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ABSTRACT

With the approaching start-up of the experiments at LHC, theurgency to quantify systematic
uncertainties of the generators, used in the interpretation of the data, is becoming pressing. The
PHOTOS Monte Carlo program is often used for the simulation of experimental, selection-
sensitive, QED radiative corrections in decays ofZ bosons and other heavy resonances and
particles. Thanks to its complete phase-space coverage it is possible, with no approximations
for any decay channel, to implement the matrix-element. Thepresent paper will be devoted to
those parts of the next-to-leading order corrections forZ decays which are normally missing in
PHOTOS. The analytical form of the exact and truncated,standard, kernel used in PHOTOS
will be explicitly given. The correction, being the ratio ofthe exact to the approximate kernel,
can be activated as an optional contribution to the internalweight of PHOTOS.

To calculate the weight, the information on the effective Born-levelZ/γ∗ couplings and even
directions of the incoming beams, is needed. A universal implementation would have made the
PHOTOS solution less modular and less convenient for the users. That is why, for the time
being, we will keep the correcting weight as an extra option,available for special tests only.

We will quantify the numerical effect of the approximation with the help of a multitude
of distributions. The numerical size of the effect is in general below 0.1%; however, in some
corners of the phase-space (well defined and contributing less than 0.5% to the total rate), it
may reach up to about 20% of their relative size.
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1. Introduction

Analysing the data from high-energy physics experiments, we try to solve the“experiment
= theory” equation. This non-trivial task requires many different effects to be considered simul-
taneously. From the experimental side, these are mainly detector acceptance and cuts, which
are dictated by the construction and physical properties ofthe detector: the shapes of distribu-
tions may be distorted by, say, misidentification and residual background contamination; these
effects need to be discriminated in an appropriate and well-controlled way. From the theoretical
side,all effects of known physics have to be included in predictions as well. Only then can
experimental data and theoretical predictions be confronted to determine numerical values of
some coupling constants or effects of new physics (to be discovered).

A well-defined class of theoretical effects contains the QEDradiative corrections. PHOTOS
is a universal Monte Carlo algorithm that simulates the effects of these corrections in decays of
particles and resonances. It is a project with a rather long history: the first version was released
in 1991 [1], followed by version 2.0 [2] (double emission, threshold terms for fermions). The
package is in wide use [3]: it was applied as a precision simulation tool forW mass measurement
at the Tevatron [4] and LEP [5, 6], and for CKM matrix measurements in decays ofK andB
resonances (NA48 [7], KTeV [8], Belle [9], BaBar [10] and at Fermilab [11]).

Throughout the years the core algorithm for the generation of O(α) corrections did not
change much; however, its precision, applicability to various processes, and numerical stability
improved significantly. New features, such as multiple photon radiation or interference effects
for all possible decays, were also introduced.

Growing interest in the algorithm expressed by the experimental collaborations (including
the future LHC experiments) was a motivation to perform a more detailed study of the potential
and precision of the PHOTOS algorithm. The present paper is the third in the series [12,13]. It
is devoted to theZ boson decay and to simplifications in the matrix element usedin PHOTOS
for that channel. We also explore the limitations originating from compromises introduced into
PHOTOS bremsstrahlung kernels, which assured convenienceof use; no process-dependent
weight need be involved.

In that respect, the study of the PHOTOSmatrix elementcan be understood as a part of
the on-going effort to find the practical solutions of the improved expansions. Some aspects
of our solution resemble those of classical exclusive exponentiation as described in [14, 15]; in
an other, the parton shower may be identified. The solution may be understood as a rearrange-
ment of the QED perturbation expansion, yet this point will not be discussed here. Instead,
let us point to some similarities of the PHOTOS solution to the methods discussed elsewhere:
interaction picture of Quantum Mechanics, expansion of special functions around asymptotic
solutions [16] or in field theory; see eg. [17]. In PHOTOS the expansion is performed in terms
of multidimensional operators.

The paper is organized as follows. In Section 2 the main properties used in the PHOTOS
design and, in particular, the analytical form of the (NLO) weight, necessary to introduce the
complete first-order matrix-element, are presented. It is also explained there how the com-
plete matrix elements break the requirement of separation of the calculation of the final-state
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bremsstrahlung from the properties of the Born-level matrix elements and the phenomena af-
fecting theZ production. To support the discussion and visualize the results, a multitude of
numerical comparisons and tests will be presented. Section3 provides the definition of the
method used in those comparisons. The method is particularly suitable to visualize the results
in the non-collinear regions of the phase space. Section 4 presents numerical tests performed
at fixed first order of the QED expansion. Since PHOTOS uses thesame building block for a
part of the single-photon generation algorithm and for the multiple bremsstrahlung, the results
presented in this section have implications for the multiple-photon option of PHOTOS. Section
5 addresses these aspects of the program construction whichare relevant to the use of the NLO
weight in the multiple-photon option. Section 6 collects the results of the tests performed for
the programs run with multiple-photon emission. Summary, Section 7, closes the paper.

2. Phase space and matrix element

To discuss the implementation of the complete first-order QED radiative corrections inZ
decay, we must start with the complete parametrization of the phase space.

Let us start with the explicit expression for the parametrisation of the(n+ 1)-body final
state in the decay of an object of four-momentumP. To define iterative relations, let us denote
the four-momenta of the firstn decay products aski , and the last(n+1)-th asq. For the case
discussed here, the (n+ 1)-th particle will always be the real and massless photon. However,
the parametrization does not rely on this assumption and, inprinciple, can be applied to define
other formulas for the phase space, such as the emission of a (massive) pion, and could even be
extended to the case of emission of pairs of heavy particles.In later steps of our construction
the fact that photons are massless and the related properties of QED matrix elements will of
course be used.

In the following, the notations from refs. [18,19] will be used. We will, however, not rely on
any particular results of those papers and only point to the more detailed presentations of other,
nonetheless quite similar, options for the exactn-body phase-space parametrization to the one
presented here.

Let us define the element of Lorentz-invariant phasespace (Lips) as follows:

dLipsn+1(P) =

d3k1

2k0
1(2π)3

...
d3kn

2k0
n(2π)3

d3q
2q0(2π)3(2π)4δ4

(

P−
n

∑
1

ki −q
)

= d4pδ4(P− p−q)
d3q

2q0(2π)3

d3k1

2k0
1(2π)3

...
d3kn

2k0
n(2π)3(2π)4δ4

(

p−
n

∑
1

ki

)

= d4pδ4(P− p−q)
d3q

2q0(2π)3dLipsn(p→ k1...kn). (1)
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Extra integration variables, the four-vectorp, compensated withδ4
(

p−∑n
1ki

)

, are first intro-
duced. In the next step, another integration variableM1 andδ

(

p2−M2
1

)

are introduced. The
element of the phase-space integration may thus be transformed into:

dLipsn+1(P) =

dM2
1

(2π)
dLips2(P→ p q)×dLipsn(p→ k1...kn)

= dM2
1

[

dcosθdφ
1

8(2π)3

λ
1
2(M2,M2

1,m
2)

M2

]

×dLipsn(p→ k1...kn). (2)

The part of the phase-space Jacobian corresponding to the integration over the direction and
the energy of the last particle (or invariant mass of the remaining system) is explicitly given;
λ(a,b,c) = a2+b2+c2−2ab−2ac−2bc. The integration over the angles is defined in the
rest frame ofn+1 particles; the integration over the invariant massM1 is limited by the phase-
space boundaries. There is no need to choose the axes with respect to which the angles are
oriented; we will not elaborate on that point here, as details can be found in Ref. [1]. Formula
(2) may be iterated to provide parametrization of the phase space with an arbitrary number of
final-state particles. The question of the orientation of the reference frames used to define the
angles and the order of the choice for limits inMi integrations, becomes particularly complex
then; our choice is described in ref. [2]. Since nothing new was introduced for the purpose of the
present study we will not discuss this interesting point further. Except for the details mentioned
above, the choice we made for the phase-space organization is the same as in FOWL [20],
TAUOLA [19], and probably many other generators.

To simplify the formula for the phase space, let us finally take advantage of the zero mass
of the photon. The invariant mass of the system of all particles but the first one may be replaced
by the energy of the first one (defined in theP rest frame). The phase-space formula can then
be written as:

dLipsn+1(P) =
[

4dkγkγdcosθdφ
1

8(2π)3

]

×dLipsn(p→ k1...kn)

=

[

kγdkγdcosθdφ
1

2(2π)3

]

×dLipsn(p→ k1...kn). (3)

If we hadl photons accompanyingn other particles, the factor in square brackets would be it-
erated. A statistical factor1l ! would complete the formula for the phase-space parametrization,
which is quite similar to the formal expansion of the exponent1. The last formula, supplemented

1The exact form of the functional exponent is achieved if the four-vectorp is replaced byP in formula (3). In
this way the tangent space for the (n+ 1)-body phase space can be constructed. We use that space, together with
an eikonal-like form of the matrix element (emissions from individual final-state charged products are treated as
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with the definition of the orientation of the angles, is used to define the full kinematic configura-
tion of the event. The four-momenta of all final-state particles may now be constructed from the
angles and energies (kγi ) of the photons, and the angles and masses of the other decay products.

Similarly, an inverse operation may be performed; the energies and angles for the parametriza-
tion could be reconstructed from the four-vectors (even though the parametrization was not
necessarily used in the previous generation steps). The phase-space Jacobians may be easily
calculated as well. By replacingdLipsn(p → k1...kn) in formula (3) bydLipsn(P → k1...kn)
we obtain a parametrization where the photons do not affect the construction of other particles’
momenta. This operation could be considered as treating thephoton in an approximation valid
only in the soft photon limit. This, however,does not needto be the case. In the first step, the
photon may be constructed with an arbitrarily large momentum, as nothing else depends on it.
The kinematical variables of the photon are generated with the help of the distribution defined
by the factor

[

kγdkγdcosθdφ 1
2(2π)3

]

; which provides the photon variables of thetangent space.
Fully constructed with four-momenta, an event of then-body decay can be turned back into a
representation of angles and invariant masses. In the final step these angular variables, together
with those of the photon, can be used to define a new event in the(n+ 1)-body phase space.
In the case when the new kinematical variables do not fit the limits of available (n+ 1)-body
phase space the new event should be rejected and the originalconfiguration (in then-body phase
space) kept. An important property of the algorithm presented here is the full coverage of the
(n+1)-body phase-space being assured. In this procedure, the difference betweenn-body and
n+1 body phase-space Jacobians can be calculated in an unambiguous way and introduced in
the same rejection step as for the phase-space limits2.

The features and transformations of the phase-space parametrization presented here are at
the heart of the construction of the PHOTOS kinematics and have been used since its begin-
ning. To complete the generation of photons, the exact phase-space parametrization must be
completed with a matrix element, with both virtual and real QED corrections included. Careful
regularization of soft singularities must be performed3.

independent), for the construction of the crude distribution of photon emission probability. Note that, in this space,
the photons’ four-momenta are unconstrained by energy–momentum conservation. The limits on the energies of
the photons are arbitrary. We checked that, at the 10−4 precision level, the results obtained from our simulations
do not depend on the particular choice. We leave the underlying formal aspect of the algorithm to future papers.

2The effects of matrix elements, including those of virtual corrections, have to be introduced at this stage as
well. They are indispensable, for example, to calculate relative probabilities of configurations with distinct number
of final-state particles.

3Volumes of the partial width attributed to the configurations withn, n+1 particles, etc., have to be normalized
to the total width, both at the level of the tangent and the correct (final) phase space.
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In the standard version of PHOTOS, as published in [1,2], theexpression

XPHOTOS
f = Q′2α(1−∆)

4π2s
s2

{

1
k′+ +k′−

1
k′−

[

(1+(1−xk)
2)dσB

dΩ

(

s, s(1−cosΘ+)
2 , s(1+cosΘ+)

2

)

]

(1+βcosΘγ)
2

+
1

k′+ +k′−

1
k′+

[

(1+(1−xk)
2)dσB

dΩ

(

s, s(1−cosΘ−)
2 , s(1+cosΘ−)

2

)

]

(1−βcosΘγ)
2

}

where : Θ+ = ∠(p+,q+), Θ− = ∠(p−,q−),

Θγ = ∠(γ,µ−) is defined in(µ+,µ−)-pair rest frame, (4)

is used for the real-photon matrix element. The virtual corrections are requested to be such
that the total decay rate remains unchanged after complete QED corrections are included. The
expression, without approximation, reads:

Xf =
Q′2α(1−∆)

4π2s
s2

{

1
(k′++k′−)

1
k′−

[

dσB
dΩ (s, t,u′)+ dσB

dΩ (s, t ′,u)

]

+ 1
(k′++k′−)

1
k′+

[

dσB
dΩ (s, t,u′)+ dσB

dΩ (s, t ′,u)

]

}

. (5)

The combined effect of the virtual and real corrections on the total rate is its increase by a factor
of 1+ 3

4
α
π .

The notation from ref. [21] are used:

s= 2p+ · p−, s′ = 2q+ ·q−,

t = 2p+ ·q+, t ′ = 2p+ ·q−,

u = 2p+ ·q−, u′ = 2− ·q+,

k′± = q± ·k, xk = 2Eγ/
√

s. (6)

This paper collects complete first-order radiative corrections for the processe+e− → µ+µ−(γ).
Final-state bremsstrahlung constitutes part of these results, where nonetheless reference is made
to the incoming electron beam momenta.

The∆ term encapsulates final-state mass-dependent terms,p+, p−, q+, q−, k denote four-
momenta of: incominge+, e−, outcomingµ+, µ− and the bremsstrahlung photon respectively.
Expression (5) is explicitly taken from ref. [21], on Monte Carlo MUSTRAAL, which is where
the interested reader will find the details of the definitionsof variables and expressions such as
∆, used in the formulae (4) and (5).

The ratio of (5) to (4) constitutes the basic element of upgrading PHOTOS functionality to
the complete first order4. Nothing needs to be changed in the phase-space parametrization. The

4This is only true for PHOTOS being run at first order. For the multiple-photon radiation option, the iteration
of the single-photon emission kernel (and thus also its weight) is performed; see section 5.
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effects of the virtual corrections have to be included as well and have to be properly introduced
in the normalization. The expression for the correcting weight could be chosen5 simply as

wt =
Xf

XPHOTOS
f

1

(1+ 3
4

α
π )

. (7)

For the purpose of constructing a Monte Carlo algorithm, however, it is more convenient to sep-
arate it into a sum of two generation branches (with slightlydifferent angular variable mapping).
Then, the expression for the distribution and those for the weight take the form

Xf = X1
f +X2

f

X1
f = WT1

Q′2α(1−∆)
4π2s

s2 1
k′++k′−

1
k′−

[

(1+(1−xk)
2)dσB

dΩ

(

s, s(1−cosΘ+)
2 , s(1+cosΘ+)

2

)

]

(1+βcosΘγ)
2 ,

X2
f = WT2

Q′2α(1−∆)
4π2s s2 1

k′++k′−
1

k′+

[

(1+(1−xk)
2)dσB

dΩ

(

s, s(1−cosΘ−)
2 ,

s(1+cosΘ−)
2

)

]

(1−βcosΘγ)
2 ,

WT1 =
dσB
dΩ (s,t,u′)+ dσB

dΩ (s,t ′,u)
[

(1+(1−xk)2)
dσB
dΩ

(

s, s(1−cosΘ+)
2 ,

s(1+cosΘ+)
2

)

]

(1+βcosΘγ)
2

(

1+ 3
4

α
π

)

,

WT2 =
dσB
dΩ (s,t,u′)+ dσB

dΩ (s,t ′,u)
[

(1+(1−xk)2)
dσB
dΩ

(

s,
s(1−cosΘ−)

2 ,
s(1+cosΘ−)

2

)

]

(1−βcosΘγ)
2

(

1+ 3
4

α
π

)

. (8)

At this point, let us make the following remark. Event thoughthe introduction of the NLO
weight into PHOTOS is trivial, the developed approximation[1] at the heart of PHOTOS design
is not. It enabled universality of the program6. Simplification was not necessary to attribute the
generation of bremsstrahlung photons to individual charged particles7. The separation holds for
the complete NLO as well. The simplified emission kernel, which we used for other decays as
well, reads:

Q′2α(1−∆)
4π2s

s2 1
k′++k′−

1
k′−

(1+(1−xk)
2)

(1+βcosΘγ)
2

Q′2α(1−∆)
4π2s s2 1

k′++k′−
1

k′+
(1+(1−xk)

2)
(1−βcosΘγ)

2 . (9)

5Alternatively, a factor(1+ 3
4

α
π ) can be included in the definition of the crude distribution.

6Indeed, after inspection, the differences between formulae (4) and (5) are quite significant. The exact ex-
pression does not allow a transfer of the complete Born-level angular dependence to the host generator. In the
correction weight, the two contributions, one depending onthe angleΘ+ and another onΘ−, have to be simultane-
ously included. The dependence on the Born-level (effective) couplings thus need to be known at the level of the
calculation of the final-state bremsstrahlung weight. Thiswould make the modular structure of PHOTOS design
more difficult to keep. Also, the direction of the (effective) beam need to be provided for the calculation ofΘ+ and
Θ− angles. This exhibits another difficulty in the separation of the final-state bremsstrahlung and the dynamics of
the initial state forZ/γ∗ production.

7For other decays, it will probably not be necessary to find an explicit form of such NLO separation. Starting
from the NNLO, such separation was shown to be impossible [22] anyway.
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It depends on the spin and charge of the “emitting particle” only8. It does not depend on the
properties of the other decay products, which only define thephase-space limits. To obtain the
universal form of the photon emission kernel, the interference was eliminated with the help of
the factor, either 2

(1+βcosΘγ)
or 2

(1−βcosΘγ)
. The interference is recovered later, using the weight

given in formula (17) of ref. [2], that is with approximation. On the other hand, having paid the
price of the approximated solution, both the kernel and the interference weight can then be used
for decay of any particle or resonance.

In our present study the analytical expression for the matrix element for thee+e−→Z0/γ∗→
µ+µ− is used (and compared to the approximated, yet process-independent, solution of the stan-
dard PHOTOS). If necessary, a matrix element for other decayprocesses (if available) could be
used.

3. Method used in numerical tests

In the comparison of the multitude of final states generated,at different levels of physics
sophistication by two distinct Monte Carlo programs, the choice of a method is of great impor-
tance. To compare the Monte Carlo programs it is quite commonto present the distributions
generated by the programs superimposed on a single plot, often in logarithmic scale. Such a
method was used, for example, in ref. [23]. The method is unquestionably sufficient, if one’s
interest is limited to, say, the collinear content of the results or other distributions of the intrin-
sically logarithmic type.

For instance, applying this method for the comparison of thetotal energy carried out by
all bremsstrahlung photons, we would obtain a distributionsuch as those presented in Fig. 1.
We could conclude that there is excellent agreement, and thenon-leading effects, which are
essential for estimating systematic errors for generatorslike PHOTOS, would be marginalized
in the presentation. This is also the case if for the same distribution (see right-hand side of Fig.
1) the method [13] based on MC-TESTER is used. The distributions are indeed dominated by
the collinear content of the programs! For other distributions, sensitive to second-order matrix-
element parts, missing in PHOTOS, the differences would become visible on the plots obtained
normally from MC-TESTER. That is why, in the present paper, we will keep to that class of
comparison plots. The comparisons are automated and standardized. This not only reduces the
time needed for debugging the tests, but also allows for easycross-comparisons of the results
presented in our consecutive papers.

For a selected decay process, such as theZ/γ∗ decay, the four-momenta of the decay prod-
ucts and their flavours are extracted from the event record inan automated way (thereby limiting
the effort of setting up the appropriate analysis code and also the risk of accidental errors). The

8In the original PHOTOS documentation we called this well-controlled truncation of the kernel a “property
(such) that leading-log (collinear) and infrared limits are properly reproduced”. This explanation turned out to be
misleading for many readers. One can get biased, and expect the collinear approximation not only for the kernel,
but for the whole design of the algorithm. This would be a serious limitation of our program design if indeed,
as suggested in ref. [23], “PHOTOS was based on collinear approximation”. Fortunately it is not the case. Such
confusion was not a concern for the users, until now: precision requirements were not as high.
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Figure 1: A typical plot for comparisons, as described in ref. [23]. Weuse it to illustrate our method.
The histograms presented in the left and right plots have identical content, and show a comparison of
KKMC [14] and PHOTOS used in Z decay. The total energy carriedout by all final-state photons is
presented. Red (darker grey) colour represents the resultsof KKMC, green (lighter grey) of PHOTOS
with the NLO weight activated. Samples of107 events were used in this comparison. The results are
overwhelmed by the collinear/soft content of the predictions.
If the W instead of Z decay was chosen, it would not be the case.There, NLO effects would be dominant
for the part of the spectrum above MW/2. However, in that case, we would not profit from the second-
order matrix element Monte Carlo, available for tests.

0 20 40 60 80 100 120

-610

-510

-410

-310

-210

-110

1

Total photon energy

(a) A logarithmic scale is used. Excellent agree-
ment between the two programs is visible all over
the energy range from 0 toMZ. The presence of
the two lines can be spotted at the high end of the
spectrum, mainly thanks to the statistical errors.
The kink at the limit of the phase-space, where sin-
gle hard-photon configuration ceases to contribute,
dominates the content of the whole picture.

0 20 40 60 80 100 1200
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(b) The method of MC-TESTER is applied. Both in-
dividual distributions, from PHOTOS and KKMC,
are presented, but overlap. The samples populate
the first few bins of the histograms. The differences
would normally be visible on the black histogram,
which presents the ratio of the results from PHO-
TOS and KKMC. The agreement is perfect all over
the spectrum. No structure can be spotted in the
vicinity of the kink (total photon energy, close to
half of the Z mass). If present, the structure of pos-
sible differences, would be well separated from this
of the shapes themselves.

8



decay events obtained that way are classified in distinct decay channels, according to the par-
ticles present in the final state. The histograms of all possible invariant masses, which can be
formed from the decay products, are defined and filled for eachidentified decay channel. At
the end of the run they are stored in output files. Two output files (from distinct runs of event
generators instrumented with MC-TESTER) are then analysed, and the results are presented in
a form visualized as a “booklet” made of plots and summary tables. The user is given some
general information concerning the comparison of the two runs with different Monte Carlo gen-
erators, a list of the decay channels with their branching fractions, and the maximum values (for
each decay channel) of the shape difference parameter (SDP)9.

For each decay channel the plots of histogrammed values are then included; each plot
presents two distributions from the two distinctive runs and a curve, which is the ratio of the
two normalized distributions. The value of the SDP is also printed for each plot. In practice,
as in paper [13], the histograms obtained from the compared programs will often overlap. The
differences will then be visible only in the plot of the ratioof histograms.

The testing approach implemented in MC-TESTER could be useddirectly in the case of
validation of the TAUOLA package. Nevertheless, for the purpose of studies presented here, it
needed an extension. It is necessary, according to the particular method of handling soft photon
cancellations, to consistently treat the soft final-state QED bremsstrahlung photons, which may
or may not be present in the event. If results of different programs were compared blindly,
ambiguities due to differences in the treatment of the soft emission region and of the different
boundaries for the photon phase-space (integrated analytically) would arise. To prevent these
ambiguities, the most convenient solution was to introducea technical regulatorin the test itself.

For our comparisons to make physical sense and remain automatic, we had to remove the
softest photons from the final states. We defined zero-, one-,and two-photon topologies in
the following way: we called the event “zero photon” if therewas no photon of energy (in a
decaying particle’s rest frame) larger thanEtest. The “one-photon” event had to have one (and
only one) photon of energy larger thanEtest. If there were more than one such photons, we
called it a “two-photon” event. In the case where there were more than two photons of energy
larger thanEtest, we considered only the two most energetic ones, and treatedthe remaining
(softer) ones as if they had not passed theEtest threshold. For all the photons that did not pass
theEtest threshold we summed their four-momenta with the momentum ofthe outgoing fermion
of smaller angular separation. With the help of our test we divide the phase space for two
fermions and an arbitrary number of photons intoslotsof 0, 1 and 2 distinguished final-state
photons.

In the paper we will use two variants of this test definition:test1and test2. The test2is
exactly as explained above. Intest1, only one photon (the most energetic one) will be accepted.
The free parameter,Etest is chosen to be 1 GeV for all results presented in this paper.

Systematic histogramming of all possible invariant massesthat can be constructed from a
9The shape difference parameter, defined in [24], quantifies the difference in shape of the histograms coming

from the two runs being compared. The SDP value is calculatedseparately for each histogrammed mass: it
quantifies the exclusive surface between the (normalized tounity) corresponding histograms obtained from the two
runs. The effects of statistical fluctuations are appropriately subtracted. The maximum SDP over all distributions
for a given decay channel is taken and printed in the table.
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combination of final-state four-vectors, and storing them as one-dimensional histograms, does
not define a test of ultimate sensitivity. The method is blindto theP-parity-sensitive effects,
important forτ lepton physics, for instance. Also important effects, suchas coherence between
the photons are to a large degree washed out. Nonetheless we believe that the advantages of the
method are prevailing, and we decided to use it in this study.

4. Results of the tests performed at first order

Let us start with a comparison of PHOTOS and KORALZ [25], bothrun at first order and
without exponentiation. For KORALZ, the complete first-order matrix element, as in Section
2, is used. The results from KORALZ are given by a red (darker grey) line and from PHOTOS
by a green (lighter grey) line. (In the presentation of the results we use the colour coding
consistently in the plots and the summary tables, followingthe methodology of MC-TESTER).
The lines overlap almost completely on all plots and only theratios of the distributions shown
as black histograms indicate that there is some difference.The actual plots for MC-TESTER
comparison, are prepended with a summary table giving the fractions of event with and without
photons (of energy above 1 GeV). In all comparisons samples of 108 events were used.

Decay channel Branching ratio± rough errors Max. SDP
KORALZ PHOTOS

Z0 → µ−µ+ 82.5137± 0.0091% 82.3622± 0.0091% 0.00000

Z0 → µ−µ+γ 17.4863± 0.0042% 17.6378± 0.0042% 0.00534

As can be seen, the difference in the fraction of events with photon (of energy above 1 GeV)
is about 0.15%. Although noticeable (thanks to our method),this is not a large discrepancy. Let
us now turn to the distributions.

Decay Channel:Z0 → µ−µ+γ
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Analysing the values of the SDP, printed in the upper right corners of the plots, we conclude
that the surfaces between green and red histograms (both normalized to unity before calculation
of the ratio) differ by at most 0.005; this low value quantifies the fact that the histograms for the
two programs overlap almost completely. The ratio of the twolines (black histogram) nonethe-
less reveals the difference, which is located at the far end of the spectra, sparsely populated
by configurations with photons of extremely large energies and away from the direction of the
muons.

Even though the agreement is amazing, it is yet improved oncethe NLO term is included
into the correction weight of PHOTOS: the differences disappear below the statistical error of
108 event samples and they are not noticeable in the histograms’ratio curve either! In the
following table and figures, we collect the results as previously discussed, but for the runs with
the NLO correcting weight activated in PHOTOS.

Decay channel Branching ratio± rough errors Max. SDP
KORALZ PHOTOS

Z0 → µ+µ− 82.5110± 0.0091% 82.5074± 0.0091% 0.00000

Z0 → µ+µ−γ 17.4890± 0.0042% 17.4926± 0.0042% 0.00000
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Decay Channel:Z0 → µ+µ−γ
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The agreement for the branching fractions (of events with and without photons of energy
larger than 1 GeV) is better than 0.01% now! This excellent agreement indeed confirms that the
theoretical effects missing in the standard version of PHOTOS are negligibly small. It is equally
important that it provides, a powerful technical test of thegenerator. The kinematical variables
used in PHOTOS differ from those of KORALZ; four-vectors areused instead of angles to
parametrize the intermediate steps of the generation. The differences could have indicated,
say, consequences of aggregation of rounding errors. Keeping in mind that similar levels of
agreement for muons was achieved for the multiphoton version of PHOTOS and KKMC in the
case ofZ → e+e− decay, we can confidently claim that PHOTOS has numerical stability under
control. This was not the case for the early versions of the program, and reaching that level of
technical reliability required a major effort.

5. Algorithm for multiple-photon generation

Before presentation of the results for multiple-photon generation from PHOTOS, let us com-
ment on those technical details of the PHOTOS algorithm, that are important in the implemen-
tation of the NLO contribution to the correcting weight. Theiteration algorithm, as explained
first in ref. [2], and recently also in refs. [12, 13], did not require changes for the case of mul-
tiple photon generation. Nevertheless, the following details have to be clarified for the proper
implementation of the NLO weight, given by formula (8). All identical terms present in the
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numerator and denominator, expressions (5) and (4) respectively, were cancelled out at the ana-
lytical level10. The weight (8) is always calculated for the single-photon configuration. If there
are other photons generated in the previous steps of the iteration, their momenta are absorbed
into the momenta of the final-state fermions. The constrainton the direction and the opening
angle between the photon under consideration and the direction of the charged emitter [1], is
assured.

6. Numerical results of the tests performed with multiple-photon radiation

Let us now turn to the tests of PHOTOS running in multiple-photon option. For that purpose
we will usetest1as defined in Section 3, and samples of 108 events generated from KKMC with
exponentiation and the second-order matrix element and themultiple-photon radiation version
of PHOTOS, without NLO terms. The results are included in thetable and plots below.

Decay channel Branching ratio± rough errors Max. SDP
KKMC PHOTOS

Z0 → µ−µ+ 83.9176± 0.0092% 83.8372± 0.0092% 0.00000

Z0 → µ−µ+γ 16.0824± 0.0040% 16.1628± 0.0040% 0.00409

Decay Channel:Z0 → µ−µ+γ
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10The cancelled-out terms could have been calculated using slightly different kinematical variables; the differ-
ences would have appeared only in the case of more than one hard photon present in the final state. In such a case
the ratio of the terms would not be equal to 1. These effects generally go beyond the NLO, and in fact our choice
was motivated by the comparisons with the second-order matrix-element calculation, but without necessary details.
That is why an appropriate discussion of this choice would require detailed presentation of the second-order matrix
element. It would have to be similar, for example, to the discussion of the extrapolation procedure as that described
in ref. [26].
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The pattern of differences between the results of PHOTOS andKKMC runs resembles the
one present in the plots for the comparisons performed at thefirst order. Again, the black
curves of the histogram ratios for the KKMC and PHOTOS results are not consistent with 1
for configurations with hard photons and in the regions wherehistograms are nearly at 0. The
differences reach few per cent in the corners of the phase space contributing few per mille to
the total rate. The discrepancies are again smaller than 0.1% with respect to the total rate.

Once the NLO weight in PHOTOS is activated, the already smalldifferences become even
smaller, by a factor of about 50, measured with the SDP. The differences are practically 0 with
108 samples, which can be seen in the table and the plots below.

Decay channel Branching ratio± rough errors Max. SDP
KKMC PHOTOS

Z0 → µ−µ+ 83.9176± 0.0092% 83.9312± 0.0092% 0.00000

Z0 → µ−µ+γ 16.0824± 0.0040% 16.0688± 0.0040% 0.00003

Decay Channel:Z0 → µ−µ+γ
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This confirms that the main source of residual discrepancy between KKMC and PHOTOS,
both running in exponentiated versions, was due to the NLO term missing in the previous group
of results and activated now.

Let us now turn totest2, where configurations of up to 2 hard photons are analysed. To
this end, we will present at first the results of a comparison of the standard multiple-radiation
version of PHOTOS with that of KKMC, followed by the comparison of multiple-radiation
version PHOTOS with NLO weight and KKMC (again with second-order matrix element and
exponentiation).

Decay channel Branching ratio± rough errors Max. SDP
KKMC PHOTOS

Z0 → µ−µ+ 83.9177± 0.0092% 83.8372± 0.0092% 0.00000

Z0 → µ−µ+γ 14.8164± 0.0038% 14.8676± 0.0039% 0.00232

Z0 → µ−µ+γγ 1.2659± 0.0011% 1.2952± 0.0011% 0.00918

Decay Channel:Z0 → µ−µ+γ
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Decay Channel:Z0 → µ−µ+γγ
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One can see that already for the standard PHOTOS the agreement is good. Residual defi-
ciencies are small for both slots of the phase space: single hard photon, and two hard-photon.
Let us present now what kind of changes the inclusion of NLO terms in PHOTOS brings to the
results oftest2.

Decay channel Branching eatio± rough errors Max. SDP
KKMC PHOTOS

Z0 → µ−µ+ 83.9177± 0.0092% 83.9303± 0.0092% 0.00000

Z0 → µ−µ+γ 14.8164± 0.0038% 14.7829± 0.0038% 0.00005

Z0 → µ−µ+γγ 1.2659± 0.0011% 1.2868± 0.0011% 0.00293
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Decay Channel:Z0 → µ−µ+γ
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Decay Channel:Z0 → µ−µ+γγ
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For the single hard-photon distributions, the differencesdiminished significantly, again a
factor of about 50! This was to be expected. Even for the distributions of the phase-space
slot with two hard photons, the differences diminished. TheSDP decreased by a factor of
about 3. This is not as striking as for the single hard-photonconfiguration, but it is of no
surprise: the complete second-order matrix element is missing. The improvement by a factor of
3 provides, however, a strong indication that the algorithmof iteration used in the generation of
consecutive photons work well from the point of view of NNLL level as well. The acoplanarity
plots presented in the previous paper [13] also demonstrated some of the NNLL aspect of the
algorithm. That is why we are not going to discuss this point here, but we would rather leave it
to future discussion of the NNLL content of our algorithm: this aspect goes beyond the purpose
of the present paper and the scope of interest of most of PHOTOS users.

Much as is described in the present paper, a new contributionto the PHOTOS correcting
weight would be needed for the NNLL case. However no changes in the phase-space algorithm
would a priori be required. The techniques of gauge-invariant separationof the amplitudes
into parts, as used for instance in ref. [26], will probably be necessary. They proved to be
instrumental in the implementation of the second-order matrix elements fore+e− → νeν̄eγγ
into KKMC. The exclusive exponentiation scheme of the KKMC Monte Carlo is prepared for
s-channel processes.

We have to admit that once the NLO terms are switched on in PHOTOS, the difference
between its results and those of the second-order matrix-element generator KKMC are at the
limit of being recognized, even if samples of 108 events are used. For the case of the two-photon
test, differences due to the missing second-order matrix element in PHOTOS can be observed;
yet they are too small, and don’t have enough structure, to understand their possible origin.
A part of the differences may even originate from the third-order LL terms (after integration),
which are missing in KKMC but generated in PHOTOS in the process of iteration.

In any case, even for PHOTOS running with standard options, the differences affect only
a tiny fraction of theZ decay phase space. Thus, we do not consider it to be of much interest
to continue the discussion of the missing terms. Nevertheless, from a more fundamental side,
we are disappointed by the fact that the comparisons did not provide numerical insight into the
structure of the differences. The particularly interesting aspects of the study in the context of
the extension of the algorithm for QCD did not bring any constructive indications so far.

7. Summary

To quantify the size of the NLL effects, which are normally missing in PHOTOS, we rein-
stalled them back into the program, using the original complete first-order expression forZ
decay. After the NLO correcting weight was installed, the differences between PHOTOS and
KORALZ were below the statistical error of 108 events and for all the distributions used in
the tests. Both PHOTOS and KORALZ were run at fixed first order without exponentiation.
The agreement provided a technical cross-check test for thetwo simulations. For the case of
multiple-photon radiation in PHOTOS, a comparison with theKKMC generator [14] (exponen-
tiation and second-order matrix element used) was performed. The implementation of the NLO
terms in PHOTOS indicated, in the results of our universal test, an improvement by a factor of
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about 50 for the observables sensitive to a single hard photon in the final states and remained at
the level of better than 0.1% on the total rate for all other cases we examined. Because of the
smallness of the residual differences, it was difficult to understand their structure and origin in
the final states with two hard photons.

The improvement in the agreement due to the introduction of the NLO correcting weight
came at a price. Even though the weight is analytically simple and generation of weight 1 events
remained possible, the calculation of the weight required information on Born-level coupling
constants of the intermediateZ/γ∗. Also, the direction of the beam was necessary in the calcu-
lation of the weight. These requirements threatened the modular organization of the PHOTOS
solution, as used in the large Monte Carlo generation chainsof experimental collaborations.
Numerically, the introduced improvements are rather smalland the deficiencies of standard
PHOTOS are localized in the corners of bremsstrahlung phase-space populated by photons of
very high energies and angularily, well separated from the final-state muons. Those regions of
the phase space weigh less than 0.005 to the total rate and thedifferences in that region approach
20% of their size. The effects are thus less than 0.1% of the total rate of theZ decay to muons.
That is why we do not think it justified to complicate the PHOTOS algorithm and to enable the
use of the NLO correcting weight in the general case.

The analysis presented here concentrates not only on the numerical results for the final-
state bremsstrahlung inZ decay, but also on various aspects of a mathematical organization
of the program for calculation of radiative corrections inZ production and decay. Separation
of radiative corrections into parts: (i) embodied in effective couplings of the hard-scattering
process, (ii) final-state QED bremsstrahlung, and (iii) initial-state bremsstrahlung, eventually
with initial-state hadronic interactions, were mentionedas well. The effects of QED initial–
final-state bremsstrahlung interference were to a large degree neglected. Such an approach is
reasonable in the leading-pole approximation for theZ, but at a certain precision level the effects
may need to be taken care of. For the time being the results of ref. [27] can be used instead.

Thanks to the analytic form of the kernel used in PHOTOS for the single-photon emission,
the analysis presented here may easily be extended to other decay channels, if high precision
is required and a calculation of matrix element is available. The study for the case ofB meson
decay into a pair ofπ±(K±) is near completion [28]. In this case the questions of reliability of
scalar QED for the calculation of photons of highpT , with respect to charged scalars, need to
be addressed. A natural extension of the study of the systematic error in PHOTOS simulations,
as presented here, would be the discussion of bremsstrahlung in W and Higgs boson decays.

The decays of theW and Higgs bosons are probably the only ones where formal studies of
the NL terms, similar to the ones presented in this paper, canbe performed. As was the case
with Z decays, those cases will also be limited to the leading-poleapproximation.

For other decay channels, the correction weight can be applied as well; however, in most
cases the part of the weight going beyond soft and/or collinear regimes may need to be con-
structed with the help of the fits to the data. Let us stress that the unique design of PHOTOS,
enabling the use of the same kernel for multiple-photon radiation (exponentiated) mode and at
fixed first, second, third, and fourth orders, establishes a convenient environment for such fits of
form factors to the data. At the same time the analytical formof these form factors can be taken
from the first-order analytic calculations based on effective theory, or from any other model.
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On the technical level it is worth mentioning that the NLO correcting weight of PHOTOS
can be used as an internal correcting weight.

Finally, let us stress that the approximations introduced in PHOTOS affect the matrix el-
ements and not the phase space. The generation of the latter is based on the tangent space
constructed from eikonal approximation but used also for hard photons, even of energies above
the available maximum enforced by energy–momentum conservation. Only in the second step
are phase-space constraints enforced. This is similar to the case of the classical exclusive expo-
nentiation. The energy momentum constraints are introduced for each individual photon, step
by step, and conformal symmetry is not used in that procedure.

In principle, if necessary, complete higher-order matrix elements can be incorporated with
the help of correcting weights. This point goes beyond the scope of the present paper. This is
equally true for the possible extensions to simulations in QCD.
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