

Heavy Ion Physics with the ATLAS Detector

Pavel Nevski Brookhaven National Laboratory On behalf of the ATLAS Collaboration

From RHIC to LHC

ATLAS as a Heavy Ion Detector is:

ATLAS as a Heavy Ion Detector

1. Excellent Calorimetry

- Hermetic coverage up to $|\eta| < 4.9$
- High granularity (.025x.025 electromagnetic, .1x.1 hadronic) with fine longitudinal segmentation (~7 sections)
- Very good jet energy resolution (50%/sqrt(E) in pp)
 High p_T probes (jets, jet shapes, jet correlations, π⁰)
- 2. Large Acceptance Muon Spectrometer
 - Coverage up to $|\eta| < 2.7$ Muons from Υ, J/ψ, Z⁰ decays
- 3. Inner Detector (Si Pixels and Strips, no TRT used)
 - Large coverage up to $|\eta| < 2.5$
 - High granularity pixel and strip detectors (o~1%,10%)
 - Good momentum resolution (dp_T/p_T~3% up to 15GeV)
 Tracking particles with p_T ≥ 0.5 GeV/c
- **1.& 3.** Global event characterization ($dN_{ch}/d\eta$, $dE_T/d\eta$, flow); Jet quenching study
- **2.+ 3.** Heavy quarks(b), quarkonium suppression(J/ψ , Υ)

Studies of the Detector Performance

- Constraint: No modifications to the detector, except for trigger and probably very forward region
- Simulations: HIJING event generator, dN_{ch}/dη = 3200
 Full GEANT simulations of the detector response

Predicted Detector Occupancies

b = 0 – 1fm

Si detectors:

Pixels < 2% SCT < 20%

<u>TRT:</u>

- High occupancy for tracking

- Still visible TR signal for electrons

-> Limited usage for AA collisions is under investigation Will be fully useful for pA

Muon Chambers:

0.3 - 0.9 hits/chamber (<< pp at 10³⁴ cm⁻² s⁻¹)

Calorimeters (|η|< 3.2)

Tracking Performance

- Standard ATLAS reconstruction for pp is used, not optimized for PbPb.
- -Pixel and SCT detectors
- $-p_{T}$ threshold of 1 GeV
- (used in this preliminary studies)
- -tracking cuts:
- At least 10 hits out of 11(13) available in the barrel (end-caps)
- All three pixel hits
- At most 1 shared hits
- χ²/dof < 4

For p_T: 1 - 10 GeV/c: efficiency ~ 70 % fake rate ~ 5% Momentum resolution ~ 3% (2% - barrel, 4-5% end-caps)

SQM2006

Electron-pion separation in TRT

In central Pb-PB collisions (3200 ch.particle per rapidity unit) factor 20 in pion rejection can be achieved by selecting a TR threshold corresponding to 50% electron efficiency

Day One Physics with ATLAS

Global Event Characterization

Data Type	$\langle V_2(\psi_R) \rangle$
Hit clusters, Pixel layer 1	0.042
Hit clusters, Pixel layer 2	0.036
Hit clusters, Pixel layer 3	0.032
EM Barrel Calo	0.029
EM EndCap Calo	0.031
EM FCAL Calo	0.036
HAD FCAL Calo	0.025
	$v_2^{Truth} = 0.05$

Distribution of azimuthal angle $\phi(v_2)$ vs true reaction plane position, ψ_R

Jet Physics

Jet Rates

For a 10⁶s run with Pb+Pb at L=4×10²⁶ cm⁻² s⁻¹ we expect in $|\eta| < 2.5$:

E _T threshold	N _{jets}
50 GeV	30 × 10 ⁶
100 GeV	1.5 × 10 ⁶
150 GeV	.19 × 10 ⁶
200 GeV	44 × 10 ³

And also: ~10⁶ γ + jet events ~500 Z⁰(µµ) + jets with E_T > 40 GeV

- Two jet finder algorithms testet up to now Sliding Window and Cone Fit
 For E_T > 75GeV: efficiency > 95%, fake < 5%
- Good energy and angular resolution

Jet Quenching Studies

To determine medium properties we need to measure jet shapes

- 3 methods explored so far: - Fragmentation function using tracking
- Core ET and jet profile using calorimeters
- Neutral leading hadrons using EM calorimeters

Quenching may depend on quark flavor:

- Tagging of b-jets using impact parameter

Jet Studies with Tracks

b-quark Jet Tagging

Motivation: Heavy quarks may radiate less energy in the dense medium (dead-cone effect) than light quarks.

• pp

O PbPb

0.8

b-tagging capabilities offer additional tool to understand quenching.

To evaluate b-tagging performance:

- $pp \rightarrow WH \rightarrow Ivbb$ events overlayed
- on HIJING background have been used.
- A displaced vertex in the Inner Detector has been searched for.

Rejection factor against u-jets ~ 100 for b-tagging efficiency of 25%

Should be improved by optimized algorithms and with soft muon tagging in the Muon Spec.

Å

 10^{3}

 10^{2}

Physics with Muon Spectrometer

$\Upsilon \rightarrow \mu^+ \mu^-$ reconstruction

 $\Upsilon \rightarrow \mu^{+}\mu^{-}$ Muons momenta measured by ID tracks tagged by coincidence with track segment in μ -spectrometer

$J/\psi \rightarrow \mu^+\mu^-$ reconstruction

$J/\psi \to \mu^{+}\mu^{-}$

$|\eta| < 2.5, p_T^{\mu} > 1.5 \text{ GeV}$

If a trigger is possible forward with a muon $p_T > 1.5$ GeV, we gain a factor 4 in statistics...A solution might be to reduce the toroidal field for HI runs

Other issues

Ultra-Peripheral Nuclear Collisions

High-energy γ-γ and γ-nucleus collisions

- Measurements of hadron structure at high energies (above HERA)
- Di-jet and heavy quark production
- Tagging of UPC requires a Zero Degree Calorimeter

Ongoing work on ZDC design and integration with the accelerator instrumentation:

Proton-Nucleus Collisions

- Link between pp and AA physics
- Study of the nuclear modification of the gluon distribution at low x_{F} .
- Study of the jet fragmentation function modification
- Full detector capabilities (including TRT) will be available.
 - L~10³⁰ translates to about 1MHz interaction rate (compare to 40 MHz in pp)

CONCLUSION

ATLAS has a very good potential for making a valuable and significant contribution to the LHC's heavy-ion physics programme:

- Global variable measurement on Day1 $dN/d\eta$, $dE_T/d\eta$, elliptic flow.
- Jet measurement and jet quenching
- Quarkonia suppression $(J/\Psi, \Upsilon)$
- p-A physics
- Ultra-Peripheral Collisions (UPC)
- More will come

Direct information from QGP

Χ