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Abstract

In-order packet delivery, a critical abstraction for
many higher-level protocols, can severely limit the per-
formance potential in low-latency networks (common,
for example, in network-on-chip designs with many
cores). While basic variants of dimension-order routing
guarantee in-order delivery, improving performance by
adding multiple dynamically allocated virtual channels
or using other routing schemes compromises this guar-
antee. Although this can be addressed by reorder-
ing out-of-order packets at the destination core, such
schemes incur significant overheads, and, in the worst
case, raise the specter of deadlock or require expensive
retransmission.

We present Exclusive Dynamic VCA, an oblivious
virtual channel allocation scheme which combines the
performance advantages of dynamic virtual allocation
with in-network, deadlock-free in-order delivery. At
the same time, our scheme reduces head-of-line block-
ing, often significantly improving throughput compared
to equivalent baseline (out-of-order) dimension-order
routing when multiple virtual channels are used, and
so may be desirable even when in-order delivery is not
required. Implementation requires only minor, inexpen-
sive changes to traditional oblivious dimension-order
router architectures, more than offset by the removal of
packet reorder buffers and logic.

1. Introduction

In-order packet delivery in a network is a widely as-
sumed basis for a wide range of application protocols,
e.g., file transfer and optimized cache coherence pro-
tocols [7, 10]. Basic dimension-order routing without
virtual channels, an approach popular in network-on-
chip (NoC) designs, always delivers packets between
any two nodes in the order in which they were sent be-
cause all packets follow the same path and are stored

in the same buffers. Because packets from different
flows are buffered in the same queues, however, a single
ill-behaved flow can overwhelm other flows and effec-
tively block them even if they are destined for a differ-
ent egress port, a phenomenon known as head-of-line
blocking.

To address this, multiple virtual channels (VCs)
can be used on each link, either allocated statically (so
that each flow uses only a specific VC in each node)
or dynamically (so that each packet may be assigned
to any available VC). While static VC allocation can
ensure that each flow uses a single VC per node and
packets arrive in order, head-of-line blocking remains a
problem: when the number of flows exceeds the number
of VCs and multiple flows must share one VC, that VC
can be overwhelmed by a single flow even though all
other VCs carry no traffic. Moreover, efficient static VC
allocation requires a priori knowledge of the applica-
tion’s traffic patterns [17], a reasonable assumption for
fixed-application chips but an unrealistic requirement
for general-purpose NoCs. Dynamic VC allocation can
adapt VC usage to the traffic pattern by allocating avail-
able VCs to packets as they arrive, but, for certain traffic
patterns, performance can still suffer significantly be-
cause of head-of-line blocking. Moreover, dynamic VC
allocation forfeits the advantage of in-order packet de-
livery because two packets from the same flow may be
assigned to different VCs in the same node and leave the
VCs in an order different from their arrival sequence;
effectively, dynamic VC allocation creates multiple vir-
tual paths for each flow.

When the routing algorithm itself directs a single
flow via multiple paths (either via different sequences
of nodes or via dynamically allocated VCs in the same
sequence of nodes), in-order delivery can be accom-
plished by resorting to packet reordering. Each packet is
tagged with a sequential serial number, and any packets
that arrive out of order are stored in a reorder buffer at
the destination node until all of their predecessors have



been received. To avoid deadlock scenarios in the event
a reorder buffer fills up, the network must be able to dy-
namically limit the number of outstanding packets of a
given flow, either by dropping and resending packets, or
by sending packets only after enough preceding packets
have been delivered; either case requires some form of
an acknowledgement protocol.

While this approach works well when the process-
ing element (PE) at each node is significantly faster than
the network (as is the case, for example, with multi-
computer networks like the Internet), it is less appropri-
ate for NoCs where the on-chip network fabric is very
fast compared to the PE. While the reordering proto-
col can be implemented in hardware to improve perfor-
mance in such cases, the amount and complexity of the
necessary logic can be daunting.

In this paper, we propose Exclusive Dynamic Vir-
tual Channel Allocation (EDVCA), a VC allocation
scheme which combines the benefits of static and dy-
namic VC allocation regimes by ensuring that a flow is
traveling via at most one path at any one instant. When
combined with multi-VC dimension-order routing, our
method guarantees deadlock-free in-order packet deliv-
ery at a fraction of the hardware cost and complexity of
packet reordering approaches and without the overhead
of including a serial number in each packet. Moreover,
EDVCA significantly improves network performance
for traffic patterns susceptible to head-of-line blocking,
while offering performance equivalent to standard dy-
namic VC allocation on other traffic. In the follow-
ing sections, we outline our scheme, detail implementa-
tion differences relative to a baseline oblivious virtual-
channel router design, and analyze performance via ex-
tensive cycle-accurate simulation with synthetic as well
as realistic traffic patterns.

2. Related work

2.1. Routing algorithms

Perhaps the simplest routing scheme is dimension-
ordered routing (DOR), which applies to a broad
class of networks, including the 2D mesh we consider
here [5]. Packets traverse each dimension in a prede-
fined order, traveling along one dimension until they
have reached the destination node coordinate along that
dimension, at which point they switch to the next di-
mension. In the simplest, one-channel version, DOR
delivers packet in order within each flow, although im-
plementations with dynamically allocated VCs forfeit
this guarantee because packets may pass each other in
neighboring VCs. Although low implementation com-
plexity and in-order packet delivery (under some virtual

channel allocation schemes) have made DOR a very
popular choice in the on-chip network design space,
its simplicity comes at the cost of poor worst-case and
average-case throughput for mesh networks.

By balancing traffic between the XY and YX vari-
ants of DOR routing, O1TURN [16] not only guaran-
tees provable worst-case throughput but also matches
average-case behavior of ROMM for both global and lo-
cal traffic, and generally performs very well in practice
with very little extra hardware cost and no transmission
overhead. Since packets in the same flow may experi-
ence different congestion characteristics along the two
possible routes, however, O1TURN may deliver pack-
ets out of order.

Valiant and Brebner proposed a routing scheme that
chooses an intermediate node at random and employs
DOR to route first to the intermediate node and then
from there to the destination [21]. While this algorithm
achieves optimal worst-case throughput by spreading
all traffic throughout the network, it sacrifices average-
case behavior and latency, since even traffic between
adjacent nodes may incur significant delays in traveling
to and from the intermediate node; in addition, since
different packets from the same flow may use different
intermediate nodes, they may be delivered out of order.

ROMM [13, 14] applies the Valiant algorithm to
minimum routing, limiting intermediate node choices to
the minimum rectangle defined by the source and desti-
nation nodes. Although ROMM guarantees minimum
routes, its load balancing is not optimal, and it may
saturate at a lower throughput than DOR in 2D torus
networks [20] and 2D mesh networks [16]. While in-
creasing the number of phases can reduce congestion,
it comes at the cost of additional hardware complexity
and additional virtual channels. Like Valiant, ROMM
may deliver packets out of order.

Classic adaptive routing schemes include the turn
routing methods [8] and odd-even routing [3]. These
are general schemes that allow packets to take differ-
ent paths through the network while ensuring deadlock
freedom but do not specify the mechanism by which
a particular path is selected. An adaptive routing pol-
icy determines what path a packet takes based on net-
work congestion. Many policies have been proposed
(e.g., [4, 11, 18, 19, 9]). Since adaptive routing algo-
rithms alter the route in response to network conditions,
they can also deliver packets out of order.

2.2. In-order packet delivery

Few routing scheme designs address out-of-order
packet delivery. Within the Network-on-Chip (NoC)
context, Murali et al [12] describe a multi-path in-order



scheme where sequentially numbered packets belong-
ing to a given flow are delayed at switches where dis-
tinct paths used by the same flow join (or cross). This
scheme relies on a static assignment of flows to links;
moreover, their re-ordering method contemplates only
packets within one flow and either does not consider the
possibility of deadlock when separate flows block each
other or makes an unrealistic assumption of a private
virtual channel for each flow.

More generally, ensuring in-order delivery via
buffering out-of-order packets at the destination node
and reordering them (and, if necessary, dropping and
retransmitting) has been around since the dawn of
computer networking, and is employed, for example,
in the Transmission Control Program [2, 1], the pre-
cursor of the ubiquitous Transmission Control Proto-
col [15]. TCP combines destination-buffered reorder-
ing with window-based flow control and acknowledge-
ments piggybacked on return packets.

3. Exclusive Dynamic VC Allocation

In a nutshell, exclusive dynamic VCA prevents
packets from any single flow from using more than one
VC at a given ingress at any given instant. When a snap-
shot of the network is examined, the system appears as
if VCs had been statically allocated: packets from any
given flow use no more than one VC per ingress, and
seem to travel via a single path, which ensures in-order
packet delivery and reduces head-of-line blocking. At
the same time, the VC being used for a specific flow at
a given ingress can change over time, and when the net-
work state is examined over a longer period, flows may
appear to be using multiple VCs at each ingress port,
spreading incoming traffic among available VCs.

In what follows, we assume a standard ingress-
queued virtual-channel router with wormhole routing
and credit-based inter-link flow-control [6]. In such de-
signs, each packet arriving at an ingress port is imme-
diately queued in a VC buffer, and forwarded via five
steps: route computation (RC), virtual channel alloca-
tion (VCA), switch allocation (SA), and switch traver-
sal (ST), sometimes implemented as separate pipeline
stages for efficiency. All flits in a packet are forwarded
contiguously, so the first two stages (RC and VCA) only
perform computation for the head flit of each packet, re-
turning cached results for the remaining flits.

Our scheme differs only in the VCA stage: when
allocating a next-hop VC to a packet from flow f , we
follow the rules below:

• if no next-hop VC contains packets from f , assign
the packet to any available VC; if no VCs are avail-
able, stall the packet and try to allocate again in the

B B C C A A

C C A A B B

VC 0

VC 1

(a) dynamic VCA

C CA A A A

- - B B

VC 0

VC 1 B B

(b) exclusive dynamic VCA

Figure 1. Comparison of VCA schemes

next cycle (emulates dynamic VCA)

• if some next-hop VC v already contains packets
from f , and v is available, assign the packet to v; if
v is not available, stall the packet and try to allocate
again in the next cycle (emulates static allocation
of f to v)

Figure 1 illustrates how our scheme might allo-
cate virtual channels for packets from three hypothet-
ical flows, A, B, and C, for a two-VC ingress port. Tra-
ditional dynamic allocation might assign packets from
each flow to both VCs, as shown in Figure 1(a); ex-
clusive dynamic VCA, on the other hand, will assign
packets from one flow to only one VC, as shown in Fig-
ure 1(b). Thus, when the third packet in flow B arrives,
it is assigned VC 1 because VC 1 already has packets
from B; similarly, the third packet in flow A is assigned
VC 0. When the third C packet arrives, it must wait ei-
ther until VC 0 has space (in which case it can go into
VC 0) or until all other C packets in VC 0 has been for-
warded (in which case it can go into either VC). Note
that, while Figure 1(b) only shows a snapshot at a par-
ticular instant and the VC assignment might change at a
later time (for example, with VC 0 and VC 1 reversed),
exclusive dynamic VCA will never result in the situa-
tion shown in Figure 1(a).

When EDVCA is implemented in a routing regime
where a given flow always follows the same sequence
of nodes (e.g., dimension-order routing), it guarantees
that all packets within one flow will be forwarded and
delivered in the original order. This is of course the
case for a single VC, since, at each node, all packets are
buffered in the same ingress queue and depart in arrival
order; it is also true for static VCA because all packets
in the same flow stay in the same queue. Dynamic VCA
gives up in-order delivery, since it allows packets from
the same flow to be buffered in different VCs, and pack-
ets in different VCs may pass each other; for example,
in Figure 1(a), the packets from flow A could depart in
any of six possible orders. We restore the in-order de-
livery guarantee in EDVCA by observing that the static-
VCA condition above needs to be satisfied only at any
given instant; that is, packets are still delivered in order
if, within each node, all packets in the same flow are



buffered in the same VC at any given time.
While our motivation in this paper is in-order

packet delivery in NoCs and we focus on applying ED-
VCA to dimension-order routing on a mesh, the scheme
is independent of network geometry and route selec-
tion, and can be directly applied to other oblivious rout-
ing algorithms (e.g., O1TURN [16], Valiant [21], or
ROMM [13, 14], more sophisticated table-based static
routing [17]), or adaptive routing schemes like turn
methods [8] or odd-even routing [3].

Finally, our VC allocation scheme is also free of
deadlock provided the underlying routing regime is also
deadlock-free. The only new dependencies are between
packets waiting to be forwarded and the next-hop VCs
they are targeting, a kind of dependency already present
in any kind of ingress-queued router.

In addition to EDVCA, in which each flow exclu-
sively uses a VC at any given time, we also considered
an orthogonal scheme where each VC may only con-
tain one flow at any given time (but gives up in-order
guarantees because packets from the same flow may use
more than one VC), and a scheme that combines both
constraints (thus guaranteeing in-order delivery). While
both schemes still outperformed DOR in most of our
experiments, they did not perform quite as well as ED-
VCA; since flows tended to monopolize VCs and cause
unfairness, we judged these variants to be impractical
and do not detail them here.

4. Implementation cost

Ensuring in-order packet delivery in a fast on-chip
network incurs some additional cost in all but the most
basic routing schemes (e.g., single-VC DOR); for ex-
ample, a store-and-reorder scheme with good perfor-
mance would require both significant buffer space at the
destination and, in order to ensure that the destination
buffers do not overflow, either end-to-end flow control
or retransmission capability, both of which require ad-
ditional memory space at the source. In comparison,
our scheme requires only a modicum of additional hard-
ware, which we detail by highlighting the differences
from a classical virtual channel router [6] with dynamic
VC allocation.

The additional hardware is required to ensure that
packets from a single flow will not be buffered in two
VCs at the same time; that is, during the VCA stage,
the router must check whether any VCs at the next-hop
node already contain the relevant flow, and, if so, restrict
itself to that VC. This can be accomplished with a per-
flow table, where the entry for each flow lists the cur-
rently assigned VC (if any), and the number of flits from
that flow remaining in that VC; Figure 2 illustrates how
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Figure 2. Tracking remote VC contents

such a table might be updated when packets depart from
the current node for the next hop, and when they are for-
warded on from the next-hop node. For each head flit,
the VCA stage locates the next available next-hop VC
(same as in traditional dynamic VCA), and, in parallel,
queries the table. If the table lookup returns no entry for
the flow, the next available VC is used; otherwise, the
VC from the table lookup is used if it is available, or no
assignment is made if the VC is busy. Assuming that
the latency of the VCA stage is comparable to that of
the table query, the only additional latency comes from
a small multiplexer arbitrating between the traditional
VCA result and the table lookup.

While at first blush it might appear that in a system
with many flows such a table might have to be quite
large, observe that only flows with any flits in the next-
hop VCs need to be stored. This is relatively few flows:



for a node with 8 eight-flit queues per ingress, at most
64 different flows can be buffered at each ingress.1 Fur-
thermore, the table can be smaller than the number of si-
multaneously buffered flows: if the table becomes full,
the next packet for an unknown flow stalls until there is
space in the table and performance degrades gracefully.
In any event, a table of this size can be efficiently im-
plemented using a content-addressable memory (CAM)
addressed by flow ID, one for each ingress if each flow
has only one entry port (e.g., in DOR), or one bigger ta-
ble for each node if flows can arrive from any direction
(e.g., in some adaptive routing schemes).

The only remaining overhead stems from tracking
the number of flits for each flow in the next-hop VCs
(Figure 2). This can be handled by modifying the exist-
ing credit update system, which allows a node to keep
track of the number of free slots in each next-hop VC.
In the original (non-EDVCA) version, the router decre-
ments a per-remote-VC credit count whenever a flit de-
parts for a next-hop VC and increments it when the
neighboring node removes a flit from that VC and sends
a credit update message. Since EDVCA tracks remote
VC contents for each flow (Figure 2), the credit update
messages carry a flow ID instead of a VC ID, and the
corresponding VC IDs are locally retrieved from the
table and used to update the relevant per-VC credits;
thus, the send events in Figures 2(a)–2(c) cause credit
decrements for the relevant VCs, and the update events
in Figures 2(d)–2(e) trigger credit increments. While
sending flow IDs instead of VC IDs in every credit
update message does increase the number of bits and
therefore the bandwidth used for credit updates, the few
extra wires are cheap in terms of area and do not affect
the size of the crossbar switch; furthermore, if desired,
the wire count can be decreased significantly by sending
credit updates less often, with corresponding graceful
decrease in performance.

These small overheads compare favorably with the
resources and logic required to implement a typical
store-and-reorder scheme for in-order delivery. Unlike
reorder buffer size, the additional table memory does
not grow with maximum packet size, and the additional
VC allocation and credit update logic is much simpler
than the logic needed to reorder, acknowledge, and pos-
sibly retransmit packets.

5. Results

We have evaluated the performance of exclusive
dynamic VCA via extensive simulation on synthetic
benchmarks as well as a load profile obtained from a

1or half of that, assuming a minimum packet length of one routing
(head) flit and one data flit

Topology 8×8 2D mesh
Routing DOR–XY, O1TURN
Link bandwith 2, 4, 8 flits/cycle
VC alloc Dynamic, EDVCA
VC output mux None, 1, 2, 4
Per-hop latency 1 cycle
VCs per port 1, 2, 4, 8
VC buffer size 8 flits
Average packet length 2, 8, 32 flits
Traffic workload transpose, shuffle,

bit-complement,
H.264 decoder profile

Burstiness model Markov modulated
Warmup cycles 10,000
Analyzed cycles 100,000

Table 1. Network configuration summary

parallel implementation of an H.264 video decoder, and
report the results below.

5.1. Experimental setup

For our experiments, we used an in-house cycle-
accurate NoC simulator. The simulator implements a
standard ingress-queued virtual-channel router [6]. To
mitigate crossbar cost with routing schemes that require
multiple VCs to avoid deadlock, a VC output multi-
plexer can optionally choose a subset of the VCs at each
ingress, and present the chosen subset for switch allo-
cation. To avoid unfairness effects resulting from a par-
ticular combination of round-robin strategy and packet
arrival rate, VCs in switch and VC allocation are con-
sidered in random order and greedily matched. While
the simulator can be configured for any desired geom-
etry and a host of oblivious routing and virtual chan-
nel allocation schemes, we focused our experiments on
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Figure 4. In-order throughput

an 8× 8 mesh network under XY and O1TURN rout-
ing. To estimate the impact of out-of-order packets, we
implemented a store-and-reorder strategy, although re-
order buffer sizes are not limited and so retransmission
is never necessary.

Table 1 summarizes the configurations used for our
experiments. Although we analyzed performance for a
variety of link bandwidths and flit sizes, for clarity of
exposition we avoid plotting data that are similar, and
show only results for link bandwidth of 8 flits/cycle and
packet sizes of 2 flits (for the synthetic benchmarks with
1, 2, and 4 VCs) and 8 (for 8 VCs and the H.264 pro-
file load). For the synthetic benchmarks, we simulated
constant and Markov-chain-modulated bursty traffic.

5.2. Out-of-order packet delivery

To understand the cost of a store-and-reorder in-
order implementation in DOR2 with dynamic VC allo-
cation, we asked how many packets arrived out of order
(that is, before all of their predecessors were delivered).

Figure 3(a) shows, for each load and VC count, the
highest number of packets from any one flow simul-
taneously waiting in any reorder buffer in any of our

2We considered only DOR when examining out-of-order packet
rates to ensure a fair comparison with EDVCA, since EDVCA cannot
guarantee in-order delivery under O1TURN routing.
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Figure 5. In-order burst throughput

experiments; that is, it indicates the minimum reorder
buffer size required to avoid dropping and retransmit-
ting packets in all experiments. Figure 3(b) shows the
percentage of packets that arrived out of order for the
corresponding flow in the corresponding experiment.
The buffer size observations confirm that out-of-order
packet arrival is a significant problem across a wide va-
riety of loads, and shows that per-flow reorder buffers
at each destination must be relatively large to avoid ex-
pensive retransmission. The high percentage of packets
received out of order indicates that the reorder buffer
and reordering logic must operate at close to line rate,
effectively excluding any software-level solution. Since
one such buffer may have to be implemented for each
flow arriving at a given destination, and the efficiency
demands would require very fast storage, the cost of re-
order buffer space alone in a store-and-reorder scheme
would be significant.

5.3. Comparison among in-order variants

To examine the performance potential when in-
order delivery is a must, we compared EDVCA with
different number of VCs against the only other network-
level routing that conserves packet order, DOR with one
VC (Figures 4–5). We found that EDVCA performance
scaled with the number of VCs, and so allows in-order
delivery to be implemented at any chosen cost vs. per-
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Figure 6. In-order latency

formance tradeoff. Although chip area and therefore
system cost increases with the number of VCs, a large
portion of this is due to increase in the size of the cross-
bar switch, which can be mitigated by placing a multi-
plexer between the VCs and the crossbar; for example,
two-VC EDVCA with such a multiplexer (violet dia-
monds in Figure 4) is much closer in cost to one-VC
DOR, but still offers better performance. The higher
throughput enabled by using more virtual channels with
EDVCA also tends to lower latency (Figure 6).3.

5.4. Comparison on equivalent hardware

We next examined performance when the system
cost was held constant, and in-order delivery was not
considered. XY/EDVCA still tended to outperform
both dynamic-VCA XY and O1TURN4 under heavy
load in most scenarios where load caused VC con-
tention (Figures 7 and 8), except for the highly asym-
metric transpose pattern (Figure 9). When the number
of VCs sufficiently exceeds flow load, EDVCA suffers

3Our latency measures encompass the end-to-end delay between,
the time the packet is queued in the input buffer and the time the last
flit is received at the destination, and include the time spent waiting to
be injected into the network at the source core.

4Note that O1TURN is at a disadvantage under an equivalent-
hardware comparison, as it requires twice as many VCs as DOR to
avoid deadlock.
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Figure 7. Same HW: bit-complement

from the restriction that each flow must only travel via
one VC, and is outperformed by XY and O1TURN,
which can use all VCs; the H.264 profile throughput
(Figure 10) offers a good example. Even here, however,
when VCs are multiplexed prior to competing for the
crossbar, as is the case in many routers, EDVCA per-
forms better than XY routing (e.g., Figure 10(d)).

Although in the regimes where EDVCA offers
higher throughput when the network is oversubscribed
it also improves latency for delivered packets when
the network is oversubscribed, this is irrelevant to an
end-to-end packet latency measurement as in Figure 6,
which would be dominated by the waiting time of pack-
ets that are never sent because the network cannot han-
dle any more traffic. Instead, end-to-end latency is only
relevant in a small regime of load factors, at the point
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Figure 8. Same HW: shuffle

where the network becomes overloaded and stops deliv-
ering traffic at the rate of 100%; in the throughput plots
in Figures 7–10, this is the point at which the initial
offered-vs-received traffic line decreases in slope. Fig-
ure 11 illustrates this point: in Figure 11(a), EDVCA
matches the underlying latency of DOR because 100%
packet delivery begins to fail at the same injection rate,
while in Figure 11(b) DOR offers low latency longer
because it fails at a higher injection rate (cf. Figure 7).

6. Conclusion

Although applications that require packets to ar-
rive in the order in which they were sent are ubiquitous,
guaranteeing in-order packet delivery has received com-
paratively little attention in routing algorithm design,
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Figure 9. Same HW: transpose

and, with the exception of single-VC dimension-order
routing and static VC assignment, has generally been
relegated to a higher level of abstraction. As ultra-fast
on-chip networks become common, however, buffer-
based packet reordering can become a significant bot-
tleneck. By combining the benefits of dynamic and
static virtual channel allocation schemes, Exclusive Dy-
namic Virtual Channel Allocation allows dynamic VC
assignment while guaranteeing in-order packet delivery
at the network transport level. Ensuring in-order deliv-
ery at the network level obviates the need for expensive
buffers and retransmission logic, promising better per-
formance at a lower cost than a traditional higher-level
store-and-reorder scheme in the niche of fast on-chip
networks.
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Figure 10. Same HW: H.264 profile
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