which is dependent on the tumbling dynamics of the spacecraft. The second

is the initial configuration of the two spacecraft, their relative position and attitude.

Before continuing, a docking terminology is defined. The vehicle that will intention-

ally execute the maneuvers necessary to perform the docking approach to another

satellite is referred to as the chaser spacecraft. The vehicle the chaser will approach

and dock to is referred to as the target spacecraft.

16

It is assumed that both spacecraft have a docking port attached rigidly to the

vehicles. Therefore, the targets’ docking port does not move with respect to the local

body axes of the satellite. However, it does move with respect to the chaser and

depends on the tumbling dynamics of the target spacecraft. There are two dynamics

of the target spacecraft considered in this thesis:

Non-Tumbling The target vehicle holds its attitude throughout the complete dock-

ing scenario. The vehicles’ angular rotation vector is zero.

Rotational Tumble The target spacecraft performs a steady rotation about its an-

gular rate vector. Its inertia is assumed to be symmetric so no nutation occurs

in its attitude dynamics.

Next, the motion of the target spacecraft docking port is considered from the

described dynamics. While the target spacecraft is not tumbling, its docking port is

fixed and will only translate along with the spacecraft. This is the simplest motion

of the docking port. For when the target is performing a rotational tumble there are

two motions for the docking port and is dependent on the angular rate vector with

respect to the dock port axis. If the angular rate vector is perpendicular to the DP

axis, then the docking port performs a circular motion that sweeps a plane going

through the center of the target spacecraft, see Figure 1-1. Any other direction of

the angular rate vector has the DP port sweep a plane that does not pass through

the centroid, see Figure 1-1. In this case, the docking port axis sweeps a space cone.

This will be considered Coning.

Until now, only the target spacecraft is considered. Next we include the chaser

spacecraft in the picture and define the possible initial configurations that may occur

at the start of the terminal phase of a docking mission. Let’s assume that the arriving

chaser spacecraft comes in with its docking port pointing towards the target. There

will of course be an initial relative position between the two spacecraft. Their mag-

nitudes will not be considered as part of the different docking scenarios. The only

state considered is the initial attitude of the target viewed with respect to the chaser

spacecraft. There are two possibilities considered:

17

Target

Non-Tumbling

DP Axis

Target

Rotational-Tumble: Plane

DP Axis

Plane

Rate Vector

Target

Rotational-Tumble: Cone

DP Axis

Cone

Rate Vector

Figure 1-1: Tumbling Dynamics of Target Spacecraft and its Docking Port Axis
Motion

18

Facing Forwards The target spacecraft is facing its docking port towards the chaser

Facing Backwards The target spacecraft DP is flipped 180◦ and facing away from

the chaser.

Combining the two initial configurations and the possible motions of the targets’

docking port leads to the docking scenarios of a tumbling spacecraft. It is also added

that if the plane the DP axis sweeps has the chaser spacecraft also initially located,

then it is referred to as Rotating In-Plane. Otherwise, it is known as Rotating Out-of-

Plane. When the spacecraft is rotating, facing forwards or backwards is not important

as that naturally changes with time, but is considered when the target is coning. The

following docking scenarios are put together and depicted in Figure 1-2.

Docking to Fixed Non-Tumbling Target Facing Forwards This scenario has

both spacecraft face each other for their initial configuration. The target space-

craft has zero angular rotation and is fixed in position and so the initial con-

figuration stays constant throughout the docking scenario. This is the simplest

case as the chaser needs to close in the gap linearly between the two vehicles.

Docking to Fixed Non-Tumbling Target Facing Backwards Here the target

has its docking port facing away from the chaser. This will require the chaser

spacecraft to maneuver around the target spacecraft to get in front of its docking

port. Obstacle avoidance is necessary in this case.

Docking to Fixed Rotating Target In-Plane This scenario has the target space-

craft perform a steady rotation with its angular rate vector perpendicular to the

DP axis. Therefore, the DP axis sweeps a plane. In addition, the initial location

of the chaser spacecraft is constrained to be within this plane. In this scenario,

the chaser needs to maneuver only along the plane and thus needs to consider

only 2 dimensional motion. Also obstacle avoidance needs to be accounted for

as the chaser maneuvers around to get in front of the docking port.

Docking to Fixed Rotating Target Out-of-Plane The target spacecraft rotates

with an angular vector perpendicular to its DP axis while it sweeps a plane

19

where the chaser spacecraft is not located. This requires the chaser to maneuver

around in three translational degrees-of-freedom. Again, obstacle avoidance is

necessary.

Docking to Fixed Coning Target Facing Forwards The targets angular rate vec-

tor is not perpendicular to the DP axis and thus the axis sweeps a space cone

oriented to face towards the chaser spacecraft. This maneuver may not require

obstacle avoidance as the chaser does not need to maneuver around the target.

Docking to Fixed Coning Target Facing Backwards Here, the targets’ DP axis

is sweeping a cone that is facing away from the chaser. This requires the chaser

vehicle to maneuver around the target, obstacle avoidance, and align in front

of the docking port matching the coning motion. This is most complex docking

scenario considered in this thesis.

The autonomous control system presented in this thesis is developed to work for

all the docking scenarios discussed. It is assumed that by proving the architecture

to work on the most complicated scenarios, Docking to Fixed Coning Target Facing

Backwards and Docking to Fixed Rotating Target Out-of-Plane, assures it would work

on the others. The approach in developing the new autonomous GN&C architecture

is discussed in the following section.

20

Target Chaser

Docking to Fixed Non-Tumbling Target Facing Forwards

DP Axis

Target Chaser

Docking to Fixed Non-Tumbling Target Facing Backwards

DP Axis

Chaser

Docking to Fixed Rotating Target In-Plane

Target

DP Axis

Plane

Rate Vector

Chaser

Docking to Fixed Rotating Target Out-of-Plane

Target

DP Axis

Plane

Rate Vector

Chaser

Docking to Fixed Coning Target Facing Forwards

Target Cone

Rate Vector

DP Axis

Chaser

Docking to Fixed Coning Target Facing Backwards

TargetCone

Rate Vector

DP Axis

Figure 1-2: Docking Scenarios of a Tumbling Spacecraft

21

1.3 Thesis approach

Chapter 2 lays down the higher level organization of the autonomous GN&C archi-

tecture. It introduces a previous architecture and the algorithms populating each

of its modules. Then the flaws of using these algorithms is exploited for docking to

tumbling spacecraft. Several solution methods are proposed that do not require a

change in the previous algorithms; however, the most complicated docking scenario

is not attainable. The necessary improvements to the solver module by introducing

a new algorithm is discussed. Then four high level phases of a docking mission are

presented to work for all the docking scenarios. This covers how a trajectory planning

algorithm and tracking controllers are used to achieve these scenarios in simulation

and experiment.

Chapter 3 presents the first in-space online trajectory planning algorithm. Two

trajectory planning algorithms are developed, where one is used as a benchmark

comparison for the new algorithm tested aboard the ISS. First, a general formulation

of optimal planning is introduced. Then the specific dynamics and constraints for

docking of two spacecraft is developed. An optimal control problem for docking with

obstacle clearance is presented. Next, a calculus of variation technique is used to

solve this problem by forming the first-order necessary Euler-Lagrange equations for

optimality. Solving these equations is computationally expensive and this technique

to planning shows undesirable characteristics for implementation. Therefore, a new

sub-optimal spline-based trajectory planning algorithm is presented. It shows to

be efficient and provides reasonable trajectories for docking. The two planners are

compared to test the sub-optimality of the spline-based algorithm.

Chapter 4 investigates the performance of several introduced LQR tracking con-

trollers: LQR, servo-LQR, and phase-plane LQR/servo-LQR. First, the performance

requirements of the tracking controllers for docking purposes is defined. Then their

performance is studied and compared as they are presented. Each controller has de-

sirable and undesirable characteristics. The phase-plane controller attempts to bring

together the positive characteristics of the LQR and servo-LQR controllers. This

22

leads to the best performing tacking controller that is chosen to be coupled with the

trajectory planning algorithm.

Chapter 5 combines the spline-based trajectory planning algorithm from Sec-

tion 3.4 and the phase-plane LQR controller from Section 4.4 into the autonomous

GN&C architecture from Chapter 2 for validating the ability to dock to tumbling

spacecraft. Two simulations are studied for the two most complex docking scenarios,

Docking to Fixed Coning Target Facing Backwards and Docking to Fixed Rotating

Target Out-of-Plane. Then an experimental test using SPHERES aboard the ISS is

discussed for a Docking to Fixed Non-Tumbling Target Facing Backwards scenario.

This experiment tests the ability of the new spline-based planning algorithm, which

is the first online path planner test in micro-gravity. The results show the need

of a planner that includes obstacle avoidance and emphasizes the importance of an

accurate tracking controller.

Chapter 6 summarizes the contributions of this research and presents recommen-

dations for future work.

23

24

Chapter 2

Autonomous GN&C Architecture

In order for a spacecraft to determine its location, compute a path for docking, and

execute the maneuver completely by itself, an autonomous GN&C architecture is

necessary. The architecture defines the organization of how the hardware and software

inter-connect and operate to achieve these objectives. It is decomposed into several

modules where each have a specific function to accomplish. The most necessary

functions are estimation, control, and actuation. The performance of each module is

dependent on the algorithms that employ its function. In this chapter, an autonomous

GN&C architecture is introduced for docking from previous work and its capabilities

are expanded by upgrading the algorithms that populate the low performing modules.

2.1 Previous GN&C Architecture

This section summarizes a previously developed and implemented GN&C architecture

for autonomous docking [10]. This architecture already achieved numerous docking

scenarios, such as to fixed and tumbling spacecraft. However, it contains certain

limitations dependent on the algorithms which populate the modules within. First,

the autonomous GN&C architecture is summarized and the algorithms employed are

discussed to determine the capabilities of the system for docking scenarios. It is found

that with the previous algorithms, the architecture can work only on specialized

cases of docking to tumbling satellites. These deficiencies are exploited and some

25

approaches are discussed that can slightly expand its capabilities without changing

the algorithms.

2.2 GN&C Architecture Modules

Fehse [1], first introduced a typical docking architecture in his book entitled Auto-

mated Rendezvous and Docking of Spacecraft. However, this architecture is aimed at

traditional docking of spacecraft with dependency on human-in-the-loop supervision.

In order to achieve fully autonomous docking, Nolet [10] extended the architecture

with the inclusion of an autonomous fault detection, isolation, and recovery (FDIR)

and solver module shown in Fig. 2-1. The grayed areas of the architecture in Fig-

ure 2-1 are common to Fehse, while the rest are extensions introduced by Nolet. A

description of each module and its function is stated:

GN&C mode: estimation module This module receives data from hardware sen-

sors and fuses them together through an estimation algorithm to determine the

state of the system. The state refers to a representation of spacecraft position

and attitude.

GN&C mode: control module The best estimated state from the estimation mod-

ule is sent to the control module to be compared with a desired state of the

system provided by the Mission & Vehicle Management (MVM) module. Then

the module uses a control law algorithm to determine the appropriate actuation

necessary to achieve the desired state.

Solver module This module executes the complex algorithms employed to deter-

mine a state trajectory with start and end states defined by the MVM module.

FDIR module The FDIR module is active at several levels and linked to multiple

modules to autonomously asses any failure such as invalid state estimation from

measurements. In case of failure, the FDIR module would execute a collision

avoidance maneuver (CAM).

26

Figure 2-1: Previous GN&C Architecture for Autonomous Docking [10]

MVM module This is the highest autonomy level module that manages the solver,

FDIR, and GN&C modes to accomplish a mission objective such as docking to

a spacecraft.

The architecture is well established to work for autonomous docking to complex

tumbling satellites; however, the capabilities are very limited by the algorithms em-

ployed in each module. Next, the algorithms that populate the GN&C modes modules

and solver module are reviewed to determine the architectures capabilities for docking

to tumbling satellites.

2.2.1 Algorithms of the GN&C Architecture

The algorithms of the GN&C modes, state estimation and control modules, and the

solver module is reviewed. The study reveals any insufficient abilities of each module

27

to provide the required function for docking to tumbling spacecraft. The requirements

are mentioned as the algorithms are reviewed.

The 6 degree-of-freedom (DOF) state of the spacecraft is described by its position

r, velocity v, attitude q, and angular rates ω:

x = [rx ry rz vx vy vz q1 q2 q3 q4 ωx ωy ωz]
T (2.1)

The state in Eq. (2.1) is with reference to an inertial coordinate system. One example

is the Earth as a non-moving reference for an orbiting spacecraft. The unit vector

quaternion q is used to describe the nonlinear attitude representation of the spacecraft

due to its non-singular properties and ease of numerical maintenance. The quaternion

describes a single rotation of amount θ of the global coordinate system about a unit

normal eigenaxis n = [nx ny nz]
T . The resulting quaternion formulation is [17]:

q =

[
nx sin

(
θ

2

)
ny sin

(
θ

2

)
nz sin

(
θ

2

)
cos

(
θ

2

)]T
(2.2)

Thus, Eq. (2.2) provides the attitude representation of the body axis of the spacecraft.

This is a requirement for docking purposes as both position and attitude need to be

controlled to successfully mate with another spacecraft.

Extended Kalman Filter Estimator

The ability to estimate the required state of the system is necessary for the spacecraft

to know where to maneuver in order to dock. This is accomplished by the estimation

module through the use of an Extended Kalman Filter (EKF) [10]. The estimator

effective to nonlinear systems such as the attitude dynamics of the spacecraft. The

approach of the algorithm is to propagate the system dynamics nonlinearly, but lin-

earize at the current time step for the Kalman gain Kk calculation and state x̂
(+)
k and

covariance matrix P
(+)
k update. The Kalman gain weighs the trust in the estimator

between the incoming sensor measurements and the model of the dynamics.

The EKF has been used extensively in the aerospace field and has gained confi-

dence in attitude determination when the attitude is changing slowly compared to the

28

rate of the filter. For docking scenarios to tumbling satellites, the EKF is sufficient

at determining the full state of the system for docking purposes.

PID-type Controllers

For the control module of the GN&C modes, the standard PID-type controllers are

employed. These controllers are widely used and almost a standard in the aerospace

community. The two control algorithms that are employed in the control module

are the proportional derivative (PD) and proportional integral derivative (PID) con-

trollers. Each use the state error x̃,

x̃ = xd − x (2.3)

the difference between the desired state xd and current state x, as an input to calculate

the desired forces f and torques τ commands that drive the state error to zero:

u = [fx fy fz τx τy τz]
T (2.4)

The controllers are decoupled for position and attitude control. The position control

law is also decoupled from each axis and is of the form [10],

f =

⎡
⎢⎢⎢⎣

KP r̃x + KI

∫
r̃xdt + KDṽx

KP r̃y + KI

∫
r̃ydt + KDṽy

KP r̃z + KI

∫
r̃zdt + KDṽz

⎤
⎥⎥⎥⎦ (2.5)

where KP , KI , and KD are the proportional, integral, and derivative gains. The

torque commands τ for attitude control are determined by a nonlinear-type PID

controller of the form [10]:

τ =

⎡
⎢⎢⎢⎣

2 ·KP · sgn(q̃4) · q1 + 2 ·KI ·
∫

(sgn(q̃4) · q1)dt + KD · ω̃x

2 ·KP · sgn(q̃4) · q2 + 2 ·KI ·
∫

(sgn(q̃4) · q2)dt + KD · ω̃y

2 ·KP · sgn(q̃4) · q3 + 2 ·KI ·
∫

(sgn(q̃4) · q3)dt + KD · ω̃z

⎤
⎥⎥⎥⎦ (2.6)

29

Figure 2-2: Glideslope Approach Velocity Profile [10]

The controller in Eq. (2.6) is extracted from Wie [20] who has shown that the PD

version (when integral gain KI is set to zero) is globally asymptotically stable. With

the control laws ability to reach the desired states provided by the MVM module,

they show no limiting capability towards the docking scenarios.

Glideslope Algorithm

The previous algorithm for the solver module of a “partial” path planner is done with

the glideslope algorithm [10], which is a hybrid between a path planner and velocity

controller. Therefore, the algorithm belongs partially to the solver and control module

in the GN&C modes from Figure 2-1. The algorithm creates a velocity profile on a

linear trajectory in the phase plane to follow by defining a safe arrival velocity (ρ̇T),

maneuver period, and number of thruster firings. Figure 2-2 shows a velocity pattern

(ρ̇) that linearly decreases with distance-to-go (ρ).

The algorithm has been previously used in space operations (Apollo, Shuttle) and

works well for a straight line approach along the docking axis. It does not account

for any obstacles nor minimize fuel or energy as most other optimal path planners.

There is a requirement for obstacle avoidance as stated in Section 1.2. As a result, this

module does not fully perform its desired function for docking to tumbling spacecraft.

30

2.2.2 Capabilities of Previous Algorithms

Depending on the complexity of each algorithm in the modules depicted in Figure 2-1,

certain limits arise in the satellite’s capabilities to perform a complex tumbling dock-

ing scenario. From previous work [10], the lower level algorithms, EKF and PID

controllers, allow the spacecraft to successfully estimate its state and maneuver a ref-

erence trajectory to within a sufficient accuracy. However, the glideslope algorithm

“path planner” contains certain limitations that enable the spacecraft to perform only

simplified versions of docking scenarios. As mentioned in Section 2.2.1, the algorithm

computes a linear trajectory and does not account for any obstacles, such as the tar-

get satellite. Thus, the use of the glideslope algorithm works appropriately when the

chaser spacecraft is aligned with the docking port (DP) axis of the target satellite.

However, realistic scenarios do not occur with a specific initial configuration of the

two spacecraft before docking. Therefore, the solver module is further developed in

this thesis to extend the autonomous GN&C architecture capabilities for more real-

istic docking scenarios. From the limiting capabilities of the previous algorithm, the

Mission & Vehicle Management module (MVM) can utilize the GN&C modes and

solver module to accomplish only simplified docking scenarios.

2.2.3 Previous Mission & Vehicle Management Module

The MVM is the highest level module that manages the solver and GN&C modules

to achieve the objectives of a mission, such as docking to a satellite. In this module,

several phases of the mission are defined for a docking scenario. Due to the limita-

tions of the glideslope algorithm, there are a different set of phases specific to the

docking scenario and not a general sequence that works for any case. These phases are

discussed in the next section from the previous MVM module, which are applicable

to only specialized initial configurations of a docking scenario.

31

2. Glideslope approach

3. Berthing position

4. Capture

Target Chaser

DP axis

DP face

Figure 2-3: Docking to a Fixed Target Satellite Facing Forward

Docking to a Fixed Non-Tumbling Target Spacecraft

The first docking scenario discussed is the simplest one where the target satellite

stays in a fixed position and attitude. Even in this simple scenario, the previous

algorithms limit the initial configuration of the satellites. The limiting configurations

would be any that require the use of a path planner with obstacle avoidance as

this is unattainable by the glidslope algorithm. One such initial configuration is if

the target spacecraft is facing its back towards the chaser. This requires the chaser

spacecraft to maneuver around the target, avoid it as an obstacle, and get in front

of the docking port for mechanical mating. The only initial configuration applicable

with the glideslope algorithm is when the target spacecraft docking port is facing the

chaser, see Figure 2-3. The initial attitude of the chaser satellite is allowed to be

arbitrary.

Once the satellites are in the initial configuration shown in Figure 2-3, a set of

phases are executed in sequence by the MVM module. Each phase has certain termi-

nation conditions before proceeding to the next. These are summarized in Table 2.1.

For the first phase, the chaser spacecraft maintains its current relative position

and adjusts its attitude to point towards the target. Next, the glideslope algorithm

32

Table 2.1: MVM phases for docking to fixed target.

Phases Controllers Termination Conditions

1. Pointing PD/PID controllers time limit
2. Glideslope approach glideslope along DP axis, position error < tol and

PD/PID perpendicular time limit
3. Berthing PID controllers state error < tol
4. Capture Open-loop thrust time limit

executes the velocity profile along the DP axis while a PD/PID controller is used

perpendicularly to stay along the axis. During this phase, the attitude is regulated

to orient the chaser’s docking port to be within the mechanical alignment for the

connection. The approach phase is planned to end at the berthing position, a small

but safe offset distance from the face of the docking port. In the berthing phase,

the chaser spacecraft maintains this state (position and regulated attitude) until the

tight constraints are satisfied before a final thrust to capture.

The discussed phase sequence works only for initial configurations where the chaser

satellite is aligned along the DP axis (as shown in Figure 2-3). This is a limitation

brought upon from the glideslope algorithm. One solution without changing the

algorithm is to add a pre-phase that moves the chaser to the docking port axis. This

pre-phase must maintain a minimum distance from the target satellite for safety. Due

to the straight line path planning available from the glideslope algorithm, there is an

issue in a configuration when the target is facing backwards. The introduced pre-

phase is only applicable to configurations when a linear path from the chaser to the

front of the targets’ docking port does not go through the target spacecraft.

The specified MVM module has been experimentally tested to work for a fixed

non-rotating target spacecraft facing towards the chaser [10]. Therefore, there is good

assurance to expand on these docking phases for an improved autonomous docking

control system. Next, the changes to the MVM module to account for tumbling

dynamics of the target is discussed.

33

Docking to Tumbling Target Spacecraft

Docking to tumbling satellites with pure rotation has been experimentally demon-

strated by Nolet [10] when the chaser starts initially along the DP axis; however,

more realistic docking scenarios require expanding the MVM module. As mentioned

before, the initial configuration of the spacecraft for a fixed non-tumbling target is

limited to a “forward” facing target spacecraft. Likewise when the target spacecraft

is performing a rotating tumble, the only working initial configuration is when the

chaser is initially aligned with the targets’ docking port axis. To free up this con-

straint to other configurations without changing the algorithms, certain “pre-phases”

are introduced. There are two pre-phases required before the glideslope approach

(Table 2.1), for docking to a rotating target satellite from any initial configuration.

Go To Plane Of Rotation After pointing to the target satellite, the chaser moves

to the closest point in the plane of rotation of the target satellite.

Wait For Target Facing The chaser waits at this point as the target satellite con-

tinues its rotation until they both point at each other within a certain angle

tolerance.

These two “pre-phases” combined with the previous set of phases introduced ear-

lier in Table 2.1 is depicted in Figure 2-4, for a docking scenario of a rotating target

where the DP sweeps a plane where the chaser satellite is not initially located. This

is a more complicated scenario compared to the chaser satellite already being in the

plane of rotation. If this was the case, then the Go To Plane Of Rotation phase

would be automatically satisfied at the start of the scenario and thus the follow-

ing phases would proceed. The new expanded phase sequence viable for a rotating

tumbling target from any initial configuration is summarized in Table 2.2.

The next step up in the complexity of the target satellite tumbling dynamics

is when the docking port is sweeping a cone. This is also a pure rotating tumble;

however, the rotation axis is not perpendicular to the docking port axis. In this

scenario, an initial configuration where the cone being swept by the DP is behind the

34

Target
Chaser

4. Glideslope approach

6. Capture

rotation axis

2. Go to plane of rotation

3. Wait until target facing

5. Berthing

plane of rotation

Figure 2-4: Docking to a Rotating Target Satellite Out-of-Plane

target spacecraft relative to the chaser’s point-of-view, would be infeasible to by the

previous algorithms, see Figure 2-5. This would again require the chaser to plan a path

with obstacle avoidance rather than the linear planning provided by the glideslope

algorithm. Therefore, the only feasible docking scenario with the glidslope algorithm

is when the cone faces towards the chaser. The phase sequence from Table 2.1 with

the “pre-phase” to align with the DP axis is applicable in this scenario.

The MVM module’s set of phase sequences are specialized to fit varying docking

scenarios rather than having a general form that works for all cases. The algorithms

used also limit the initial configuration of the spacecraft and thus represent non-fully

realistic docking scenarios. The following section introduces the upgraded algorithms

of the modules and a new phase sequence in the MVM module that works for all the

various docking scenarios with arbitrary initial configurations.

35

Target

Chaser

2. Glideslope approach

rotation axis

3. Berthing

cone of rotation

collision

Figure 2-5: Docking to a Coning Target Satellite Facing Backwards using Glideslope
Algorithm

Target
Chaser

2. Glideslope approach

4. Capture

rotation axis 3. Berthing

cone of rotation

Figure 2-6: Docking to a Coning Target Satellite Facing Forward

36

Table 2.2: MVM phases for docking to rotating target.

Phase Controllers Termination Conditions

1. Pointing PD/PID controllers time limit
2. Go to plane of rotation PD controllers state error < tol
3. Wait for target facing PD/PID controllers state error < tol
4. Glideslope approach glideslope along DP axis, position error < tol and

PD/PID perpendicular time limit
5. Berthing PID controllers state error < tol
6. Capture Open-Loop Thrust time limit

2.3 Advancements in Module Algorithms

The module that limits the capabilities of the GN&C architecture the most is the

solver module. Thus, upgrading the previous glideslope algorithm with an appropri-

ate path planner that handles obstacles would eliminate any constraints on the initial

configurations of the docking scenarios. The path planner algorithm allows to plan a

path from the chaser’s initial position to in front of the target’s docking port while

considering the target satellite as an obstacle. This provides the chaser the capability

to begin from any position and safely move to align with the target spacecraft docking

port axis. The specifics of the path planner are discussed in the proceeding Chapter.

In addition to the path planner, improved trajectory tracking controllers are devel-

oped for more accurate following of the path. The improved controllers consist of a lin-

ear quadratic regulator (LQR), servo-LQR, and a phase-plane switching LQR/servo-

LQR tracking controller. Each of these controllers have their own advantages and

disadvantages that are discussed in Chapter 4.

The modules composing the previously introduced GN&C architecture from Fig-

ure 2-1 exhibit different levels of autonomy. Therefore, a new depiction shown in

Figure 2-7 explains the hierarchical levels of autonomy with the MVM module being

the highest to the control actuation as the lowest. The autonomous failure detection,

isolation, and recovery system (FDIR) module is grayed out because it is not used in

the docking scenarios presented in this thesis.

The algorithms of the lower and medium levels of autonomy: control and solver

37

Mission Vehicle & Management

Solver

GN&C

Sensors Control/
Estimation Actuation

FDIR

high level of
autonomy

low level of
autonomy

Spacecraft Autonomous Control System

CAM

Plant DynamicsPlant DynamicsPlant Dynamics

states forces/torques

target satellitetarget satellitetarget satellite

Figure 2-7: Hierarchical Depiction of the GN&C Architecture for Autonomous Dock-
ing

38

module, are upgraded to work for any docking scenario. Next, the MVM module is

robustly designed into a single set of phases that work for any docking scenario.

2.3.1 Advancements in MVM Module

The upgraded solver and control modules provide the MVM larger flexibility in creat-

ing a more general phase sequence that works for all realistic docking scenarios. The

improved MVM module handles the chaser spacecraft position and attitude planning

separately. The attitude planning is dependent on the chaser’s position relative to

the target as explained in later in Section 2.3.1. Even though the attitude planning

is coupled with the position in the MVM module, they are decoupled algorithmically

in the solver module.

Position Planning

The phase sequence for the position planning is summarized in Table 2.3.

Table 2.3: MVM phases for any docking scenario.

Phase Controllers Termination Conditions

1. DP Axis Alignment Path planner & time limit
LQR tracking controllers

2. Inline Approach Path planner & time limit
LQR tracking controllers

3. Berthing LQR controllers state error < tol
4. Capture Open-Loop Thrust time limit

The two new phases introduced, DP Axis Alignment and Close In, use the ad-

vanced solver module which uses a path planner with obstacle avoidance and one

of the LQR-type controllers for precise tracking. A visual depiction of the phase

sequence is shown in Figure 2-8 and described below.

DP Axis Alignment The chaser satellite uses a path planner and LQR-type con-

troller to follow a safe path avoiding the target satellite as an obstacle to an

offset distance, DP alignment position, along the DP axis of the target satellite.

39

Target

Chaser

1. DP Axis Alignment

4. Capture

DP Alignment Position

3. Berthing

2. Inline Approach

rotation

Figure 2-8: 2D Example of Docking to a Rotating Target Satellite In-Plane with the
New Phase Sequence

The DP alignment position places the chaser along the DP axis to prepare for

an inline approach towards the berthing position.

Close In From the DP alignment position, the chaser plans a second path to follow

to the berthing position where it waits until very accurate position and attitude

alignment before the capture thrust.

Attitude Planning

As the chaser spacecraft follows the phase sequence in position, the attitude planning

switches between two states depending on the position relative to the target satellite.

Point to Target The chaser satellite uses a nonlinear PID controller to continuously

point its DP towards the target satellite. The reason to point continuously is

drawn from the assumption that sensors are placed on the same side of the DP

used for relative estimation of the target satellite. Thus, pointing at the target

is required to know its location for safety.

40

Target

Point to Target

LOS

Regulate Attitude

Chaser

Figure 2-9: Attitude Planning Logic for Autonomous Docking

Regulate Attitude The attitude of the chaser satellite adjusts to have the two

docking ports become mechanically aligned for capture.

The decision between to Point to Target or Regulate Attitude is made by

whether the chaser satellite position is within the line-of-sight (LOS) of the target

spacecraft, see Figure 2-9 and Table 2.4. The LOS is currently described by a space

cone extending in front of the targets’ docking port. Therefore, if the chaser satellite

is within the LOS space cone, then it is close to prepare for a capture and thus decides

to regulate the attitude for DP mechanical alignment. Otherwise, being outside the

LOS, the chaser’s attitude continuously points to the target satellite for relative state

estimation.

Table 2.4: Attitude planning.

Relative Position State

Inside LOS Regulate Attitude
Outside LOS Point to Target

41

2.3.2 Conclusion of Advancements

The online path planning algorithm in the solver module is to be upgraded to a planner

that accounts for non-stationary terminal conditions and obstacle avoidance. In ad-

dition, the algorithms in the control module are improved with LQR-type controllers.

With these two upgrades, an improved sequence of phases for position planning in

the MVM module is developed. The new phases are robustly written to accomplish

docking to tumbling spacecraft from any initial configuration. This provides testing

of realistic conditions when two spacecraft reach each other close enough to execute

these phases for docking. The attitude planning has a simple control logic with two

step inputs. One is for the chaser to point at the target spacecraft while outside the

LOS; otherwise, regulate its attitude to the chaser when inside the LOS to physically

mate. The possible required rotation to regulate attitude from pointing might be a

maximum of 180 degrees. This is a rather large rotation required for spacecraft and

would consume significant amount of fuel. Also, this large rotation may be dangerous

at such close proximity with potentially large solar panels interfering. Therefore, there

is a recommendation from this thesis for any real application in docking to have the

docking port mechanical design built to self-rotate. This allows the DP regulation to

be performed mechanically by rotating the relatively small docking port rather than

the complete spacecraft.

2.4 Summary

This chapter exploited the deficiencies in the algorithms employed in the previous

GN&C architecture and proposed the necessary improvements to successfully accom-

plish a docking scenario to a tumbling spacecraft. Several solutions are presented that

do not require a change to the algorithms, but they would still not be able to perform

a docking maneuver to a backwards facing coning target. Therefore, a proposal for a

new solver module that consists of a path planner with obstacle avoidance. Also, ad-

vancement in tracking controllers is stated. With these upgrades, a new formulation

of the phases of a docking mission is presented to be robust for any of the docking

42

scenarios. This chapter builds a final framework that will tie in the solver and control

module for simulation and experimental tests of docking to tumbling satellites.

43

44

Chapter 3

Trajectory Planning

This chapter covers the upgrade to the previous solver module to a true path planner.

A fully functional online planner provides the capability to the GN&C architecture

to dock to a tumbling target spacecraft from any initial configuration. First, a gen-

eral formulation of optimal planning with differential dynamic constraints is defined.

Then this formulation is detailed with the application of docking of two spacecraft

with collision avoidance. The formulation is composed by defining the system’s cost

functional to minimize, the chaser spacecraft translational dynamics, the planning

terminal conditions dependent on the target spacecraft tumbling dynamics, and the

method for modeling obstacles. Afterwards, the development of the solution to the

optimal control problem for docking by using the calculus of variation technique is pre-

sented. This method develops the necessary conditions for optimality to first-order.

These are a set of differential Euler-Lagrange equations that form the Hamiltonian

Boundary Value Problem (HBVP). The solution to the HBVP provides a truly opti-

mal result to the path planning problem. However, the solution to the boundary value

problem is mathematically complex and too computationally intensive for hardware

implementation. Therefore, a highly efficient sub-optimal planning algorithm is de-

veloped that is based on cubic splines. The variational technique to optimal planning

and the spline-based algorithm are compared to study the level of sub-optimality of

the more efficient algorithm. The summary concludes the new spline-based planner

is adequate for the problem of docking of two spacecraft and is numerically efficient

45

for hardware implementation.

3.1 Path Planning Problem Formulation

This section first introduces the general formulation of motion planning for dynamical

systems that exhibit differential constraints. Afterwards, additional constraints are

considered in the state-space for obstacle avoidance. The next section will detail the

formulation with specific dynamics and terminal conditions for docking scenarios that

is used for investigating the two types of path planning algorithms.

The equations of motion of a dynamical system of order n is described in state-

space form by a set of 2n first-order differential equations of the form [6],

ẋ(t) = f(x(t),u(t), t) (3.1)

where t is the time variable, x(t) is an n-dimensional vector with real elements that

denotes the state of the system, u(t) is an m-dimensional vector with real elements

that denotes the control input of the system, and f is a real vector valued function

[6].

Equation (3.1) is also referred to as a state transition equation. The state x(t)

generally represents the appropriate degrees of freedom n of the dynamical system

that lies on a smooth manifold X ∈ �n called the state-space. The control input u(t)

is from a control space U that is a bounded subset of �m, where m represents the

number of control inputs. The transition equation (3.1) is of general form and may be

nonlinear and time-varying. Once a control profile u(t) is known, the corresponding

state trajectory x(t) can be inferred by integrating the transition equation from an

initial state x(t0) at time t0 until a final time tf .

x(t) = x(t0) +

∫ tf

t0

f(x(t),u(t), t)dt (3.2)

A first approach to the objective of a path planning algorithm would be to de-

termine a state trajectory x(t) that drives the system from an initial state x(t0) to a

46

x(t0)

x(tf)

x(t)

(), (),t t tx f x u

X

Figure 3-1: State Planning with Differential Constraints

final state x(tf) in a fixed final time tf , while satisfying the differential constraints of

the dynamics Eq. (3.1). Figure 3-1 shows such a trajectory where the line resembles a

multi-dimensional path of the states x(t) through the state-space X while satisfying

the differential constraints ẋ(t) = f(x(t),u(t), t) from x(t0) until x(tf).

The planned state trajectory x(t) is a solution to a corresponding control input

u(t) from the transition equation ẋ(t) = f(x(t),u(t), t). Thus, an equivalent objective

of a path planning algorithm is to find a control trajectory u(t) of the functional form

u(t) : [0,∞) → U , which satisfies the differential constraints Eq. (3.1) and drives

the state from x(t0) to x(tf). By definition, a control trajectory satisfying all of the

constraints is called an admissible solution of a path planning algorithm [6]. However,

there may be an infinite number of admissible trajectories for a fully controllable

system that drives the states to the goal state, see Figure 3-2. A common approach

to a decision strategy to choose between the admissible trajectories is by minimizing

a certain cost functional (performance metric) [6],

47

x(t0)

x(tf)

x(t)1

x(t)

x(t)2

x(t)3

(), (),t t tx f x u

X

Figure 3-2: Infinite Feasible State Trajectories

J = h(x(tf), tf) +

∫ tf

t0

g(x(t),u(t), t)dt (3.3)

where t0 and tf are the initial and final time, h and g are real scalar functions where

h is specifically considered to be the terminal cost. A control trajectory minimizing

Eq. (3.3) falls under the category of optimal path planning, also referred to as an

optimal open-loop control law from control theory [6]. The cost function is formed

such that the trade-off between the states, control, time, and perhaps the final time

is optimized. The final time may be handled in two different ways:

tf - fixed The final time is predefined for the path planning.

tf - free The final time is let to vary in the optimization of the cost functional.

When the final time is let to vary, the variable tf is set to be part of the terminal

cost h from Eq. (3.3) with generally a trade-off constant α. This constant implies

the importance of having a smaller final time, large α, or larger final time, small α.

48

x(t0)

x(tf)

x(t)1

x(t)

x(t)2

(), (),t t tx f x u

X

x (t)

Figure 3-3: Optimal State Trajectory

An example of how the terminal cost function may look like with a free final time is

shown in Eq. (3.4).

J = αtf +

∫ tf

t0

g(x(t),u(t), t)dt (3.4)

The control trajectory corresponding to the optimal path found by minimizing the

cost function Eq. (3.3) and satisfying the differential dynamic constraints Eq. (3.1)

is referred to as the optimal control trajectory and is denoted with an asterisk u∗(t).

The corresponding optimal state trajectory x∗(t) is again inferred through the state

transition equation (3.2), see Figure 3-3.

This concludes the most basic path planning for differential dynamics. Further

complexities arise by adding constraints to the control and/or state variables. Typical

control constraints consist of lower and upper bounds on the control input:

umin ≤ u(t) ≤ umax (3.5)

An example would be the minimum and maximum thrust throttling for the space

49

shuttle main engines during launch. Let’s define the control space which satisfies the

control constraints to be Ufeasible and so the optimal control trajectory is constrained

to be part of that set [8]:

u∗ ∈ Ufeasible (3.6)

Furthermore, constraints on the state-space can be employed where a certain

subset of the original set X is feasible. Therefore, the optimal state trajectory is also

constrained to the feasible set [8]:

x∗ ∈ Xfeasible (3.7)

An obvious example for Xfeasible would be a non-moving obstacle which occupies the

state-space set Xobstacle. Since the full state-space X is considered to be an implicit

“universal” set, the feasible state-space is the compliment of X relative to Xobstacle

[8],

Xfeasible = X\Xobstacle (3.8)

which allows only a feasible region of the state-space to be optimized across. Fig-

ure 3-4 shows this example with an optimal state trajectory satisfying all constraints.

Finally, a proper problem formulation for motion planning under differential, control,

state constraints can be defined.

3.1.1 Optimal Path Planning Problem Formulation General

The objective of the planning algorithm is to find the optimal control trajectory u∗(t)

that minimizes the performance metric Eq. (3.3),

J = h(x(tf), tf) +

∫ tf

t0

g(x(t),u(t), t)dt

and satisfies the differential, control, and state constraints:

50

x(t0)

x(tf)(), (),t t tx f x u
feasibleUu
feasibleXx

Xobstacle
Xfeasible

x (t)

Figure 3-4: Optimal State Trajectory Satisfying Control and State Constraints

ẋ∗(t) = f(x∗(t),u∗(t), t)

u∗ ∈ Ufeasible

x∗ ∈ Xfeasible

(3.9)

The problem formulation is established for any general system, nonlinear or linear,

time-variant or time-invariant systems. In the next section, this formulation will be

modified and completed for the docking scenarios to a tumbling target satellite.

3.2 Path Planning Problem Formulation for Dock-

ing

The cost functional, state transition equation, terminal states, and obstacle con-

straints are defined for docking scenarios to complex tumbling target satellites for a

planning algorithm. The control and autonomy architecture for docking is established

in Chapter 2 with Table 2.3 on page 39 detailing the position planning phases. The

51

attitude planning is decoupled from the path planner and thus the planning algo-

rithm needs to only account for translational motion of the chaser spacecraft. From

Table 2.3, phases DP Axis Alignment and Inline Approach require the use of

a path planner. Such a docking scenario is depicted in Figure 2-8 on page 40. The

translational equations of motion of a spacecraft are developed as the state transi-

tion equation (3.1) for the planning algorithm. The final time for the path planning

formulation is set to be a fixed value tf . As the final positions of the two phases

that use the path planner are along the DP axis of the spacecraft, the terminal states

for the planner depend on the tumbling dynamics of the target spacecraft. These

dynamics are modeled and the propagated final state of the target spacecraft is used

to determine the final state for the chaser spacecraft. Lastly, the obstacle constraint

is modeled as a collision sphere in the state-space. The final problem formulation

for docking is summarized to be used to develop the two path planning methods in

following sections.

3.2.1 Cost Functional for Docking

As mentioned previously, there may be multiple admissible trajectories that connect

the initial x(t0) and final states x(tf) together. A very common decision logic at

filtering out the admissible trajectories for a unique one done is by minimizing some

sort of performance metric of the system [6]. For the case of spacecraft docking,

an obvious performance metric is one that chooses from the admissible trajectories

one that consumes the least fuel. Given that the control effort u(t) represents fuel

consumption, a possible cost functional to be minimized is,

J =

∫ tf

t0

|u(t)| dt (3.10)

where |·| is the absolute value. This cost functional has been used repeatedly in

spacecraft trajectory planning [14] and is ideal for discrete path planning algorithms.

The optimal control law for minimum fuel paths is a Bang-Off-Bang discontinues

controller [6]. Since the two planning algorithms in this thesis are of continues form,

52

it is easier to work with a cost functional that provides a continues control law. The

cost functional used for the planning algorithms is to minimize the energy of the

control input:

J =
1

2

∫ tf

t0

uT (t)u(t)dt (3.11)

The energy of the system directly relates to the fuel consumed by the spacecraft, so

minimizing energy is an acceptable performance metric. The two planning algorithms

will take the cost functional Eq. (3.11) into account in their own unique manner. Next,

the state transition equation is developed for docking of spacecraft and shows how

the control input influences the dynamics.

3.2.2 State Transition Equation for Docking

Docking missions would typically occur in an orbit around Earth and would be gov-

erned by orbital equations of motion. Other possible missions discussed in Chapter 1

may be outside the Earth’s gravitational sphere of influence and somewhere in deep

space, thus the spacecraft would obey a different set of equations of motion. For an or-

biting spacecraft, the translational dynamics are governed by the nonlinear two-body

equation of relative motion in cartesian coordinates [17],

r̈ +
μ

r3
r = f (3.12)

where r ∈ �3 is the relative position vector from the earth to the spacecraft, r = ‖r‖
is the magnitude of the relative position, μ = G(M⊕ + m) is the GM⊕ product, G is

the universal gravitational constant, M⊕ is the mass of the Earth, and m is the mass

of the spacecraft.

For rendezvous and docking applications, only the relative position dynamics

between the two spacecraft are important [1]. When the docking mission of the

two spacecraft is assumed to be in a highly circular orbit, the nonlinear dynamics

Eq. (3.12) may be linearized into the well known Euler-Hill equations of relative

53

neighboring orbit

reference orbit

r1

r2

x

y
M

M

s/c1

s/c2

Figure 3-5: Hill’s Relative Equations of Motion

motion [17],

ẍ− 2nẏ − 3n2x = fx

ÿ + 2nẋ = fy

z̈ + n2z = fz

(3.13)

where the x, y, and z coordinates are relative to a moving coordinate system being

centered at one of the spacecraft center of mass, shown in Figure 3-5. Here n is

the angular velocity of the orbit that is assumed constant when the orbit is highly

circular.

The Hill’s equation (3.13) can be further simplified to three decoupled double

integrators equations of motion when the spacecraft are maneuvering faster than the

54

angular velocity of the orbit, n. This can be seen by observing the bode plot of the

double integrator superimposed on Hill’s equations and noting that they are identical

in frequencies higher than the rate of the orbit n [12]. Figure 3-6 shows an example

of the bode plots for an orbital rate of n = 1 = 100 rad/sec on the x-axis. The

development of control and autonomy algorithms in this thesis for docking missions

are focused on the terminal phase of a docking mission, referring up to one hundred

meter separation between spacecraft [10]. Therefore, any nonlinear effects of orbital

dynamics are small and may be considered as disturbances to be compensated by

tracking controllers. As a result, the spacecraft is modeled as a constant point-mass

with internally generated forces provided by thrusters for maneuvering. The state

transition equation for the planning algorithm is,

r̈ = a (3.14)

where r̈ is the acceleration of the position r = [rx ry rz]
T , and u = a = [ax ay az]

T

is the acceleration control input. The spacecraft is set to unit mass for simplification

while the relation F = ma is used to determine the force F necessary to provide the

appropriate acceleration a, where m is the mass of the spacecraft. The transition

equation Eq. (3.14) is with respect to a non-moving global coordinate frame of ref-

erence. The state transition equation defines the differential dynamics constraint for

propagating an initial state to another final state. The specific formulation of these

state is developed in the next section.

3.2.3 Terminal States for Docking

The terminal states x(t0) and x(tf) with respect to a global coordinate frame are

defined for docking scenarios to complex tumbling target satellites. For either of the

two phases that use the path planner, DP Axis Alignment and Inline Approach,

the initial state x(t0) is defined as the initial state of the chaser spacecraft when the

MVM module decides to execute the planning algorithm.

The final state is much more complicated as it is a time-varying state dependent

55

Figure 3-6: Hill’s Equations and Double Integrator Bode Plots [12]

56

on the tumbling dynamics of the target spacecraft and its position with respect to

the chaser. For the DP Axis Alignment phase, the final state is set to be the DP

Axis Alignment Position, which is an offset distance along the target satellite docking

port axis at the final time tf . Also for the Inline Approach phase, the final state is

the Berthing Position, which is another smaller offset distance along the DP Axis, see

Figure 2-8 on page 40. The final states for both cases depend on the target spacecraft

time-varying docking port axis at time tf . As the DP axis depends on the orientation

of the target spacecraft, the derivation of the final state depends on the attitude and

position dynamics.

Spacecraft Position and Tumbling Attitude Dynamics

The full position and attitude state dynamics of the target spacecraft are developed

for use in forming the final state for the chaser spacecraft. The state vector that

describes both the position and attitude of the spacecraft was introduced in Sec-

tion 2.2.1 on page 27 as Eq. (2.1):

x = [rx ry rz vx vy vz q1 q2 q3 q4 ωx ωy ωz]
T

The translational equations of motion of the spacecraft are represented by Eq. (3.14)

that describe the propagation of position r and velocity v when the spacecraft is con-

sidered to be a unit mass. This assumption is used for the path planner while accurate

propagation of the position state is represented by,

r̈ =
1

m
f (3.15)

where f ∈ �3 is the total force applied to the system.

The elements in the state vector representing the attitude is the quaternion vector

q ∈ �4 and the angular rate vector ω ∈ �3 with respect to its local body coordinate

frame. The equations of motion that represent the propagation of the attitude state is

described by the attitude kinematics and dynamics equations. The kinematics define

how the quaternion attitude representation propagates with time while the dynamics

57

define the angular velocities propagation. The nonlinear kinematics is a function of

the angular rates of the state vector and represented as [17],

q̇ =
1

2
Ω(ω)q (3.16)

where Ω(ω) is defined as:

Ω(ω) ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.17)

The spacecraft rigid-body attitude dynamics describes the time derivative of the

angular momentum vector h ∈ �3,

ḣ = τ − ω × h (3.18)

where τ = [τx τy τz]
T is the total moment/torque applied to the system. The

angular momentum vector is defined as,

h = Iω (3.19)

with I being the spacecraft moment of inertia tensor:

I =

⎡
⎢⎢⎢⎣

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤
⎥⎥⎥⎦ (3.20)

When the spacecraft is assumed to be a rigid-body, the off-diagonal terms become

identical Ixy = Iyz, Ixz = Izx, and Iyz = Izy; thus, the inertia tensor is symmetric.

By using the product rule for differentiation of h, the time derivative of the angular

momentum is:

ḣ = İω + Iω̇ (3.21)

58

A standard assumption is made that the spacecraft inertia does not vary with time,

then combining equations (3.18) and (3.21) with İ = 0 defines the time rate change

of the angular velocities:

ω̇ = I−1 [−ω × (Iω) + τ] (3.22)

As a result, the complete spacecraft attitude equations of motion are represented by

equations (3.16), (3.17) and (3.22) and so the full equations of motion describing the

propagation of the state x is composed:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ṙ

v̇

q̇

ω̇

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

v

1
m
f

1
2
Ω(ω)q

I−1 [−ω × (Iω) + τ]

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.23)

When the target satellite is purely tumbling, no control inputs are executed f = 0

and τ = 0. Thus, the transient solution of equation (3.23) describes the tumbling

dynamics of the target satellite.

The dynamics in equation (3.23) describe the equation of motion of a general

spacecraft. Let’s define the state of the target spacecraft as xobs since it will be

considered as an obstacle in the path planner. Then the initial state of the target

xobs(t0) is numerically integrated with dynamics Eqs. (3.23) using f = 0 and τ = 0

until tf to find the final state of the target spacecraft xobs(tf):

xobs(t) = xobs(t0) +

∫ tf

t0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

vobs

0

1
2
Ω(ω)qobs

I−1
obs [−ωobs × (Iobsωobs)]

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

dt (3.24)

As mentioned, the final state of the chaser spacecraft depends on the final state

of the target (obstacle) spacecraft. The transformation to the chaser spacecraft final

state x(tf) with respect to a global reference frame is developed in the next section.

59

Transformation to Terminal States

When the MVM module decides to execute the path planner, the initial state of the

target satellite is numerically integrated with Eqs. (3.24) until the final time. The

final state of the target satellite from the transient solution is used to find the final

state of the chaser spacecraft. This is performed by transforming the desired final

state described with respect to the target spacecraft coordinate system to the global

frame of reference that is fed to the path planner.

Typically, the docking port is rigidly attached to a spacecraft and thus the docking

port axis is fixed relative to the local body coordinate frame. Let’s define the docking

port axis unit vector as d̂body ∈ �3 relative to the body frame of the target, see

Figure 3-7. Now, the motion of the DP axis in the global frame is a function of a

rotational transformation from the quaternion state representation,

d̂ = R(qobs)d̂body (3.25)

where the general R(q) (not necessarily R(qobs)) is the direction cosine matrix [17]:

R(q) =

⎡
⎢⎢⎢⎣
q2
1 − q2

2 − q2
3 + q2

4 2 (q1q2 − q3q4) 2 (q1q3 + q2q4)

2 (q1q2 + q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2 (q2q3 − q1q4)

2 (q1q3 − q2q4) 2 (q2q3 + q1q4) −q2
1 − q2

2 + q2
3 + q2

4

⎤
⎥⎥⎥⎦ (3.26)

The offset distances of DP Axis Alignment Position and Berthing Position shown

in Figure 2-8 on page 40 are along the DP axis with a magnitude of z and b, re-

spectively. Therefore the alignment and berthing position vectors in the body frame

are:

zbody = zd̂body

bbody = bd̂body

(3.27)

The vectors are fixed for any docking scenario unless the docking port is repositioned.

60

Ybody

Xbody

ˆ
bodyd

Y

X

d̂

ˆ ˆ
bodyd R q d

Global Reference

Figure 3-7: Docking Port Vector in Body and Global Coordinates

They are transformed to the global frame by the rotation matrix:

z = R(qobs)zbody

b = R(qobs)bbody

(3.28)

These position vectors are fixed in the body frame but vary in the global frame due

to the time-varying rotation matrix from the continuously varying attitude.

The desired final state in the global coordinates are the vectors in Eqs. (3.28)

transformed by the final position and attitude state xobs(tf) of the target spacecraft.

Therefore, final position of the chaser is formed by extracting the quaternion attitude

from the obstacle final state qobs(tf) ∈ xobs(tf) to form the rotation matrix to apply

to zbody and translate by robs(tf):

z(tf) = R(qobs(tf))zbody + robs(tf) (3.29)

This defines the final position rf = z(tf) for the terminal state x(tf) of the DP Axis

Alignment phase of the chaser spacecraft, and likewise it is found for the Inline

Approach phase. The final velocity vf is the time derivative of equation (3.29),

which is the cross product of the angular rate vector ωobs with zbody transformed to

61

Target

Chaser

DP Alignment
Position

rotation rate:

Ybody
Xbody

bodyz

obs ft

Y

X
Global Reference

f ftr z

fv

0v

0r

Figure 3-8: Example of the Transformation to the Final State of a Rotating Target
Satellite Scenario

the global coordinate system:

v(tf) = R(qobs(tf)) [ωobs(tf)× zbody] + vobs(tf) (3.30)

Therefore the final terminal state for the DP Axis Alignment phase is composed:

x(tf) =

⎡
⎣rf

vf

⎤
⎦ =

⎡
⎣ R(qobs(tf))zbody + robs(tf)

R(qobs(tf)) [ωobs(tf)× zbody] + vobs(tf)

⎤
⎦ (3.31)

The same equations apply for the Inline Approach phase by replacing zbody with

the berthing position vector bbody. Finally, the complete terminal states are defined

for the chaser spacecraft. The initial state x(t0) = [r0 v0]
T is set to be current state

of the chaser spacecraft at time t0 when the path planner is requested to be executed.

The final state is a transformation with the target satellite final state defined by

Eq. (3.31). An example of these transformations for the docking scenario of a purely

rotational tumbling scenario is depicted in Figure 3-8.

The development of the terminal conditions for path planning is complete. The

initial state x(t0) is provided by the estimator as the current state of the chaser

spacecraft when the path planning is requested by the MVM module. However, the

62

final state x(tf) is more complicated and has to be computed. At first, the initial

state of the target spacecraft xobs(t0) is provided by the estimator and is propagated

until tf , Eq. (3.24). Then equation (3.31) is used to compute the chaser spacecraft

final state in the correct global coordinate frame. In the next section, the modeling

of obstacles is defined for the planning algorithms.

3.2.4 Obstacles for Docking

The area of the state-space that defines a forbidden region as an obstacle Xobstacle

can be modeled in various manners. They depend on the shape of the expected

obstacles, the accuracy one desires to maneuver around the obstacle, and the path

planning algorithm approach. The most useful method is by bounding the obstacle

with a combination of several convex polyhedrons. This approach offers the user

to adjust the tightness of the bound by increasing or decreasing the dimensions of

the polyhedrons. A simpler method is to fit a spherical obstacle around an object.

This method does not provide tight bounds about the obstacle but does provide very

efficient modeling as this is desired for the new trajectory planning algorithm

For the purposes of docking two spacecraft together, the only obstacles to account

for are simply the two spacecraft. Therefore, two spherical obstacles may be used

enclose the two spacecraft. The size of the spherical obstacle is defined by its radius.

Since a planning algorithm generally determines the trajectory of the centroid to

travel, the traveling spacecraft spherical obstacle radius is added to the target space-

craft obstacle radius. Thus the only obstacle to account for in the planning algorithm

is the target spacecraft as it also accounts for the size of the chaser. The spherical

obstacles are depicted in Figure 3-9.

63

target sphere

target + chaser sphere

chaser centroid start

chaser centroid end

Figure 3-9: Modeling Obstacles for Docking of Two Spacecraft

64

3.2.5 Planning Problem Formulation for Docking Summary

The cost functional, state transition equation, final time, terminal states, and obstacle

constraints are defined for docking scenarios to a tumbling target satellite. This

provides enough information to build a planning algorithm that determines a unique

trajectory while avoiding any obstacles. There are no constraints on the control input

as this adds further complexity to the planning algorithm. For an attempt to assure

a non-saturating control profile, a large enough final time is selected. The larger

the final time, the lower the maximum control input is along a state trajectory. A

summary of the trajectory planning problem formulation for docking is summarized

in Table 3.1

Table 3.1: Summary of Trajectory Planning Problem Formulation for Spacecraft
Docking.

Description Formulas

1. final time fixed tf

2. cost functional J = 1
2

∫ tf
t0

uT (t)u(t)dt Eq. (3.11)

3. state transition r̈ = a Eq. (3.14)

4. initial state x(t0) = x0 ∈ �6

5. final state form obstacle initial state: xobs(t0) = xobs,0 ∈ �13

Propagate xobs(t0) to tf :

xobs(t) = xobs(t0) +
∫ tf

t0

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

vobs

0
1
2
Ω(ω)qobs

I−1
obs [−ωobs × (Iobsωobs)]

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

dt Eq. (3.24)

form final state x(tf) ∈ �6 using xobs(tf) ∈ �13:

x(tf) =

[
R(qobs(tf))zbody + robs(tf)

R(qobs(tf)) [ωobs(tf)× zbody] + vobs(tf)

]
Eq. (3.31)

6. obstacle Xobstacle = sphere with radius robs

65

3.3 Variational Technique to Optimal Path Plan-

ning

The calculus of variations is a very powerful technique applicable to solve continues

optimal control problems. The variational method was initially developed to find

optimal curves satisfying certain constraints. A simple example would be to find the

shortest curve connecting two points. The obvious answer is a straight line. However,

when another constraint is added that the curve must pass along another surface, then

the problem is not as straightforward and the calculus of variation method can be

used to find the optimal curve.

In regards to the trajectory planning problem, the calculus of variations technique

is applied to determine the optimal control and state trajectories while satisfying dif-

ferential dynamic constraints and minimizing a cost functional. This method provides

the necessary set of differential equations for optimality to first-order. In this section,

these set of equations are defined for a general system, referred to as the Euler-

Lagrange equations. Next, the specific set of necessary equations are found for the

docking problem and methods for numerical solutions are mentioned.

3.3.1 Euler-Lagrange Equations General

In Section 3.1.1, a general formulation of an optimal control problem was stated.

The general form considers possibly free constrained final time tf and state x(tf).

Since only fixed final constraints are used for the planning methods in this thesis,

the optimal control problem setup is simplified. Thus, the terminal cost h(x(tf), tf)

is excluded from the cost functional. The optimal control problem setup for the

variational technique approach for path planning is defined.

Problem 1 (Optimal Control Problem). Determine the optimal control u∗(t) and

state x∗(t) trajectory that minimizes the cost functional,

J(x(t),u(t), t) =

∫ tf

t0

g(x(t),u(t), t)dt

66

and satisfies the differential equations of motion constraint,

ẋ(t) = f(x(t),u(t), t)

where:

• t0 and tf fixed

• x(t0) and x(tf) fixed

The calculus of variations approach for optimization is similar to the method used

for determining the minimum of a curve. Finding an extremum of a curve by standard

calculus methods is done by setting the first derivative of the curve function to zero

and having the second derivative define whether it is a maxima or minima. In this

case, the curve function is dependent of only an independent variable. The calculus

of variations approach is similar, but its goal is to minimize a function dependent of

another function such as the performance metric to be minimized J(x(t),u(t), t). This

is referred to as a functional. Therefore, the calculus of variations method requires the

variation (first derivative) of the functional to equal zero. The necessary conditions

for the variation being zero is developed [6].

First, the differential dynamic constraints are handled by augmenting them to

the cost functional with time-varying Lagrange multipliers p(t) = [p1(t), . . . , pn(t)],

referred to as the costate variables:

Ja =

∫ tf

t0

{
g(x(t),u(t), t) + pT (t) [f(x(t),u(t), t)− ẋ(t)]

}
dt (3.32)

The number of costate variables is equivalent to the number of state variables. The

variation of Ja is found by introducing the variations δx, δẋ, δu, and δp [6]:

δJa =

∫ tf

t0

{[
∂g

∂x
+ pT (t)

∂f

∂x

]
δx(t) +

[
∂g

∂u
+ pT (t)

∂f

∂u

]
δu(t)

+ [f − ẋ]T δp(t)− pT (t)δẋ

}
dt (3.33)

67

Eq. (3.33) can be cleaned up by introducing the Hamiltonian, a real valued scalar

function:

H(x,u,p, t) = g(x(t),u(t), t) + pT (t)f(x(t),u(t), t) (3.34)

Then the variation becomes:

δJa =

∫ tf

t0

{
∂H

∂x
δx(t) +

∂H

∂u
δu(t) + [f − ẋ]T δp(t)− pT (t)δẋ

}
dt (3.35)

The term with δẋ in equation (3.35) can be simplified after integrating the term by

parts:

−
∫ tf

t0

pT (t)δẋdt = −pT (tf) (δx(tf)− ẋ(tf)δtf) +

∫ tf

t0

ṗT (t)δxdt (3.36)

Since the terminal conditions of tf and x(tf) are fixed, the terms outside the integrand

are not considered in equation (3.36). After combining Eq. (3.36) and Eq. (3.35), the

variation is rewritten to be:

δJa =

∫ tf

t0

{[
∂H

∂x
+ ṗT (t)

]
δx(t) +

∂H

∂u
δu(t) + [f − ẋ]T δp(t)

}
dt (3.37)

The integral must vanish for δJa = 0, which defines an extremal. Thus, the terms

multiplying the variations δx(t), δu(t), and δp(t) must be set to zero. This defines

the necessary conditions that minimizes Ja subject to any boundary constraints [6],

ẋ∗ = f(x∗,u∗, t) (3.38a)

ṗ∗ = −∂H

∂x∗ (3.38b)

∂H

∂u∗ = 0 (3.38c)

68

while the boundary conditions are fixed for the docking problem:

t0 and tf fixed

x(t0) = x0

x(tf) = xf

The first two set of coupled differential equations from ẋ∗ and ṗ∗, equations (3.38a)

and (3.38b), are referred to as the Euler-Lagrange equations. The optimal control

trajectory u∗ solution from ∂H
∂u∗ = 0 is substituted into the system dynamics ẋ∗ =

f(x∗,u∗, t). Then the coupled state ẋ∗ and costate ṗ∗ differential equations form the

Hamiltonian Boundary Value Problem (HBVP). These differential equations may be

linear when the system dynamics are also linear and the cost functional contains only

quadratic terms and so may be solved analytically. Otherwise, they are nonlinear

differential equation in which numerical methods are mainly used to find a solution.

The dimension of the states, n, and costates is equivalent. Therefore, the numerical

method must find a solution to 2n coupled nonlinear differential equations with n

initial conditions from x0 and n final conditions from xf . There are various numerical

methods for solving such a problem, but the technique used here is based on the

collocation method [16]. The solution to the HBVP solves the general optimal control

problem and the specific setup of the Euler-Lagrange equations for docking scenarios

is developed in the next section.

3.3.2 Euler-Lagrange Equations for Docking

Section 3.2.5 summarizes the specific formulation of terminal conditions, system dy-

namics, and obstacle modeling for docking purposes. The information from Table 3.1

is used to formulate the optimal control problem for docking in addition to certain

new methods that will be introduced. First, the state transition equation (3.14)

defines the differential equations of motion constraint. The three decoupled double

69

integrator differential dynamics are rewritten in state-space form as,

ẋ(t) = Ax(t) + Bu(t) (3.39)

with A and B being,

A =

⎡
⎣03x3 I3x3

03x3 03x3

⎤
⎦ , B =

⎡
⎣03x3

I3x3

⎤
⎦ (3.40)

where I is the identity matrix, x ∈ �6 is the x, y, z position and velocity states, and

u = a = [ax ay az]
T is the acceleration control input. The goal of the trajectory

planning is to determine a control profile that reduces the total fuel/energy consump-

tion. If an unconstrained trajectory initially passes through an obstacle, then surely

a trade-off is required to balance between minimizing fuel and finding a path that

avoids the obstacle. Therefore, the cost functional is formed in order to take into

account fuel minimization and obstacle clearance.

J =

∫ tf

t0

[
gcontrol(u(t)) + gobstacle(x(t))

]
dt (3.41)

The fuel consideration is taken care of by minimizing the total energy from Eq. (3.11)

in the gcontrol cost functional,

gcontrol(x(t),u(t), t) =
1

2
ρuT (t)u(t) (3.42)

where ρ ≥ 0 is a weight factor evenly scaled to all three axis of control. The choice

for minimizing energy is that it represents a quadratic cost functional and results in

a continues optimal control law derived later. The obstacle clearance is accounted for

by penalizing the relative distance dr between the spacecraft and the obstacle. Thus,

there is a search for a distance function that has large values near the obstacle and

zero far away. The proposed distance metric is a piecewise cubic [3],

70

gr(dr) =

⎧⎪⎨
⎪⎩

k (a1d
3
r + a2d

2
r + a3dr + a4) if dr < s

0 else

(3.43)

where s is a buffer distance of where the cost value is nonzero, k is the maximum cost

at dr = 0, and the coefficients a1, . . . , a4 are found to satisfy the Lipschitz smoothness

conditions for the Euler-Lagrange differential equations. This condition is satisfied

if the distance metric gr(dr) is C2. The cubic polynomial already satisfies such a

condition, so the piece-wise connection between the cubic polynomial and the value

zero at gr(s) needs to be constrained to C2. This is accomplished by solving for the

four coefficients satisfying the following conditions:

gr(0) = k

gr(s) = 0

∂gr(dr)

∂dr
(s) = 0

∂2gr(dr)

∂d2
r

(s) = 0

(3.44)

This gives four linear algebraic equations to be solved for four unknowns. Therefore,

Eq. (3.44) can be rewritten in matrix form as:

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

s3 s2 s 1

3s2 2s 1 0

6s 2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

k

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.45)

A plot of the distance metric cost functional is shown in Figure 3-10. The relative

distance function is defined as the euclidean two-norm of the objects face-to-face

relative position vector,

dr(t) = ‖r(t)− robs(t)‖2 − R− Robs (3.46)

71

s

k

gr

dr

Figure 3-10: Relative Distance Obstacle Cost Penalization

72

where r(t) ∈ x(t) is the position vector of the chaser spacecraft that is a subset of

the state x(t), while robs(t) is the position vector to the centroid of the obstacle. The

scalar values R is the radius of the obstacle sphere to cover the chaser spacecraft and

Robs is the radius of the obstacle sphere covering the target spacecraft. As shown

in Figure 3-9, both obstacle spheres are added together and applied to the target

spacecraft, referred to as the obstacle in this planning algorithm. Therefore, the

radii subtract off from relative centroid-to-centroid distance ‖r− robs‖2. Since the

obstacle position vector is a function of time in Eq. (3.46), this method accounts for

time-varying obstacles.

Let’s consider the possible ways to minimize Eq. (3.43) over the time t0 to tf .

One strategy for the spacecraft is to distance the trajectory further away from the

obstacle while another applicable approach is to increase velocity and spend as little

time close to the obstacle [3]. As the second strategy is undesirable, a cost function

gv(vr) dependent on the relative velocity vr is introduced and multiplied with the

relative distance cost function gr(dr). The proposed relative velocity cost function is

[3],

gv(vr) =

⎧⎪⎨
⎪⎩

vr if vr > vc

b1v
3
r + b2v

2
r + b3vr + b4 else

(3.47)

where the coefficients b1, . . . , b4 are chosen to satisfy the C2 continuity at the connect-

ing velocity vc. The relative velocity cost function gv(vr) increases with larger values

of vr linearly after vc. The issue with keeping the cost function just the magnitude

of the relative velocity is the non-differentiable property at vr = 0. Thus, the cubic

polynomial is introduced at vc, a very small relative velocity, and to have a zero cost

at vr = 0. A plot of the cost function gv(vr) is shown in Figure 3-11. The cubic

polynomial coefficients of gv(vr) are chosen by satisfying:

73

vc

vr

vr

Figure 3-11: Relative Velocity Obstacle Cost Penalization

74

gv(vc) = vc

∂gv(vr)

∂vr

(vc) = 1

∂gv(vr)

∂vr
(0) = 0

∂2gv(vr)

∂v2
r

(vc) = 0

(3.48)

Then rewritten in matrix form as:

⎡
⎢⎢⎢⎢⎢⎢⎣

v3
c v2

c vc 1

3v2
c 2vc 1 0

0 0 1 0

6vc 2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

vc

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.49)

The relative velocity vr is also a two-norm of the relative velocity vectors between the

chaser spacecraft and obstacle from x = [r v]T :

vr(t) = ‖v(t)− vobs(t)‖2 (3.50)

Therefore, the total obstacle cost functional is composed of equations (3.43) and (3.47)

as,

gobstacle(x(t)) = αgr(dr)gv(vr) (3.51)

where α ≥ 0 is total weighting factor on the obstacle penalization [3]. As a result,

the primary weights ρ and α may be used to trade-off optimizing energy and obstacle

clearance. Multiple obstacles may be considered by summing up the cost function to

each obstacle as,

gobstacle(x(t)) =
∑

i

αigr,i(dr,i)gv,i(vr,i) (3.52)

for the ith obstacle [3]. However, only a single obstacle, the target spacecraft, is

75

considered for the docking scenarios. This concludes the setup of the cost functional

Eq. (3.41). Thus, the system dynamics constraints and cost functional are completely

formulated for the development of the Euler-Lagrange equations.

First, the Hamiltonian is formed as:

H = gcontrol(u(t)) + gobstacle(x(t)) + pT (t) [Ax(t) + Bu(t)] (3.53)

and then the optimal control law is found by using equation (3.38c), ∂H
∂u∗ = 0. Since

equation (3.38c) takes a partial derivative with respect to the control input u(t), only

the terms with u(t) are extracted from the Hamiltonian,

H(u(t)) =
1

2
ρuT (t)u(t) + pT (t)Bu(t) (3.54)

where the costates are p = [p1, . . . , p6]. Evaluating Eq. (3.38c) onto Eq. (3.54),

∂H

∂u∗ = ρu∗(t) + p∗(t)T B = 0 (3.55)

provides the general optimal control law for linear system dynamics:

u∗(t) = −1

ρ
p∗(t)TB (3.56)

The optimal control law Eq. (3.56) is a function of the time-varying costates p∗(t).

Since for the double integrator dynamics the first 3x3 elements of the B matrix are all

zeros 03x3 from Eq. (3.40) and the bottom 3x3 elements is the identity matrix I3x3,

the control law is dependent of only the last three costates p4, . . . , p6. The control

law can then be simplified as:

u∗(t) = −1

ρ

⎡
⎢⎢⎢⎣
p∗4(t)

p∗5(t)

p∗6(t)

⎤
⎥⎥⎥⎦ (3.57)

Next, the general optimal control law from Eq. (3.56) is plugged into the differential

dynamics constraint Eq. (3.38a):

76

ẋ∗(t) = Ax∗(t)− 1

ρ
Bp∗(t)T B (3.58)

For the double integrator dynamics, this equation is simplified by using the control

law from Eq. (3.57) instead:

ẋ∗(t) = Ax∗(t)− 1

ρ
B

⎡
⎢⎢⎢⎣
p∗4(t)

p∗5(t)

p∗6(t)

⎤
⎥⎥⎥⎦ (3.59)

This forms the six state differential equations of the Euler-Lagrange equations. Next,

the differential costate equations are found from Eq. (3.38b), which requires only the

terms with the state variable x(t) from the Hamiltonian Eq. (3.53):

H(x(t)) = αgr(dr)gv(vr) + pT (t)Ax(t) (3.60)

Evaluating Eq. (3.38b) onto Eq. (3.60):

ṗ∗ = −α
∂gr(dr)gv(vr)

∂x∗ − p∗T (t)A (3.61)

Observing p
∗T (t)A for the double integrator dynamics signifies that only the first

three costates p1, . . . , p3 couple into these six differential equations. However, the last

three costates p4, . . . , p6 are part of the state differential equations. Eq. (3.61) can be

simplified to:

ṗ∗ = −α
∂gr(dr)gv(vr)

∂x∗ −

⎡
⎢⎢⎢⎢⎢⎢⎣

03x1

p∗1(t)

p∗2(t)

p∗3(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.62)

The twelve coupled nonlinear differential Euler-Lagrange equations are formed

with equations (3.59) and (3.62). These equations are solved using a collocation

method based on [16]. The numerical approach uses piecewise cubic polynomials to

approximate the solution at predefined mesh points. Table 3.2 on page 79 describes

77

all the necessary steps in detail for the variational approach to trajectory planning

for docking scenarios. Several details are extracted from the summary of the problem

formulation for docking in Table 3.1. Once the solution to the Euler-Lagrange equa-

tions is found, then the path is defined by the optimal state trajectory x∗(t) and the

optimal control trajectory u∗(t) can be evaluated with Eq. (3.57) using the optimal

costates p∗(t). The numerical computation of the solution to the Hamiltonian Bound-

ary Value Problem is significantly high. This is due to the complexity of solving a

boundary value problem. Also, a solution is not guaranteed as the numerical meth-

ods require a good initial guess of the solution. There are different approaches that

attempt to improve the computation of solving the optimal control problem [5]. The

variational technique algorithm also requires large enough memory for all the nec-

essary computation to code. The next section develops a sub-optimal path planner

that is highly efficient in computation time and requires little memory for storage.

78

Table 3.2: Variational Technique to Optimal Trajectory Planning Algorithm for Dock-
ing.

Action Formulas Equations

1. Define fixed final time tf

2. Define radii R - chaser, Robs - obstacle

3. Define weights ρ ≥ 0 - weight on control input
α ≥ 0 - weight on obstacle clearance

4. Define obstacle terms s - buffer distance (where cost is non-zero)
k - maximum cost at zero relative distance
vc - connecting velocity near vr = 0

5. Solve for coefficients

⎡
⎢⎢⎣

0 0 0 1
s3 s2 s 1
3s2 2s 1 0
6s 2 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a1

a2

a3

a4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
k
0
0
0

⎤
⎥⎥⎦ Eq. (3.45)

⎡
⎢⎢⎣

v3
c v2

c vc 1
3v2

c 2vc 1 0
0 0 1 0

6vc 2 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
vc

1
0
0

⎤
⎥⎥⎦ Eq. (3.49)

6. Form initial state x(t0) = x0 ∈ �6

initial state of chaser spacecraft at t0

7. Form obstacle init state xobs(t0) = xobs,0 ∈ �13

initial state in �13 of target spacecraft

8. Propagate xobs(t0) to tf xobs(t) = xobs(t0) +
∫ tf

t0

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

vobs

0
1
2Ω(ω)qobs

I−1
obs [−ωobs × (Iobsωobs)]

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

dt Eq. (3.24)

integrate numerically for xobs(tf) ∈ �13

9. Form final state x(tf) =
[

R(qobs(tf))zbody + robs(tf)
R(qobs(tf)) [ωobs(tf)× zbody] + vobs(tf)

]
Eq. (3.31)

use xobs(tf) ∈ �13 to form x(tf) ∈ �6

10. Euler-Lagrange Eqns. ẋ∗(t) = Ax∗(t)− 1
ρBp∗(t)T B Eq. (3.58)

ṗ∗ = −α∂gr(dr)gv(vr)
∂x∗ − p∗T (t)A Eq. (3.61)

optimal state trajectory is given by ẋ∗(t)

79

3.4 Spline-Based Trajectory Planning Algorithm

A trajectory planning algorithm that requires low memory and computation power is

an ideal algorithm for spacecraft hardware implementation. The main reason being

is the limited power a satellite in space can provide to its online computer. An

efficient algorithm can also be faster implemented and could undergo sooner in-space

testing for advancing its TRL level [10]. There already exist numerous efficient sub-

optimal planning algorithms such as Rapid Exploring Random Search Trees (RRTs)

[8]. However, it may be required to call the planning algorithm several times for

re-planning, so it is desired to have an algorithm that will always output a unique

trajectory for the same conditions. Therefore, the RRTs are unsatisfactory as they

provide a different trajectory after another execution of the same conditions due

to its stochastic nature of planning. The following path planning algorithm finds

a unique energy sub-optimal trajectory for the spacecraft while avoiding spherical

obstacles. The main approach for avoiding obstacle constraints is done by introducing

intermediate way-point states that deviate an initial unconstrained trajectory into the

feasible state-space. If the initial unconstrained trajectory does not pass through any

obstacles, then the solution is a fully energy optimal trajectory. The introduction of

way-points by the planner diminish it to be sub-optimal. The development of the

planner is similar to work done by [18].

The problem formulation of path planning for docking scenarios, summarized in

Table 3.1 on page 65, is used in developing the algorithm. First, the double integrator

dynamics are still used as the spacecraft equations of motion Eq. (3.14):

r̈ = a

An obstacle is modeled as a moving collision sphere defined from the center of the

spacecraft,

‖r(t)− robs(t)‖2 ≥ (R + Robs + Rbuffer) (3.63)

80

where ‖·‖2 specifies the euclidean 2-norm, robs(t) is the center position of the time-

varying obstacle, R is a positive scalar radius length of the spacecraft, Robs is the

radius length of the obstacle, and Rbuffer is an added safety zone that accounts for

measurement and process uncertainty. The last term is similar to the buffer distance

s in the variational technique to path planning in Section 3.3.2. The initial and final

conditions for the planning algorithm are,

x(t0) =

⎡
⎣r0

v0

⎤
⎦ , x(tf) =

⎡
⎣rf

vf

⎤
⎦ (3.64)

where x(t0) represents the initial state of position r0 and velocity v0 at time t0, and

x(tf) is the final state at time tf . Computing the terminal conditions for spacecraft

docking is described in Section 3.2.3. For the rest of the algorithm development, the

initial time is set to zero:

t0 = 0 (3.65)

The final time tf is fixed and predefined by the user. The user is considered to be

MVM module from the GN&C architecture in Chapter 2. When obstacle constraints

are active, several position way-points may be introduced by the planning algorithm

for the spacecraft to pass through,

ri
w =
[
r1

w r2
w · · · rN

w

]
(3.66a)

tiw =
[
t1w t2w · · · tNw

]
(3.66b)

where ri
w is the i th way-point position at time tiw. A depiction describing the terminal

states, way-points, and a collision sphere is shown in Figure 3-12. The objective of the

planning algorithm is to find an energy sub-optimal control trajectory a∗(t), t ∈ [t0, tf]

that minimizes the performance metric Eq. (3.11),

81

x(0)

x(tf)

way-points

R

obsR R

obs bufferR R R

obstacle

trajectory

Figure 3-12: Obstacle Sphere and Way-Points Depiction

J =
1

2

∫ tf

t0

aT (t)a(t)dt

while satisfying differential constraints of Eq. (3.14) and passes through way-points

ri
w. The total energy is directly related to the fuel consumed by the spacecraft, thus

optimizing for energy also minimizes fuel consumption. The approach of the planning

algorithm will be to first calculate the optimal trajectory without obstacles and then

introduce way-points that move the trajectory outside any obstacles. A depiction of

the approach is shown Figure 3-13 while the details follow next.

Sultan [18] provided an important result that the energy optimal trajectory of

r̈ = a dynamics is a piecewise cubic polynomial of class C1 in time. The result is

restated and extended to specify that the cubic polynomials are equivalent to cubic

splines. The Lemma 1 considers the optimum trajectory r ∈ �1 in one dimension

along a single axis from r ∈ �3.

Lemma 1 (Energy Optimal Trajectory). Given the differential constraints of

r̈ = a, a minimum energy trajectory with terminal states x(t0) ∈ �2 and x(tf) ∈ �2,

82

obstacle

1. Unconstrained Trajectory

obstacle

2. Introduce 1st way-point

way-point
obstacle

3. Introduce all way-points

way-points

x(t0)

x(tf)

x(t0) x(t0)

x(tf) x(tf)

Figure 3-13: Process of the Spline-Based Planning Algorithm

and passing through a sequence of way-points [ri
w, i = 1, . . . , N] is a piecewise cubic

spline,

r(t) = Ari
w + Bri+1

w + Cai +Dai+1 (3.67a)

v(t) =
ri+1
w − ri

w

ti+1
w − tiw

− 3A2 − 1

6

(
ti+1
w − tiw

)
ai +

3B2 − 1

6

(
ti+1
w − tiw

)
ai+1 (3.67b)

where [19],

A =
ti+1
w − t

ti+1
w − tiw

B =
t− tiw

ti+1
w − tiw

C =
1

6

(A3 −A) (ti+1
w − tiw

)2
D =

1

6

(B3 − B) (ti+1
w − tiw

)2

(3.68)

and ai is the 2nd derivative (acceleration) at way-point ri
w to be determined by satis-

83

fying the 1th derivative continuity between all the intervals [19]. The 2nd derivative

optimal control trajectory is a continues piecewise set of linear functions:

a(t) = Aai + Bai+1 (3.69)

Proof. Given a single interval [tiw, ti+1
w] in one dimension, let’s find the optimal

control input a(t) that minimizes the energy cost functional Eq. (3.11),

J =
1

2

∫ ti+1
w

tiw

a2(t)dt

constrained to the double integrator dynamics with state x = [r v]T ,

ẋ =

⎡
⎣v

a

⎤
⎦ (3.70)

and boundary conditions:

x(tiw) =

⎡
⎣ ri

w

v(tiw)

⎤
⎦ , x(ti+1

w) =

⎡
⎣ ri+1

w

v(ti+1
w)

⎤
⎦ (3.71)

The calculus of variations method provides the necessary conditions for first-order

optimality with equations (3.38a), (3.38b) and (3.38c). The Hamiltonian is formed

as,

H =
1

2
a2 + p1v + p2a (3.72)

where p is the costate variable. Then using Eq. (3.38c),

∂H

∂u
=

∂H

∂a
= a + p2 = 0 (3.73)

and then determining the costates with Eq. (3.38b):

84

ṗ1 = −∂H

∂r
= 0

ṗ2 = −∂H

∂v
= −p1

(3.74)

Combing equations (3.73) and (3.74) yields the optimal control input a(t),

a(t) = bit + ci (3.75)

where bi and ci are constants. Inputing the optimal control profile Eq. (3.75) into the

system dynamics Eq. (3.70) and applying the boundary conditions from Eq. (3.71)

provides the state trajectory [r(t) v(t)]T and control input a(t) given by Lemma 1.

As a result of Lemma 1, a cubic spline interpolation algorithm is used to calculate

the optimal trajectory [19]. The execution of this algorithm may be called several

times as additional way-points may be introduced for obstacle avoidance. This process

of the algorithm is formalized as a sub-algorithm in Figure 3-14 with respect to the

overall planning algorithm. The inputs to the spline interpolation algorithm are:

terminal states x(t0) and x(tf), position way-points ri
w, and time sequence tseq, while

the outputs are: state x(t) and control u(t) trajectories. In cubic spline terminology,

the way-points are considered as knots, while the terminal states exhibit a not-a-

knot condition. The not-a-knot condition let’s the 1st derivative be predefined at

the boundaries of the piecewise cubic spline, which corresponds to initial and final

velocity conditions. Therefore, the full initial and final terminal states are satisfied

in addition to the way-points (knots). The algorithm is quite efficient, as it requires

to solve a system of linear equations Ax = b in which the A matrix has a tridiagonal

form. The computational complexity of the spline interpolation is on O(N + 2) for

each axis by using the tridiagonal algorithm [19], where N is the number of way-points

in addition to the two terminal conditions.

The first step of the planning algorithm is to determine the unconstrained tra-

85

Spline Interpolation Algorithm

solve: Ax=b

complexity: O(3(N+2))

Spline Interpolation Algorithm

solve: Ax=b

complexity: O(3(N+2))

1 2
0

0

N
w w w f

seq
f

r r r r r
x

v v
1 2

0
N

seq w w w ft t t t t t

00

0

00

0

t00t0

fff

ff

ff

t fft

1 2 N
w w ww w w
1 2 N

1 2 Nt t t1 2 N
w w ww w wt t t1 2 N
w w w

way-points = knots

terminal states = not-a-knot

t
t

t

t t

r
x

v

u a

Figure 3-14: Cubic Spline Interpolation Algorithm

jectory with spline interpolation. The term unconstrained in this planning algorithm

refers to a piece-wise cubic spline without any way-points that are introduced by

the algorithm. Therefore, the sequence of states and their corresponding times is

composed by only the terminal states,

xseq =

⎡
⎣r0 rf

v0 vf

⎤
⎦

tseq =
[
0 tf

] (3.76)

where t0 = 0 as the standard initial time. However, the user may initially provide

several way-points that are desired for the spacecraft to pass through. This would

also be considered an unconstrained trajectory as the algorithm did not introduce the

way-points for obstacle avoidance. The user must make sure that the desired way-

points are not inside any obstacles. Then the initial state sequence input in Eq. (3.76)

is expanded to include the user predefined way-points:

xseq =

⎡
⎣r0 r1

w,user · · · rf

v0 · · · vf

⎤
⎦

tseq =
[
0 t1w,user · · · tf

] (3.77)

86

obstacle

fr

st

fv

0r
0v

delr

Figure 3-15: Minimum Distance Along Trajectory to Obstacle

where ri
w,user and vi

w,user are the user supplied way-points at times tiw,user. These

way-points are not considered for the further development of the algorithm. Then

the spline interpolation algorithm is executed with inputs Eq. (3.76) to determine the

initial unconstrained trajectory.

Afterwards, a feasibility check is performed on the trajectory by making sure no

trajectory position in time r(t) passes through any obstacles, satisfying Eq. (3.63).

This is accomplished by first finding the minimum distance along the trajectory to

the center of the obstacle, see Figure 3-15. Then the problem formulation is a one-

dimensional nonlinear minimization,

ts, rdel ←− min
t
‖r(t)− robs(t)‖2 (3.78)

where the outputs rdel is the scalar minimum distance between the trajectory and

87

obstacle at time ts. The algorithm used for performing the one-dimensional opti-

mization is Brent’s method of parabolic interpolation [19]. The initial trajectory is

feasible if;

rdel ≥ (R + Robs + Rbuffer) (3.79)

otherwise, a new way-point is introduced at time ts to move the trajectory position

r(ts) into the feasible state-space. This is accomplished by translating the current

point r(ts) linearly outward the obstacle. The direction of translating the infeasible

position is a unit direction vector from the center of the obstacle to r(ts):

r̂out =
r(ts)− robs(ts)

‖r(ts)− robs(ts)‖ (3.80)

So a new way-point is introduced for the piece-wise cubic spline trajectory at ts by

linearly translating position r(ts) in the direction r̂out by the right amount to be

outside be the obstacle,

ri
w = r(ts) + (Rout − rdel) r̂out

tiw = ts

(3.81)

where Rout = R + Robs + Rbuffer is the total radius of the obstacle sphere, and i = 1

for the first introduction of a way-point. A situation when this method does not

work well is when the position r(ts) lies on or very close to the center of the obstacle

robs(ts). If the closest position along the trajectory r(ts) to the obstacle is less than

some tolerance rdel,tol,

rdel < rdel,tol (3.82)

then a random direction is chosen for r̂out:

r̂out =
RAND3x1

‖RAND3x1‖ (3.83)

88

obstacle

stˆoutr 1
wr

frfv

0r
0v

Figure 3-16: Introducing the First Waypoint

After the first new way-point r1
w is determined, the spline interpolation algorithm

is executed again with inputs,

xseq =

⎡
⎣r0 r1

w rf

v0 vf

⎤
⎦

tseq =
[
0 t1w tf

] (3.84)

to attain a new state trajectory r(t) and v(t) that replaces the previous unconstrained

trajectory, see Figure 3-16. Afterwards, the new trajectory is verified again for fea-

89

sibility by evaluating Eq. (3.78) and checking the obstacle constraint Eq. (3.79). If

the new piece-wise cubic spline trajectory is feasible, it is returned as x∗(t) and the

control trajectory a∗(t). The asterisk denotes the energy sub-optimal trajectory that

satisfies collision avoidance constraints. If the new trajectory is not feasible by having

rdel < Rout, then another way-point is introduced with equations (3.80) and (3.81).

This cycle is repeated until the state trajectory satisfies obstacle constraints. A de-

piction of the process of the algorithm is shown in Figure 3-13. Also, a detailed

description is shown in Algorithm 3.1. The spline-based methods that’s implemented

and tested as in Algorithm 3.1 does not handle moving obstacles and robs is not a

function of time in this case. The algorithm can be extended to account time-varying

obstacles by replacing any robs within the algorithm with robs(t). The initial x(t0)

and final x(t0) states supplied to the spline-based algorithm is computed from Ta-

ble 3.1 on page 65.

An energy sub-optimal trajectory planning algorithm is developed that is based on

piece-wise cubic spline interpolation with way-point introduction. The way-points are

introduced if the a trajectory passes through an obstacle sphere in a way that deviates

the path to be feasible. This is accomplished by moving the closest position along the

trajectory to the obstacle outwards the sphere linearly into the feasible state-space.

However, if that trajectory passes through the center of the obstacle sphere, then a

random direction is chosen for introducing the new way-point. The algorithm repeats

this process until the complete trajectory does not avoid the obstacle constraint. If

the initial trajectory does not pass through any obstacles and so no way-points are

introduced by the algorithm, then the given trajectory is completely energy optimal.

A comparison of the computational and energy cost performance between the varia-

tional technique to path planning from Section 3.3.2 and the spline-based algorithm

is discussed in the following section.

90

Algorithm 3.1: Spline-Based Trajectory Planning Algorithm

input : tf , x(t0), x(tf), robs, R, Robs, Rbuffer, rdel,tol

output: r∗(t), v∗(t), a∗(t)

Rout = R + Robs + Rbuffer

xseq =

[
r0 rf

v0 vf

]
, tseq =

[
0 tf

]

r(t), v(t), a(t) ←− spline(tseq, xseq)

ts, rdel ←− mint ‖r(t)− robs‖2
i = 1

while rdel < Rout do

if rdel ≥ rdel,tol then

r̂out = r(ts)−robs

‖r(ts)−robs‖
else

r̂out = RAND3x1

‖RAND3x1‖
end

ri
w = r(ts) + (Rout − rdel) r̂out

tiw = ts

xseq =

[
r0 ri

w rf

v0 vf

]
, tseq =

[
0 tiw tf

]

r(t), v(t), a(t) ←− spline(tseq, xseq)

ts, rdel ←− mint ‖r(t)− robs‖2
i = i + 1

end
return r∗(t), v∗(t), a∗(t)

91

3.5 Comparison of Trajectory Planning Algorithms

Two trajectory planning methods are developed. One based on the calculus of varia-

tion method for optimal control, which requires to solve a difficult Hamiltonian bound-

ary value problem. The second uses cubic spline interpolation and clever way-point

introduction to form an energy sub-optimal trajectory. Since the variational method

solves the necessary conditions of optimality for the problem provided, it is used

as a reference planner for the spline-based algorithm. The goal of the spline-based

planner is to achieve similar trajectories with minimal cost difference with respect to

the variational technique to planning. Therefore, a comparison of the two planner

is studied at determining how efficient the new spline-based algorithm performs. In

addition, the computational performance is compared for the SPHERES application.

A discussion on each planners’ ability for practical use and implementation concludes

the comparison.

The planners will be compared in three different docking scenarios from the sim-

plest one that does not require obstacle avoidance to the most complex tumbling

dynamics of the target spacecraft considered in this thesis. In all scenarios, the tar-

get spacecraft is fixed in position, so no moving obstacles are considered. Since there

are two phases of a docking mission that use the path planner as described in Chap-

ter 2, the more elaborate phase DP Axis Alignment is chosen. These scenarios are

described below while a depiction of the initial configuration is shown in Figure 3-17.

Docking to Fixed Target Facing Forwards This scenario has both spacecraft

face each other for their initial configuration. Since the target spacecraft is

fixed, meaning not rotating nor translating, the initial configuration stays con-

stant throughout the docking scenario. The scenario does not require the plan-

ners to consider obstacle avoidance, but will be used show reasonable planning

for the simplest setup.

Docking to Fixed Rotating Target In-Plane The target spacecraft performs a

steady rotational tumble where the docking port axis sweeps the same plane

as where the chaser spacecraft is initially located. The targets’ position stays

92

fixed through the scenario as the chaser needs to plan a path around the target

spacecraft avoiding the obstacle.

Docking to Fixed Coning Target Facing Backwards In this scenario, the tar-

get spacecraft turns 180◦ to face its back to the chaser and performs a steady

rotation where its rotation vector is not perpendicular to the docking port axis.

This setup causes the docking port axis to sweep a cone. The chaser spacecraft

needs again maneuver about the target obstacle and reach its final state.

Before executing either of the two planners, their required inputs such as terminal

states, weight parameters, and coefficients are pre-computed and are not considered

when analyzing each algorithms computation time. The algorithms are implemented

in MATLAB R©and executed on a PC with 2.16GHz Intel Core Duo R©processor and

2GB of RAM. The trajectory planning is applied using the SPHERES parameters.

The specific scenarios are discussed in the next section.

93

Target Chaser

DP Alignment Position

x(t0)

x(tf)

Target
Chaser

DP Alignment Position x(t0)

x(tf)

obs t

Target
Chaser

DP Alignment Position

x(t0)x(tf)

obs t

Docking to Fixed Target Facing Forwards

Docking to Fixed Rotating Target In-Plane

Docking to Fixed Coning Target Facing Backwards

Figure 3-17: Docking Scenarios for Path Planner Comparison

94

3.5.1 Docking to Fixed Target Facing Forwards

This scenario tests the performance of the planning algorithms on the simplest case

scenario. It should show reasonable trajectories from both planners in hope that

they are identical. As mentioned that the spline-based planner provides a complete

energy optimal trajectory when no obstacles are considered, then it should provide

an identical solution to the reference planner. The position and attitude fixed target

satellite provides a stationary final state for the chaser spacecraft, no final velocities.

Therefore, the planners need to determine the energy optimal trajectory between two

stationary points. The known result is a straight line that ends and stops at the

terminal positions with zero velocities.

The variational technique path planning algorithm is considered to be solving the

Euler-Lagrange equations equations (3.58) and (3.61), see Table 3.2 on page 79. All

the required computation for the terms beforehand from Table 3.2 are not considered

in the computation time for the reference planner. Some of these pre-computed terms

are also necassary for the spline-based planner, such as the terminal states x(0) and

x(tf). The computation time of the spline-based planner is composed of everything

performed in Algorithm 3.1 on page 91. The inputs required for both planners is

shown in Table 3.3 specific for the SPHERES application.

Figure 3-18 shows the computed position and velocity profiles from both plan-

ners. The spline-based algorithm computed and equivalent state trajectory as the

variational technique to planning. The position path in Figure 3-18(a) shows that

the chaser spacecraft translates along the x-axis from its initial position 0m to the

final position −0.45m. Figure 3-18(b) shows that the velocity began initial from zero

and ended at zero as well. This is expected and the resulting trajectory is a straight

line between the stationary terminal positions. The solutions are reasonable and so

there is a gain in confidence about the path planners.

The optimality of the trajectories is compared in Figure 3-19 with the correspond-

ing control and energy profile. As the trajectories are equivalent, so are the control

and energy profiles. Notice that a minimum energy control input is a linear func-

95

Table 3.3: Docking to Fixed Target Facing Forwards Scenario Planning Inputs.

Description Value

mass of spacecraft m = 4.3kg
final time tf = 100 seconds
radius of chaser R = 0.105m
radius of target Robs = 0.105m

obstacle position robs = [−0.7 0 0]T

initial state x(0) = 0

final state x(tf) = [−0.45 0 0 0 0 0]T

from Eq. (3.31)

Variational Technique to Planning Terms:
weight on control input ρ = 10000
weight on obstacle clearance α = 100
buffer distance s = 0.03m
maximum cost at zero relative distance k = 0.08
connecting velocity vc = 0.005m/s
polynomial coefficients using equations (3.45) and (3.49)

Spline-Based Algorithm Terms:
buffer distance Rbuffer = 0.03m
tolerance on rdel rdel,tol = 0.005m

tion between t0 = 0 and tf = 100 that satisfies the terminal conditions in position

and velocity. The total energy cost of the computed trajectory from both planning

algorithm is the same, 2.246× 10−5J .

A 3D depiction of the energy optimal paths from both planners is shown in Fig-

ure 3-20. The Figure also shows the obstacle spheres where the smallest is that of

the target spacecraft alone Robs, the second largest is the combined target and chaser

obstacle spheres R+Robs, and the largest sphere is the addition of the buffer distance

Rbuffer or s. The green filled circle illustrates the initial position while the red shows

the final. As expected, the trajectory is a straight line between the two terminal

states.

Since this scenario does not include any obstacle avoidance, so the solution to

the Euler-Lagrange equations does not take a lot of computation time as the cost

96

functional is highly simplified. The spline-based algorithm is also fast as it did not

introduce any way-points due to no obstacle constraint violation. The total energy

cost of the trajectories and computation time for each algorithm is summarized in

Table 3.4. The difference in the total energy is 0% for the spline-based algorithm, so it

provides the most energy optimal trajectory. As expected, the spline-based algorithm

is faster by approximately 2x than the variational technique to planning.

Table 3.4: Energy Cost and Computation Time for Fixed Target Facing Forwards
Scenario.

Variational Technique Planning Spline-Based Algorithm

Total Energy Cost: 2.246× 10−5 J 2.246× 10−5 J
Energy Difference: 0%
Computation Time: 0.6756 seconds 0.3260 seconds
Times Faster: 2x

The two planners provided two identical solutions that are reasonable. This val-

idates both algorithms at finding optimal trajectories without obstacle constraints.

The next section considers a docking scenario when the obstacle has to be accounting

in the planning.

97

0 20 40 60 80 100
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05
Position Trajectory of Spline−Based and Variational Planning Algorithm

P
os

iti
on

 [m
]

Time [sec]

x−spline
y−spline
z−spline
x−variational
y−variational
z−variational

(a) Position Trajectory of Docking to Fixed Target Facing Forwards

0 10 20 30 40 50 60 70 80 90 100
−7

−6

−5

−4

−3

−2

−1

0

1
x 10

−3 Velocity Trajectory of Spline−Based and Variational Planning Algorithm

V
el

oc
ity

 [m
/s

]

Time [sec]

x−spline
y−spline
z−spline
x−variational
y−variational
z−variational

(b) Velocity Trajectory of Docking to Fixed Target Facing Forwards

Figure 3-18: State Trajectory of Docking to Fixed Target Facing Forwards

98

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3 Control Trajectory of Spline−Based and Variational Planning Algorithm

C
on

tr
ol

 [N
]

Time [sec]

x−spline
y−spline
z−spline
x−variational
y−variational
z−variational

(a) Control Input of Docking to Fixed Target Facing Forwards

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

−5 Energy Cost Profile of Spline−Based and Variational Planning Algorithm

E
ne

rg
y

[J
]

Time [sec]

Spline Algorithm
Variational Algorithm

(b) Energy Profile of Docking to Fixed Target Facing Forwards

Figure 3-19: Control and Energy Profile for Docking to Fixed Target Facing Forwards

99

Figure 3-20: 3D Trajectory of Docking to Fixed Target Facing Forwards

100

3.5.2 Docking to Fixed Rotating Target In-Plane

This scenarios expands to the complexity of the docking scenario and the solution

both planning algorithms need to compute. The planning is performed for a tumbling

target spacecraft that is rotating at a rate of 2 deg/sec about the z-axis. The docking

port axis of the target sweeps a plane in which the chaser spacecraft is initially located.

This means that the chaser spacecraft needs to maneuver about the x and y axis to

avoid the target obstacle and reach its final state. The initial configuration of both

spacecraft has them facing each other. As the target performs a steady rotation at

the rate of 2 deg/sec, its state at the final time tf = 100 seconds will be a rotation

by 200 degrees. This leads to a final state where the target is facing its back to the

chaser and has a fixed angular rate. Therefore, the final state for the chaser is to

be at the required distance infront of the docking port with a velocity vector in the

direction of moving docking port axis. Computing the terminal states is described in

Section 3.2.3.

The inputs to the two planning algorithms for this scenario is similar to that of

the previous with the main change being the new terminal conditions. The final time

tf = 100 seconds, size of the obstacle, and obstacle position stays the same. However,

the cost terms for the variational technique to planning need to be adjusted to achieve

a reasonable solution. If all the cost weights stayed the same as in Table 3.3, with

the only change to the new terminal conditions, then an invalid trajectory arises that

goes through the obstacle, see Figure 3-21. Here, it emphasized on the importance of

tuning cost weights for the variational method to path planning.

The red curve shows the trajectory from the variational method to planning as it

goes through the target obstacle. The green curve shows the path of the docking port.

The reason the planner computed such a trajectory is because there is not enough

weight on the obstacle cost functional. Therefore, the value of α on the obstacle

clearance is increased to α = 500. The new inputs for docking to a fixed rotating

target spacecraft scenario is summarized in Table 3.5. Notice in Table 3.5 that there

are no tuning variables for the spline-based algorithm, just physical constraints on

101

Figure 3-21: Invalid 3D Trajectory of Docking to Fixed Rotating Target In-Plane

102

the obstacle that obviously do not depend on the tumbling dynamics.

Table 3.5: Docking to Fixed Rotating Target In-Plane Planning Inputs.

Description Value

mass of spacecraft m = 4.3kg
final time tf = 100 seconds
radius of chaser R = 0.105m
radius of target Robs = 0.105m

obstacle position robs = [−0.7 0 0]T

initial state x(0) = 0

final state x(tf) = [−0.935 0.085 0 0.003 0.008 0]T

from Eq. (3.31)

Variational Technique to Planning Terms:
weight on control input ρ = 10000
weight on obstacle clearance α = 500
buffer distance s = 0.03m
maximum cost at zero relative distance k = 0.08
connecting velocity vc = 0.005m/s
polynomial coefficients using equations (3.45) and (3.49)

Spline-Based Algorithm Terms:
buffer distance Rbuffer = 0.03m
tolerance on rdel rdel,tol = 0.005m

The state trajectories from both planners is shown in Figure 3-22. The spline-

based algorithm trajectory follows a similar path as that from the reference planner

with a maximum of about 10cm deviation. Even though the trajectories are not

identical, both of them do not collide with the obstacle and meet at the same boundary

conditions. Both paths do not show any sporadic behavior and behave smoothly.

The spline-based algorithm trajectory is slightly different from that of the refer-

ence, but the control and energy profiles in Figure 3-23 show that it is more energy

optimal. The reason the variational method provides a less purely energy optimal tra-

jectory is because it is developed to find the optimum solution to the cost functional

provided in Eq. (3.41). This cost functional is composed of minimizing the energy

and obstacle clearance. Thus, the method finds the optimum solution that trades

103

off the cost between both factors, energy and obstacle clearance, and not purely the

energy of the system. Therefore, if a larger weight is added to obstacle clearance,

then a less energy optimum solution is computed. Tweaking these weights to find the

most minimum energy trajectory while not reducing the cost on obstacle clearance

enough for the trajectory to go through as in Figure 3-21 takes too many iteration.

Therefore, the benchmark comparison is looked at observing that the spline-based

algorithm is very close to the reference and does not need to be identical. The control

profile in Figure 3-23(a) for the spline-based algorithm shows it is a piece-wise set of

three linear functions as two way-points have been introduced at 64 and 78 seconds.

The total energy for the spline-based algorithm is 2.393× 10−4J and 2.469× 10−4J

for the variational method to planning.

The 3D trajectories in Figure 3-24 show clearly that both paths do not interfere

with the obstacle and are admissible. The reason the trajectories curve out to the

negative y direction is due from the terminal velocity constraint that has the chaser

spacecraft travel along the DP alignment position at tf . As a result, the trajectories

match the velocity of the time-varying DP alignment position at the final time.

The performance comparison of the two algorithms is summarized in Table 3.6.

It shows that the spline-based algorithm total energy cost is a small 3% different

than that of the reference planner. However, the computation time between the two

planners is very significant. The spline-based algorithm took 12x less time to compute

by introducing only 2 way-points for avoiding the obstacle.

Table 3.6: Energy Cost and Computation Time for Fixed Rotating Target In-Plane
Scenario.

Variational Technique Planning Spline-Based Algorithm

Total Energy Cost: 2.469× 10−4 J 2.393× 10−4 J
Energy Difference: 3.04%
Computation Time: 5.036 seconds 0.4112 seconds
Times Faster: 12x

This scenario showed the ability of both planners to plan a feasible path while

satisfying obstacle constraints. Both planners minimized the energy as much as they

104

are formulated to perform. Figure 3-21 emphasizes the importance of carefully choos-

ing cost weights for the variational method to planning so that the trajectory will

not pass through an obstacle. Therefore, this planner is not ideal for implementation

for an autonomous docking system as the MVM module would have to perform the

weights tuning. On the other hand, the spline-based algorithm does not require any

parameter tuning. It also outperformed the variational method to planning in opti-

mum energy and minimum computation time by being 12x faster. The next scenario

is different in the tumbling dynamics of the target spacecraft but only adds slightly

more complexity for the planners as the initial position of the chaser spacecraft is

moving.

105

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Position Trajectory of Spline−Based and Variational Planning Algorithm

P
os

iti
on

 [m
]

Time [sec]

x−spline
y−spline
z−spline
x−variational
y−variational
z−variational

(a) Position Trajectory of Docking to Fixed Rotating Target In-Plane

0 10 20 30 40 50 60 70 80 90 100
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015
Velocity Trajectory of Spline−Based and Variational Planning Algorithm

V
el

oc
ity

 [m
/s

]

Time [sec]

x−spline
y−spline
z−spline
x−variational
y−variational
z−variational

(b) Velocity Trajectory of Docking to Fixed Rotating Target In-Plane

Figure 3-22: State Trajectory of Docking to Fixed Rotating Target In-Plane

106

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3
x 10

−3 Control Trajectory of Spline−Based and Variational Planning Algorithm

C
on

tr
ol

 [N
]

Time [sec]

x−spline
y−spline
z−spline
x−variational
y−variational
z−variational

(a) Control Input of Docking to Fixed Rotating Target In-Plane

0 10 20 30 40 50 60 70 80 90 100
0

1

2

x 10
−4 Energy Cost Profile of Spline−Based and Variational Planning Algorithm

E
ne

rg
y

[J
]

Time [sec]

Spline Algorithm
Variational Algorithm

(b) Energy Profile of Docking to Fixed Rotating Target In-Plane

Figure 3-23: Control and Energy Profile for Docking to Fixed Rotating Target In-
Plane

107

Figure 3-24: 3D Trajectory of Docking to Fixed Rotating Target In-Plane

108

3.5.3 Docking to Fixed Coning Target Facing Backwards

The tumbling dynamics of the target spacecraft in this scenario is still a pure rotation,

but the rotation rate vector of 2 deg/sec is not perpendicular to the docking port axis

as in the previous scenario. This causes the docking port axis to sweep a cone. In

addition, the target spacecraft faces its back towards the chaser during the complete

coning tumbling dynamics. Therefore, it requires the chaser to maneuver in all three

x,y, and z axis to avoid the obstacle and reach the terminal position at tf . Another

complexity is added by introducing non-zero initial velocity for the chaser spacecraft.

The target will still have zero translational velocity as it is fixed and moving in

attitude.

The initial configuration of the two spacecraft and the rotation rate vector is

chosen such that the target docking port sweeps a cone of 45 degrees between the

generatix and axis, an aperture of 90 degrees. The setup of the docking scenario is

shown in Figure 3-17. The position of the target is still the same as before and is

fixed. The initial state of the chaser is adjusted to have a slight velocity towards

and to the side of the target spacecraft x(0) = [0 0 0 − 0.005 − 0.008 0]T . Another

adjustment is made to the parameter α penalizing obstacle clearance to α = 80. The

complete setup for the docking scenario to a coning target spacecraft facing backwards

in summarized in Table 3.7.

The Figures 3-25(a) and 3-25(b) show a nearly identical state trajectories from the

two planning algorithms. The spline-based algorithm trajectory deviates less than a

1cm from the variational method to planning path. It is seen that the initial velocities

of the chaser vehicle is non-zero. This non-zero initial velocity exhibits the not-a-knot

condition for the spline interpolation in the spline-based Algorithm 3.1 on page 91.

The control profiles in Figure 3-26(a) having a similar response. Both are fairly

linear and then take a turn at about 70 seconds and continue straight afterwards. This

is also when the only way-point is introduced to the spline-based planning algorithm.

The energy profile in Figure 3-26(b) show a nicely behaved energy build-up similar to

that in Figure 3-19(b) of the fixed non-rotating docking scenario. The total energy of

109

Table 3.7: Docking to Fixed Coning Target Facing Backwards Planning Inputs.

Description Value

mass of spacecraft m = 4.3kg
final time tf = 100 seconds
radius of chaser R = 0.105m
radius of target Robs = 0.105m

obstacle position robs = [−0.7 0 0]T

initial state x(0) = [0 0 0
−0.005 − 0.008 0]T

final state x(tf) = [−0.877 0.0651 − 0.166
0 0.006 0.002]T

from Eq. (3.31)

Variational Technique to Planning Terms:
weight on control input ρ = 10000
weight on obstacle clearance α = 80
buffer distance s = 0.03m
maximum cost at zero relative distance k = 0.08
connecting velocity vc = 0.005m/s
polynomial coefficients using equations (3.45) and (3.49)

Spline-Based Algorithm Terms:
buffer distance Rbuffer = 0.03m
tolerance on rdel rdel,tol = 0.005m

the variational technique to planning algorithm is 8.513× 10−5J and 8.385× 10−5J

for the spline-based algorithm with a 1.5% difference. Both the planners found a

very optimal trajectory, but the spline-based algorithm was 13.5x times faster. A

performance summary is shown in Table 3.8.

The full 3D trajectory from both planners is shown in Figure 3-27 and the obstacle

spheres. Both trajectories have a smooth path that stay out of the buffer zone of the

obstacle sphere. The green curve shows the path of the coning DP alignment position.

This scenario is a second validation of the planners being able to handle spherical

obstacle constraints. It shows that the spline-based algorithm found another tra-

jectory that is very close to the variational method, but is significantly smaller in

computation time. The scenario also shows the ability to account for non-stationary

110

Table 3.8: Energy Cost and Computation Time for Fixed Coning Target Facing
Backwards Scenario.

Variational Technique Planning Spline-Based Algorithm

Total Energy Cost: 8.513× 10−5 J 8.385× 10−5 J
Energy Difference: 1.5%
Computation Time: 5.348 seconds 0.397 seconds
Times Faster: 13.5x

boundary conditions. The undesirable need to readjust the weight parameters is

noticed once again. A summary of the comparison studies is discussed in the next

section with important conclusion to take into account for the practical use of these

planning algorithms

111

0 10 20 30 40 50 60 70 80 90 100
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
Position Trajectory of Spline−Based and Variational Planning Algorithm

P
os

iti
on

 [m
]

Time [sec]

x−spline
y−spline
z−spline
x−variational
y−variational
z−variational

(a) Position Trajectory of Docking to Fixed Coning Target Facing Back-
wards

0 10 20 30 40 50 60 70 80 90 100
−0.015

−0.01

−0.005

0

0.005

0.01
Velocity Trajectory of Spline−Based and Variational Planning Algorithm

V
el

oc
ity

 [m
/s

]

Time [sec]

x−spline
y−spline
z−spline
x−variational
y−variational
z−variational

(b) Velocity Trajectory of Docking to Fixed Coning Target Facing Back-
wards

Figure 3-25: State Trajectory of Docking to Fixed Coning Target Facing Backwards

112

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3 Control Trajectory of Spline−Based and Variational Planning Algorithm

C
on

tr
ol

 [N
]

Time [sec]

x−spline
y−spline
z−spline
x−variational
y−variational
z−variational

(a) Control Input of Docking to Fixed Coning Target Facing Backwards

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9
x 10

−5 Energy Cost Profile of Spline−Based and Variational Planning Algorithm

E
ne

rg
y

[J
]

Time [sec]

Spline Algorithm
Variational Algorithm

(b) Energy Profile of Docking to Fixed Coning Target Facing Backwards

Figure 3-26: Control and Energy Profile for Docking to Fixed Coning Target Facing
Backwards

113

Figure 3-27: 3D Trajectory of Docking to Fixed Coning Target Facing Backwards

114

3.5.4 Comparison Summary

The two trajectory planning algorithms are compared first to study the sub-optimality

of the spline-based algorithm. The new algorithm determined reasonable trajectories

for the three docking scenarios studied. The first trajectory calculated for the docking

scenario to a fixed target facing forward showed that the algorithm finds a fully energy

optimal trajectory as the variational method. The other two trajectories performed

equivalently as good or better. Through the comparison study, some observations

were found in regards to the benchmark planner.

Even though the variational planner is supposed to provide more optimal solu-

tions, it has significant deficiencies to practical use and implementation. One issue

is the much larger computational power required to solve the HBVP compared to

the competing algorithm. The practical usage issue is with the necessity to carefully

select the weights in the cost functional. If not done so, then the computed trajectory

has sporadic behavior and may collide with the obstacle. Such a trail and error ap-

proach to find the right weights is not desired for an autonomous docking system. The

spline-based algorithm does not require any specially tuned weight, just physically

defined dimensions of the chaser and target spacecraft spherical obstacles.

3.6 Summary

This chapter first introduced a general formulation of optimal planning for a continues

system with differential constraints. Then it was detailed specifically with docking

dynamics and boundary conditions of a tumbling satellite. A calculus of variation

technique was introduced for trajectory planning and the obstacle clearance cost

functional was presented. This method showed undesirable characteristic for usage

and hardware implementation, but was a good tool at studying the performance of a

the new spline-based planning algorithm. The two planner were compared to conclude

satisfactory performance of the new planner.

115

116

Chapter 4

Trajectory Tracking

In this chapter, several tracking controllers are developed for linear systems in pursuit

to achieve improved tracking performance from previous PD/PID controllers. Only

discrete controllers are developed as real systems such as spacecraft exhibit real-

world digital control. Also, realistic scenarios have a maximum limit on the control

input umax and thus controllers are pursued to not saturate the actuators under

nominal operations. First, the traditional PD/PID controller used previously in the

GN&C modules is briefly described. Next, several discrete optimal controllers are

developed. The first is the standard full-state feedback discrete Linear-Quadratic-

Regulator (LQR) controller that exhibits a PD-type form. In order to improve the

steady state error and tighter tracking performance, a discrete servo-LQR controller

is developed that integrates the state error and has a PID-type form. The final

controller tries to combine the best properties of both LQR controllers into a phase-

plane controller that switches between the discrete LQR and servo-LQR controller

based on a decision strategy from the state error. Lastly, the controllers are compared

in simulations with their properties being observed.

The tracking controllers are required to as precisely track the position state tra-

jectory provided by the path planner, which is only dependent on the translational

dynamics of the spacecraft. Therefore, the system dynamics for the controllers to act

onto are three decoupled double integrators from Eq. (3.15),

117

r̈ =
1

m
f

where m is the mass of the spacecraft, r ∈ �3 is the position of the spacecraft, and

f ∈ �3 is the control input of the total force applied to the system u = f . The rest of

the controllers are developed to control this continues-time second-order system. The

controllers are applied to the satellite SPHERES, which has a mass value of 4.3kg.

Also, the discrete sampling period for position control is set to two seconds Δt = 2.

With the given sampling period and a known maximum thrust value for SPHERES,

the maximum limit on the discrete control input is:

uk,max = 0.096N (4.1)

To sum it together, the performance of each controller is studied for a double

integrator dynamics of mass m = 4.3kg, a sampling period (control cycle) of Δt =

2sec, and maximum discrete control input uk,max = 0.096N . Obviously, if a very

large step input is provided for the closed loop controller and dynamic system, the

corresponding control input would surpass the maximum limit uk,max. Therefore, the

controller performance study is performed under nominal operations. This refers to

a step or a sinusoidal input for the SPHERES application of,

r(t) = 0.2 (4.2)

r(t) = 0.3sin(0.0873t) (4.3)

where the sinusoidal input corresponds to a 5◦/ sec angular rate. The step response of

each controller provides a general understanding of the controller performance while

the sinusoidal input resembles a possible nonlinear trajectory the path planner may

provide for obstacle avoidance. Therefore, studying the tracking performance of the

sinusoidal trajectory provides a general insight on the controllers ability to track other

nonlinear trajectories of similar bandwidth (curvature).

118

There are several performance characteristics desired by the tracking controllers

for docking scenarios. One highly desired feature is a very low overshoot response.

The reason for this can be easily shown by observing the operation of the In-

line Approach phase discussed in Section 2.3.1 on page 39 and depicted in Fig-

ure 2-8 on page 40. In this maneuver, the chaser spacecraft closes in the distance

towards the target spacecraft with an inline approach along the docking port axis.

Here, a tracking controller is used to follow a state trajectory generated by the path

planner to move the chaser spacecraft very close to the docking port face of the tar-

get. It is observed that if the tracking controller exhibits high overshoot, the chaser

spacecraft may surpass the final position of the trajectory and collide with the target

spacecraft. Clearly this is undesirable and a low overshoot characteristic of a tracking

controller is required.

Let’s define a proposed maximum limit on the percent overshoot. Given a spherical

encapsulation of the traveling spacecraft (chaser) with radius R and the smallest

relative distance along the state trajectory to the obstacle surface being Rc, then

the proposed maximum deviation from the state trajectory is 25% of (Rc − R). The

subtraction of the chaser spacecraft radius is because the state trajectory defines the

movement of the chaser spacecraft centroid and so (Rc−R) is the face-to-face distance

between the two objects. This also defines another desired performance characteristic,

the maximum error in tracking of a state trajectory,

emax = 0.25(Rc − R) (4.4)

where emax defines the maximum error for trajectory tracking. The percent overshoot

(PO) is found by taking into account the maximum error emax and the nominal step

input Eq. (4.2) as:

POmax = 100
emax

r(t)
(4.5)

Figure 4-1 depicts the maximum error in trajectory tracking dependent on (Rc−R).

The closest distance along a trajectory to the obstacle for the docking architecture

119

Target

Chaser

(Rc – R)

R
emax

state trajectory

Rc

Figure 4-1: Maximum Tracking Error Dependent On The Closest Distance To Ob-
stacle

established in Section 2.3.1 is chosen to be the berthing position. For the SPHERES

application, the berthing position is defined to be (Rc − R) = 0.04m in front of the

target spacecraft docking port. Therefore, the maximum error in trajectory tracking

and the percent overshoot from equations (4.2), (4.4) and (4.5) for SPHERES is:

emax = 0.01m (4.6)

POmax = 5% (4.7)

Several tracking controllers will now be developed and discussed with regards to

their state response and control effort.

4.1 PD/PID Controllers

The PID-type controllers used previously in the control GN&C module was summa-

rized in Section 2.2.1 on page 27. The controller is restated from Eq. (2.5),

120

f =

⎡
⎢⎢⎢⎣

KP r̃x + KI

∫
r̃xdt + KDṽx

KP r̃y + KI

∫
r̃ydt + KDṽy

KP r̃z + KI

∫
r̃zdt + KDṽz

⎤
⎥⎥⎥⎦

where r̃i represents the position error of the ith axis from the desired reference state

xd. The variables Kp, Ki, and Kd are the proportional, integral, and derivative gains

chosen by the user. By setting the integral gain to zero KI = 0, Eq. (2.5) becomes a

PD controller. The main difficulty with the PID controllers is the proper selection of

the gains. A standard approach for gain selection of a second-order system for a PD

controller is [20],

KP = mω2
n (4.8)

KD = m (2ζωn) (4.9)

and PID controller,

KP = m

(
ω2

n +
2ζωn

τ

)
(4.10)

KI = m

(
ω2

n

τ

)
(4.11)

KD = m

(
2ζωn +

1

τ

)
(4.12)

where ωn is the natural frequency, ζ is the damping ratio, and τ is the integration

time constant for the PID controller.

With the use of equations (4.8) to (4.12), the user has only the performance tuning

variables ωn, ζ , τ to develop a tracking controller for desired specifications. There

is also no direct approach to weigh the cost of expelling control effort of the system.

Therefore, the PID controllers provide limited ability for the user to weigh between

the response performance and amount of control effort provided. However, they do

121

provide the user an intuitive idea of the response from adjusting each gain.

The PID controllers have been previously developed and tuned for SPHERES [7].

The gains chosen are summarized in Table 4.1:

Table 4.1: PD/PID Controller Gains Selection.

Controller Gain Term Value

PD Controller KP 0.172
KD 1.720

PID Controller KP 0.258
KI 0.0086
KD 1.935

The performance of the PD controller for a step and sinusoidal input is shown in

Figure 4-2(a) and its corresponding control input in Figure 4-2(b). The response of

the step input shows the PD controller behaving with a 0% overshoot and a settling

time ts of 31 seconds. When observing the sinusoidal trajectory tracking, only the

performance at tracking the path after 1/4 of the period (1/4 = 18 sec) is studied for

the maximum tracking error. The first 1/4 period time is let for spacecraft acquire

the trajectory and the rest is regarded as precise following. The sinusoidal input

tracking shows a maximum error of 0.048m. As a result, the performance of the PD

controller satisfies one of the two requirements in equations (4.6) and (4.7), the percent

overshoot. The maximum tracking error is about 5x greater than the maximum limit

set at emax = 0.01m. The control input profile in Figure 4-2(b) shows force values

within the bounds of saturation besides the first thrust for the sinusoidal input. This is

acceptable as the sinusoidal tracking performance is mainly observed after 18 seconds

of tracking.

PID controllers integrate the state error and are good at improving the steady-

state error. This should also provide better trajectory tracking performance. How-

ever, there is generally an undesirable characteristic of PID controllers in which they

exhibit higher percent overshoot at the expense of better tracking. The responses of

the PID controller with gains selected from Table 4.1 are shown in Figure 4-3(a) and

122

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [sec]

P
os

iti
on

 [m
]

PD Controller Performance Responses

step response
sinusoidal response
step input reference
sinusoidal input reference

(a) PD Performance Response

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time [sec]

F
or

ce
 [N

]

PD Control Input

step control input
sinusoidal control input
max/min force

(b) PD Control Input

Figure 4-2: PD Controller Performance

123

the corresponding control input in Figure 4-3(b). The percent overshot for the step

response is 16%, which is 3x greater than the limit of POmax = 5%. The settling

time is rather large, 80 seconds, but the tracking performance has improved over

the PD controller. The maximum error at tracking the sinusoidal input is 0.039m.

Even though the tracking performance has improved, it is still 4x greater than the

maximum limit. The control profile in Figure 4-3(b) shows bounded discrete control

inputs below saturation for most of the executions. The PID controller showed slight

improvement in tracking as expected, but increased the percent overshoot beyond the

allowable limit. The performance of both the PD and PID controllers is summarized

in Table 4.2.

Table 4.2: PD/PID Controller Performance Summary.

Controller Performance Term Value

PD Controller PO 0%
e 0.048m
ts 31sec

PID Controller PO 16%
e 0.039m
ts 80sec

The PD/PID controllers are the most widely used controllers and may be suf-

ficient for relaxed needs, but the pursuit here is to determine a high-performance

controller for tracking a state trajectory. Neither the PD nor PID controller satisfied

the required performance specifications for spacecraft docking scenarios. Optimal

controllers are developed in the next sections for the pursuit to find a tracking con-

troller satisfying the performance requirements.

124

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [sec]

P
os

iti
on

 [m
]

PID Controller Performance Responses

step response
sinusoidal response
step input reference
sinusoidal input reference

(a) PID Performance Response

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time [sec]

F
or

ce
 [N

]

PID Control Input

step control input
sinusoidal control input
max/min force

(b) PID Control Input

Figure 4-3: PID Controller Performance

125

4.2 LQR Controller

The LQR control algorithms are the most basic optimal controllers for linear dynamic

systems. The details of the controller in application to spacecraft docking is now

discussed.

Since the spacecraft translational system dynamics are three decoupled double

integrators, the controllers are also decoupled along each axis. Thus, only one con-

troller for a single axis is developed and its copy is used for the other two axis. The

double integrator continues system dynamics in state-space form is,

ẋ = Ax(t) + Bu(t) (4.13)

where A and B are:

A =

⎡
⎣0 1

0 0

⎤
⎦ , B =

⎡
⎣ 0

1
m

⎤
⎦ (4.14)

Since the controllers are required to be discrete with a sampling period of Δt, the

system dynamics are discretized to,

xk+1 = Adxk + Bduk (4.15)

with Ad and Bd being time-invariant discretized dynamic matrices to first-order,

Ad = I + AΔt

Bd = BΔt
(4.16)

where I ∈ �2x2 is the identity matrix. The problem formulation of the LQR controller

is to determine the control inputs minimizing the discrete cost functional,

J =
1

2
xT

NHHHxN +
1

2

N−1∑
k=0

[
xT

kQQQxk + uT
kRRRuk

]
(4.17)

while satisfying the system dynamics constraint of Eq. (4.15). The state and control

126

input weighting matrices are subject to be symmetric-positive-definite (SPD):

QQQ =QQQT ≥ 0, RRR =RRRT ≥ 0, HHH =HHHT ≥ 0 (4.18)

The SPD requirement ensures that the extremal control law is a minimizing control

input of the form:

uk = Kssxk (4.19)

where the steady-state feedback gain matrix Kss is computed as,

Kss = − (RRR+ BT
d PssBd

)−1
BT

d PssAd (4.20)

The optimal control law is found for an infinite-horizon LQR controller. This results

in the P term tending to a constant solution when N → ∞ in the general discrete

Riccati equation [6] with Pss ≥ 0. Thus, the terminal cost is defined to be zeroHHH = 0

and Pss is the solution to the Algebraic Riccati Equation:

Pss =QQQ+ AT
d

[
Pss −PssBd

(RRR+ BT
d PssBd

)−1
BT

d Pss

]
Ad (4.21)

The feedback gain matrix Kss is computed once for the system and used throughout

the control executions. Also by observing Eq. (4.19), the controller is identical to the

PD controller.

This leaves the user to tune the weighting matrices for trading off the performance

of the system QQQ and the cost of control effort RRR. Once the weighting matrices are

selected for the desired specification, the LQR controller provides the optimal PD

gains instead of the user directly choosing the gain values. This allows improved

control of the overall performance of the system and provides the user more sensible

tuning variables. However, deciding the weighting matrices is also an art and there

exists a standard starting point in the selection process, Bryson’s rule [2]. The rule

forms diagonal weighting matrices in the following form:

127

QQQ =

⎡
⎢⎢⎢⎣

α2
1

x2
1,max

0 0

0
. . . 0

0 0
α2

N

x2
N,max

⎤
⎥⎥⎥⎦ , RRR = ρ

⎡
⎢⎢⎢⎣

β2
1

u2
1,max

0 0

0
. . . 0

0 0
β2

N

u2
N,max

⎤
⎥⎥⎥⎦ (4.22)

where
∑N

i αi = 1 and
∑N

i βi = 1. The terms x2
i,max and u2

i,max define the maximum

acceptable values of the specified state and control input. Bryson’s rules scales the

weightings appropriately and then only the tuning variable ρ is used to trade-off

between performance response and control effort. The rule generally provides good

results, but it is usually the starting point for the user to iteratively tune the weighting

matrices.

After initially tuning the weighting matrices using Bryson’s rule and then per-

forming further refinement, the optimal gain matrix for the SPHERES application is

found to be:

Kss = [0.2195 1.4217] (4.23)

The optimal gains in Eq. (4.23) show a slightly higher proportional gain Kss(1) =

0.2195 and lower derivative gain Kss(2) = 1.4217 compared to the PD controller

gains in Table 4.1, KP = 0.172, KD = 1.72. The response performance of the LQR

controller is shown in Figure 4-4(a) along with the control profile in Figure 4-4(b).

The step response shows a very small percent overshoot PO = 0.5% as is expected

from a PD-type controller. While tracking the sinusoidal input, the LQR controller

had a maximum error of 0.053m. Both the percent overshoot and tracking error

increased slightly compared to the PD controller. However, the settling time for the

step input improved significantly by 2x to 14 seconds compared to 31 seconds. A

summary of the performance values of the LQR controller are shown in Table 4.3.

The control profile in Figure 4-4(b) shows thrust values below the saturation limit

instead of that first thrust. During precise tracking of the inputs, the control input

stayed below half the maximum limit.

The LQR controller satisfied the same requirements the PD controller achieved,

128

Table 4.3: LQR Controller Performance Summary.

Controller Performance Term Value

LQR Controller PO 0.5%
e 0.053m
ts 14sec

that being only the low percent overshoot. The necessary tracking error requirement

emax = 0.01m has not been satisfied by any of the controllers developed thus far,

PD/PID and LQR controller. The best tracking accuracy has been achieved by the

PID controller e = 0.039m due to its error integration capability. Next, the LQR

controller is expanded to add the feature of error integration in order to improve

tracking performance.

129

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [sec]

P
os

iti
on

 [m
]

LQR Controller Performance Responses

step response
sinusoidal response
step input reference
sinusoidal input reference

(a) LQR Performance Response

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

0.15

Time [sec]

F
or

ce
 [N

]

LQR Control Input

step control input
sinusoidal control input
max/min force

(b) LQR Control Input

Figure 4-4: LQR Controller Performance

130

4.3 Servo-LQR Controller

The servo-LQR controller is an extension to the previously discussed LQR controller.

The discrete LQR controller in Section 4.2 is a PD-type controller. To improve the

performance of the steady-state error and thus tighter tracking performance, a state

error integration term is added to the optimal controller. The servo-LQR is also

referred to as an integral LQR controller and is of the PID form. Instead of letting

the user tune how much to integrate the state-error, the servo-LQR controller is

formed to optimize for the integration gain. Therefore, the system dynamics from

Eq. (4.14) is expanded to include a third state x3 that integrates the first state x1:

A =

⎡
⎢⎢⎢⎣

0 1 0

0 0 0

−1 0 0

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0

1
m

0

⎤
⎥⎥⎥⎦ (4.24)

The discrete dynamics are found in the same manner with Eq. (4.16) on Eq. (4.24).

The servo-LQR control law is found again through the use of equations (4.19), (4.20)

and (4.21) with the gain matrix being Kss ∈ �3, one dimension higher due to the

additional state. Also, the weighting matrices QQQ and RRR are increased in size with

the additional term
α2

3

x2
3,max

penalizing the maximum integration of state x1 by the use

of Bryson’s rule. Again, after tuning the weights by starting off with Bryson’s rule

and then refining iteratively trough trail and error, the servo-LQR gain matrix for

the SPHERES application is found to be,

Kss = [0.6191 2.1948 0.08129] (4.25)

where KP = Kss(1), KD = Kss(2), and KI = Kss(3). The optimal gains in Eq. (4.25)

are compared to the PID controller gains from Table 4.1. All of the servo-LQR

controller gains are higher than that of the PID controller and consequently will

expect faster response for the reference inputs. The only worry for higher gains is the

possibility of high overshoot and a highly oscillatory response.

The servo-LQR controller responses and control profile are shown in Figures 4-5(a)

131

and 4-5(b). By observing the step input response in Figure 4-5(a), it is noticed that

the controller speeds up towards the step input of 0.2m quicker than any of the

previous controllers. The response reaches 0.2m in 5 seconds for the first time, but

then overshoots by PO = 62% and achieves a settling time of 20 seconds. This is a

very reactive controller. The huge overshoot is the worst of all the controllers and

is undesirable for the use of tracking trajectories of docking scenarios. However, the

error tracking of 0.0142m has improved as expected from the addition of the error

integration capability. Unfortunately, servo-LQR controller does not satisfy any of

the performance specifications for docking, percent overshoot and tracking error. It

does achieve the smallest tracking error and is very close to the requirement of 0.01m.

A performance summary of the controller is shown in Table 4.4. The control profile in

Figure 4-5(b) shows the high thrusting in the first ten seconds of the highly responsive

controller. Ater the controller acquires the sinusoidal trajectory, the control input

performs at nominal values that do not saturate the thrusters.

Table 4.4: Servo-LQR Controller Performance Summary.

Controller Performance Term Value

Servo-LQR Controller PO 62.0%
e 0.014m
ts 20sec

There are currently four controllers that have been studied, two of the PD-type

(PD and LQR controllers) and two of the PID-type (PID and servo-LQR controllers).

Both of the PD-type controllers achieve the specified requirement for the percent

overshoot POmax = 5%. However, they have the lowest performance in tracking

nonlinear trajectories and do not satisfy the requirement emax = 0.01m. On the

other hand, the PID-type controllers attained the best performance in the tracking

error, but showed unaccaptable values for the percent overshoot POPID = 16% and

POservo−LQR = 62%. It seems that the ideal controller would combine the best

performance characteristics of each of the PD and PID type controllers in order

to achieve the tight constraints defined for docking scenarios. Such a controller is

132

developed in the next section.

133

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [sec]

P
os

iti
on

 [m
]

servo−LQR Controller Performance Responses

step response
sinusoidal response
step input reference
sinusoidal input reference

(a) Servo-LQR Performance Response

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [sec]

F
or

ce
 [N

]

servo−LQR Control Input

step control input
sinusoidal control input
max/min force

(b) Servo-LQR Control Input

Figure 4-5: Servo-LQR Controller Performance

134

4.4 Phase-Plane LQR Controller

There is still a search for a controller that will satisfy the performance requirements

of POmax = 5% and emax = 0.01m. Each of the previous controllers exhibit positive

traits and certain negative characteristics that made them unsatisfactory for a track-

ing controller. In this section, a control law is developed that attempts to blend the

best performance characteristics of the LQR and servo-LQR without keeping their

negative traits.

The goal of the tracking controllers is to attain a nonlinear trajectory and follow it

precisely. The step input demonstrates the controllers ability to acquire a trajectory

while the actually sinusoidal input shows how precisely a controller can track the

trajectory. The performance measure for the step input is the percent overshoot

and for the sinusoidal input is the tracking error. During the step input system, the

spacecraft is initially separated by 0.2m. On the other hand, for the sinusoidal input

system the initial separation is near zero. Since the LQR controllers advantage is in

its low percent overshoot for the step input and the servo-LQR controller is best at

minimizing tracking error for the sinusoidal reference, it would be best to use each

controller during their best performing setup. As the servo-LQR tracks a nonlinear

trajectory the best once it has acquired it, the controller should be applied when the

spacecraft is very near the trajectory. Meanwhile, the LQR controller is best suited

for any larger separations from the reference input. This methodology leads us to

the phase-plane LQR controller, where the decision logic between using the LQR or

servo-LQR controller is dependent on the state error.

A phase-plane shows the error of both states in a plot where the y-axis would

represent the velocity state error x̃k,2 and the x-axis represents the position state

error x̃k,1 in the case of a double integrator dynamics at iteration k. With this tool,

the control law can be designed to apply a specific controller in certain areas of the

phase-plane. From the discussion of advantages of the LQR and servo-LQR controller,

the servo-LQR is desired to be applied for small values of x̃k,1. Therefore, the control

law is developed to apply the servo-LQR controller for position errors of less than

135

,2kx

,1kx,1switchx

Servo-LQR
Controller

LQR Controller

k servoLQR ku K x k LQR ku K x

Figure 4-6: Phase-Plane LQR Controller

x̃switch,1,

uk =

⎧⎪⎨
⎪⎩

KservoLQRx̃k if |x̃k,1| ≤ x̃switch,1

KLQRx̃k else

(4.26)

where |x̃k,1| represents the absolute value of the position error. A depiction of the

phase-plane control law is shown in Figure 4-6. This is the simplest form of a phase-

plane controller. Future work could expand the logic to account for the velocity error

x̃k,2. Generally, one could build nonlinear patches within the phase-plane to apply

different controllers.

The phase-plane controller of Eq. (4.26) is further adjusted to improve perfor-

mance and robustness. The refinement is made towards the error integration behavior

of the switch to the servo-LQR controller. Once error integration begins, it builds

136

up over time and keeps maximizing the control effort from this term. For example,

when a step input is applied to a sole PID controller, the integration term will build

up a positive force initially until the trajectory reaches a state error of zero. At this

point, a trajectory generally overshoots and needs a negative force to return. How-

ever, since the integration term built up a positive force to this point, in the next

control cycles, it will begin to reduce it due to the negative sign of the state error but

still stay positive for a while. Even though the total control output is the addition

of the proportional-integral-derivative errors multiplied with the corresponding gains,

having the integral term provide a positive force when clearly a negative force is need

is unnecessary. Therefore, a reset on the error integration x̃k,3 = 0 is introduced to

the servo-LQR of the phase-plane controller. The logic for when to reset the error

integration term is defined to be when the sign in the state error switches.

In addition, there is another condition when to perform the reset. As mentioned,

the phase-plane controller switches between the LQR and the error integrating servo-

LQR controller. Let’s assume the controller is applied to a highly nonlinear and

difficult trajectory. While using the servo-LQR to tightly follow the trajectory, there

may come a point when the controller may deviate from it by more than x̃switch,1

and switch to the LQR controller. To this point, the servo-LQR has built up the

error integration term and has stopped once the phase-plane controller switches to

the LQR. Later on, the LQR may reacquire the trajectory with an error of less than

x̃switch,1 and switch back to the servo-LQR. Then the servo-LQR would continue on

building the non-zero integration term from where it was left off previously when

the initial switch was made. That previous accumulated error integration value is

irrelevant to the current control of the dynamics. Therefore, the error integration

term should also be reset during the switching between the LQR and servo-LQR

controller. Both of the logics for resetting the error integration xk,3 is expanded to

the phase-plane controller from Eq. (4.26) to:

137

uk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

KservoLQRx̃k if |x̃k,1| ≤ x̃switch,1

x̃k,3 =

⎧⎪⎨
⎪⎩

0 if [sign(x̃k,1) �= sign(x̃k−1,1)] or [uk−1 = LQR]

x̃k,3 else

else

KLQRx̃k

(4.27)

The value of x̃1,switch for the SPHERES application is chosen to be 0.05m after

several simulation studies. The phase-plane LQR controller response and control

profile is shown in Figures 4-7(a) and 4-7(b). When the step input is applied, the

phase-plane controller applied the LQR control during the first several seconds until

the position error reached 0.05m. To this point, the state trajectory was heading

towards a response of zero percent overshoot, as is the case for PD-type controllers.

Afterwards, the servo-LQR controller took over and stabilized the response to the

0.2m input with its ability of improving steady-state error. One worry was that

the servo-LQR would provide a large overshoot once it takes over. However, as

it is applied at only a 0.05m position error, the logic does not allow the controller

enough time to integrate the error enough to provide a large overshoot. Therefore, the

phase-plane LQR controller performs extremely well to the step input with a percent

overshoot of 2.5% and a settling time of 12.8sec, the lowest of any of the controllers.

This performance satisfies the percent overshoot requirement. Sinusoidal trajectory

tracking also shows highly satisfactory results. The phase-plane controller mainly used

the servo-LQR and would jump to the LQR controller if the state trajectory deviated

from the reference input by more than 0.05m. From the good characteristic of the

servo-LQR in tracking trajectories, the lowest tracking error is achieved to be 0.008m.

Finally, the search for a satisfactory controller is complete as both the maximum

percent overshoot and tracking error requirements are assured by the phase-plane

LQR controller. A summary of the controllers’ performance is shown in Table 4.5.

The phase-plane LQR controller will be used in the GN&C control module of

the architecture defined in Section 2.2.1. Due to its great response performance in

138

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [sec]

P
os

iti
on

 [m
]

Phase−Plane LQR Controller Performance Responses

step response
sinusoidal response
step input reference
sinusoidal input reference

(a) Phase-Plane LQR Performance Response

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time [sec]

F
or

ce
 [N

]

Phase−Plane LQR Control Input

step control input
sinusoidal control input
max/min force

(b) Phase-Plane LQR Control Input

Figure 4-7: Phase-Plane LQR Controller Performance

139

Table 4.5: Phase-Plane LQR Controller Performance Summary.

Controller Performance Term Value

Phase-Plane LQR Controller PO 2.5%
e 0.0084m
ts 12.8sec

step inputs and nonlinear trajectories, it is shown to be a robust controller for all

reasonable reference inputs sent by the MVM module. The main use of the controller

is to follow the nonlinear obstacle-free trajectories provided by the online path planner

discussed in Section 3.4. Since this is the chosen controller, the implementation for a

hardware device such as a spacecraft is shown in Algorithm 4.1. Also as the controller

is a combination of the others discussed, it shows the their possible implementations

as well. In addition to the terms for deciding to reset the integration error, a user-

supplied flag flagreset is provided to allow the MVM module to have more control of

the capabilities of the controller.

Algorithm 4.1: Phase-Plane LQR Controller

input : x̃k, KLQR, KservoLQR, Δt, x̃switch,1, flagreset

output: uk

if |x̃k(1)| ≥ x̃switch,1 then

uk = KLQR(1)x̃k(1) + KLQR(2)x̃k(2);

else
if [sign(x̃k(1)) �= sign(x̃k−1(1))] or [uk−1 = LQR] or [flagreset = 1] then

x̃k(3) = 0 ;

end

x̃k(3) = x̃k(3) + x̃k(1)Δt;

uk = KservoLQR(1)x̃k(1) + KservoLQR(2)x̃k(2) + KservoLQR(3)x̃k(3);

end
return uk

140

4.5 Summary

In this chapter, several discrete tracking controllers are presented in addition to

the PID controllers: LQR, servo-LQR, and phase-plane LQR/servo-LQR controllers.

These are for tracking a nonlinear trajectory provided by the spline-based planning

algorithm. The chapter first began by defining the performance requirements for the

controllers for applications of spacecraft docking. Specific values were determined for

the SPHERES testbed. Next, the behavior of PD and PID controllers was observed

and found to not meet the requirements. In developing the LQR controllers, methods

of tuning the gains was discussed. The last controller, phase-plane LQR, attempted

to combine the best characteristics of both the LQR and servo-LQR controllers. The

final controller showed to meet the required tracking accuracy and low-overshoot.

141

142

Chapter 5

Simulation and Experimental

Autonomous Docking

A realistic system of two spacecraft docking includes noise in both the measurement of

the states from actual sensors and process noise of the control inputs from imperfect

thrusters. In addition to these uncertainties, there are external disturbances applied

to the spacecraft by the space environment. The most common in-space disturbances

for a spacecraft in Low-Earth-Orbit (LEO) are gravity gradient, aerodynamic drag,

magnetic field, and solar pressure. Therefore, a closed-loop control system is used to

counteract any of these disturbances and uncertainties in order for the spacecraft to

follow a desired trajectory. There are two components that will maneuver a spacecraft

for docking to complex tumbling target spacecraft. First is the decision in the desired

trajectory that drives the chaser from its initial state to a final state that aligns it

infront of the docking port axis. This is accomplished by the spline-based trajectory

planning algorithm developed in Chapter 3 and described in Algorithm 3.1. The

computed path is an energy sub-optimal trajectory that avoids the target spacecraft

as an obstacle. The second component consists of the trajectory tracking controller

developed in Chapter 4, which executes a closed-loop control law that follows the path

calculated by the planning algorithm. These two algorithms developed in this thesis

are coupled together to execute the robustly designed phases of a docking mission

managed by the new MVM module described in Section 2.3.1. The overall GN&C

143

architecture in Figure 2-7 on page 38 shows these two components working together

managed by the MVM module.

The new autonomous system for docking is tested in simulations for varying target

tumbling scenarios. The simulation runs also show the new autonomous system ability

to dock to a tumbling spacecraft from any random initial configurations. In addition,

the new spline-based planning algorithm is experimentally tested on the SPHERES

testbed aboard the International Space Station (ISS). The testing facility provides

a true micro-gravity environment and allows the spacecraft to maneuver in all six

degrees-of-freedom by the use of onboard CO2 thrusters. As this facility is a realistic

representation of an outer space environment, the algorithms tested on the SPHERES

hardware increases their Technology Readiness Level (TRL) to TRL 6 [10]. The

experimental test aboard the ISS of the spline-based planning algorithm developed in

this thesis is the first time a true path planning algorithm was successfully executed

online in micro-gravity. In addition to being the first in-space online path planner, it

is also the first to account for obstacle avoidance. The experimental validation has

provided a large step in the advancement of space technology, specifically for docking

purposes.

The simulation and experimental runs are to validate the capability of the new

autonomous docking system by the inclusion of the following improvements:

• A new robust formulation of docking mission phases described in Table 2.3 on page 39

and developed in Chapter 2. Tested in both experiment and simulation.

• An upgrade of the solver module with the spline-based trajectory planning

Algorithm 3.1 on page 91 developed in Chapter 3. Tested in both experiment

and simulation.

• Improvement of the previous PID controller to a high-performance phase-plane

LQR controller in Algorithm 4.1 on page 140 developed in Chapter 4. Tested

only in simulation.

The table describing the position planning phases for docking scenarios from Ta-

ble 2.3 on page 39 is shown here again in Table 5.1:

144

Table 5.1: MVM maneuvers for any docking scenario.

Maneuver Controllers Termination Conditions

1. DP Axis Alignment Path planner & time limit
LQR tracking controllers

2. Inline Approach Path planner & time limit
LQR tracking controllers

3. Berthing LQR controllers state error < tol
4. Capture Open-Loop Thrust time limit

These are the phases that are executed in the following simulation and exper-

imental tests. The trajectory planner is necessary for the DP Axis Alignment

and Inline Approach phases. A description of the planning, control, and esti-

mation architecture during these two phases is shown in Figure 5-1. The MVM

module compiles the inputs required for the planning algorithm such as the ones in

Table 3.5 on page 103 when docking to a rotating spacecraft. The trajectory is cal-

culated once and saved. Then the MVM module feeds the state trajectory x∗(tk)

to the phase-plane LQR controller that determines a discrete control law executed

by onboard thrusters. Sensor noise is added to the measurements y(k + 1) while an

estimation algorithm determines the best estimate of the state x̂(tk+1). An Extended

Kalman Filter (EKF) developed by Nolet [10] is used as the estimation algorithm.

This estimated state closes the loop by feeding back to the controller that closes the

error between the desired trajectory from the planner.

The simulation and experimental tests are performed on two SPHERES of identi-

cal characteristics. Therefore, the specific values for the terminal positions and size of

the obstacle is appropriately defined. The SPHERES has a radius of 10.5 cm center-

to-face of DP, both the spacecraft and obstacle radii are defined to be R = 0.105 m

and Robs = 0.105 m. The berthing position is defined to be 4 cm from the face of the

docking port, which results in being 25 cm centroid to centroid distance between the

two spacecraft, b = 0.25 m. The DP alignment position is set to be 10 cm longer than

the berthing position, resulting in a 35 cm separation distance, z = 0.35 m. Now,

consideration is made to the buffer length Rbuffer added to the R+Robs spherical ob-

145

Trajectory Planning
(spline-based algorithm)

Trajectory Planning
(spline-based algorithm)

Tracking Controller
(phase-plane LQR)
Tracking Controller
(phase-plane LQR) Spacecraft Dynamics Spacecraft Dynamics

Estimation
(EKF)

Estimation
(EKF)

+
-

x*(tk) u(tk)

disturbanceprocess noise

x(tk+1)

sensor noise

y(tk+1)1ˆ ktx

Figure 5-1: Block Diagram of Trajectory Planning, Control, and Estimation

stacle. The buffer distance is defined to have two different values for the two different

phases, DP Axis Alignment and Inline Approach. The distance is chosen to maximize

the size of the spherical obstacle while not encompassing the terminal positions inside

it. For the DP Axis Alignment phase, the buffer length is set to be Rbuffer = 0.11 m

resulting in a spherical obstacle of R + Robs + Rbuffer = 0.32 m, which is 3 cm less

than the DP alignment position. As for the Inline Approach phase, the buffer length

is set to Rbuffer = 0.02 m with a total obstacle size of R + Robs + Rbuffer = 0.23 m, 2

cm less than the berthing position. As a result, the planning for the first phase will

consider a much larger obstacle sphere and a smaller one for the second phase. Also

the final time in the path planning for the two phases is different, tf = 100 seconds

for DP Axis Alignment and tf = 30 seconds for the Inline Approach phase. These

values hold for all the simulation tests, and is summarized in Table 5.2.

First the simulation runs are discussed to study the complete fusion of the newly

developed algorithms as an autonomous control system for docking to complex tum-

bling spacecraft.

146

Table 5.2: Parameters for DP Axis Alignment and Inline Approach phases for simu-
lation tests.

DP Axis Alignment Inline Approach

final time tf = 100sec tf = 30sec
terminal positions z = 0.35m b = 0.25m
chaser radius R = 0.105m R = 0.105m
target radius Robs = 0.105m Robs = 0.105m
buffer distance Rbuffer = 0.11m Rbuffer = 0.02m
total obstacle R + Robs + Rbuffer = 0.32m R + Robs + Rbuffer = 0.23m

5.1 Simulation Docking

A simulation study is done on the complete new autonomous control system that

combines the new phase sequences, trajectory planning algorithm, and phase-plane

LQR controller. Simulations are generally a first step at verifying a newly developed

control system. They are quick and provide the complete set of data of the dynamics.

However, the simulations only account for the physics that are modeled and can

provide results not nearly similar to a realistic environment. The simulation developed

for testing the new algorithms is of enough fidelity to be a reasonable representation

of the actual dynamics [10]. It is originally written to simulate the dynamics of

the SPHERES aboard the ISS. The MATLAB simulator is built with the following

features [10]:

• Dynamics: Double integrator translational and rigid-body attitude dynamics.

• Uncertainties: Process and measurement noise of characteristics extracted

from experimental data of the SPHERES.

• Control: Controllers are executed at a discrete cycle of 0.5Hz for position and

1Hz for attitude control.

• Estimation: Discrete Extended Kalman Filter (EKF) at an estimation rate of

5Hz for best state estimate.

147

The simulations are performed on two docking scenarios that are the most com-

plicated tumbling dynamics considered in this thesis:

Docking to Fixed Rotating Target Out-of-Plane The target spacecraft performs

a steady rotational tumble where the docking port axis sweeps a plane where

the chaser spacecraft is not initially located. The targets’ position stays fixed

through the scenario as the chaser needs to plan a path around the target

spacecraft avoiding it as an obstacle.

Docking to Fixed Coning Target Facing Backwards In this scenario, the tar-

get spacecraft turns 180◦ to face its back to the chaser and performs a steady

rotation where its rotation vector is not perpendicular to the docking port axis.

This setup causes the docking port axis to sweep a cone. The chaser spacecraft

needs again to maneuver about the target obstacle and reach its final state.

These two scenarios show the autonomous control system ability to dock from

the most difficult initial configurations. The success of these scenarios assures in the

confidence of the architecture to work on any random initial conditions.

5.1.1 Docking to Rotating Spacecraft Out-of-Plane

This scenarios attains the complexity of requiring path planning with obstacle avoid-

ance, a scenario the previous glide-slope algorithm is unable to accomplish. The

planning is performed for a tumbling target spacecraft that is rotating at a rate of

2.415 deg/sec about a random axis of rotation. However, the rate axis is assured to

have the docking port axis of the target sweep a plane in which the chaser spacecraft

is not initially located. This means that the chaser spacecraft needs to maneuver

about the x, y, and z axis to avoid the target obstacle and reach its final state. A

depiction of this scenario is shown in Figure 1-2 on page 21 in Section 1.2.

Figure 5-2 shows the calculated trajectories from the spline-based planning algo-

rithm and the actual path followed by the spacecraft for the first two phases. The

phase-plane LQR controller shows a tracking performance of 1 cm deviation from the

148

desired paths. This error tolerance is within the requirements specified in Chapter 4

of 1 cm. The 13-element state difference between the chaser and target spacecraft is

shown in Figure 5-3. The main observation is in the position and attitude difference

near the end of the scenario. For the first 130 seconds, the first two phases are exe-

cuted with the use of the path planner. Afterwards, the berthing position is tracked as

a step input to the phase-plane LQR controller until tight constraints in tolerance to

being at the berthing position and pointing straight towards the target spacecraft for

DP alignment. The quaternion attitude difference shows that the chaser spacecraft

reached the line-of-sight (LOS) cone described in Chapter 2 at about 110 seconds as

it decided to regulate its attitude. These berthing position constraints are satisfied

at 180 seconds and the chaser spacecraft executes the Capture phase as it thrusts to-

wards the target spacecraft closing in the 4 cm distance to a physical contact. Since

the spacecrafts are 10.5 cm radius, a relative distance of 21 cm results in contact.

This happens at the end of the capture phase.

A 3D plot of the computed trajectories and the one actually followed is shown

in Figure 5-4. The drawn obstacle sphere is that of the DP Axis Alignment phase

obstacle size. Therefore, the trajectory for Inline Approach enters this obstacle as

its’ obstacle size is much smaller described in Table 5.2. The plot shows reasonable

trajectories calculated by the spline-based planning algorithm and good following

performance by the phase-plane LQR controller.

The new autonomous control system proved effective at docking to a rotating

target spacecraft with satisfactory performance. In this scenario, the docking port

swept a plane where the chaser is not initially located. Thus, the chaser computed a

3D trajectory twice while avoiding the obstacle. The tracking of the berthing position

and execution of the controlled capture maneuver performed well.

149

0 20 40 60 80 100 120 140
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [sec]

P
os

iti
on

 [m
]

DP Axis Alignment and Inline Approach

x−path
y−path
z−path
x−actual
y−actual
z−actual

DP Axis Alignment Inline Aproach

Figure 5-2: Planned and Actual State Trajectories for Docking to Rotating Target
Out-of-Plane

150

0 20 40 60 80 100 120 140 160 180 200 220
−1

−0.5

0

0.5

1
Simulated real state error expressed in the target body frame

P
os

iti
on

 (
m

)

Px real
Py real
Pz real

0 20 40 60 80 100 120 140 160 180 200 220
−0.1

−0.05

0

0.05

0.1

V
el

oc
ity

 (
m

/s
)

Vx real
Vy real
Vz real

0 20 40 60 80 100 120 140 160 180 200 220
−1

−0.5

0

0.5

1

Q
ua

te
rn

io
ns

q1 real
q2 real
q3 real
q4 real

0 20 40 60 80 100 120 140 160 180 200 220

−0.2

−0.1

0

0.1

0.2

0.3

Test time, sec

wx real
wy real
wz real

Figure 5-3: State Differences for Docking to Rotating Target Out-of-Plane

151

Figure 5-4: 3D State Trajectories for Docking to Rotating Target Out-of-Plane

152

5.1.2 Docking to Coning Spacecraft backwards

The tumbling dynamics of the target spacecraft in this scenario is still a pure rotation,

but the rotation rate vector of 2.496 deg/sec is not perpendicular to the docking port

axis as in the previous scenario. This causes the docking port axis to sweep a cone. In

addition, the target spacecraft faces its back towards the chaser during the complete

coning tumbling dynamics. Therefore, it requires the chaser to maneuver in all three

x,y, and z axis to avoid the obstacle and reach the terminal position, DP alignment

and berthing positions.

The position trajectories of the DP Axis Alignment and Inline Approach phases is

shown in Figure 5-5. The computed trajectories from the path planner is shown as a

dashed curves while the actual followed by the tracking controller are the solid curves.

The accuracy in tracking for this scenario is about 2 cm, larger than then the phase-

plane LQR simulations from Chapter 4. This is due from the addition of process and

measurement uncertainty to the system simulation. The previous simulation study of

the tracking controllers in Chapter 4 is performed on a deterministic system, no noise

added. The additional uncertainties result in the larger accuracy value. Nevertheless,

the buffer distance for the first phase is 11 cm from Table 5.2 so the tracking accuracy

assures no collision. However, the Inline Approach phase has a buffer length of 2 cm

and arises concerns. Fortunately, there is no collision in this simulation run of such

a docking scenario. This emphasizes the importance in choosing the buffer distance

appropriate to the tracking uncertainty.

The state difference of the two spacecraft is shown in Figure 5-6. The first two

phases brought the chaser spacecraft to the berthing position at 168 seconds without

collision. Then this position is tracking for a short time of 6 seconds before the

Capture phase is initiated. This is how long it takes the chaser to satisfy the attitude

alignment and steady control of the berthing position to a certain low tolerance

satisfactory for executing the controlled contact. At about 120 seconds is when the

chaser entered the LOS cone to begin adjusting its attitude to align the “docking port

mechanism”.

153

0 20 40 60 80 100 120 140
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [sec]

P
os

iti
on

 [m
]

DP Axis Alignment and Inline Approach

x−path
y−path
z−path
x−actual
y−actual
z−actual

DP Axis Alignment Inline Approach

Figure 5-5: Planned and Actual State Trajectories for Docking to Coning Target
Facing Backwards

Figure 5-7 shows a 3D plot of the four phases executed to achieve docking to

a coning spacecraft. The DP Axis Alignment trajectory passes nicely about the

spherical obstacle. The following trajectory moved the chaser closer to the docking

port of the target, to within 4 cm face-to-face berthing position. At this point, it

does not take long until the chaser satisfies all the constraints to capture. The dots

show the coning path of the target spacecraft docking port axis.

The new planning algorithm and tracking controller managed by the improved

MVM module achieved the most complex docking scenario in this thesis.

154

0 20 40 60 80 100 120 140 160 180 200 220
−1

−0.5

0

0.5

1
Simulated real state error expressed in the target body frame

P
os

iti
on

 (
m

)

Px real
Py real
Pz real

0 20 40 60 80 100 120 140 160 180 200 220
−0.1

−0.05

0

0.05

0.1

V
el

oc
ity

 (
m

/s
)

Vx real
Vy real
Vz real

0 20 40 60 80 100 120 140 160 180 200 220
−1

−0.5

0

0.5

1

Q
ua

te
rn

io
ns

q1 real
q2 real
q3 real
q4 real

0 20 40 60 80 100 120 140 160 180 200 220

−0.2

−0.1

0

0.1

0.2

0.3

Test time, sec

wx real
wy real
wz real

Figure 5-6: State Differences for Docking to Coning Target Facing Backwards

155

Figure 5-7: 3D State Trajectories for Docking to Coning Target Facing Backwards

156

(a) Three SPHERES aboard the ISS in-
side the US Laboratory

(b) Astronaut Daniel Tani performing an
experiment using SPHERES during test
session 10

Figure 5-8: SPHERES testbed aboard the ISS

5.2 Experimental Docking aboard the ISS

The SPHERES testbed was developed by the MIT Space Systems Laboratory to in-

crementally advance the development, validation, and maturation of control, auton-

omy, and estimation algorithms. It utilizes the unique space environment provided

by the International Space Station (ISS) to offer full micro-gravity dynamics and

controlled experimental testing. A more detailed discussion of the facility can be

found in [4, 15, 10, 11]. Currently, there are three SPHERES aboard the ISS shown

in Figure 5-8(a) undergoing experiments in spacecraft formation flying, autonomous

docking, reconfiguration, and fragmented configurations. Figure 5-8(b) shows astro-

naut Daniel Tani performing an experiment using SPHERES during test session 10.

The testbed SPHERES has a face-to-face distance of 0.21 m while its largest di-

ameter is of 0.25 m. It uses twelve cold-gas thrusters positioned around the spacecraft

to maneuver in all six degrees of freedom; thus providing translational and attitude

control to the system. Each thruster provides a maximum force of 0.12 N resulting

in a maximum axial force of 0.24 N and 0.012 Nm of torque. The metrology system

consists of ultrasound times-of-flights from five beacons enclosing a testing volume of

1.4 m x 0.9 m x 1.2 m and three internal gyroscopes. This data feeds to the estimation

algorithm to provide real-time state data at 5Hz. In regards to autonomous docking

157

experiments, the SPHERES testbed does not have any mechanical docking ports at-

tached, but instead, a velcro system is used for the “locking mechanism.” Still, the

location of the velcro face is referred to as the docking port face of the spacecraft.

The first successful test of an online path planner in-space was performed during

the 10th testing session of the SPHERES testbed aboard the ISS on December 12,

2007. In addition to the standard path planning, the algorithm also accounted for

obstacle avoidance. The planner is the spline-based planning algorithm developed

in this thesis in Chapter 3. The experiment consisted of autonomous docking to a

fixed non-tumbling target spacecraft that has its back facing towards the chaser. This

requires the chaser spacecraft to plan a trajectory around the target considering it

as an obstacle to get in front of the docking port. The results of this experiment are

discussed in the next section.

5.2.1 Docking to Fixed Non-Tumbling Spacecraft Facing Back-

wards

This experiment demonstrates the new spline-based planning algorithm and improved

MVM module with the four mission phases. The new phase-plane LQR controller

is not implemented in this experiment and the standard PID controller from Sec-

tion 4.1 on page 120 is used for all trajectory tracking. The position control law is ex-

ecuted at a rate of 0.5 Hz while the attitude controller runs twice as fast at 1 Hz. Also,

only the position planning consisting of the four phases from Section 2.3.1 on page 39

is demonstrated. The attitude planning with the line-of-sight (LOS) cone is not im-

plemented. In this experiment, the attitude planning for chaser is Point to Target

for the first two phases, DP Axis Alignment and Inline Approach, and then Regulate

Attitude for the Berthing and Capture phases.

Before the four phases are executed, there are two maneuvers that need to be

performed in order to get the SPHERES ready for the docking scenario. At the

beginning of any experiment with SPHERES that require full state estimation, the

onboard EKF algorithm is given 15 seconds to converge to its best estimate of the

158

state while the spacecrafts are freely drifting. Afterwards, a maneuver is added for

each spacecraft to acquire the desired initial configuration for the experiment to begin.

At this point, there is full state estimation at 5Hz and the spacecrafts are oriented to

the correct initial conditions for the specified docking scenario.

As in the simulation from the previous section, the DP alignment position is de-

fined to be 0.35 m relative separation while the berthing position is 0.25 m. However,

the obstacle size for the DP Axis Alignment phase is increased to 0.34 m, and the

berthing obstacle stays the same at 0.23 m. The final time for the path planning in

the Inline Approach is reduced to 20 seconds. The parameters used for the experiment

tested docking scenario are summarized in Table 5.3.

Table 5.3: Parameters for DP Axis Alignment and Inline Approach phases for exper-
imental test.

DP Axis Alignment Inline Approach

final time tf = 100sec tf = 20sec
terminal positions z = 0.35m b = 0.25m
chaser radius R = 0.105m R = 0.105m
target radius Robs = 0.105m Robs = 0.105m
buffer distance Rbuffer = 0.13m Rbuffer = 0.02m
total obstacle R + Robs + Rbuffer = 0.34m R + Robs + Rbuffer = 0.23m

Figure 5-9 shows the full global state (position, velocity, attitude, and angular

rates) of the chaser and Figure 5-10 for the target spacecraft during the test. Fig-

ure 5-11 shows a 3D plot of the online calculated paths (dashed curves) and the

actual path (solid) followed by the chaser spacecraft. The plotted red sphere within

Figure 5-11 is that of the target satellite while the larger purple transparent sphere

represents the “obstacle” sphere the chaser planned to avoid. Lastly, Figure 5-12

shows the state differences relative to the target spacecraft body frame. The docking

scenario is decomposed into two preliminary maneuver and the four phases for the

chaser spacecraft:

1. Extended Kalman Filter (EKF) Convergence: The SPHERES satellites

are let to drift without actuation while the EKF converges to the proper states

159

(position, velocity, attitude, attitude rates) for 15 seconds.

2. Initial Configuration: The chaser spacecraft orients its attitude to point

towards the target spacecraft and waits until the target turns to face its back

to the chaser and points the docking port (DP) away. This maneuver setup the

initial configuration of both spacecraft to begin the docking scenario and lasts

23 seconds as seen in Figure 5-9.

3. DP Axis Alignment: The chaser spacecraft calculates a path online from

its current position to 14 cm in front of the targets’ docking port face while

considering the target as an obstacle so no collision occurs. The path is planned

and executed for 100 seconds. Then another 10 seconds is added for the chaser

to stay at the DP alignment position. This allows the chaser to be aligned

with the docking port axis of the target and prepares to move closer inline

to the docking port face. The chaser keeps its attitude pointing towards the

target throughout the whole trajectory following. By observing Figure 5-11, the

calculated trajectory is feasible and a success. It avoids the target spacecraft,

ends 14 cm in front of the docking port, and has a continues and smooth form for

execution. However, the trajectory following had very weak performance using

the PID controller. There is a maximum deviation of 10 cm from the planned

trajectory. Fortunately, the path deviation is away from the obstacle. Also, the

buffer distance for this maneuver is set to 13 cm, so no collision would occur

if the actual trajectory deviated towards the obstacle. This test emphasized

the importance to develop improved tracking controller such as the phase-plane

LQR control law. Unfortunately, this controller has not been tested aboard the

ISS, but is currently implemented for the next test session.

4. Inline Approach: The chaser calculates a second path online to move close to

within 4 cm from the target’s docking port face. As the chaser did not follow

the first path perfectly, it ended in a different location other than the 14 cm

in front of the DP, but at 20 cm from the target’s face. Therefore, planning

of a second path is wise and the calculated trajectory as seen in Figure 5-11 is

160

feasible and a success. Here, the PID controller is used again to the follow the

trajectory. One characteristic of PID controllers is having a higher overshoot

than PD-type controller. As a result, when the chaser is following the trajectory

to 4 cm within the DP face, it overshot 2 cm further. These results show how

dangerous overshooting is at such close proximity. The chaser spacecraft keeps

pointing towards the target during this phase.

5. Berthing: The chaser spacecraft maintains a distance 4 cm in front of the

targets’ DP face until the position and state error are below a tight tolerance

before executing a controlled capture thrust. The tight position and attitude

constraints are for alignment of the two docking ports. The satisfaction of these

constraints is seen on the first plot of Figure 5-12, as the relative position in y

and z directions are near zero as x is along the docking port axis. The chaser

also performs a roll for Regulate Attitude to align the DP faces. This phase lasts

for 25 seconds.

6. Capture: The chaser spacecraft performs a closed-loop thrust to “capture”,

velcro contact. This is performed by providing a step input to the chaser to

move 1 cm into the target spacecraft using the PID controller. There is a 12

second time out of this phase. This is sufficient time for the spacecraft to move

in 4 cm. This resulted in a controlled physical contact at 215 seconds.

This experimental test using SPHERES aboard the ISS successfully validated

the first online path planner in micro-gravity , the spline-based planner in Algo-

rithm 3.1 on page 91. The planning algorithm achieved in calculating an energy sub-

optimal trajectory online that avoids a spherical obstacle. After this experiment, the

spline-based planning algorithm could be considered to have matured to TRL 6. The

PID tracking controllers showed a poor performance and emphasized the necessity to

have a low-overshooting and tight tracking controller. Such a controller is developed

in Chapter 4, but has not yet been implemented and tested on the SPHERES testbed

aboard the ISS. The experiment also validated the new sequence of phases in position

planning for docking missions.

161

0 50 100 150 200

-1

0

1

Background telemetry states (standard), Sphere 1

P
os

, m

Px
Py
Pz
Man

0 50 100 150 200
-0.1

0

0.1

V
el

, m
/s

Vx
Vy
Vz
Man

0 50 100 150 200
-1

0

1

A
tti

tu
de

q1
q2
q3
q4
Man

0 50 100 150 200

-0.2

0

0.2

R
ot

 ra
te

s,
 ra

d/
s

Test time, s

wx
wy
wz
Man

EKF Init Config. DP Axis Alignment Inline Approach Berthing Capture

Figure 5-9: State Estimates of Chaser Spacecraft from Experimental Test of Docking
to Fixed Non-Tumbling Spacecraft Facing Backwards

162

0 50 100 150 200

-1

0

1

Background telemetry states (standard), Sphere 2

P
os

, m

Px
Py
Pz
Man

0 50 100 150 200
-0.1

0

0.1

V
el

, m
/s

Vx
Vy
Vz
Man

0 50 100 150 200
-1

0

1

A
tti

tu
de

q1
q2
q3
q4
Man

0 50 100 150 200

-0.2

0

0.2

R
ot

 ra
te

s,
 ra

d/
s

Test time, s

wx
wy
wz
Man

EKF Rotate Away Hold position and attitude

Figure 5-10: State Estimates of Target Spacecraft from Experimental Test of Docking
to Fixed Non-Tumbling Spacecraft Facing Backwards

163

DP axis alignment
trajectory - actual

DP axis alignment
trajectory - planned

Obstacle

Initial state

DP alignment
position

Berthing and
Capture

Figure 5-11: 3D Plot of Computed and Actual Trajectories of Chaser Spacecraft from
Experimental Test of Docking to Fixed Non-Tumbling Spacecraft Facing Backwards

164

0 50 100 150 200
-1

-0.5

0

0.5

1

1 2 34 30 40 11 12

1 25 9

P
os

, m

Background telemetry translational state differences (standard) for Sphere logical ID 1 and 2

Px
Py
Pz

0 50 100 150 200
-0.05

0

0.05

V
el

, m
/s

Vx
Vy
Vz

Time [sec]

EKF Init Config. DP Axis Alignment Inline Approach Berthing Capture

Figure 5-12: State Differences between Both Spacecraft from Experimental Test of
Docking to Fixed Non-Tumbling Spacecraft Facing Backwards

165

5.3 Summary

This chapter validated the new autonomous GN&C architecture and its algorithms,

spline-based trajectory planning algorithm and phase-plane LQR controller. Two

simulations were performed of the most complicated docking scenarios. The com-

bined path planner and tracking controllers achieved a successful dock of the two

scenarios. In order to verify the planning algorithm in a realistic space environment,

an experimental test was performed on the SPHERES testbed aboard the ISS. The

test successfully demonstrated the first in-space online path planner in a docking sce-

nario of a fixed non-tumbling target spacecraft facing backwards. This brought the

spline-based planning algorithm to TRL 6 and significantly advanced this dates space

technology for autonomous docking.

166

Chapter 6

Conclusions and Recommendations

6.1 Thesis Summary

This thesis presented a GN&C architecture and algorithms that attempt to supersede

the traditional method of docking with an autonomous onboard solution solution that

requires little or no human-in-the-loop supervision. First, there was a discussion of

docking scenarios for tumbling target spacecraft to define the problem statement in

Chapter 1. Then a GN&C architecture is presented that consists of several modules

performing its unique functions in Chapter 2. It was determined that the capability

of the architecture is dependent on the algorithms employed in each of the mod-

ules. The better each algorithm performs its required function, the better the overall

system architecture performs. This was a motivation to develop a new trajectory

planning algorithm that accounts for obstacles in Chapter 3. Without a planner

with obstacle avoidance, docking to a tumbling spacecraft is not achievable by the

previous glideslope algorithm from any initial configuration. Two planner were devel-

oped. One that was to be implemented into the GN&C architecture, the spline-based

algorithm 3.1, and another to validate the planning results of the algorithm, the vari-

ational technique to optimal planning. The comparison showed that the sub-optimal

trajectories were close to the benchmark planner and satisfactory for the application

of two spacecraft docking. Then in order to track the planned trajectory in a closed-

loop system that handles noises and disturbances, several LQR tracking controller

167

were developed in Chapter 4. The performance of each controller was studied and

the final phase-plane LQR controller tried to put together the best characteristics of

both the LQR and servo-LQR controllers into Algorithm 4.1. Then the spline-based

algorithm and the phase-plane LQR controller is coupled together to execute the

robustly designed phases of a docking mission managed by the new MVM module

described in Section 2.3.1. The complete autonomous control system was tested in

simulation and experiment on the SPHERES testbed aboard the ISS. The simulations

demonstrated successful docking of the two scenarios: Docking to Fixed Rotating Tar-

get Out-of-Plane and Docking to Fixed Coning Target Facing Backwards. These are

the most complicated docking scenarios considered in this thesis. The experimental

test performed the first in-space online path planning algorithm to a docking scenario

of a fixed non-tumbling target spacecraft facing backwards. The chaser managed

to calculate a feasible trajectory online and execute it using a PID controller. This

brought the spline-based planning algorithm to possible TRL level 6 and significantly

advanced todays space technology for autonomous docking.

6.2 Issues and Recommendations

The issues and recommendations are considered for expanding the complexity of the

docking scenarios, improving the new planning algorithm and tracking controller:

• The most complicated tumbling dynamics of the target considered in this thesis

is when the spacecraft is performing a steady rotation about some axis, assuming

symmetric inertia tensor. Further work should account for asymmetric inertias

which lead to nutation dynamics of the docking port. The current architecture

and algorithm are in a form to handle these dynamics as the state propagator

considers non-trivial inertias. However, future work would need to test these

algorithms in such docking scenarios.

• The planning algorithm has shown to perform well in hardware, but there are

several issues that still need to be addressed for implementation on an actual

168

spacecraft. This issue is with knowing the state of the target spacecraft at the

pre-defined final time tf . The current method simply propagates the initial state

of the target with translational and attitude dynamics model in a deterministic

manner. However, the problem here is with knowing how accurate that initial

state is. Realistically, the measured state would be provided by hardware sensor

and would thus consist of having some level of noise. Propagating the noisy state

into the future increases your uncertainty in that state the longer you propagate.

It is a similar case in ballistic projectiles. If you know the initial position and

velocity to a certain accuracy, how accurate can you predict where it will be in

the future. Therefore, the issue of planning under uncertainty arises. Possible

solutions by still using the current planner would be to plan ahead only to the

time where the level of uncertainty is acceptable. Determining this level of

uncertainty for spacecraft docking is also a good topic to study. For example, if

we know the final attitude of the spacecraft to within 100 degrees, then if we re-

plan, one would get trajectories all over the place that are impossible to follow

and might collide with the target. Another possible future work is to extend

the path planner to multiple moving obstacles. Currently it is implemented

to handle a single non-moving obstacle, as this is sufficient enough for just two

spacecraft docking. However, many other mission require in-space assembly and

reconfiguration, so multiple spacecraft would be flying around.

• Further work can be performed on the phase-plane LQR controller by adding

the velocity state error in the control logic. Currently, only the position error is

considered when switching between the LQR and servo-LQR controllers. Con-

sidering the velocity error could have the phase-plane controller not apply the

servo-LQR below the defined position error if the velocity error is too large.

This would increase the robustness of the controller to more extreme dynamics.

Further work would be to test this controller in hardware on the SPHERES

testbed aboard the ISS to show an improvement to the current PID controller.

169

170

Bibliography

[1] Wigbert Fehse. Automated Rendezvous and Docking of Spacecraft. Cambridge

University Press, Cambridge, United Kingdom, 2003.

[2] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic

Systems. Prentice Hall, Upper Saddle River, NJ, 2002.

[3] Carl Glen Henshaw. A Variational Technique for Spacecraft Trajectory Planning.

PhD thesis, University of Maryland College Park, 2003.

[4] Mark Hilstad. A multi-vehicle testbed and interface framework for the develop-

ment and verifcation of separated spacecraft control algorithms. Master’s thesis,

Massachusetts Institute of Technology, 2002.

[5] Geoffrey Huntington. Advancement and Analysis of a Gauss Pseudospectral

Transcription for Optimal Control Problems. PhD thesis, Massachusetts Insti-

tute of Technology, 2007.

[6] Donald E. Kirk. Optimal Control Theory. Prentice-Hall, Englewood Cliffs, NJ,

1970.

[7] E. M. Kong, M. O. Hilstad, S. Nolet, and D. W. Miller. Development and ver-

ification of algorithms for spacecraft formation flight using the spheres testbed:

Application to tpf. SPIE, 5491:308–319, 2004.

[8] S. M. Lavalle. Planning Algorithms. Cambridge University Press, Cambridge,

United Kingdom, 2006.

171

[9] Michael F. Machula and Gurpartap S. Sandhoo. Rendezvous and docking for

space exploration. 1st Space Exploration Conference: Continuing the Voyage of

Discovery, 2005.

[10] Simon Nolet. Development of Guidance, Navigation and Control Architecture

and Validation Process Enabling Autonomous Docking to a Tumbling Satellite.

PhD thesis, Massachusetts Institute of Technology, 2007.

[11] A. S. Otero, A. Chen, D. W. Miller, and M. Hilstand. Spheres: Development

of an iss laboratory for formation fligh and docking research. IEEE Aerospace

Conference Proceedings, 25:59–73, 2002.

[12] Michael A. Paluszek and Stephanie J. Thomas. Generalized 3d spacecraft prox-

imity path planning using a*. Infotech at Aerospace, 2005.

[13] Richard Quintero, Raymond C. Montgomery, and Jr. Peter Tchoryk. Au-

tonomous rendezvous and docking scenarios for the development of guidelines

and standards. AIAA Space Program and Technologies Conference and Exhibit,

1993.

[14] A. Richards, T. Schouwenaars, J. P. How, and E. Feron. Spacecraft trajectory

planning with avoidance constraints. Journal of Guidance control and dynamics,

4:755–764, 2002.

[15] Alvar Saenz-Otero. Design Principles for the Development of Space Technology

Maturation Laboratories Aboard the International Space Station. PhD thesis,

Massachusetts Institute of Technology, 2005.

[16] Lawrence F. Shampine, Jacek Kierzenka, and Mark W. Reichelt. Solving bound-

ary value problems for ordinary differential equations in matlab with bvp4c. The

MathWorks, Inc. tutorial, 2000.

[17] Marcel J. Sidi. Spacecraft Dynamics and Control, A Practical Engineering Ap-

proach. Cambridge University Press, Cambridge, United Kingdom, 1997.

172

[18] Cornel Sultan, Sanjeev Seereram, and Raman K. Mehra. Deep space formation

flying spacecraft path planning. The International Journal of Robotics Research,

26:405–430, 2007.

[19] W T Vetterling W H Press, S A Teukolsky. Numerical Recipes in C: The Art of

Scientific Computing. Cambridge University Press, Cambridge, United Kingdom,

1993.

[20] Bong Wie. Space Vehicle Dynamics and Control. AIAA Education Series, Reston,

VA, 1998.

[21] Douglas Zimpfer, Peter Kachmar, and Seamus Tuohy. Autonomous rendezvous,

capture and in-space assembly: Past, present and future. 1st Space Exploration

Conference: Continuing the Voyage of Discovery, 2005.

173

	Introduction
	Motivation
	Docking Scenarios
	Thesis approach

	Autonomous GN&C Architecture
	Previous GN&C Architecture
	GN&C Architecture Modules
	Algorithms of the GN&C Architecture
	Capabilities of Previous Algorithms
	Previous Mission & Vehicle Management Module

	Advancements in Module Algorithms
	Advancements in MVM Module
	Conclusion of Advancements

	Summary

	Trajectory Planning
	Path Planning Problem Formulation
	Optimal Path Planning Problem Formulation General

	Path Planning Problem Formulation for Docking
	Cost Functional for Docking
	State Transition Equation for Docking
	Terminal States for Docking
	Obstacles for Docking
	Planning Problem Formulation for Docking Summary

	Variational Technique to Optimal Path Planning
	Euler-Lagrange Equations General
	Euler-Lagrange Equations for Docking

	Spline-Based Trajectory Planning Algorithm
	Comparison of Trajectory Planning Algorithms
	Docking to Fixed Target Facing Forwards
	Docking to Fixed Rotating Target In-Plane
	Docking to Fixed Coning Target Facing Backwards
	Comparison Summary

	Summary

	Trajectory Tracking
	PD/PID Controllers
	LQR Controller
	Servo-LQR Controller
	Phase-Plane LQR Controller
	Summary

	Simulation and Experimental Autonomous Docking
	Simulation Docking
	Docking to Rotating Spacecraft Out-of-Plane
	Docking to Coning Spacecraft backwards

	Experimental Docking aboard the ISS
	Docking to Fixed Non-Tumbling Spacecraft Facing Backwards

	Summary

	Conclusions and Recommendations
	Thesis Summary
	Issues and Recommendations

