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Abstract
A variety of impressive approaches to legged locomotion exist; however, the science of
legged robotics is still far from demonstrating a solution which performs with a level of
flexibility, reliability and careful foot placement that would enable practical locomotion on
the variety of rough and intermittent terrain humans negotiate with ease on a regular basis.
In this thesis, we strive toward this particular goal by developing a methodology for de-
signing control algorithms for moving a legged robot across such terrain in a qualitatively
satisfying manner, without falling down very often. We feel the definition of a meaning-
ful metric for legged locomotion is a useful goal in and of itself. Specifically, the mean
first-passage time (MFPT), also called the mean time to failure (MTTF), is an intuitively
practical cost function to optimize for a legged robot, and we present the reader with a
systematic, mathematical process for obtaining estimates of this MFPT metric.

Of particular significance, our models of walking on stochastically rough terrain gener-
ally result in dynamics with a fast mixing time, where initial conditions are largely ”forgot-
ten” within 1 to 3 steps. Additionally, we can often find a near-optimal solution for motion
planning using only a short time-horizon look-ahead. Although we openly recognize that
there are important classes of optimization problems for which long-term planning is re-
quired to avoid ”running into a dead end” (or off of a cliff!), we demonstrate that many
classes of rough terrain can in fact be successfully negotiated with a surprisingly high level
of long-term reliability by selecting the short-sighted motion with the greatest probabil-
ity of success. The methods used throughout have direct relevance to machine learning,
providing a physics-based approach to reduce state space dimensionality and mathemati-
cal tools to obtain a scalar metric quantifying performance of the resulting reduced-order
system.

Thesis Supervisor: Russell L. Tedrake
Title: Assistant Professor, Department of Electrical Engineering and Computer Science

Thesis Chair: Neville Hogan
Title: Professor, Department of Mechanical Engineering and Department of Brain and
Cognitive Sciences
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Chapter 1

Introduction and Motivation

This thesis addresses the interrelated problems of controlling and evaluating machines that

locomote with legs. Significant interest in walking robots developed in the late 1970’s

and throughout the 1980’s, as advances in microprocessor technology made the vision of

autonomous robotics seem a likely (if not inevitable) direction for future research. Today,

over two decades later, there are many exciting examples of walking machine prototypes,

but the full promise of reliable legged locomotion has yet to be achieved.

Wheeled vehicles require far less sophisticated coordination of motion to achieve loco-

motion and can handle a wide variety of terrains. Recent examples of successful wheeled

autonomous robots include many of the robot cars and trucks participating in the Grand

Challenge competitions, sponsored by DARPA1, and the Roomba home cleaning robot ap-

pliance, developed and produced by iRobot. Of particular note on rough terrain is the

“rocker-bogie” design used recently by NASA for the Pathfinder robot. The rocker-bogie

essentially consists of six independently-driven wheels. Three wheels on either side are

arranged in a clever, rocking differential structure to allow the vehicle to negotiate obsta-

cles on the order of the wheel diameter while balancing the body of the vehicle (to avoid

toppling). Capability and stability on extreme terrain come at the price of relatively low

traversal speeds however (to minimize dynamic effects).

Furthering the development of legged robot locomotion seems prudent only if it has

obvious potential to provide clear advantages over wheeled locomotion in some practi-

1Defense Advanced Research Projects Agency
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(a)

(b)

Figure 1-1: Wheels versus legs on rough terrain
The rocker-bogie wheel design used on the Sojourner robot ((a) left) and on the larger
Mars Exploration Rover design ((a) right) can both negotiate impressively rough terrain.
Using this wheeled design requires significantly slower (and less nimble) traversal than
many legged animals can achieve; the jumping mountain goat (at bottom) provides an
excellent proof of the performance that legs can attain on extreme rough terrain. Upper
image from Wikipedia. This image is copyrighted by the NASA/Caltech Jet Propulsion Laboratory. The JPL
allows anyone to use it for any purpose, provided that the copyright notice Courtesy NASA/JPL-Caltech is
displayed. Lower image shows goat jumping in Glacier National Park; photo taken by Cristal Jones, 2008.
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cal regimes. A typical justification often given for legged locomotion is to enable better

flexibility on rough terrain. Two additional, convincing motivations for developing legged

machines are (1) to provide sophisticated tools (e.g., for rehabilitation), prosthetics and/or

robot “partners” who can interact seamlessly in the same environment in which humans

work, live and play and (2) to better understand the science of animal and human locomo-

tion itself.

An additional advantage of using legs for robot locomotion which is seldom mentioned

specifically, however, is that legs allow for more instantaneous control than wheels, since

we can push off and/or brake very effectively during the intermittent contact with the

ground at each step. In this thesis, we find that effective control solutions for walking

on rough terrain often require only a short lookahead on the order of a step or two along the

terrain, and we speculate that this is in large part due to the inherent ability legs provide for

fast, effective energy transfer at each step. The problem still remains of how to exploit this

potential advantage; finding solutions to this control problem is a motivating focus through

this thesis.

To develop the science of walking robotics toward flexible locomotion on rough ter-

rain, our first goal should be to agree upon what constitute qualitatively and quantitatively

“good” performance. Clearly these definitions will be colored by the specific type of task

or terrain a robot must negotiate, but there are some fundamentally common goals, as well.

For example, we can say that we wish for our robots to be highly reliable, in the sense of

not falling down often, and that we would like them to operate with sufficient repeatability

(e.g., with behavior that agrees with an underlying, scientific model) that we can provide

some estimate of their performance on the types of terrain which humans typically negoti-

ate with ease.

A central premise throughout this thesis is that traditional, deterministic stability met-

rics and margins are not well-suited to the problems of control and evaluation in walk-

ing. Compared with traditional robotics, walking involves significant underactuation and

stochasticity, and we should expect significant progress in legged machines only after we

can appropriately quantify their performance. We contend that appropriate metrics to cap-

ture walking performance should inherently be based on stochastic analyses. A significant
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contribution of this thesis is the adaptation of well-established concepts and mathematical

tools used in other domains toward discussing and evaluating the performance of legged

machines.

The author strongly believes that this formal introduction of appropriate mathematical

language and definitions of stochastic stability can only aide in furthering the development

of legged robots beyond the level of particular case examples to a more formal branch of

engineering science, i.e., to advance legged robotics beyond the realm of the hobbyist to

that of a more clean science, where results can be reproduced and built upon.

Robot locomotion is inherently subject to much more significant levels of both under-

actuation and stochasticity than are traditional robot manipulation tasks, such as machining

or factory assembly in a manufacturing setting. Unlike a robot leg, a factory arm can be

rigidly mounted to the ground. This eliminates the underactuated limitation of unidirec-

tional (push-but-not-pull) forces at the “base” of the robot: instead of a moveable foot, a

factory robot can simply be bolted to the ground. A factory arm is still underactuated in

its grasping contacts with objects to be manipulated. However, unlike the contact of a foot

with the ground, one can create a force closure (i.e., a wrench) when grasping an object.

These two factors both result in a strong tendency toward underactuation in legged loco-

motion when compared to factory assembly. There is also typically more stochasticity in

legged robotics than in factory robotics, because a practical factory robot is contained in a

more controlled environment. These two factors (underactuation and stochasticity) make

the field particularly challenging and the use of stochastic tools particulary appropriate in

its analysis.

To quantify the effects of stochasticity on walking stability, we develop mathematical

tools to evaluate a walking system as a discrete Markov process: approximated as discrete

in state space, to produce a transition matrix of the dynamics naturally discretized in time by

the impact nature of taking each, particular step. We propose that “good” walking systems

have what we call metastable limit cycle behaviors. Metastability will be discussed more

formally in Section 2.3, but for now, consider metastable to mean “long-living, but destined

to eventually end”. An eigenanalysis of the transpose of the transition matrix can determine

if a metastable limit cycle exists. For such systems, the second-largest eigenvalue, λ2 of
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the discrete approximation of the system provides an estimate of the length of continuous

walking (in steps) expected on average, given initial conditions within a particular (well-

defined) range of state space, while the eigenvector for λ2 identifies the regions in state

space most frequently visited during this metastable limit cycle.

To demonstrate the practical use of these tools, we investigate several particular walk-

ing systems. The two primary systems studied in this work intentionally span a broad

range in walking. One is a computer simulation of a simple model of underactuated biped

walking, called the compass gait (CG) walker. The other is a small, high-impedance 18-

DOF quadruped with 12 actuated degrees of freedom. However, despite the differences

in these two mechanical systems, both controlled walking systems do share two important

commonalities: (1) In each case, legged locomotion inherently entails significant underac-

tuation, and (2) the goal for each system is to walk on rough terrain.

1.1 Motivations for practical legged robots

Why have legs? The wheel is a remarkable invention. Vehicles with wheels can be highly

efficient, and wheel-based locomotion can be designed to achieve an arbitrarily small turn-

ing radius2 or to negotiate extreme terrain3.

Three broad classifications of explanation for mechanized, legged locomotion are as

follows: (1) anthropomorphic fascination, (2) to understand human walking, and (3) to

negotiate rough terrain and other environmental factors effectively and dynamically. This

thesis focuses on the third motivation listed.

Below, we describe each of these three inspirations for having a robot with legs and

conclude with a summary of why legs are so appropriate to rough terrain. This is followed

by a selective review of the state of the art in legged locomotion, with an emphasis on what

opportunities for advancement seem most relevant for research in the near future.

2Consider a wheelchair, or the Segway transport. The Segway inverted pendulum design provides a
platform which is agile enough to play soccer on grass [19].

3Consider the rocker-bogie suspension strategy used on various Mars rover expeditions [59, 80].
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1.1.1 Anthropomorphic fascination

Many researchers use a variety of phrases to describe our intrinsic interest in creating

robots which attempt to mimic the particular range of motion and general, physical ap-

pearance of humans. My favorite expression for this motivation is “anthropomorphic fas-

cination” [186]. For any number of practical or psychological reasons, we, as humans,

seem driven to create robots in our own image. Robots created out of this apparent moti-

vation seem concerned, primarily, with attaining motions which are kinematically (rather

than dynamically) similar to human motions. A large number of humanoids have been de-

veloped recently, particularly in Japan [70] and throughout Asia. Robots such as Honda’s

ASIMO [65, 150], AIST’s HRP-2 [85, 126], WABIAN-2R [134, 136] (Waseda University),

Sony’s QRIO [45, 53], PINO [191] (Kitano Symbiotic Systems) and KIST’s MAHRU [95]

are remarkable engineering accomplishments. However, these humanoids are generally

designed with high-impedance actuators, intended to execute commanded joint trajecto-

ries with high fidelity but little compliance. As a result, these robots can “perform” well-

planned motions, such as dance-like movements based on data recorded from humans using

motion capture [139, 130, 95]. However, there are few (if any) examples of such humanoids

walking robustly outside of highly controlled environments, such as a laboratory or stage.

Research interest has increased in recent years in developing control solutions to achieve

dynamic gaits for such stiff robots [88]. This is an intrinsically challenging if not over-

whelmingly task, since the physical designs of these high-impedance humanoid bipeds are

intended to allow for motions approaching the range of kinematic degrees of freedom of a

human, rather than for the range of dynamic impedance characteristic to humans. At some

level, the concept of copying the nominal degrees of freedom and general structure of an ac-

tual animal which successfully locomotes (such as a human) seems a reasonable approach

toward creating robots with similar capabilities. However, one is still confronted with the

large task of deciding how to control all those degrees of freedom for stable walking.

The eventual goal of creating humanoids which are both kinematically and dynamically

similar to humans seems much more appealing and practical, if we want to eventually

develop robots which can operate out in the real world.

22



1.1.2 Understanding human walking

An additional reason to study walking mechanisms is to learn more about human walking.

There are several applications for creating and validating models of human walking. Un-

derstanding human walking has direct application in areas which include: design of pros-

thetics (active or passive), evaluation of the effects of any of a number of gait pathologies

may have on stability (for stroke patients, those with cerebral palsy, etc.) , and development

of effective rehabilitation.

Another use for improved models of walking is in developing increasingly realistic an-

imation of humanoid characters, for use in animated movies, video games and a variety of

interactive software. Modeling human dynamics has helped researchers to develop anima-

tions which mimic the general patterns of humanoids while also obeying physics [1, 140,

106]. One goal of such technology is to automate the process of developing more natural-

looking motions by using truly generative models, rather than simply replaying particular

motions which are painstakingly captured from human models in motion capture.

A large variety of approaches have been taken in identifying and understanding the key

elements of human locomotion. A few examples are listed below, and many more examples

exist – particularly within the last ten years or so. [31] present a 3D model of the human

gait, based on passive dynamic principles. [132] study the biomechanics of human run-

ning. [6] look into the dynamic optimization of a model of human walking. [104] examine

models of kinematic control of a variety of animal locomotion, including human walking.

[176] look into actively-adjustable leg compliance in creating smoother hip trajectories of

a passive walking model, toward application to either rehabilitation equipment or robot de-

sign. [36] create a mechanical model to understand stumble recovery. [124] model human

walking with a compass gait model and examine the effect of replacing a point foot with a

curved one. [164] analyze a simple passive walking model on rough terrain toward estimat-

ing risk of fall in humans. Others have looked for the differences and similarities between

human walking and that of other animals in bipedal gaits [64, 3], or at recovery strategies

from perturbation while walking [77, 43].

In many such studies, ground reaction force data from real humans in walking or run-
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ning are compared with the force profiles predicted by models. For example, many of the

tools used in designing and analyzing legged robot gaits, such as the zero-moment point

(ZMP) and the related foot rotation indicator (FRI), both described in Chapter 2, have also

been used to analyze data on human walking [141]. Models allow us to test hypotheses

about the magnitude and complexity of control action required to stabilize various aspects

of dynamic, limit-cycle walking in a safe and systematic way. This understanding may in

turn guide development of ways to help people walk with greater capability and stability:

e.g., in guiding rehabilitation from injury; design of appropriate orthotic devices, regimens

or appropriate surgical correction for chronic issues like cerebral palsy; and software tools

to diagnose walking performance from a set of human gait data.

1.1.3 Legged-robot locomotion in real-world environments

An additional motivation is to create autonomous machines which are dynamically appro-

priate to interact with humans and their environment. This topic is becoming increasingly

relevant as engineers develop robots for human environments. Some of the work to date in

this area is surveyed very briefly below.

For robots to interact with humans and with many household items successfully4, they

need to respond to a variety of often-unknown impedances they encounter in nature. This

makes the requirement for robots in the real world quite different from those of stiff, factory

robots. In a factory, precision is a primary concern, and overpowering the environment is

generally an advantage (e.g., in machining, or in ensuring assembly is done accurately). By

contrast, robots outside of a factory or laboratory will encounter far more variance when

performing a given task. For example, in walking, the ground profile and ground properties

(including friction, compliance, etc.) will often be both unknown and time-varying.

There are several possible solutions to regulate the force interaction between a robot

and its world. One approach is to adjust the impedance actively through control. Sev-

eral now-classic force-control solutions were introduced over two decades ago and include

active stiffness control [151] and impedance control [73, 22]. Modeling the end effector

dynamics, e.g., [93], is an important general concept which has continued to influence the
4i.e., picture a robot in a china shop...
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design of robots and their control in human environments [92].

The performance characteristics of the actuators clearly have important consequences

on the capabilities of robot systems as well [75]. Another direction in achieving de-

sired force control is to design the actuators for legged locomotion with inherently low

impedance. Actuator designs of this type include series-elastic actuators (SEAs) [143, 142]

and the distributed macro-mini actuation approach (DM2) [193]. The general concept of

using variable stiffness in actuators specially designed for either manipulation or legged

locomotion has become increasing popular over time, with a variety of particular design

approaches emerging in the last few years [89, 175, 172, 13].

1.1.4 So, why have legs?

Although there are a variety of motivations to study mechanical devices which walk, as

discussed above, the focus throughout this work is on achieving robust locomotion for

a robot. In particular, we have aimed toward developing legged locomotion which can

provide some advantages over wheeled locomotion. Legged locomotion should ideally

allow for both (1) careful foot placement (e.g., on intermittent terrain) and (2) rapid

traversal over a variety of mild obstacles5. In Section 1.2 below, we examine the state

of the art in legged locomotion today, with an emphasis upon how well each of these two

particular goals is achieved.

1.2 State-of-the-art in legged locomotion

This section provides a brief introduction to the state of the art in legged robotics today,

surveying a select set of exemplary solutions. Each style of robot (by which we mean

its natural dynamics and accompanying control methodology) accomplishes a particular

style of locomotion well. The reader should note ahead of time, however, that a critical

goal for legged locomotion still remains unsolved: robots which can both (1) exploit their

natural dynamics (e.g. make use of stored energy from the pendular walking or from spring

5By “mild”, we essentially mean not so extreme as to require a rock-climbing style, where force closure
about the obstacle is required.
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storage elements in the design, etc.) and also (2) negotiate obstacles (such as irregular steps,

gaps or other terrain features) and other, unexpected environmental perturbations with high

reliability. These two goals must both be satisfied to make legged machines practical in a

real-world environment.

There are, of course, a large number of relevant examples of legged locomotion which

have emerged in recent years [170, 33, 20, 138, 144, 189, 62, 182, 98, 71, 111, 37, 96,

103]. The combination of mechanical leg design and CPG6-based control in the robot

“Tekken” [46] demonstrates a successful, dynamic approach to negotiate rough terrain with

a quadruped with compliant legs. Of note in achieving flexibility to environment type is a

quadruped salamander with a gait which can adapt to transition continuously from traveling

on land to swimming [82]. Recently, much effort in legged locomotion has also focused on

gecko-inspired climbing robots with feet which can produce adhesion forces [10, 153, 94].

Although a complete discuss of the State of the Art is outside the scope of this thesis, we

will discuss four particular examples (in Sections 1.2.1 - 1.2.4) in some detail to survey the

range of notable achievement to date in legged locomotion.

1.2.1 ASIMO

After a decade and a half of development in humanoid robotics, Honda unveiled the first

version of the now-famous ASIMO humanoid robot in 2000. The design and capabili-

ties of this robot have continued to advance over the last eight years. It is arguably the

most advanced humanoid robot ever created, demonstrating both exceptional engineering

in overall design and impressive capabilities in areas including locomotion, balance con-

trol, and vision processing. The robot is scaled to be the size of a child and is pictured in

Figure 1-2.

In addition to ASIMO [150, 65], there are many examples of similar, highly-actuated

humanoid robots in recent years [85, 126, 134, 136, 45, 53, 191, 95]. These robots all share

particular characteristics. In particular, although they are all underactuated by virtue of

the unidirectional (push-but-not-pull) contact between foot and ground, they are designed

to operate as though they are fully actuated. They are designed with a large number of
6center pattern generator
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Figure 1-2: ASIMO
Honda’s impressive humanoid robot stands about 4’3” (130 cm) tall, weighs 119 pounds,
has 34 actuated degrees of freedom, and can operate for up to 1 hour on internal batter-
ies. Battery weight is about 13 pounds.Promotional diagram of ASIMO from Honda, circa 2005 (at
left). Photo of ASIMO running (at right) is from http://thefutureofthings.com/pod/121/the-rise-and-fall-of-
asimo.html

actuators, with degrees of freedom which roughly approximate the degrees of freedom of

human motion. Although this does theoretically give these robots an incredible range of

motion, it also makes the problem of how to control the motion quite complex. In general,

the baseline aim is to maintain complete control authority over all degrees of freedom –

these robots are not gymnastic, for instance.

To remain “fully” actuated, such humanoids classically depend on zero-moment point

(ZMP) methods, described further in Section 2.1.3, which ensure that at least one foot

remains essentially “anchored” by the weight of the robot throughout all motion. If the

robot encounters unexpected terrain, obstacles or external interactions, however, it may

lose balance and begin to topple over. Full actuation is a convenient assumption for these

robots, but they still remain underactuated in reality.

To achieve high accuracy in motion trajectories, the design of these humanoids is quite

intricate and their actuators have relatively high impedance. These high-precision robots

are also quite expensive. The types of motions which are executed tend to be conservative,

to prevent damage to the robot or to humans nearby due to falling or colliding with the envi-

ronment, and the overall efficiency in locomotion or other motion is quite poor, compared
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with humans [35]. Although ASIMO can “perform” intricate motions, including walk-

ing, turning, stair-climbing, stylized dancing (which emphasizes upper, rather than lower,

body motions), and a highly-publicized “run-walk”7, these demonstrations must occur in a

highly controlled and well-characterized environment; they are highly choreographed.

For all these reasons, the potential for these stiff, ZMP-based humanoids to negotiate

rough terrain is seemingly limited. A large inspiration for the development of humanoids

is to have them interact with us in our everyday environments, but this will clearly require

significant advances – most likely both in control and inherent physical design.

1.2.2 Passive-dynamic based walkers

Passive dynamic walkers are devices which exhibit stable limit cycles to walk down a

shallow slope with no external actuation or power. In these limit cycles, energy lost at each

foot collision is balanced by the conversion of potential energy to kinetic energy in going

downhill. Tad McGeer inspired a new direction in bipedal robot design with his original

McGeer Walker [115]. Perhaps the most compelling example to date of a purely passive

walker comes from the effort of Steve Collins, Andy Ruina, and Martijn Wisse [34]; this

device is shown on the left half of Figure 1-3.

To enable locomotion on level ground, some source of actuation can be added. These

“passivity-based” robots have sparked particular interest both because they use relatively

low energy, compared with ZMP-based walkers like ASIMO [35], and because the dynamic

coupling in the mechanical design of such walkers simplifies the control problem. Unfortu-

nately, however, such limit-cycle walkers are notoriously sensitive to initial conditions and

perturbations, severely limiting their practical applicability to date.

Much work has been done to analyze the stability of models of purely passive walk-

ing [56, 31, 101, 154, 78]. Producing active control to mimic but stabilize the passive

dynamic motions of a walking model is a topic of much recent interest, both in model-

ing [135, 160, 137] and on real robots [190, 170, 33, 7, 148]. In this thesis, Section 4.3.2

introduces a “compass gait” biped model and explores its stability on stochastically-rough

7With a top speed of 6 km/hr and an airborne phase of .08 sec, this run, while technologically impressive,
is certainly not practical for locomotion.
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Figure 1-3: Passive-dynamic based walkers
The Cornell passive dynamic walker (left) and an actuated walker based on passive dynam-
ics (right), both created by Steve Collins and Andy Ruina.

terrain, and Chapter 5 investigates minimal control strategies to allow a simple walker based

on passive dynamic principles to negotiate rough terrain. Of particular note, our work in

Chapter 5 addresses the foothold selection problem for passive-based walking robots – a

problem which has not been adequately addressed in walking to date.

1.2.3 RHex

Figure 1-4: RHex hexapod negotiating rough terrain.

RHex, shown in Figure 1-4, is an impressive hexapedal robot capable of robust loco-

motion over a variety of rough terrain [5, 4]. This robot is the product of the collaborative
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design effort of researchers from McGill University, Berkeley, U. Michigan and CMU.

Much of its success depends on its carefully-designed compliant legs. Its six legs are each

driven independently, allowing for a range of gait capabilities [63]. The legs rotate fully

about the hip axis, so the robot can continue traveling even after it has been flipped over.

RHex clearly provides some advantages over a wheeled robot on many types of rugged

terrain, traveling robustly with impressive speed8. [63] also discusses gait transitions for

RHex, to allow it to transition between different classes of terrain and even to climb stairs.

However, when RHex operates, it is essentially blind to the particular details of the upcom-

ing terrain during operation, and so it is not capable of careful foot placement.

1.2.4 BigDog

Figure 1-5: The BigDog robot, by Boston Dynamics.
Two BigDog robots, with a man in the background (for a sense of scale).

BigDog is a large, dynamic quadruped, produced by Boston Dynamics [21]. It is by

far the most impressive robot which can negotiate rough terrain to date, although most of
8RHex can travel about one body length per second.
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the details on its design and control remain unpublished. Some of the principles used in

controlling BigDog have likely evolved from work in the 1980’s and 90’s by Marc Raib-

ert and his students through research on a variety of dynamic robots at the Leg Lab at

MIT [146, 147, 72]. The control approach for BigDog clearly relies on controlling forces

and posture of the robot, which are central ideas discussed in detail both throughout legged

robot research at the MIT Leg Lab and in [131]. BigDog is highly dynamic and has demon-

strated recovery from significant perturbations, including being kicked or unexpectedly

slipping on ice, using deliberate foot placement to control body attitude. However, Big-

Dog is still largely blind to upcoming terrain and seemingly responds largely reflexively, to

maintain dynamic balance.

1.2.5 Summary of state of the art

In Section 1.1.4, we stated two primary reasons to employ legs (rather than wheels) for

locomotion: (1) careful foot placement and (2) rapid traversal over a variety of mild

obstacles.

To compare the dynamic walking approach with that of humanoids such as ASIMO, we

note that the passive-dynamic approach essentially mimics the dynamics of human walking,

which is dominated by the inverted pendulum motion of the body over the stance foot. The

resulting underactuated limit cycle gaits are quite fragile to perturbations from terrain vari-

ation or other interactions with the surroundings, however. By contrast, a highly-actuated

humanoid robot like ASIMO employs a much fuller set of actuators and relies much less

on natural, passive dynamics. Although adding more degrees of actuation seemingly in-

creases the potential for greater robustness and flexibility in motion, it also increases the

complexity of the control necessary, too. Humanoids such as ASIMO can achieve precise

foot placement, but they are not yet capable on significantly rough terrain.

RHex and BigDog each demonstrate significantly more dynamic capability than either

ASIMO or the dynamic walkers has demonstrated to date. However, neither RHex nor

BigDog9 has solved the foothold selection problem for legged locomotion.

9nor the dynamic walkers...
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1.3 Roadmap of thesis

This introductory chapter has attempted to motivate a practical desire for legged locomo-

tion and has reviewed the state of the art in legged robotics. We hope the reader agrees

at this point that there is a need in robotics for better solutions for walking and running,

particularly to negotiate rough terrain at speeds comparable to human walking (or better).

Although achieving this goal depends both on robot design (mechanical actuation, pas-

sive dynamics, sensing, etc.) and control, the remainder of this thesis focuses on control

solutions.

Chapter 2 discusses the broader issues of how to go about designing and optimizing

dynamic motions. This discussion begins by considering what aspect(s) of a locomotive

motion on which we will focus, reviewing the most popular stability metrics for legged

locomotion which have been proposed to date. Because legged locomotion involves such

a high degree of underactuation and stochasticity, we argue that attempts at absolute guar-

antees of stability (i.e., never falling down) should instead be replaced by the mean first-

passage time (MFPT) as an appropriate metric for stability. Our primary objective becomes

that of obtaining highly-reliable motions and long-living locomotion gaits: simply said, our

goal is exceptional performance from our robots most of the time while allowing occasional

“failures” (i.e., falling down). This goal in turn motivates (1) the design of repeatable phys-

ical motions, particularly those which can exploit dynamics and underactuation for greater

speed and agility, (2) a methodology for evaluating the long-livingness, or “metastability”

of cyclical (locomotion) motions, ideally, through a quantifiable metric, and (3) an iterative

process by which our control can be modified to obtain an optimal solution to maximize

this metric. Each of these three elements, design, evaluation, and optimization, is then

developed in more detail in each of the next three chapters.

Chapter 3 demonstrates the design of a range of motions for LittleDog, a small quadruped

robot produced by Boston Dynamics. We describe several, related kinodynamic planning

strategies, all of which are based upon considering external forces (ground reaction forces

and gravity) as the essential means by which the body mass and inertia are pushed around in

the world. Our technique borrows heavily upon those used in “ZMP” (zero-moment point)
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control strategies; the ZMP approach has been used to develop successful walking motions

for high degree-of-freedom bipeds such as ASIMO, which was introduced in Section 1-2.

However, while the traditional goal of zero-moment walking is to remain in a fully actuated

regime, our technique extends the approach to design underactuated motions, as well. The

most dramatic of these motions is a highly-repeatable “dynamic lunge”, which has been

successfully used to negotiate intermittent negative or vertical obstacles (essentially, gaps

and vertical barriers) and step changes in terrain height. Our results yield fast, dynamic mo-

tions which are quite repeatable for execution of a step or two. As highly underactuated,

open-loop motions are planned beyond a single step, however, they begin to demonstrate

significant stochasticity. Our need to quantify and increase stochastic stability motivates

the approach presented in Chapters 4 and 5.

In Chapter 4, we present a more careful, mathematical consideration of evaluation of

the reliability of a walking system. We demonstrate a method for estimating the mean first-

passage time, introduced in Chapter 2, by discretizing the dynamics of a system and per-

forming an eigenanalysis. To illustrate this methodology, we analyze two simple walking

systems on stochastically rough terrain: (1) the rimless wheel, and (2) a passive, compass-

gait biped. The discretized dynamics of each system are well-represented as a Markov

process. The main goals in this chapter are to apply statistical tools to analyze simple

walking systems and to illustrate some of the properties typical of metastable systems more

generally.

Chapter 5 presents a hierarchical control approach to obtain approximate optimization

of an actively-controlled (but still underactuated) version of the compass gait walker on

rough terrain. We present results both on stochastically varying and on known wrapping

terrains. The use of wrapping terrain allows us to obtain a near-infinite horizon solution

for optimal control. Using the policy obtained for stochastic terrain to “seed” the value

function for the wrapping terrain, we find that the policy obtained with a very short look-

ahead, i.e., one or two steps ahead on terrain, is capable of continuous walking. Our results

strongly imply that near-optimal walking solutions on rough terrain may often be found

using a relatively short look-ahead.

In Chapter 6, the bounding style dynamic lunge presented in Chapter 3 is augmented

33



with the addition of a secondary rocking motion to produce a reciprocating bounding gait.

This is a brief chapter, and the primary goal is to discuss the concepts of evaluation and

optimization presented in Chapters 4 and 5, respectively, for control of a real-world robot.

We hope this presentation inspires the reader to apply the ideas presented throughout toward

developing metastable locomotion on highly dynamic mechanical devices. An essential

element here is the reduction of a high degree-of-freedom robot to a system with much

lower complexity, through low-dimensional physical models which capture the dominant

dynamics.

Finally, Chapter 7 provides a summary and suggestions directions for future work. Of

particular note, we highlight the fact that the techniques developed throughout are highly

applicable to machine learning.
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Chapter 2

Metrics and Methods Toward Highly

Dynamic Locomotion

Engineering often balances reward against risk. For legged robots, we want both high

performance (i.e., agility and speed on a variety of terrain) and high reliability (i.e., low

risk of falling).

While the previous chapter argues that better control solutions for legged locomotion

are needed, this chapter motivates the overall approach we develop throughout the remain-

der of the thesis toward achieving this. This chapter has two parts. First, we discuss what

measure(s) should be “optimized” in design of a walking system. Here, we emphasize a

particularly straight-forward goal: minimize the rate of failure (e.g., falling-down) for a

given locomotion task. Second, we discuss possible methods of achieving this optimiza-

tion. A particular contribution throughout this thesis is the development of methods which

can produce desired motions which are both highly dynamic, as motivated in Chapter 1,

and highly reliable, as motivated below. In the end, our goal here is essentially to minimize

risk for a pre-determined performance requirement.

We begin below by reviewing some of the stability margins and stability metrics com-

monly used in evaluating the performance of robots with legs. We present arguments about

what is both good and bad about each method of measuring performance, providing some

particular toy examples as illustration. The review is intended both to familiarize the reader

with the analysis tools roboticists typically use today and also to motivate the need for tools
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presented in detail in Chapter 4 for more directly estimating the stochastic stability of walk-

ing systems.

In the second half of this chapter, we propose the well-known concept of metastabil-

ity to capture the long-living (but not globally stable) nature of walking, and we outline a

straightforward approach for achieving this. Chapters 3 through 6 provide particular exam-

ples of legged systems, including both computer-simulated models and a real quadruped

robot.

2.1 On metrics for legged locomotion

Humans are, in general, exceptionally good at walking. Normal human walking is metabol-

ically efficient and can be used to negotiate significant sources of terrain variability, such as

ground compliance and height and terrain slope variations, while requiring little conscious

control effort. A general hope has existed for some time now that we can design legged

machines with appropriate intrinsic dynamics and low-level control [178, 147, 173, 122] to

mimic such performance. Many of the existing solutions for legged robots, such as those

described in Chapter 1, are sufficiently dissimilar in approach, however, that it is currently

difficult to make quantitative comparisons between them.

Appropriately chosen metrics are important both in evaluating performance of our

robots and in guiding their design. For example, a natural task definition in robot loco-

motion involves traversing a particular path on terrain, perhaps within a specified time

limit. Given the constraints of the problem specification, we wish to design a control pol-

icy to maximize the likelihood of success. At other times, we may be free to plan speed as

required and would like to know how speed affects our risk. In this second case, we wish

not only to optimize likelihood of success but also to quantify it, so that we can compare

risk and reward over a variety of possible speeds. The problem of estimating reliability is

of course important in a wide range of engineering applications, including microelectron-

ics [84], building survival during earthquakes [12, 167] and manipulation planning [112],

but it has not been sufficiently emphasized within the walking community as yet. Empha-

sizing a viewpoint toward quantification of reliability is a significant contribution of this
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thesis, overall.

2.1.1 Literature review on metrics for walking

Below is brief review of some metrics which have been proposed and used in evaluating

walking robots; for interested readers, [67], [49] and [145] provide lengthier reviews. The

velocity-based metrics and definitions for “stability” in walking proposed in [145] are of

particular interest in this section.

2.1.2 Static stability margin (SSM)

The most elementary stability margin discussed here is the static stability margin (SSM).

The static stability margin is the minimal distance which the projection of the center of mass

onto the ground must travel before it exits the convex hull of the leg-to-ground contacts.

This convex hull is known as the support polygon, because it defines the shape within which

a stationary center of mass (COM) must be to prevent toppling.

In cases where the mass is not stationary, the force of gravity may no longer be the only

force acting to produce a toppling moment on a legged entity. In the more general case of

a robot with non-trivial accelerations over time, it is the location of the center of pressure

(COP) with respect to the edge of the support polygon which indicates an instantaneous

danger of initiating toppling. When the COP remains strictly within the support polygon,

so there is no net toppling moment about any edges of the support polygon, then we refer to

the COP as the “zero-moment point” (ZMP), as described in the next section. If a walker is

moving slowly enough, however, then the static stability margin can often serve as a good

approximation for the ZMP.

Thus, the static stability margin provides a geometric “safety margin” which we can

guarantee is allowed in static displacement of the mass (in any arbitrary direction) without

its projection exiting the support polygon: it is essentially a definition of the “wiggle room”

we have before worrying that our stability definition may have been violated. The gain and

phase margins of classical control theory are similarly defined to quantify the magnitude

of allowable uncertainty we can accept while remaining stable. For stable systems, such
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a margin has a positive value to indicate a positive amount of wiggle room before losing

our stability guarantee. In cases where a system is already in a configuration defined as

unstable, a stability margin is negative, and its magnitude indicates the minimal distance

required before re-entering a stable regime.

The static stability margin is very appealing because it is simple to calculate, but its

simplicity comes at the price of ignoring the dynamics of the system. As legged motions

become more dynamic (gazelle vs. turtle, say), the static stability margin loses its utility,

and we need better indicators of stability during locomotion. For example, a robot can

have a net moment about an edge of its support polygon and still demonstrate static sta-

bility. Similarly, a robot can be in complete violation of the static stability margin while

maintaining its center of pressure strictly inside the support polygon. The static stability

margin is not an accurate predictor of robot “stability” because (1) it is neither necessary nor

sufficient to avoid toppling moments as robot motions become more dynamic and (2) stable

limit cycles may exist even if we do have intermittent “toppling” moments during walking,

as is the case for the passive walkers described in Section 1.2.2. The zero-moment point

(ZMP) margin, discussed next, addressed the first (but not the second) of these serious

limitations of the SSM.

2.1.3 Zero-moment point (ZMP) margin

The zero-moment point (ZMP) for a legged robot is the unique point on the ground about

which the total torque produced by robot-ground interactions is precisely zero. In other

words, it is the center of pressure (COP) exerted by the robot on the ground. The concept

of the zero-moment point was given its familiar name in the late 1960’s by Miomir Vuko-

bratovic [179]. In its original context, the ZMP was intended as a way of insuring that

desired motions of the internal degrees of freedom (center of mass position and accelera-

tions, plus any rotations of inertias) could be supported by the inherently underactuated1

interface between the “feet” of a robot and the ground. The term “ZMP” is most typically

used when designing for planned center of pressure locations, as a starting point toward

developing COM and joint angle trajectories. Vukobratovic originally termed this motion
1i.e., the vertical force achievable at the foot is unilateral.
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design process the synthesis of artificial synergy; in his words:

The basic concept used in the synthesis of artificial synergy is that the law

of the change in the reaction and friction forces is given in advance, or that their

interrelationship has been prescribed. For example, the ZMP motion is given

and the point through which the resulting friction force passes is prescribed.

This determination of dynamic quantities imposes dynamic relations which

will result in additional dynamic constraints into the model of the system [178].

By contrast, the term COP is more typically used when discussing actual measurements,

as when measuring forces at the feet to maintain stability in a feedback loop. Somewhat

implicit in the use of term “ZMP” is a concept of maintaining an intentionally actuated

degree of freedom at the ankle, to avoid toppling moments over on the edge of the foot.

The ground contacts during legged locomotion are inherently unilateral and underactu-

ated [55]. As a robot begins to topple over, the center of pressure it exerts on the ground

goes to the edge of its support polygon. Because the foot can only push and not pull on

the ground, it becomes more challenging, if not impossible, to stabilize the motion of the

robot as it tips. Dynamically, the robot becomes underactuated, because it can no longer

use ankle torque at the ground contact in the tipped state.

Direct control of the ZMP has an intuitive appeal, such that we maintain the center of

pressure far enough from the edge of the foot and can respond to any destabilizing pertur-

bations or joint trajectory errors by pushing against the ground to apply appropriate ground

reaction forces. Maintaining a desired ZMP trajectory over time requires a careful strategy,

however. It is possible to balance the ZMP of a robot exactly at the center of its support

polygon, for instance, while crashing the body to the ground. A trivial example of this

is presented below to illustrate the inherent conflict between regulating the instantaneous

location of the ZMP and ensuring its long-term stability.

Figure 2-1 shows a planar example of a simple mechanism with a large base (or “foot”)

and a single source of torque actuation, to control the motion of a pendulum. To treat our

simple “robot” as a fully-actuated device, we must guarantee that the foot maintains both

point contacts with the ground. Once it begins to roll onto a single point of contact, the
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Figure 2-1: Inverted pendulum (2D) balancing on a weighted “foot” platform
At a particular instant in time, we may solve for the required torque which results in a
ZMP at the center of its support polygon or “foot”. However, this direct strategy will move
the center of mass further and further from its equilibrium position, resulting in failure.
Successful balancing requires a better, long-sighted strategy.

system dynamics become nearly identical to those of the (underactuated) acrobot2; control

of the full state of the robot becomes less straight-forward; and the robot may topple over.

To maintain positive pressure at both F1 and F2, let us write a force balance at each

point contact, valid only when F1, F2 ≥ 0. Assuming the height of the point-contact “feet”

on the bottom of the base is negligible in our model, we obtain:

Fz =
−τ

a
sin θ + mg cos2 θ −maθ̇2 cos θ (2.1)

F1 =
−τ + b2Fz + (b2 − af )mfg

b1 + b2

(2.2)

F2 =
τ + b1Fz + (b1 + af )mfg

b1 + b2

(2.3)

where the term Fz represents the external force acting on the pendulum mass, m, which

acts at the pivot point and g is 9.8 (m/s2)3. A full derivation of these equations appears in

2...except for friction limits in the horizontal forces and the fact that ground reaction forces are only
unilateral in the vertical direction.

3i.e., it is the magnitude of gravity, 9.8 m/s2, not the z-directional value of -9.8.
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Appendix A. When both F1 and F2 are strictly positive in magnitude, we can calculate the

location of the ZMP (equivalently, COP) with respect to the toe at F1 as:

xzmp =
F2(b1 + b2)

F1 + F2

(2.4)

To attain the maximum ZMP margin, with the ZMP exactly midway between the two toes,

we would simply have to select a value for τ which would instantaneously result in identical

forces, F1 and F2 at the toes, i.e., F1 = F2. Equating the right-hand sides of 2.2 and 2.3 and

then using 2.1 to substitute for Fz, we can derive an instantaneous solution for τ trivially

as:

τ + b1Fz + (b1 + af )mfg = −τ + b2Fz + (b2 − af )mfg (2.5)

τ

(
2 + (b2 − b1)

sin θ

a

)
= (b2 − b1)

[
mg cos2 θ −maθ̇2 cos θ

]
+ (b1 − b2 + 2af )mfg

(2.6)

τ =
(b2 − b1)

[
mg cos2 θ −maθ̇2 cos θ

]
+ (b1 − b2 + 2af )mfg(

2 + (b2 − b1)
sin θ

a

)

(2.7)

Here, given any small perturbation from equilibrium, the effect of this torque is negligible4

on the total motion of the pendulum mass, m, and may even accelerate how rapidly it arcs

dramatically toward the ground. Maintaining the ZMP at the center of the support polygon

is entirely compatible here with “falling down”. Only long-term regulation of ZMP makes

any sense, since the ZMP location depends on accelerations, which are set instantaneously

for this idealized second-order dynamic system.

The dilemma between achieving instantaneous regulation of the ZMP and long-range

stability is perhaps more clear for the toy example of a planar legged robot shown in Fig-

ure 2-2. We can eliminate the intermediary step of calculating the x and z force components

at each foot in deriving an equation to relate the overall motion of the (point) mass to the

location of the ZMP on the ground. By definition, the ZMP is the location where the sum

4We will justify this comment more precisely in the pages ahead...
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Figure 2-2: Minimalist fully-actuated legged robot
All internal joints are fully actuated. The center of mass motion can be treated as fully
actuated as long and kinematic and ZMP constraints are not violated.

of all moments is zero, i.e.:

0 = zmẍm − (xm − xzmp)(z̈m + g) (2.8)

xzmp = xm − zm

z̈m + g
ẍm (2.9)

To remain in the regime where we can assume full actuation, we require a net positive

vertical force, Fz, at each foot contact, as described for the previous example from Figure 2-

1. Correspondingly, this requires that the sum of the vertical acceleration of the mass and

gravity remain positive: z̈m + g > 0. We shall also assume remaining “not fallen” requires

a positive height: zm > 0. Given these physical restrictions, it is clear that the sign of the

acceleration, ẍm, required to bring the ZMP to some particular, desired ZMP location, is

always opposite the sign of the displacement:

∆x = xzmp − xm = −Kposẍm (2.10)

where Kpos = zm

z̈m+g
> 0. We know this intuitively, of course. If you stand in equilibrium

and wish to accelerate to the right, you must shift your center of pressure to push with
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your left foot. Immediate regulation of the ZMP would only result in re-centering the

mass between the two feet in the improbable event the initial velocity just happened to be

perfectly matched such that the acceleration slows the mass down to a dead stop at the

desired position.

Consider the particular case where we use inverse kinematics to constrain the mass

to travel a constant height, zm = L. Now, the relationship from the desired ZMP, xzmp,

to position of the mass, xm, shown in Equation 2.9 becomes identical to the standard,

linearized inverted pendulum dynamics. Using the Laplace operator (s ≡ ∂/∂t, s2 ≡
∂2/∂t2, etc.), this transfer function is:

Xm(s)

Xzmp(s)
=

1

s2 − L
g

(2.11)

The two real-valued poles for this height-constrained system are s = −
√

L/g (stable) and

s = +
√

L/g (unstable). One should also note that the solution for the evolution of the

dynamics is equivalent to the dynamics of the pendulum-foot model (Figure 2-1) if it is

linearized about equilibrium. This should explain to the reader why we earlier claimed

that the effect of the torque, τ , as defined in Equation 2.7 is “negligible”, as mentioned

in passing on Page 41. Near equilibrium, the natural dynamics of the inverted pendulum

already maintain the ZMP at the center of the support base already, so the required torque

command is approximately5 zero.

We can stabilize such dynamics using any of a number of classical approaches. In

general both within this thesis and in the broader ZMP-based robotics literature, we will

assume the future desired ZMP trajectory is known for some finite epoch ahead in time. We

can take advantage of this to essentially “violate the causality” implicit in Equation 2.11,

so that the mass moves in a way which takes advantage of the upcoming desired trajectory.

The essential idea behind most of the published results for ZMP control is simply to plan

and to follow a particular trajectory of ZMP to achieve some desired overall motion of the

body of the robot. Some examples of legged locomotion using this general methodology

are discussed below, briefly.

5The location of the actual pendulum pivot is not quite at the center of the foot in Fig. 2-1
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ZMP-based approaches to control walking

A variety of robot gaits have been designed using a ZMP criterion. ASIMO, described in

section 1.2.1 may be the most famous example to date [65], but ZMP methods are also used

extensively throughout the rest of the humanoid robotics community. Of particular note,

the work of Shuuji Kajita in employing Preview Control to follow a desired ZMP trajectory

has produced successful dynamic walking gaits bipeds [86] and even some initial results

for running bipeds [88]. Preview Control [155, 174, 91, 168] will be discussed in more

detail throughout Chapter 3.

ZMP-planning techniques have also been used in designing more dynamic motions,

including an intermittent, omnidirectional trot for the Titan VI quadruped [192] by planning

motions in which the ZMP lies exactly on the support line of diagonally-opposed feet.

We successfully demonstrate a similar strategy for designing double-support gaits for the

LittleDog quadruped in Section 3.7.

Others have used general ZMP-inspired concepts toward analysis of the dynamics of

passive walkers [123], i.e., by following the point of contact between an arc foot and the

ground. Various researchers have also used or been directly inspired by ZMP principles in

controlling many other robotic systems and models [152, 165, 126, 9, 68, 113, 30, 69, 61,

2], including ZMP-based running bipeds [87] or quadrupeds [126, 192, 103].

Planning and predicting the ground reaction forces which will act on a robot is clearly

a useful technique in understanding what motions of the mass and inertia of a legged robot

are attainable; this is also a key element in designing our own dynamic motions for the

LittleDog robot in Chapter 3. However, the practicality of the zero-moment point as a

stability margin is inherently limited, as it does not provide direct information about how

easily a robot can be toppled by disturbances. That is, it does not truly quantify stability.

Often, an increased ZMP margin does not even correlate directly with (let alone mean-

ingfully quantify) increased stability. Passive walkers can have point feet with no ZMP

margin yet exhibit stable limit cycles; ZMP location merely correlates to a likelihood of

“tipping”, which may be an intentional feature in well-designed, efficient walking strate-

gies. Second, even if we chose to limit our desired behaviors to remain “fully actuated”6,
6i.e., in the sense of maintaining a non-zero ZMP margin, to avoid the underactuated toppling dynamic of

44



the geometric ZMP margin is an incomplete quantification of danger. For example, if the

simple pendulum with a base from Figure 2-1 is highly asymmetric, the correspondence

between the ZMP location and the propensity to tip may be highly asymmetric as well.

The physical location of the ZMP does not provide information about the magnitude of

the pressure force acted between the robot and ground, nor the height of the mass; thus, it

does not cleanly quantify the magnitude of the disturbance required to instigate toppling.

To better capture a notion of the size of perturbation which will cause tipping, a number of

other metrics have been proposed and are outlined briefly in the following section.

2.1.4 Velocity- and energy-based metrics

As legged gaits become increasingly dynamic, the COM and ZMP stability margins are

clearly insufficient metrics of stability. Stable limit cycle gaits exist for walkers which do

not have a meaningful ZMP margin, for example, because their support polygon provides

zero “margin” for control7 and/or because contact is only intermittent8. For robots that

exploit underactuated motions, it is necessary to discuss stability in terms of better met-

rics. Several new metrics have been suggested within the last decade or so; some notable

examples are reviewed briefly below.

Goswami introduced the Foot Rotator Index (FRI) [55] and also later suggested a new

criterion for legged robots based on angular momentum [57]. As mentioned, ZMP-based

legged motion planning generally involves selecting a desired trajectory of the ZMP over

some future time horizon. Generally, the goal is to avoid tipping over the edge of the sup-

port polygon, so one can plan motions using a fully-actuated model. Once a robot begins

to tip, one may calculate the theoretical location in which one would need to place the

ZMP in order to prevent tipping, and this is the so-called FRI. The actual ZMP cannot exit

the support polygon, of course, but the FRI indicates how far one would need to extend

the support polygon in order to recapture a moment-controlling center of pressure to pre-

vent tipping. The ZMP, FRI and an additional ground reference point called the Centroidal

many natural walking gaits.
7i.e., in the case of either a point contact or a line of support.
8e.g, for running and bounding gaits.
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Moment Point (CMP) are discussed and compared in more detail in [141].

Hirose provides a good survey of stability margins and suggests his own metric: the

Normalized Energy (NE) Stability Margin [67]. This margin is related to the Energy Sta-

bility Margin [119], which is the change in potential energy (mg∆h) required for a robot

to topple over the edge of a support polygon. Hirose normalizes this value by the weight

of the robot (mg), so that a heavier machine is not considered more stable. The goal is

to create a stability margin which captures a more general measure of stability in terms of

geometry and mass distribution; the NE Stability Margin is simply the height difference

which will occur during the topple (∆h). Yoneda and Hirose had previously suggested the

Tumble Stability Margin [192]. The concept here is to calculate the net moment required

to topple a robot about each particular line of the support polygon and to normalize these

values (as with NE Stability Margin) by the weight; this margin is the shortest resulting

distance (after all lines of the support polygon are analyzed) and coincides with the SSM

in the limit on level ground when there is no acceleration of the mass. Related stability

metrics reviewed in [67] also look at the angle of inclination required for tipping.

Garcia et al. provide another survey of the various types of stability margins in use for

legged robots [49], and they suggest a modified version of NE Stability Margin, which they

call the Normalized Dynamic Energy Stability Margin [48]. Here, the goal is provide a

metric to indicate as directly as possible the largest impulsive energy change the robot can

safely take, normalized again by its weight, mg. The key aspect here (as indicated by the

name) is that full dynamics (most notably, inertia and any torques or forces from all inter-

actions with the environment, which may include manipulation with arms) are considered.

Although not strictly a “margin” of stability, Hirukawa introduces the universal stabil-

ity criterion [69], which looks at the full contact wrench between the robot and its environ-

ment. This criterion allows one to evaluate a ZMP-type stability which includes arbitrary

roughness of terrain and 3D contact points, and it checks if the friction cone has been vio-

lated. Friction considerations are often neglected in stability margin analyses but are worth

mentioning briefly, as they were an important consideration in planning acceleration of the

mass for dynamic lunging in Chapter 3.

In general, all the metrics listed so far in this section aim at ensuring that a robot does
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not topple over. However, we reiterate once more, passive-dynamic principles allow for sta-

ble limit cycle walking which exploits (rather than avoids) such toppling dynamics. Wisse

et al. boldly state that in walking, stability has just two requirements: “You will never fall

forward if you put your swing leg fast enough in front of your stance leg. In order to pre-

vent falling backward the next step, the swing leg shouldnt be too far in front.” [188] This

concept is appealing and sensible, but it does not provide a quantifiable metric for stability.

Passive-based walkers remain notoriously sensitive to perturbations and initial conditions,

both in theory and practice.

Toward quantifying the stability of a variety of legged gaits more generally, Pratt and

Tedrake introduce velocity-based metrics, with the aim of predicting the necessary stopping

time for a robot to come to rest safely [145]. This is an intuitively-pleasing metric, since it

gives a direct estimate of the requirements needed to safely arrest forward motion without

falling. They provide several particular values of interest, along with both brute-force and

approximate estimation methodologies for obtaining them.

As Full et al. note, defining “stability” for a legged system is a difficult task [47]. For

a cyclical motion, a better definition should, they argue, look at the ability to return to a

nominal gait or cycle after a perturbation. Wieber presents a related idea about stability

essentially meaning convergence and proposes a Lyapunov Stability Margin [187].

We believe the ideal stability metric for walking should incorporate all factors which

may ultimately lead a robot to fall down. It should provide an overall estimate of the in-

stantaneous likelihood of falling and/or the expected length continuous walking to quantify

stability. The particular metric we propose here is simply the expected average time of

travel before falling, called the mean first-passage time (MFPT).

2.2 The mean first-passage time (MFPT) metric

The mean first-passage time (MFPT) is a term borrowed from the physics community. In

engineering it is also often called the “mean time to failure” (MTTF). We believe this met-

ric provides the most straight-forward and intuitive measure of stability for walking robots.

Its greatest liability is the potential difficulty one might have in estimating its value. Chap-
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ter 4 addresses this directly, however, demonstrating tools to analyze long term stability of

walking systems. Below, we discuss the appropriateness of the MFPT metric briefly.

In general, legged gaits involve motions which orbit near some particular limit cycle

in state space. For idealized systems, one can prove local stability through a Poincaré

analysis, guaranteeing that small perturbations of the limit cycle in any direction in state

space contract back to a fixed point [58]. One can also calculate the region(s) in state space

from which the limit cycle dynamics are stable and will converge to the fixed point [154].

However, global stability is much more difficult to demonstrate, even for simplified models

of walking. Global stability has been demonstrated for the “rimless wheel” model on a

slope9 [171], but only if either the standing-still fixed point is considered meaningful (for

a walking system) or if the slope of terrain is so steep that the wheel can never stand

still. Also, even in the trivial case of the ideal rimless wheel model (with instantaneous,

inelastic collisions), the inherent, one-way underactuation of the ground-foot contact may

cause the model to exit its assumed dynamic regime entirely; both feet will lose contact

with the ground, if it is rolling too fast (such that actual acceleration of the point mass in

the idealized model would infeasibly exceed gravity). Legged locomotion is almost always

susceptible to this underactuated contact between the foot and the ground – specifically,

the foot can push at the ground but cannot pull10. Also, legged locomotion usually involves

significant step-to-step variability11. The terrain and perturbations to which a walker will be

subjected are never known perfectly, and their effects on the underlying dynamic stability

of a walking system are difficult to model analytically.

As a result, we believe well-designed, practical, legged robots are properly classified as

systems demonstrating stochastic stability, as discussed in Chapter 4. Our goal should be

to attain excellent performance most of the time with only occasional failure. We should

not require global stability: guarantees of recovery from any possible perturbation are not

realistic in realworld walking. Moreover, it is not sufficient to consider the effect of any

single perturbation on the nominal limit cycle in quantifying what our controlled system can

9The rimless wheel is described in Section 4.3.1.
10Almost always. Geckos provide a nice counterexample [94].
11Again, I’m sure the clever reader can come up with important exceptions, such as physical training on a

treadmill, but almost always...
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handle, because every step in locomotion adds new perturbations. It is critical to understand

the mixing effects of all these perturbations to quantify the stochastic stability accurately.

2.3 Metastability: Beyond stability

There is generally a conflict between the goals of exceptional dynamic behavior and of

guaranteeing stability of a walking system. As mentioned, walking systems are always

underactuated, and it is impractical and undesirable to limit their operation to such carefully

prescribed environment that absolute guarantees of stability can be made12. Realistically,

what we should expect is exceptional behavior most of the time, with an emphasis on

minimizing the rate of failure.

Many systems exhibit long-living behaviors which are not technically “stable”. This is

a well-defined concept, which is referred to as “metastability” [51]: literally, “beyond sta-

bility”. These stochastic dynamic systems exhibit behaviors which are impressively long-

living, but which are also guaranteed to exit (“fail”) with probability one given enough

time. Such systems cannot be classified as “stable”, but it is also misleading and incom-

plete to classify them as “unstable”. Physicists have long used the term metastable to

capture this interesting phenomenon and have developed a number of tools for quantifying

this behavior [60, 90, 127, 169]. Many other branches of science and engineering have

also borrowed the terminology to describe dynamic systems in a wide variety of fields. Fa-

miliar metastable systems include crystalline structures (e.g., diamonds), flip-flop circuits,

radioactive elements, oscillatory wave patterns in the brain, and ferromagnetic materials,

such as spin glass or magnetic tape film (which explains why a taped recording sitting in

storage inevitably fades over time).

The canonical example of metastability is a particle in a potential well subject to Brow-

nian motion, as cartooned in Figure 2-3. Such systems have local attractors which tend to

keep the dynamics within a particular neighborhood in state space. In the limit as these

systems become deterministic (no noise), the local attractors are fixed points, and the sys-

12That is, one cannot give a global guarantee that no disturbance, no matter how unlikely, could possibly
make them fall.
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escape attempts

Figure 2-3: Cartoon of a particle subject to Brownian motion in a potential U(x) with two
metastable states, A and B.

tem is truly stable whenever the dynamics begin with an initial condition somewhere inside

the basin of attraction of the fixed point. In contrast, stochasticity constantly pushes the

dynamics about within this neighborhood, and for some systems and noise types, this turns

a stable system into a metastable one. Over time, such systems deviate particularly far from

a metastable attractor in state space (making “escape attempts”) and eventually they will

exit (by which we mean entering a region where a different local attractor dominates).

2.3.1 Walking as a metastable limit cycle

Many researchers discuss the existence of strictly stable limit cycles for ideal passive dy-

namic or mildly-active passivity-based walkers [114, 58, 50, 56, 154, 83, 8]. As we have

previously mentioned13, passive-based robots are notoriously sensitive to both initial con-

ditions and perturbations. With additional complexity, such as passive knees, parameters

(lengths and relative masses) of a passive walker must be chosen with extreme care for a

stable limit cycle to exist at all [78].

In order to claim that a system is metastable, we need to show that it will converge to

its long-living state (or limit cycle) very quickly, with respect to the time scale on which

failures occur. That is, initial conditions should be forgotten “quickly”, with respect the

time scale on which a particular sequence of successful steps occurs. Additionally, we

need to define what an acceptable definition of “long-living” is, in the sense of a particular

13in Section 1.2.2 (p. 28) and elsewhere.
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number of steps taken on average before falling. We do not attempt to define a strict limit

on the required MFPT for metastable walking, but intuitively, we can probably agree it

should be on the order of thousands of steps (at least), rather than dozens.

2.4 Discussion and conclusions

Below, we call to the reader’s attention to some additional considerations about metrics for

walking and about the practicalities of estimating of time-to-failure on real-world system.

We conclude this chapter by restating our belief that thinking about walking as an inherently

stochastic process is appropriate and that the statistics of failure are correspondingly the

best-correlated metrics for measuring stability.

2.4.1 Efficiency of walking

Another import metric for legged locomotion performance, beyond considering stability

alone, is efficiency [99]. Humans are very efficient at walking compared to most bipedal

robots, although walkers designed using passive dynamic principles have demonstrated

comparable efficiency [33]. To date, there is certainly a trade-off between efficiency and

stability, however. For example, as discussed in Section 1.2, there are two distinct solu-

tions for bipedal locomotion which exhibit this trade-off: the dynamic walking approach

in Section 1.2.2 is efficient but also highly sensitive to perturbations, while highly-actuated

humanoids such as ASIMO (Section 1.2.1) maintain much better control authority. Addi-

tional control authority adds capability to remain more stable, but it also makes operation

much less efficient. The author has personally “pushed around” both an ASIMO14 and sev-

eral passive-based walkers. A slight tap can destabilize a dynamic walker, but ASIMO can

withstand significant horizontal pressure and respond to stand stably (distributing weight

evenly on its feet, to keep its ZMP well within the support polygon). Although this thesis

focuses specifically on the issue of legged locomotion stability, incorporating both stability

and efficiency into a practical robot is certainly the ultimate goal in legged robotics, and a

14Honda Research in Cambridge, MA has one.

51



cost function based on both of these criteria could clearly be used in optimizing a control

policy for a robot.

2.4.2 The right answer?

For different regimes of locomotion, the Static Stability Margin or ZMP may be entirely

appropriate and acceptable as a stability metric, while other motions will require limit cycle

analyses. Universally, however, we always want robots which perform exceptionally most

of the time with only occasional failures (falling), and a metric which can quantify this

level of reliability therefore seems natural for encompassing the entire class of entities

(machines and animals) undergoing legged locomotion. The strongest disadvantage of the

MFPT metric is in knowing the best way to estimate this value. We are confident that this

remains the “right way” to think about legged locomotion, however, and we are optimistic

that the mathematical tools presenting ahead in this thesis for estimation of the mean first-

passage time both on walking models and on real robots can and will prove their utility

(and undergo significant refinement) over time.
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Chapter 3

Kinodynamic Planning for LittleDog

In this chapter, we describe a design methodology for planning kinematically and dynam-

ically feasible locomotion for a small, quadrupedal robot called “LittleDog”, pictured in

Figure 3-11. The focus of this chapter is on design of control solutions for locomotion,

while Chapter 6 discusses issues relating to their evaluation and improvement. The most

significant challenge in our work has been the extension of traditional kinodynamic plan-

ning to achieve reliable double-support motions which are highly dynamic and underactu-

ated. As in human and other animal locomotion, control of a robot in underactuated motion

can produce significant gains in speed and in extremity of traversable rough terrain.

3.1 Introduction: Control solutions for locomotion

The task of locomotion is essentially an exceptional case of manipulation. Rather than con-

trolling the degrees of freedom of particular, external objects in the environment, however,

successfully locomoting oneself requires the generation of appropriate forces to control

one’s own degrees of freedom over time. Locomotion requires movement of the entire robot

within the environment, which makes it uniquely challenging as a “manipulation” task. In

traditional manipulation tasks, one can often make the convenient and reasonable simpli-

fication that the robot is either bolted down or is massive enough to assume it has a fixed

1LittleDog is a product of Boston Dynamics Inc. (BDI) which also developed the BigDog robot, described
in Chapter 1.
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Figure 3-1: The LittleDog robot
Alec Shkolnik (left) and Katie Byl are also pictured in the background (for scale).
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reference frame with respect to the environment, and one can then employ high-impedance

actuators to achieve an essentially fully-actuated robot. By contrast, a legged robot can

not achieve a fully-actuated reference frame with respect to its environment: feet push but

cannot pull, contact is intermittent, and lateral forces are limited by friction constraints.

Both manipulation and locomotion require careful planning of kinematics and achievable

dynamics; locomotion, however, occurs within a significantly more underactuated regime.

As robots are developed with more degrees of freedom, it becomes non-trivial to plan

successful locomotion which maintains both kinematic and dynamic feasibility; resolving

these two requirements simultaneously is known as kinodynamic motion planning. Kin-

odynamic motion planning for high-degree-of-freedom, humanoid robots has become a

popular topic of research, particularly in recent years [107, 110]. A now-standard ap-

proach currently employed for solving this problem involves two parts. First, a series of

kinematically-feasible poses are found, each of which is also statically stable, as defined

in Section 2.1.2. Then, a “speed knob” is essentially “turned up”, increasing the speed of

execution of these motions while insuring the zero-moment point (ZMP) (aka, center of

pressure) remains within some safety margin of all edges of the support polygon, as de-

scribed in Section 2.1.3. In other words, kinodynamic planning is traditionally employed

to ensure that a robot operates in a fully-actuated regime, only.

Our primary aim in working with LittleDog has been to create motions which are both

highly agile and highly reliable. Agility is clearly desirable in negotiating extreme terrain2.

High reliability is also an obvious goal, since falling down slows you down and also carries

risk of physical self-damage. We obtain motions which are both repeatable and agile, such

as the dynamic lunge depicted in Figure 3-2, by reasoning about ground reaction forces

and the dynamic coupling between linear and angular accelerations. Then, we calculate

inverse kinematic solutions for these physically realizable motions, using the methodology

described in [157]. The calculated joint angles can be executed with good repeatability,

due to the high impedance of the actuators. The resulting overall body motion is also quite

repeatable, as described later in the chapter. Portions of this chapter, particularly the results

for double-support motions in Sections 3.5.2 and 3.7 also appear in [24].

2For example, recall the agile mountain goat on page 18.
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Initial back foot position
Initial front foot position

Final back foot position
Final front foot position

Dog Lunging (left−to−right)

Figure 3-2: LittleDog executing a dynamic lunge
Frames were captured using a high-speed camera. Note that the back leg loses contact with
the ground once the dog gains forward and upward momentum; it moves forward about
7 cm during the entire motion.

3.2 Toward dynamic maneuvers on rough terrain

Legged robots today move far too conservatively. A driving motivation in the study of

legged machines is the promise that they will effectively navigate extreme terrain, making

use of intermittent footholds and dynamic stability to go where wheeled vehicles cannot.

Animals walk and run over incredible terrain with apparent ease [118], often leaping from

one foothold to the next. In comparison, our machines move slowly and methodically, con-

strained by overly restrictive measures of dynamic stability. As described by Koditschek

and Buehler, what we strive toward as roboticists are “dynamically dextrous robots”[97].

One major difference between animals and walking machines is the mechanical design.

Many legged robots rely on large gear-reductions in order to obtain the necessary torque

from electric motors with high-impedance transmissions. As a consequence, the joints in

these robots have a high impedance, and the motions of these robots often appear rigid

and stiff. In contrast, the impressively-dynamic capabilities of biological systems are often

attributed to their use of compliant joints, which permit energy storage (and fast release)
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and provide a level of mechanical robustness. While many researchers are interested in

the mechanical design of low-impedance walking robots to achieve dynamic gaits [142],

in this chapter, we consider solutions involving only control. In particular, we develop

a motion-planning algorithm which allows a stiff, position-controlled quadruped robot to

execute reliable dynamic maneuvers that are often associated with more compliant systems.

By reasoning about the ground reaction forces and the dynamics of the passive degrees-of-

freedom between the feet and the ground, we are able to design trajectories of the center of

mass which maneuver the robot into and through a “bipedal” double-support phase. Our

experimental results demonstrate the utility of these dynamic maneuvers in negotiating a

variety of rough terrain in a motion capture environment.

3.2.1 Compliance versus stiffness

The success of many dynamic quadrupeds depends on a compliant (soft) leg design, to pro-

vide some level of natural (passive) dynamics, to moderate impacts and/or to facilitate force

control. For example, there are now a number of compelling demonstrations of small, com-

pliant quadrupeds which locomote quite well using only simple, oscillatory control (e.g.,

[96, 81]). Simplified control strategies have worked very well for a running quadruped with

pneumatic legs [146], and significant refinement of these control ideas has more recently

resulted in highly-dynamic legged locomotion and dynamic stabilization capabilities for

BigDog [21] 3.

Stiffness isn’t always an impediment, however. Although compliance has been instru-

mental in achieving dynamic gaits in a variety of robots, many of these more compliant

quadrupeds have not simultaneously demonstrated the ability to achieve careful foot place-

ments – a skill necessary for careful walking on particularly treacherous terrain. Quadruped

robots capable of careful foot placement currently tend to move much more slowly (e.g.,

[48, 66]).

The robot used in the experiments presented here is LittleDog, a small quadruped built

by Boston Dynamics, Inc. LittleDog was designed as a position-controlled robot capa-

ble of executing careful foot placements. Although there are many clear benefits of low
3BigDog was described in more detail in Section 1.2.4, page 30.
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impedance for walking robots [142], a high-impedance robot such as LittleDog can still

execute very dynamic motions, as demonstrated in our results.

3.2.2 Current state-of-the-art in kinodynamic planning

The phrase “kinodynamic planning problem” seems to originate with [29], which was later

published in extended form as [40]. However, the basic problem was certainly considered

before this, e.g., [133, 149, 156]. As the name suggests, kinodynamic planning involves

simultaneous satisfaction of both kinematic and dynamic constraints on a robotic system.

In its original formulation, the dynamic limitations considered were primarily actuator lim-

its in velocity and/or acceleration, and the goal of the problem was one of determining a

minimum-time solution connecting desired start and end states. In this context, the kino-

dynamic planning problem is an optimal control problem in its purest form. Early forms

of the kinodynamic planning problem applied to robot manipulation (rather than to loco-

motion): for example, [41] extended kinodynamic planning from the problem of moving

a point mass to one of a generalized, open-chain manipulator. In these early formulations,

ground reaction forces were not generally considered; a robot arm could be assumed to

travel with respect to a known, reliable coordinate system. In particular, many examples

involved a fixed coordinate system, where the robot was mounted on a rigid, immovable

base.

As research into humanoid robots grew throughout the 1980’s and 90’s, the dynamic

constraints on kinodynamic planning grew to include requirements on the ZMP location,

to achieve quasi-full actuation during locomotion, as discussed in Section 2.1.3. Although

exact kinodynamic planning solutions have been developed for 1D [133] and 2D [28] prob-

lems, practical extensions to higher dimensionality require significant complexity. Higher-

dimensionality solutions generally claim at best approximate optimality [156]. For a high-

degree-of-freedom robot, such as a humanoid, kinodynamic planning is so challenging that

a popular approach which is still used today uses randomized trees [108] to find any viable

solution [110], rather than attempting to find an optimal solution.

In the current work, we extend kinodynamic planning to design motions with inten-
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tional underactuation and coupled dynamics. For our quadrupedal robot, such underactua-

tion is required to enable lunging and bounding type motions, which can in turn provide sig-

nificant advantages both in attainable speed and in the extremity of traversable terrain4. As

mentioned in Section 3.1, one approach in designing motions for high-degree-of-freedom

robots involves first planning a series of statically-stable poses and then determining how

rapidly they can be pieced together while maintaining a desirable ZMP stability margin. By

contrast, our highly-coupled motions must be executed at a particular speed to achieve our

desired underactuated motions. Previous work by others has also investigated the problem

of appropriate time-scaling of trajectories in motion planning [74], emphasizing the idea

that slower trajectories are not necessarily safer – and in fact may make a desired motion

trajectory infeasible in some cases. This is precisely the case in our underactuated lunges,

where accelerations which are either too large or too small will either topple the robot or

fail to initiate a lunge.

3.3 The Learning Locomotion program

MIT is one of six research institutions participating in a DARPA (Defense Advanced Re-

search Projects Agency) program entitled “Learning Locomotion”. The goal of this project

is to generate computer algorithms which autonomously control the LittleDog robot to

cross known but challenging terrain quickly and reliably. The format of the Learning Lo-

comotion program allows for direct comparison of control strategies and algorithms in a

head-to-head format, since all teams must compete using identical hardware (i.e., actuation

and sensing). More technical details on robot operation and desired performance metrics

are given below in Sections 3.3.1 and 3.3.2.

3.3.1 LittleDog hardware and environment

The LittleDog quadruped has a mass of about 2.4 kg and is actuated at 12 leg joints. Plan-

ning for desired joint trajectories is done on an off-board computer, which transmits desired

position and velocity values for all joints to the robot at 100 Hz. A low-level PD control
4e.g., wide gaps, stepped terrain, or “hurdling” style obstacles
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loop on the robot (running at 400 Hz) regulates the joints. All joints are actuated through

high gear-ratio (84:1) transmissions, giving them high impedance to external disturbances.

Round feet on LittleDog provide rolling contacts which can not produce ankle torque. The

ground contact angle at the support legs becomes unactuated during double-support mo-

tions. The robot operates in a motion capture (mocap) environment to estimate the 6 DOF

of the body and to detect upcoming, pre-scanned terrain boards.

The work presented in this chapter focuses primarily on the dynamic motions planned

for Phase 2 of the Learning Locomotion project, between September 2007 and April 2008.

Various contributions in writing the code to control the dog and in debugging and testing

were done by fellow teammates on the MIT LittleDog project. They include: Russ Tedrake

and Nick Roy (principal investigators), Alec Shkolnik, Sam Prentice, Steve Proulx, Khash

Rohanimanesh, Michael Price, Olivier Chatot, Emma Brunskill, John Roberts and Lauren

White.

3.3.2 Metrics for LittleDog

DARPA enforces strict go/no-go metrics for many programs, and the metrics for the Learn-

ing Locomotion program are listed in Table 3.1. Speeds and heights were selected assuming

a nominal leg length of approximately 12 cm; this is a typical value for the ground clear-

ance under the belly of the robot during walking. Overall performance measures for each

team during DAPRA testing were based on the best two out of three “blind” test trials on

each of seven particular terrain class types. Teams were given examples of each terrain

class on which to practice both at their own sites and during periodic (monthly) off-site

“spiral” tests. Final performance for each team was based solely on metric scores achieved

during go/no-go testing on the blind terrain boards. Failure to complete a run resulted in a

trial speed of zero. The original intent of the metrics was to achieve an average speed at or

above the metric on each of the seven classes of terrain. Our overall speed average during

final (off-site) go/no-go testing was 6.0 cm/s, and the MIT team achieved metric speeds on

6 out of the 7 different terrain types.
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Table 3.1: DARPA metrics for the Learning Locomotion project
Height values give estimates of the maximum change in height per nominal leg length
(12 cm) to be expected in trials; speed values are prescribed DARPA metrics.

Attribute [units] Phase I Phase II Phase III
Speed [cm/s] 1.2 4.2 7.2
Height [cm] 4.8 7.8 10.8

3.4 Locomotion planning on rough terrain

Successful long-living (i.e., metastable) locomotion on rough terrain requires both high-

level planning (of the path taken through the terrain and of the motion types selected along

the way) and low-level planning (of the dynamics and kinematics which can achieve the

general motion types we wish to perform). The work presented throughout this chapter

emphasizes methodologies for generating reliable low-level solutions to motion planning.

While both low-level and high-level planning are certainly essential to both animal and

robot locomotion, we believe focusing on the lower level is of more imminent interest

(and is also significantly more challenging) than high-level planning for several reasons.

First, we provide evidence later in this thesis5 that near-optimal solutions to metastable

locomotion can sometimes be found using a relatively short look-ahead on the terrain.

Second, we would often intentionally like to leave our high-level planning options as open

as possible, to be able to command a robot to perform particular, high-level tasks, such as

accompanying humans or surveying terrain. Good low-level solutions must exist to allow

a legged robot to operate as a simple “vehicle”, even if significant high-level path planning

can simply be done by a human operator. We note that if these low-level tasks are designed

well and have quantifiable performance metrics, then the task of a high-level planner should

(ideally) become a relatively straight-forward one of making selections which results in the

best estimated performance metric. For all of these reasons, exploring what is achievable

in low-level control is a critical step in planning locomotion on rough terrain.

Throughout this thesis, low-level motion planning consists of two, fundamental tasks:

(1) the design of the motion itself, and (2) the evaluation of its performance, by which we

5in particular, in Section 5.8, p. 154 of Chapter 5.
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mean both estimates of the expected end state and estimates of the probability of success

and/or distribution of end states which may occur. This chapter focuses on the design of

reliable motions. This task of evaluation (i.e., quantification) of the performance expected

is a significant challenge for a high-degree-of-freedom robot such as LittleDog, traversing

complex terrain. We discuss the problems of evaluation and optimization of low-level

motion control for LittleDog briefly in Chapter 6.

3.4.1 Path planning

Although our focus in this chapter is on the task of planning low-level (step-to-step) plans

once a global path has already been dictated, we will consider issues in global path planning

briefly in this particular section. Implicit in the idea that initial conditions are forgotten

rapidly for metastable locomotion is a guarantee that “greedy” short-sighted decisions will

not lead to a large, unforseen penalty several steps later. There are many problems, such

as chess, where a long horizon look-ahead is required to estimate the comparative values

of short term actions. It is beyond the scope of this thesis to provide the exact conditions

which guarantee that such long-horizon planning is or is not required, and (regardless of

such guarantees) it is of interest to develop low-level solutions where some user-generated,

global plan has simply been dictated. However, we will still provide two general reasons to

believe that particular foot selection for legged locomotion along a prescribed global path

can generally be accomplished with a relatively short time-horizon look-ahead.

One piece of evidence for the near-optimality of short-horizon foothold planning is that

many animals can navigate quite robustly on complex and stochastic terrain when only

a step or two of terrain knowledge is available. This is often the case when hiking, for

instance, where paths may turn suddenly or the ground profile may be obscured by leaves

and underbrush. Also, dogs and horses trained for highly-agile locomotion must respond

within a footstep or two to commit to particular obstacles, because they simply do not

know what path will be taken until they are signalled. In dog agility, courses also include

obstacles, such as tunnels, which significantly hide upcoming terrain, and in competitions,

dogs are required to run an agility course without prior knowledge of the specific (global)
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course.

A second reason to believe short-sighted planning may often work well for legged

robots comes from analyzing results for a controlled compass gait walker on rough terrain,

which will be presented in detail in second half of Chapter 5. Here, we demonstrate that

both an infinite-step look-ahead policy and an optimal one-step look-ahead policy result

in continuous walking on known, wrapping terrain. In that work, the vertical magnitude

of the terrain features was iteratively adjusted until the optimal policy with infinite look-

ahead could just barely succeed. The success of a one-step policy on the same terrain was

correspondingly both surprising and highly suggestive to the author: although additional

evidence is required, it seems both intuitive and reasonable to suspect that the nature of

legged locomotion often requires only a short look-ahead. The success of short-horizon

planning is in part due to the impulse-generating nature of “taking a step”: energy can

be imparted or dissipated during contact with the ground at each step, providing a natural

discretization for motion planning and control.

Above the level of individual foothold planning, some global path for the robot must

also be determined. In many cases, there may not be much choice in a global path, ei-

ther because obvious “paths” (e.g., manmade) preexist or because the robot is required to

traverse a particular path or to go between specified way-points.

To achieve the DARPA metrics for the Learning Locomotion program, teams are pro-

vided with significant pre-planning time, to process terrain and to compute a global path or

strategy for traversal to the goal. Global path planning for LittleDog is a high-dimensional

task; the robot has 18 DOF and must plan continuous motion for approximately 45 steps to

get from start to goal on most terrain. Searching for “optimal” solutions is arguably impos-

sible within the 90-second planning period provided. Instead of finding an optimal path, we

instead look for a “reasonable” solution, using a depth-first searching algorithm. Several

flavors of algorithm have been employed throughout Phases 1 and 2 of the project. Qual-

itatively, the most computationally intensive tasks in planning are collision detection and

inverse kinematics. We use a heuristic cost function to estimate the “easiness” of finding

locally collision-free and kinematically-feasible poses to identify an approximate global

corridor to the goal; this reduces the search space for particular body pose and foothold
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selections.

For the most difficult terrain6, we use the longest look-ahead, planning entirely from

start to goal. On terrains where particular, extreme obstacles can be most-easily identified,

we employ the most dynamic behavior, obtain the fastest speeds, and use a much shorter

look-ahead. We also use extensive “re-planning” throughout on such terrain, as necessary.

In Phase 2, such terrains consisted of discrete obstacles (e.g., a gap or Jersey barrier, as

shown in Figure 3-17) surrounded by flat terrain, so that footholds are only planned with

care at the initiation of a lunge, to be sure of appropriately clearing the obstacle. In future

work on more generalized rough terrain which includes intermittent obstacle-like features,

we are hopeful that dynamic motions can be planned to connect a wider variety of start and

end positions, so that any required look-ahead is not essential for fast traversal.

Figure 3-3 shows an example of a multi-step path planning process developed by the

author for Phase 1 of our LittleDog DARPA work. It involves a 3-step process: 1) planning

an approximate path for the robot body, such that body collisions with the terrain are min-

imized, 2) filtering the initial path to look for swing foot trajectories which minimize the

chance of terrain collision, and 3) creating “railroad tracks” to optimize the stance width.

These railroad tracks are placed to either side of a nominal center of body (COB) path and

are then pinched inward where appropriate to avoid dangerous or collision-prone footholds.

Footholds are subsequently selected which approximately follow these tracks.

The reader may begin to suspect, from the preceding paragraphs, that avoidance of ter-

rain collisions has been a significant issue on particular terrain boards. This is absolutely

so and continues to be problematic. Because of the lack of compliance of the position-

controlled robot limbs, terrain collisions can cause nearly impulsive disturbances, knocking

it backward and imparting destabilizing yaw and roll. This may cause immediate failure

during a trial, if a robot falls to the ground sideways, or it may deflect the robot so far

off course that significant replanning is required to get back on the planned path. Upcom-

ing terrain collisions are computationally expensive to predict. This issue was addressed

toward the end of Phase 1 through a support vector machine (SVM) approach [42] with

mixed results, but collision avoidance continues to be a significant issue in planning on

6That is to say, by definition, “on the terrain on which we performed the worst.”
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Figure 3-3: Global path planning on rough terrain
Above, the Phase 1 path planner is used to analyze Phase 2 terrain. This global path planner
involves a 3-step process, described in the text. A variety of other approaches were also
implemented and tested throughout Phases 1 and 2 of Learning Locomotion.
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rough terrain with significant vertical features. We note that the utility of global path plan-

ning for LittleDog emerges primarily because of the computational expense of collision

detection and inverse kinematics, and we strongly suspect such planning is not inherently

prerequisite, given the dynamic nature of walking itself.

Although we do not provide extensive detail on the various path planning strategies

which were used in Phase 2 in this thesis, we will note that they involved a significant,

collaborative effort. Sam Prentice, Alec Shkolnik, John Roberts and Russ Tedrake all con-

tributing significantly toward successful path planning in Phase 2.

3.4.2 Motion planning strategy

To negotiate rough terrain, the planner for LittleDog can select among motion types which

range from a slow, statically-stable walk to more dynamic gaits and lunges. Dynamic

motions allow the robot to move more quickly, but they also require more care in planning.

To achieve fast locomotion over a variety of terrain, we operate in two dynamic regimes:

1) fast walking and 2) double-support motions. Double-support motions are our focus here,

but our development of both motion types are based on the same, central idea of attaining

desired ground reaction forces to achieve desired trajectories of the body of the robot.

Our ability to execute so-called “open-loop” joint trajectories depends inherently on

having both (1) a dynamically feasible, co-compatible set of motions and (2) a good refer-

ence clock. The ability to regulate the timing of a desired reference trajectory is such an

important aspect of many successful open-loop strategies that a large class of open-loop

control may more accurately be considered as time-feedback control as addressed recently

in [109].

3.5 Crawl gaits

In this section, we discuss gaits in which “full actuation” is assumed during locomotion.

During such gaits, we will be concerned with the location of the center of pressure (COP),

otherwise called the zero-moment point (ZMP), as previously discussed in Section 2.1.3

on page 38. In the limit as accelerations (linear and angular) of the body are small, the
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ZMP will be nearly collocated with the projection of the center of mass; traditional motion

planning often begins with this limiting assumption and proceeds by designing overall

kinematic poses for a robot, as mentioned in Section 3.2.2. This simplification is convenient

but also limits the overall speed and performance capabilities of a legged robot. It is more

elegant and practical to employ a technique which works over a range of motion speeds.

This section summarizes our methodology for obtaining such speed-variable walking gaits,

planned using the assumption of fully-actuated motion; this will then be extended toward

underactuated motion planning in Sections 3.6 and 3.7.

It is important to note (briefly) at the outstart of this section that our crawl gaits with

LittleDog must be planned to avoid violation of the fully-actuated assumption in several

ways. For example, (1) feet can only push, not pull, where they contact the ground, (2) lat-

eral accelerations are limited by “friction cone” constraints, (3) inverse kinematics must be

planned to ensure the feet maintain their (rolling) contact with the ground over time, and

(4) disturbances such as unplanned swing leg collisions can impart significant, impulsive

disturbances which can begin to topple the robot. However, if the terrain is appropriately

well-characterized and the motions are intentionally planning within particular, dynamic

constraints, using a fully-actuated model yields reliable results in this slow-walking regime.

In a crawling gait, there are always at least three feet in contact with the ground at any

given time, and one can always define a support polygon from the convex hull of these

support points [38]. Keeping the center of pressure of the robot strictly within this support

polygon at all time ensures that the robot will never begin to topple, and so crawling gaits

are often employed in an attempt to move conservatively (with minimal risk of falling over).

Such a gait is also sometimes referred to as creeping [116].

When the magnitude of the accelerations of the body remain low, it is practical to con-

sider crawling gaits as a series of connected, statically-stable snapshots in time, because

the center of pressure is essentially collocated with the projection of the center of mass

downward. Faster walking is considered “dynamic” when the accelerations become signif-

icant and this assumption is no longer valid. We discuss this regime of “ZMP walking” for

LittleDog in more detail just ahead in Section 3.5.2. Referring to the case of level walking,

as depicted in Figure 3-4, we can mathematically represent the (x, y) location of the center
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Figure 3-4: Center of pressure during level-ground walking
The center of pressure (COP) is not collocated with the center of mass (COM) in this
example. Assuming the height and angular rotations of the body remain constant, there is
an instantaneous acceleration acting on the body in the direction from the COP to the COM
in the x-y plane.

of pressure7 as obeying:

(xcom − xcop) (z̈com + g) = (zcom − zcop) ẍcom (3.1)

and

(ycom − ycop) (z̈com + g) = (zcom − zcop) ẍcom (3.2)

where g is the (positively-signed) magnitude of gravity: 9.8 m/s2. Note that these rela-

tionships will be reduced as given in 3.5 when motions are planar and on level ground.

Following from 3.1 and 3.2, approximate collocation of the COM projection with the COP

means that the lateral distance between the COM and COP is small with respect to the

scale of the robot. Taking the height of robot from the ground, zcom− zcop, as a representa-

tive scale for non-dimensionalization, the static assumption is only valid when both lateral

accelerations are small, i.e.: ∣∣∣∣
ẍcom

(z̈com + g)

∣∣∣∣ << 1 (3.3)

7See also Eqns. 2.8 and 2.9.
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and ∣∣∣∣
ÿcom

(z̈com + g)

∣∣∣∣ << 1 (3.4)

3.5.1 Statically-stable walking

In some situations, slow, deliberate walking is practical. Examples include negotiating

extreme terrain, for instance, where footholds may be intermittent or where body or leg

collisions must be carefully avoided. Figure 3-5 shows an example of deliberate, careful

walking. For this speed of walking, the projection of the center of mass onto the ground

is very close to the actual center of pressure, and these gaits are often (correspondingly)

referred to as “statically stable”.

Figure 3-5: LittleDog walking on pegs

3.5.2 Dynamic, ZMP-based walking

Fast walking is achieved by planning the trajectory of the zero-moment point (ZMP) [178,

179] for one or two upcoming steps at a time. Our method is inspired by the ZMP control

for bipedal walking presented in [86], which uses a preview control method originally

described in [91]. Calculation of the forward problem, mapping body motions to resulting

ZMP, is straight-forward. Equation 3.5 below gives the solution for the instantaneous ZMP
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location for the planar robot depicted in Figure 3-6.

xzmp =
xm(z̈m + g)− zmẍm

z̈m + g
(3.5)

This forward solution was already presented in Chapter 2 (Eq. 2.9). To ensure (3.5) is valid

in this pre-lunge orientation, we assume all four legs are in contact with the ground and that

motions are planned to maintain the ZMP strictly within the support polygon defined by the

point contacts of the feet at the ground. In the planar model in Figure 3-6, we also assume

that the body is not allowed to rotate, so that rotational acceleration terms are not included

in (3.5). In the cart-table model presented in [86], the resulting point-mass representation

of the robot is also constrained to travel at a constant height, i.e., so that zm is constant

and z̈m = 0. The solution to the forward problem for this model, taking a particular body

trajectory and calculating the corresponding zmp, is then extremely simple:

xzmp = xm − zcẍm

g
(3.6)

where zc is the constant height along which the mass is constrained to travel.

Calculation of the inverse problem, deriving the required body motions to approximate

a desired zmp trajectory over time, is more difficult. The preview control method outlined

in [86] finds approximate solutions to the inverse problem by 1) augmenting the second-

order system to include acceleration as a state variable (resulting in a third-order system),

so that xzmp in (3.5) can be represented as a state output, 2) assuming z remains constant

over time, and 3) solving a linear-quadratic regulator (LQR) problem to calculate the xm(t)

trajectory which results in the lowest weighted quadratic cost in error in ZMP location

and (to a lesser extent) control effort. Because rotations and changes in height (zm) are

assumed to be negligible, we can decouple motions to plan in the x-z and y-z planes,

independently. Finally, joint angles are planned using inverse kinematics appropriate to

the robot to attain the desired trajectories in x and y. High-impedance actuation insures

high fidelity in commanded joint trajectories, and this in turn results in ground reaction

forces close to the pre-planned values.
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Figure 3-6: Planar ZMP model for fully-actuated motion
The image at left is the “cart-table model”, taken (with the author’s permission) from [86].
Here, the robot is represented as a point mass (illustrated by the cart) which is constrained
to move only in the horizontal direction (along a table top). The table has a base of support,
which corresponds to the support polygon of a robot. Maintaining the ZMP strictly within
this support area ensures the robot will never begin to topple. At right is our corresponding
planar model for LittleDog. If the robot body remains at constant height and does not
rotate, its dynamics are entirely captured by the cart-table model..

Figure 3-7: Rocky terrain, negotiated with a dynamic gait

71



3.5.3 Design methodology

This section outlines our method for generating walking gaits which maintain a positive

ZMP margin during locomotion, to avoid unplanned, underactuated rotations of the body.

ZMP and COB trajectory planning

For ZMP-based walking, we begin planning by determining a set of sequential, static poses,

much as we would for the much slower motions in Section 3.5.1. Although our fast walk-

ing motions may use the same footholds used in slow, statically-stable walking, the body

trajectory must now be adapted to maintain a stable ZMP trajectory. Using preview con-

trol, we specify a desired ZMP trajectory which connects points within sequential support

polygons. The speed at which the desired ZMP travels and the (approximately constant)

height of the center of mass determine the resulting COM trajectory.

We note here that we extend this same strategy to plan double-support pacing and trot-

like walking gaits. Although there is no longer a support polygon in either of these gaits,

we can still plan to attempt to stabilize the center of pressure along an infinitesimally nar-

row line of support during locomotion. Figures 3-8 and 3-9 illustrate corresponding x-y

trajectories for pacing and trot-walking, assuming a center of mass height of 15 cm. The

trajectory-generation machinery we use is very similar for walking both with and without

a support polygon. The primary difference is that we have much more freedom in where

the ZMP travels over time in the case where three feet provide a polygon of support. The

reader should also note that the ZMP can move instantaneously, so the desired trajectory

can include step changes in location, if desired.

Six-DOF motion planning for body on rough terrain

Once the center of mass position is calculated, we must still determine the three rotational

degrees of freedom for the robot over time. To do so, we simply connect the planned static

poses (from Section 3.5.1) using appropriately scaled half-cosine waveforms. In practice,

the resulting overall motions are satisfactorily smooth.
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Figure 3-8: COM vs. ZMP during pacing

Swing leg trajectories

Swing leg trajectory design is an important consideration for two primary reasons. 1) Lim-

its in joint velocities should be respected, to avoid operating any motors at saturation, and

2) we wish to avoid collisions, both with the ground and (proprioceptively) with other body

parts of the robot. A variety of swing leg trajectories were developed to achieve smooth but

fast motions on different terrain. On rough terrain, the trajectory follows the convex hull of

the terrain, and speed is adjusted to respect the velocity limits of the motors.

On extremely rough terrain, the achievable swing leg speed often determines the limit

to the overall velocity of the robot. The danger of feet sliding, due to violation of the

friction cone, is not nearly as significant as the danger of swing foot collisions, which can

produce impulsive disturbances on the entire robot. In practice, such collisions account for

a significant fraction of the total failures (robot falling) when walking on rocky terrain.
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Figure 3-9: COM vs. ZMP during trot-walking

3.5.4 Results and discussion

Our results for open-loop ZMP walking represent a deliberate balance between the speed

of locomotion and control calculation (which is excellent), and the accuracy of the final

COM position attained after walking (which is good, but inherently suffers from cumulative

errors). The incorporation of a low-level slip recovery strategy and/or of force feedback in

the control may provide significant improvements in stability in future work with LittleDog

during Phase 3 of Learning Locomotion.

3.6 Double-support walking

Including a brief, planned double-support phase allows us to increase the speed at which we

can execute the same, planned sequence of poses8. Although the preview control method

is an elegant and straight-forward way to plan COM trajectories here and has inspired

8The same strategy described in Section 3.5.1 is used to plan end-poses.
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our own approach, we intentionally use a more aggressive motion planning strategy for

this gait, to maximize speed while maintaining stability. Specifically, the preview control

solution results in slower initial accelerations than necessary, and it is actually possible to

“push-off” with significantly more force with the rearmost leg to accelerate forward faster

at each step.

In practice, we connect all six degrees of freedom using a half-cosine waveform. Diag-

onally opposing front and rear legs swing to new positions during this motion. The front leg

lifts off the ground at the start of the COM motion; the rear leg lifts off halfway through,

when the forward acceleration of the body is planned to be exactly zero (i.e., midway

through the cosine half-wave). For the remainder of the motion, the body has a net decel-

eration, causing it to pitch forward somewhat about the line of support of the two stance

feet. At the end of each this motion, the robot intentionally pauses for a short interval (on

the order of 0.05 seconds) with all four feet on the ground to obtain an updated estimate of

the six degrees of freedom of the robot body from motion capture.

The period of this motion is set to be as fast as possible while still maintaining a small

ZMP margin as the rear leg pushes off. We then calculate the expected pitching moment

of the robot, assuming the mass moves as planned in x and y. The time to travel from

one pose to another is generally about 0.5 seconds, and the robot is underactuated for

approximately the second half (0.25 sec) of the motion. The maximum distance the center

of mass travels in one step is about 0.1 meters. During the 0.25 seconds of underactuated

motion, the predicted accumulation in (nose-down) pitch is about 7 or 8 degrees, which is

within a degree or two of what we observe during experimental runs on the actual robot, as

illustrated in Figure 3-11.

3.7 Double-support lunging and pacing motions

This section presents a methodology for planning repeatable highly-dynamic double-support

motions (i.e., bipedal phases) for LittleDog. Planning such underactuated motions is inher-

ently difficult: the ground contact angle of the foot is unactuated (no ankle torque), and the

dynamics are nonlinear and strongly coupled. To approach the problem, we use a simpli-
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Figure 3-10: The inverse (left) and forward (right) problems ZMP trajectory.
The preview control solution at left minimizes errors in ZMP location, but it also requires
1.0 second to move the COB, compared with 0.4 seconds for the half-cosine solution for
COB motion at right. For faster speed, we use the half-cosine trajectory shown at right
rather than the preview control solution, which results in an instantaneous jump in ZMP at
the start of motion. This jump is planned to remain small enough so that the ZMP never
exits the support polygon during triple-support phases of ZMP-based walking gaits.

8o pitch

Figure 3-11: Predicted and observed pitch during underactuation in trot-walk
For a half-cosine wave transition in body motion of 0.1 meters in 0.5 seconds, we predict
an accumulated pitch of about 7◦ (at left) and actually observe a pitch of about 8◦ during
actual trot-walking (as captured in the image at right).
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fied model of the dynamics and assume all motion is restricted to the plane perpendicular to

the axis connecting the two support feet. We apply the same basic equations used in zero-

moment point (ZMP) analysis to this 2D model to calculate the ground reaction forces

required to obtain desired rotations and translations of the body. For this second-order

physical solution, good solutions can be obtained simply by planning a step input in ac-

celeration in the x direction for a particular time window, as described in Section 3.7.2

ahead. The inverse kinematic solutions for the corresponding joint angle trajectories are

commanded using a low-level PD controller. Once again, high gear-ratio joints ensure

low errors in desired joint angle. The resulting motions of the robot are both close to the

planned behavior and highly repeatable.

3.7.1 Modeling double-support motions

Double-support motions include lunging, where the back (or front) legs support the robot

as it rears (or bucks) up, and pacing, where the legs move in sequential left and right side

pairings to support the robot as it moves. The two images in Figure 3-12 show a planar

model of the dog rearing up in a lunge. In the real robot, there is an unactuated, rolling

contact between the ground and each of the spherical feet (radius ≈ 1 cm) which we model

as a fixed point contact. Unlike double-support walking, in which we plan motions with

near-zero moment about the point of ground contact, in these highly-dynamic motions, we

intentionally plan for a finite moment to rotate the body about the support point in our

planar model. Although our goal here is different, our method still relies on an approach

similar to the preview control method for the ZMP. Our goal is to plan feasible ground re-

action forces to achieve a desired rotation of the body while maintaining feasible kinematic

joint angles. The forces in x are limited by friction:

|Fx| ≤ µFz (3.7)

where Fz = m (g + z̈), Fx = mẍm, and µ is the coefficient of friction. We assume µ ≈ 0.3

on our terrain and that |z̈| << g; correspondingly, we plan our linear accelerations of the

robot such that |ẍm| <= 3 [m/s2].
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Figure 3-12: Planar model of LittleDog in a double-support lunge.
At top, the planar model includes 2-segment legs. The legs are modeled as massless, so
only the location of the end point of each legs is important. At bottom, the geometric
locations of the end points are more easily represented by modeling each leg as a single,
variable-length leg segment which can rotate about the hip over time.

In our simplified model, all motion is strictly planar. The body has a fixed inertia

and mass, while the legs are modeled as massless. When there is a single, unactuated

contact point for the planar robot, as depicted in Figure 3-12, we can equivalently represent

the actuated joint angles (shown in the first illustration) with a length from the hip to the

ground, L1, and an inter-leg angle, θ1 (as shown at right). Using L1 and θ1 as the actuated

degrees of freedom, the kinematic equations for the location of the mass are:

xm = L1 cos β + La cos α− Lb sin α (3.8)

zm = L1 sin β + La sin α + Lb cos α (3.9)

where β = π + α− θ1. Taking derivatives of (3.8) and (3.9):

ẋm = −L1 sin ββ̇ − La sin αα̇− Lb cos αα̇ + L̇1 cos β (3.10)

żm = L1 cos ββ̇ + La cos αα̇− Lb sin αα̇ + L̇1 sin β (3.11)

and
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ẍm = −L1 cos ββ̇2 + (−La cos α + Lb sin α)α̇2 − L1 sin ββ̈+

−(La sin α + Lb cos α)α̈− L̇1 sin ββ̇ + L̈1 cos β
(3.12)

z̈m = −L1 sin ββ̇2 − (La sin α + Lb cos α)α̇2 + L1 cos ββ̈+

+(La cos α− Lb sin α)α̈− L̇1 cos ββ̇ + L̈1 sin β
(3.13)

We can use (3.12) and (3.13) along with the torque balance below, (3.14), to solve for

the (underactuated) rotational acceleration as a function of the actuated degrees of freedom

and their time derivatives.

α̈ =
m

Jy

(ẍmzm − (z̈m + g)xm) (3.14)

where Jy is the moment of inertia in the x-z plane. Note that when the left-hand side of

(3.14) is zero (no net moment on the body), this relationship reduces to the ZMP relation-

ship in Equation 3.5, where xzmp is now constrained to the single point of ground contact

(defined as x = 0). Expanding (3.14), we find:

α̈ = {zm[−L1 cos ββ̇2 + (−La cos α + Lb sin α)α̇2+

L1 sin βθ̈1 + L̈1 cos β − L̇1 sin ββ̇1]+

xm[L1 sin ββ̇2 + (La sin α + Lbcosα)α̇2+

L1 cos βθ̈1 − L̈1 sin β + L̇1 cos ββ̇1 + g] } ÷
{xm[L1 cos β + La cos α− Lb sin α]+

zm[L1 sin β + La sin α + Lb cos α] + (Jy/m) }

(3.15)

Equation 3.15 gives the forward solution to the underactuated dynamics given known

values of the actuated degrees of freedom, L1 and θ1, and we can use this relationship to

simulate the expected motions for a given plan of actuation. However, (3.15) does not lend

itself to an efficient calculation of the actions required to, for instance, achieve a particular

maximum angle α of rotation or a desired x displacement for the front feet. To achieve

goals such as this, we consider a simple family of attainable ground reaction forces and

iterate in a few steps to obtain approximate solutions which obey the required coupling
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equations. This method is described in more detail in Section 3.7.2 below.

3.7.2 Design of double-support trajectories

To achieve a double-support phase, the most important element in our method is achieving

a forward acceleration in x. The achievable magnitude of the force is limited by friction

constraints to approximately |ẍm| < 3 [m/s2], as previously discussed. To relate the ground

forces to body motions, we now consider the other two equations of motion (along with

(3.14)) which completely describe the dynamics of the system:

ẍm =
1

m
Fx (3.16)

z̈m =
1

m
Fz (3.17)

In an initial iteration, we will assume zm is constant, and correspondingly z̈m = 0.

Equation 3.14 then relates the motion in x to the desired rotations, α, with no coupling to

the z motion. This approximation surprisingly captures the gross dynamics in α quite well,

particularly during the initial half of the motion, when xm is small and when zm has not

changed significantly.

Figure 3-13 shows simulation results for our simple, planar model of the robot. The

leftmost column shows the x position over time and its derivatives. The acceleration ẍm is

chosen first. As shown in the upper left, the time-optimal solution for fast rotation becomes

a trivial bang-bang command in x acceleration, limited in magnitude to remain less than

3 (m/s2). The magnitude of the x acceleration essentially sets the slope of the change in

α, shown in the lower right plot. The duration of the positive acceleration, ẍm, affects the

impact time. Dashed lines in middle and right columns show a simplified approximation

to the solution, which neglects z motion. The more exact (solid line) solution can be found

by enforcing some kinematic assumptions on the relationship between x, z and α. For

example, one can assume that the bent-leg length in Figure 3-12, L1, remains constant.

Doing so, we then simulate the dynamics using the same ẍm commands and solve at each

dt for kinematically compatible solutions for z and α. The final predicted trajectories for
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xm, zm and α are shown as solid lines in Figure 3-13. Inverse kinematic solutions to obtain

joint angles from these trajectories are then calculated as described in [157].

The selection of an initial condition in x is an important consideration which we have

not yet addressed. To increase the length of time over which some ẍm can be maintained,

we wish to have ẋm < 0 (negative velocity) and xm relatively small (for greater rate of

rotation). In the example shown in Figure 3-13, xo = 0.02 [m] and ẋo = −0.15 [m/s].

We select these values before the solution process described above, using practical con-

siderations of kinematic feasibility and of the static stability of the initial stance to guide

selection.

Once desired joint trajectories have been planned, we can simulate the resulting for-

ward dynamics which would ideally occur using the forward solution for α̈ in (3.15). In

particular, we can examine the effects of adding disturbances (e.g., external forces or errors

in commanded joint trajectory) on the resulting motions of the robot. Our simulations and

experimental results both show good repeatability for our resulting kinodynamic motion

plans, as discussed below.

3.7.3 Result summary for 3 double-support motions

There are three pairwise combinations of legs which can be used for double-support loco-

motion on a quadruped: diagonally-opposed legs (trot-walk); the left pair versus the right

(pacing); and the front pair versus the back (lunging). Discussions of individual design

details and results for each case are given below in Sections 3.7.4, 3.7.5, and 3.7.6, respec-

tively.

The primary concern in executing double-support motions is that the pitch angle, α,

is regulated to clear nearby terrain while avoiding extreme pitch which would topple the

robot. Trot-walking is used on a wide variety of rough terrain, although the overall speed

and time of double-support are both reduced as terrain becomes more extreme. Lunging

motions are used on more extreme regions of terrain where the robot must negotiate upcom-

ing obstacles, such as gaps or steps. Finally, although a continuous forward-going pacing

gait provides no speed advantage over the trot walk, we do frequently employ intermittent
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Figure 3-13: Simulated dynamics for a planar dynamic lunge.
State variables and their derivatives over time for simple, second-order “brick” dynamics.
Given a particular initial condition, the global pitch angle, α, depends much more heavily
on acceleration in x over time that on changes in z.
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pacing-class motions to reposition the overall stance of all four legs rapidly. Our lunging

motions generally result in significant displacements (primarily in the forward direction).

Pacing motions produce smaller lateral displacements in the center of body, but they allow

for greater flexibility in direction of translation and can efficiently reorient the rotation an-

gle in the x-y plane: the robot can turn in place, step sideways, step forward, or combine

these displacements during a single pacing maneuver. In practice, our lunging motions are

pre-calculated for few particular, dramatic types of terrain negotiation, while pacing steps

are generated on-the-fly for generalized, rapid repositioning of all four feet.

3.7.4 Diagonal trot-walk

On flat ground, the speed of the diagonal trot-walk is 12.5 cm/s, which is approximately

three times the Phase 2 metric (of 4.2 cm/s). Figure 3-14 shows LittleDog during the

double-support phase in level-ground trot-walking.

Figure 3-14: Snapshot of double-support during dynamic, “diagonal” walk

The speed of the swing leg trajectories and the time of double-support overlap between

diagonal feet are both carefully set as functions of the height variations of terrain and the

lateral distance traveled of the center of mass. Figure 3-15 shows the four Phase 2 terrain

types on which we employ this trot-walking gait.
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Figure 3-15: Four terrain types using a diagonal trot-walk
Our gait on four of the seven Phase 2 terrain types employs a time-scaled diagonal trot-
walk. Starting with the top, left image, our top speeds on these four terrain types are as
follows: 10.3 cm/s on gray modular terrain, 8.4 cm/s on brown modular terrain, 7.7 cm/s
on sloped boards, and 5.6 on molded rocks.
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3.7.5 Dynamic lunge

Our results for lunging agree reasonably well with the expected motions predicted by our

simple, planar model. Figure 3-16 shows the pitch angle α during repeated trials of the dy-

namic lunge. The theoretical pitch was obtained by simulating the desired joint trajectories

in the legs and solving the dynamics over time using the coupling relationship in (3.15).

Causes of variability include unmodeled dynamic effects such as backlash effects, kine-

matic asymmetries in the robot, variable friction, and packet loss in communication.
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Figure 3-16: Comparison of experimental results and theory for a dynamic lunge

Lunging is a practical way of negotiating significant terrain obstacles rapidly. We use

our dynamic lunge on the remaining three of the seven Phase 2 terrains. Figure 3-17 shows

two examples: a hurdle-style vertical obstacle, called a “Jersey barrier”, and a negative

obstacle (i.e., gap). Figure 3-18 shows frames from the remaining terrain, which involves a

step-climbing sequence. Here, the overall speed of traversal is limited by the time required

to carefully retract the rear legs during climbing and to position all four feet before each

lunge.

We have also negotiated more extreme terrain in lab. Figure 3-19 shows frames from

video taken of LittleDog using a dramatic lunging to climb over a barrier which is too tall

to allow the legs to step over it directly. This lunge is highly repeatable in successfully
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Figure 3-17: LittleDog lunges across Jersey barrier (left) and gap (right)
The dynamic lunge described in Section 3.7.5 can be used to allow both front feet to cross
a discrete terrain obstacle quickly and efficiently. Our speed in traversing a one-meter
long course with a single barrier or gap is approximately twice as fast when this lunge is
employed than when using only a classic crawl gait (i.e., approx. 10 cm/s vs 5 cm/s).

landing the front elbows of LittleDog on the top of the barrier. Note the displacement in

the position of the rear legs between frame 3 (first row, third column) and frame 6 (second

row, third column). This displacement occurs as the rear legs are unloaded during the end

of the lunge and the friction force is not large enough to prevent slip. This is an advantage

in practice, as it allows for greater forward travel during the lunging maneuver, but the

sliding does introduce additional uncertainty in the final, resting pose of the robot once

it has come to rest. In actual trials, we simply realign the robot’s position after dramatic

lunges to account for this, and pacing steps aid in doing such repositioning with impressive

speed and accuracy.

3.7.6 Pacing motions

Pacing motions involve moving the left and right pairs of legs sequentially. We use this

class of motion 1) to locomote forward, backward, left, or right, 2) to turn in place, 3) to

quickly reposition all four feet – for example, in getting ready for the dynamic lunge ma-

neuver described above – in about half the time required by static-crawl motions, and 4) to

combine various of the motion types above. It’s usefulness comes more from its extreme

versatility than from its speed. Our top speed in forward locomotion with pacing is signifi-
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Figure 3-18: Climbing steps through sequential dynamic lunging
Our overall speed is around 5.2 cm/sec in climbing these steps with the dynamic lunge.
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Figure 3-19: LittleDog employing a dynamic lunge to clear a tall obstacle.
This terrain showcases the utility of the dynamic lunge. Terrain includes a gap followed by
a brick-shaped obstacle which is at the Phase 3 metric height of 10.8 cm. At this height,
straddling the obstacle would make “walking” very difficult, as the legs must be almost
fully extended to clear the belly of the robot from the terrain. With the added inclusion of
the gap, simply walking across this terrain becomes potentially infeasible.
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cantly slower than for the dynamic double-support “trot-walk” 9 described in Section 3.7.4,

however, so we use this motion type primarily for turning and fast repositioning of feet.

To demonstrate the repeatability of pacing motions, we choreographed a 10-second

“dance” of motions. The motions sequentially do the following: (a) narrow the stance

width, (b) turn approximately 90◦ in three rapid motions, (c) increase the stance width,

and (d) step sideways. At the end of this pacing sequence, the robot performs a complete

forward lunge, pushing with the rear legs to lift the front legs, and it also narrows its stance

again during this motion. Figure 3-20 shows the resulting footholds during a particular trial

(top) with images of the actual robot at the end and start positions immediately below. The

roll angles during pacing motions shown in this figure are quantitatively more repeatable

that the pitch angles achieved during the more dramatic lunges for which data is given

in Figure 3-16, as one might expect since the displacements in COM with respect to the

stance legs remain much smaller for pacing. Data for sequential test trials of this series

of pacing motions are shown in Figure 3-20. An overhead view of the four-leg stances

achieved during one particular trial is shown at top of this figure. The left, front foot in

each stance is labeled with a letter corresponding to the end of a labeled region of roll

and pitch data in one of the two, lower plots. An arrow in front of this foot indicates

the current “forward” direction of the dog. Data show good repeatability. Close-ups of

foothold selection accuracy during pacing on flat terrain are shown in Figure 3-21.

Pacing motions are inherently “easier” to execute than either the diagonal or bounding

style double-support motions. This is somewhat nonintuitive but can be explained for two

reasons. First, both lunging and pacing involve controlled pitching which ensures the body

will “land” after rotation onto both previously non-support feet. In contrast, the pitching

of the body is maintained near a delicate balance during the diagonal gait. In practice,

the body will actually begin to tip during the diagonal gait, and the motion is inherently

sensitive in whether it tips toward the front or back non-support foot. The support feet

can also be lifted further from dangerous terrain features during both pacing and lunging.

Second, in comparing pacing to lunging, the magnitude of the inertia to be rotated is smaller

for pacing, which means it requires smaller magnitude accelerations to manipulate the roll

9On flat terrain, pacing is about 8 cm/sec, versus 12.5 cm/sec for a trot-walk.
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Figure 3-20: Repeatability of long, open-loop playback of various double-support motions
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of the body. In summary, the motions during pacing require smaller accelerations and are

less prone to destabilization than either the diagonal trot-walk or the dynamic lunge.

Finally, we note that sensitivity to initial conditions (see Figure 3-22) and to external

disturbance are both less significant for this high impedance strategy, where joint angles

are commanded accurately over time, than for a system where force commands at the feet

are instead regulated directly over time. For this simulation, both control strategies (joint

angles versus forces) are clocked solely on time and not on the state variables during exe-

cution. The stiffness of the robot has a modulating effect on the overall geometry which in

turn better regulates the unactuated degrees of freedom in the robot than does a direct force

command.

Figure 3-21: Demonstration of accuracy in positioning pacing steps.
The rear left foot should align with the black circle marks and the front left foot should
align with the red triangles. Spacing between consecutive circles (and triangles) is 4 cm.
Pacing steps of up to 10 cm can be achieved to create continuous, forward locomotion.
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Figure 3-22: Sensitivity of pitch angle, α, to initial conditions (xo)
Simulation data comparing expected results when planned force trajectories (Fx(t), Fz(t))
are commanded [top] versus when a particular inter-leg angle (θ1) is position controlled
[bottom]. Position control of the joint results in less sensitivity to both initial conditions
and external disturbances.

3.7.7 Conclusions

We demonstrate a method for designing highly-repeatable double-support motions with a

minimal feedback requirement on the unactuated states of the robots. This has practical

use, as real-time measurements of six degrees of freedom (x, y, z, roll, pitch and yaw)

of the body of a robot are not as easily obtained as the joint angles. It is also of interest

because it allows a robot with high impedance at all actuated joints to obtain the types of

gaits more commonly implemented to date in robots with significant passive compliance.

Our method involves 1) calculation of the acceleration in x required to attain a desired
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rotational motion, e.g., to achieve some αmax (assuming żm = 0), 2) a second refined ODE

solution using this ẍm(t) and kinematic coupling assumptions to relate x, z and α over

time, 3) calculation of inverse kinematic solutions to obtained the actuated degrees of free-

dom dictated by the planned trajectory from 2), and 4) playback of these joint commands

to obtain double-support lunging and pacing motions on the real robot. (As mentioned,

joint trajectories are commanded using a PD control loop at 400 Hz.) Despite the lack of

additional feedback (on forces or global body motion), the commanded joint angles pro-

duce repeatable results which are not highly sensitive to the types of variability (initial

conditions; backlash loading; battery voltage; wireless packet loss; etc.) experienced in our

laboratory.

Obstacles which can be negotiating during lunging include gaps, barriers and steps, and

pacing is used as an effective way to reposition all four legs rapidly.

3.8 Future work

Our ultimate goal in this work is to obtained well-controlled motions for a quadruped robot

on variable terrain (smooth, rough and intermittent) as quickly and reliably as possible.

This chapter presents a methodology for obtaining a family of low-level motions which

can then be chosen by a high-level planner, as appropriate for the upcoming terrain. We

provide simple, practical control ideas to allow the same, particular robot to transition

rapidly from slow, careful walking (on intermittent or other precarious footholds) to fast,

dynamic motions. We have successfully obtained such performance on runs up to 1.5

meters in length in a motion capture environment on known terrain boards. Demonstrating

this level of flexibility in a field environment is an eventual goal which we believe would

be a unique accomplishment in legged robotics.

Below are details on some desired extensions of our approach which are of current

research interest in the Robot Locomotion Group at MIT.
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3.8.1 Piecewise motion planning on rough terrain

One important challenge in achieving fast, reliable motions on rough terrain is in mating

different motions together effectively. Our method for doing this involves a “funneling”

approach, similar to the idea described in [23]. Ideal motions are those which can take a

large set of initial conditions and funnel them into a small set of end conditions. Using

a lunge to negotiate a discrete obstacle (like a step or gap) currently requires beginning

within a particular set of initial conditions, so that the front feet successfully get across the

obstacle. Then, more carefully planned crawling footsteps can be used to mate together

highly dynamic motions, as needed to cross terrain.

3.8.2 Toward dynamic bounding across rough terrain

One of the ultimate goals for dynamic legged robots is to achieve the kind of agility and

speed demonstrated by animals such as the leaping mountain goat, pictured in Figure 1-1

(page 18). Obtaining reliable motions such as this of course depends highly on the ac-

tuation and sensing capabilities of the robot, which largely determine achievable control.

LittleDog, for example, lacks natural compliance to strategically store energy and has im-

portant actuator limitations (most particularly, in angular velocity at the hip). However, the

double-support lunge, described in Section 3.7.5, provides significantly faster locomotion

(by about a factor of two) over terrain with a single discrete obstacle, such as a gap or a Jer-

sey barrier, as depicted in Figure 3-17, than does a ZMP-based walk. Below, we describe

several ways to extend usage of the dynamic lunge on a broader class of rough terrain.

Figure 3-23 shows one way in which the dynamic lunge can facilitate locomotion across

extreme rough terrain. Here, the lunge is used to get both front feet onto an elevated “step”

in terrain quickly. The rear legs can then be brought up more carefully in a climbing style

of motion. The initial jump here is identical to the jump used to climb the steps shown in

Figure 3-18, since it also begins on level terrain. In this usage, the dynamic lunge improves

both speed and repeatability of traversal on such terrain.

There are two other additional ways in which we hope to modify the dynamic lunge to

extend the dynamic capabilities of this stiff robot on more general types of rough terrain.
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Figure 3-23: LittleDog climbs onto rough terrain

First, we can modify the jump to work for a variety of initial conditions, so that a jump can

be initiated from rough terrain. Second, we can add an additional rocking motion to retract

the legs, to create a continuous “bounding” gait. Each of these two extensions of the basic

dynamic lunge is discussed below briefly. Note that conceptually, both ideas can also be

combined, to create continuous episodes of highly dynamic locomotion across rough and

uneven terrain.

So far in this Section, we have analyzed the dynamic lunge from a particular initial

condition, where all four feet begin on flat, even ground. This is adequate to clear a “clean”

obstacle such as the Jersey barrier or gap shown in Figure 3-17. However, we can also

extend the range of initial conditions to lunge when the feet are initially on rough terrain.

Figures 3-24 and 3-25 illustrate such jumps. In Figure 3-24, the feet rest on shallow steps,

so that the rear feet initially differ in height by 4 cm from one another and the front feet

are both at a third height, while in Figure 3-25, the robot begins on more general “rough

terrain”. Theoretically, if the center of pressure remains at the mid-point between the two

rear feet during the underactuated lunge, we can still plan the kinematics of the dog to

“mimic” the planar-model motion observed for a lunge from a symmetric initial condition.

We observe good repeatability in initial tests for this generalization of the dynamic

lunge. Figure 3-26 compares the pitch of the body during three dynamic lunges: one
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initiated from completely flat terrain and the others initiated on the terrain shown in Fig-

ures 3-24 and 3-25. The overall shape of the pitch trajectory and its peak value are all very

similar in all three cases, as hoped. Additional work should still be done to estimate the

range of initial conditions from which a repeatable lunge can be performed, to plan kine-

matics more precisely (to account for significant spring-compression during loading), and

to plan for the front feet to clear terrain successfully and (ideally) to land in an orientation

which matches the upcoming terrain profile and with some velocity-matching (to minimize

impact forces).

Figure 3-24: Dynamic lunge executed with feet at varying initial heights
Various viewpoints are given, showing orientation of the robot before (top, left and right),
during (bottom-left) and after (bottom-right) a lunge. The pitch trajectory for this lunge is
shown in middle of Figure 3-26

A second, natural extension of the dynamic lunging motion is the creation of a continu-

ous bounding gait. From initial testing, we predict such motion should result in locomotion

speeds at least as fast as the trot-walk described in Section 3.6 (12.5 cm/s) on flat ground.

The potential advantages of bounding come on rough terrain, however, where the natural
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Figure 3-25: Dynamic lunge initiated on rough rocks
Initial joint angles are automatically selected such that the body is level, with no pitch
or roll initially. Two particular initial conditions are depicted here. Top two images show
different viewpoints for one test jump. Lower two images show the robot before and during
another jump. Resulting motion still follows the expected planar dynamic model, where
body position is (as before) measured with respect to the mid-point between the rear legs
to model planar motions. Pitch data for this lunge are shown at right in Figure 3-26.
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Figure 3-26: Pitch data for dynamic lunge on rough terrain
Data above show the pitch angle of the robot during a dynamic lunge from three different
terrain types. Left: The standard lunge, executed from flat terrain with all feet at the same
initial height. Middle: Robot begins with rear legs on flat steps at different heights than
one another (and different from the front feet), as depicted in Figure 3-24. Right: Robot
initiates lunge from rocky terrain, where each foot is at a different height and on a different
slope at the initial condition, as shown in Figure 3-25.

leg clearance provided by bounding may allow for much faster traversal than the fast walk

over rugged terrain.

Robust, continuous bounding is a significant challenge and will likely require a different

control architecture, with faster replanning capabilities within our low-level C code. These

challenges will be discussed more in Chapter 6, which also provides initial data for open-

loop bounding.

3.9 Summary and conclusions

In this chapter, we present a reasoned approach for planning highly-repeatable dynamic

motions for a quadruped robot which lacks both passive compliance and sensory feedback

bandwidth – two typical approaches for achieving dynamic gaits. Instead of using such

natural or control-based compliant dynamics, we reason about a simplified physical model

of the robot body to design planned ground forces and body motions which are compati-

ble for underactuated, double-support phases of motion. If saturation limits (primarily in

velocity) of the robot are carefully avoided, the high impedance of the robot ensures that

planned joint trajectories are executed with high fidelity, and our planned underactuated
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trajectories demonstrate good repeatability over each short (0.3 sec) double-support phase.

Interspersing double-support phases with three- or four-legged support periodically cor-

rects for any small deviations (e.g., in pitch) to keep the overall trajectory of the robot near

a higher-level set of pre-planned, nominal gait poses. This straight-forward strategy allows

us to negotiate significant examples of rough terrain (gaps, hurdles, etc.) at over twice the

speed of a traditional “crawl” gait. Equally significant and perhaps less intuitively, we ob-

tain more reliable results by using this careful reasoning about the ground reaction forces

and body motions than in using a crawl gait. Although, a crawl gait is often assumed to be a

“conservative” strategy on rough terrain, violations of the static assumption and swing-leg

collisions with terrain become more probable as speed increases – both resulting in unex-

pected moments which may topple the robot. Our approach provides a practical solution

to the dual goals of increasing both speed and reliability of locomotion while also enabling

efficient negotiation of significant terrain obstacles.
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Chapter 4

Metastable Legged Locomotion

In Chapter 2, we argued that traditional stability margins fail to quantify performance accu-

rately and proposed (in Section 2.2) that the expected time-to-failure, or mean first-passage

time (MFPT) provides an appropriate metric for quantifying the stochastic stability of walk-

ing. The concept of walking as a metastable process was then introduced in Section 2.3

(on page 49). In the present chapter, we discuss the quantification of performance for such

metastable systems in more detail and demonstrate the use of statistical, mathematical tools

to do so. Some of the results presented here can also be found in [27].

4.1 Approach

Simplified models of limit-cycle walking on flat terrain have provided important insights

into the nature of legged locomotion. Real walking robots (and humans), however, do not

exhibit true limit cycle dynamics because terrain, even in a carefully designed laboratory

setting, is inevitably non-flat. Walking systems on stochastically rough terrain may not

satisfy strict conditions for limit-cycle stability but can still demonstrate impressively long-

living periods of continuous walking. Here, we examine the dynamics of passive rimless-

wheel and compass-gait walking on randomly generated rough terrain and employ tools

for analyzing stochastic processes to describe the ‘stochastic stability’ of these gaits. This

analysis generalizes our understanding of walking stability and provides statistical tools

which can be adapted for experimental limit cycle analyses on real walking systems.
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4.2 Metastable walking

Systems which are guaranteed to eventually fail cannot be classified as stable. Traditional

stability margins and guarantees are no longer applicable in this regime, and we seek better

descriptors. Many fields have already approached this problem by embracing the concept

of metastability, which literally means “beyond stability”.

The science of legged locomotion is plagued with complexity. Many of the fundamental

results for legged robots have come from detailed analytical and computational investiga-

tions of simplified models (e.g., [32, 50, 58, 97, 114]). These analyses reveal the limit cycle

nature of ideal walking systems and employ Poincaré map analysis to assess the stability

of these limit cycles. However, the very simplifications which have made these models

tractable for analysis can limit their utility.

Experimental analyses of real machines based on these simple models [171] have re-

vealed that real machines differ from these idealized dynamics in a number of important

ways. Certainly, the dynamics of impact and contact with the ground are more subtle than

what is captured by the idealized models. But perhaps more fundamental is the inevitable

stochasticity in the real system. More than just measurement noise, robots that walk are in-

herently prone to the stochastic influences of their environment by interacting with slightly

different terrain on each footstep. Even in a carefully designed laboratory setting, and es-

pecially for passive and minimally-actuated walking machines, the effects of this stochas-

ticity can have a major impact on the system dynamics. In practice, it is very difficult (and

technically incorrect) to apply deterministic limit cycle stability analyses from the simple

systems to our experimental walking machines - the real machines do not have true limit

cycle dynamics.

In this chapter, we extend the analysis of simplified walking models toward real ma-

chines by adding an element of stochasticity into the walking model. Although we have

considered a number of sources of uncertainty, we will focus our presentation on a par-

ticularly compact model - where the geometry of the ground is drawn from a random dis-

tribution. Even with very mild deviations in the ground from a nominal slope angle, the

resulting trajectories of the machine are different on every step and end with the robot even-
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tually falling down (with probability one as t → ∞). As the deviations from the nominal

slope increase, the analysis also suggests a way to model and even control a walking robot

on moderately rough, unmodeled terrain.

4.2.1 Suggested reading on metastability

Here, we briefly point the reader to some references on metastability which provide addi-

tional background. These include a small, representative set of the literature on metastable

system dynamics [60, 79, 127, 52], tools for estimating stochastic stability in discrete cases

(Markov chains) [169, 16, 15, 17, 84, 105, 181], and issues of model order reduction [76,

177, 11]. Additionally, two recommended texts on stochastic processes are [51, 90].

4.2.2 Metastable limit cycle analysis

The dynamics of walking systems are continuous, but they are punctuated by discrete im-

pact events, such as when a foot comes into contact with the ground. These impacts provide

a natural time-discretization of a gait onto a Poincaré map. Therefore, we will consider

walking systems governed by the discrete, closed-loop return-map dynamics:

x[n + 1] = f(x[n], γ[n]), (4.1)

where x[n] denotes the state of the robot at step n and γ[n] represents the slope of the

ground, which is a random variable drawn independently from a distribution Pγ at each n.

This model for stochastically rough terrain dramatically simplifies our presentation here,

but it does require us to restrict our analysis to strictly forward walking1. These state

evolution equations represent a discrete-time, continuous-state Markov process (or infinite

Markov chain). For computational purposes, we will also discretize the state space into a

finite set of states, xi. Defining the state distribution vector, p[n], as

pi[n] = Pr(X[n] = xi), (4.2)

1Including backward steps is straightforward, but it requires the model to include spatio-temporal corre-
lations in the slope angle.
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we can describe the state distribution (master) equation in the matrix-form

p[n + 1] = p[n]T, Tij = Pr(X[n + 1] = xj |X[n] = xi). (4.3)

T is the state-transition matrix; it is a stochastic matrix (each row must sum to one). The

n-step dynamics are revealed by the Chapman-Kolmogorov equation,

p[n] = p[0]Tn.

We obtain the transition matrix numerically by integrating the governing differential equa-

tion forward from each mesh point and then using barycentric interpolation [128] to assign

individual transition probabilities.

For walking, we will designate one special state, x1, as an absorbing state representing

all configurations in which the robot has fallen down. Transitions to this state can come

from many regions of the state space; there are no transitions away from this state. As-

suming that it is possible to get to this absorbing state (possibly in multiple steps) from any

state, then this absorbing Markov chain will have a unique stationary distribution, where

the entire probability mass is in the absorbing failure state.

Figure 4-1 shows a toy example of a Markov chain. For the legged systems we will

analyze in this chapter, the states in a Markov chain will include a set of discretized points

in continuous state space plus one additional, “fallen” state. The fallen state is modeled

as an absorbing failure state, which must transition back to itself with probability 1. An

absorbing state will correspondingly have a one in the diagonal at its row (and column) of

the transition matrix. In the remainder of this chapter, we will assume this fallen state is

the first state in the transition matrix: i.e., T (1, 1) = 1.

The dynamics of convergence to the absorbing state can be investigated using an eigen-

value analysis. Without loss of generality, let us order the eigenvalues, λi, in order of

decreasing magnitude, and label the corresponding (left) eigenvectors, vi, and the charac-

teristic time constants, τi = −1
log(λi)

. The transition matrix for an absorbing Markov chain

will have λ1 = 1, with v1 representing the stationary distribution of the absorbing state.

The magnitude of the remaining eigenvalues (0 ≤ |λi| < 1,∀i > 1) describe the transient
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Figure 4-1: A toy example of a Markov chain and corresponding transition matrix.
At each, labeled state, arrows leading away are labeled with the probability that the dynam-
ics will result in a transition to the state to which the arrow points, conditioned on starting
from that particular state. The transition matrix at right contains the identical information.
Each row must sum to unity, because all possible transitions are enumerated in the Markov
chain and transition matrix.

dynamics and convergence rate (or mixing time) to this stationary distribution. Our analy-

ses of the walking models we investigate here will reveal a general phenomenon: λ2 is very

close to 1, and τ2 À τ3. This is an example of metastability: initial conditions in eigen-

modes 3 and higher are forgotten quickly, and v2 describes the long-living (metastable)

neighborhood of the dynamics. In metastable systems, it becomes useful to define the

metastable distribution, φ, as the stationary distribution conditioned on having not entered

the absorbing state:

φi = lim
n→∞

Pr(X[n] = xi |X[n] 6= x1).

This is easily computed by zeroing the first element of v2 and normalizing the resulting

vector to sum to one.

Individual trajectories in the vicinity of a metastable attractor are characterized by ran-

dom fluctuations around the attractor, with occasional “escape attempts”, in which the sys-

tem has entered a region of relatively low influence from the attractor. For walking systems

this is equivalent to noisy, random fluctuations around the nominal limit cycle, with oc-

casional transitions to the absorbing (fallen) state. The existence of these escape attempts

suggests a natural quantification of the relative stability of metastable attractors in terms of

first-passage times. The mean first-passage time (MFPT) to the fallen absorbing state is the
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time we expect our robot to walk on average before falling down.

Let us define the mean first-passage time vector, m, where mi is the expected time to

transition from the state xi into the absorbing state. Fortunately, the mean first-passage

time is particularly easy to compute, as it obeys the relation:

mi =





0 i = 1

1 +
∑

j>1 Tijmj otherwise

That is, we assume at least one successful step is (by definition) taken from every non-fallen

state, and correspondingly, the expected first-passage time must be one step more than the

expected value of the first-passage time after this single step is taken. In matrix form, this

yields the following one-shot calculation of the vector of MFPT’s for all non-fallen states:

m =


 0

(I− T̂)−11


 , (4.4)

where T̂ is T with the first row and first column removed. m quantifies the relative stability

of each point in state space. One interesting characteristic of metastable systems is that the

mean first-passage time around an attractor tends be very flat; most system trajectories

rapidly converge to the same metastable distribution (forgetting initial conditions) before

escaping to the absorbing state. Therefore, it is also meaningful to define a system-wide

mean first-passage time, M , by computing the expected first-passage time over the entire

metastable distribution,

M =
∑

i

miφi. (4.5)

When τ2 À τ3, we have M ≈ τ2, and when λ2 ≈ 1, we find that

M ≈ τ2 =
−1

log(λ2)
≈ 1

1− λ2

.

106



4.3 Numerical modeling results

This section uses two simple, classic walking models to demonstrate use of the method-

ology presented in Section 4.2.2 and to illustrate some of the important characteristics

typical for metastable walking systems more generally. The two systems presented here

are the rimless wheel and the passive compass gait walker, each of which is illustrated in

Figure 4-2.
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Figure 4-2: The rimless wheel (RW) (left) and compass gait (CG) walker (right) models

4.3.1 Rimless wheel

The rimless wheel (RW) model consists of a set of N massless, equally-spaced spokes

about a point mass. Potential energy is gained as it rolls downhill, while conservation

of angular momentum results in a loss of kinetic energy at each impact. For the right

combination of constant slope and initial conditions, a particular RW will converge to a

steady limit cycle behavior, rolling forever and approaching a particular velocity at any

(Poincaré) “snapshot” in its motion (e.g., when the mass is vertically above a leg and θ =

0). The motions of the rimless wheel on a constant slope have been studied in depth [32,

171].

In this section, we will examine the dynamics of the RW when the slope varies stochas-

tically at each new impact. To do this, we discretize the continuous set of velocities, using

a set of 250 values of ω, from 0.01 to 2.5 (rad/s). We also include an absorbing failure state,
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which is defined here to include all cases where the wheel did not have sufficient velocity

to roll past its apex on a particular step. Our wheel model has N = 8 spokes (α = π
4
). At

each ground collision, we assume that slope between ground contact points of the previous

and new stance leg is drawn from an approximately2 Gaussian distribution with a mean of

γ̄ = 8◦. For clarity, we will study only wheels which begin at θ = 0 with some initial,

downhill velocity, ωo, and we consider a wheel to have failed on a particular step if it does

not reach an apex in travel, θ = 0 with ω > 0. (ω is defined as positive going downhill,

i.e., clockwise in Fig. 4-2.) Note that the dynamic evolution of angular velocity over time

will not depend on the choice of a particular magnitude of the point mass, and we will use

spokes of unit length, l = 1 meter, throughout.

On a constant slope of γ = 8◦, any wheel which starts with ωo > 0 has a deterministic

evolution over time and is guaranteed to converge to a fixed point of ω = 1.2097 (rad/s).

The return map defining the step-to-step transitions from ωn to ωn+1 is given as:

ωn+1 =

√
cos2 α

(
ω2

n + 2
∣∣∣ g

L

∣∣∣ (1− cosβ1)
)
− 2

∣∣∣ g

L

∣∣∣ (1− cosβ2)

where β1 = α
2

+ γ and β2 = α
2
− γ, with γ > 0 as the downhill slope. A plot of this return

function is shown in Figure 4-3.

When the slope between successive ground contacts is drawn from a stochastic distri-

bution, the function given in Figure 4-3 is now replaced by a probabilistic description of

the transitions, as illustrated in Figure 4-4. Given the current state is some particular ωn,

there is a corresponding probability density function (PDF) to describe what the next state,

ωn+1, will be. Figure 4-5 shows this set of PDF’s clearly; this 3D plot illustrates the same

probabilistic return map shown from overhead in Figure 4-4. For our discretized model,

each height value in Figure 4-5 is in fact the magnitude of the value of the transition matrix,

Tij , where i is the state we are coming from (ωn, on the x-axis) and j is the state we are

going to (ωn+1, on the y-axis). Figures 4-4 and 4-5 provide a graphical representation of

the transition matrix describing this metastable dynamic system.

To generate the discrete transition matrix, we calculate ωn+1 = ωn+1(ωn, γ) for each of

2To avoid simulating pathological cases, the distribution is always truncated to remain within ±10◦, or
roughly 6σ, of the mean.
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Figure 4-3: Return map and fixed point for an 8-spoke rimless wheel on flat, downhill
terrain with a constant slope of 8 degrees
The velocity, ω, is the speed of rotation when a spoke is exactly vertical (i.e., when the
potential energy between two impacting “steps” is greatest and the velocity is therefore
lowest). The wheel correspondingly fails to complete a step whenever ω < 0.

Figure 4-4: Return distribution and metastable “neighborhood” for an 8-spoke rimless
wheel on downhill terrain with a mean step-to-step slope of 8 degrees and standard de-
viation of 1.5 degrees
There is now a probability density function describing the transition from ωn to ωn+1.
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Figure 4-5: 3D view of the return distribution for the rimless wheel system
This surface plot is a smoothed rendering of the step-to-step transition matrix, T , with the
probability density functions for some particular states (ωn) overlaid for greater clarity. For
the deterministic rimless wheel, the corresponding picture would show a narrow line of
infinite height, representing the deterministic state-to-state return function.

a discrete set of 601 possible γ values, in the range of ±10 degrees from the mean. Each

new state is then represented in the mesh using barycentric weighting interpolation [128],

which (we note) inherently adds a small level of additional (unintended) noise to the mod-

eled dynamics. In Figures 4-4 and 4-5, the noise in terrain slope has a standard deviation

of σ = 1.5◦. Using MATLAB to take the 3 largest eigenvalues of the transpose of the

transition matrix for this case, we find that the largest eigenvalue, λ2, is within 10−14 of

λ1 = 1, which is within the mathematical accuracy expected. This eigenvalue corresponds

to the absorbing failure state, and the corresponding eigenvector sums to 1, with all val-

ues except the failure state having essentially zero weight3 in this vector (since all wheels

will eventually be at this state, as t → ∞). All other eigenvectors sum to zero (within

numerical limits4), since they must die away as t → ∞. The second-largest eigenvalue

is λ2 = 0.999998446. Using the methods presented in Section 4.2.2, this corresponds to

a system-wide MFPT of about 1/0.000001554 = 643, 600 steps. Each initial condition

has a particular MFPT, m(ω), which is obtained from Eq. 4.4 and plotted in Figure 4-6.

3All states except the failure state had a magnitude less than 10−10, numerically.
4Our numerical limits are determined by the resolution in MATLAB, which is on the order of 1e-15.
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Note that the value of the mean first-passage time is nearly flat throughout a large portion

of state space. This is characteristic for metastable systems, which justifies the notion of

a “system-wide” MFPT, M ≈ 1/(1 − λ2), quantifying the overall stochastic stability of a

particular dynamic system. For this particular case, there are no regions in state space (ex-

cept the failure state) with MFPT significantly lower than the system-wide value, which is

not typical more generally; the passive compass gait walker discussed next in Section 4.3.2

is highly sensitive to initial conditions, for instance, although it too has regions of state

space which share a nearly uniform MFPT value.

0 0.5 1 1.5 2 2.5
6.41

6.415

6.42

6.425

6.43

6.435

6.44
x 10

5

ω
n
 (rad/s)

M
F

P
T

(ω
n) 

fo
r 

rim
le

ss
 w

he
el

 

 

MFPT from discrete approximation
curved fit

Figure 4-6: Mean first-passage time as a function of the initial condition, ωo

Data are for a rimless wheel on stochastic terrain with mean slope of 8 deg and σ of 1.5 deg.
Points show the approximation obtained through eigenanalysis of the discretized system,
and a smoothed line is overlaid. Note that MFPT is largely constant over a large portion of
state space.

The eigenvector associated with λ2 yields the PDF of the metastable dynamic process –

the relative probability of being at each location in state space, given initial conditions have

been forgotten and the walker has not yet failed. Figure 4-7 shows the resulting probability

distribution functions for the rimless wheel for each of several levels of noise. Pictorially,

each system-wide PDF for a metastable system is analogous to the fixed point for a stable,

deterministic system. In the deterministic case, the probability of being exactly at the fixed

point approach unity as t →∞.

The third-largest eigenvalue of the transition matrix, λ3, quantifies the characteristic

time scale in which initial conditions are forgotten, as the dynamics evolve toward the

metastable distribution (or toward failure). For the case presented here (σ = 1.5◦), λ3 ≈
0.50009, which means almost half of the PDF of the initial condition composed of this

eigenvector is lost (“forgotten”) with each, successive step; an even larger fraction-per-step
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Figure 4-7: Quasi-stationary probability density functions for the stochastic rimless wheel
for each of several values of terrain noise, σ
Each distribution is estimated by renormalizing the eigenvector associated with the second-
largest eigenvalue of the transpose of the transition matrix. Note that meshing inherently
adds noise to the dynamic system; smoothed lines are drawn on top of the raw data (shown
as points) from the scaled eigenvectors.
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is lost for all remaining eigenvectors (with even smaller values of λ). Within a few steps,

initial conditions for any wheel beginning in our range of analysis 0 < ωo ≤ 2.5 [rad/s]

have therefore predominantly evolved into the metastable PDF (or have failed). If we

multiply the metastable PDF, φ(ω), by the transition matrix, we obtain the conditional

probability, Pr(ωn+1|ωn) of having just transitioned from ωn to ωn+1, which is shown both

as a 3D plot in Figure 4-8 and as a set of contour lines overlaid in Figure 4-4.

Figure 4-8: 3D view of the metastable “neighborhood” of state-to-state transitions
If a rimless wheel starts from some arbitrary initial condition and has not fallen after several
steps, this contour map represents the joint probability density function of being in state ωn

now and transitioning to ωn+1. The contour lines drawn are identical to those overlaid in
Figure 4-4. They delineate neighborhoods of likely (ωn, ωn+1) pairings, analogous to the
unique fixed point of the deterministic case.

This particular system has a beautiful simplicity which allows us to extract some addi-

tional insight from the conditional probability in Figure 4-8. Because of the definition of

ωn as being the velocity when the mass is at its apex in a given step, the value of ωn+1 = 0

represents the boundary to the absorbing failure state in this example. If we visualize the

contours of the conditional probability as they extend toward ωn+1 = 0 in Figure 4-4, we

see that most failures do not occur because we transition from a very slow state (ωn close to

zero) to failure but are more typically due to sudden transitions from more dominant states

in the metastable distribution to failure.

Finally, when this methodology is used to analyze the rimless wheel for each of a variety

of noise levels (σ), the dependence of system-wide MFPT on σ falls as shown in Figure 4-9.
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For very low levels of noise, MATLAB does not find a meaningful solution5. As the level

of noise increases, the MFPT decreases smoothly but precipitously. (Note that the y-axis

is plotted on a logarithmic scale.) The stochastic stability of each particular system can be

quantified and compared by calculating this estimate of MFPT which comes from λ2 of the

transition matrix.
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Figure 4-9: Mean first-passage time (MFPT) for the rimless wheel, as a function of terrain
variation, σ
Estimates above 1014 correspond to eigenvalues on the order of “1−10−14” and are beyond
the calculation capabilities of MATLAB.

4.3.2 Passive compass gait walker

The second metastable dynamic system we analyze in this paper is a passive compass gait

(CG) walker. This system consists of two, massless legs with concentrated masses at the

intersection of the legs (“the hip”) and partway along each leg, and it has been studied in

detail by several authors, e.g., [50, 58, 162]. Referring to Figure 4-2, the parameters used

for our metastable passive walker are m = 5, mh = 1.5, a = .7, and b = .3. Given

an appropriate combination of initial conditions, physical parameters and constant terrain

slope, this ideal model will walk downhill forever.
5The numerical resolution on MATLAB cannot capture MFPT values above 1e14 or so.
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When each step-to-step terrain slope is instead selected from a stochastic distribution

(near-Gaussian, as in Section 4.3.1), evolution of the dynamics becomes stochastic, too,

and we can analyze the stochastic stability by creating a step-to-step transition matrix, as

described in detail for the rimless wheel. The resulting system-wide MFPT as a function

of terrain noise, M(σ), is shown in Figure 4-10. Note that it is similar in shape to the

dependence shown in Figure 4-9.
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Figure 4-10: Mean first-passage time for a passive compass gait, as a function of terrain
variation
Results for analysis of a compass gait walker using a discretized (meshed) approximation
of the transitions. Average slope is 4 degrees, with the standard deviation in slope shown on
the x-axis. Noise is a truncated Gaussian distribution, limited to between 0 and 8 degrees
for all cases.

To analyze this system, our discretized mesh is defined using the state immediately after

each leg-ground collision. The state is defined completely by the two leg angles and their

velocities. On a constant slope, these four states are reduced to three states, because a par-

ticular combination of slope and interleg angle will exactly define the orientation of both

the stance and swing leg during impact. We use three states to define our mesh, although

we allow for variations in slope from the nominal (mean) value. To approximate the transi-

tion matrix, we simulate the deterministic dynamics a short distance forward or backward

in time to find a state where the slope of the line connecting the “feet” of the legs is equiv-
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alent to our desired, nominal slope. Because the dynamics between collisions are entirely

deterministic, these two states are mathematically equivalent for the stochastic analysis. If

such a state does not exist for a particular collision (which occurs only very rarely), we treat

this as a member of the absorbing failure state. The advantage of this approximation is that

reduction of the dimensionality from 4 states to 3 provides a significant improvement in

accuracy. Specifically, it allows us to mesh finely enough to capture near-infinite MFPT

for low-noise systems, while using four states did not. Instead of using either the absolute

stance leg angle, X1, or the relative swing leg angle, X2, we mesh using the inter-leg angle,

α = π −X2. The three states we use are then: (1) absolute angular velocity of the stance

leg, X3, (2) relative velocity of the swing leg, X4, and (3) the inter-leg angle, α.

Figure 4-11 shows a slice of the deterministic basin of attraction for this compass gait

on a constant slope (top), along with regions in state space with nearly-constant MFPT

(bottom two) for two different magnitude of noise (σ) in terrain. Each slice is taken at the

same inter-leg angle, α ≈ 25.2◦. In the deterministic case, the basin of attraction defines

the set of all states with infinite first-passage time: all walkers beginning with an initial

condition in this set will converge toward the fixed point with probability 1. For stochastic

systems which result in metastable dynamics, there is an analogous region which defines

initial conditions having MFPT very close to the system-wide value, M . Interestingly, the

deterministic and stochastic basin shapes are quite similar here; we expect this may often

be the case for systems such as this with discrete jumps in state space.

The image at the top of Figure 4-12 shows the deterministic basin of attraction for

this CG walker more clearly. This plot was generated by sampling carefully over the state

space and simulating the dynamics. By contrast, the plot at the top of Figure 4-11 intention-

ally uses the same mesh discretization used for the stochastic system, to provide a better

head-to-head comparison of the change in shape due to the addition of terrain noise (as

opposed to the noise of the discretization itself). The second image in Figure 4-12 shows

the deterministic basin of attraction for a different set of physical parameters (m = 0.5mh;

a = .6 m; b = .4 m) on the same, constant slope of 4◦. This basin looks qualitatively more

delicate and the resulting performance of this walker on stochastic terrain is in fact much

worse (i.e., MFPT of about 20 steps when σ = 0.5◦, where we find M = 180, 000 for the
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Figure 4-11: Basin of attraction versus a map of MFPT
Basin of attraction (top) for deterministic CG walker and maps of MFPT for CG walkers
on stochastic terrain (σ = 0.5◦, bottom left; σ = 1.0◦, bottom right). To aide in visual
comparison, all 3 plots use the same meshing discretization. Note that in the stochastic
cases, there is an apparent “MFPT basin” which is essentially a low-pass filtered version
of the deterministic basin of attraction. The shape of the region with constant MFPT does
not change significantly, even when the magnitude of the MFPT itself varies greatly (about
180,000 steps for the left-hand plot; 390 for the one on the right). This region of nearly
uniform MFPT represents a boundary in state space where a walker is likely to converge
very rapidly toward a neighborhood near the fixed point (for a deterministic system) or to
the metastable neighborhood (for stochastic systems).
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other walker).

Just as in the case of the rimless wheel, the fixed point (for our deterministic compass

gait system) is now replaced (in the stochastic case) by a probability density function,

defining the likelihood of being in any particular state (conditioned on not having fallen)

as t → ∞. Figure 4-13 shows 2D contour plot sections of the PDF obtained from the

eigenanalysis of the stochastic compass gait. The outermost contour defines a boundary

containing 0.999 of the probability distribution in state space. The distribution spreads over

more of state space as the level of noise increases, in a manner analogous to the widening

of the distribution with noise seen in Figure 4-7.

Finally, we note that the relationship in state space between the PDF of the metastable

dynamics, shown in Figure 4-13, and the region of nearly-uniform mean first-passage time,

M , shown at the bottom of Figure 4-11, hints at where successful “escape attempts” are

most likely to occur over time. Figure 4-14 overlays these two regions across a differ-

ent dimensional slice of the 3D space for the σ = .5◦ and σ = 1.0◦ cases. As the tails

of the metastable PDF (shown in yellow) approach the boundary of the uniform-MFPT

basin (shown in blue), there is a higher probability of failing on any given step during the

metastable process, resulting in turn in a less stochastically stable system (i.e., with a lower

system-wide value of M ).

4.4 Discussion

This section briefly discusses some additional issues in the use of the stochastic meth-

ods presented toward both the design of controllers for and evaluation of the performance

of walking systems. We highlight the potential impacts on control design of using this

methodology, discuss implementation issues, and also provides a few further observations

on the properties of metastable system which result in multiple attractors (e.g., period-n

gaits).
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Figure 4-12: Basins of attraction (blue regions) and fixed point for two compass gait walk-
ers, each on terrain of constant slope (4 deg)
For the walker at top, m = 10

3
mh, a = .7 m, and b = .3 m; at bottom, m = 1

2
mh, a = .6 m

and b = 0.4 m. Each image shows a slice of the 3D basin, taken at the inter-leg angle of
the fixed point for each walker. The fixed point is at X3 = −.89 (rad/s), X4 = 2.89 (rad/s),
α = 25.2◦ for the first walker and at X3 = −1.14 (rad/s), X4 = 1.26 (rad/s), α = 33.4◦ for
the lower one.
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Figure 4-13: Metastable neighborhoods for a passive compass gait walker
On stochastic terrain, there is no fixed point for the compass gait walker. Instead, there are
metastable “neighborhoods” of state space which are visited most often. As time goes to
infinity, if a walker has not fallen, it will most likely be within this region. The contours
shown here are analogous to the PDF magnitude contours in Figure 4-7; they are drawn
to enclose regions capturing 90%, 99%, and 99.9% of walkers at any snapshot during
metastable walking. Top picture corresponds to σ of 0.5 degrees in terrain slope; σ of 1.0
degrees (bottom) results in larger excursions in state space, as expected.
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Figure 4-14: Metastable system: Contours of the stochastic “basin of attraction”
Basins are shown where MFPT is 0.5M , 0.9M and 0.99M (blue) versus contours where
the integral of the PDF accounts for .9, .99, and .999 of the total metastable distribution
(yellow). The metastable dynamics tend to keep the system well inside the “yellow” neigh-
borhood. When the tails of this region extend more significantly out of the blue region, the
system dynamics are less stochastically stable, with a lower value of M . The axis into the
page represents the swing leg relative velocity, X4, and a slice is taken at X4 = 2.33 [rad/s].
Terrain variation for the top plot is σ = 0.5 degrees, which corresponds to M ≈ 180, 000
steps. The system at bottom has twice the magnitude of noise and is less stable; terrain
variation of σ = 1.0 degrees results M ≈ 390 steps or so.
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4.4.1 Impacts on control design

One of the primary goals of a controller is to enhance the dynamic stability of a system. For

walking systems, we propose throughout this paper that this should be defined as increasing

the stochastic stability. We would like time-to-failure to be long, and we would like a

system to converge toward the metastable distribution from a large set of initial conditions.

The tools provided here can be used in optimizing controllers with either or both of these

two aims in mind.

As an example, consider an active compass gait walker, with a torque source at the hip

but with the ankles still unactuated at the ground contact. Putting this walker on a repeating

terrain, as depicted in Figure 4-15, allows us to mesh across a region of the state space of

possible poses. By designing a low-level PD controller on inter-leg angle, we can discretize

the action space on a single once-per-step policy decision. The optimal high-level policy

(to select desired inter-leg angle) for the system can now be solved via value iteration. Our

results for such a control methodology allow this underactuated compass gait model to

walk continuously over impressively rough terrain, as discussed further in Section 5.5.

4.4.2 Implementation issues

Practical use of the statistic tools outlined in this chapter depend on thoughtful implemen-

tation. Issues which deserve attention here include the following: scaling, interpolation,

and induction algorithms for estimating state transitions.

Scaling is a major concern for two reasons. First, including more dimensions to define

the states of a systems results in exponentially more elements in the resulting transition ma-

trix. Any practical storage and manipulation of the matrix (e.g., using MATLAB) becomes

impractical for even moderately large degree-of-freedom systems. In our experiments with

the compass gait walker described in Chapter 5, for instance, we use a clever trick to “fast-

forward” the dynamics of each continuous step trajectory to a particular plane in state space

and correspondingly reduce the number of degrees of freedom required to described each

post-impact state from 4 to 3. This reduction in dimensionality may sound modest, but

we were never able to successfully refine a mesh for either the passive or active compass
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gait models without it. As the compass gait is a fairly simple system, we expect three

degrees of freedom is likely to be a practical limit for dynamic models of any reasonable

sophistication.

As a result, model order reduction is essential as systems become more complicated. A

promising trick is to create a hierarchy in a controller, using a low-level control loop which

is driven by a high-level representation of some subset of the total state space. For instance,

recall that in Chapter 3 we described some dynamic gaits for a quadruped which has 18

degrees of freedom: 12 actuated joint angles, plus the 6 degrees of freedom describing

the location and orientation of the body (which are not directly actuated). For a dynamic

lunging maneuver, we collapsed these 18 degrees of freedom into 2 DOF: an actuated hip

angle for the stance leg and an underactuated pitch angle of the robot body. Our results

showed good agreement between the highly-simplified model and the actual robots. Our

message here is that although model order reduction can often be a significant challenge

requiring thoughtful planning, we do not believe it is an absolute road block to practical

implementation.

Estimating the transition probabilities is potentially challenging for a real robot, as

well. The basic, well-established principles of Bayesian inference should provide our start-

ing point [39]. However, if we simply try to obtain our estimates through Monte Carlo

style trials, we will often require an impractically large number of experiments to get good

estimates of rare events as discussed further in Section 5.4.2. We should expect practical

estimation of transition probabilities will also require intuition about the physics of the sys-

tem to enhance our estimations of total transition probabilities wherever practical. Bayesian

estimation is an area of great interest recently in some fields of robotics – most notably in

Simultaneous Localization and Mapping (SLAM) [158, 180]. However, the issue of esti-

mating state transition matrices for the dynamics of a robot systems is not treated widely in

the literature. Bayesian estimation of the state transition functions for robot manipulation

tasks is addressed by several authors [54, 112].
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Figure 4-15: Controlled compass gait walker, with torque at the hip
To solve for an optimal policy using value iteration, the terrain wraps every 7 meters. The
optimization maximizes the MFPT from any given state. An eigenanalysis reveals a com-
plex set of eigenvalues (top), spaced evenly about (but strictly inside of) the unit circle.
Corresponding eigenvectors are also complex.
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4.4.3 Multiple stable limit cycles

Metastable dynamic systems sometimes have an inherent periodicity. We expect this may

be the case on a slightly steeper slope, for instance, where compass gait models experience

period-doubling bifurcations [58]. Another case where periodicity arises is for wrapping

terrain, such as the terrain for the controlled walker in Figure 4-15. Wrapping is a realis-

tic model for many in-laboratory walking robots, as they are often confined to walk on a

boom – repeatedly covering the same terrain again and again. A controlled version of the

compass gait will be discussed in detail in the next chapter. The important detail to note

now is that optimal policies for walking on repeating terrains may also have periodicity,

selecting the same particular footholds every nth time around the terrain.

In our simulations for a CG walker on wrapping terrain, we observe that a repeating,

n-step cycle results in multiple eigenvalues, λ2 through λn+1, all with magnitude just under

unity. They are complex eigenvalues, as are the corresponding eigenvectors. In cyclical

dynamic systems, this group of eigenvalues together replace the role of the second-largest

eigenvalue, λ2, in systems which lack periodicity. The top left image in Figure 4-15 shows

such a set of eigenvalues, all lying just within the unit circle. The next-smallest set of

eigenvalues are all significantly smaller in this example. The complex eigenvalues and

eigenvectors mathematically capture an inherent periodicity, in which the probability den-

sity function changes over time in a cyclical manner.

4.5 Conclusions

The goal of this chapter has been to motivate the use of stochastic analysis in studying and

(ultimately) enhancing the stability of walking systems. Robots that walk are inherently

more prone to the stochastic influences of their environment than traditional (e.g., factory)

robots. Locomotory systems capable of interacting with the real world must deal with sig-

nificant uncertainty and must perform well with limited energy budgets and despite limited

control authority.

The stochastic dynamics of walking on rough terrain fit nicely into the well-developed

study of metastability. The simplified models studied here elucidate the essential picture of
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metastable limit-cycle dynamics which make occasional escapes to the fallen-down state.

We anticipate that metrics for stochastic stability, such as the mean first-passage time, can

be used at potent metrics for quantifying both the relative stability of different states across

state-space and the overall system-wide stability of real walking systems.
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Chapter 5

Compass Gait Model on Rough Terrain

In this chapter, we investigate the stochastic stability of both passive and active models on

the Compass Gait (CG) model on rough terrain. In both regimes, we mesh state space and

model the dynamics as a discrete Markov Chain. For metastable walking systems, an eige-

nanalysis on the (sparse) transition matrix which represents the system dynamics reveals

both a characteristic, system-wide mean first-passage time and the “metastable neighbor-

hood” of the regions visited most often in state space.

For the actuated versions of the CG model, we use the value iteration algorithm [166] to

solve for approximate optimal control of a CG biped model on rough terrain. The resulting

control policy is considered only approximately optimal because we do not attempt to solve

for a continuous policy over time. Instead, a hierarchical control strategy is used, with a

low-level controller regulating the hip angle trajectory, and a higher-level policy selecting

a low-level option once per step.

5.1 Introduction

In Chapter 4, we introduced a simple model of walking called the “compass gait” biped.

This model provides a very appealing simplification of human walking while still captur-

ing much that is fundamental. Researchers have long noted that experimental data from

human subjects show little muscle activity in the swing leg except at the start and end of

a stride [117, 125, 100], for example. The compass gait captures the remaining “passive
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dynamics” of human walking: an inverted pendulum stance leg coupled with a regular

(downward) pendulum swing leg.

However, as we observed in Chapter 4, the purely passive compass gait walker with

no regulating control is highly susceptible to falling on even mildly-varying terrain. For

legged robotic locomotion to become practical outside of a controlled, laboratory setting,

robots will need robust, dynamic control strategies which can cope with the high degree

of stochasticity expected in day-to-day operation. Such robots will encounter variations in

terrain profile and in characteristics such as contact friction and coefficient of restitution,

and they will be subject to intermittent external forces.

Passive dynamic principles have inspired a promising avenue of research in legged

robotics. Purely passive walkers, which require no actuation or active control, exhibit sta-

ble limit cycles walking down a gentle slope. Unfortunately, the inverted pendulum dy-

namics of these passive walkers also exhibit notoriously fragile basins of attraction; minor

perturbations, such as subtle variations in terrain, tend to cause them to fall. Although there

has been much recent progress in the study and design of robots based on passive dynamics

principles [114, 56, 102, 33, 184], there are no good examples of an underactuated robot or

model based on passive dynamics which can walk on significantly rough terrain.

It seems natural to posit, however, that such dynamics can be made significantly more

robust through perspicacious design of control. In this paper, we present highlights of our

results in the study of a compass gait (CG) walker model with torque actuation at the hip

and an axially-directed source of impulse at each toe. The focus of this work is to assess

the capabilities of this machine in negotiating difficult terrain; no attempt has been made

to consider energy efficiency. Much of the material presented in this chapter also appears

in [26].

5.2 Related work for CG models on rough terrain

Dynamic walking approaches to legged locomotion are inherently sensitive to perturba-

tions, as discussed in Section 1.2.2. To date, little has been done either to address optimal

control for passive-based walkers on rough terrain or to quantify their stability for such
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walking. Some relevant approaches which could likely be adapted toward this goal are

cited briefly below.

[44] use a manifold approach to control an underactuated compass gait walker on mildly

rough terrain. This approach has shown promise, but it is currently limited to terrain with

a gradually-changing slope. It does not address more typical rough terrain, where foothold

selection is important, and/or variations in slopes are significant. By selecting appropriate

manifolds, a simple biped might be able to negotiate more extreme terrain, but a methodol-

ogy to do so (and to quantify resulting performance) remains an unsolved (and non-trivial)

problem to date.

The hybrid zero dynamic (HZD) approach developed for underactuated bipedal walk-

ing in [185] also seems promising as a good low-level control strategy for negotiating

rough terrain. The HZD approach addresses constant-slope walking with isolated pertur-

bations [183] (i.e., to enlarge the basin of attraction of the walker), but it has not yet been

applied toward rough terrain walking (and its mixing effects). We suggest the HZD ap-

proach could be developed for rough terrain walking by employing a hierarchical strategy

analogous to the one we present in Section 5.5, where a family of low-level trajectories are

designed from which one can select a high-level sequence of one-step control policies.

A third approach, presented in [162], stabilizes a fully-actuated compass gait, where

a torque source is assumed at the stance foot contact with the ground. The fully-actuated

version of the compass gait can indeed negotiate rough terrain with variations in slope.

We find this approach highly undesirable, however, because we believe maintaining an

underactuated contact where the foot meets the ground is an essential feature in walking.

Finally, we note [163] address quantification of stability on rough terrain by examin-

ing models of human walking which are based on passive dynamic models. This work

acknowledges that guarantees of global stability are impossible for real-world walking sys-

tems, since it is always possible to find a perturbation large enough to cause an underactu-

ated walker to fall. The authors of [163] investigate both short-term and long-term stability

of a passive compass gait model on stochastic terrain with the eventual goal of making

predictions on the risk of falling for humans. To date, this research has not provided such

quantifiable estimates, however, and it certainly does not address the issues of control and
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optimization of stability (passive or active).

5.3 Stability versus agility for compass gait walking

Before presenting results for the passive and active compass gait walkers, we will briefly

discuss the considerations taken in selecting the particular parameters used for the passive

and controlled experiments – which were in fact distinctly different. In Section 4.3.2, we

discussed metastability of the compass gait walker, and we noted that changing the mass

distribution along the legs can (not surprisingly) have a tremendous impact on the resulting

stochastic stability of a passive walker. Referring to the basins of attraction for each walker

shown in Figure 4-121 of Chapter 4, the basin at the top corresponded to the walker with a

higher mean first-passage time on all the rough terrain cases examined. In this chapter, we

will revisit the passive stability of the less stable passive walker from Chapter 4 (i.e., the

one whose basin of attraction is given at the bottom of Fig. 4-12), and we will introduce a

new parametrization (mass and length distributions) for the compass gait model we use in

our optimal control simulations.

Our work on active control of the compass gait uses a model which has low passive

stability, comparable to the worse of the two walkers presented in Chapter 4, because we

have observed a trade-off between passive stability and active control authority. Although

perturbations have less effect on the passively-robust walker, input from additional control

also has less effect on the inherent dynamics. This trade-off is not surprisingly, as it is

commonly seen in a variety of dynamic systems. In aircraft, for example, a well-built

glider is designed to have greater passive stability than a high-performance jet; each design

exploits an inherent trade-off between passive stability and active control capabilities for

agile motion. Similarly, we have intentionally selected a walker with dynamics which

are sensitive to our actuated force inputs. The actively-controller walker is qualitatively

“bulkier” than its passively-stable counterpart, with more coupling between the stance and

swing legs (through the commanded torque at the hip), and the bulkier walker has (as

mentioned) fragile stability properties in the passive (uncontrolled) case.

1on page 119
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5.4 Passive biped model on rough terrain

This section has two aims. First, it quantifies the passive walking stability of the passive

compass gait model we use throughout the control analysis in this chapter. This provides

a baseline for comparison with the performance of the control strategies presenting in Sec-

tion 5.5. The second purpose of this section is to expand somewhat on the passive compass

gait results presented in Section 4.3.2, particularly in highlighting the inherent advantages

of the Markov chain modeling approach (as opposed to Monte Carlo or other simulation

techniques) in estimating mean first-passage times.

5.4.1 Passive compass gait model

θ 1

θ 2

-γ

-α

a

b

m h

m

Figure 5-1: The compass gait biped model.

The model presented in this chapter is not the so-called “simplest model” [50, 154, 102]

for bipedal walking, since it does include a distributed mass (at the hip and legs) rather

than concentrating all mass at the hip, but it does assume several important idealizations.

Collisions are assumed to be perfectly inelastic and instantaneously, at which point the

stance and swing legs trade identities. We also assume that the stance leg is effectively

pinned to the ground during walking. That is, we assume the stance leg never violates the
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friction constraint at the ground contact. This assumption is reasonable, since the standard

deviation in slope height for any terrain tested for which the purely passive compass gait

could successfully take more than one or two steps did not exceed more than about six

degrees away from being flat terrain.

Having a distributed mass along legs makes the motions during walking more “inter-

esting”; that is, the dynamics between the stance and swing legs are strongly coupled. This

is particularly important toward understanding control of the active models presented. For

our controlled models, a high-level policy selects a nominal interleg angle, to be regulated

by a PD controller at the lower level. However, the motion of the swing leg and stance leg

are coupled, so that the size of the step commanded affects not just the eventual foothold

taken but also the angular velocities of the legs at impact, as well as whether or not the step

is even dynamically feasible at all.

5.4.2 Methods

We explored the stability of the passive CG walker through two methodologies: Monte

Carlo simulations and discretization of the dynamics into a Markov process. In both cases,

terrain slope variations provide the only randomness in the system. The Markov modeling

approach, which was described in Section 4.3.2 (on page 114), has several advantages,

which are highlighted below.

Monte Carlo simulation

The most straight-forward approach to estimate the mean first-passage time (MFPT) for a

model is, perhaps, Monte Carlo simulation [121]. This method uses computational brute

force in cases where statistical interactions lead to analytically complicated dynamics and

was originally developed for use on the ENIAC computer, to model dynamics of and esti-

mate neutron multiplication rates for fission chain reactions [120].

The Monte Carlo method is useful for the compass gait dynamics, because there is

currently no closed-form, analytic solution for the step-to-step transitions of this model.

To estimate the MFPT, we simply start up the model from a particular initial condition
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repeatedly and then track the long-term statistics of failure events.

The advantage of this approach is that relatively low effort is required to set up our

simulations. The disadvantage is excessively long simulation time. For one thing, recall

that our eventual goal is to obtain long-living, metastable walking cycles. In the limit as

we analyze better dynamic systems, failure events become increasingly rare, and it takes a

correspondingly long time to observe a statistically sufficient number of failures. Secondly,

note that our real goal is not to characterize failures from one, particular initial state but

rather for initial conditions which span some volume in the state space of interest.

There are some advantage to Monte Carlo simulation, however. One is that it allows

for arbitrarily-accurate spatial resolution, if we are interested in analyzing a small subset

of state space. For example, Figure 5-2 shows a 2D slice of the 3-dimensional set of post-

collision states for the passive walker. Simulating to estimate MFPT over this plot took over

a day of computation, but the resolution is much finer than we could obtain when using a

discretized Markov chain model, due to matrix size limitations in MATLAB. Figures 4-11

(page 117) and 4-14 (page 121) show examples of the resolution possible when using a

discretized Markov model across all of state space.

A second advantage of Monte Carlo simulation is that it can provide a useful, intuitive

description of the statistical variation in the dynamic system. In Chapter 6, we will discuss

stabilization of a bounding motion for LittleDog. A significant failure mode for this gait

involves the robot tipping forward too far as it supports itself on the two front legs to retract

the rear ones. This occurs when the robot pitches past a critical “tipping point”. Monte

Carlo simulations can provide a good online estimate of the variation in pitch angle, which

in turn can provide an estimate of the overall failure rate. It would take far longer to observe

enough data to accurately model the dynamics over a complete mesh (by many orders of

magnitude), and so Monte Carlo simulation can be used to capture important details of

particular dynamics in cases where filling out a full mesh is not practical.

Markov chain model

Although Monte Carlo simulation is appropriate in some cases, modeling the dynamics

of our walking systems with a discrete Markov chain generally has several advantages

133



−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−4

−2

0

2

4

6

8

10

fixed point

X
3
: stance leg abs. vel. (rad/s)

X
4: s

w
in

g 
le

g 
re

l. 
ve

l. 
(r

ad
/s

)

Figure 5-2: Deterministic basin of attraction (top) and stochastic map (below) of mean
first-passage time
The 2D stochastic map slice was obtained through Monte Carlo simulation. Dynamics
were simulated for many trials from each, particular initial condition. This plot can only
be obtained practically for a walker with weak stability properties (the blue regions corre-
sponds to about 18 steps on terrain with mean slope 4◦ downhill and σ = 0.5◦ ); otherwise,
simulation time is prohibitive. Top image also appears in Figure 4-12.
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Table 5.1: MFPT for three different passive CG models
Slope at each step is drawn from a Gaussian with mean of 4◦ and σ = 0.5◦.

ID m (kg) mh (kg) a b MFPT (steps)
A 2 2 0.5 0.5 9.3
B 5 10 0.6 0.4 18.1
C 5 1.5 0.7 0.3 185,000

over this approach. First, while the Monte Carlo method requires starting at each initial

condition and simulating many steps (until failure) for each of many trials, our simulation

requirements are much more efficient for a Markov chain. From each discrete state in

the Markov chain mesh, we just simulate one step for each of a discrete set of “noise”

conditions (for example, for a set of upcoming slope angles). The act of taking a step

during walking also provides a natural discretization in time which is well-suited to the

Markov chain model.

Another big advantage of the Markov chain is that it allows for the one-shot calculation

of state-dependent MFPT and for the system-wide eigenanalysis of the dynamics2. Finally,

the discretized model lends itself to dynamic programming, which will allow us to solve

efficiently for optimal control policies later in this chapter.

5.4.3 Discussion of passive performance

Given appropriately chosen parameters for the mass distribution of the walker and the

stochasticity of the terrain variations, the results both from Monte Carlo simulation and

from representing the dynamics as a discrete Markov chain show that the passive compass

gait walking on rough terrain demonstrates typical metastable behavior. That is, initial

conditions are forgotten relatively quickly, there is a region (the “stochastic basin of attrac-

tion”) across state space where MFPT is essentially uniform, and there is a second region

(near the fixed point of the deterministic system) where the dynamics tend to remain over

time. We will observe these same characteristics in successful (metastable) versions of the

actively-controlled dynamic system.

2Both were described earlier in Section 4.2.2, on page 103.
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Table 5.1 compares the mean first-passage time for each of the three passive walkers

described throughout this thesis on a particular, stochastic terrain. Data for walkers A

and B are obtained from Monte Carlo trials, while the result for walker C came from an

eigenanalysis. We would expect to wait an average of 1.4 hours to observe a single failure

event for this walker if we ran Monte Carlo computer simulations, so the eigenanalysis

is truly much more practical here! Note that model B is the walker analyzed to produce

Figure 5-2, and both B and C were examined in Section 4.3.2 of the previous chapter.

The walker on which we will optimize control throughout the remainder of the present

chapter is model A. Qualitatively, the goals of active control are to increase stability by both

enlarging the stochastic basin of attraction (of states with uniform MFPT) and speeding up

the mixing time in which initial conditions are forgotten.

5.5 Optimal control of the biped on rough terrain

5.5.1 Actuated compass gait model

θ 1

θ 2

-γ

τ

-α
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b
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m

Figure 5-3: Actuated compass gait model with torque source at hip.
Simulations for the actuated compass gait use the following parameters: m = mh = 2kg,
a = b = 0.5m
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The basic compass gait model, introduced by [56], is used in all simulations and de-

picted in Figure 5-3. In addition to the modeling details previously given for the passive

compass gait (in Section 5.4.1), the actuated model now also includes a pure torque source

at the “hip” linkage where the legs meet. The stance leg is oriented at an absolute angle

θ1 and contacts the ground at a zero-torque, frictionless joint, called the “toe”. The swing

leg position is measured relative to the stance leg at angle θ2. Parameters for the model

used for the controlled walker are given in the caption of Figure 5-3, and the direction of

walking for all simulations is from the left to the right.

To address the practical concerns of defining and detecting ground collision, we assume

that the toe of the swing leg is immediately retracted once a ground collision occurs and

remains so until the stance leg reaches a position within 10◦ of its desired interleg angle, at

which time it extends instantaneously. If, after extension of the toe, we discover the tip is

below our ground height, we consider the walker to have failed to have taken a successful

step. For successful steps, the identities of the stance and swing legs are swapped when the

(extended) swing leg toe finally collides with the ground.

In addition to the hip torque actuation, we also include an ideal impulse actuation at

each toe which we assume can be delivered at a prescribed magnitude, axially at the stance

leg contact immediately preceding each collision between the current swing leg and the

ground. Inclusion of an impulse source is inspired by the work of [100], who illustrate that

this is an efficient method for imparting energy to the system to make up for energy lost in

ground collisions3.

5.5.2 Method for approximate optimal control

To solve for the approximate optimal control solution for the compass gait walker on rough

terrain, we discretize the dynamics, always using a post-collision state to define the state.

We then use the value iteration algorithm [166] to find an optimal step-to-step feedback

policy for the discretized system. We tested two low-level control strategies for defining

the state-to-state dynamics. The first method was a Proportional-Derivative (PD) controller

3Note that [100] use the simplified version of the compass gait, with all mass concentrated at the hip and
infinitesimal mass at each toe. However, the effect is similar in the model with distributed mass.
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regulating the inter-leg angle, α. The second method was an impulsive toe-off, applied just

before each ground collision. We tested each method alone and also tested both together.

More details on implementation of the simulations are given below.

Value iteration algorithm

Our goal is to find a policy which will maximize the number of steps taken before falling.

To determine the full capabilities of the walker, one would wish to discretize over time

and to select a torque magnitude at each dt. We chose instead to discretize on a step-

to-step basis, to reduce the size of the state space (by one dimension) in order to keep

the problem computationally tractable. We were pleased to find that such a strategy still

produces continuous walking on significantly rough terrain in our simulations.

The post-collision state of walker is represented in most plots using four meshing state

variables: Xm1: x location of the stance leg; Xm2: the distance ∆x from the stance leg

ground contract to the swing leg contact; Xm3: the angular velocity of the stance leg, θ̇st;

and Xm4: the angular rate of change of the inter-leg angle, α̇. Details on the discretization

used are given in Appendix B. Note that the inter-leg angle is increasing when the swing leg

rotates “forward”. Counter-clockwise is positive for all angle measurements, as illustrated

by Figure 5-3.

W
1

W
2

W
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Figure 5-4: Illustration of meshing approximation
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The value function and feedback policy between the discretization points must be ap-

proximated, since values are only stored at the particular mesh nodes. Figure 5-4 illustrates

the effect of meshing; each new post-collision state, Xnew, which we observe after a simu-

lated step, must be approximated by a weighted sum of some subset of nodes which exist

in our pre-determined mesh. The minimal number of nodes to create a meshed volume in

an N-dimensional mesh in N + 1; for our 4-dimension mesh of post-collision states, this

means each exact new state is modeled as if transitions occurs to 5 neighboring mesh nodes.

The individual transition probabilities are set through barycentric interpolation [129] (and

of course must sum to unity). Any post-collision states falling outside the defined mesh

range were automatically binned into the absorbing failure (fallen) state.

In solving for the optimal policy, we begin by assigning a value Clast(k) = 0 for each

state (k) in the mesh. Through iteration, we update these values to reflect which states

can achieve the greatest estimated number of steps before falling. Equation 5.1 shows the

update for the estimated cost of starting in state i and performing control action option a.

Cnew (i|a) =
5∑

k=1

Wk [γClast(k) + Conestep(k)] (5.1)

After this update is done for every possible control action, we can then update Clast for

each state, so that it is the lowest of all Cnew values (corresponding to the best action found

so far):

Clast(i) = min
a

Cnew(i|a) (5.2)

and our optimal n-step policy is the set of actions at each step (after n iteration steps) which

gives this lowest cost:

π(i) = arg min
a

Cnew(i|a) (5.3)

We include a discount factor, γ = 0.9, in Equation 5.1 to ensure that the value function

converges to a finite value everywhere as the number of iterations goes to infinity. The

one-step cost function determines exactly what it is that we are optimizing, as described

below.
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Cost function to optimize metastability

To maximize the expected value of the number of steps taken from each state in the mesh,

the appropriate one-step cost is simply:

Conestep(i) =





0 i ∈ fallen

−1 otherwise
(5.4)

In words, falling down yields no cost (or reward), while successfully making one step is

rewarded with the value minus one, to indicate a single additional step has been taken.

Technically, we are not maximizing the mean first-passage time in a literal sense here; we

are instead maximizing the number of steps taken. When we refer to the MFPT in this

chapter (and elsewhere), we are generally measuring “time” in number of steps taken, both

for convenience and because our discretization (using post-collision states in the mesh)

makes the notion of measuring time as discrete steps taken quite natural.

If we did wish to maximize the time traveled instead, the one-step cost would depend

on the trajectory taken from one step to the next. We could perform this bookkeeping, if

desired, and then the non-fallen one-step cost would equal the negative of the time taken to

perform a particular (successful) step.

Another intuitive option is to maximize the distance traveled. To do this, we would

assign the negative of the distance traveled in one step. For any post-collision step, this

is simply the (negative) distance between the stance and swing toes (and does not depend

on the trajectory taken to get to this state). Note that relative distance between stance

and swing toe is one of the four state variables used to define the post-collision state, so

implementing this one-step cost is quite trivial in practice.

Hierarchical controller design

Our simulations use two simple low-level control options: PD control of a desired inter-

leg angle and impulsive stance-foot toe-off when the ground collision occurs for each new

step. We tested three control strategies, using each of the two low-level controls alone and

combining the two methods in creating a third technique. The high-level control actions at
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each step in the value iteration correspondingly consist of one or both of the following: (1) a

desired inter-leg angle, αdes, for the PD controller and (2) the magnitude of the impulse.

The primary purpose of the PD controller is to regulate of the step length of the walker,

which in turn selects upcoming foot placement on the terrain. However, the dynamics are

coupled, so that the controller also affects the entire dynamic state of the walker. There is

currently no closed-form description for the step-to-step transitions resulting from this cou-

pling, which is precisely why simulation of the dynamics provides a practical methodology

for investigating the system.

The main goal in employing the impulsive toe-off action is to compensate for the energy

which is lost at each ground collision. This in turn allows the walker to take larger steps than

would otherwise be possible, since more energy is of course lost for larger step angles [32].

PD control of inter-leg angle

A low-level PD controller regulates the inter-leg angle, α, which is defined as:

α = θsw − θst (5.5)

Our PD controller was designed by hand, to obtain swing leg motions which do not over-

power the stance leg dynamics entirely but which are still effective in regulating desired

step length approximately. The PD controller is active throughout the course of any partic-

ular step. Equation 5.6 gives the commanded controller torque at the hip:

τ = Kp(αdes − α) + Kd(0− α̇) (5.6)

where Kp = 100 and Kd = 10.

Impulsive toe-off at impact

In this control strategy, a particular magnitude impulse is applied axially from the stance leg

downward, toward ground. Toward eventual implementation on real robot, we note again

here that it is well-known that applying the impulse immediately before collision is more
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efficient in imparting energy to the compass gait walker [100]. We assume the impulse

is imparted instantaneously in our simulations; correspondingly, no additional dynamic

simulations are necessary to implement value iteration with this when this control actuation

is included.

A high-level feedback policy is evaluated at each the post-collision state, but we desire

that a commanded impulse affect the current step. To model the transition with an impulse,

the post-collision state is simply ”rewound” to its corresponding pre-collision state, using

the well-known equations for conservation of angular momentum during the inelastic col-

lision [56]. Then, the contribution of the impulse (mv) is added as appropriate at the toe

of the stance leg, and the equations for angular momentum (now going from pre- to post-

collision) are applied once again. Note that the velocity of the swing leg must be tested

after the impulse is applied to ensure that the velocity of the swing leg toe is still directed

toward the ground. A large enough impulse could theoretically send the entire walker air-

borne! However, this has not been a practical concern for the impulse magnitudes we have

tested in our simulations.

Our initial tests using value iteration allowed for the selection of one of 21 values rang-

ing from 0 to 2 (kg-m/s). In practice, however, the largest magnitude of impulse was almost

always selected. To simplify the controller and to reduce the run-time for value iteration

(by a factor of 21), we eventually set the impulse value to a constant magnitude of 2 at

every step.

5.6 Controlled CG on wrapping rough terrain

One significant goal in this chapter is to demonstrate the inherent capabilities of a compass

gait biped with a torque-free pin joint where the stance leg meets the ground, walking on

rough terrain. To explore the dynamic capabilities of this simple walker, we wish to allow

perfect knowledge of upcoming terrain. To allow for perfect knowledge of the terrain for an

arbitrary number of steps in the future, we first created a model with wrapping terrain. Our

results demonstrate more capable walking for such a minimalist biped than can be found

in the current state of the art. The results provide some evidence that this simple model
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captures a large part of the dynamics not only for constant-slope walking but also for more

realistic locomotion, where the environment adds noise.

Our results are presented in detail belore. The meshing discretization used in these

simulations is described in more detail in Appendix B. Figure 5-5 illustrates example

terrain (at a somewhat exaggerated scale) and describes the four meshing states used.

τ

pre−collision
impulse

x
stance

Xm3 = θ̇1

Xm4 = θ̇2

Xm1 = XstXm2 = Xsw − Xst

Figure 5-5: Compass gait on wrapping terrain
At left, the actuation for this model includes a torque at the hip and a constant magnitude
impulse which occurs at each step. At right, the four states which define each post-collision
elements in the discrete mesh are given.

5.6.1 Wrapping rough terrain models

We attempted to solve the optimal control problem for each controller on a variety of both

continuous and discontinuous terrains. Examples are shown in Figures 5-6, 5-7, 5-10 and

5-12. Step-to-step transitions were always computing using a continuous version of a par-

ticular terrain profile. When solving the value iteration problem for a discontinuous terrain,

regions where gaps exist were simply defined as “dead” zones; any state involving a gap

region as its next foothold transitioned immediately into the failed (fallen) state, by def-

inition. Our tests of the hip-actuated compass gait walker on discontinuous terrain were

largely inspired by the impressive results from [71] in using a simple, intuitive strategy to

control the Raibert hopper on intermittent terrain. We note that many of the same basic

principles which have proved effective for simple hopping robots have likely guided the
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practical design of impressive, robust control for the dynamic BigDog quadruped (created

by Boston Dynamics) on rough terrain [21]. We hope that the future for legged bipedal

robots can follow a similarly impressive path, using lessons learned from the compass gait

model as a basis for successful controllers on advanced robots based on passive dynamic

principles.

To test the performance limits of each control strategy analyzed, each terrain was scaled

to make its features more dramatic until value iteration failed to converge on a stable walk-

ing solution. Each terrain consisted of a particular profile which repeats every 7 meters,

as shown in Figure 5-6. This allows value iteration to converge on a fixed policy using a

finite representation for the terrain. A repeating terrain may also be thought to represent

the terrain of a compass gait walker circling endlessly on a fixed boom; we intend to exper-

iment with the control strategies described here on a real robot mounted to a such a boom,

as described later in Section 7.24.

7 meters

Figure 5-6: Intermittent-foothold terrain.
Terrain profile repeats every 7 meters, allowing the numerical mesh to “wrap”.

5.6.2 Results on wrapping terrain

This section highlights our simulation results for each of the three control strategies de-

scribed in Section 5.5.2 on various wrapping terrains described in Section 5.6. Summarized

briefly, the PD controller is effective in regulating foot placement on terrain; however, it

allows for disappointingly limited variations in step width or height. The toe-impulse ac-

tion is intended to enable the walker to negotiate more extreme terrain by pumping ad-

ditional energy into the system efficiently, but performance of the impulse control alone

4See Figure 7-3 on page 178.
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does not regulate the upcoming step length effectively, and so the resulting walker is un-

fortunately quite fragile. Combining a constant magnitude toe-off with the PD controller

provides a significantly better design than either component demonstrates alone, allowing

for significantly greater variations in both step length and height during continuous walk-

ing, through the combined actions of energy addition (through toe-off) and step length

regulation (through hip torque).

Performance using only PD control

Figures 5-7 and 5-8 show examples of terrain which our simulation successfully negotiates

using only the PD controller. The performance is good, but it is importantly limited by the

inefficiency of adding energy through hip torque, alone. A single step which is too wide or

too high results in rapid failure, as the compass gait simply cannot complete a subsequent

step after a large loss in energy.
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Figure 5-7: Examples of terrain which were successfully negotiated using PD control alone.
Terrain at top is flat except for a set of bottomless no-go gaps. The middle and bottom
examples consist of piecewise slopes. Each was successfully solved both as a continuous
terrain, shown as a solid black line, and as an intermittent terrain, represented by the solid
regions. Figure 5-8 shows detail from the bottom plot.

Several features can be noted about both the performance capabilities of the walker

145



5 5.5 6 6.5 7
−0.2

0

0.2

Piecewise−sloped terrain (m)

H
t (

m
)

Figure 5-8: A close-up of the bottommost terrain in Figure 5-7.

and the nature of the resulting optimal control policy. Qualitatively, the walker is able

to perform much larger steps when the terrain is sloped downhill, as one might naturally

expect. Also, the more extreme (“difficult”) the terrain was, the more liable the optimal

policy was to select the same, repeated set of footholds over a particular portion of the

terrain, as illustrated in Figure 5-9.

The terrains shown throughout the paper are what the author considers to be the most

impressive examples for which successful optimal policies could be found; on more ex-

treme terrain, there were no solutions which resulted in continuous walking. That noted, it

is interesting to compare the features of the three types of intermittent terrain in Figures 5-7.

On the flat (topmost) terrain, gap width was about 11 cm on average, up to a maximum of

18 cm; for the piecewise sloped terrain (bottom), the gaps needed to be somewhat smaller:

8 cm on average up to a maximum of about 10 cm. The downhill terrain (shown in the

middle) has an average grade of 4◦ and correspondingly permits dramatically larger steps:

30 cm on average, with the larger step being about 47 cm – or nearly half the leg length.

The overall variation in terrain height is not significantly different for the downhill

terrain with large steps as compared with the piecewise sloped terrain. Excluding the part

of the terrain with intermittent gaps, the piecewise terrain has a standard deviation (σ) of

1.07 cm, and a max-to-min height difference of 5.15 cm. Subtracting out the net slope of

4◦, the “downhill” terrain height has a standard deviation of 1.26 cm and max-to-min height

different of 6.15 cm. Step width on this terrain does vary significantly (from about 28 cm

to 63 cm), but it cannot maintain a gait with continuously small footsteps without tripping

forward and falling after a few steps. Experimentally, we find torque-only actuation is often

insufficient to completely regulate energy.
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Figure 5-9: Foothold patterns from optimal control.
The optimal footholds on extreme terrain quickly converge to fixed pattern (top). On easier
terrain, no fixed pattern emerges (bottom). In intermediate terrain, we see an intermediate
level of organization in the pattern of footholds (middle). Footholds taken are plotted as
dots in the lower two figures, with the earliest steps plotted lowest and with dots repeating
as the terrain repeats, every 7 meters.
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Performance using only toe-off control

It was hoped that an impulsive toe-off controller might produce better results than the PD

controller. However, the toe-off control alone results in surprisingly fragile walking cycles

which require fairly precise initial conditions and allow for almost no variations in terrain

height. Figure 5-10 shows the footholds taken using a constant impulse value of mv = 2

(kg-m/s). The terrain is completely flat for the first steps, until x = 4 m. We intentional

illustrate a terrain where the walker can successfully take a single step after a change in

terrain. It takes one step with a resulting downward slope of -.7◦ and then trips up while

attempting a subsequent step at .35◦. The performance is quite poor, even if one allows

for the selection of the magnitude of the impulse. Without more direct regulation of the

upcoming step length, the walker quickly falls on even trivial terrain.

2 3 4 5 6 7 8 9
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 Terrain varies mildly
between 4 and 7 m.Flat terrain Flat terrain

Dots indicate previous footholds

t = 5.300

Figure 5-10: Footsteps taken using impulsive toe-off control, only.
Terrain is completely flat between 0 and 4 meters, varies mildly (always within ±1 cm)
between 4 and 7 meters, and repeats exactly at 7-meter intervals.

Figure 5-11 shows the dynamic states (angles and angular velocities) of the walker dur-

ing the same trial for which footsteps are depicted in Figure 5-10. These data are presented

primarily to allow quantitative and qualitative comparison with the dynamic states during

the trials using both PD and impulse control, shown in Figure 5-13. With the torque ac-

tuation from the PD controller, the steps are generally both much larger (X2 is larger) and
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faster (there are more steps per second, and X3 and X4 are both larger when hip torque

is employed). Note that two of the dynamic states plotted in these figures differ from the

meshing states defined in Section 5.5.2: X1 = π/2+θst and X2 = π+α, while X2 = Xm2

and X3 = Xm3.
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Figure 5-11: Dynamic states using impulsive toe-off control, only.

Performance using both PD control and toe-off

Our most impressive performance by far is obtained by combining the low-level PD con-

troller with the an impulse of magnitude 2 (kg-m/s) preceding every ground collision. The

optimal control policy converges to a successful policy for continuous walking on the ter-

rain shown in Figure 5-12, having a standard deviation of 4.7 cm and a max-to-min differ-

ence in height of 19.1 cm. The deviations in the width and height of the actual footsteps

taken using the optimal policy are shown in Figure 5-14; the height of the footholds shown

have a standard deviation of 3.3 cm, and the SD of the inter-leg angle at each step is about

5.9◦.

5.7 Controlled CG on stochastically rough terrain

In addition to the wrapping terrain models described in Section 5.6, we also solved for the

approximate optimal policy for the same, controlled walker on stochastically rough terrain.

In the stochastic case, the height difference between successive footholds is drawn from

a Gaussian distribution. Figure 5-16 illustrates the nature of the resulting terrain. This
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Figure 5-12: Footsteps taken during a 60-second trial using the optimal control policy from
value iteration (top) and using a one-step time horizon (bottom).
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Figure 5-13: Dynamic states during a using the optimal control policy from value iteration
(top) and using the one-step control strategy (bottom).
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Figure 5-14: Comparison of step width and step height for the optimal control solution vs.
for one-step control.
Note that most of the steps selected using the one-step approach are near a nominal value
of 28◦, which results in a step width near .48 meters.

Figure 5-15: Smoothness of cost function over state space.
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Xm3 = θ̇1

Xm4 = θ̇2

Xm1 = ∆z

Xm2 = −∆x

Figure 5-16: Compass gait on stochastic terrain
At left, the actuation for this model includes a torque at the hip and a constant magnitude
impulse which occurs at each step. At right, the four states which define each post-collision
elements in the discrete mesh are given.

model for the terrain is somewhat artificial, since height would typically be a function of

step length on real terrain; by contrast, the next upcoming step in our simulation occurs at

a particular pre-selected height, regardless of step length. However, this compact terrain

model can still produce arbitrarily extreme terrain (by increasing the standard deviation of

the step heights, as desired).

Based on the results obtained on wrapping terrain, we included both the low-level PD

controller and the constant-magnitude impulsive toe-off in all simulations on stochastic

terrain. As in the wrapping terrain case, details on the discretization of meshing are given

in Appendix B.

In our initial simulations on stochastic terrain, the post-collision state (which again

used four state variables, as for the wrapping terrain) captured the current orientations and

velocities of the two legs; however, it did not capture any information about the specific, up-

coming terrain. The resulting solution maximizes the mean first-passage time for a walker

which is blind to the specifics of the terrain but does know the statistics of what may hap-

pen. Optimal control solutions for this “blind” walker were quite poor when compared with

the performance obtained on wrapping terrain with statistically similar variations in terrain

height.
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On wrapping terrain, the upcoming profile of the terrain was inherently imbedded

within the simulation itself. Our meshing state included the absolute position of the stance

foot on the wrapping terrain, and as each new step was simulated, the z value of the terrain

was always a deterministic function of the particular x location of the swing leg toe during

its trajectory. This means that on wrapping terrain, the walker is employing a potentially

“infinite” look-ahead; the number of steps we look ahead is determined by the number of

steps performed in the value iteration5.

Intuitively, including some information about the immediately-upcoming terrain should

improve the performance of our underactuated biped significantly. For example, it would

allow the biped walker to execute a shorter step (which loses less energy) if going uphill

or a longer step going downhill. We tested this hypothesis by implementing a one-step

lookahead. This required enhancing the 4-variable representation of the post-collision state

of the walker with an additional, fifth state: the ∆z value of the next, immediate step.

This one-step lookahead improved the mean first-passage on stochastic terrain dramat-

ically. Figure 5-17 compares the MFPT for the one-step and no lookahead cases. For

example, on terrain where the value of ∆z is drawn from a Gaussian with zero mean and a

standard deviation of 1 cm, the MFPT is about 76 with no lookahead, versus 12,000 with a

knowledge of just the next, immediate step.

Given this result, it is natural to enquire how a two-step or (more generally) an n-step

lookahead would compare on a similar plot. Unfortunately, obtaining such results would

require multiplying the size of the total mesh by a factor of 19 for each additional looka-

head, because our representation of the upcoming terrain is discretized to be drawn from

one of 19 particular values. To compare the one-step lookahead with a longer lookahead,

we will instead return (in Section 5.8, ahead) to the case of wrapping terrain, where ar-

bitrary lookahead can be obtained without adjusting the size of our state space (nor our

mesh).

5We used 100 steps in value iteration on both wrapping and stochastic terrains, although in practice the
policy usually converged within a few steps.
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Figure 5-17: MFPT for one-step vs. no lookahead on stochastic terrain

5.8 One-step policy on wrapping terrain

For our passive walking examples (in Chapter 4 and in Section 5.4 of the present chapter),

we noted that initial conditions are forgotten very quickly when walking on rough terrain.

Correspondingly, we posited that the ability to negotiate such terrain may only require

a short lookahead. Assuming the walker has not fallen down, a quick mixing time (to

forget initial conditions) implies the consequences of decisions made now should not have

a significant impact on stability of its state, given a few, successful steps are taken.

To explore this hypothesis, we began with an estimate of the value function for each

post-collision state from a model of stochastic terrain which had approximately the same

standard deviation in step-to-step terrain height as our new wrapping terrain. Then, we ran

the value iteration algorithm again on wrapping terrain – but stopped iterating after only

a single pass. This approach works surprisingly well, resulting in continuous walking on

terrain which (as stated earlier) was intentionally scaled until the optimal solution (with

essentially infinite lookahead) was only barely able to achieve continuous walking.

Interestingly, although this policy uses only a one-step lookahead, simulations of the

biped on wrapping terrain show that a repeating pattern of footholds are automatically
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selected over time. Figure 5-18 shows this convergence of states over time. As in the

case for optimal solution, we notice selected footsteps are more apt to repeat themselves

on more extreme examples of wrapping terrain; on easier terrain, the foothold selection

appears more haphazard. We suspect this occurs because particular regions of the terrain

have a locally-optimal “goal” foothold, which acts to regulate an entire emergent pattern

on wrapping terrain.

Finally, we should emphasize, briefly, that resetting the value function with the optimal

values found for control on stochastic terrain is a critical step: if the value function is

initiated as zero everywhere (for example), then a single pass of value iteration only results

in a value of either 0 or -1 at every mesh state, for each possible action. This means the only

information we have is whether or not a single step will be successful. Not surprisingly,

the resulting policy does not work well in our simulations. The walker has no notion of the

stability of its internal dynamic state when the value function is initiated with such a “blank

slate”; using the solution from stochastic terrain to preset the value function intrinsically

provides some information about the capability to take future steps.

The fact that the one-step control policy is nearly as effective as the optimal policy on

our wrapping terrain simulations provides some evidence that use of a limited lookahead

(e.g., 1 to 3 steps) results in near-optimal performance. We find this particularly com-

pelling, as it correspondingly implies that near-optimal results should also be possible on

real-world legged robots having only a short-sighted knowledge of upcoming terrain. We

anticipated this result after analyzing our results on passive CG walkers, where we noted

a surprisingly fast mixing dynamics of the metastable limit cycle generated by a passive

compass gait walker on statistically rough terrain [25, 27], and further work is currently

planned to test this hypothesis on a real compass-gait robot, as discussed in Section 7.2.

5.9 Discussion

Before concluding, we wish to bring several issues to the attention of the reader in this

section, concerning both the passive and active compass gait simulations.

155



0 50 100 150 200 250
−2

−1

0

1

2

3

4

5

6

7

step number

P
os

t−
co

lli
si

on
 s

ta
te

 

 

X
m1

 (m)

X
m2

 (m)

X
m3

 (rad/s)

X
m4

 (rad/s)

0 10 20 30 40 50
−2

−1

0

1

2

3

4

5

6

7

step number

P
os

t−
co

lli
si

on
 s

ta
te

 

 

X
m1

 (m)

X
m2

 (m)

X
m3

 (rad/s)

X
m4

 (rad/s)

0 50 100 150 200 250
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

step number

ab
s.

 v
al

. o
f d

el
ta

 in
 s

ta
te

 fo
r 

st
ep

 n
+

18
 v

s 
n

Figure 5-18: One-step policy shows convergence on wrapping terrain.
Even when only a one-step lookahead is used to fix a policy on wrapping terrain, the states
converge over time to a particular, repeating pattern. At top (left) are the four states over
time (in color) with a time-shifted version of the data overlaid (in thin, black lines); a close-
up (top, right) shows they have converged after about one cycle on wrapping terrain. At
bottom is a logarithmic plot showing the deviation in state from n to state n + 18, i.e., after
one complete 18-step “lap” about the wrapping terrain; the plot illustrates an exponential
convergence of the controlled system to a fixed trajectory through state space.
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5.9.1 Policy interpolation

First, we note that care must be taken in interpolating the discontinuous policy for walking

on rough (most particularly, on intermittent) terrain to select control actions. We discovered

a persistent and catastrophic interpolation error which occurred from time to time when

evaluating the optimal policy during simulations. There are regions on many of the terrains

(such as gaps) which are clearly infeasible for a step, and as a result, there are transition

points where one must decide to take either a small step or a large step to avoid such regions.

We found there were occasionally but consistently states where a simple interpolation of

the optimal policy resulted in a medium-sized step which lands in a no-go zone. Such a

situation is illustrated in Figure 5-19. Although [129] provide an excellent reference on

issues of stochasticity and discontinuity of cost function in implementing the solution to

a dynamic system via value iteration, their solutions can be expensive in practice and do

not directly address our particular interpolation issues, which are associated with sharp

discontinuities in our policy.

In solving this interpolation problem, we noted that although the policy was often dis-

continuous, the value function generally remained smooth. For example, there would often

be several feasible step sizes the walker could take from a particular location in state space.

As you move in state space, a transition occurs where it becomes “safer” (in terms of max-

imizing mean first-passage time) to take a large step instead of a smaller one, or vice versa.

The expected MFPT remains essentially flat over a large swath of state space, although the

selection of optimal footstep size changes discretely.

Our solution was to simulate a single step with each of many possible step length.

Unsuccessful steps were identified and eliminated as control options. We then sorted the

remaining control actions to select the optimal discrete action with the lowest cost. When

two neighboring actions to this discrete action were also feasible, we used a quadratic fit of

the set of three discrete actions and their function value to interpolate to estimate the true

minimal cost action over continuous action space. Essentially, this changed our problem

from one of directly interpolating the policy (which was inherently discontinuous) to one

of indirectly interpolating over the cost function which results when one selects a particular
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Figure 5-19: Policy interpolation
Sometimes, taking either a small step (top) or a large one (bottom) is acceptable, while a
medium-sized step (center) would be deadly. In practice, there are regions in state space
where the optimal action changes abruptly from a choice of a small step to a large one.
Special care must be taken in interpolating the optimal policy near such discontinuities to
avoid taking a deadly step.
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(possibly non-optimal) action and assumes optimal actions will be selected from then on.

5.9.2 Efficiency versus stability

A second issue we bring to the reader’s attention here is that our solutions do not attempt

to exploit the low cost of transport and efficiency which are so characteristic and appealing

in particularly well-designed passive dynamic walkers, such as the Cornell biped [35, 99].

Our purpose here was to demonstrate the theoretical performance possible for passive-

based walking with an inherently underactuated ankle. Further study can be done using a

cost function which takes into account both the distance traveled and the cost of transport.

5.10 Conclusions

The passive compass gait walker is inherently quite susceptible to noise. Small variations in

terrain flatness or small impulsive disturbances (being shoved about lightly) tend to topple

it over within a few steps for all but the most trivial (to humans, qualitatively) of noise

levels.

However, a controlled compass gait biped can successfully negotiate an impressive

range of rugged terrain using a surprisingly simple control strategy, even with ankles which

remain completely unactuated (no torque) in rotation at the contact point. We have shown

that a simple yet effective low-level control strategy can be obtained by combining a toe-off

just before each ground collision with a PD control loop on the desired inter-leg angle. The

magnitude of the toe-off can be a constant value for all footsteps, so that the high-level

control at each step consists solely of the desired inter-leg angle. The action of the toe-off

insures energy in added efficiently at each step, while actively controlling the step width

tends to regulate the dynamics around a nominal trajectory in state space.
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Chapter 6

Toward Metastable Bounding for

LittleDog

This brief chapter presents early results toward modifying the dynamic lunge presented

on page 85 of Chapter 3, to produce a more stable, cyclical, bounding gait. We present a

general design approach but also note that additional feedback is required to make this gait

truly metastable.

One of the goals of this chapter is to investigate application of the concepts introduced

in Chapters 4 and 5 on systems of higher dimensionality; specifically, we revisit the un-

deractuated, 18-degree-of-freedom LittleDog robot. The same modeling approximations

made throughout the kinodynamic planning presented in Chapter 3 reduce the dynamics of

the system to a small number of degrees of freedom, and this in turn simplifies our analysis

of the experimental results. Specifically, we again assume a 2D (planar) model. We model

the robot as a “brick” of constant inertia, and we assume it contacts the ground at a single

point through a massless leg. On the real robot, this modeled ground contact point corre-

sponds to the midpoint between the two support feet on the robot during a given double

support phase. The planar model has three degrees of freedom: x, z, and the pitch angle

(α).

Results presented in this chapter are preliminary and are primarily included to empha-

size that the methodology used in the preceding two chapters is also relevant to higher

degree-of-freedom robots, as well. Perfecting the stabilization of this gait is outside the
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scope of this thesis.

6.1 Bounding gait development

This chapter focuses on the toy example of developing a reliable bounding gait for Little-

Dog which can negotiate relative benign (flat) terrain. However, the same general ideas

presented could be extended to develop reciprocating, sequential double-support motions

on rougher terrain. A basic approach to do so is to sequentially decide (1) which part(s)

of the motion should be adjusted, (2) what signals (state information over time) to use to

define a policy function, and (3) how to design a family of possible control actions. The re-

maining task is simply to tune algorithmic parameters appropriately so that robot observes

the results of adjusting the policy function and updates the policy to improve reliability.

Figure 6-1: LittleDog video frames during rocking
The top row show sequential frames in a successful rocking trial, while the bottom 4 frames
end in a failed “headstand” pose.

6.2 Experimental results

This section outlines our initial results in designing a continuous bounding gait for Little-

Dog.
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6.2.1 Rimless wheel motion trials

We begin with a standard dynamic lunging motion, of the type initially described in Sec-

tion 3.7.51. Next, we need to achieve a rocking motion to support the robot with only the

front legs and to bring the rear legs forward for the next lunge. One way to accomplish this

nose-down rocking is to position the front legs just a few centimeters forward of the center

of body during touch-down, so that the angular momentum of the robot about these legs is

not entirely lost when the front feet land. Our goal is to have the robot rock onto the front

legs in a motion similar to a rimless wheel which rocks up only partway – without flipping

too far head-over-heels.

Figure 6-2 shows data for multiple trials of rimless-wheel style rocking. Only about

50% of the trials are “successful”, such that the robot returns to zero pitch with all four feet

on the ground. The other half of the time, the robot rotates too far and lands “on its head”

at a final pitch angle of about 70◦.

In about half of the trials, there is a kink which occurs during the initial pitching motion.

The joint trajectories for the rear leg come near a singularity in the direction of loading in

the knee, so that in some trials, the loading on the knee reverses sign. The behavior here is

nonlinear because of the backlash in the gears. The data in Figure 6-2 are plotted either in

red or blue, to classify whether there is a kink caused by this knee-loading singularity. Seg-

regating out only the kink-free trajectories from all 108 trials, we see that the repeatability

is quite good: the mean value of the pitch is −26.6◦ and the standard deviation is 0.84◦.

Although the trajectories which include a kink cluster about a different peak value, they

are also fairly repeatable: the mean value of the pitch for the kinked set is −24.6◦, with a

standard deviation of 0.95◦.

The trial data in Figure 6-2 are represented as a transition map in Figure 6-3. One point

is plotted for each trial, with the initial peak nose-up (negative) pitch angle plotted on the x-

axis and the secondary peak nose-down (positive) pitch angle plotted on y. There are three

distinct regions in the data. For each classification of trial (red or blue), there is a “stochastic

transition map” analogous to the return map for the rimless wheel, described in Section 4-4

(on page 109). A peak angle in pitch correlates to potential energy in the system, when
1Page 85.
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Figure 6-2: Data for rimless-wheel rocking trials

all velocities are zero. Stochasticity in the system results in a “noisy” relationship between

the successive peak pitch angles (nose-up and nose-down), but they clearly demonstrate a

direct correlation.

Trajectories ending at the top of Figure 6-2 correspond to trials where the robot tipped

too far and landed on its head, as depicted in the final (lower) frame of Fig. 6-1. From

Fig. 6-2, we can see that this happens any time the secondary pitch angle exceeds about

40◦.

6.2.2 Triple-rocking trials

In the previous section, all of the joints of the robot were held in place during the secondary

rocking motion onto the front legs. This resulted in a noisy correlation between nose-up

and subsequent nose-down peak pitch angles and a correspondingly high failure rate. There

was simply no particular position to aim the feet to achieve a non-trivial average nose-down

pitch peak without also observing a relatively high rate of failure (ending on the head).

To improve repeatability, we wish to have the stochastic transition map data in Figure 6-

3 converge to the same average nose-down angle for all nose-up motions. That is, the

164



−29 −28 −27 −26 −25 −24 −23 −22
0

10

20

30

40

50

60

70

80

Apex for nose−up rocking (deg)

A
pe

x 
fo

r 
no

se
−

do
w

n 
ro

ck
in

g 
(d

eg
)

Figure 6-3: Stochastic transition map for rimless-wheel rocking trials

dynamics of the controlled system should “forget” the initial (noisy) nose-up pitch apex as

rapidly as possible. Pictorially, this would result in a flat, horizontal line on the transition

map: all initial conditions would go to the same end distribution.

We find that the peak pitch angle of the nose-down rocking motion can be made more

repeatable through the addition of energy at front leg touch-down. We accomplish this

through a planned kick-off of the rear legs combined with rotation of the front shoulder.

Figure 6-4 shows data recording several “triple-rocking” trials using this approach. In each

trial, the robot performs a dynamic lunge, kicks-off at landing to produce a more repeatable

forward rocking motion, and then holds all joints in place as the rear legs land again. There

is enough angular momentum when the rear legs land that a third rocking motion occurs.

Thus, we call this sequence a “triple-rocking” trial. Between sequential trials, there is a

brief pause to allow the entire system to come to rest with a known initial condition for the

next trial.

Figure 6-5 shows a close-up of the pitch angle for one particular triple-rocking trial,

and Figure 6-6 shows the stochastic transition map from nose-up to nose-down apex angle.

Note that the second pitch angle (y-axis) is not nearly as correlated to the initial pitch angle
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Figure 6-4: Data for metastable bounding, with stabilizing pauses

(x-axis) as it was for the stochastic return map for the stiff-legged rimless wheel landing

trial, shown in Figure 6-3. We believe the apex of second pitch angle can be made much

more repeatable with additional feedback, but that task is outside the scope of this thesis.

Finally, we note that, as in the case for the rimless-wheel style rocking in Figure 6-2,

we again observe near-singularities in the loading direction at the knee which cause kinks

in both joint angle and body pitch trajectories in some trials. Improving motion plans to

eliminate this unwanted noise source is another suggested task for future work.

6.2.3 Open-loop continuous bounding

Finally, we can replace the third, stiff-legged rocking motion in the triple-rocking motion

with another dynamic lunge and create a continuous rocking gait. Here, we simply splice

one nose-up/nose-down sequence after another, with careful timing. Figure 6-7 shows data

for several seconds of open-loop, continuous bounding. This motion is sensitive to the

timing of the push-offs. There is a brief pause before each nose-up dynamic lunge, to

ensure the initial pitch of the robot is close to zero. The nose-down motion (supported

by the front legs) is simply timed for a nominal impact time, determined experimentally.
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Data above show a close-up view of one particular bounding motion. The pitch trajectory
shows three distinct apex points: the robot rocks successively in double support onto rear,
then front, and then rear feet again. Negative pitch corresponds to a “nose-up” orientation.
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Figure 6-6: Apex-to-apex data for initial rocking motion
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Because of the stochasticity inherent in the motions, this timing will be significantly off

every few steps, and the resulting nose-down pitch will be noticeably too large or too small

as a result.
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Figure 6-7: Data during continuous bounding
Through careful planning, an open-loop bounding motion can produce a few successful,
continuous steps but, it is sensitive to disturbances. The average forward velocity during
this motion is about 9.5 cm/sec.

We can typically achieve runs of several bounding steps (5 to 10) using this strategy.

We believe the most critical step in stabilizing this motion is the timing of the push-offs

for both of the rocking motions (rather than the adjustment of the actual trajectories of the

motions). This gait currently has a speed of about 9.5 cm/sec. Adding feedback to improve

timing should allow us to remove the pauses before each nose-up dynamic lunge, which

would theoretically increase the speed to about 13 cm/sec.

Additional improvements would include adjusting step length and height to avoid haz-

ardous upcoming terrain features, such as gaps and rocks.
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6.3 Discussion

This chapter presents initial results toward the development of a continuous bounding gait

for LittleDog. Two key concepts in developing such motions are (1) appropriate dimen-

sionality reduction of the high-order dynamic system and (2) modification of the stochastic

transition map, to reduce variability in the end state of our dynamic motions. We signifi-

cantly reduce the dimensionality of the 18-DOF robot in two ways. First, we use a simple

planar model for the dynamic lunge (described in Section 3.7.5). Second, the magnitude

and timing of the initial pitch apex capture important information about both the energy in

the system and the expected time of touch-down by the front feet. We believe predicting

the landing time of each rocking motion will prove to be the most important factor in clos-

ing the loop to make continuous bounding more robust, and that the time and magnitude of

peak pitch can be used to make this prediction accurately.

A significantly more robust continuous bounding motion would likely require more

precise feedback timing than permitted by our current control architecture for LittleDog.

We are optimistic that such a gait can eventually be designed, however, and may negotiate

rough terrain with a significant speed advantage over a crawling walk gait.

169



170



Chapter 7

Conclusions and Future Work

Below, we summarize the contributions of this thesis in developing and evaluating reliable

control solutions for legged locomotion. We also outline possible future directions for

related work and conclude by discussing some particular implications of our results on the

future development of highly-dynamic robotics.

7.1 Contributions

An overriding goal throughout this thesis has been to develop principles by which legged

(and other highly dynamic) robotics can be advanced, scientifically. As we create robots

which interact with and perform in our (human) environments and which mimic our dy-

namic capabilities, it is natural to request of them the same stability guarantees we ask

of ourselves: exceptional performance most of the time, with only occasional failures

(falling). We believe the underlying perspectives in this thesis are fundamental and hope

other researchers will adopt (and adapt) the stochastic methods presented for evaluation

and optimization of robot locomotion.

Below, the major contributions of this thesis are summarized briefly. Results are grouped

into three areas: dynamic motion planning for the LittleDog robot, the application of

stochastic methods in analyzing walking, and policy optimization for passive-based walk-

ing on rough terrain.
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7.1.1 Kinodynamic motion planning in an underactuated regime

Our goal in Phase 2 of Learning Locomotion was to explore the dynamic performance capa-

bilities of the LittleDog robot, described in detail in Chapter 3. Dynamic gaits are usually

associated with more compliant actuators and dynamics, and one of our main contribu-

tions is the demonstration that this high-impedance robot can execute repeatable dynamic

motions. Our repeatability is due to careful kinodynamic planning during intentionally

underactuated phases of motion.

These underactuated motions fall into two regimes, categorized by the magnitude of

pitch (α) which occurs while support is provided by only two legs. In both regimes, we use

planar (2D) models of the robot to capture the fundamental dynamics. By appropriately

observing physical limits in coefficient of friction, kinematic range, and joint velocities,

we can plan motions for the 18-DOF robot by essentially planning in terms of just one or

two state variables over time.

Pacing and trot-walking are continuous gaits where α̈ ≈ 0 and the body does not pitch

much. Our trot-walking is generalized to work on rough terrain, providing the staple gait

for traversing four of the seven terrain types in Phase 2. Motion planning in this regime

is a direct extension of a Preview Control planning method for controlling ZMP, which

was presented in [86]. This method reduces our motion planning to a solution for a single

degree of freedom over time: the motion of the center of body in x.

In the second regime, α̈ 6= 0, and we now plan for a non-zero moment about the support

legs over time. By studying the dynamics and geometry of this class of motion, we have

identified that angular accelerations are coupled much more strongly to the acceleration in

x than to acceleration in z. As a result, motion planning in this regime focuses on planning

ẍ over time to achieve a particular apex in pitch angle, α; we only need to incorporate

the effects of z̈ secondarily, to refine our prediction of the entire motion trajectory. Our

dynamic lunge is particularly effective in crossing a gap or Jersey barrier. On these two ter-

rains, our speeds are well above any of the other five teams and are over twice the required

speed metric set by DARPA for Phase 2.

Finally, initial experiments in developing a continuous bounding gait, which were pre-
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Figure 7-1: Dynamic motions for LittleDog.
The planar (2D) model at left captures the dynamics accurately enough to plan desired joint
trajectories for the full, 18-DOF robot to execute a “dynamic lunge”, shown at right, with
high repeatability. The lefthand image also appears in Figure 3-12 on page 78.

sented in Chapter 6, provide evidence that our motion planning ideas can be developed

to negotiate a greater range of terrain; particular ideas for future work are discussed in

Section 7.2.1.

7.1.2 Stochastic methods to quantify walking stability

As motivated in Chapter 2, we believe our metrics for walking systems in realworld (noisy)

environments should attempt to quantify their reliability in the most direct way possible.

We propose the mean first-passage time (MFPT) as a measure to do this and believe its

introduction as a metric for walking is a significant contribution in itself.

In Chapter 4, we used two passive walking models to demonstrate tools for the esti-

mation of the MFPT: the rimless wheel and the compass gait biped. Each system can be

represented as a Markov process by discretizing the dynamic system in state space, using

the post-collision states to define a natural discretization in “time”. Appropriate manipula-

tion of the transition matrix, T, for the (stochastic) dynamics provides one-shot estimates

of MFPTs for all states in the system. We note briefly that this calculation requires taking

the inverse of the submatrix of T which excludes the rows and columns corresponding to

any self-absorbing “fallen-down” states, which establishes an inherent numerical limit to

the size of the discrete mesh which can be used in modeling. This make these tools most
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directly applicable if low-dimensional models can represent the fundamental dynamics of

a legged robot; e.g., if the model is already low-dimensional, like the compass gait robot,

or if a low-dimensional model captures our dynamics, as was the case for our dynamic

motions for LittleDog.

We note that an eigenanalysis of the transition matrix can reveal important system-wide

dynamics of the system. For realistic walking systems, we find that the first eigenvalue

is unity, and its corresponding eigenvector has all weight in the fallen state. This occurs

when there is some eventual route (no matter how improbable) from every state to failure

(fallen): if it can happen, it eventually will, with probability one. All other eigenvalues have

magnitude less than 1, and each has an associated time constant1, given as τn = −1
log(λn)

.

Metastable limit cycles can exist, however, even if eventual failure is guaranteed. Such

metastable walkers can be expected to exhibit extremely long periods of continuous walk-

ing before they fall. In such systems, we observe that the magnitude of the second eigen-

value is very nearly equal to 1, meaning the associated time constant will be very, very

long. The weights in the non-fallen states of the corresponding eigenvector can be rescaled

(to sum to unity) to give a PDF of the “metastable neighborhood” in which the dynamics

will remain after initial conditions are forgotten.

Finally, we note that the MFPT for a metastable system remains relatively flat across a

particular region in state space. This occurs because τ2 is much larger than τ3 (or any of the

other, smaller time constants). Correspondingly, initial conditions will be forgotten on a

time scale which is much smaller than the MFPT. As a result, metastable walking systems

have a system-wide MFPT2.

7.1.3 Policy optimization for CG walker on rough terrain

In Chapter 5, we applied the tools for quantifying stochastic stability toward optimization

of the MFPT of a system. We modeled a controlled version of a compass gait walker on

rough terrain. By using a hierarchical control strategy, we could solve for optimal control

1Note, for systems with cyclical dynamics, one finds some eigenvalues are complex, as mentioned in
Section 4.4.3.

2This system-wide MFPT is τ2, and for metastable systems, τ2 ≈ 1
1−λ2

, as noted in Section 4.2.2.
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policies using value iteration. Two significant results emerged. First, we demonstrated the

capabilities of an underactuated3 compass gait on rough terrain. These results show better

performance than has been documented for passive-based walkers, which are generally

notoriously sensitive to initial conditions and perturbations.

A second finding was that near-optimal policies could be found using only a single

step lookahead on the upcoming terrain. Our results on stochastic terrain for a one-step

lookahead far out-performed an optimal policy which knows only the “statistics” of terrain

ahead (without knowing the next, particular terrain step height). We also compared a one-

step policy to an infinite-lookahead policy on rough terrain which wraps periodically, and

we found the one-step policy performed nearly as well as the one which knew all terrain

ahead perfectly. We believe this result is coupled to the fact that initial conditions are

forgotten so quickly in walking systems, due to the energy dissipation as each new step is

taken. Our results are highly suggestive that near-optimal planning for legged robots may

often be possible using only a short lookahead of one (or a few) steps on upcoming terrain.

7.2 Suggested directions for future work

This research can be furthered in several directions. Three particular areas are outlined be-

low: further development of dynamic motions for LittleDog, implementation of a realworld

version of our actuated compass gait model on rough terrain, and a theoretical comparison

of the efficiency of walking versus “rolling” on rough terrain.

7.2.1 LittleDog: Ongoing work

Phase 3 of the DARPA Learning Locomotion program begins as I conclude this thesis.

Work during Phase 2 generated fast, dynamic motions which differentiated MIT’s perfor-

mance from other participating teams and provided benchmark results on specific terrain

obstacle types. Significant challenges which remain now include adapting our kinodynamic

planning for highly dynamic motions to traverse more generalized terrain and to operate

with greater autonomy.
3The toe pivot remains passive in the model.
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Figure 7-2: LittleDog lunging onto rough terrain.

To visualize these two challenges, consider Figure 7-2, which shows LittleDog as it ex-

ecutes a dynamic lunge and then carefully places the front feet into pre-planned footholds.

Similar shots of LittleDog were also shown in Figure 3-23 on page 95. First, note the dy-

namic lunge is initiated here from flat terrain here. Traversal on the rock-like terrain itself is

currently done using less-dynamic motions - trot-walking at best and perhaps only moving

at a true crawl. We want to extend our dynamic motions to work on such terrain. Second,

reliably climbing onto the rock (after the last frame of Figure 7-2) currently depends on

having good, solid footholds planned for the front feet, on identifying what style of motion

to employ in the first place, and on recovery and/or feedback tactics to avoid toppling once

feet slip. All of this depends on a good, high-level planning architecture, to produce greater

autonomy.

In addressing the first issue (of extending our repertoire of dynamic motions) there are

two obvious directions of research to pursue. First is the development of a continuous,

metastable bounding motion, of the type discussed throughout Chapter 6. The second

suggested advancement is the generalization of our dynamic lunge to begin and to end with

arbitrary foot placements; i.e., to lunge on rough terrain. Initial work toward this second

goal was presented in Section 3.8.24. Ideally, these two goals will then (eventually) be

combined, to create a continuous bounding gait on rough terrain.

Achieving all these goals may depend on a ground-up reorganization of the control

structure for LittleDog, which is a part of the second challenge: obtaining greater auton-

omy. In particular, achieving a reliable bounding cycle will depend on better timing of the

leg motions than we can currently achieve. At present, short time-length joint trajectories

4In particular, see Figure 3-24 on page 96 and Figure 3-25 on page 97.
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are planned in MATLAB based on a “snapshot” of the current state of the robot. Then, a

high-level control loop sends commands to the PD controller on the robot itself. The feed-

back loop of motion planning, joint-trajectory regulation and sensor feedback needs to be

more tightly entwined to connect the nose-up and nose-down rocking motions described in

Chapter 6.

Better autonomous locomotion also requires an improved high-level planner, as pre-

viously mentioned. Better quantification of the low-level motion performance (reliability

and speed, given particular desired initial and final states) should facilitate better auton-

omy, making the problems of high-level planning more tractable. Additionally, the high-

level planner should identify when recovery motions are required, to respond to unexpected

terrain collisions or foot slippage.

At present, Alec Shkolnik and Michael Levashov are continuing work at MIT on con-

trolling LittleDog during Phase 3, under the guidance of Russ Tedrake. This short section

on future work is of course incompletely, and their achievements will undoubtedly follow

directions and achieve goals outside the scope of what has been mentioned above.

7.2.2 Verification of compass gait results on a real robot

Given the success of our simulations, we plan to implement a similar control strategy on a

real compass-gait robot. This robot is shown in Figure 7-3 and was designed and built by

Stephen Proulx and Mario Bollini at the Robot Locomotion Group. The design is intention-

ally similar to the idealized model studied in Chapter 5. Specifically, it has a direct-drive

motor at the hip and a constant-magnitude (post-collision) toe-off at each sensed ground

collision. It is mounted on a boom, providing lateral stability but also introducing some ad-

ditional, unmodeled dynamics. The same motion capture environment and known-profile

terrain boards used for LittleDog will also be used for this work, allowing us to know both

the state of the robot and the upcoming, rough terrain profile with good accuracy.

Promising initial work has been done by Fumiya Iida in designing open-loop, limit-

cycle walking on this robot, and Ian Manchester performed some initial characterization of

the robot dynamics (while visiting in the summer of 2008). We are hopeful that the inherent
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Figure 7-3: Compass gait robot posed on rough terrain.

stability demonstrated by the simple low-level control strategy described in this thesis can

also be demonstrated on the real-world system. We expect that a controller based on the

same practical principles will provide a good initial control policy, which can then be tuned

online using model-free, gradient-based optimization methods.

7.2.3 Efficiency of passive walking on rough terrain

One particularly promising characteristic of passive-dynamic based robots is their high

efficiency on flat terrain [35], which occurs because some energy is carried over from one

step to the next. On flat terrain, however, wheels clearly win over legs in a head-to-head

battle in efficiency of locomotion.

We would like to examine the theoretical efficiency for both dynamic legged robot

gaits and wheeled transportation on rough terrain. Legged robots can select desired contact

points with the ground, while wheeled vehicles lack this flexibility. As terrain becomes

more extreme, there surely exists a point at which using legs provides not only greater

capability but also greater efficiency in locomotion as well. We have not seen such an

analysis in the literature to date and hope to address this question in the near future.
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7.3 Implications for development of highly dynamic robots

We conclude by highlighting the implications our results have toward the development

dynamic, autonomous robots in the coming years. First, we reiterate that global stability

will not typically exist for our walking machines, and that our goal should be to optimize

stochastic stability.

The success of short-sighted strategies, discussed in Section 5.8, has important impli-

cations in kinodynamic planning for legged robots. It means that near-optimal strategies

may simply require good low-level control, and that selecting a “greedy” short-term action

may often be a good policy for long-term stability. For a robot such as LittleDog, this hints

at the potential for compact high-level planning strategies. We can already demonstrate

high reliability of short-duration, low-level dynamic motions for LittleDog, and we suspect

the proper control framework may allow us to combine such motions while using only a

relatively short lookahead.

Finally, we note that most of the work in this thesis applies more generally to a broader

class of highly dynamic robots (flying, swimming, etc.) in realworld environments, and

that we have presented powerful tools which can be adapted quite naturally for machine

learning.
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Appendix A

Pendulum Foot Model

This appendix derives the force balance and equations for the instantaneous location of the

center of pressure (COP), equivalently called the zero-moment point (ZMP).
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Figure A-1: Inverted pendulum (2D) balancing on a weighted “foot” platform
This image is reproduced from Figure 2-1 on page 40.

The position, velocity and acceleration of the mass m in the z direction are given by:

z = a cos θ

ż = −a sin θθ̇

z̈ = −a sin θθ̈ − a cos θθ̇2
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When both F1 and F2 are positive in value, so that the foot remains flat on the ground, there

is a single equation of motion to describe the pendulum:

Jθ̈ = τ + mg sin θ

where J = ma2. Solving for angular acceleration,

θ̈ =
τ

ma2
+

g sin a

L

We now express the simple force balance, Fz = m(g + z̈), in terms of state variables and

inputs by substituting for θ̈:

Fz = mg − τ

a
sin θ −mg sin2 θ −maθ̇2 cos θ

Fz = mg cos2 θ − τ

a
sin θ −maθ̇2 cos θ

In the zero-torque case (τ = 0) this force, Fz, and the additional force from the static

mass, mf , will each be distributed onto the point contacts as:

F1,τ=0 =
b2Fz + (b2 − af )mfg

b1 + b2

F2,τ=0 =
b1Fz + (b1 + af )mfg

b1 + b2

To balance the torque source, we must add some force, k2 = k, to F2 and add an equal but

opposite force, k1 = −k, to F1 to generate a net torque without generating a net force in z.

To balance the additional torque source, we require:

τ = k2b2 − k1b1

τ = kb2 + kb1

k =
τ

b1 + b2
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and so:

F1 =
−τ + b2Fz + (b2 − af )mfg

b1 + b2

(A.1)

F2 =
τ + b1Fz + (b1 + af )mfg

b1 + b2

(A.2)

as given in Equations 2.2 and 2.3 on page 40.
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Appendix B

Compass Gait Implementation Details

This appendix provides details on the compass gait model simulations on both stochastic

and (known) wrapping terrain. Included are equations of motion and details on meshing

and on implementation of interpolation for post-collision states in state space.
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Figure B-1: Four states of the CG walker during continuous dynamics
The biped model is depicted here immediately after an impact. A pre-collision impulse
occurs at each step, and only the torque source at the hip actuates the walker until the next
step occurs.

If one considers only the continuous dynamics between two steps, the dynamics of

the compass gait walker are identical to those of the underactuated acrobot. Figure B-1
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Xm3 = θ̇1

Xm4 = θ̇2

Xm1 = ∆z

Xm2 = −∆x

Figure B-2: Compass gait meshing parameters for stochastic terrain

Xm3 = θ̇1

Xm4 = θ̇2

Xm1 = XstXm2 = Xsw − Xst

Figure B-3: Compass gait meshing parameters for wrapping terrain
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depicts the state variables and model parameters which define the continuous phase of the

dynamics. With the stance leg of the compass gait modeled as a passive pivot joint, the

entire state of the biped is defined by the two angles and two angular velocities of the legs.

We use the absolute angle of the stance leg, θ1, and the relative angle of the swing leg (with

respect to the stance leg), θ2, along with their time derivatives, θ3 = θ̇1, θ4 = θ̇2. The model

includes a point mass mh at the “hip” and a point mass of magnitude m along each of the

(otherwise massless) legs, all at the geometric locations shown.

Meshing details for stochastic terrain modeling

Figure B-2 illustrates the states used in meshing for optimal control on stochastic terrain.

Only post-collision states are used in meshing, meaning both legs are in contact with the

ground. For our stochastic terrain model, each upcoming step height is drawn from a Gaus-

sian distribution. The figure illustrates the somewhat artificial nature of the terrain. The

entire post-collision state on stochastic terrain is defined by the four meshing parameters

shown. As compared with the state definitions in Figure B-1, the first two states are now

the horizontal and vertical distances between the two feet (rather than the two angles of the

legs). The meshing states for stochastic terrain are also defined in the equations below:

Xm1 = ∆z = zst − zsw

Xm2 = −∆x = xsw − xst

Xm3 = θ̇1

Xm4 = θ̇2

Table B.1 gives the meshing discretization used for the stochastic terrain case.

187



Table B.1: Meshing for compass gait model on stochastic terrain

num. of
Parameter elements min max [units]

Xm1 19 -.1 .1 [m]
Xm2 10 -.7 -.16 [m]
Xm3 10 -2.1 -1.1 [rad/s]
Xm4 10 -1 1.5 [rad/s]
αdes 11 15 40 [deg]

The spacing in the mesh for Table B.1 is not linear. The exact values are listed below:

Xm1 = [−.1,−.075,−.04,−.03 : .005 : .03, .04, .06, .1]

Xm2 = [−.7 : .06 : −.16]

Xm3 = [−2.1 : .1 : −1.4,−1.25,−1.1]

Xm4 = [−1,−.7,−.5 : .25 : .75, 1.1, 1.5]

Meshing details for wrapping terrain modeling

Figure B-3 illustrates the states used in meshing for optimal control on wrapping terrain.

On wrapping terrain, the terrain profile over a repeating, 7-meter long stretch of terrain is

known exactly and is included in the simulation of step-to-step dynamics. Therefore, the

entire post-collision state of the walker can be defined using the absolute x position of the

(upcoming) stance foot on terrain, the relative x distance to the swing foot (which also

touches the terrain instantaneously at collision), and the two angular velocities (given in

both Figures B-1 and B-2). Meshing states for wrapping terrain are given below:

Xm1 = xst

Xm2 = −∆x = xsw − xst

Xm3 = θ̇1

Xm4 = θ̇2
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Table B.2: Meshing for compass gait model on wrapping terrain

num. of
Parameter elements min max [units]

Xm1 140 0 7 [m]
Xm2 15 -.85 -.15 [m]
Xm3 14 -3.0 -.4 [rad/s]
Xm4 14 -.1 5.1 [rad/s]
αdes 13 10 40 [deg]

Table B.2 gives the meshing discretization used for the stochastic terrain case.

Unlike the stochastic case, the spacing in the mesh for the wrapping case (given in

Table B.2) is linear. These simulations were done before the simulations on stochastic

terrain, and the stochastic mesh was refined based on the results on wrapping terrain (to

refine more-frequently visited regions in state space).

The rest of the modeling details given in this appendix apply to both the stochastic and

wrapping terrain cases.

Swing phase dynamics

During the swing phase of the leg, the dynamics of the system are the so-called “acrobot”

dynamics; this is a classic underactuated model which has been studied in depth [159, 14,

18, 161]. We intentionally choose to present the two equations of motion below using a

familiar definition of the parameters and states:

d11θ̈1 + d21θ̈2 + h1 + p1 = 0 (B.1)

d12θ̈1 + d22θ̈2 + h2 + p2 = τ (B.2)
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where

d11 = m1l
2
c1 + m2

(
l21 + l2c2 + 2l1lc2 cos θ2

)
+ I1 + I2

d12 = d21 = m2

(
l2c2 + l1lc2 cos θ2

)
+ I2

d22 = m2l
2
c2 + I2

h1 = −m2l1lc2 sin θ2θ̇
2
2 − 2m2l1lc2 sin θ2θ̇2θ̇1

h2 = m2l1lc2 sin θ2θ̇
2
1

p1 = (m1lc1 + m2l1) g cos θ1 + m2lc2g cos (θ1 + θ2)

p2 = m2lc2g cos (θ1 + θ2)

and

m1 = m2 = m +
1

2
mh

l1 = l2 = a + b

lc1 = L− bm

m1

lc2 = L− lc1

I1 = I2 = m (b− lc2)
2 +

1

2
mhl

2
c2

Solving explicitly for the time derivatives of the state variables, we obtain:

θ̈1 =
d22η1 − d12η2

d11 ∗ d22 − d2
12

(B.3)

θ̈2 =
−d12η1 + d11η2

d11 ∗ d22 − d2
12

(B.4)

where

η1 = m2l1lc2 sin θ2θ̇
2
2 + 2m2l1lc2 sin θ2θ̇2θ̇1 + ...

m2lc2g cos (θ1 + θ2) + (m1lc1 + m2l1) g cos θ1

η2 = −m2l1lc2 sin θ2θ̇
2
1 −m2lc2g cos (θ1 + θ2) + τ

190



Collision dynamics

We assume collisions are instantaneous and inelastic. For convenience and for the reader

to compare with typical notation, e.g. [58], we will define absolute angular velocities of the

legs:

θ̇ns = θ̇3 + θ̇4 (B.5)

θ̇s = θ̇3 (B.6)

Geometry and conservation of angular momentum yield the following relationships

between the pre-collision and post-collision states, which are given the superscripts − and

+, respectively.

θ+
1 = θ−1 + θ−2 − π (B.7)

θ+
2 = 2π − θ−2 (B.8)

Q−
11θ̇

−
ns + Q−

12θ̇
−
s = Q+

11θ̇
−
ns + Q+

12θ̇
−
s (B.9)

Q−
21θ̇

−
ns + Q−

22θ̇
−
s = Q+

21θ̇
−
ns + Q+

22θ̇
−
s (B.10)

where the last two equations can be expanded immediately, as given below. We also present

an expanded form below, which has been useful for (vectorized) MATLAB implementa-

tion; many collision relationships can be calculated at once by using expanded forms of the

matrix inverse and other algebraic expressions. Eqn. B.9, which represents the angular mo-

mentum balance about the swing toe immediately before collision, will be modified later

to account for pre-collision impulse later in the appendix.

Q−
11

(
θ̇−1 + θ̇−2

)
+ Q−

12θ̇
−
1 = Q+

11

(
θ̇+
1 + θ̇+

2

)
+ Q+

12θ̇
+
1 (B.11)

Q−
21

(
θ̇−1 + θ̇−2

)
+ Q−

22θ̇
−
1 = Q+

21

(
θ̇+
1 + θ̇+

2

)
+ Q+

22θ̇
+
1 (B.12)
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where

Q−
11 = −mab

Q−
12 = −mab +

(
mhL

2 + 2maL
)
cos (2α)

Q−
21 = 0

Q−
22 = −mab

Q+
11 = mb (b− L cos (2α))

Q+
12 = mL (L− b cos (2α)) + ma2 + mhL

2

Q+
21 = mb2

Q+
22 = −mbL cos (2α)

where 2α = π − θ−2 is the interleg angle. We can solve for the two new angular velocities

by using the matrix inverse of Q+, R+ = (Q+)
−1, which is simply:

R+
11 =

Q+
22

Q+
11Q

+
22 −Q+

12Q
+
21

R+
12 =

−Q+
12

Q+
11Q

+
22 −Q+

12Q
+
21

R+
21 =

−Q+
21

Q+
11Q

+
22 −Q+

12Q
+
21

R+
22 =

Q+
11

Q+
11Q

+
22 −Q+

12Q
+
21

Now let A = R+Q−:

A11 = R+
11Q

−
11 + R+

12Q
−
21

A12 = R+
11Q

−
12 + R+

12Q
−
22

A21 = R+
21Q

−
11 + R+

22Q
−
21

A22 = R+
21Q

−
12 + R+

22Q
−
22

The matrix A now relates the absolute angular velocities of the two legs. That is, the matrix
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A defines the following two relationships:

A11

(
θ̇−s θ̇−ns

)
+ A12

(
θ̇−s

)
= θ̇+

s + θ̇+
ns

A21

(
θ̇−s θ̇−ns

)
+ A22

(
θ̇−s

)
= θ̇+

s

We can simply rearrange these relationship to find a direct relationship given θ̇2 = θ̇ns− θ̇s

is actually a relative velocity. Note that these relationship have also accounted for the fact

that the two legs “swap roles” during impact (with stance becoming swing leg, and vice

versa). We will call this final transformation matrix B:

B11 = A21 + A22

B12 = A21

B21 = A11 + A12 − A21 − A22

B22 = A11 − A21

This final relationships relating pre- and post-collision velocities are then:

θ̇+
1 = B11θ̇

−
1 + B12θ̇

−
2 (B.13)

θ̇+
2 = B21θ̇

−
1 + B22θ̇

−
2 (B.14)

PD controller

During a step, the interleg angle is regulated with respect to a desired set-point, which is

selected as a high-level control action, once per step.

α = θsw − θst (B.15)

τ = Kp(αdes − α) + Kd(0− α̇), θst < 0 (B.16)
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where Kp = 100 and Kd = 10. There two equations appear in Chapter 5 as Equations 5.5

and 5.6.

Pre-collision Impulse

Our control was much more successful if we used a pre-collision impulse in addition to

a PD-controlled torque at the hip, as described in Section 5.6.2 (p. 144). We assume the

impulse occurs instantaneous and happens exactly before the step-to-step collision takes

place.

If the imparted impulse is very large, the entire compass gait walker will become air-

borne. Calculation of new state in this “ballistic” case simply involves solving two equa-

tions for conservation of angular momentum and another two to conserve linear momen-

tum. For the magnitudes of impulse we use in simulation, there is typically not enough

momentum added for the upcoming stance leg to lose contact with the ground. In this

“non-ballistic” case, we simply assume that momentum directed toward the ground is per-

fectly absorbed in an instantaneous collision.

For the case where the upcoming stance foot does not become ballistic, we simply add

the effect of the impulse as an additional term in the equations of conservation of angular

momentum for the pre-to-post collision dynamics. Specifically, we rewrite Equation B.11

to include a term which scales the impulse to give its contribution to the angular momentum

about the pre-collision swing toe. Defining our impulse as having magnitude p, directed

axially from the toe to the hip of the pre-collision stance leg, Equation B.11 then becomes:

Q−
11θ̇

−
ns + Q−

12θ̇
−
s − 2p (sin α) (cos α) = Q+

11θ̇
−
ns + Q+

12θ̇
−
s (B.17)

Propagating these terms and solving algebraically, Equations B.13 and B.14 are now re-

placed by the following:

θ̇+
1 = B11θ̇

−
1 + B12θ̇

−
2 −R21 (2 cos α sin α) p (B.18)

θ̇+
2 = B21θ̇

−
1 + B22θ̇

−
2 − (R11 −R21) (2 cos α sin α) p (B.19)
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