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Abstract

In this thesis, I present a dynamic key frames algorithm for state estimation from
observations. The algorithm uses KL-divergence as a metric to identify the frames
that contribute the most information to estimation of the system’s current state.
The algorithm is first presented in a numerical optimization framework and then
developed as an extension to the Condensation algorithm. Finally, I present results
from a Matlab simulation of the algorithm.
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Chapter 1

Introduction

Many problems in signal processing and artificial intelligence may be framed as state

estimation from past observations. One such task is object tracking. In object track-

ing, the path of an object is estimated as the object moves through a series of camera

frames.

Object tracking is an important task in machine vision. It is useful for a wide

variety of tasks from 3D structure-from-motion to video surveillance. In 3D structure-

from-motion, we track known points on a 3D object. Then, the 3D structure of those

points is inferred from their trajectories. In video surveillance, one could track people

of interest and look for suspicious behavior. Similarly, one could track the players

in a sporting event. Finally, at a more basic level, object tracking may be used as a

means of locating an object in an image during a time when it is occluded, increasing

machine intelligence by allowing a computer to understand that an object has not

entirely disappeared just because it is not visible.

In this thesis, we will develop a new algorithm for state estimation that provides an

efficient way to identify and save relevant historical observations in order to improve

tracking robustness. Then we will test our algorithm in simulation.
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1.1 Challenges

Many algorithms perform quite well when tracking particular objects under controlled

conditions. Unfortunately, object tracking in the general case remains an open prob-

lem. Background clutter, partial occlusions, unusual perspectives, lighting, and many

other factors make reliable image understanding and tracking extremely difficult.

Some properties that commonly confound state estimation are nonlinear dynam-

ics and complex probability distributions. Unfortunately, both are present in object

tracking. A moving object, such as a person, may follow a highly nonlinear dy-

namic model. Nonlinear dynamics, while not necessarily intractable, make efficient

algorithms for state estimation scarce.

The probability distributions present in object tracking are also very complex.

For example, in the presence of image clutter, a tracking algorithm may see a plu-

rality of objects that look like the one it was tracking, generating highly multimodal

distributions. The problem is magnified when tracking multiple targets, as the image

always has a plurality of similar objects.

Occlusions, or frames where the object of interest is hidden behind another object,

present another difficult problem. While the temporary loss of data would reflect a

failure in many systems, it is a natural occurrence when multiple objects interact

in a scene. A successful tracking algorithm must be able to understand the object’s

dynamics and predict the location of the object even when it is completely hidden or

only partially visible so that it can recover tracking when the object reappears.

Some other difficulties of object tracking are inherent to object detection and

image understanding. Varying image conditions may make accurate detection and

localization quite difficult and generate a significant amount of noise. The exact

location of an object may vary from frame to frame based on subtle changes in its

identifying features and even the discretization implicit in the digital image. For

example, lighting fluctuations on a shadowed edge of an object may significantly

affect the perceived boundary, generating substantial noise in the observed center of

the object.
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We will demonstrate a general framework that is able to handle these difficulties

more effectively than existing algorithms.

1.2 Existing Work

Many solutions to the object tracking problem have been attempted with varying

success. In theory, the best approach would use all historical observations in a batch

optimization to estimate the object’s current location. Unfortunately, this quickly

becomes intractable because the data set grows linearly with time.

To efficiently track objects, many people have developed recursive Bayesian algo-

rithms [10][8][17][6]. These algorithms assume Markovianity of the object’s position

process and compute the posterior probability distribution, i.e. the probability dis-

tribution over the current location of the object, from the distribution at the last

frame and the current image. This gives a recursive form to the solution, rendering

the resulting problem tractable.

One of the earliest such algorithms used for object tracking is the Kalman fil-

ter [10]. The Kalman filter is an optimal, recursive estimator for linear Gaussian

systems. Consequently, if the input observations are best modeled by a linear Gaus-

sian system, this will work very well. Unfortunately, as we have already discussed,

dynamics are frequently nonlinear and distributions are often multimodal. The details

of the Kalman filter are discussed in section 3.2.1.

The Kalman filter has been extended to handle nonlinear dynamics and subse-

quently applied to object tracking in more complex situations [9]. The extended

Kalman filter (EKF) extends this idea to include nonlinear dynamics by using linear

approximations when propagating the covariance. Unfortunately, it is neither an opti-

mal estimator nor proven to converge, so it may be useless in other applications. The

Unscented Kalman Filter (UKF) of Julier et al. [9] builds on the EKF by elegantly

propagating both the mean and the covariance through the nonlinear system. This

addresses some nonlinear dynamics issues, but it still requires Gaussian distributions.

In order to handle image clutter, Shalom et al. developed the probabilistic data

15



association filter (PDAF) [17][6]. The PDAF is a Bayesian algorithm that can prob-

abilistically handle multiple observations in the vicinity of the object being tracked.

The PDAF incorporates the probability that a particular observation was generated

by the desired object, giving it more flexibility than all-or-nothing approaches.

A more recent development in recursive Bayesian algorithms adopts the idea of a

particle filter [8][15]. Issard and Blake’s Condensation algorithm permits arbitrarily

complex posterior distributions and dynamic models at a reasonable cost in accuracy

and efficiency [8]. In practice, the Condensation algorithm performs fairly well in

many contexts. Its ability to maintain arbitrarily complex distributions allows it to

handle the complex posteriors that frequently occur in noisy and occluded object

tracking settings. We will extend this algorithm in section 2.2.

However, the Markovian assumption is frequently wrong. To handle these cases,

some have attempted to apply semi-Markovian models to other tracking environ-

ments [12]. A semi-Markov process is similar to a Markov one, except that the time

between state transitions may be distributed according to a more general probabilis-

tic distribution (as opposed to the geometric form inherent in a standard Markov

process.) Such models offer significant power but require model-specific recursive

algorithms. In contrast, our approach only assumes smoothness.

Some tracking algorithms take a different approach and focus on developing ac-

curate models of the item being tracked [11][1][18]. For example, human motion

tracking algorithms will frequently use a model of the human body to improve per-

formance. An extreme example is the SCAPE model which uses a detailed 3D surface

model to estimate human pose and track motion accurately [1]. Similarly, the feature-

based algorithm of Shi and Tomasi tracks objects by analyzing the motion of model

features from frame to frame [18]. These approaches may work well, but like the

semi-Markovian models, they are very task- and situation-specific. In particular,

they require a good model a priori, and, in many cases, it is difficult or impossible to

construct such a model.

Another body of research has tackled the problem of simultaneously tracking

multiple targets. One of the biggest challenges with multiple target tracking is the
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data association problem: determining the correspondence between observations and

targets.

In many ways, the problem is similar to that of tracking objects in clutter. An

algorithm must decide whether or not a particular observation corresponds to the

current trajectory, with the new constraints that an object may belong to one of

many trajectories. Given this similarity, a natural approach to multiple target track-

ing was to extend the PDAF to handle multiple targets [7]. The resulting joint

probabilistic data association filter (JPDAF) has been used and extended in many

multi-target tracking applications, including tracking contours with HMMs [3] and

mobile robotics [5].

One fundamental approach is multiple hypothesis tracking (MHT) pioneered by

Reid [16]. MHT maintains a set of trajectories based on particular observation-

target associations. Unfortunately, the number of possible assignment sets grows

exponentially with time. Consequently, much of the ongoing work in MHT revolves

around efficient approximations and heuristics. For example, Cox and Hingorani

keep only the k best trajectories [4], and Vasquez and Williams exploit correlation

effects [20].

A more recent idea applies Markov chain Monte Carlo simulation to the tracking

problem [14]. These methods have become possible with the increased power of

modern computers and have produced strong results.

While most approaches to multiple target tracking involve data association, the

task may be circumvented through alternative statistical techniques. For example,

network tomography infers global trajectories from local movements without explicitly

identifying objects. Boyd and Meloche use this approach to track pedestrians at a

crowded intersection [2].

Finally, another set of tracking algorithms use a key frames approach. A small

subset of observations is kept and used to track in a manner similar to batch process-

ing. Vacchetti et al. [19] and Morency et al. [13] use heuristics or hand labeling to

identify representative views of an object as their key frames. At any given step, these

views are used to estimate the location and perspective of the object being tracked.
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When necessary, the key frame set is updated using heuristics.

In contrast, our dynamic key frames algorithm (DKF) keeps the locally optimal

frames for estimating both the current location and dynamics of the object. At each

step, the algorithm computes and saves the set of key frames most relevant to its

understanding of the system’s state. This gives more robustness than either the

Bayesian recursive algorithms or the existing heuristic-based key frames approaches.

In the following chapters, we will describe the design and implementation of DKF.

Chapter 2 discuss the theory behind the algorithm and formulates it in the particle

filter framework of Condensation. Chapter 3 discusses our implementation of both a

batch DKF version and the Condensation DKF algorithm. Finally, in chapter 4 we

conclude and recommend future work.
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Chapter 2

The DKF Algorithm

We propose a general application of the key frames paradigm to estimate state from

observations. It will maintain a dynamic active set of key frames chosen to maximize

the amount of information known about the current state of the system. At each

step, the algorithm will estimate the system’s current state and use Kullbak-Leiber

divergence (KL-divergence) computations to determine which frames in the active set

are most relevant.

Formally, we wish to estimate the trajectory Xt = {x0, . . . xt} from image obser-

vations I0, . . . It. A global optimization routine seeks to optimize the full posterior.

Namely, it seeks to find the optimal estimate x̂t of the current state xt given all

previous frame data:

x̂0 . . . x̂t = argmax
x0,...xt

P (x0 . . . xt|I0, . . . It).

In contrast, a recursive Bayesian optimization solution assumes Markovianity, giving

the following factorization of the joint posterior:

P (x0, . . . , xt|I1, . . . , It) = P (x0)
k∏

i=1

P (Ii|xi) · P (xi|xi−1).

This naturally leads to algorithms of the prediction/update form seen in the Kalman

19



filter:

P (xt|It−1) =

∫
P (xt|xt−1)P (xt−1|It−1) dxt−1

P (xt|It) = αP (It|xt)P (xt|It−1)

Our approach will take a middle ground, optimizing over a small active set AS =

{I1, I2, . . . Ik} of frames, i.e.

x̂t1 , . . . x̂tk x̂t = argmax
xt1 ,...xtk

,xt

P (xt|AS).

Finally, we take the estimate of the current state to be x̂ as computed above. For

notational purposes, let Zt be the posterior distribution over possible positions xt of

an object in an image at time t and x̂(Zt) be the best estimate of xt from Zt. Also,

Zt(S) be the distribution over possible positions xt based on dynamic constraints and

a set of frames S, and x̂(S) = x̂(Zt(S)) as shorthand. In essence,

Zt(AS) ∼ P (xt|AS).

Figure 2-1: At each step, the algorithm keeps the frames most influential to the
distribution of Zt.

In our approach, we maintain an active set of frames AS and keep only those
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frames most relevant to our knowledge object’s current position. At a high level, the

algorithm may be summarized as follows:

1. Incorporate the current frame, ft, by adding it to the active set, ASt = AS ′t−1∪

{ft}.

2. Estimate xt from the frames in the active set as x̂(ASt).

3. Discard frames to keep the active set small, i.e. AS ′t = SELECT (ASt).

The key to making the algorithm work well is to design SELECT (ASt) to keep the

most useful frames from ASt. Our goal is to demonstrate the superiority of a KL-

divergence based SELECT . In this thesis, we elect to keep exactly k frames from

step to step and compare a few different approaches:

1. Keep the last k frames. This gives

SELECT (ASt = {It1 , . . . , Itk , It}) = {It2 , . . . , Itk , It}

2. Keep the k frames that minimize the Euclidean distance between x̂(ASt) and

x̂(AS ′t), i.e.

SELECT (ASt = {It1 , . . . , Itk , It}) = ASt − argmin
Ij∈ASt

|x̂t(ASt)− x̂t(ASt − Ij)| .

3. Keep the k frames that minimize the KL-divergence between Zt(ASt) and

Zt(AS
′
t), i.e.

SELECT (ASt = {It1 , . . . , Itk , It}) = ASt−argmin
Ij∈ASt

DKL(Zt(ASt−Ij)−Zt(ASt))

where DKL(·) is defined as

DKL(Zt(ÃSt)‖Zt(ASt)) =

∫
pZt(ÃSt)

(x) log
pZt(ÃSt)

(x)

qZt(ASt)(x)
dx

21



or as

DKL(Zt(ÃSt)‖Zt(ASt)) =
∑

pZt(ÃSt)
(x) log

pZt(ÃSt)
(x)

qZt(ASt)(x)

for discrete distributions.

4. Keep all the frames.

We expect the KL-divergence to have the best performance of the tractable

SELECT implementations. The KL-divergence measures the distance between the

Zt distributions, thereby approximating the information from all the frames in ASt

as well as possible.

In contrast, keeping the last k frames fails to consider the relevance of the obser-

vations. For example, occlusions frequently happen for significant, contiguous blocks

of time. If an object is occluded for more than k frames, keeping the last k frames is

of little added benefit. One might employ a heuristic to determine that the current

frames were empty, but the other approaches solve the problem more generally.

Minimizing the Euclidean distance provides some measure of relevance when se-

lecting the active set. Its weakness is that it only propagates the mode of Zt. At

each step, the algorithm is forced to commit to a particular trajectory assignment

and picks frames that will, in the future, bias it toward that choice. Thus, while it

may handle occlusions well, it will likely fail when it is important to maintain the

multimodality of Zt.

Finally, as previously noted, keeping the entire frame history in the active set is

computationally intractable. However, it is a useful performance benchmark that we

will use later.

2.1 Multiple Target Tracking

One of our goals in this work is to demonstrate the performance of DKF when simul-

taneously tracking multiple targets. To simultaneously track, we augment Xt (and
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therefore xt) to include the position of all objects being tracked, e.g.

xt =


x1

t

x2
t

...


where xj

t is the location of object j at time t. This sacrifices efficiency for accuracy, as

it significantly increases the dimensionality of the tracking space. In the future, when

we refer to X, xt, and x̂, we are referring to the concatenation of of the locations and

estimates for all objects being tracked.

This complicates our computation of x̂t. In general, using the instantaneous mode

of a multimodal distribution is potentially unstable because the estimate may jump

between modes. In the case of multiple targets, this manifests itself as x̂t jumping

between trajectories.

2.2 Condensation-DKF

In order to practically implement dynamic key frames, we need to give efficient ways

to compute x̂ and SELECT (ASt). Instead of seeking an analytic solution, we will

seek a numerical approximation using a particle filter. Specifically, we will extend

the Condensation algorithm. This will give us arbitrary (theoretical) precision in a

simple implementation.

Issard and Blake’s Condensation algorithm [8] is a standard, weighted particle

filter resampled at each timestep. At time t, we start with the weighted samples

from the previous step, {s(n)
t−1, π

(n)
t−1} where s

(n)
t−1 corresponds to sample n and π

(n)
t−1 is

the weight for sample n. We sample from this distribution and do a randomized

prediction to get the next set of samples, {s(n)
t }. Finally, we compute new weights

based on the current image.

The algorithm can be summarized as follows:

1. Sample. Given {s(n)
t−1, π

(n)
t−1}, sample from the weighted particle distribution to
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get a set of particles {s′(n)
t−1}.

2. Drift and diffuse. Deterministically predict the next location for each particle

and add noise to each sample according to the dynamic model. This gives

{s(n)
t }.

3. Weight. Compute new weights {π(n)
t−1} = {Pr(s(n)

t |It)}, i.e. the conditional

probability of the sample given the current frame.

At the sampling stage, the particles will be distributed according to Pr(s
(n)
t−1|Zt−1).

In the drift and diffusion stage, the probability of getting a particular sample s
(n)
t can

be written as Pr(s
(n)
t |s

(n)
t−1). The algorithm is implemented such that this conditional

probability matches the system dynamics. This gives samples {s(n)
t } distributed ac-

cording to

Pr(s
(n)
t |s

(n)
t−1) · Pr(s

(n)
t−1|Zt−1) = Pr(s

(n)
t |Zt−1).

Finally, the weights are then chosen to be {π(n)
t−1} = {Pr(s(n)

t |ft)}. This implies

that the final weighted particle distribution is a representation of

Pr(s
(n)
t |Zt−1 ∩ ft).

In the limit as the number of particles grows, the collection will approach the true

distribution, thus making the Condensation algorithm a correct recursive estimator.

The only remaining task is to estimate x̂t from Zt. For this thesis, we compute x̂t

as the mode of Zt. As noted earlier, this is slightly problematic.

Now, we are ready to define Condensation-DKF. We extend our samples to include

a trajectory over the frames in the active set. Previously, condensation samples

contained only position and velocity information for the object at time t. Now,

samples will also include position information for each of the frames contained in the

active set.

Conveniently, the computation of x̂ does not change from a traditional condensa-

tion implementation. It is computed as the instantaneous mode of Zt by ignoring the

historical trajectory information to get the marginal distribution over xt.
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Now, we need to show how to implement DKF. First, in order to compare two

potential active sets, we need a way to represent Zt(ÃSt) where ÃSt ⊂ ASt. For this,

we keep the same particles, discard information for frames not in ÃSt, and compute

new weights πn
ÃS

. This gives us an approximation of Zt(ÃSt).

When using the Euclidean distance metric, we can compute x̂(ÃSt) and pick the

best subset ÃSt.

Computing the KL-divergence is slightly more difficult. The distribution Zt is

ideally continuous. This gives us the following form for the KL-divergence:

DKL(Zt(ÃSt)‖Zt(ASt)) =

∫
pZt(ÃSt)

(x) log
pZt(ÃSt)

(x)

qZt(ASt)(x)
dx.

However, we cannot easily compute this function in continuous space, so we would

like to use the discrete version as an approximation. The easy approach is to perform

the sum such that each sample trajectory sn
t corresponds to a point in the sum, i.e.

DKL(Zt(ÃSt)‖Zt(ASt)) =
∑

n

αn
ÃS

log
βn

ÃS

γn
AS

for some appropriate α, β, and γ. We observe that the total probability of a trajectory

selected this way is δn ·πn
S, where S is the active set being used and δ is the probability

implicitly encoded in the particle distribution. This suggests that we take

α = β = δn · πn
ÃSt

.

However, if we add over all samples, a multiplicative factor of δn is implicitly present.

Thus, we actually want

α = πn
ÃSt

,

β = δn
t−1 · πn

ÃSt
,

and

γ = δn
t−1 · πn

ASt
.
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This gives the final form

DKL(Zt(ÃSt)‖Zt(ASt)) =
∑

n

πn
ÃSt

log
δn
t−1 · πn

ÃSt

δn
t−1 · πn

ASt

.

which conveniently simplifies to

DKL(Zt(ÃSt)‖Zt(ASt)) =
∑

n

πn
ÃSt

log
πn

ÃSt

πn
AS

We will use this form to compute the Condensation-DKF.
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Chapter 3

Implementation and Results

To test the DKF approach, we implemented it in Matlab and tested it against sim-

ulated data sets. The simulation trajectories were designed to have the following

difficult properties related to object tracking:

1. Occlusion. In each trial, one trajectory has a significant (≈ 10 frame) occluded

region.

2. Clutter. In cluttered environments, there may be many candidate observations

near a given trajectory. In our tests, one trajectory is cluttered, containing

multiple observations near the object.

3. Multiple targets. Each trial contains two separate intersecting trajectories. The

trajectories are intended to represent similar objects, so the recognition stage

cannot differentiate between them.

4. Noise. We add Gaussian noise to simulate standard measurement noise.

For the test trajectories, an “image” is simply a collection of locations (xi, yi)

corresponding the locations of an object. Such data could presumably be obtained

by running an object detection scheme first.
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3.1 Data Sets

Tests were primarily conducted on an occluded intersection data set of 100 trials. In

this data set, the first trajectory is occluded as it passes by the second trajectory (see

figure 3-1.) The second trajectory is “cluttered” at each timestep with an average of

one extra observation near the trajectory. Finally, Gaussian noise is added to each

trajectory.

Figure 3-1: In this run, two objects move from left to right through an image. The
ground truth positions are denoted with an ’x’ while the observations are denoted
with a ’.’. The red object is occluded for a long period of time and reappears just on
the other side of the blue object, making successful tracking difficult.
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3.2 Benchmarks

As a benchmark, we implemented the standard Kalman filter and the Condensation

algorithm.

3.2.1 Kalman Filter

As mentioned earlier, the Kalman filter is an optimal recursive estimator for linear

Gaussian systems. It may be derived fairly easily, but we will just summarize the

results. First, one must model their system using linear state update equations as

xt = A · xt−1 + wk−1

yt = C · xt + vt

where xt is the internal state at time t, yt is observed, and wt ∼ N(0, Q) and

vt ∼ N(0, R) are Gaussian noise variables. The resulting Kalman filter consists

of prediction and update equations for both the mean, x̂, and the covariance, P .

Prediction:

x̂t|t−1 = Akx̂t−1|t−1

Pt|t−1 = APt−1|t−1A
T +Q.

Update:

Kt = Pt|t−1C
T (CPt|t−1C

T +R)−1

x̂t|t−1 +Kt(yt − Cx̂t|t−1)

Pt|t = (I −KtC)Pt|t−1

The prediction equations predict the mean x̂t|t−1 and covariance Pt|t−1 of the

distribution of xt given the distribution at time t − 1. Then, the update equations

adjust this prediction based on the actual observations at time t.

The only special feature of our Kalman filter implementation is the extension of
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the state space to include the locations of two objects and to identify observations

with a particular trajectory. To enable multiple target tracking, observations were

assigned to trajectories before updating x̂ based on the current frame. To do this, we

used a nearest-neighbors approach and assigned observations to the closest trajectory.

A sample trial using the Kalman filter is in figure 3-2.

Figure 3-2: Tracking with a Kalman filter. The solid red and blue lines represent the
estimated trajectories computed by the Kalman filter as the objects move down and
to the right. The data association used for the Kalman filter forced it to recover the
red trajectory; however, it switched the two objects.

A key weakness of the Kalman filter in these tests was its inability to represent

multimodal distributions. At the intersection, the Kalman filter could not represent

the multimodality that appears in Zt. (I.e. did the paths cross or did the objects turn

away from each other at the last minute?) In combination with the early assignment

of observations, this causes the Kalman filter to follow the cluttered trajectory instead

of waiting for the other trajectory to stop being occluded. The success rate for the
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Kalman filter was a mere 24% (see table 3.1.)

3.2.2 Condensation

Similar to the Kalman filter, Condensation was implemented using an extended state

space to store the position of both objects. In our implementation, each sample also

stored the velocity of the object for prediction purposes. To compute x̂ from the

samples, we used an implementation of the mean-shift algorithm to find the mode of

Zt.

As noted earlier, the mode of Zt is not necessarily stable in a particle filter. This

can be clearly seen in the results as the hypothesis hops between trajectories.

Figure 3-3: Tracking with Condensation. The two solid lines represent a failed run
of the condensation filter. The occlusion is too long and the red trajectory cannot
recover, while the blue hypothesis goes halfway between the red and blue objects.
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3.3 Numerical Optimization

Our first implementation of DKF used Matlab’s numerical optimization methods.

Specifically, we wrote a function

α (xt1 , . . . , xtk , xt) = Pr (xt1 , . . . , xtk , xt|ASt)

where

ASt = {It1 , . . . , Itk , It}.

We use Matlab’s built-in Levenberg-Marquardt optimizer to find

X̃t = argmax
xt1 ,...,xtk

,xt

α(xt1 , . . . , xtk , xt).

Unfortunately, α is symmetric: as defined, trajectories may be arbitrarily inter-

changed while maintaining the same α value. Consequently, after finding X̃t, we

must match the trajectories. For this, we take the Euclidean distance between the

overlapping points in Xt−1 and X̃t and compute the minimal matching. Finally, we

append the final value of X̃t to Xt−1 to get Xt.

In this case, computing the posterior probability of a path includes associating

observations with trajectories. This gives it a significant advantage, allowing it do

isolate the two trajectories with near perfection when they were both visible.

Unfortunately, the myriad local minima of the optimization space made this ap-

proach somewhat difficult. Matlab was highly effective at optimizing paths once the

observations were associated with the correct trajectory; however, all of Matlab’s

built-in optimization algorithms rarely changed more than a couple observation as-

sociations from their values in the initialization vector. As a result, we needed to

carefully select the initialization vector.

We finally used dynamic programming to construct the initialization trajectories.

We used a modified construction of the Viterbi algorithm that evaluated the total

posterior (instead of multiplying the conditional by the previous probability) to con-
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struct two trajectories entirely from observation points and interpolated occlusions.

(Note that these trajectories are not optimal in any overall sense - they are merely a

good starting point.)

Fortunately, due to the method by which trajectories were matched to the past,

this implementation did not suffer from the instability seen in the Condensation

algorithm. The only exception is the second frame, where the optimizer almost always

switched the two trajectories briefly.

Ultimately, when the optimization trackers erred, they swapped trajectories at

the intersection. For this problem, the optimizer was largely at the mercy of the

initialization vector.

Figure 3-4: DKF keeping all frames. The solid red and blue lines represent the
trajectories estimated by the algorithm and the rainbow colored lines represent the
optimal partial trajectories found at each timestep. The temporary crossover at the
beginning occurs in step 2 because estimating two trajectories from four points is
ambiguous.
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As one would expect, the approach that kept the entire history in the active set

performed the best, successfully tracking both objects 68% of the time (see figure 3-4

and table 3.1.) On the other hand, the routine that kept only the last four frames (see

figure 3-5) performed significantly worse, successfully tracking only 55% of the frames.

It is worth noting that the implementation of the batch processor was extremely

robust to the replicated trajectory. It was rarely fooled more than temporarily by

the replicated trajectory in the same way as the Kalman filter. Consequently, the

difference in the DKF implementations lies in their ability to track objects through

the occluded intersection and recover the correct path in the end. Thus, the basline

for an algorithm that randomly guessed is 50% and, therefore, the difference between

55% and 68% is much larger than it might seem at first glance.

The two intelligent DKF schemes demonstrated a significant improvement. Se-

lecting frames based on the Euclidean distance metric kept frames that gave more

information about the occluded intersection point (see figure 3-6.) On the other hand,

it did not always keep the most logical frames. For example, in the blue example tra-

jectory, the first frame is kept for a long time. (This is evidenced by the rainbow

colored partial paths that can be seen reaching from the first observation past the

intersection point.) The KL-divergence metric made more reasonable decisions - the

partial paths show that it generally kept more recent observations, as one would ex-

pect. The success rates corroborate the intuitive notions, with a 60% success rate for

the Euclidean metric and a 64% success rate for the KL-divergence metric.

Overall, the results from numerical optimization were quite promising. On this

type of data set, at least, DKF with the KL-divergence metric stands to provide a

significant enhancement over existing algorithms.

3.4 Condensation DKF

For our final tests, we implemented the Condensation variant of DKF as described

in chapter 2. In the Condensation filter, the performance difference was less obvi-

ous. The raw success rate was about the same, though the DKF variant generally
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Figure 3-5: DKF keeping the last four frames. The dashed red and blue lines represent
the trajectories estimated by the algorithm. The rainbow colored lines represent the
optimal partial trajectories found at each timestep. When we keep the last four
frames, we are optimizing our trajectory estimate over only those frames, causing the
scarcity of partial trajectories through the occlusion.

produced smoother, more accurate trajectories (the results in table 3.1 do not reflect

this because they use a boolean quantity for success.)

The discrepancy is likely due to the incomparability of particle counts and the

method of measuring success. The added dimensionality in the DKF variant requires

more particles to accurately handle the distribution; however, it is not clear that this

makes a fair comparison. For the purposes of this thesis, we used the same number

of particles (5000) for both the standard and DKF versions of Condensation.
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Figure 3-6: DKF using four frames and the Euclidean distance metric. The dashed red
and blue lines represent the trajectories estimated by the algorithm and the rainbow
colored lines represent the optimal partial trajectories at each timestep. With this
metric, the algorithm may elect to keep older observations, giving rise to longer
partial trajectories than when only the last four frames were kept (see figure 3-5.)
The Euclidean distance metric likes to keep the first observation around for a long
time, which generates the long rays seen around the intersection.

3.5 Results

The results (see table 3.1) were generally as anticipated. The simple benchmark

approaches could not reliably handle the occlusions and replications. These were

handled much more effectively by batch DKF implementations. Success across the

different DKF implementations varied as expected, and the KL-divergence metric

yielded performance amazingly close to the version that kept the entire history.

Unfortunately, the Condensation DKF version did not perform as well as expected,

likely because of incomparable particle counts. In general, the DKF version produced
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Figure 3-7: DKF using four frames and the KL-divergence metric. The solid red
and blue lines represent the trajectories estimated by the algorithm and the rainbow
colored lines represent the optimal partial trajectories found at each timestep. Like
the Euclidean distance metric, the KL-divergence metric elects to keep observations
before the occlusion; however, it is more intelligent and does not simply keep the first
observation.

smoother, more accurate trajectories but was still susceptible to getting lost when

run with comparatively low particle counts.

We defined a successful run as one in which the data association was correct

for 80% of the run. When the batch methods erred, they handled the occlusion but

switched trajectories at the intersection. Consequently, they were well above or below

the 80% cutoff.

In contrast, the Kalman filter and condensation algorithms were closer to the

cutoff. The trajectories would frequently merge around the occluded intersection and

split again a while later.
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Figure 3-8: Condensation DKF using four frames and the KL divergence metric.
The solid red and blue lines represent the trajectories estimated by the algorithm.
Compared to the standard Condensation filter on the same data in figure 3-3, the
DKF implementation has less of a tendency to get confused as it approaches the blue
trajectory and is able to pick up the red object when it reappears.

Benchmarks
Kalman Filter 24%
Condensation 50%

DKF (|AS| = 4)

All-frames 68%
Most recent 55%
Euclidean 60%
KL-Divergence 64%

Condensation-DKF (|AS| = 4) KL-Divergence 49%

Table 3.1: The DKF approaches performed well, with performance among the DKF
variants commensurate with expectations.
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Chapter 4

Conclusion and Further Work

The simulation results demonstrated that batch DKF using the KL-divergence met-

ric in the simulation environment is a good approximation of full batch processing,

even with an active set of only four items. It was able to successfully track objects

through occlusions, intersections, and duplications that more frequently fooled other

algorithms.

The key to the success of DKF is its selection of the most relevant frames. By using

the KL-divergence to compare posterior distributions, it saves the locally optimal set

of key frames from step to step and uses those frames to find the optimal estimate.

Unfortunately, the Condensation DKF implementation demonstrated weaker re-

sults than the batch implementation. It generally produced smoother estimates that

were closer to the ground truth than the traditional Condensation algorithm, but it

did not demonstrate the extra resilience to occlusions and intersections that the batch

version did.

One of the key benefits to our approach is its simple generality. The algorithm

requires minimal assumptions about the structure of the input. One need only specify

the posterior function α to track in entirely different contexts. In a more general way,

this methodology can be easily applied to any problem involving state estimation

from observations with minimal effort.

The next stage of this work would be to test DKF in a real system and to try a

faster implementation. A good source of test data would be a soccer match or traffic
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scene, where many identical targets move around the field with fairly complicated

dynamics.

One problem with the current implementation is its speed. The Condensation

DKF implementation requires about 20 seconds to process each frame on an Intel

2.6GHz Core2 processor when run with 5000 particles. In large part, this is because

it was implemented inefficiently in Matlab. As a result, the runtime is impractical for

any real-time application. To legitimately evaluate Condensation-DKF, it should be

implemented in a manner that ensures reasonable performance.

Finally, on a theoretical level, it would be interesting to see if any process structure

will give a convenient, closed-form solution for optimization of x̂t and AS ′t.

Overall, while our approach has not yet reached practicality, it is a useful frame-

work that may be easily and powerfully applied to many different situations to im-

prove tracking performance.
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Appendix A

Matlab Code

This appendix contains the Matlab code used for the simulation. The code used to

generate the datasets follows immediately in section A.1. The code for the testing

framework is in section A.2. After that, section A.3 contains code for computing

the posterior probabilities from observations. Sections A.4, A.5, and A.6 contain the

implementations of the batch, Condensation, and Kalman algorithms respectively,

and, finally, section A.7 contains for various utility functions.

A.1 Generating Data

genData 3D.m

% Generates ground truth data with an occluded intersection:

% - two, intersecting trajectories

% - one trajectory is occluded around the intersection

% - the other trajectory exhibits multiple data points for a given

% truth point.

%

% gt - the ground truth data

% obs - the "observations" of the ground truth

% tstamps - the time stamps for the observations

% init0 - the starting locations of the trajectories
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function trajectory = genData_3D(L, dyn_mode)

tstamps = generateTimestamps(L);

x10 = [0 5 2]’; % the location of intersection for the two trajectories

param1 = [0.2 0 0]’; % the velocity of the first trajectory at the intersection

param2 = [0.1 -0.1 .1]’; % the velocity of the second trajectory at the intersection

gt1 = simulateTrajectory(dyn_mode, L, x10, param1); % ground truth

gt2 = simulateTrajectory(dyn_mode, L, x10, param2); % ground truth

gt = [gt1 gt2];

[dim one] = size(x10);

num_targ = 2;

obs1 = addNoise(gt1, 0.1); % observations

obs2 = addNoise(gt2, 0.1); % observations

init0 = [obs1{1};obs2{1}];

o1split = 4;%ceil(3*rand());

o1splitlvl = .15*rand();

o2occs = ceil(L/5)+ceil(L/3*rand());

o2occf = ceil(L/3*rand())+o2occs;

data_stat = [o1split o1splitlvl o2occs o2occf];

obs1f = split(obs1,L,o1splitlvl,o1split);%occlude(obs1, L, 10, 15);

obs2f = occlude(obs2, L, o2occs, o2occf);%obs2;
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obs = mergeObservations(obs1f,obs2f);

% obs = addBackgroundNoise(obs,.25,-5,5, 0, 10);

trajectory = struct(’L’, L, ’dim’, dim, ’num_targ’, num_targ,...

’dyn_mode’, dyn_mode, ’gt’, {gt}, ’obs’, {obs}, ’tstamps’, {tstamps},...

’init0’, {init0}, ’data_stat’, {data_stat});

end

genData NM.m

function trajectory = genData_NM(L, dyn_mode)

tstamps = generateTimestamps(L);

x10 = [0 5]’; % the location of the midpoint of the first trajectory

x20 = [0 6.25]’; % the location of the midpoint of the second trajectory

param1 = [0.2 0]’; % the velocity of the first trajectory at the intersection

[dim one] = size(x10);

num_targ = 2;

gt1 = simulateTrajectory(dyn_mode, L, x10, param1); % ground truth

gt2 = simulateTrajectory(dyn_mode, L, x20, param1); % ground truth

gt = [gt1 gt2];

obs1 = addNoise(gt1, 0.1); % observations

obs2 = addNoise(gt2, 0.1); % observations

init0 = [obs1{1};obs2{1}];
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% o1split = 4;%ceil(3*rand());

% o1splitlvl = .15*rand();

o2occs = ceil(L/5)+ceil(L/3*rand());

o2occf = ceil(L/3*rand())+o2occs;

%

% data_stat = [o1split o1splitlvl o2occs o2occf];

obs1f = obs1;%split(obs1,L,o1splitlvl,o1split);%occlude(obs1, L, 10, 15);

obs2f = occlude(obs2, L, o2occs, o2occf);%obs2;

obs = mergeObservations(obs1f,obs2f);

%obs = addBackgroundNoise(obs,.25,-5,5, 0, 10);

data_stat = [];

trajectory = struct(’L’, L, ’dim’, dim, ’num_targ’, num_targ,...

’dyn_mode’, dyn_mode, ’gt’, {gt}, ’obs’, {obs}, ’tstamps’, {tstamps},...

’init0’, {init0}, ’data_stat’, {data_stat});

end

genData OI.m

% Generates ground truth data with an occluded intersection:

% - two, intersecting trajectories

% - one trajectory is occluded around the intersection

% - the other trajectory exhibits multiple data points for a given

% truth point.

%
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% gt - the ground truth data

% obs - the "observations" of the ground truth

% tstamps - the time stamps for the observations

% init0 - the starting locations of the trajectories

function trajectory = genData_OI(L, dyn_mode)

tstamps = generateTimestamps(L);

x10 = [0 5]’; % location of intersection for the two trajectories

param1 = [0.2 0]’; % velocity of the first trajectory at intersection

param2 = [0.1 -0.1]’; % velocity of the second trajectory at intersection

[dim one] = size(x10);

num_targ = 2;

gt1 = simulateTrajectory(dyn_mode, L, x10+[0 0]’, param1); % ground truth

gt2 = simulateTrajectory(dyn_mode, L, x10, param2); % ground truth

gt = [gt1 gt2];

obs1 = addNoise(gt1, 0);%0.1); % observations

obs2 = addNoise(gt2, 0);%0.1); % observations

init0 = [obs1{1};obs2{1}];

o1split = 4;%ceil(3*rand());

o1splitlvl = .15*rand();

o2occs = ceil(L/6)+ceil(L/4*rand());

o2occf = ceil(L/3*rand())+o2occs;

data_stat = [o1split o1splitlvl o2occs o2occf];
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obs1f = obs1;%split(obs1,L,o1splitlvl,o1split);%occlude(obs1, L, 10, 15);

obs2f = occlude(obs2, L, o2occs, o2occf);%obs2;

obs = mergeObservations(obs1f,obs2f);

% obs = addBackgroundNoise(obs,.25,-5,5, 0, 10);

trajectory = struct(’L’, L, ’dim’, dim, ’num_targ’, num_targ,...

’dyn_mode’, dyn_mode, ’gt’, {gt}, ’obs’, {obs}, ’tstamps’, {tstamps},...

’init0’, {init0}, ’data_stat’, {data_stat});

end

generateTimestamps.m

function T = generateTimestamps(N)

for i=1:N,

T(i) = i;

end

addBackgroundNoise.m

function obs_out = addBackgroundNoise(obs, level, xmin,xmax,ymin,ymax)

[one L] = size(obs);

obs_out = obs;

xdelta = xmax-xmin;

ydelta = ymax-ymin;

for i=3:L

cur_obs = obs{i};
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num_pts = floor(abs(2*level*randn()));

pts = ones(num_pts,1)*[xmin ymin]+...

rand(num_pts,2).*(ones(num_pts,1)*[xdelta ydelta]);

cur_obs = [cur_obs;pts];

obs_out{i} = cur_obs;

end

end

addNoise.m

% add noise to data

function Y = addNoise(X, noise_magn)

[N, dimX] = size(X);

Xnoisy = X + noise_magn*randn(size(X));

for i=1:N,

Y{i} = Xnoisy(i,:);

end

loadDatasetFile.m

function dataset = loadDatasetFile(name)

load([name ’.mat’]);

end

makeDatasetFile.m

function dataset = makeDatasetFile(name)

N = 50;

L = 45;

dim = 2;

num_targ = 2;

dyn_mode = 2;
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dataset = struct(’L’, cell(1,N), ’dim’, cell(1,N), ’num_targ’, cell(1,N),...

’dyn_mode’, cell(1,N), ’gt’, cell(1,N), ’obs’, cell(1,N),...

’tstamps’, cell(1,N), ’init0’, cell(1,N), ’data_stat’, cell(1,N));

for i=1:N

trajectory = genData_OI(L, dyn_mode);

dataset(i) = trajectory;

end

save([name ’.mat’],’dataset’);

end

occlude.m

function obs_out = occlude(obs_in, L, t_start, t_end)

obs_out=obs_in;

[a b] = size(obs_in{t_start});

for i=t_start:t_end

obs_out{i}=ones(0,b);

end

end

simulateTrajectory.m

% returns the entire trajectory of a particle in 2D

% mode == 0 -> linear..param = velocity

% mode == 1 -> continuous velocity..param = initial velocity

% mode == 2 -> continuous velocity, through x0 at time L/2..param =

% velocity at step L/2

function X = simulateTrajectory(mode, L, x0, param)

switch mode
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case 0

curr_x = x0;

v = param;

for i=1:L,

X(i,:) = curr_x;

curr_x = curr_x + v;

end

case 1

curr_x = x0;

v = param;

max_a = 0.02;% *ones(size(v));

for i=1:L,

X(i,:) = curr_x;

a = max_a*randn(size(v));

v = v + a;

curr_x = curr_x + v;

end

case 2

l = ceil(L/2);

before = simulateTrajectory(1, l, x0, -param);

after = simulateTrajectory(1, L-l+1, x0, param);

before = before(end:-1:2,:);

X = [before; after];

end
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split.m

function obs_out = split(obs_in, L, noise_magn, max_replicas)

obs_out = {};

for i=1:L

cur_obs = obs_in{i};

num_reps = ceil(max_replicas * rand());

cur_obs = repmat(cur_obs, num_reps, 1);

cur_obs = cur_obs + noise_magn*randn(size(cur_obs));

obs_out = [obs_out, cur_obs];

end

end

A.2 Testing Framework

batch sim.m

function [error bad_trial results] = batch_sim(dataset_file,output_tag,indices)

dataset = loadDatasetFile(dataset_file);

[one N] = size(dataset);

if isempty(indices)

indices = 1:N;

end

[one num_trials] = size(indices);

error = [];

bad_trial = [];
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% This allows me to comment out a particular test without generating

% errors.

Yb = [];

Yib = [];

Yk = [];

Yc = [];

Eb = [];

Eib = [];

Ek = [];

Ec = [];

results = struct(’dataset’,cell(1,num_trials),...

’index’,cell(1,num_trials),’data’,cell(1,num_trials),...

’Yb’,cell(1,num_trials),’Yib’,cell(1,num_trials),...

’Yk’,cell(1,num_trials),’Yc’,cell(1,num_trials),...

’error’,cell(1,num_trials));

trial_num = 1;

for i=indices

tic;

disp(i);

fig = figure(i); clf;

trajectory = dataset(i);

drawData(trajectory);

gt = trajectory.gt;

obs = trajectory.obs;

tstamps = trajectory.tstamps;
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init0 = trajectory.init0;

num_targ = trajectory.num_targ;

disp(’Batch’);

Yb = runIntelBatch(obs, tstamps, init0, 0);

Eb = calc_error(gt,Yb);

display(’Intelligent Batch’);

Yib = runIntelBatch(obs, tstamps, init0, 3);

Eib = calc_error(gt,Yib);

disp(’Kalman’);

Yk = runKalman(obs, tstamps, init0);

Ek = calc_error(gt,Yk);

disp(’Condensation’);

Yc = runCondensation(obs, tstamps, init0);

Ec = calc_error(gt, Yc);

E = [Eb Eib Ek Ec];

bad = E>.55;

bad = add_cols(bad,num_targ);

bad = bad>0;

disp(bad);

error = [error;E];

bad_trial = [bad_trial;bad];

filename = sprintf([dataset_file ’\\%i_’ output_tag],i);

saveas(fig,filename,’jpg’);

close;
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result = struct(’dataset’,{dataset_file},’index’,{i},...

’data’,{trajectory},’Yb’,{Yb},’Yib’,{Yib},’Yk’,{Yk},...

’Yc’,{Yc},’error’,{error});

results(trial_num) = result;

trial_num = trial_num+1;

toc;

end

% Compute some statistics

bad_count = sum(bad_trial);

bad_count

save([dataset_file ’\\’ output_tag ’.mat’], ’results’, ’bad_count’);

end

calc error.m

function error = calc_error(gt, Y)

delta = abs(Y-gt);

delta = delta.*delta;

dist = add_cols(delta,2); %REVISE FOR GENERIC

dist = sqrt(dist);

error = mean(dist);

drawData.m

function drawData(trajectory)

style = [’b’ ’r’ ’g’];

dim = trajectory.dim;
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for i=1:trajectory.num_targ

drawTrajectory(trajectory.gt(:,((i-1)*dim+1:i*dim)),...

[’x’ style(i)]);hold on;

end

drawObservation(trajectory.obs, ’.k’); hold on;

end

drawObservation.m

% draw complete trajectory

function drawObservation(obs, sym)

[n,m] = size(obs);

[junk dim] = size(obs{1});

x = [];

for i=1:m,

x = [x; obs{i}];%obs{i}(1) obs{i}(2)];

end

if dim == 2

plot(x(:,1), x(:,2), sym);

else

plot3(x(:,1), x(:,2), x(:,3), sym);

end

drawTrajectory.m

% draw complete trajectory

function drawTrajectory(X, sym)

[N dim] = size(X);

if dim == 2

plot(X(:,1),X(:,2), sym);
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else

plot3(X(:,1),X(:,2),X(:,3), sym);

end

mean error.m

function e = mean_error(gt, est)

e = abs(gt-est);

e = e.*e;

e = e*[1;1];

e = sqrt(e);

e = mean(e);

plotRun.m

function plotRun(results, runs, algorithms)

for run=runs

figure(run);

result = results(run);

data = result.data;

gt = data.gt;

obs = data.obs;

Y = {result.Yk result.Yc result.Yb result.Yib};

for i=1:length(obs)

plot(obs{i}(:,1),obs{i}(:,2),’k.’); hold on;

end

plot(gt(:,1),gt(:,2),’bx’); hold on;

plot(gt(:,3),gt(:,4),’rx’); hold on;

for i=1:4

if algorithms(i)

plot(Y{i}(:,1),Y{i}(:,2),’b-’); hold on;
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plot(Y{i}(:,3),Y{i}(:,4),’r-’); hold on;

end

end

end

plot frame.m

function plot_frame(gt, obs, Yb, Yk, Yc, frame)

if (frame>1)

drawTrajectory(gt(1:frame-1,1:2), ’xk’); hold on;

drawTrajectory(gt(1:frame-1,3:4), ’xk’); hold on;

drawObservation(obs(1:frame-1), ’.k’); hold on;

styles = [’b-’;’r-’;’g-’];

for i=0:(2-1)

drawTrajectory(Yb(1:frame-1,(2*i+1):(2*(i+1))), ’k-’);

drawTrajectory(Yb(frame-1:frame,(2*i+1):(2*(i+1))), styles(i+1,:));

end

end

drawTrajectory(gt(frame,1:2), ’xb’); hold on;

drawTrajectory(gt(frame,3:4), ’xr’); hold on;

drawObservation(obs(frame), ’.g’); hold on;

end

A.3 Posterior Probabilities

compute dStates.m
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targetLogLikelihood.m

function [v, logll] = targetLogLikelihood(state, obs)

num_obs, dim] = size(obs);

[junk, N] = size(state);

num_targ = N/dim;

%obs_rep = repmat(obs,1,num_targ);

obs_rep = zeros(num_obs,N);

for i=0:(num_targ-1)

obs_rep(:,(dim*i+1):(dim*(i+1)))=obs;

end

%state_rep = repmat(state,num_obs,1);

state_rep = state(ones(1, num_obs),:);

err = obs_rep - state_rep;

dist = err.*err;

dist = add_cols(dist,dim);

[min_err idx_vec] = min(dist,[],2);

easy_state = reshape(state,dim,num_targ)’;

err = abs(obs - easy_state(idx_vec,:));

v = reshape(err,1,num_obs*dim);

logll = sum(v.*v);%logll = dot(v,v);%Substitution made for speed

totalPosterior.m

% defines the total posterior on all the data

% - allStates is a [Nxdim] matrix

% - allObs is an array of size N
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% - timestamps: list of times associated with the observations

function post = totalPosterior(allStates, allObs, timestamps, mode_dynmodel)

[N, dimStates] = size(allStates);

% compute likelihood for current sta/obs

log_llk = 0;

post = [];

for idx=1:N,

sta = allStates(idx,:);

obs = allObs{idx}; % set current observation

[v, log_llk(idx)] = targetLogLikelihood(sta, obs);

post = [post v];

end

% - compute time derivates of states

if (mode_dynmodel==0)

avg_v_rep = repmat(avg_v,N-1,1);

err = dStates-avg_v_rep;

elseif (mode_dynmodel==1)

err = dStates(1:N-2,:)-dStates(2:N-1,:);

end

dyn = reshape(err,1,numel(err));

post = [post 3*dyn];

%above constant was 2 for best fit to curve, 20 provided best tracking

% when square roots were not taken on likelihood, ~60 when taking sqrt
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A.4 Batch DKF

batchPredict.m

% Selects an initialization point for the maximization.

% y is the optimum found at the last step

function init = batchPredict(num_targ, allObs, tstamps, mode_dynmodel, init_obs)

% [a b] = size(y);

% if a>1

% prediction = 2*y(a,:)-y(a-1,:);

% else

% prediction = y(a,:);

% end

% init = [y;prediction];

% We use the viterbi algorithm...ish...

init_obs = allObs{1};

[junk dim] = size(init_obs);

total_dim = num_targ*dim;

[one N] = size(allObs);

[num_end_obs dim] = size(allObs{end});

init_obs = [init_obs; NaN*ones(1,dim)];

[num_init_obs dim] = size(init_obs);

init_perms = nchoosek(1:num_init_obs,num_targ);

[num_init_perms dim] = size(init_perms);

opt = cell(1,num_init_perms);

logic_opt = cell(1,num_init_perms);
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for i=1:num_init_perms

cur_start = init_obs(init_perms(i,:),:);

opt{i} = reshape(cur_start’,1,total_dim);

logic_opt{i} = init_perms(i,:);

end

for i=2:N

cur_obs = [allObs{i};NaN*ones(1,dim)];

[num_obs dim] = size(cur_obs); % the dim assignment is redundant

[one num_old_options] = size(opt);

num_new_options = npermk(num_obs,num_targ);

options = vpermk(1:num_obs,num_targ);

new_opt = cell(1,num_new_options);

new_logic_opt = cell(1,num_new_options);

err = zeros(1,num_old_options);

for new_choice=1:num_new_options

new_obs_idx = options(new_choice,:);

cur_state = cur_obs(new_obs_idx,:);

cur_state = reshape(cur_state’,1,total_dim);

new_state = cell(1,num_old_options);

for old_choice=1:num_old_options

old_state = opt{old_choice};

save_state = [old_state;cur_state];

for j=1:num_targ

targ_idx = (dim*(j-1)+1):(dim*j);

if any(isnan(old_state(end,targ_idx)))
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% occluded in the last frame of old_state

occ_start = find(isnan(old_state(:,targ_idx(1))),1);

save_state(:,targ_idx) = optimizeOcclusion(...

old_state(1:occ_start-1,targ_idx),...

i-occ_start,cur_state(1,targ_idx));

end

end

test_state = save_state;

for j=1:num_targ

targ_idx = (dim*(j-1)+1):(dim*j);

% note that the "end" could be a "1" since cur_state has

% one row

if any(isnan(cur_state(end,targ_idx)))

% occluded in the last frame of old_state

occ_start = find(isnan(test_state(:,targ_idx(1))),1);

test_state(:,targ_idx) = optimizeOcclusion(...

test_state(1:occ_start-1,targ_idx),...

i-occ_start+1,zeros(0,dim));

end

end

new_state{old_choice} = save_state;

e = totalPosterior(test_state,allObs(1:i),tstamps(1:i),1);

err(old_choice) = sum(e.*e);

end

[min_val min_idx] = min(err);

new_opt{new_choice} = new_state{min_idx};

new_logic_opt{new_choice} = [logic_opt{min_idx};new_obs_idx];

end

opt = new_opt;
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logic_opt = new_logic_opt;

end

[one b] = size(opt);

init = cell(1,b);

for i=1:b

tmp = opt{i};

for j=1:num_targ

targ_idx = (dim*(j-1)+1):(dim*j);

if any(isnan(tmp(end,targ_idx)))

% occluded in the last frame of old_state

occ_start = find(isnan(tmp(:,targ_idx(1))),1);

tmp(:,targ_idx) = optimizeOcclusion(...

tmp(1:occ_start-1,targ_idx),N-occ_start+1,zeros(0,dim));

end

end

init{i} = tmp;

end

end

bootstrapXDistribution.m

function X = bootstrapXDistribution(num_targ, mean, obs, timestamps, mode_dynmodel, init0)

[one N] = size(obs);

num_samples = 10;

% The follwoing parameters control how the multi-dimensional histogram is

% created:

% grain - the size of a bin (in a single dimension)
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% window - the total distance covered by the histogram in a single

% dimension

% num_steps - the number of discrete values possible in a given dimension

grain = .1;

window = 1;

num_steps = window/grain;

[junk total_dim] = size(mean);

offset = mean(end,:) - ones(1,total_dim)*(window/2);

almost_zero = 0.0001;

% ensure that each location has some small probability so that the

% divergences can be compared.

X = almost_zero*ones(num_steps*ones(1,total_dim));

% create a multiplication matrix for finding the index

mul_mat = exp(log(num_steps)*(0:total_dim-1));

for i=1:num_samples

sample = obs;

for j=1:N

sample{j} = sample{j}+0.01*randn(size(sample{j}));

end

init = batchPredict(num_targ, sample, timestamps, mode_dynmodel, init0);

y = find_map(num_targ, sample, timestamps, mode_dynmodel, init);

dataPoint = y(end,:);

% including grain/2 does not affect bucketing but ensures that

% rounding does not make idx too large

delta = min(max(dataPoint-offset,grain/2),window-grain/2);

idx = ceil(delta/grain);

idx = round(sum(mul_mat.*idx-mul_mat)+1);
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X(idx) = X(idx)+1;

end

%normalize

X = X/N;

calcKLDivergence.m

function kl = calcKLDivergence(P,Q)

kl = 0;

num_elts =numel(Q);

% we use the fact that a matrix can be indexed as a vector to allow us to

% index a matrix of arbitrary dimension.

for i=1:num_elts

p = P(i);

q = Q(i);

kl = kl + p*log(p/q)/log(2);

end

end

calcMeanCvKLDivergence..m

estimateBatch.m

function Y = estimateBatch(obs, tstamps, init0, criticalObsMode)

[one total_steps] = size(obs);

[junk dim] = size(obs{1});

[one b] = size(init0);

num_targ = b/dim;
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total_obs = {obs{1}};

total_time = tstamps(1);

Y = init0;

for step=2:total_steps,

%step

% --- new observation...

newobs = obs{step};

newtime = tstamps(step);

% --- list of obervations to use

total_obs = {total_obs{:} newobs};

total_time = [total_time; newtime];

% --- prediction

init0 = batchPredict(init0);

% --- OPTIMIZATION

%[Y,hh,Htot] = find_map(2, total_obs, total_time, 1, init0);

y = find_map(num_targ, total_obs, total_time, 1, init0);

Y = [Y;y(end,:)];

init0 = Y;

end

drawTrajectory(y(:,1:dim),’g-’);

drawTrajectory(y(:,dim+1:2*dim),’g-’);

estimateIntelBatch.m

function Y = estimateIntelBatch(obs, tstamps, init0, criticalObsMode)

active_count = 6;

[one total_steps] = size(obs);
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[junk dim] = size(obs{1});

[one data] = size(init0);

num_targ = data/dim;

active_obs = {obs{1}};

active_time = tstamps(1);

Y = init0;

old_y = init0;

init = init0;

tmp_style = ’gmy’;

for step=2:total_steps,

disp(step);

% --- new observation...

newobs = obs{step};

newtime = tstamps(step);

% --- list of obervations to use

active_obs = {active_obs{:} newobs};

active_time = [active_time; newtime];

% --- prediction

tmp_init = init0;%= reshape(init0’,dim,num_targ)’;

init = batchPredict(num_targ, active_obs, active_time, 1, tmp_init);

%init = {[init0;rand(step-1,num_targ*dim)]};

% --- OPTIMIZATION

%[Y,hh,Htot] = find_map(2, total_obs, total_time, 1, init);

[y J init_idx] = find_map(num_targ, active_obs, active_time, 1, init);

%y = find_map2(num_targ, active_obs, active_time);
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y = matchTrajectories(num_targ,old_y,y);

Y = [Y;y(end,:)];

color = tmp_style(mod(step,3)+1);

drawTrajectory(y(:,1:dim),[color ’-’]);

drawTrajectory(y(:,dim+1:2*dim),[color ’-’]);

[one num_obs] = size(active_obs);

if num_obs>active_count

switch criticalObsMode

case 0

% do nothing. This is normal batching.

idx = 0;

case 1

% remove the earliest observation

idx = 1;

case 2

% Compare Euclidian distances

dist = zeros(1,active_count);

for i=1:num_obs-1,

[obs_red, time_red, y_red] =...

removeObservation(i,active_obs,active_time,y);

Yred = ...

find_map(num_targ, obs_red, time_red, 1, {y_red});

delta = Yred(end,:)-y(end,:);

delta = delta.*delta;

delta = add_cols(delta,2);

dist(i) = sum(sqrt(delta));
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end

[d idx] = min(dist);

case 3

% Compare KL Divergence...this is the first try

dist = zeros(1,active_count);

Q = bootstrapXDistribution(num_targ, y, active_obs,...

active_time, 1, init0);

for i=1:num_obs-1,

[obs_red, time_red, y_red] =...

removeObservation(i,active_obs,active_time,y);

P = bootstrapXDistribution(num_targ, y_red,obs_red,...

time_red,1, init0);

dist(i) = calcKLDivergence(P,Q);

end

[d idx] = min(dist);

case 4

% Use mean/covariance for KL divergence

dist = zeros(1,active_count);

[Q_mean Q_Cv] = jacobianXDistribution(y,J);

for i=1:num_obs-1

[obs_red, time_red, init_red] = ...

removeObservation(i,active_obs,active_time,y);

[y_red J_red] = ...

find_map(num_targ, obs_red, time_red, 1, init_red);

[P_mean P_Cv] = jacobianXDistribution(y_red,J_red);

dist(i) = ...

calcMeanCvKLDivergence(P_mean,P_Cv,Q_mean,Q_Cv);

end

[d idx] = min(dist);

end
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[active_obs, active_time, y] = ...

removeObservation(idx,active_obs,active_time,y);

active_time

end

old_y = y;

pause(0.01);

end

find map.m

% find synchrony betwee x1 and x2

% Ntarg: number of targets

% returns H : cov of y ??? Maybe not..

% Hlast: cov of last estimate ??? Maybe not..

function [y J init_idx] = ...

find_map(Ntarg, allObs, timestamps, mode_dynmodel, init)

[one N] = size(allObs);

[junk dim] = size(allObs{1});

[one num_init] = size(init);

%USING LSQNONLIN and Trying to avert local minima...

y_candidates = cell(size(init));

J_candidates = cell(size(init));

err=zeros(size(init));

options = optimset(’Display’, ’off’,’LargeScale’,’off’,...

’LargeScale’,’on’,’TolX’,0.0001); % Turn off Display

for i=1:num_init

allInit = mat2vec(init{i});

[y_vec resnorm residual exitflag output lambda J] = ...

lsqnonlin(@ppfunc, allInit, [], [], options);
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y = vec2mat(y_vec,Ntarg*dim);

y_candidates{i} = y;

J_candidates{i} = J;

p = totalPosterior(y, allObs, timestamps, mode_dynmodel);

p = sum(p.*p);

err(i) = p;

end

[min_err min_idx] = min(err);

y = y_candidates{min_idx};

J = J_candidates{min_idx};

init_idx = min_idx;

function y = ppfunc(st_vec)

st_mat = vec2mat(st_vec,Ntarg*dim);

y = totalPosterior(st_mat, allObs, timestamps, mode_dynmodel);

end

end

matchTrajectories.m

% This function matches the trajectories in new_y to the trajectories in

% old_y.

function y = matchTrajectories(num_targ, old_y, new_y)

[N total_dim] = size(old_y);

dim = total_dim/num_targ;

new_perms = perms(1:num_targ);

[num_perms junk] = size(new_perms);

err = zeros(1,num_perms);
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for i=1:num_perms

idx_vec = new_perms(i,:);

idx_vec = ...

repmat(dim*(idx_vec-ones(1,num_targ)),dim,1)+repmat((1:dim)’,1,num_targ);

idx_vec = reshape(idx_vec,1,total_dim);

cur_y = new_y(1:end-1,idx_vec);

dist = cur_y-old_y;

dist = dist.*dist;

dist = add_cols(dist,dim);

dist = sqrt(dist);

err(i) = sum(sum(dist));

end

[min_err min_idx] = min(err);

idx_vec = new_perms(min_idx,:);

idx_vec = ...

repmat(dim*(idx_vec-ones(1,num_targ)),dim,1)+repmat((1:dim)’,1,num_targ);

idx_vec = reshape(idx_vec,1,total_dim);

y = new_y(:,idx_vec);

end

optimizeOcclusion.m

function y = optimizeOcclusion(pre_y, num_steps_occ, post_y)

[num_pre total_dim] = size(pre_y);

[num_post total_dim] = size(post_y);

if num_pre>0 && num_post>0

start_loc = pre_y(end,:);
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end_loc = post_y(1,:);

delta = end_loc-start_loc;

step = delta/(num_steps_occ+1);

else if num_pre>1

start_loc = pre_y(end,:);

step = start_loc-pre_y(end-1,:);

else if num_pre>0

start_loc = pre_y(end,:);

step = zeros(1,total_dim);

else if num_post>1

% this should never be reached

disp(’ERROR: unreachable code reached!’);

else if num_post>0

start_loc = post_y(1,:);

step = zeros(1,total_dim);

else

start_loc = zeros(1,total_dim);

step = zeros(1,total_dim);

end

end

end

end

end

occ_y = repmat(step,num_steps_occ,1);

occ_y(1,:) = occ_y(1,:)+start_loc;

occ_y = cumsum(occ_y);
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y = [pre_y;occ_y;post_y];

end

runBatch.m

function Yb = runBatch(obs, tstamps, init0);

styles = [’b-’;’r-’;’g-’];

% Fix init0 so it is in the proper form

[num_traject dim] = size(init0);

batch_init0 = reshape(init0’,1, num_traject*dim);

Yb = estimateBatch(obs, tstamps, batch_init0, 0);

for i=0:(num_traject-1)

drawTrajectory(Yb(:,(dim*i+1):(dim*(i+1))), styles(i+1,:));

end

end

runIntelBatch.m

function Yib = runIntelBatch(obs, tstamps, init0, criticalObsMode);

color = ’brg’;

styles = {’-’ ’--’ ’--’ ’-.’ ’:’};

% Fix init0 so it is in the proper form

[num_traject dim] = size(init0);

batch_init0 = reshape(init0’,1, num_traject*dim);

Yib = estimateIntelBatch(obs, tstamps, batch_init0, criticalObsMode);

for i=0:(num_traject-1)

drawTrajectory(Yib(:,(dim*i+1):(dim*(i+1))),...
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[color(i+1) styles{criticalObsMode+1}]);

end

end

A.5 Condensation and Condensation DKF

calcCondLoc.m

function x = calcCondLoc(samples, sample_pi, dim)

[one k] = size(samples);

[num_targ x_dim] = size(samples{1});

mean = zeros(num_targ,dim);

data = zeros(k,num_targ*dim);

for i=1:k

sample = samples{i};

data(i,:) = reshape(sample(:,x_dim-2*dim+1:x_dim-dim)’,1,num_targ*dim);

mean = mean+sample_pi(i)*sample(:,x_dim-2*dim+1:x_dim-dim);

% note that the weights are normalized, so the above gives the average

end

x = reshape(mean’,1,num_targ*dim);

return;

% If we want to use mean-shift to find a peak...

dist_thresh = 0.001; % target error below which we stop

% err = 1;

% h = 1; %window radius
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% while err>dist_thresh

% x_rep = repmat(x,k,1);

% dist = (x_rep-data)/h;

% dist = sum(dist.*dist,2);

% g_vec = g(dist);

% g_vec = g_vec.*(sample_pi’)*k;

% g_vec_rep = repmat(g_vec,1,num_targ*dim);

% m = sum(g_vec_rep.*data,1)/sum(g_vec);

% err = m-x;

% err = sum(err.*err);

% %disp(m-x);

% x = m;%x = .8*m+.2*x;

% %disp(m);

% %disp(x);

% %disp(err);

% %pause();

% end

x = meanShift(data,sample_pi’,dist_thresh,x);

function [x weight] = meanShift(data,weights,err_thresh,init)

x = init;

err = err_thresh+1;

while err>err_thresh

x_rep = repmat(x,k,1);

dist = (x_rep-data);

dist = sum(dist.*dist,2);

g_vec = g(dist);

g_vec = g_vec.*weights*k;

g_vec_rep = repmat(g_vec,1,num_targ*dim);
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x = sum(g_vec_rep.*data,1)/sum(g_vec);

end

end

function y = g(s)

y = 1/2*exp(-s/2);

end

end

cluster.m

function prob = cluster(dist_points, dist_weights, point)

[junk dim] = size(point);

[num_samples num_dist] = size(dist_weights);

% compute the probbility that point came from each distribution

point_rep = ones(num_samples,1)*point;

point_rep = repmat(point_rep,1,num_dist);

coord_error = abs(point_rep-dist_points);

coord_error = coord_error .* coord_error;

sum_mat = [];

for i=1:num_dist

sum_mat = blkdiag(sum_mat,ones(dim,1));

end

error = coord_error*sum_mat;

prob = dist_weights./(1+error);
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prob = 1/num_samples*ones(1,num_samples)*prob;

end

condKLDivergence.m

function dKL = condKLDivergence(pi1,pi2)

dKL = sum(pi1.*log(pi1./pi2));

condPostProb.m

function W = condPostProb(samples, obs_set, tstamps, dim)

[num_targ x_dim] = size(samples{1});

%[num_obs data] = size(obs_set);

[one k] = size(samples);

W = zeros(1,k);

tmp = [];

for sample=1:k

% Get the current sample and remove the velocity information

state = samples{sample};

state = state(:,1:end-dim);

% Format for targetLogLikelihood

x_state = state(:,1:2:end);

y_state = state(:,2:2:end);

state = [x_state(1,:)’ y_state(1,:)’ x_state(2,:)’ y_state(2,:)’];

%state = reshape(state’, (x_dim-dim)/(dim), num_targ*dim);

%disp(state)

%w = totalPosterior(state, obs_set, tstamps’, 1);% For |AS|>=2
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[junk w] = targetLogLikelihood(state,obs_set{1});% FOR |AS|=1

w = w.*w;

%disp(w)

%pause()

t2 = sum(w.*w);

tmp = [tmp;w t2 exp(1/t2)];

W(sample)=1/sum(w);%1/sum(w.*w);%exp(-1*sum(w));%1/w;

end

% Normalize weights in W

%disp(W);

W_sum = sum(W);

W = W./W_sum;

%disp(tmp);

%disp(W);

condPredict.m

function [samples tStamps] = condPredict(new_samples,tStamps,dim,new_t)

% [k, d] = size(samples);

% A=[1, 0, 1, 0; 0, 1, 0, 1; 0, 0, 1, 0; 0, 0, 0, 1];

% B=[0.05, 0, 0.1, 0; 0, 0.05, 0, 0.1; 0, 0, 0.1, 0; 0, 0, 0, 0.1];

% new_samples = A*(samples’)+B*randn(4,k);

% new_samples = new_samples’;

[num_targ x_dim] = size(new_samples{1});

[one k] = size(new_samples);

samples = cell(1,k);

tStamps = [tStamps new_t];
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dynMat = blkdiag(eye(x_dim-2*dim),...

[eye(dim) eye(dim) zeros(dim); zeros(dim) eye(dim) eye(dim)]);

for i=1:k

sample= new_samples{i};

%disp(sample);

sample = sample*dynMat;

%sample = sample(:,dim+1:end);%pulls off firs

noise = 0.05*randn(num_targ,dim);

sample = sample+[zeros(num_targ,x_dim-dim) noise noise];%[noise noise]

%sample = sample(:,dim+1:end);%pulls off firs

samples{i} = sample;

%disp(sample);

end

estimateIntelCondensation.m

function Y = estimateIntelCondensation(obs, tstamps, init0)

[num_targ dim] = size(init0);

[one total_steps] = size(obs);

active_count = 1;

k = 150; % number of samples in condensation algorithm

% initialize samples

samples = cell(1,k);

new_samples = cell(1,k);
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sample_pi = ones(1,k)/k; % the likelihood associated with each sample

for i=1:k

samples{i}=[[init0(:,1)’;init0(:,2)’] 0.03*randn(num_targ,dim)];

end

sample_t = [1];

obs_set = obs(1);

Y = reshape(init0,1,num_targ*dim);

%figure(2);

for step=2:total_steps

% compute the sum of the weights up to each index

disp(step);

obs_set = [obs_set obs{step}];

new_t = tstamps(step);

if mod(step,1)==0

c = cumsum(sample_pi);

weight_sum = sum(sample_pi);

for sample=1:k

% pick a random sample from the list

%i = ceil(k*rand());

r=weight_sum*rand();

i=1;

% search through until the sum of the weights is less than r

while i <= k && c(i)<r

i = i+1;
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end

new_samples{sample} = samples{i};

end

samples = new_samples;

end

[samples sample_t] = condPredict(samples, sample_t, dim, new_t);

[samples obs_set sample_t sample_pi]= filterSamples(samples,...

sample_pi, obs_set, sample_t, dim, active_count);

% Compute the current location as the weighted average of the samples

x = calcCondLoc(samples,sample_pi,dim);

Y = [Y;x];

end

end

filterSamples.m

function [filtered_samples filtered_obs_set filtered_tStamps filtered_pi] = ...

filterSamples(samples, sample_pi, obs_set, sample_t, dim, active_count)

DKF_mode = 0;

% First pass, just discard the last sample. This should work as before.

[a b] = size(samples{1});

active_set_size = b/dim-1;
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if (active_set_size<=active_count)

filtered_samples = samples;

filtered_tStamps = sample_t;

filtered_obs_set = obs_set;

filtered_pi = condPostProb(samples, obs_set, sample_t, dim);

return % if we haven’t stored enough frames yet, don’t discard any.

end

if DKF_mode == 0

[filtered_samples filtered_obs_set filtered_tStamps] = ...

sparsify(samples, obs_set, sample_t, dim, 1);

filtered_pi = condPostProb(filtered_samples, ...

filtered_obs_set, filtered_tStamps, dim);

return

end

if DKF_mode == 1

opt_x = calcCondLoc(samples,sample_pi,dim);

end

opt_score = 0;

for i=1:active_set_size-1

[cur_filtered_samples cur_filtered_obs_set cur_filtered_tStamps] = ...

sparsify(samples, obs_set, sample_t, dim, i);

cur_sample_pi = condPostProb(cur_filtered_samples, ...

cur_filtered_obs_set, cur_filtered_tStamps, dim);

if (DKF_mode == 1)
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cur_x = calcCondLoc(cur_filtered_samples,cur_sample_pi,dim);

delta = cur_x-opt_x;

cur_score = sum(delta.*delta);

cur_score = 1/cur_score;

else

kl = condKLDivergence(cur_sample_pi,sample_pi);

cur_score = 1/kl;

end

if (cur_score > opt_score)

opt_score = cur_score;

filtered_samples = cur_filtered_samples;

filtered_obs_set = cur_filtered_obs_set;

filtered_tStamps = cur_filtered_tStamps;

filtered_pi = cur_sample_pi;

end

end

end

function [sparse_samples sparse_obs_set sparse_tStamps] = ...

sparsify(samples, obs_set, tstamps, dim, frame_to_remove)

sparse_samples = cell(size(samples));

for i=1:length(samples)

sample = samples{i};

sparse_samples{i} = sample(:,...

[1:dim*(frame_to_remove-1) dim*frame_to_remove+1:end]);

end

sparse_obs_set = obs_set([1:frame_to_remove-1 frame_to_remove+1:end]);
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sparse_tStamps = tstamps([1:frame_to_remove-1 frame_to_remove+1:end]);

end

getComNearData.m

% Finds the COM of all observations near to a state estimate, x

% "near" is defined as within the covariance

% x is the current state estimate

% cov is the covariance vector for that estimate

% obs is a list of current observations

% Note that x is a column vector with the same number of rows

% as each data point has entries.

function new_x = getComNearData(x, cov, obs)

[a b] = size(obs);

obs = obs’;

% replicate x

rep_x = x*ones(1,a);

% extract the diagonal from the covariance matrix

cov = cov.*eye(size(cov));

% replicate the elements of the diagonal accross each row

rep_cov = cov*ones(b,a);

% calculate the distance between x and each observation

diff = abs(obs-rep_x);

% compare the distance to the covariance

comp = diff < rep_cov;

% sum "good" entries
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good_sum = ones(1,b)*comp;

% if all entries in a row are good (i.e. the sum is b), then we keep it

comp2 = (good_sum == b*ones(1,a));

% calculate number of good observations

num_good = comp2*ones(a,1);

if num_good==0

new_x = x;

else

% replicate comp2 to make a mask

comp2_rep = ones(b,1)*comp2;

% mask obs to keep only the good ones

obs = comp2_rep.*obs;

% compute the average x and y values

new_x = (obs*ones(a,1))/num_good;

end

end

runCondensation.m

function Yc = runCondensation(obs, tstamps, init0);

styles = [’y-’;’y-’;’y-’];

[num_traject dim] = size(init0);

Yc = estimateIntelCondensation(obs, tstamps, init0’);%[];

for i=0:num_traject-1

%Y = estimateCondensation(obs, tstamps,init0(i,:));

drawTrajectory(Yc(:,(dim*i+1):(dim*(i+1))), styles(i+1,:));

%Yc = [Yc Y];
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end

end

A.6 Kalman Filter

estimateKalman.m

function Y = estimateKalman(obs, tstamps, init0)

[dim num_track] = size(init0);

[one total_steps] = size(obs);

F = [eye(dim) eye(dim); zeros(dim) eye(dim)];

H = [eye(dim) zeros(dim)];

R = 0.5*eye(dim);

Q = 0.1*[zeros(dim,2*dim);zeros(dim,dim) (-.25*ones(dim)+1.25*eye(dim))];

x = [init0; zeros(dim, num_track)];

P=eye(2*dim);

Y = init0(:)’;

for step=2:total_steps

x=F*x;

P=F*P*F’+Q;

G=(P*(H’))/((H*P*(H’))+R);

cur_obs = obs{step}’;
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y = multi_kalman_obs(Y,x,cur_obs);

x=x+G*(y - H*x);

P=(eye(2*dim)-G*H)*P;

est = x(1:dim,:);

est = est(:)’;

Y=[Y; est];

end

end

multi kalman obs.m

function obs = multi_kalman_obs(Y, x, cur_obs)

thresh = 0.25;

[dim num_obs] = size(cur_obs);

[junk num_filters] = size(x);

dist_points = x(1:dim,:);

dist_points = dist_points(:)’;

dist_weights = ones(1,num_filters);

prob = [];

points = [];

% Determine the probability that a given observation belongs to a

% particular filter.

for i=1:num_obs

point = cur_obs(:,i)’;
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points = [points;point];

dist_pr = cluster(dist_points,dist_weights,point);

prob = [prob; dist_pr];

end

% Now, make sure that each filter gets an observation

obs = zeros(dim,num_filters); % The sum of all observations given to each filter

obs_count = zeros(1,num_filters); % The number of observations given to each filter

for i=1:num_filters

[p point_i] = max(prob(:,i));

if p>thresh

% If possible, give it a real observation

point = points(point_i,:);

prob = prob([1:(point_i-1) (point_i+1):end],:);

points = points([1:(point_i-1) (point_i+1):end],:);

obs(:,i)=obs(:,i)+point’;

obs_count(i)=obs_count(i)+1;

else

% Otherwise, give it back its prediction

obs(:,i)=obs(:,i)+x(1:dim,i);

obs_count(i)=obs_count(i)+1;

end

end
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% Divide up the rest of the points.

[a b] = size(prob);

for i=1:a

pr = prob(a,:);

[loc_pr c] = min(pr);

if loc_pr > thresh

point = points(a,:);

obs(:,c)=obs(:,c)+point’;

obs_count(c)=obs_count(c)+1;

end

end

for i=1:num_filters

if obs_count(i)>0

obs(:,i) = obs(:,i)/obs_count(i);

end

end

end

runKalman.m

function Yk = runKalman(obs, tstamps, init0);

styles = [’b:’;’r:’;’g:’];

[num_traject dim] = size(init0);

% Fix init0 so it is in the proper form

kal_init0 = init0’;
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Yk = estimateKalman(obs, tstamps, kal_init0);

for i=0:(num_traject-1)

drawTrajectory(Yk(:,(dim*i+1):(dim*(i+1))), styles(i+1,:));

end

end

A.7 Utility Functions

add cols.m

% Adds the columns of A in groups of N

function B = add_cols(A,N)

[m n] = size(A);

post_n = n/N;

idx = 1:post_n;

idx = repmat(idx,N,1);

idx = reshape(idx,n,1);

C = eye(post_n);

C = C(idx,:);

B = A*C;

end

justify obs.m

% Turns a cell list into a

function obs_mat = justify_obs(all_obs)

obs_mat=[];

[junk num_steps] = size(all_obs);

for i=1:num_steps

cur_obs = all_obs{i};
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[num_obs dim] = size(cur_obs);

[a b] = size(obs_mat);

if num_obs>a

obs_mat = [obs_mat; NaN*ones(num_obs-a,b)];

else

cur_obs = [cur_obs; NaN*ones(a-num_obs,dim)];

end

obs_mat = [obs_mat cur_obs];

end

end

mat2vec.m

function vec = mat2vec(mat)

vec = [];

[mat_nrows, N] = size(mat);

vec = reshape(mat,N*mat_nrows,1);

mergeObservations.m

% merge observations

function c = mergeObservations(a,b)

[m,n] = size(a);

for i=1:n,

c{i} = [a{i};b{i}];

end

npermk.m

function num_perm = npermk(n,k)

num_perm = factorial(n)/factorial(n-k);

end
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nquad.m

% Performs an n-integral on a function

%

% func = the function to be evaluated. It must be a function of a 1xn

% vector x, and be evaluated on m such vectors by giving it an mxn matrix.

% bounds = the bounds on the indices of the vectors

function int = nquad(func,bounds,tol)

[a b] = size(bounds);

if a == 1

int = quad(@wrapFunc,bounds(1,1),bounds(1,2),tol);

else

int = quad(@integrand,bounds(1,1),bounds(1,2),tol);

end

function out = integrand(X)

[a b] = size(X);

out = zeros(size(X));

for i=1:b

x = X(i);

y = nquad(@subFunc,bounds(2:end,:),tol);

out(i) = y;

end

function subOut = subFunc(X)

%X = X’;

[a b] = size(X);

new_in = [x*ones(a,1) X];

subOut = func(new_in);

end
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end

function f = wrapFunc(X)

f = func(X’);

end

end

vec2mat.m

% Converts a column vector to a matrix with N columns

function mat = vec2mat(vec, N)

mat = [];

[vec_nrows junk] = size(vec);

mat_nrows = vec_nrows/N;

mat = reshape(vec,mat_nrows,N);
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