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Abstract

We demonstrate a new isotope-selective system to measure low energy charge transfer
collisions between ytterbium ions and atoms in the range of collisional energy from
2.2×10−5 eV to 4.3×10−3 eV, corresponding to effective temperature from 250 mK to
50 K. The charge transfer collisions are observed by spatially overlapping the 172Yb+

ions in the surface-electrode trap and 174Yb atoms in the magneto-optical trap, and
measuring ion loss. We confirm that, in the Langevin regime, the charge transfer
collisional rate is independent of the collisional energy. The measured Langevin cross
section is consistent with a theoretical value for the ytterbium atomic polarizability
of 143 a.u., as calculated by Zhang and Dalgarno [1].
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Chapter 1

Introduction

In modern cold atom experiments, one of the most widely used cooling techniques

besides laser cooling is the so-called sympathetic cooling wherein particles of one

type cool particles of another type by elastic collisions between the two species. This

approach has been used to realize Bose-Einstein condensation using a buffer gas

[5, 6]. Sympathetic cooling could also be very important for quantum computation

experiments with cold ions. Here, it is important not to disturb the internal state

of the ions which we prepare for the quantum gate operations. One way to achieve

this is to have additional “refrigerator” ions or atoms which can be directly laser

cooled, and then use them to sympathetically cool the main ions in the trap. The

sympathetic cooling of ions with atoms is made difficult because of the possibility

of inelastic collisions such as charge transfer. Understanding these limitations is an

important step towards better performance of quantum computing experiments with

ions. The goal of this experiment is to provide a step towards better understanding

of atom-ion collisions, especially at low collisional energy relevant to cold atom and

ion experiments since this range of collisional energies has not been achieved in any

previous setup.

Our approach to studying collisions between atoms and ions at low energy is to

confine ytterbium ions and atoms independently and let them interact with each

other. We confine laser-cooled ions using a radio frequency (rf) electric field in a

three-rod linear surface-electrode Paul trap. The atoms are confined in a magneto-

optical trap (MOT). This allows us to attain collisional energies from 4.3×10−3 eV

down to 2.2×10−5 eV.

The open geometry of the surface-electrode Paul trap allows us to easily adjust the

overlap between the ions and atoms, controlling the atomic density seen by the ions.

15



(a) (b)

172Yb+ 172Yb 172Yb+

172Yb+172Yb 172Yb

172Yb

172Yb+

Figure 1-1: Collisions between 172Yb and 172Yb+ with two possible processes: (a)
charge transfer happen; (b) elastic collisions (no charge transfer). Looking at the
outcome, we cannot distinguish (a) from (b).

The position of the MOT is controlled by producing an off-set static magnetic field

in the region around the MOT using a set of biased coils. The position of the ions,

on the other hand, is controlled by applying electric potentials to the small electrodes

around the ion trap. Since we control the positions of the ions and atoms through

different mechanism, their positions can be varied independently of one another.

Our experimental setup also lets us have atoms in the MOT and ions in the

trap of different species. This isotope selectivity is crucial since, as shown in Figure

1-1 and 1-2, charge transfer collisions can be distinguished from elastic (no charge

transfer) collisions only in the case where atoms and ions are of different species. This

robust isotope selectivity lets us study the atom-ion collisions of any combinations

of ytterbium isotopes. The detecting system is designed in such a way that the

fluorescence signal from the ions is lost whenever charge transfer collisions happen.

With this we can measure the ion-atom charge exchange rate at a number of different

effective atom densities.

The ion loss rate directly depends on the charge transfer cross section. At suf-

ficiently low collisional energy, the ion loss rate due to charge transfer collisions is

predicted to be independent of the collisional energy, and directly related to the

atomic polarizability of ytterbium. The goal of our experiment is to confirm that the
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(a) (b)

172Yb+ 172Yb

174Yb 174Yb+

172Yb+

172Yb+174Yb

174Yb

Figure 1-2: Collisions between 174Yb and 172Yb+ with two possible processes: (a)
charge transfer happen; (b) elastic collisions (no charge transfer). In this case, we
can distinguish (a) from (b) by looking at the outcome.

charge transfer collisional rate is indeed independent of the collisional energy. This

also provides a direct way to measure the ytterbium atomic polarizability which will

be compared to the theoretical value calculated by Zhang and Dalgarno [1].

In this thesis, we start in Chapter 2 by developing both the classical and the

quantum theory of charge transfer collisions. The results of the two approaches will

be compared; and the ion loss rate due to charge exchange is derived at the end of

this chapter. In Chapter 3, the theory of laser cooling and trapping of neutral atoms

are presented. Chapter 4 follows Chapter 3 by presenting the trapping mechanism for

ions and our surface-electrode trap geometry. The micromotion energy of the ions,

which is important in adjusting the collisional energy of the ions, is discussed at the

end of this chapter. All components in our experiment are put together in Chapter 5.

Chapter 6 shows the measurements and data analysis of the atomic polarizability of

ytterbium. The result will be presented at the end of this chapter. Finally, Chapter

7 summarizes the experiment and discusses some of the possible future work.
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Chapter 2

Atom-Ion Collision Theory

Atom-ion collisions can generally be divided into two categories. The first one is

normal elastic collisions where there is no change in internal structures of the colliding

particles. Normally we denote this type of reaction by

A+B → A+B. (2.1)

In reality, this is not the only possible outcome of the collisions. We cannot ignore the

interaction between the two colliding particles besides mutual long-range interaction.

For example, an electron from particle A might hop to particle B provided that A and

B are close enough to each other. This change in internal structure after collisions is

generally referred to as inelastic collisions, which is the second category of atom-ion

collisions. In our discussion we are particularly interested in the case where there is

a possibility that an electron from an atom hops to an ion. This is denoted by

A+ +B → A+B+ (2.2)

for different ions and atoms, or

A+ + A→ A+ A+ (2.3)

for ions in their parent gases.

Charge transfer can happen through either inner-core collisions or tunneling of

an electron. The first process is well-described by the classical theory of scattering.

The second process can be described only by resorting to quantum mechanics. The

goal of this chapter is to discuss and obtain the expression of the cross section for

19



charge transfer collisions. We begin by presenting the classical theory of scattering

and derive the Langevin cross section. The quantum mechanical treatment is then

discussed by first looking at the electronic structure of a simple molecule. Then the

partial wave analysis is briefly summarized by before we derive the charge transfer

cross section for both inner-core collisions and tunneling, which are the case for low

and high collisional energy, respectively. We will see that both classical and quantum

mechanical treatments give the same result for the inner-core collisions. Finally we

derive the ion loss rate under charge transfer collisions.

2.1 Classical Theory for Polarization Field: Langevin

Cross Section

We first look at the problem using classical mechanics and electromagnetic theory.

Polarization potential which describes the interaction between atoms and ions will be

derived first. Then we will see how such potential influences the trajectories of the

particles in the scattering problem.

2.1.1 Atom-Ion Polarization Potential

Although a neutral atom has no charge, as its name implies, an atom in electric

field will have an induced dipole moment (or higher induced multipole moments).

Normally, we can write

~p = α~E (2.4)

where ~p is the induced dipole moment, α is the atomic polarizability, and ~E is the

electric field. Generally α is a tensor quantity. In our case, we can write it in the

form of vector because the ground state of ytterbium atom or ion has a spherical

symmetry.

Consider a system of one atom and one ion both with mass m. In our system, we

can restrict ourselves to a singly ionized ion; so its charge is simply +e. Let ~ra and ~ri

be position vectors of the atom and ion, respectively, as in Figure 2-1. The electric

field produced by the ion at the atom is given by

~E(~ra, ~ri) =
e

4πεo

~ra − ~ri
|~ra − ~ri|3 (2.5)

20



!ri
!ra

!ra − !ri

atom

ion

Figure 2-1: System of a pair of atom and ion.

where εo is the permittivity in vacuum. The induced dipole moment of the atom is

now given by

~p(~ra, ~ri) = α~E(~ra, ~ri) =
eα

4πεo

~ra − ~ri
|~ra − ~ri|3 . (2.6)

We assume that the electric field of the ion seen by the atom is uniform throughout

the volume of the atom.1 The electric field due to an induced atomic dipole can be

written as
~Edip(~r) =

1

4πεo

1

r3
(3(~p · r̂)r̂ − ~p) (2.7)

where ~r is the position vector pointing from the position of the atom. In order to see

the mutual potential between the ion and atom, we set ~ra = 0 and let ~r = ~ri. This is

to put the atom at the origin and consider only the distance between the two, which

now depends only on ~ri. With these conditions, (2.6) and (2.7), we can write the

electric field of the dipole seen by the ion as

1This is generally called the dipole approximation.
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~Edip-ion(~ri) =
1

4πεo

1

|~ri|3 (3(~p(~ri) · r̂i)r̂i − ~p(~ri))

= − eα

(4πεo)2

1

|~ri|3 (3(
~ri
|~ri|3 · r̂i)r̂i −

~ri
|~ri|3 )

= − eα

(4πεo)2

2

|~ri|5 r̂i. (2.8)

Then the force on the ion is simply

~Fdip-ion(~ri) = − e2α

(4πεo)2

2

|~ri|5 r̂i. (2.9)

Notice that the sign of the force is negative. This indicates that the force between

the atom and ion is attractive. The potential energy can be calculate according to

the definition

Udip-ion(r) =

∫ ∞
r

~Fdip-ion(~ri) · d~ri

=

∫ ∞
r

− e2α

(4πεo)2

2

|~ri|5 r̂i · d~ri

= − 2e2α

(4πεo)2

∫ ∞
r

1

|~ri|5dri

= − e2α

32π2ε2o

1

r4
. (2.10)

The polarization potential between the atom and ion is described by an inverse-

fourth-power interaction. Following the guideline in the appendix, this potential can

be written in atomic units as

Udip-ion(r) = −e
2α

2r4
. (2.11)

For most atoms, and especially for ytterbium, α is positive. This provides an attrac-

tive potential between ions and atoms.

2.1.2 Classical Atom-Ion Scattering Problem

Any classical scattering problem with central force can be analyzed easily using the

standard treatment in any classical mechanics textbook [7]. For reference, we will
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repeat the main results without going into many details.

Distance of Closest Approach

In any two-body collisions, we can reduce the problem to one body in the center of

mass frame and use instead the reduced mass, µ, defined as

1

µ
=

1

m1

+
1

m2

, (2.12)

where m1 and m2 are the masses in the system. In this reduced problem, the posi-

tion coordinate, r, is the separation between the two particles. Let us consider the

situation in Figure 2-2-a. Let us place the atom at the origin and consider an ion

approaching from a large distance. The impact parameter is given by b, and the

relative velocity of the ion at infinity is given by vi. If b is not too small, the ion will

follow a trajectory similar to that in Figure 2-2-a. The distance of closest approach,

rc, is the distance between the ion and the origin at the point where the velocity

vector and the position vector of the ion from the atom are perpendicular. Using the

conversation of mechanical energy, we arrive at the first condition:

1

2
µv2

i =
1

2
µv2

c −
kα

r4
c

, (2.13)

where µ, again, is the reduced mass, vc is the relative velocity at the point of closest

approach, and k = e2/32π2ε2o. Since the potential in our problem is central, we arrive

at the second condition using the conservation of angular momentum around the

point of the atom:

µvib = µvcrc. (2.14)

Under these two conditions, by eliminating vc, we get

r4
c − b2r2

c +
2kα

v2
i µ

= 0. (2.15)

Then,

r2
c =

b2 ±√b4 − 8kα/v2
i µ

2
. (2.16)

Let us now assume that the term under the square root is positive. We will come

back to the case where it is negative later. Now we can take square root of the whole
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expression again. Using the condition that rc cannot be negative, we arrive at

rc =
b√
2

[
1±

√
1− 8kα

b4v2
i µ

]1/2

. (2.17)

What is left to be decided is the “±” sign in front of the square root. Suppose the

atom has negative polarizability, i.e., α < 0, then the square root term is larger than

one. Since rc has to be real, then we can simply choose “+” in front of the square

root. However, this is not necessary for α > 0 because both signs give a real value

of rc. But suppose you have an ability to “tune” the polarizability gradually and

continuously from negative value to zero and eventually to positive value (going from

Figure 2-2-c to 2-2-b and then 2-2-a). In this case you are also tuning the value

of rc. Our physical reasoning says that there is no reason for a discontinuity when

going from negative α to positive α. Mathematically, drc/dα must be finite at α = 0.

Hence, we can safely say that for any value of α, the closest distance between the ion

and atom is given by 2

rc =
b√
2

[
1 +

√
1− 8kα

b4v2
i µ

]1/2

. (2.18)

Charge Transfer Process

If the ion is close enough to the atom, a valence electron of the atom will have a

probability of jumping to the ion. This charge transfer process can happen if the

distance between the atom and ion is closer than the threshold distance, rt. From

(2.18), we can immediately see that rc cannot be smaller than b/
√

2 for any given vi.

If rt is larger than b/
√

2, charge transfer can happen. What if rt is less than b/
√

2?

Let us look at (2.18) more closely. We have assumed that the term under the square

root is positive. What does it mean if it is negative, i.e.,

8kα

b4v2
i µ

> 1, (2.19)

which is the condition when rc has no real root? In this case, there is no closest

distance between the atom and ion and there is no point along the trajectory that

2We can also obtain the expression for the distance of closest approach by looking at the effective
potential and calculate the turning point of the projectile in that potential.
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(a) (b) (c)

Figure 2-2: Atom-ion scattering with (a) positive atomic polarization (attractive
potential), (b) zero polarizability and (c) negative polarizability (repulsive potential)
at a fixed value of impact parameter, b. As we tune the value of α from negative to
positive (from (c) to (a)), the distance of closest approach, rc, must be continuous.
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vi

b0

rt

b0/
√

2

Figure 2-3: Selected trajectories of various impact parameters. The critical impact
parameter, b0, is given as a function of vi.

gives ~v · ~r = 0. If the atom has no internal structure, and our particles have no size,

then the ion will spiral into the atom with the limit of the trajectory approaching the

origin.3 However, atomic internal structure will eventually push the ion outwards,

and prevent the head-on collisions between the ion and atom.

If rt, the threshold distance for charge transfer process, is less than b/
√

2, then

the only way that the ion can get to this threshold distance is to follow the spiral

path. Namely, for any given vi, the impact parameter of the ion must be less than a

critical value, b0, where, from (2.19),

b4
0 =

8kα

v2
i µ
. (2.20)

Charge Transfer Cross Section

In the collisions at low temperature, vi is always low enough such that b0/
√

2 is a lot

greater than rt. As in Figure 2-3, as long as the impact parameter is less than b0,

it is guaranteed that the ion will reach the threshold distance rt. The cross section

3Note that conservation of angular moment prevents the ion from passing the origin. The limit
of the trajectory, however, is exactly the origin where the atom resides.

26



area where spiral orbits are guaranteed to happen is called the Langevin cross section.

This was first derived by Langevin in 1905 [8]. It is simply given by

σLangevin = πb2
0. (2.21)

For the ion within the threshold value rt, let us denote by pc the probability that

charge transfer happens. We can then take the charge transfer cross section to be

σch = pcπb
2
0 = pcπ

√
8kα

v2
i µ
. (2.22)

We can also write the charge transfer cross section in terms of collisional energy,

Ec = 1
2
µv2

i , as

σch = pcπ

√
4kα

Ec
. (2.23)

If the collisional energy is high, then rt will be greater than b0/
√

2 and we cannot

simply take the charge transfer cross section to be the Langevin cross section. In this

case, the charge transfer cross section is given instead by

σch = (a lnEc − b)2, (2.24)

where a and b are constants [9, 10, 11]. Since the derivation of this expression requires

quantum mechanical formulation, we will discuss this after we present all the relevant

tools in the following sections.

2.2 Molecular Electronic Configuration

To start our discussion of the atom-ion collisions in the quantum mechanical formula-

tion, we first look at the molecular electronic configuration of an atom-ion molecule.

In the simplest case, we have a proton colliding with a hydrogen atom. There are

three particles in the system: one electron and two protons. The usual hydrogenic

wave function might not be adequate to describe the system, since there is an ex-

tra proton in the problem. In this simplest collisional configuration, it is helpful to

understand the nature of molecular structure of a hydrogen molecular ion, H+
2 . The

problem of ytterbium atom-ion collisions can be thought of in the same way, since

the three particles in the system are one electron and two singly ionized ytterbium
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Figure 2-4: Coordinate system for the hydrogen molecular ion.

ions.

2.2.1 The Hydrogen Molecular Ion

Although the two protons in H+
2 are indistinguishable, we assume that we can tell

them apart by assigning labels onto them. Let the two protons be denoted by A and

B. In the center-of-mass frame, the origin is taken to be the mid-point between the

two protons. This frame is, to a very good approximation, an inertial frame since the

mass of an electron is excessively small compared to that of a proton. We denote ~R

to be the vector pointing from A to B, ~r to be the position of the electron relative to

the origin, and ~rA and ~rB to be the relative positions of the electron with respect to

A and B, respectively. This is illustrated in Figure 2-4.

The time-independent Schrödinger equation of this system is given by[
− h̄2

2me

∇2
r −

e2

4πε0

1

rA
− e2

4πε0

1

rB
+

e2

4πε0

1

R

]
Φ = EΦ. (2.25)

Now it is convenient from now on to work in atomic units (see Appendix C). We now

rewrite the Schrödinger equation to be[
−1

2
∇2
r −

1

rA
− 1

rB
+

1

R

]
Φ = EΦ. (2.26)

Let us look closely to the wave function Φ. This wave function actually depends on ~R

and ~r. Those two are the only variables in the system, and ~rA and ~rB can be written
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in terms of ~R and ~r. We can interchangeably write either Φ(~R,~r) or Φ(~rA, ~rB) for the

wave function of the electron.

According to Bransden and Joachain [12], we can now propose that if R = |~R| is

large, i.e., the two protons are very far apart, then the electron will be either attached

to proton A or proton B. If the electron is attached proton A, at large R,

Φ(~R,~r) = ψ1s(rA), (2.27)

where rA = |~rA|, and

ψ1s(r
′) =

1√
π
e−r

′
(2.28)

is the ground state wave function of hydrogen and r′ is the distance between the elec-

tron and the nucleus. Looking at Figure 2-4, we notice that the total wave function,

Φ(~R,~r) must have a symmetry when setting ~r to −~r.4 The wave function ψ1s(rA)

alone does not have that symmetry. We can, however, construct trial wave func-

tions from linear combinations of ψ1s(rA) and ψ1s(rB). The wave function that is left

unchanged under reflection is called “gerade” state, which is given by

Φg(~R,~r) =
1√
2

(ψ1s(rA) + ψ1s(rB)). (2.29)

The wave that changes the sign under reflection is called “ungerade” state, which is

given by

Φu(~R,~r) =
1√
2

(ψ1s(rA)− ψ1s(rB)). (2.30)

Note that these trial wave functions are likely to be true only at large R. However,

we can use them and try to solve for eigenenergies. We now have to evaluate

Eg,u(R) =

∫
Φ∗g,u(~R,~r)HΦg,u(~R,~r)d~r∫ |Φg,u(~R,~r)|2d~r

. (2.31)

Evaluation of the integrals involved is given in Appendix D. The results are

Eg(R) = E1s +
1

R

(1 +R)e−2R + (1− 2
3
R2)e−R

1 + (1 +R + 1
3
R2)e−R

, (2.32)

4In our case where the proton A and B are identical, this is equivalent to flipping the two nuclei.
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Figure 2-5: Plot of effective potential of gerade and ungerade states of hydrogen
molecular ion. Energy and distance are measured in atomic units.

and

Eu(R) = E1s +
1

R

(1 +R)e−2R − (1− 2
3
R2)e−R

1− (1 +R + 1
3
R2)e−R

(2.33)

where E1s is the ground state energy of hydrogen, -13.6 eV or -0.5 a.u. Figure 2-

5 shows the visualization of the energy of the two states with varying distance, R.

Although our calculation is not exact, the exact solution does not depart significantly

from our model of potential curves [12]. We can see quite the distinct characteristic

between gerade and ungerade states. For our case, the ungerade state does not have

any bound state, so the molecule cannot be in this state. Bound states only occur in

the gerade configuration. This energy curve is generally called an effective potential

curve, meaning that it is the potential energy seen by one proton in the function of

separation, R.

From our analysis of hydrogen molecular ion, we would like to motivate ourselves

that the effective potential curve can be written in the asymptotic form at large R,

Vg,u(R) = Vdisp.(R)± Vexc.(R), (2.34)

where “disp.” means “dispersion” and “exc.” means “exchange” potential. The no-
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tions of “gerade” and “ungerade” wave functions are generally a good description for

any molecular orbitals. This form of effective potential curve can also be generalized

to other atom-ion collisions. Our case of the collisions between Yb+ and Yb then can

be discussed in the same way as in the hydrogen molecular ion.

2.2.2 Symmetry in Molecular Orbitals

In specifying the electronic structure of general two-nucleus molecules, we use the

notation similar to what we are used to in atomic physics, namely, 2S+1LJ . Let us

define the z-axis to be the line AB joining the two nuclei in Figure 2-4 and ignore

electron spins for a moment. If L is the total orbital angular momentum of the

electrons, the result from acting the operator Lz on the wave function Φ is

LzΦ = MLΦ,

= ±ΛΦ. (2.35)

where ML = 0,±1,±2... and Λ = |ML| = 0, 1, 2...5 This number Λ is important when

we discuss the azimuthal dependence of the wave function. It appears in the form

of e±iΛφ in the wave function analogous to m, the magnetic quantum number, in

hydrogen wave function. We then assign letters to each value of Λ, namely,

Λ = 0→ Σ

Λ = 1→ Π

Λ = 2→ ∆

Λ = 3→ Φ.

The Hamiltonian of the system is invariant under reflections in all planes contain-

ing AB or the z-axis. Suppose we have an operator Ay which changes y to −y in the

wave function and recall that Lz = −i(x∂y − y∂x), we have

AyLz = −LzAy. (2.36)

This means that for Λ 6= 0, the eigenvalue Λ will be changed to −Λ. These states

where Λ 6= 0 are doubly degenerate since they are the solutions of the same energy

[12].

5Note that we have worked in atomic units and h̄ disappears.
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For Λ = 0 states, simultaneous eigenstates of H,Lz and Ay can be constructed.

Since the eigenvalues of Ay are ±1, we then specify the state Σ to be Σ+ for a

state in which the wave function is left unchanged under reflection through the plane

containing AB and Σ− for the opposite case.

If the two nuclei are the same, then we have to impose a symmetry around point

O in Figure 2-4. This is exactly what we did in the last section. If the wave function

is left unchanged under flipping ~r to −~r around this point, it is called “gerade” state

and we write it as Σg. If it is the opposite case, i.e., flipping ~r to −~r imposes a minus

sign in front of the wave function, then it is called the “ungerade” state and we write

it as Σu. In summary there are four Σ states for homonuclei diatomic molecule: Σ+
g ,

Σ−g , Σ+
u and Σ−u . The following sections will pay close attention to the Σ+

g and Σ+
u

states since they are the main contribution of the charge transfer collisions between

ions and atoms.

2.3 Quantum Scattering Theory

Having obtained the potential curve between two nuclei, we can now turn to the

problem of two-body scattering under any potential. We write a general potential to

be V (R), which depends only the distance R between the two nuclei.

2.3.1 The Asymptotic Stationary Wave Function

In the lab frame, if the position vectors of two nuclei with mass ma and mb are denoted

by ~ra and ~rb, respectively, the Hamiltonian in atomic units is given by

H = − 1

2ma

∇2
ra −

1

2mb

∇2
rb

+ V (~ra − ~rb). (2.37)

We can rewrite everything in the center-of-mass frame by using

~r = ~ra − ~rb, (2.38)

~R =
ma~ra +mb~rb
ma +mb

, (2.39)

M = ma +mb, (2.40)

µ =
mamb

ma +mb

. (2.41)
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The Schrödinger equation now can be written as(
− 1

2M
∇2
R −

1

2µ
∇2
r + V (r)

)
Φ(~r, ~R) = EtΦ(~r, ~R), (2.42)

where Et is the total eigenenergy of the system. We now separate the two uncoupled

coordinates by writing

Φ(~R,~r) = φ(~R)ψ(~r). (2.43)

Now the full Schrödinger equation becomes

− 1

2M
∇2
Rφ(~R) = ECMφ(~R), (2.44)(

− 1

2µ
∇2
r + V (r)

)
ψ(~r) = Eψ(~r), (2.45)

Et = E + ECM . (2.46)

We will carry on our analysis in the center-of-mass frame. We can see that the problem

is reduced to the one-dimensional scattering problem for the relative separation r.

Only now the mass is replaced by the reduced mass, µ. At long distance r, V (r)

should asymptotically tend to zero, and we have

E =
k2

2µ
(a.u.), (2.47)

where k is the wave number defined in SI units to be ~p/h̄ where ~p is the linear

momentum vector. We write the scaled potential to be

U(r) = 2µV (r). (2.48)

Now the Schrödinger equation becomes(∇2
r + k2 − U(r)

)
ψ(~r) = 0. (2.49)

We now propose that at large r, the wave function has the form

ψ(k, ~r)→ A(k)

(
ei
~k·~r + f(k, θ, φ)

eikr

r

)
(2.50)
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where A is independent of r; and θ and φ are parameters in spherical coordinate

defined by taking the z-axis along ~k, the incident wave number. This is valid as long

as V (r) (or U(r)) goes to zero faster than r−1 [13].

2.3.2 Partial Wave Expansion

We now briefly summarize the partial wave expansion method. Let us now write

Schrödinger equation in (2.49) using spherical coordinate. The Hamiltonian operator

(not including the k2 term) is given by

H = − 1

2µ

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

)
+ V (r). (2.51)

The angular dependent part can be rewritten in terms of the angular momentum

operator, L.6 We can now write

H = − 1

2µ

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L2

r2

)
+ V (r). (2.52)

It is then natural to try to write the wave function in (2.49) to be the expansion of

spherical harmonics, i.e.,

ψ(k, ~r) =
∞∑
l=0

+l∑
m=−l

clm(k)Rlm(k, r)Ylm(θ, φ), (2.53)

where Rlm(k, r) satisfies the radial equation

− 1

2µ

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2

)
Rl(k, r) + V (r)Rl(k, r) = ERl(k, r). (2.54)

We drop the subscript m because there is no m dependence in the Hamiltonian.

Following the standard approach, we write

ul(k, r) = rRl(k, r), (2.55)

6See Appendix E for details on the angular momentum operator and the spherical harmonics.
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and obtain (2.49) in the form(
d2

dr2
+ k2 − l(l + 1)

r2
− U(r)

)
ul(k, r) = 0. (2.56)

We now look at the region where r is very large such that we can ignore the potential

term, U(r). Our radial equation becomes(
d2

dr2
+ k2 − l(l + 1)

r2

)
ul(k, r) = 0. (2.57)

The general solution is

u(k, r)→ kr[C
(1)
l (k)jl(kr) + C

(2)
l (knl(kr)], (2.58)

where jl(kr) and nl(kr) are the spherical Bessel and Neumann functions, respectively.

Looking at the asymptotic form of the spherical Bessel and Neumann functions,

jl(x)→ 1

x
sin (x− 1

2
lπ), (2.59)

nl(x)→ −1

x
cos (x− 1

2
lπ), (2.60)

we can write

ul(k, r)→ Al(k) sin (kr − 1

2
lπ + δl(k)), (2.61)

with

Al(k) =

√
[C

(1)
l (k)]2 + [C

(2)
l (k)]2 (2.62)

and

tan δl(k) = −C
(2)
l (k)

C
(1)
l (k)

. (2.63)

Let us now return to our asymptotic wave function in the previous section. Again,

we have, at large r,

ψ(k, ~r)→ A(k)

(
ei
~k·~r + f(k, θ, φ)

eikr

r

)
(2.64)
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and we take the expansion of the exponential term by writing

ei
~k·~r = eikz =

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ), (2.65)

where Pl(cos θ) is the Legendre polynomials. With the definition of the spherical

harmonics given in Appendix E, we have

Pl(cos θ) =

√
4π

2l + 1
Yl,0(θ, φ). (2.66)

Now we substitute these expressions into (2.64), using the asymptotic form of the

spherical Bessel functions, and obtain

ψ(k, ~r)→ A(k)

(
∞∑
l=0

(2l + 1)il
sin(kr − lπ/2)

kr
Pl(cos θ) + f(k, θ, φ)

eikr

r

)
,

→ A(k)

(
∞∑
l=0

(2l + 1)il
ei(kr−lπ/2) − e−i(kr−lπ/2)

2ikr

√
4π

2l + 1
Yl,0(θ, φ)

+f(k, θ, φ)
eikr

r

)
. (2.67)

We now want to compare this expression to

ψ(k, ~r) =
∞∑
l=0

+l∑
m=−l

clm(k)Rlm(k, r)Ylm(θ, φ).

By using the fact that Rlm(k, r) = r−1ul(k, r) for large r and (2.61), we have

ψ(k, ~r) =
∞∑
l=0

+l∑
m=−l

clm(k)Al(k)
ei(kr−lπ/2+δl) − e−i(kr−lπ/2+δl)

2ir
Ylm(θ, φ). (2.68)

By comparing the coefficients of the incoming wave (the e−ikr terms) of (2.67) and

(2.68), we have

clm(k) = (2l + 1)
A(k)

kAl(k)

√
4π

2l + 1
ile(iδl)δm,0. (2.69)
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By matching the outgoing wave (the eikr terms) we arrive at

f(k, θ) =
1

2ik

∞∑
l=0

(2l + 1)(e2iδl(k) − 1)Pl(cos θ). (2.70)

The total wave function now can be written in the following form:

ψ(k, ~r)→ A(k)

(
ei
~k·~r + f(k, θ, φ)

eikr

r

)
→ A(k)

(
ei
~k·~r +

1

2ik

∞∑
l=0

(2l + 1)(e2iδl(k) − 1)Pl(cos θ)
eikr

r

)
. (2.71)

This form will be useful in the next section when we try to calculate total cross

section.

2.3.3 Scattering Cross Section

We now follow the argument by Griffith [14] to determine the scattering cross section.

The quantity f(k, θ, φ) is usually called the scattering amplitude for a reason. This

amplitude tells us the probability of scattering in a given direction θ. Let us have a

small area dσ that the incident particles hit during the time dt and at velocity v, and

the probability of that this event will happen is given by

dP = |ψincident|2dV = |A(k)|2(vdt)dσ. (2.72)

These particles will undergo scattering and later they will be emerging at the corre-

sponding solid angle dΩ with the same probability–only now it can also be written

as

dP = |ψscattered|2dV =
|A(k)|2|f(k, θ, φ)|2

r2
(vdt)r2dΩ. (2.73)

It then, by equating the two probabilities, follows that

dσ = |f(k, θ, φ)|2dΩ. (2.74)

So the total cross section is given by

σt =

∫
|f(k, θ, φ)|2dΩ. (2.75)
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We can use (2.70) and try to calculate the total cross section. The integral that

we need to evaluate is

σt =

∫
|f(k, θ, φ)|2dΩ,

=

∫
| 1

2ik

∞∑
l=0

(2l + 1)(e2iδl(k) − 1)Pl(cos θ)|2dΩ,

= 2π

∫ θ=2π

θ=0

1

k2

∞∑
l=0

∞∑
l′=0

(2l + 1)(2l′ + 1)ei(δl(k)−δl′ (k))

× sin δl(k) sin δl′(k)Pl(cos θ)Pl′(cos θ) sin θdθ. (2.76)

We use the orthogonality of the Legendre polynomials∫ cos θ=1

cos θ=−1

Pl(cos θ)Pl′(cos θ)d cos θ =
2

2l + 1
δll′ . (2.77)

By doing the integration inside the summation, we arrive at the well-known expression

σt(k) =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl(k) =
∞∑
l=0

σl(k), (2.78)

where

σl(k) =
4π

k2
(2l + 1) sin2 δl(k) (2.79)

is the scattering cross section for individual scattering channel for each l. The total

cross section is simply the sum of the independent contributions from each scattering

channel.

2.4 Charge Transfer Scattering Cross Section

We now turn our attention to the charge transfer collision. Recall that the reaction

can be written as

A+ +B → A+B+. (2.80)

We keep the label A and B to keep them distinguishable. From our discussion of

the molecular orbitals in the previous sections, let us assume that there are only two

solutions to the Schrödinger equation of the system (the so-called two-state approx-

imation [11]): The wave function Ψg(r), corresponding to the potential of the Σ+
g
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state; and Ψu(r), corresponding to the potential of the Σ+
u state.

After we solve the scattering problems of these two states, we arrive at the asymp-

totic form similar to what we saw before, only now we have to write them in terms of

tensor product of the scattered “gerade” and “ungerade” waves and the two “attached

electron” states ψ(rA) and ψ(rB) given in (2.29) and (2.30):

Φg(r)→
(
ei
~k·~r + fg(k, θ)

eikr

r

)
⊗ 1√

2
{ψ(rA) + ψ(rB)}

Φu(r)→
(
ei
~k·~r + fu(k, θ)

eikr

r

)
⊗ 1√

2
{ψ(rA)− ψ(rB)}. (2.81)

If the electron is attached to the nucleus A initially (or to have the incoming wave

purely ψ(rA)), the wave function, ψ(r), that we have to construct from (2.81) is

ψ(r) =
1√
2

(Φg(r) + Φu(r)),

→ 1

2
ψ(rA)ei

~k·~r +
eikr

r

1

2
{(fg(k, θ) + fu(k, θ))ψ(rA)+

(fg(k, θ)− fu(k, θ))ψ(rB)}. (2.82)

The charge transfer scattering amplitude is what reads in front of the term ψ(rB)

because it is when the electron is attached to the nucleus B after collisions. We now

examine the charge transfer scattering amplitude

g(k, θ) =
1

2
(fg(k, θ)− fu(k, θ))

=
1

4ik2

∞∑
l=0

(2l + 1)Pl(cos θ)(e2iδl,g(k) − e2iδl,u(k))

=
1

4ik2

∞∑
l=0

(2l + 1)Pl(cos θ)(e2iδl,g(k) − e2iδl,u(k))

(
e−i(δl,g(k)+δl,u(k))

e−i(δl,g(k)+δl,u(k))

)
=

1

4ik2

∞∑
l=0

(2l + 1)Pl(cos θ)
(ei(δl,g(k)−δl,u(k)) − e−i(δl,g(k)−δl,u(k))

(e−i(δl,g(k)+δl,u(k)))

=
1

2k2

∞∑
l=0

(2l + 1)Pl(cos θ) sin (δg,l(k)− δu,l(k))ei(δl,g(k)+δl,u(k)). (2.83)

We can then calculate the charge transfer cross section in the same way as what we
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did in (2.76) and (2.77). The result is

σch =

∫
|g(k, θ)|2dΩ =

π

k2

∞∑
l=0

(2l + 1) sin2 (δg,l(k)− δu,l(k)). (2.84)

2.4.1 Low Collisional Energy: Langevin Regime

To calculate the charge transfer cross section using (2.84), it is crucial to understand

the behavior of sin2 (δg,l − δu,l) at various collisional energies. Mott and Massey [11]

suggest that there exists a value lmax such that the quantity sin2 (δg,l − δu,l) oscillates

rapidly between 0 and 1 for l < lmax. In this region it is reasonable to replace

sin2 (δg,l − δu,l) by simply 1/2. In the region where the collisional energy is low enough,

we can ignore the contribution from l > lmax. Now the charge transfer cross section

is given by

σch =
π

k2

lmax∑
l=0

(2l + 1)
1

2
=

π

2k2
(lmax + 1)2. (2.85)

Now the maximum angular momentum can be given by the classical angular momen-

tum with the critical impact parameter given in (2.20). We have

lmax + 1 ' lmax ' µvib0. (2.86)

Recalling that k =
√

2µE, we obtain

σch =
1

2
πb2

0 =
σLangevin

2
. (2.87)

Comparing with the classical result in (2.22), the probability of charge transfer, pc,

is 1/2. This is an expected result since for identical or nearly identical atom and

ion, the electron cannot tell them apart and there is 50% chance of choosing to be

bounded onto one of the two sites.

2.4.2 High Collisional Energy

The contribution from l > lmax will become more important at higher collisional

energy because, as we discussed in the previous section, the trajectories which are

not spiral also contribute to the charge transfer cross section through the tunneling

of an electron. Mott and Massey [11] point out that in the region where l > lmax, the

value of (δg,l − δu,l) is small and sin2 (δg,l − δu,l) ∼ (δg,l − δu,l)2. With large value of l,
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we can write (2.84) to be

σch =
π

k2

(∫ L

0

(2l + 1) sin2 (δg,l − δu,l)dl +

∫ ∞
L

(2l + 1)(δg,l − δu,l)2dl

)
, (2.88)

where we have written L = lmax. We now use the result of semiclassical approxima-

tion, and the phase shift can be written as

(δg,l − δu,l) ' −µ
∫ ∞

(l+1/2)
k

Vexc.(r)

(k2 − (l+1/2)2

r2
)1/2

dr (2.89)

where Vexc.(r) is the exchange potential as demonstrated in (2.34)[15]. Generally,

Vexc.(r) is given by

Vexc.(r) = Are−λr, (2.90)

where A and λ are constants.7 With this form of exchange potential, and writing the

impact parameter as b = (l + 1
2
)/k, the integral yields

(δg,l − δu,l) = −Ab
2µ

k

(
K0(λb) +

K1(λb)

λb

)
, (2.91)

where K0 and K1 are the modified Bessel functions of the second kind [16]. We can

use the asymptotic forms of the modified Bessel functions [17],

K0,1(λb) ∼
√

π

2λb
e−λb, (2.92)

and then write

(δg,l − δu,l) = −Ab
2µ

k

√
π

2λb
e−λb(1 +

1

λb
). (2.93)

Let us look at the plot of sin2 (δg,l − δu,l) against b as shown in Figure 2-6. The

region where sin2 (δg,l − δu,l) oscillates rapidly corresponds to the case where the clas-

sical trajectory is spiral (as in Figure 2-3). The value of B, which is chosen to be the

point where we divide the two regions, is, however, somewhat arbitrary. In our case,

we will set B to be the largest b such that sin2 (δg,l − δu,l) = 1/2, i.e., |δg,l−δu,l| = π/4.

7The form of Vexc.(r) = Ce−λr is also possible and will give the same asymptotic form for charge
transfer cross section [16].
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Figure 2-6: Plot of sin2 (δg,l − δu,l) against b. For 0 < b < B, the value of
sin2 (δg,l − δu,l) oscillates rapidly between 0 and 1, so we can use the average value of
1/2. For b > B, we use sin2 (δg,l − δu,l) ∼ (δg,l − δu,l)2 and carry on the integration
given in (2.88).
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From (2.93), we get

AB2µ

k

√
π

2λB
e−λB(1 +

1

λB
) =

π

4
. (2.94)

By using B = (L+ 1
2
)/k and (2.93), the integral in (2.88) becomes

σch =
1

2
πB2 +

π

k2

(
A2µ2π

4λ6

(
7 + 14λB + 14(λB)2 + 8(λB)3 + 2(λB)4

)
e−2λB

)
.

(2.95)

Using (2.94) and keeping only the leading terms, we can write

σch =
1

2
πB2 +

π3B

16λ
=
π

2

(
(B +

π2

16λ
)2 − (

π2

16λ
)2

)
. (2.96)

To solve for B, we can approximate (2.94) by rewriting the expression to be

A2B3µ2π

k2λ
e−2λB =

π2

8
. (2.97)

Since the dominating fast-varying term is e−2λB, we can replace B in front of the

exponential term by a fixed average value which we will denote by B̄ [10].8 We can

now, with k =
√

2µEc, write

B = − 1

2λ

(
lnEc + ln

λπ

4A2B̄3µ

)
. (2.98)

With this and (2.96), we arrive at the expression

σch ' π

8λ2

((
lnEc + ln

λπ

4A2B̄3µ
− π2

16λ

)2

− (
π2

8
)2

)
. (2.99)

To a very good approximation, we can rewrite the expression in the general form

σch ' (a lnEc + b)2, (2.100)

as in (2.24). The plots of charge transfer cross section against collisional energy is

shown in Figure 2-7. The cross section can be divided into two regions: the Langevin

cross section dominated and (a lnEc + b)2 dominated. The plot uses the parameters

8B̄ is the average value of B over different values of k.
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Figure 2-7: Charge transfer cross section against collisional energy in atomic units
from two contributions: Langevin cross section contribution (black) and the long
range re−λr potential (blue).

given for sodium in [15], where the exact calculation of the charge transfer cross

section for Na++ Na is done.

2.5 Ion Loss Rate from Charge Transfer Collisions

Assume that we have a system consisting of 172Yb+ and 174Yb. Despite the fact

that they are different isotopes, we will assume that they are nearly identical and our

assumptions so far are still valid. In other words, when we discuss hydrogen molecular

ion, we assume that the two nuclei are “similar” but “distinguishable” particles by

imposing the “gerade” and “ungerade” symmetries but labeling the two nuclei by A

and B. This is still justified in our discussion of 172Yb+ and 174Yb since the isotope

effect has a very small effect on electronic structure.

Suppose we set up the experiment such that the ions in the confinement will be

lost if charge transfer collisions happen. What we would like to calculate is the total

loss rate of the ions. In the following chapters we will see that the ion density is a lot

lower than atomic density, and atomic motion is a lot slower than ion motion. Let us

denote na to be the density of 174Yb atoms. The charge transfer cross section is σch.
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In time ∆t, an ion with relative velocity vi will sweep a volume

∆V = σchvi∆t. (2.101)

During this time, an ion will encounter Na atoms, where

Na = na∆V = naσchvi∆t. (2.102)

Per unit time, an ion will suffer Γ scattering events. We then have

Γ = naσchvi. (2.103)

For each charge transfer collision event, our experimental setup is designed in a way

that one 172Yb+ ion is removed from the ion cloud. If we have N ions at any time t,

then our rate equation is

dN

dt
= −ΓN = −naσchviN. (2.104)

This is clear that the population of ions, N , will be described by an exponential decay.

Generally,

N(t) = N(0)e−Γt = N(0)e−naσchvit. (2.105)

If we are in the region where the charge transfer cross section is described by the

Langevin cross section, then we have, for our decay constant,

Γ = naσchvi

=
1

2
naπb

2
0vi

=
1

2
naπvi

√
8kα

v2
i µ

=
1

2
naπ

√
4α

µ
, (2.106)

where we have used the fact that k = 1/2 in atomic units. It is important to point

out that the vi dependence in the decay constant vanishes. Now the polarizability,

α, can be measured directly through the decay constant provided that we know the

atomic density, na.

In the actual experiment, however, we do not have a constant atomic nor ion
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density. The atomic and ion densities are given by the profiles specified in three-

dimensional space. We also have different overlaps between the atoms and ions. In

this case, we calculate the average atomic density seen by a single ion using

〈na〉 =

∫∞
−∞ ni(~r)na(~r)dV∫∞
−∞ ni(~r)dV

, (2.107)

where ni(~r) and na(~r) are the density profile of ions and atoms, respectively. Normally,

we can model both ion and atomic density to be the Gaussian function. Actual details

about the estimation of atomic density will be done in the later chapter.
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Chapter 3

Laser Cooling and Trapping of

Neutral Atoms

To perform atom-ion collision experiments at low temperature, it is crucial to have

a way to confine atoms in a finite spatial region and keep them at low temperature.

This is possible through the method of laser cooling and the use of a magneto-optical

trap (MOT), which combines photon-atom interaction with external magnetic fields

and creates a trapping potential. In this chapter we will present a theory behind

laser cooling and MOT. The experimental setup for the MOT in our experiment for

ytterbium will follow. In this chapter we shall again work in atomic units unless

noted.

3.1 Light Force on Two-Level Atoms

In our discussions we can treat any Yb atom to be a two-level atom because the light

that we use to drive the transition is very close to the resonance frequency and we

can ignore the contribution from other energy levels.

3.1.1 Radiation Pressure

Radiation pressure on an atom can be understood easily by considering a two-level

atom. Let us denote the ground state of the atom to be |g〉 and the excited state to

be |e〉. The energy splitting between the two levels is given by ω0. The idea behind

radiation pressure is that an atom will absorb a photon when the frequency of a

photon, ω, is very close or equal to ω0 in the atomic frame. Since a photon carries
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momentum of ω/c where c is the speed of light in vacuum, conservation of momentum

requires that the momentum of an atom changes in the direction of the propagation

of a photon. An atom will eventually emit a photon and be back to its ground state

again, but this time there is no preferred emitting direction so the net momentum

change will be in the photon direction before it is being absorbed by an atom. The

following treatment is a general one suggested by [18].

Consider an interaction of a two-level atom with a plane monochromatic wave.

The electric field is given by

~E(~r, t) = ~E0e
−i(~k·~r−ωL)t, (3.1)

where ωL is the frequency of the driving electric field. The Hamiltonian of the system

can be written as

Ĥ =

(
ω0 −~d · ~E(~r, t)

~d · ~E∗(~r, t) 0

)
, (3.2)

where ~d is the matrix element of a dipole operator, D̂, between |e〉 and |g〉, namely,

~d = 〈e| D̂ |g〉 = 〈g| D̂ |e〉∗ . (3.3)

We can solve the time evolution of the density matrix operator, ρ̂, using

i
dρ̂

dt
= [Ĥ, ρ̂], (3.4)

where

ρ̂ =

(
ρee ρeg

ρge ρgg

)
. (3.5)

We then obtain

dρee
dt

= i~d · ~E0e
−i(~k·~r−ωL)tρge − i~d · ~E0e

i(~k·~r−ωL)tρeg, (3.6)

dρeg
dt

= −iω0ρeg + i~d · ~E0e
−i(~k·~r−ωL)t(ρgg − ρee), (3.7)

dρgg
dt

= −dρee
dt

, (3.8)

dρge
dt

=

(
dρeg
dt

)∗
. (3.9)

We add the coupling to the empty modes of vacuum by simply adding the decay
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constant, Γ, which denotes the life time of the |e〉 state. With this modification, we

arrive at the optical Bloch equation

dρee
dt

= −Γρee + i~d · ~E0e
−i(~k·~r−ωL)tρge − i~d · ~E0e

i(~k·~r−ωL)tρeg, (3.10)

dρeg
dt

= (−iω0 − Γ

2
)ρeg + i~d · ~E0e

−i(~k·~r−ωL)t(ρgg − ρee). (3.11)

Let us introduce the detuning parameter, ∆ = ωL − ω0. From these equations, we

can look for the steady state of the density matrix. We will arrive at

ρeg = i
~d · ~E0e

−i(~k·~r−ωL)t/h̄

i∆ + Γ/2
(1− 2ρee), (3.12)

ρee =
s0

2(s0 + 1)
, (3.13)

where

s0 =
2|~d · ~E0|2

∆2 + Γ2/4
(3.14)

is the saturation parameter.

We now introduce the force operator:

F̂ = −∇rĤ. (3.15)

The expectation value of this force operator in the steady state is given by

~f = Tr(ρ̂F̂ ),

= ~k
Γ

2

s0

1 + s0

. (3.16)

This force expression can be viewed as a scattering rate,
(

Γ
2

s0
1+s0

)
, times the momen-

tum transfer, ~k. If an atom is moving at velocity ~v, then the force expression will be

modified according to the Doppler effect. The force is then

~f = ~k
Γ

2

s(~v)

1 + s(~v)
, (3.17)

where

s(~v) =
2|~d · ~E0|2

(∆− ~k · ~v)2 + Γ2/4
. (3.18)
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Figure 3-1: One-dimensional doppler cooling.

Note that our analysis holds as long as we are in the region where the recoil velocity

is very small compared to the line width of the transition, namely,

k2

m
� Γ. (3.19)

where m is the atomic mass.

3.1.2 Doppler Cooling

Consider now the situation in Figure 3-1 where we consider the one-dimensional case.

We have counter-propagating laser beams of the same detuning, ∆. The total force

on the atom is given by the interactions with the two beams

f(v) = kΓ

(
|~d · ~E0|2

(∆− kv)2 + Γ2/4
− |~d · ~E0|2

(∆ + kv)2 + Γ2/4

)
, (3.20)

with the fact that the saturation parameter is a lot less than one, s � 1. At low

velocity, we can approximate the force expression to be

f(v) = −γv = −
(−2k2s0∆Γ

∆2 + Γ2/4

)
v. (3.21)

The force is a damping force if ∆ is negative. This is the case where we have a

red-detuned laser. This damping force will result in cooling of the atoms. This is the

so-called Doppler cooling since it arises from the Doppler effect.

Despite the Doppler cooling, the atoms will receive two random momentum kicks
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of |~p| = |~k| each time the scattering event happens: one from absorption and another

from emission. The net change in the energy due to this heating mechanism is given

by
d

dt
〈E〉heat ' 2× k2

m

Γ

2

s0

1 + s0

, (3.22)

where the “2” in front came from the fact that we have two laser beams and m is the

atomic mass. Now the cooling rate is simply given by the power done by the cooling

force

d

dt
〈E〉cool = f · v

'
(−2k2s0∆Γ

∆2 + Γ2/4

)
v2. (3.23)

At equilibrium, the heating rate balance the cooling rate. We then have

d

dt
〈E〉cool =

d

dt
〈E〉heat(−2k2s0∆Γ

∆2 + Γ2/4

)
v2 = 2

k2

m

Γ

2

s0

1 + s0

.

With s0 � 1, we arrive at

1

2
mv2 = −1

4

∆2 + Γ2/4

∆
. (3.24)

The detuning ∆ that will minimize this expression is ∆ = −Γ/2. We then have

1

2
mv2 =

Γ

4
. (3.25)

This is the lowest kinetic energy of atoms under the Doppler cooling. In our case, we

have the relationships between the mean kinetic energy and temperature as

〈Ek〉 =
1

2
mv2 =

1

2
kBT. (3.26)

We then define the Doppler limit temperature to be

TD =
Γ

2kB
=

Γh̄

2kB
(SI) . (3.27)

Note that the Doppler limit depends only on the line width of the transition. For
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Figure 3-2: General configuration of magneto-optical trap.

1S0 →1 P1 transition of Yb, the line width, Γ, is 2π × 28 MHz giving the Doppler

temperature to be TD = 690µK [19].

3.2 Magneto-Optical Trap

The light force expression (3.21) is a frictional force. Hence, it is not restorative.

The mechanism of the magneto-optical trap is to apply a magnetic field gradient in

a way that the interaction between atoms and magnetic field will push them back to

an equilibrium point.

Without loss of generality, we now consider the problem to be one-dimensional.

Suppose we have a magnetic field that is linear in z, namely,

~B = zB′z êz. (3.28)

where B′z is the field gradient in the z direction. This magnetic field configuration

can be generated by a pair of anti-Helmholtz coils. The quantitative analysis of the

magnetic field produced by the anti-Helmholtz coils can be found in [3]. The 1P1

level will split due to its magnetic quantum number. The splitting depends linearly

on | ~B|. Figure 3-2 shows how the energy level depends on the position z. Now imagine
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that we have a right circularly polarized (σ+) light coming from the left, and a left

circularly polarized light (σ−) coming from the right. Because each photon carries

angular momentum of 1 for σ+ light and −1 for σ− light, the atom displaced to the

left (relative to z = 0) will preferentially absorb the σ+ light since the scattering rate

from σ− light is a lot smaller. The light radiation pressure will push the atom back

to the origin. If the atom is displaced to the right, it will preferentially absorb σ−

light. Again, the light radiation pressure will push the atom back to the origin.

To view this quantitatively, let us look at the position dependence of the detuning

of the laser. In Figure 3-2, at z = 0 assuming that the atom is at rest, the only

detuning is from the laser detuning, ∆. Because of the Zeeman shift, the additional

detuning, δ(z), is from the splitting of the energy level between m = ±1 states and

m = 0 state. We can write

±δ(z) = ±gµBB(z)

h̄
(SI) = ±gB(z)

2
(a.u.) , (3.29)

where µB is the Bohr magneton and g is the Landé g-factor [20]. The sign in front of

the expression depends on whether the light is σ+ or σ−. Now we can write the light

force analogous to (3.20),

fB(z) = kΓ

(
|~d · ~E0|2

(∆ + δ(z))2 + Γ2/4
− |~d · ~E0|2

(∆− δ(z))2 + Γ2/4

)
. (3.30)

With the same approximation we did before, we have

fB(z) = −kΓ

(
2s0∆δ(z)

∆2 + Γ2/4

)
. (3.31)

We now substitute δ(z) from (3.29) and get

fB(z) = −kΓ

(
2s0∆(gB(z)/2)

∆2 + Γ2/4

)
= −kΓ

(
s0∆gB′z

∆2 + Γ2/4

)
z. (3.32)

Clearly we have here a restorative force that will push back the atoms towards the

origin. Our analysis here can be extended to three-dimensional case and it is straight-

forward since all directions are independent of each other.
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Chapter 4

Trapping of Ions

In this chapter we turn our attention to the trapping of ions. Because ions are charged,

they can be confined in a spatial region using the Coulombic interaction. Although

Laplace’s equation prevents us from having a trapping potential in free space with only

electrostatic interactions, we will see that modulating electric fields at radio frequency

(rf) creates a trapping pseudopotential, in which we can successfully tightly confine

ions in free space. The theory of the linear rf-Paul trap will be presented. Then the

discussion of micromotion energy, which is important in our collision experiment, will

follow. In the last section we will show our planar trap geometry, the experimental

procedure and the results of ions produced and trapped.

4.1 General Trapping Mechanism

The idea behind ion trapping is the generation of a pseudopotential from external

perturbation. One classic example is the so-called Kapitsa pendulum [21]. Imagine a

charged bead on a circular ring as in Figure 4-1. Normally, the motion of the bead

will be that of a simple pendulum. If we apply a small external electric field at an

appropriate frequency, amplitude and phase, then it can be shown that the point on

the top of the ring is also a stable point. The idea of using these principles to trap

ions was proposed by Wolfgang Paul in 1950s.1 In 1989, Wolfgang Paul and Hans G.

Dehmelt were awarded the Nobel Prize in Physics from their works on ion traps.2

1Hans G. Dehmelt was involved in the so-called Penning trap where the trapping mechanism is
different from the Paul trap.

2Norman Foster Ramsey was also a co-recipient for his work on atomic clock and the so-called
Ramsey method.
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Figure 4-1: Kapitsa pendulum. If we choose the phase and frequency of ~E right, then
we will have another stable point on the top of the ring.

4.1.1 Linear Paul Trap

The so-called Paul trap has many configurations. Although what we use in the

experiment is a planar three-rod trap, it is more illuminating to discuss the usual

four-rod trap in this section. Once we have the basic idea of its mechanism, then the

three-rod trap can be understood in the same manner.

A usual four-rod trap is shown in Figure 4-2 (a). We apply an alternating rf

potential in a form of

V (t) = ±(V0 + V1 cos (Ωt)) (4.1)

where V0 is a DC-offset voltage, V1 is the rf amplitude and Ω is the driving rf frequency.

Because the rods’ shape approximates closely the quadrupole equipotential surface,

it can be shown that the potential near the trap center is

Φ(x, y, t) = (V0 + V1 cos (Ωt))
x2 − y2

R2
, (4.2)

where we use the coordinate system shown in Figure 4-2 (b).

The endcaps held at potential U0 will create a static potential near the center of

the trap given by

U(x, y, z) =
κU0

Z2
0

[z2 − 1

2
(x2 + y2)], (4.3)

where κ is a geometrical factor, Z0 is the distance between the endcaps or the length

of the rods [22]. Combining these two potentials at the center of the trap, the electric
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Figure 4-2: Four-rod Paul trap. (a) Little cylinder at the end of each rod is the place
where we apply the endcap potential to confine the ions axially. (b) The coordinate
system used in our analysis.

field can be calculated by taking the gradient of the sum of the potential. We will

find
~E(x, y, z, t) = −2V1

xx̂− yŷ
R2

cos (Ωt)− κU0

Z2
0

[2zẑ − xx̂− yŷ]. (4.4)

Suppose we have a single ion at the trap center with mass m and charge Q. We will

have a set of equation of motion in the following form:

üi + [ai + 2qi cos (Ωt)]
Ω2

4
ui = 0, (4.5)

where

~u = uxx̂+ uyŷ + uz ẑ (4.6)

is the position vector of the ion measured from the center of the trap, and

ax = ay = −1

2
az = − 4QκU0

mZ2
0Ω2

(4.7)

and

qx = −qy =
4QV1

mR2Ω2
, (4.8)

qz = 0. (4.9)
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Figure 4-3: Sample trajectory of the ion in the trap plotted in arbitrary units. Note
that it can be separated into the the fast “micromotion” and the slow “secular”
motion. For this plot ωi/Ωi = 0.03.

The differential equation (4.5) is the so-called Mathieu equation, where the stability

of the solutions depends on ai and qi. The first stability region requires qi < 0.908 [3].

However, in our case, we will assume that |ai| � 0 and |qi| � 0, and these conditions

will ensure that we have stable solutions for the Mathieu equation. The first-order

solution is given by

ui(t) ∼ u0i cos (ωit+ ηi)
(

1 +
qi
2

cos (Ωt)
)
, (4.10)

where ωi is a slower angular frequency which depends on Ω, ai and qi. Typically in

our experiment, ωi/Ω will be around 0.1 or lower [2]. Figure 4-3 shows the plot of

ui(t) in some sample ai and qi parameters. The trajectory of the ion can be divided

into the fast “micromotion” and the slow “secular” motion. We then call ωi to be

the secular frequency. Note that for z-axis, since qz = 0, we do not have any driven

micromotion in this direction.

To derive a general secular pseudopotential, let us look at (4.5) again. We can

write the position of the ion to be the sum of the secular motion and the micromotion,
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i.e.,

ui = umicro + usecular. (4.11)

Now (4.5) becomes

ümicro + üsecular = −[ai + 2qi cos (Ωt)]
Ω2

4
(umicro + usecular). (4.12)

Since ümicro � üsecular and umicro � usecular because of the difference in scale, we have

ümicro = −[ai + 2qi cos (Ωt)]
Ω2

4
usecular. (4.13)

We can now use the fact that the micromotion is a driven motion, i.e., ümicro =

−Ω2umicro, and arrive at

Ω2umicro = [ai + 2qi cos (Ωt)]
Ω2

4
usecular. (4.14)

Substituting this expression back into (4.12) yields

üsecular = − (ai + 2qi cos (Ωt))2 Ω2

16
usecular. (4.15)

Using 〈cos (Ωt)〉 = 0 and 〈cos2 (Ωt)〉 = 1/2, we have

üsecular = − (a2
i + 2q2

i

) Ω2

16
usecular = −ω2

i usecular. (4.16)

The secular motion is harmonic with an angular frequency of

ωi =
Ω

4

√
a2
i + 2q2

i . (4.17)

The trap depth, D, can be defined as the energy required for an ion at rest at the

center of the trap to escape the trap [20]. This is simply given by

D =
1

2
ω2
imR

2. (4.18)

4.1.2 Three-Rod Paul Trap

A four-rod trap limits our optical access to the trapped ions in the center, making it

harder to combine this configuration with a MOT. If we want to gain more accessi-
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bility, or more space for the ions to move around, it is more convenient to use instead

a three-rod configuration.

Basically the three-rod planar trap is constructed by pulling one of the four rods

in the four-rod trap far away and flatten the remaining three rods. The analysis of a

three-rod trap can be found in [23]. The analysis is complicated and the numerical

calculation is done using the Boundary Element Method [2]. The simulated potential

is shown in Figure 4-4. We made a trap by printing the trace on a low-loss Roger

4350 substrate and cut away for better optically accessibility. The trap is shown in

Figure 4-5. The complete description of the trap used in our experiment can be found

in [3, 20, 2]. We drive the trap at a rf frequency of 850 kHz. The center electrode

potential and the outer electrodes potential are at 540 V (1080 Vp-p) and -340 V

(680 Vp-p), respectively [2]. The distance between each electrode is 3 mm. With

these parameters, we have a trap with measured secular frequency of 70 kHz and

a calculated trap depth of 0.16 eV. The surrounding smaller electrodes are for trap

compensation. We will see in the next section how these electrodes play an important

role in changing the micromotion energy of the ions.

We can deepen the trap by applying a DC bias to the rf potential to the three

main electrodes. This allows us to first load the ions with a deep trap and then

remove the DC bias to decrease the trap depth. With this method, we can load traps

with a trap depth as small as 0.13 eV [2].

4.2 Ion Micromotion Energy

We now look at the motion of a single ion. Let us look at the motion in x and y axis.

From (4.10) we can calculate the average kinetic energy over the period of the secular

motion

Eki =
1

2
m〈u̇2

i 〉

' 1

4
mu2

0i(ω
2
i +

1

8
q2
i Ω

2)

' 1

4
mu2

0iω
2
i (1 +

q2
i

q2
i + a2

i /2
), (4.19)

where the first term in the last expression is the kinetic energy due to the secular

motion and the second term is the kinetic energy due to the micromotion [22]. For the

motion in z axis, the micromotion energy is simply zero because qz = 0. Typically,
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Figure 4-4: Simulated potential produced by the three-rod planar trap. Left: Contour
plot of the trapping potential and the trapping point relative to the electrodes. Right:
The dashed-line shows the DC unbiased trapping potential and the solid red line is
when the DC biased is applied. Image reproduced from [2].

we have |ai| � q2
i for i = x, y. We can immediately see that the radial secular energy

is equal to the energy of the microtion.

The surrounding smaller electrodes that we use to compensate the trap and to

axially confine the ions (as endcaps) will produce a non-zero electric field around the

center of the trap. This electric field is denoted by ~Edc; and the Mathieu equation in

(4.5) is replaced by

üi + [ai + 2qi cos (Ωt)]
Ω2

4
ui =

Q~Edc · ûi
m

. (4.20)

The extra term on the right hand side will displace the micromotion from the center

of the trap by

u′0i '
4Q~Edc · ûi

m(a2
i /4 + q2

i /2)Ω2
' Q~Edc · ûi

mω2
i

. (4.21)

The total kinetic energy in the i direction, following the treatment by [22], is now

given by

Eki =
1

4
mu2

0iω
2
i (1 +

q2
i

q2
i + a2

i /2
) +

4

m

Qqi ~Edc · ûi
(a2
i /2 + q2

i )Ω
. (4.22)

This total ion kinetic energy is the collisional energy in atom-ion collisions, and we
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Figure 4-5: Planar trap: The three main electrodes are positioned in the center of the
chips. The surrounding smaller electrodes are for trap compensation which we can
use to move around the trap center and change the trap depth. Image reproduced
from [3].
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can adjust the collisional energy by changing the electric field around the the center

of the trap. In a well compensated trap, meaning that ~Edc = 0, the micromotion of

the ion is minimized.

4.3 Crystallization of Ions

If the kinetic energy of the ions in the trap is low enough, the ions can form the

so-called Coulombic crystal. The condition for the formation of the crystal is that

the Coulomb coupling parameter,

Θ =
e2

akBT
> 150, (4.23)

where a is the Wigner-Seitz radius [24]. This is where the crystal mean-field interac-

tion is a lot larger than the thermal energy. We can estimate a by simply balancing

the Coulombic force and the force produced by the harmonic potential of the trap.

We have

FCoulomb = Fharmonic

−e
2

a2
= −mω2

seculara

a =

(
e2

mω2
secular

)1/3

. (4.24)

With ωsecular = 70× 2π kHz, we obtain a ' 16 µm. Since this is the estimation from

only two ions, the exact value of a must be less than 16 µm. The condition of the

formation of the crystal is that the temperature of the ion cloud, T, must be less than

6 mK. We can see that we can easily reach this temperature since the Doppler limit

of the 2S1/2 →2 P1/2 transition, which is our ion cooling transition, is around 530 µK.

This is confirmed by the non-Gaussian profile of the ion could in a well compensated

trap shown in Figure 4-6. This image is taken using the secondary CCD camera

where the y-axis is parallel to the trap axis.
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Figure 4-6: Ion crystal taken by the secondary CCD camera along the trap axis. The
non-Gaussian profile (red curve) over the background Gaussian fit (blue curve) of the
ion cloud indicates that the could is in crystal phase. Image reproduced from [4].
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Chapter 5

Setup for the Magneto-Optical

Trap and Ion Trap

In this chapter we will discuss the experimental setup for the magneto-optical trap

and ion trap. The most important part in the setup is the laser diodes. Luckily all the

relevant transitions in our experiment are accessible by laser diodes without resorting

to any frequency-doubling non-linear crystal. We will first discuss the setup for the

MOT and the ion trap. Then we will show how we can produce ions from the MOT.

Finally the image of the trapped ions and the MOT will be shown.

5.1 Laser System

5.1.1 Laser System for Ytterbium Neutral Atoms

In our experiment of atom-ion collisions, the two relevant isotopes of ytterbium are
172Yb and 174Yb. These two isotopes have no hyperfine structure because their nuclei

have no spin. The energy level diagram relevant to our experiment is shown in Figure

5-1 The cooling transition is the 1S0 →1 P1 transition, giving us the Doppler limit

temperature of 690 µK. The light source is a standard near ultra-violet laser diode

manufactured by Nichia. The total output power from the diode delivered to the

MOT is 10-12 mW divided into three counter-propagating pairs of the MOT.

We use two identical temperature-stabilized laser diodes at 399 nm.1 Some of

the power (around 1.2 mW) of the first laser diode, the so-called master laser, is

1See Appendix A for temperature stabilization used in our experiment.
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Figure 5-1: Energy level diagram of neutral 172Yb and 174Yb.

injected into the second laser diode, the so-called slave laser diode, to mutually lock

the frequency of the two laser diodes. To stabilize the frequency of the master laser

diodes, we use a grating to provide a feedback in the Littrow configuration back into

the laser. The slave laser diode is only temperature stabilized and has no grating on

it. This is sufficient since the injection lock will automatically reduce the line width

and stabilize the frequency of the slave laser. To lock the frequency of the master

laser diode, we use the Dichroic Atomic Vapor Laser Lock (DAVLL) technique [25].

The DAVLL technique makes use of the Zeeman splittings of the ytterbium atoms

in the cathode lamp. The levels with different magnetic quantum numbers will shift

in opposite directions. The 1P1 state will split into three sub-levels (m = −1, 0, 1).

If we excite the atom from 1S0 state using a circularly polarized light, the selection

rule requires that the change in magnetic quantum number must conserve the total

angular momentum. We use a linear polarized light, which contains both σ+ and

σ− components, as a probe laser. By scanning the frequency of the probing laser,

we can create an error signal by subtracting the absorption curve of one polarization

from another polarization curve. The result is the error signal crossing zero at the

resonance frequency for m = 0. Since we can choose which isotope of ytterbium in

the cathode lamp to lock to by simply changing the lock point, we can easily select
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Figure 5-2: Energy level diagram of 172Yb+ and 174Yb+.

which isotope of Yb we want to trap in the MOT. This provides us isotope selectivity

which will be useful in the atom-ion collision experiment. The details of the setup of

the DAVLL used in our experiment can be found in [3].

5.1.2 Laser System for Ytterbium Ions

The energy diagram for 172Yb+ and 174Yb+ is shown in Figure 5-2. The cooling

transition is the 2S1/2 →2 P1/2 transition. Again, this can be accessed by a single

laser diode. The wavelength of the laser diode at room temperature is, however, at

372 nm. We can reach the operating wavelength of 369.4 nm by cooling the diode can

down to -45 oC. This is done by using a two-stage cooling TEC with a water cooling

system.

The situation for the ions is a little bit trickier than the neutral Yb case since the
2P1/2 state also has a 0.3% chance of falling to 2D3/2 state instead of falling directly to
2S1/2 state. The lifetime of the 2D3/2 state is 53 ms, which is significantly longer than

the lifetime of the 2S1/2 →2 P1/2 transition, which is 7.2 ns. This branching reduces

significantly our cooling efficiency. It is then necessary to deplete atomic population

in the long-live 2D3/2 state by applying a repumper laser at 935.2 nm which will excite
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Laser frequency(A) (B) (C)

Figure 5-3: Reflected signal from a Fabry-Perot cavity. On resonance (B), the re-
flected intensity is first-order insensitive to the frequency modulation of the input
light. The phase of the intensity modulation compared to the input light will depend
on whether the light is red (A) or blue (C) detuned.

the atom from the 2D3/2 to the 3D[3/2]1/2 state. The atoms in the 3D[3/2]1/2 state

will rapidly decay back to the ground state with the lifetime of 42 ns and the cooling

cycle can proceed as usual.

5.1.3 Pound-Drever-Hall Technique

Since we do not have any atomic reference for the ions, we cannot use the DAVLL

technique to lock the ion cooling laser and the repumper laser. We have to use the

so-called Pound-Drever-Hall (PD) technique to lock the laser diodes to extenal Fabry-

Perot cavities where we can tune the cavity length to tune the locking frequency.

The idea of the PD lock can be illustrated in Figure 5-3. We look at the reflected

light from the Fabry-Perot cavity. 2 On resonance, most of the light will be transmit-

ted and the reflected light will have zero intensity. If we shake the frequency of the

input light around this point (A), we will not see any change in the intensity to the

first-order approximation. If, instead, we are red detuned from the resonance or the

point (A) on in the figure, as we shake the frequency from left to right the intensity

will change from high to low. Now on the blue detuned side, the intensity will change

2We can also look at the transmitted signal.
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Figure 5-4: Complete Pound-Drever lock diagram. The dotted-line is the optical
signal. The black solid line is the electric signal.

from low to high. By looking at the phase of the modulation, we can know which side

we are on the resonance curve. This is the error signal which we will feed into the

feedback loop to stabilize the frequency around the resonance point. The diagram of

the complete Pound-Drever lock is shown in Figure 5-4. Note that in this setup, the

transmitted signal is detected by the photodiode instead of the reflected one. The

modulating frequency is generated by a voltage-controlled oscillator (VCO) at around

13.5 MHz. Around -3 dBm of this rf signal is fed into the amplifier which will directly

modulate the laser light using an electro-optical modulator (EOM). The remaining

7 dBm is used as a local oscillator for a mixer (Minicircuit: TAK-5+). The error

signal is extracted from the reflected (or transmitted) intensity by this mixer, and

this signal is fed into a lock box which will change the laser frequency accordingly

through current modulation. The phase shifter is used to optimize the error signal.

Although every laser diode in the setup is temperature stabilized, according to the

fact that the PD lock is sensitive to the Fabry-Perot cavity length, it is also crucial to

temperature stabilize the cavity if we want to achieve the highest frequency stability

possible. The Fabry-Perot cavity used in our experiment is shown in Figure 5-5. The
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Figure 5-5: Fabry-Perot cavity with temperature stabilization.

core cavity is an Invar R© (low thermal expansion coefficient nickel steel alloy) tube

with mirrors glued to both ends. The piezoelectric tube is used to adjust the cavity

length. By applying 0-150V to the piezoelectric tube, we can adjust the length to at

least twice the free spectral range. The Invar R© tube is then inserted into an aluminum

tube to prevent air current. We wrap the aluminum tube by a nichrome wire to give

us better temperature stabilization. This heating wire is analogous to the TEC used

in the laser diode system. The whole cavity is then wrapped by an insulating foam

tube to minimize heat loss into the environment. The nylon stands are attached to

the tube to prevent any heat flow to the steel optical bench. The simplified laser setup

is shown in Figure 5-6. Every laser diode has an isolator to filter unwanted reflected

light. The ion laser is fiber-coupled through single mode fiber-optics to free-up the

space on the optics bench.
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Figure 5-6: Simplified laser system for ytterbium MOT and ion trap. Image repro-
duced from [4].

Figure 5-7: MOT-ion trap hybrid setup. Note that the repumper laser is not shown
in this figure. Image courtesy of Marko Cetina.
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5.2 Magneto-Optical Trap and Ion Trap Hybrid

The planar trap is put in the vacuum chamber. We use a mechanical pump to perform

an initial pumping step, then we turn on the ion pump to keep the pressure in side

the chamber to around 10−7 mTorr. The magnetic field produced by the ion pump

around the trapping point is less than 1 G so it is not necessary to shield the pump

with any mu-metal. The Ti-sulimation pump also aids us in removing any residues

in the chamber.

To produce ions, first we load ytterbium atoms from an oven into the isotope

selective MOT. We then photoionize atoms in the MOT optically. The ions produced

will not see the MOT since the resonance wavelength is no longer at 399 nm. They

will, however, feel the trapping potential generated by the Paul trap. Since the atoms

in the MOT are cooled down to the Doppler limit temperature (690 µK), the ions

produced will be cold enough to stay in the ion trap. The MOT-ion trap hybrid is

shown in Figure 5-7. Due to the open geometry of the Paul trap, it is not difficult to

align the laser beams such that we have the ions and the atoms at the same spatial

region. However, in the ions loading scheme, it is not absolutely crucial to perfectly

overlap the MOT and the ions, since the MOT cloud is usually sufficiently large.

5.2.1 Ion Production

Luckily, the wavelength of the light needed to photoionize ytterbium atom is 394 nm.

We can simply use the ion cooling laser as a photoionizing beam, or we can use a

separated broadband UVLED to photoionize the atoms. To detect the ions produced,

we use a Burle 5901 Magnum Channeltron Electron MultiplierTM(CEM). With both

the MOT and the UVLED on, the Channeltron can detect ions up to 227 kHz. With

the MOT on but not the UVLED, the ions count is 4.9 kHz [3, 20]. Clearly, the

presence of the UVLED highly enhance the ions production rate. The non-zero count

rate when the UVLED is off is due to ion production from background atom-atom

collisions and other sources. Figure 5-8 shows the ion loading rate from different

ionization mechanism. For convenience in our experiment, we use only the 370 nm

ion cooling laser to photoionize the atoms.

With ions in the chamber, we can simultaneously trap atoms and ions in the same

spatial region. We use a CCD camera with different filters to take the fluorescence

pictures of the ions and atoms. The false color image of the ions and the atoms is

shown in Figure 5-9. We can move the atomic cloud around by adjusting the bias coil
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Figure 5-8: Ion loading rate with different photoionization sources. The highest load-
ing rate is when both UVLED and 370 nm ion cooling laser are used (blue triangle).
With only UVLED alone, the loading rate is slightly lower (red circle). The loading
rate is extremely low from an atomic beam along (black squares). Image reproduced
from [2].

Figure 5-9: MOT-ion overlap taken by the primary CCD camera. The red cloud is
the atomic cloud. The violet cloud is the ion cloud. Image reproduced from [2]
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to offset the position of the minimum of the magnetic field produced together from

the anti-Helmholtz coil. To move the position of the ion around, we can change the

voltage applied to the electrodes around the main electrodes as shown in the previous

chapter.
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Chapter 6

Measurements of Ytterbium

Atom-Ion Collisions

Having discussed all the required components for the atom-ion collision experiment,

in this chapter we will discuss the experiment procedure. We first describe how we

prepare the MOT and the ions of different species, namely, 172Yb+ ions and 174Yb

atoms in the MOT. The lifetime of the ions in the trap, as we saw in Chapter 2,

depends on the atomic density seen by the ions. The measured decay constants are

used to calculate the charge transfer collisional rate and the atomic polarizability.

6.1 MOT-Ion Preparation

To measure the charge transfer cross section between 172Yb+ and 174Yb, we prepare
172Yb+ ions in the trap and the 174Yb atoms in the MOT. The first step is to lock the

MOT laser to the 172Yb line and trap 172Yb in the MOT. We then use the 370 nm

laser to ionize 172Yb atoms and produce 172Yb+ ions in the trap. To ensure constant

trap exposure to the 370 nm light, we pulse the MOT and ions laser at the period of

20 µs with 70% “on” time and 30% “off” time. This is shown in Figure 6-1 as the

“172Yb+ loading” period. In this period, the ion laser and MOT laser are “in phase,”

namely they are both on and off at the same time.

To cool the ions without producing any more ions from the MOT, we now operate

the out-of-phase MOT laser and the ion laser. The MOT laser is on for 70% and off for

30% of time, while the ion laser is off for 70% and on for 30% of time. Since the ions

are confined in the trap, only a 30% cooling duty cycle with 20 µs period is adequate.
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Figure 6-1: Experimental sequence of MOT and ion lasers.

This is called the “cool ions” period. The last step is to switch the MOT laser to

the 174Yb line to trap 174Yb in the MOT. The system now consists of 174Yb atoms

in the MOT and 172Yb+ ions in the trap. During this time the charge transfer takes

place, and from this point we can examine the ions lifetime with different atom-ion

overlaps.

6.2 Estimation of Atomic Density and Atomic Num-

ber

One important parameter that we can measure from the CCD camera is the overlap

atomic density between the atoms and ions. In Chapter 2, we state that the average

atomic density is given by

〈na〉 =

∫∞
−∞ ni(~r)na(~r)dV∫∞
−∞ ni(~r)dV

. (6.1)
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We can instead view the whole ion cloud as a single ion with different probability of

being at any given point in the cloud. It is natural to write this probability as

pi(~r) =
1

Ni

ni(~r), (6.2)

with ∫ ∞
∞

pi(~r)dV = 1, (6.3)

where Ni is the total number of ions. The atomic density then can be written as

〈na〉 =

∫ ∞
−∞

pi(~r)na(~r)dV. (6.4)

Let us look at the Figure 5-9 again. Since our image is a projection onto a plane

of the whole ion cloud, we will model the ion density profile to be two-dimensional

Gaussian, i.e.,

pi(x, y) =
1

σi,xσi,y2π
e−(x−x̄i)2/2σi,xe−(y−ȳi)2/2σi,y , (6.5)

where σi,x and σi,y are the FWHM of the ion cloud in the x and y direction, respec-

tively, and x̄i and ȳi are the position of the ion cloud in the two directions, respectively.

For the atomic density, we have

na(x, y) =
Na

σa,xσa,y2π
e−(x−x̄a)2/2σa,xe−(y−ȳa)2/2σa,y , (6.6)

where Na is the total atomic number and other parameters defined analogously to

what we have in (6.5). With the area of each pixel of the CCD camera being ∆x∆y,

we can write (6.4) as

〈na〉 =
η

∆x∆y

∑
pi(x, y)n′a(x, y), (6.7)

where η is the correction factor that we use to recover the density in three dimensions

and n′a(x, y) is the actual count of the atomic number in each pixel. For our experi-

ment, the pixel dimensions of the CCD camera are 2 µm × 2 µm. With the optics,

this corresponds to the actual spatial dimensions of 8.3 µm × 8.3 µm.

The factor η represents our lack of knowledge of the atomic and ion density profiles

in the z direction. We will again assume that the density profile in the z direction is

also Gaussian for both atoms and ions. To a very good approximation, the FHWM
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of the profiles in the z direction is given by

σz =
√
σxσy. (6.8)

Combining the contribution from the atomic and ion density, we can write

η =
1√

(σ2
i,z + σ2

a,z)2π
, (6.9)

=
1√

(σi,xσi,y + σa,xσa,y)2π
. (6.10)

With this, the estimated atomic density for a single ion is given by

〈na〉 =
1

∆x∆y
√

(σi,xσi,y + σa,xσa,y)2π

∑
pi(x, y)n′a(x, y). (6.11)

Note that we use n′a(x, y), the actual count from the CCD camera to calculate 〈na〉.
However, in order to obtain σa,x and σa,y, we have to fit the profile to the Gaussian

function using (6.6).

The estimation of the atomic number is done by comparing the fluorescence signal

from a single 172Yb+ ion to the fluorescence signal from 174Yb atoms. We measure

that a single 172Yb+ ion in the trap will produce 20± 2× 103 counts per second. We

then convert back to the case of 174Yb atoms, taking into account the loss in optics,

quantum efficiency of the equipments and difference in wavelengths. With these we

estimate that a single atom will produce 13 ± 1 × 103 counts per second and finally

calculate the total atomic number for each measurement.

6.3 Lifetime of the Ions in the Trap

The ion laser, which is locked to be on-resonance with the 172Yb+ ions, is also used

as an ion detection beam. The fluorescence from the ions is collected by a photo-

multiplier. Due to isotope shift, the 174Yb+ produced from charge transfer collisions

will not be resonant with the 172Yb+ laser and not be seen. Hence, the fluorescence

signal of the 172Yb+ ions will decay according to the expression we derive in Chapter

2, i.e.,

N(t) = N(0)e−Γt = N(0)e−naσchvit. (6.12)
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Figure 6-2: 172Yb+ ion fluorescence signal at small atom-ion overlap. The popula-
tion of the ions is well-described by the exponential decay. The lifetime of the ions
measured in this case is 176.6±0.4 s.
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Figure 6-3: 172Yb+ ion fluorescence signal at different atom-ion overlaps. The natural
lifetime of the ions (with no MOT) is 288.7±1.6 (red circles). At a moderate overlap,
the lifetime of the ions becomes 53.3±0.5 s (blue rectangles). The ions lifetime at the
maximum overlap is 10.4±0.2 s (green triangles). Image reproduced from [4].

Figure 6-2 shows the typical fluorescence signal from the 370 nm ion laser. We can see

that it is well-described by an exponential decay function. In this case, the overlaps

density between the atoms and ions is low, and the life time of the ions is around

176.6±0.4 s. With the absence of the MOT, the ions lifetime can be as long as 300 s.

While keeping the same ion trap configuration, we vary the overlap between the

atoms and ions by moving the MOT around using a magnetic field produced by a set

of biased coils. We then observe different decay time constants as shown in Figure

6-3. The red circles show the natural lifetime of the ions taken where there is no

MOT present, amounting to measured lifetime of 288.7±1.6 s. The blue rectangles

show the lifetime of the ions at a moderate overlap, measured as 53.3±0.5 s. When

we move the MOT and ions to have maximum overlap, the lifetime drops to 10.4±0.2

s. It is clear that at any overlap, the 172Yb+ ion fluorescence signal is exponential.

Different decay constants correspond to different na (or, rather, 〈na〉) in (6.12).
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Table 6.1: Measured Doppler broadening width, effective temperature and collisional
energy.

Doppler Shift (MHz) Ec (a.u.)

19 8.12× 10−7

29 1.89× 10−6

37 3.07× 10−6

58 7.56× 10−6

265 1.58× 10−4

6.4 Measurement of Collisional Energy

The decay rate constant is, again, given by

Γ = 〈na〉σchvi. (6.13)

With vi =
√

2Ec/µ, we can write

σch =
Γ

〈na〉
√

µ

2Ec
. (6.14)

From the previous section, we know 〈na〉 from the picture taken from the primary

CCD camera. In order to calculate the charge transfer cross section, σch, we have to

measure the collisional energy, Ec, which we extract from the Doppler fluorescence

profiles of the ions. The 369 nm ion laser is locked to the cavity using the Pound-

Drever-Hall lock as we discussed in Chapter 5. We can slowly scan the length of the

Fabry-Perot cavity, resulting in scanning the frequency of the ion laser. We can look

at the fluorescence profiles of the ions across a wide range of the laser frequency.

Since the motion of the ions is driven by the rf field, the motion is not thermal

and we cannot use the regular Doppler broadening to measure the temperature of the

ions directly. The full analysis of the driven motion with the line width of the cooling

transition and laser all taken into account is not analytic. We can, however, estimate

the velocity of the ions by simply taking the FWHM (or HWHM) point of the Doppler
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Table 6.2: Measured Atomic Polarizability for Ytterbium.

α (SI) α (a.u.) Ec (a.u.) Ec (eV) Γ/ 〈na〉 (cm3s−1)

3.021×10−39 183.4 8.12×10−7 2.2×10−5 6.56×10−10

2.116×10−39 128.5 1.89×10−6 5.1×10−5 5.49×10−10

2.769×10−39 168.1 3.07×10−6 8.4×10−5 6.28×10−10

3.208×10−39 194.8 7.56×10−6 2.1×10−4 6.76×10−10

8.649×10−39 525.2 1.58×10−4 4.3×10−3 1.11×10−9

curves, shown in Figure 6-4, to be the point where the ions have maximum velocity.

The doppler shift is given by

f = f0

(
1 +

v

c

)
, (6.15)

where f is the frequency of the photon seen by the ion in its rest frame, f0 is the

proper frequency (f0 = 8.12× 1014 Hz), v is the ion velocity in the lab frame and c is

the speed of light. We can then write the relative velocity of the ion-atom system to

be

vi = c
f − f0

f0

= c
∆f

f0

, (6.16)

since the atoms are cold enough to be treated as being at rest. The collisional energy

is then simply

Ec =
1

2
µv2

i =
1

2
µc2

(
∆f

f0

)2

. (6.17)

The measured Doppler shifts and equivalent collisional energies are given in Table

6.1. Note that the natural line width of the cooling transition is 22 MHz (or 11 MHz

for HWHM), and we have to subtract this line width from the measured Doppler shift

to get the actual velocity of the ions.

6.5 Ytterbium Atomic Polarizability

In the Langevin regime, the charge transfer cross section is given by,

σch =
1

2
π

√
2α

Ec
. (6.18)
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Figure 6-4: 172Yb+ Doppler fluorescence profiles measured against the detuning from
the center frequency. The Doppler shifts are 69 MHz and 276 MHz for the blue and
green curves, respectively. We have to subtract the natural line width of the transition
from the measured Doppler shifts. The results are the first two entries in Table 6.1.
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Figure 6-5: Plot of decay rate constant, Γ, against the overlap density, 〈na〉. The
green triangle curve is taken at the Doppler HWHM of 269 MHz. The blue rectangle
curve is taken at the Doppler HWHM of 69 MHz. The measured values of Γ/ 〈na〉
are 1.11×10−9 cm3s−1 and 6.76×10−10 cm3s−1, respectively. Image reproduced from
[4].
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We now can write the polarizability to be

α =
µ

π2

(
Γ

〈na〉
)2

(a.u.) =
16ε20µ

e2

(
Γ

〈na〉
)2

(SI). (6.19)

The value of Γ/ 〈na〉 is measured from the plot of the decay rate constant against

different overlap density at a given collisional energy. The representative curves are

given in Figure 6-5. The calculated atomic polarizability at different collisional energy

is given in Table 6.2. The last entry in the table is likely to be the regime where the

charge transfer cross section is given by σch = (a lnEc + b)2 so we can disregard

that point for the calculation of the atomic polarizability of ytterbium. The average

measured atomic polarizability is

αmeasured = 169± 14± 85 = 169± 99 (a.u.). (6.20)

Note that the first part of the uncertainty comes from statistics of the measurements.

The second part comes from the uncertainty in atomic density estimation. Normally,

it is difficult to measure the atomic density to have an uncertainty of less than 50%,

and this contributes most to the total uncertainty of the measured atomic polariz-

ability. The theoretical value calculated by Zhang and Dalgarno [1] of α is given to

be 143 a.u., which is within our measured value of the atomic polarizability. We also

confirm that, by looking at Table 6.2, the charge transfer rate is indeed independent

of the collisional energy in the Langevin regime.

85



86



Chapter 7

Conclusion and Outlook

Using the open geometry of the surface-electrode trap, we can overlap the trapped
172Yb+ ions with the 174Yb atoms in the magneto-optical trap (MOT). The charge

transfer collisions between the ions and atoms give rise to the loss of 172Yb+ ions in the

trap, resulting in the decay of the fluorescence signal from the ions. The decay rate is

directly related to the atomic polarizability of ytterbium, especially in the Langevin

regime where the charge transfer cross section is independent of the collisional energy.

We can produce ions at collisional energy as low as 2.2×10−5 eV, ensuring that we

are indeed in the Langevin regime. This is also supported by the fact that the ratio

of the decay constant over the atomic density is constant in the collisional energy

range from 2.1×10−4 eV down to 2.2×10−5 eV, suggesting that the charge transfer

rate in this regime is independent of the collisional energy. The measured atomic

polarizability of ytterbium is 169±99 a.u. This is in agreement with the theoretically

calculated value of 143 a.u. by Zhang and Dalgarno [1].

The large uncertainty in our measurements is due to the estimation of atomic

density and total atomic number. Because it is difficult to directly measure the

number of atoms in the MOT, the values that we used in our estimation are derived

from the picture taken from the CCD camera, which is a projection of the total

atomic number on a plane. We have to guess the atomic density profiles in the

third direction, and this also contributes to the overall uncertainty of the experiment.

Future improvement in the estimation will certainly increase our measured atomic

polarizability precision.

Our system provides a robust way of observing the interaction between atoms

and ions at low temperature. It is, however, even more interesting to have a system

with a few ion numbers or even a single ion, which is important in modern quantum
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Figure 7-1: Ion fluorescence signal with small number of ions. The characteristic step
function of the trace is a clear indication that a single ion is being added or subtracted
at time.

computing experiments. The recent measurement also demonstrates the jump of the

fluorescence signal, as in Figure 7-1, from adding or subtracting a single ion to or from

the ion crystal. With small number of ions, we will be able to see the “turning-off”

effect with the collisional energy is less than the ionization energy of the atoms and

the charge transfer collisions are prohibited. The lifetime measurement for a single

ion can also be done easily once we have tuned our system to have a highly repeatable

way of trapping a single ion. Hopefully, our experiment will open new ways to study

the system consisting of atoms and ions at very low temperature.
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Appendix A

Temperature Stabilization of a

Laser Diode

A.1 Basic Theory and Model

A piece of metal will shrink or expand due to its finite thermal expansion coefficient.

This change in length also results in frequency changing of a laser diode. If the

temperature of a laser diode drifts then the frequency will drift too. To insure that

we have highest frequency stability of a laser diode, one need to control and stabilize

the laser diode can temperature to the best that one can.

Consider a piece of metal with total heat capacity of C. Due to its interaction

with environment, we can write the following equation:

C
dT

dt
= Q, (A.1)

where T is the temperature of the system, t is time and Q is the heat transfer into or

from the system. According to Newton’s law of cooling, Q is generally proportional

to the difference between the temperature of the system and room temperature. Ba-

sically we can write

Q = −K(T − Te) (A.2)

where K is the constant of proportionality and Te is the room temperature. The

minus sign indicates that if the temperature of the system is higher than that of the
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environment, then heat flows out into environment. Now the basic heat equation is

C
dT

dt
= −K(T − Te). (A.3)

Now we apply a “pump” such that it constantly takes away thermal energy from the

system. Normally the pump will work by putting the system in contact with a cold

plate. Again, we can apply Newton’s law of cooling and state that, by putting a cold

plate of temperature To, the heat equation now becomes

C
dT

dt
= −K(T − Te)− γ(T − To), (A.4)

where γ is another constant of proportionality. We can simplify the equation further:

C
dT

dt
= −KT +KTe − γT + γTo (A.5)

= −(K + γ)(T − T ′o), (A.6)

where

T ′o =
KTe + γTo
K + γ

. (A.7)

Notice now that after we solve the differential equation for T (t), we will obtain a ex-

ponential decay behavior and eventually the temperature of the system will approach

T (t = ∞) = T ′o. Note that ideally we want to have a control over the point where

the temperature of the system will converge to. To depends on both the plate tem-

perature and room temperature which prevents us from putting the set point (or the

temperature where the system will converge to) at any temperature we need. Also,

the exponential behavior requires long time to reach equilibrium.

We now include the so-called integral gain to the system. The heat equation now

becomes

C
dT

dt
= −(K + γ)(T − T ′o)− χ

∫ t

0

(T − T ′′o )dt, (A.8)

where χ is a constant and T ′′o is the temperature set point which we can choose to be

at any temperature. By solving explicitly this simple differential equation for T (t),

we arrive at the expression

T = Ae
−(K+γ)+

√
(K+γ)2−4χC
2C

t +Be
−(K+γ)−

√
(K+γ)2−4χC
2C

t + T ′′0 , (A.9)
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where A and B can be determined from the initial conditions. Usually we will set

the parameters such that the system is critically damped. Now the solution becomes

T = (A′ +B′t)e−
K+γ
2C

t + T ′′0 . (A.10)

Again, A′ and B′ can be determined from the initial conditions. Physical reasoning

requires that B′ = 0. Otherwise at t =∞, T is infinite. The expression now becomes

T = A′e−
K+γ
2C

t + T ′′0 . (A.11)

At t =∞, T = T ′′0 , which is the set point that we want the temperature of the system

to converge to. This set point appears only in the integral term we added, and does

not depend on room temperature or any other temperature.

A.2 Temperature Stabilization Using a Microcon-

troller

The principle of temperature stabilization can be implemented easily using standard

op-amps. However, a properly programmed microcontroller can also be used instead.

Since the parameters such as γ and χ in the previous section can be changed eas-

ily through reprogramming of the software, it is easier to optimize the parameters

compared to re-soldering of various capacitors and/or resistors in a normal op-amp

circuit.

Let us recall the heat equation once again:

C
dT

dt
= −K(T − Te)− γ(T − To)− χ

∫ t

0

(T − T ′′o )dt. (A.12)

We do not have any control over the first term on the RHS, but we can control To,

γ, T ′′o and χ. By choosing appropriate value for these parameters, the system can be

set such that it is critically damped.

The microcontroller used in the experiment is ATMEGA32L manufactured by

Atmel. It has a built-in 10-bit A/D converter and we use that as an input port which

receives the temperature reading from a reading stage. This reading stage is setup

like a bridge of resistors. A thermistor, being one of the resistor in the bridge, is used

to sense the temperature of the system. Resistors bridge is setup such that the net
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output temperature is read as a voltage drop between two nodes of the bridge. By

adjusting one of the resistors in the bridge we can get the differential temperature

signal, so-called the error signal, from the reading stage. In this case we use AMP01

instrumentation amplifier before the A/D pin of the microcontroller to further amplify

the signal. The 16-bit output from the microcontroller is converted using DAC712

D/A converter. The final stage is the thermoelectric cooling plate (TEC) in which

we can adjust the heat pumping rate, Q, by changing the current drawn by the TEC.

We can denote the differential temperature from the reading stage to be T ′ = T−η,

where η is set by adjusting the resistor in the bridge and T is the absolute temperature.

Now (A.12) becomes

C
d(T ′ + η)

dt
= −K(T ′ + η)− γ(T ′ + η − To)− χ

∫ t

0

(T ′ + η − T ′′o )dt. (A.13)

We know that eventually the temperature of the system will reach a value such that

the last term is zero. We can simply set T ′′o = η and the final temperature will be

T ′ = 0 or T = η. Since we can set η at any point we want, we can set the set point

to be at any temperature by adjusting the potentiometer in the resistor bridge at the

reading stage before the input of the microcontroller.

A.3 Application to Fabry-Perot Cavity Tempera-

ture Stabilization

In the Pound-Drever-Hall laser locks that we use for the ion laser (370 nm) and the

repumper laser (935 nm), we use the same temperature controller as what we use to

stabilize the laser diodes to control the temperature of the cavities. Now instead of

using TECs to cool down the cavity, we replace them by a nichrome wire to heat up

and stabilize the temperature. The main component of the circuit is the same except

for the parameters that we can choose and adjust in the software.

One big advantage of using a microcontroller is that we can have more than one

different heating-cooling modes, which will be very useful in temperature stabilizing

the cavity because a nichrome wire can only heat but not cool. It is more efficient to

initially heat up the cavity constantly until the temperature is at the vicinity of the

set point temperature. Then we switch from constant heating mode to the normal

stabilizing mode. This can be done easily by connecting an external switch to one
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Figure A-1: Error signal or temperature of the cavity measured overnight.
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Figure A-2: Error signal or temperature of the cavity measured during the day.
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of the unused pins of the microcontroller, and we decide which mode the software

will be by looking at the state of that pin. We can also control the working mode of

the microcontroller through the RS232 port which can also be easily implemented in

both software and hardware.

Figure A-1 and A-2 show the error signal that we monitor for about 5 hours at

different time of the day. Both systems receive a short impulse at the beginning so

that the exponential decay response is shown in both figures. Figure A-1 is taken

overnight, and we can see that the error signal is relatively clean compared to Figure

A-2, which is taken during working hours in the laboratory. The non-zero offset of

the error signal is due to a small offset of the reading stage and the A/D of the

microcontroller. We can adjust this by tweaking the offset parameter in the software

but practically there is no difference since the absolute temperature of the set point

is not crucial to our experiment as long as the temperature fluctuation is sufficiently

small.

A.4 Microcontroller Code in C Programming Lan-

guage

This section show the actual code in C programming language that we use to program

the microcontroller. The parameters in the code or the gain settings are optimized

for the Fabry-Perot cavity which uses a long nichrome wire as a heater.

#include <mega32.h> \\Header file for ATMEGA32

const int MAX_INT = 32767;

const int MIN_INT = -32768;

#define PROP_GAIN 75 \\Adjust parameters here

#define FIXED_RESULT 9116

#define MULTIPLY_WO_OVERFLOW(c,a,b) {

int t1, t2;

if( (a)>=0 ) t1 = (a);

else t1 = -(a);

if( (b)>=0 ) t2 = (b);
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else t2 = -(b);

if(t1 < MAX_INT/t2)

(c) = (a) * (b);

else if( ( (a)>=0 && (b)>=0 ) || ( (a)<=0 && (b)<=0 ) )

(c) = MAX_INT;

else (c) = MIN_INT;}

#define ADD_WO_OVERFLOW(c,a,b) {

if( (a) >= 0 ) {

if( (b) <= MAX_INT-(a) )

(c) = (a) + (b);

else (c) = MAX_INT;}

else if( (a) > MIN_INT ) {

if ( (b) >= MIN_INT - a )

(c) = (a) + (b);

else (c) = MIN_INT;}

else {

if( b < 0 )

(c) = MIN_INT;

else

(c) = (a) + (b);} };

int errSignal = 0;

int integrator = 0;

int proportional = 0;

unsigned int timecount = 0;

interrupt [TIM0_OVF] void timer0_ovf_isr(void)

{

int localErrSignal;

int localIntegrator;

TCNT0 = 0; // set the initial counter to 0

if(++timecount==175)

{

timecount = 0;
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localErrSignal = errSignal;

localIntegrator = integrator;

ADD_WO_OVERFLOW(localIntegrator,localIntegrator,-localErrSignal);

integrator = localIntegrator;

}

}

const int ADCOFFSET = 8;//this is what DAC outputs at errSignal = 0

const int DACOFFSRET = 0;//this is what ADC outputs with input =0

interrupt [ADC_INT] void adc_isr(void) //ADC ISR

{

unsigned int adc_data; // variable for ADC result

int tmp; // temporary variable for writing into globals

unsigned char output;

int result = 0;

unsigned char z;

unsigned char i;

adc_data = ADCW; // read all 10 bits

tmp = (511 - (int)adc_data);// invert the input

tmp = tmp - ADCOFFSET;

errSignal = tmp; // the error signal is now 11 bits deep

MULTIPLY_WO_OVERFLOW(proportional,-errSignal,PROP_GAIN);

// Constant heating mode.

if(PINA & 0x08) {

result = FIXED_RESULT;

ADD_WO_OVERFLOW(integrator,result,-proportional);

}

else {

ADD_WO_OVERFLOW(result,integrator,proportional);

}

if(result < 0) result = 0;
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PORTC = ((char*)(&result))[1];// Output pins configuration

PORTD = ((char*)(&result))[0] & (0xFF-3);

PORTB = ((char*)(&result))[0] & 3;

ADCSRA = ADCSRA | 0x40; // start next ADC conversion

}

void main(void)

{

DDRC = 0xFF;// direction ctrl for port C; port C as output

DDRA = 0x00;// direction ctrl for port A; port A as input

TCCR0=0x05;// normal timer/counter opertation

// clock = system CLCK / 1024

TCNT0=0x00;// Set the initial value of the counter to 0

TIMSK=0x01;// Enable timer/counter overflow interrupt

ADMUX = 0b11000000; // Internal 2.56 V-ref, input = pin ADC0

// Single ended input

ADCSRA = 0xCE;

#asm("sei") // global interrupt enabled

while (1)

;

}
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Appendix B

Measurement of the Finesse of

Mirrors

In any experiment involving a Fabry-Perot cavity, it is advantageous to have a direct

way to measure the finesse of the cavity. We cannot simply look at the line width of

the scanning cavity because if the laser line width is wider than that of the cavity,

what we will see is simply the laser line width. The cavity ring-down measurement,

which basically look at the loss of the photons stored in the cavity as a function of

time, provides us a way to measure the finesse of the cavity independent of the laser

line width.

B.1 Finesse of a Cavity

Suppose we have two identical mirrors of reflectivity R placed at distance L apart.

The finesse of a cavity is defined as

F =
∆νFSR

δνc
, (B.1)

where

∆νFSR =
c

2L
(B.2)

is the free spectral range, and δνc is the cavity line width. The cavity ring-down time

is simply given by

τ =
1

2πδνc
. (B.3)
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Figure B-1: Setup of the cavity ring-down measurement.

We can measure the cavity ring-down time and calculate the finesse, which is given

by

F ' π
√
R

1−R. (B.4)

B.2 Cavity Ring-Down Measurement

The setup of the experiment is given in Figure B-1. We use a 370 nm laser diode as a

source. A fast acousto-optic modulator (AOM) is used to turn off the laser within 200

ns. The cavity consists of a pair of identical mirrors each with curvature of 10.0 cm

and the distance between the mirrors is 15.0 cm. A piezo tube is attached to one of

the mirror for a cavity scanning. A CCD camera looking at the output of the cavity

helps us with the alignment and mode matching since we can see the output mode in

real time. The output signal is detected by a fast photodiode with a response time of

200 ns. A flip mount provides us an easy way to switch from looking at a photodiode

to a CCD camera.

The experimental procedure is to tune the laser on the cavity resonance. At this
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Figure B-2: Representative cavity ring-down decay curve. We fit the curve after
the AOM (brown) had cut off the laser light to the exponential decay curve (dark
green). The measured decay time from three independent measurements yield τ =
1.67± 0.02× 10−6 s .

time the transmission seen by the photodiode will be maximum. Then the AOM will

cut off the laser and we can see the decay of the signal in from the photodiode. The

representative decay trace that we capture using an oscilloscope is given in Figure

B-2.

The measured decay time is 1.67±0.02×10−6 s . The calculated finesse from this

decay time is

F = ∆νFSR2πτ

= 10492± 125. (B.5)

We compare this value of finesse to our measured value of the reflectivity of the

mirror. The measurement is done by comparing the intensity of the laser light before

and after the mirror. The measured value given in Table B.1 is done by measuring

the current generated by a photodiode (different from the one used for the cavity

ring-down measurement) with and without the mirror in front of the photodiode.
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Table B.1: Measured transmission intensity of the 10 cm mirror.

Voltage (mV) Resistance (Ω) Current (mA)

Without Mirror 119.4 5.002 ×103 2.387×10−2

With Mirror 5.6 9.92 ×105 5.645×10−6

The measured fractional transmission is 236× 10−6. This gives the calculated finesse

to be f = 13312. We think that additional loss from the reflecting surface of the

mirrors explains why the finesse measured from the ring-down cavity is less than the

finesse calculated from only the measured transmission intensity.
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Appendix C

Atomic Units

Atomic units normalize to 1 the charge, e, and mass of the electron, me, the Planck’s

constant, h̄, the Bohr radius, a0, and Hartree energy (twice the magnitude of the

ground state hydrogen energy, 2× 13.6 eV or 4.359×10−18 J), H.1 This is equivalent

to setting

e = 1

me = 1

a0 =
h̄

mecα
(SI) =

1

cα
= 1

H =
me(e

2/4πεo)
2

h̄
(SI) = me(αc)

2 (SI) =
1

(4πεo)2
= 1

The fine structure constant, α is e2/4πε0h̄c = 1/(137.0606...). It is dimensionless and

the most fundamental constant in atomic physics independent of the units. From the

equations above, we can set c = 1/α. In SI units, c = 1/
√
µoεo. Then,

µo =
1

c2εo
= 4πα2. (C.1)

Furthermore, the electromagnetic interaction in atomic physics is usually described

in the Gaussian units. The conversion is quite simple. Simply set

~B (SI) =
~B

c
. (C.2)

1In this chapter, we denote the fine structure constant to be α.
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Table C.1: Conversion from SI units to atomic-Gaussian units

Quantity to be replaced Replace by

e 1

me 1

h̄ 1

c 1/α

4πεo 1

µo 4πα2

~B ~B/c = α~B

Note that we have used the atomic unit conversion already. Now we would like

to summarize the conversion from SI units to atomic-Gaussian units in Table C.1.

Sometimes we would like to keep some quantities around despite the fact that they

are, in atomic-Gaussian units, equal to 1. For example, we write the polarization

potential to be

U(r) = −α (polarizability) e2

2r4
,

instead of

U(r) = −α (polarizability)

2r4

just to keep the scaling of e obvious.

Once we have finished switching the quantity given in Table C.1, every quantity

must be appropriately expressed in atomic units. Atomic polarizability is a relevant

quantity for our discussion of cold collisions. It is helpful to quickly summarize

the conversion between atomic units and SI units. Atomic unit for polarizability is

expressed in the unit of a3
o. To convert back to SI units, use the expression

α (polarizability in SI) = α (polarizability in a.u.) × 1.647× 10−41 C2m/N.
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Appendix D

Evaluation of Hydrogen Molecular

Ion Ground State Energy

We now would like to evaluate the energy of the ground state hydrogen molecular ion

using the procedure suggested by [12] and [26]. The integral we want to evaluate is

Eg,u(R) =

∫
Φ∗g,u(~R,~r)HΦg,u(~R,~r)d~r∫ |Φg,u(~R,~r)|2d~r

(D.1)

where

H = −1

2
∇2
r −

1

rA
− 1

rB
+

1

R
, (D.2)

and

Φg(~R,~r) =
1√
2

(ψ1s(rA) + ψ1s(rB)),

Φu(~R,~r) =
1√
2

(ψ1s(rA)− ψ1s(rB)). (D.3)

are the “gerade” and “ungerade” states of the molecule. Furthermore, ~r, ~R, rA and

rB are coupled through the following expressions:

~r =
1

2
~R + ~rB, (D.4)

~r = −1

2
~R + ~rA. (D.5)
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D.1 Two-Center Integrals

It is useful to evaluate the integral of the form

J =

∫
e−arAe−brB

rArB
d~r. (D.6)

By changing to the new coordinate defined by

ε =
1

R
(rA + rB), (D.7)

η =
1

R
(rA − rB), (D.8)

the volume element d~r becomes

d~r =
R3

8
(ε2 − η2)dηdεdφ. (D.9)

Then we have

J =
R

2

∫ ∞
1

dε

∫ +1

−1

dη

∫ 2π

0

dφe−
R
2

(ε(a+b)+η(a−b)). (D.10)

This is just the products of exponential integrals. We get

J =
4π

R

1

a2 − b2
(e−bR − e−aR). (D.11)

Now if we want to evaluate

K =

∫
e−arAe−brB

rA
d~r, (D.12)

then this is just

K = − d

db
J

=
4π

R

(
R

a2 − b2
e−bR +

2b

(a2 − b2)2
(e−aR − e−bR)

)
. (D.13)

If we want to evaluate

L =

∫
e−arAe−brBd~r, (D.14)
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this is just

L = − d

da
K

=
8π

R(a2 − b2)2

(
R(ae−bR + be−aR) +

4ab

a2 − b2
(e−aR − e−bR)

)
. (D.15)

If a = b = 1, then we obtain

J = 2πe−R (D.16)

K = π(1 +R)e−R (D.17)

L = π(1 +R +
1

3
R2)e−R. (D.18)

D.2 Hydrogen Molecular Ion Energy

Dropping the subscript 1s, we first look at the denominator of (D.1):

Dg,u =

∫
|Φg,u(~R,~r)|2d~r

=
1

2

∫
[|ψ(rA)|2 + |ψ(rB)|2 ± 2ψ(rA)ψ(rB)]d~r. (D.19)

With normalization of ψ(rB) and ψ(rB), we have

Dg,u = 1±
∫
ψ(rA)ψ(rB)d~r. (D.20)

Recall that ψ(rB) and ψ(rB) are the 1s wave function of the hydrogen atom. We then

have to evaluate ∫
ψ(rA)ψ(rB)d~r =

1

π

∫
e−rAe−rBd~r. (D.21)

With (D.18), we have

Dg,u = 1± (1 +R +
1

3
R2)e−R. (D.22)
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We now switch our attention to the numerator of (D.1). We have

Ng,u =
1

2

∫
ψ(rA)Hψ(rA) + ψ(rB)Hψ(rB)± (ψ(rA)Hψ(rB) + ψ(rB)Hψ(rA))d~r.

(D.23)

By the symmetry of switching rA and rB, this is reduced to

Ng,u =

∫
ψ(rA)Hψ(rA)± ψ(rA)Hψ(rB)d~r. (D.24)

We first evaluate the first term of (D.24)∫
ψ(rA)Hψ(rA)d~r =

∫
ψ(rA)

(
−1

2
∇2
r −

1

rA
− 1

rB
+

1

R

)
ψ(rA)d~r.

Recall that ψ(rA) is the wave function of the hydrogenic ground state, namely(
−1

2
∇2 − 1

rA,B
− E1s

)
ψ(rA,B) = 0. (D.25)

Then the integral becomes∫
ψ(rA)Hψ(rA)d~r =

∫
ψ(rA)

(
E1s − 1

rB
+

1

R

)
ψ(rA)d~r,

= E1s +
1

R
− 1

π

∫
e−2rA

rB
d~r. (D.26)

From (D.12) and (D.13), by setting a = 0 and b = 2 and switching rA to rB, we get∫
ψ(rA)Hψ(rA)d~r = E1s +

1

R
− 4

R

(
−R

4
e−2R +

1

4
(1− e−2R)

)
= E1s + (1 +

1

R
)e−2R. (D.27)

We now evaluate the second term of (D.24)∫
ψ(rA)Hψ(rB)d~r =

∫
ψ(rA)

(
−1

2
∇2
r −

1

rA
− 1

rB
+

1

R

)
ψ(rB)d~r.
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With (D.25), the integral becomes∫
ψ(rA)Hψ(rB)d~r =

∫
ψ(rA)

(
E1s − 1

rA
+

1

R

)
ψ(rB)d~r,

=

(
E1s +

1

R

)∫
ψ(rA)ψ(rB)d~r −

∫
ψ(rA)ψ(rB)

rA
d~r,

=

(
E1s +

1

R

)
1

π

∫
e−rAe−rBd~r − 1

π

∫
e−rAe−rB

rA
d~r. (D.28)

With (D.17) and (D.18), we get∫
ψ(rA)Hψ(rB)d~r =

(
E1s +

1

R

)
(1 +R +

1

3
R2)e−R − (1 +R)e−R. (D.29)

Putting everything together, the ground state of hydrogen molecular ion is

Eg,u(R) = E1s +
1

R

(1 +R)e−2R ± (1− 2
3
R2)e−R

1± (1 +R + 1
3
R2)e−R

. (D.30)
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Appendix E

Angular Momentum and Spherical

Harmonics

The orbital angular momentum operation is defined as

~L = ~r × ~p (E.1)

where ~r is the position operator and ~p is the linear momentum operator. With

~p = −ih̄∇r, it can be easily shown that, in the spherical coordinate system,

~L2 = L2
x + L2

y + L2
z = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(E.2)

where θ and φ are defined in a usual way. We can also verify the commutation rules

between different components of the angular momentum,

[Li, Lj] = iεijkLk, (E.3)

where εijk is the Levi-Civita tensor.

When specifying the wave function in three dimensions, it is useful to define the

spherical harmonics, Ylm(θ, φ), by the followings:

L2Ylm(θ, φ) = l(l + 1)Ylm(θ, φ), (E.4)

LzYlm(θ, φ) = mYlm(θ, φ), (E.5)

where l is the orbital angular momentum number and m is the magnetic quantum
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number. The general expression for spherical harmonics is

Ylm(θ, φ) = ε

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!e

imφPm
l (cos θ), (E.6)

where ε = (−1)m for m ≥ 0 and ε = 1 for m ≤ 0 and Pm
l (x) is the associated Legendre

function, defined by

Pm
l (x) = (1− x2)|m|/2

(
d

dx

)|m|
Pl(x), (E.7)

and Pl(x) is the Legendre polynomials defined by

xPl(x) =
1

2l + 1
[(l + 1)Pl+1(x) + lPl−1(x)] (E.8)

with P0(x) = 1 and P1(x) = x.
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