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Abstract

This thesis describes a new randomized instruction scheduling algorithm designed for
communication-constrained VLIW-style machines. The algorithm was implemented
in a retargetable compiler system for testing on a variety a different machine configu-
rations. The algorithm performed acceptably well for machines with full communica-
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Chapter 1

Introduction

As VLSI circuit density increases, it becomes possible for microprocessor designers

to place more and more logic on a single chip. Studies of instruction level paral-

lelism suggest that this logic may be best spent on exploiting fine-grained parallelism

with numerous, pipelined functional units [4, 3]. However, while it is fairly trivial

to scale the sheer number of functional units on a chip, other considerations limit

the effectiveness of this approach. As many researchers point out, communication

resources to support many functional units, such as multi-ported register files and

large interconnection networks, do not scale so gracefully [16, 6, 5]. Furthermore,

these communication resources occupy significant amounts of chip area, heavily influ-

encing the overall cost of the chip. Thus, to accommodate large numbers of functional

units, hardware designers must use non-ideal approaches, such as partitioned register

files and limited interconnections between functional units, to limit communication

resources.

Such communication-constrained machines boast huge amounts of potential par-

allelism, but their limited communication resources present a problem to compiler

writers. Typical machines of this nature (e.g., VLIWs) shift the burden of instruc-

tion scheduling to the compiler. For these highly-parallel machines, efficient static

instruction scheduling is crucial to realize maximum performance. However, many tra-

ditional static scheduling algorithms fail when faced with communication-constrained

machines.



1.1 Traditional Instruction Scheduling

Instruction scheduling is an instance of the general resource constrained scheduling

(RCS) problem. RCS involves sequencing a set of tasks that use limited resources.

The resulting sequence must satisfy both task precedence constraints and limited

resource constraints [2]. In instruction scheduling, instructions are tasks, data depen-

dencies are precedence constraints, and hardware resource are machine resources.

RCS is a well-known NP-complete problem, motivating the development of many

heuristics for instruction scheduling. One of the most commonly used VLIW schedul-

ing heuristics is list scheduling [8, 7, 6, 11, 18]. List scheduling is a locally greedy

algorithm that maintains an prioritized "ready list" of instructions whose precedence

constraints have been satisfied. On each execution cycle, the algorithm schedules in-

structions from the list until functional unit resources are exhausted or no instructions

remain.

List scheduling explicitly observes the limited functional unit resources of the

target machine, but assumes that the machine has infinite communication resources.

This assumption presents a problem when implementing list scheduling on communication-

constrained machines. For example, its locally greedy decisions can consume key

communication resources, causing instructions to become "stranded" with no way

to access needed data. In light of these problems, algorithms are needed that op-

erate more globally and consider both functional unit and communication resources

in the scheduling process. It is proposed in this thesis that randomized instruction

scheduling algorithms might fulfill these needs.

1.2 Randomized Instruction Scheduling

The instruction scheduling problem can also be considered a large combinatorial op-

timization problem. The idea is to systematically search for a schedule that optimizes

some cost function, such as the length of the schedule. Many combinatorial optimiza-

tion algorithms are random in nature. Popular ones include hill-climbing, random



sampling, genetic algorithms, and simulated annealing.

Combinatorial optimization algorithms offer some potential advantages over tradi-

tional deterministic scheduling algorithms. First, they consider a vastly larger number

of schedules, so they should be more likely to find an optimal schedule. Second, they

operate on a global scale and do not get hung up on locally bad decisions. Third, they

can be tailored to optimize for any conceivable cost function instead of just schedule

length. And finally, they can consider any and all types of limited machine resources,

including both functional unit and communication constraints. The primary disad-

vantage is that they can take longer to run, up to three orders of magnitude longer

than list scheduling.

In this thesis, an implementation of the simulated annealing algorithm is inves-

tigated as a potential randomized instruction scheduling algorithm. The results in-

dicate that this implementation may not be the best choice for a randomized in-

struction scheduling algorithm. While the algorithm performs consistently well on

communication-rich machines, it often fails to find good schedules for its intended

targets, communication-constrained machines.

This thesis presents the results of systematic studies designed to find good param-

eters for the simulated annealing algorithm. The algorithm is extensively tested on a

small sampling of programs and communication-constrained machines for which it is

expected to perform well. These studies identify some parameter trends that influence

the algorithm's performance, but no parameters gave consistently good results for all

programs on all machines. In particular, machines with more severe communication

constraints elicited poorer schedules from the algorithm.

1.3 Background

Many modern instruction scheduling algorithms for VLIW ("horizontal") machines

find their roots in early microcode compaction algorithms. Davidson et al. [7] com-

pare four such algorithms: first-come-first-served, critical path, branch-and-bound,

and list scheduling. They find that first-come-first-served and list scheduling often



perform optimally and that branch-and-bound is impractical for large micropro-

grams. Tokoro, Tamura, and Takizuka [19] describe a more sophisticated microcode

compaction algorithm in which microinstructions are treated as 2-D templates ar-

ranged on a grid composed of machine resources vs. cycles. The scheduling process is

reduced to tessellation of the grid with variable-sized 2-D microinstruction templates.

They provide rules for both local and global optimization of template placement.

Researchers recognized early on that that global scheduling algorithms are neces-

sary for maximum compaction. Isoda, Kobayashi, and Ishida [9] describe a global

scheduling technique based on the generalized data dependency graph (GDDG). The

GDDG represents both data dependencies and control flow dependencies of a mi-

croprogram. Local GDDG transformation rules are applied in a systematic manner

to compact the GDDG into an efficient microprogram. Fisher [8] also acknowledges

the importance of global microcode compaction in his trace scheduling technique. In

trace scheduling, microcode is compacted along traces rather than within basic blocks.

Traces are probable execution paths through a program that generally contain many

more instructions than a single basic block, allowing more compaction options.

Modern VLIW instruction scheduling efforts have borrowed some microcode com-

paction ideas while generating many novel approaches. Colwell et al. [6] describe

the use of trace scheduling in a compiler for a commercial VLIW machine. Lam [11]

develops a VLIW loop scheduling technique called software pipelining, also described

earlier by Rau [15]. In software pipelining, copies of loop iterations are overlapped at

constant intervals to provide optimal loop throughput. Nicolau [13] describes perco-

lation scheduling, which utilizes a small core set of local transformations to parallelize

programs. Moon and Ebcioglu [12] describe a global VLIW scheduling method based

on global versions of the basic percolation scheduling transformations.

Other researchers have considered the effects of constrained hardware on the

VLIW scheduling problem. Rau, Glaeser, and Picard [16] discuss the complexity

of scheduling for a practical horizontal machine with many functional units, separate

"scratch-pad" register files, and limited interconnect. In light of the difficulties, they

conclude that the best solution is to change the hardware rather than invent better



scheduling algorithms. The result is their "polycyclic" architecture, an easily schedu-

lable VLIW architecture. Capitanio, Dutt, and Nicolau [5] also discuss scheduling

algorithms for machines with distributed register files. Their approach utilizes simu-

lated annealing to partition code across hardware resources and conventional schedul-

ing algorithms to schedule the resulting partitioned code. Smith, Horowitz, and Lam

[17] describe a architectural technique called "boosting" that exposes speculative ex-

ecution hardware to the compiler. Boosting allows a static instruction scheduler to

exploit unique code transformations made possible by speculative execution.

1.4 Thesis Overview

This thesis is organized into six chapters. Chapter 1 contains the introduction, a

survey of related research, and this overview.

Chapter 2 gives a high-level overview of the scheduler test system. The source

input language pasm is described as well as the class of machines for which the

scheduler is intended.

Chapter 3 introduces the main data structure of the scheduler system, the program

graph, and outlines the algorithms used to construct it.

Chapter 4 outlines the generic simulated annealing search algorithm and how it

is applied in this case for instruction scheduling.

Chapter 5 presents the results of parameter studies with the simulated annealing

scheduling algorithm. It also provides some analysis of the data and some explana-

tions for its observed performance.

Chapter 6 contains the conclusion and suggestions for some areas of further work.



Chapter 2

Scheduler Test System

The scheduler test system was developed to evaluate instruction scheduling algorithms

on a variety of microprocessors. As shown in Figure 2-1, the system is organized into

three phases: parse, analysis, and schedule.

The parse phase accepts a user-generated program as input. This program is

written in a high-level source language, pasm, which is described in Section 2.1 of

this chapter. Barring any errors in the source file, the parse phase outputs a sequence

of machine-independent assembly instructions. The mnemonics and formats of these

assembly instructions are listed in Appendix B.

The analysis phase takes the sequence of assembly instructions from the parse

phase as its input. The sequence is analyzed using simple dataflow techniques to infer

data dependencies and to expose parallelism in the code. These analyses are used

to construct the sequence's program graph, a data structure that can represent data

dependencies and control flow for simple programs. The analyses and algorithms used

to construct the program graph are described in detail in Chapter 3.

The schedule phase has two inputs: a machine description, written by the user,

and a program graph, produced by the analysis phase. The machine description

specifies the processor for which the scheduler generates code. The scheduler can

target a certain class of processors, which is described in Section 2.2 of this chapter.

During the schedule phase, the instructions represented by the program graph are

placed into a schedule that satisfies all the data dependencies and respects the limited



Figure 2-1: Scheduler test system block diagram.

resources of the target machine. The schedule phase outputs a scheduled sequence

of wide instruction words, the final output of the scheduler test system.

The schedule phase can utilize many different scheduling algorithms. The simu-

lated annealing instruction scheduling algorithm, the focus of this thesis, is described

in Chapter 4.

2.1 Source Language

The scheduler test system uses a simple language called pasm (micro-assembler) to

describe its input programs. The pasm language is a high-level, strongly-typed lan-

guage designed to support "streaming computations" on a VLIW style machine. It

borrows many syntactic features from the C language including variable declarations,

expression syntax, and infix operators. The following sections detail specialized lan-

guage features that differ from those of C. The complete grammar specification of

puasm can be found in Appendix A.

2.1.1 Types

Variables in pasm can have one of five base types: int, half2, byte4, float, or cc.

These base types can be modified with the type qualifiers unsigned and double.

The base types int and float are 32-bit signed integer and floating point types.

The base types half2 and byte4 are 32-bit quantities containing two signed 16-bit

integers and 4 signed 8-bit integers, respectively. The cc type is a 1-bit condition

code.



The type qualifier unsigned can be applied to any integer base type to convert

it to an unsigned type. The type qualifier double can be applied to any arithmetic

type to form a double width (64-bit) type.

2.1.2 I/O Streams

Streaming computations typically operate in compact loops and process large vectors

of data called streams. Streams must be accessed sequentially, and they are designated

as either read-only or write-only. /pasm supports the stream processing concept with

the special functions istream and ostream, used as follows:

variable = istream(stream#, value-type),

ostream(stream#, value-type) = value.

In the above, variable is a program variable, value is a value produced by an expression

in the program, stream # is a number identifying a stream, and value-type is the type

of the value to be read from or written to the stream.

2.1.3 Control Flow

In an effort to simplify compilation, pasm does not support the standard looping

and conditional language constructs of C. Instead, ,pasm features control flow syntax

which maps directly onto the generic class of VLIW hardware for which it is targeted.

Loops in pasm are controlled by the loop keyword as follows:

loop loop-variable = start , finish { loop-body },

where loop-variable is the loop counter, and start and finish are integers delineating

the range of values (inclusive) for the loop counter.

All conditional expressions in pasm are handled by the ?: conditional ternary

operator, an operation naturally supported by the underlying hardware. The lan-

guage has no if-then capability, requiring all control paths through the program to

be executed. The conditional operator is used as follows:



value = condition ? valuel : value2.

If condition is true, valuel is assigned to value, otherwise value2 is assigned to value.

The condition variable must be of type cc.

2.1.4 Implicit Data Movement

Assignment expressions in ,pasm sometimes have a slightly different interpretation

than those in C. When an expression that creates a value appears on the right-

hand side of an assignment expression, the parser generates normal code for the

assignment. However, if the right-hand side of an assignment expression merely

references a value (e.g., a simple variable name), the parser translates the assignment

into a data movement operation. For example, the assignment expression

a = b + c;

is left unchanged by the parser, as the expression b + c creates an unnamed inter-

mediate value that is placed in the data location referenced by a. On the other hand,

the expression

ostream(O,int) = d;

is implicitly converted to the expression

ostream(O,int) = pass(d);

in which the pass function creates a value on the right-hand side of the assignment.

The pass function is an intrinsic pasm function that simply passes its input to its

output. The pass function translates directly to the pass assembly instruction, which

is used to move data between register files. The pass instruction also has special

significance during instruction scheduling, as discussed in Chapter 4.

2.1.5 Example Program

An example pasm program is shown in Figure 2-2. The program processes two 100-

element input streams and constructs a 100-element output stream. Each element



int elemO, elemi;
cc gr;

loop count = 0, 99 // loop 100 times

elemO = istream(O,int); read element from stream 0
eleml = istream(0,int); // read element from stream 1

gr = elemO > eleml; // which is greater?
ostream(0,int) = gr ? elemO : eleml; // output the greater

Figure 2-2: Example pasm program.

of the output stream is selected to be the greater of the two elements in the same

positions of the two input streams.

2.2 Machine Description

The scheduler test system is designed to produce code for a strictly defined class of

processors. Processors within this class are composed of only three types of compo-

nents: functional units, register files, and busses. Functional units perform the com-

putation of the processor, register files store intermediate results, and busses route

data from functional units to register files. Processors are assumed to be clocked, and

all data is one 32-bit "word" wide.

Each processor component has input and output ports with which they are con-

nected to other components. Only certain connections are allowed: functional unit

outputs must connect to bus inputs, bus outputs must connect to register file inputs,

and register file outputs must connect to functional unit inputs. The general flow of

data through such a processor is illustrated in Figure 2-3.

A processor may contain many different instances of each component type. The

various parameters that distinguish components are described in Sections 2.2.1, 2.2.2,

and 2.2.3.

While such a restrictive processor structure may seem artificially limiting, a wide



Figure 2-3: General structure of processor.

variety of sufficiently "realistic" processors can be modeled within these limitations.

Examples are presented in Section 2.2.4.

2.2.1 Functional Units

Functional units operate on a set of input data words to produce a set of output data

words. The numbers of input words and output words are determined by the number

of input ports and output ports on the functional unit.

Functional unit operations correspond to the assembly instruction mnemonics

listed in Appendix B. A functional unit may support anywhere from a single assembly

instruction to the complete set.

A functional unit completes all of its operations in the same fixed amount of time,

called the latency. Latency is measured in clock cycles, the basic unit of time used

throughout the scheduler system. For example, if a functional unit with a 2 cycle

latency reads inputs on cycle 8, then it produces outputs on cycle 10.

Functional units may be fully pipelined, or not pipelined at all. A fully pipelined

unit can read a new set of input data words on every cycle, while a non-pipelined

unit can only read inputs after all prior operations have completed.

In the machine description, a functional unit is completely specified by the number

of input ports, the number of output ports, the latency of operation, the degree of

pipelining, and a list of supported operations.



2.2.2 Register Files

Register files store intermediate results and serve as delay elements during computa-

tion. All registers are one data word wide. On each clock cycle, a register file can

write multiple data words into its registers, and read multiple data words out of its

registers. The numbers of input and output ports determine how many words can be

written or read in a single cycle.

In the machine description, a register file is completely specified by the number

of input ports, the number of output ports, and the number of registers contained

within it.

2.2.3 Busses

Busses transmit data from the outputs of functional units to the inputs of register

files. They are one data word wide, and provide instantaneous (0 cycle) transmission

time. In this microprocessor model, bus latency is wrapped up in the latency of the

functional units. Aside from the number of distinct busses, no additional parameters

are necessary to describe busses in the machine description.

2.2.4 Example Machines

In this section, four example machine descriptions are presented. Each description

is given in two parts: a list of component parameterizations and a diagram showing

connectivity between components. For the sake of simplicity, it assumed that the

possible set of functional unit operations is ADD, SUB, MUL, DIV, and SHFT. The

basic characteristics of the four machines are summarized in Table 2.1.

The first machine is a simple scalar processor (Figure 2-4). It has one functional

unit which supports all possible operations and a single large register file. The func-

tional unit latency is chosen to be the latency of the longest instruction, DIv.

The second machine is a traditional VLIW machine with four functional units

(Figure 2-5) [20]. This machine distributes operations across all four units, which

have variable latencies. It has one large register file through which the functional



Scalar
Traditional VLIW
Distributed VLIW
Multiply-Add

# Functional
Units

1
4
4
4

# Register
Files

1
1
8
8

# Busses

2
6
6
5

Communication
Connectedness

FULL
FULL
FULL

CONSTRAINED

Table 2.1: Summary of example machine descriptions.

units can exchange data.

The third machine is VLIW machine with distributed register files and full inter-

connect (Figure 2-6). Functional units store data locally in small register files and

route data through the bus network when results are needed by other units.

The fourth machine is a communication-constrained machine with an adder and a

multiplier connected in a "multiply-add" configuration (Figure 2-7). Unlike the previ-

ous three machines, communication-constrained machines are not fully-connected. A

fully-connected machine is a machine in which there is a direct data path from every

functional unit output to every functional unit input. A direct data path starts at a

functional unit output, connects to a bus, passes through a register file, and ends at

a functional unit input. In this machine, data from the multiplier must pass through

the adder before it can arrive at any other functional unit. Thus, there is no direct

data path from the output of the multiplier to the input of any unit except the adder.



(#) Functional Units
(1) PROCESSOR

(#) Register Files
(1) REGFILE

(#) Busses
(2) BUS

# ins
2

# ins
2

# outs
2

# outs
2

BUS 0
BUS 1

latency

10

# regs
32

pipe?
NO

ops
ADD, SUB,
MUL, Div,
SHFT

Figure 2-4: Simple scalar processor.
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(1) DIVIDER
(1) SHIFTER

(#) Register Files
(1) REGFILE

(#) Busses
(6) BUS

I
BUS 2

BUS BUS 0
BUS1

Figure 2-5: Traditional VLIW processor.
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Figure 2-6: Distributed register file VLIW processor.
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Figure 2-7: Communication-constrained (multiply-add) VLIW processor.
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2.3 Summary

This chapter describes the basic structure of the scheduler test system. The scheduler

test system produces instruction schedules for a class of processors. It takes two

inputs from the user: a program to schedule, and a machine on which to schedule

it. Schedule generation is divided into three phases: parse, analysis, and schedule.

The parse phase converts a program into assembly instructions, the analysis phase

processes the assembly instructions to produce a program graph, and the schedule

phase uses the program graph to produce a schedule for a particular machine.

Input programs are written in a simple C-like language called pasm. pasm is

a stream-oriented language that borrows some syntax from C. It also has support

for special features of the underlying hardware, such as zero-overhead loops and

conditional select operations.

Machines are described in terms of basic components that are connected together.

There are three types of components: functional units, register files, and busses.

Functional units compute results that are stored in register files, and busses route

data between functional units and register files. Although restrictive, these simple

components are sufficient to describe a wide variety of machines.



Chapter 3

Program Graph Representation

It is common to use a graph representation, such as a directed acyclic graph (DAG),

to represent programs during compilation [10, 1]. During the analysis phase, the

scheduler test system produces an internal graph representation of a program called

a program graph. A program graph is effectively a DAG with some additions for

representing the simple control flow of pasm.

Several factors motivated the design of the program graph as an internal program

representation. First, an acceptable representation must expose much of the paral-

lelism in a program. The scheduler targets highly parallel machines, and effective

instruction scheduling must exploit all available parallelism.

Second, a representation must allow for simple code motion across basic blocks.

Previous researchers have demonstrated that scheduling across basic blocks can be

highly effective for VLIW style machines [8, 13]. In this case, since pasm has no

conditionally executed code, the representation need only handle the special case of

code motion into and out of loops.

Finally, a representation must be easily modifiable for use in the simulated anneal-

ing algorithm. As described fully in Chapter 4, the simulated annealing instruction

scheduling algorithm dynamically modifies the program graph to search for efficient

schedules.

The basic program graph, described in Section 3.1, represents the structure of a

program and is independent of the machine on which the program is scheduled. When



used in the simulated annealing instruction scheduling algorithm, the program graph

is labeled with annotations that record scheduling information. These annotations

are specific to the target machine class and are described in Section 3.2.

3.1 Basic Program Graph

The basic program graph is best introduced by way of example. Figures 3-la and

3-1b show a simple ,pasm program and the assembly instruction sequence produced

by the parse phase of the scheduler test system. Because the program has no loops,

the program graph for this program is simply a DAG, depicted in Figure 3-1c. The

nodes in the DAG represent assembly instructions in the program, and the edges

designate data dependencies between operations.

int a,b; istream RO, #0
a = istream(0,int); istream R1, #1
b = istream(l,int); iadd32 RO, RO, R1
a = a + b; isub32 R2, RO, R1

ostream(0,int) = a - b; ostream R2, #0

(a) (b)

Figure 3-1: Example loop-free pIasm program (a), its assembly listing (b), and its
program graph (c).

3.1.1 Code Motion

DAGs impose a partial order on the instructions (nodes) in the program (program

graph). An ordering of the nodes that respects the partial order is called a valid

order of the nodes, and instructions are allowed to "move" relative to one another as

long as a valid order is maintained. Generally, there are many different valid orders

'



for instructions in a program, as shown in Figure 3-2. However, there is always at

least one valid order, the program order, which is the order in which the instructions

appear in the original assembly program.

In Chapter 4 it is shown how the scheduler utilizes code motion within the program

graph constraints to form instruction schedules.

(a)

(b)

Figure 3-2: Two different valid orderings of the example DAG.

3.1.2 Program Graph Construction

Constructing a DAG for programs with no loops is straightforward. First, nodes are

created for each instruction in the program, and then directed edges are added where

data dependencies exist. Table-based algorithms are commonly used for adding these

directed edges [18]. A simple table-based algorithm for adding edges to an existing

list of nodes is given in Figure 3-3. The table records the nodes that have created the

most recent values for variables in the program.

The simple DAG construction algorithm can be modified to produce program

graphs for programs with loops. The program in Figure 3-4 has one loop, and the

program graph construction process is illustrated in Figure 3-5. First, nodes are

created for each instruction in the program, including loop instructions. Second,

the nodes are scanned in program order using a table to add forward-directed data

dependency edges. Third, the nodes within the loop body are scanned a second



build-dag (L)
for each node N in list L do
I = instruction associated with node N
for each source operand S of instruction I do
M = TABLE[S]
add edge from node M to node N

for each destination operand D of instruction I do
TABLE[D] = N

Figure 3-3: Table-based DAG construction algorithm.

time with the same table to add backward-directed data dependency edges (back

edges). Program graphs use dependency cycles to represent looping control flow.

Finally, special loop dependency edges are added to help enforce code motion rules

for instructions around loops. These special loop dependency edges and the code

motion rules are explained in Section 3.1.3.

int a,b; istream RO, #0
a = istream(0,int); loop #100

loop #100loop count = 0,99 istream Ri, #1
iadd32 RO, RO, R1

b = istream(l,int);
S isub32 R2, RO, R1

a = a + b;
S = a b; ostream R2, #0

ostream(0,int) = a - b;
endloop

(a) (b)

Figure 3-4: Example pasm program with loops (a) and its assembly listing (b).

The construction process outlined above can be generalized to programs with ar-

bitrary numbers of nested loops. In general, each loop body within a program must

be scanned twice. Intuitively, the first scan determines the initial values for variables

within the loop body, and the second scan introduces back edges for variables rede-

fined during loop iteration. An algorithm for constructing program graphs (without

loop dependency edges) is presented in Figure 3-6.

Clearly, program graphs are not DAGs; cycles appear in the program graph where
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Figure 3-5: Program graph construction process: nodes (a), forward edges (b), back
edges (c), loop dependency edges (d).

data dependencies exist between loop iterations. However, a program graph can be

treated much like a DAG if back edges are never allowed to become forward edges

in any ordering of the nodes. When restricted in this manner, back edges effectively

become special forward edges that are simply marked as backward. In all further

discussions, back edges are considered so restricted.

3.1.3 Loop Analysis

Program graphs are further distinguished from DAGs by special loop nodes which

mark the boundaries of loop bodies. These nodes govern how instructions may move

into or out of loop bodies.

An instruction can only be considered inside or outside of a loop with respect

to some valid ordering of the program graph nodes. If, in some ordering, a node in

the program graph follows a loop start node and precedes the corresponding loop

end node, then the instruction represented by that node is considered to be inside



build-program-graph(L)
for each node N in list L do
I = instruction associated with node N
if I is not a loop end instruction

for each source operand S of instruction I do
M = TABLE[S]
add edge from node M to node N

for each destination operand D of instruction I do
TABLE[D] = N

else
L2 = list of nodes in loop body of I, excluding I
build-dag (L2)

Figure 3-6: Program graph construction algorithms.

that loop. Otherwise, it is considered outside the loop. A node's natural loop is the

innermost loop that it occupies when the nodes are arranged in program order.

Compilers commonly move code out of loop bodies as a code optimization [1].

Fewer instructions inside a loop body generally result in faster execution of the loop.

In the case of wide instruction word machines, code motion into loop bodies may also

make sense [8]. Independent code outside of loop bodies can safely occupy unused

instruction slots within a loop, making the overall program more compact.

However, not all code can safely be moved into or out of a loop body without

changing the outcome of the program. The program graph utilizes a combination of

static and dynamic analyses to determine safe code motions.

Static Loop Analysis

Static loop analysis determines two properties of instructions with respect to all loops

in a program: loop inclusion and loop exclusion. If an instruction is included in a loop,

then that instruction can never move out of that loop. If an instruction is excluded

from a loop, then that instruction can never move into that loop. If it is neither, then

that instruction is free to move into or out of that loop.

A program graph represents static loop inclusion and exclusion with pairs of loop

dependency edges. Loop inclusion edges behave exactly like data dependency edges,



forcing an instruction to always follow the loop start instruction and to always precede

the loop end instruction. Loop exclusion edges are interpreted slightly differently.

They require an instruction to always follow a loop end instruction or to always

precede a loop start instruction. Figure 3-7 demonstrates loop dependency edges.

nod

(a) (b)

Figure 3-7: Loop inclusion (a) and loop exclusion (b) dependency edges.

Static loop analysis uses the following simple rules to determine loop inclusion

and loop exclusion for nodes in a program graph:

1. If a node has side effects, then it is included in its natural loop and excluded

from all other loops contained within its natural loop.

2. If a node references (reads or writes) a back edge created by a loop, then it is

included in that loop.

The first rule ensures that instructions that cause side effects in the machine, such

as loop start, loop end, istream, or ostream instructions, are executed exactly the

number of times intended by the programmer. Figure 3-8 depicts a simple situation

in which this rule is used to insert loop inclusion and loop exclusion edges into a

program graph. The program has multiple istream instructions that are contained

within two nest loops. As a result of static loop analysis, the first istream instruction

(node 0) is excluded from the outermost loop (and, consequently, all loops contained

within it). The second istream instruction (node 2) is included in the outermost loop

and excluded from the innermost loop, while the third istream instruction (node 4)

is simply included in the innermost loop.



int a;

a = istream(0,int);
loop count = 0,99

a = istream(l,int);
loop count2 = 0,99

{a = istream
a = istream(2,int);

0 istream RO, #0
1 loop #100
2 istream RO, #1
3 loop #100
4 istream RO, #2
5 end
6 end

(a) (b) (c)
Figure 3-8: Static loop analysis (rule 1 only) example program (a), labeled assembly
listing (b), and labeled program graph (c).

The second rule forces instructions that read or write variables updated inside a

loop to also remain inside that loop. Figure 3-9 shows a simple situation in which this

rule is enforced. The program contains two iadd32 instructions, which are connected

by a back edge created by the outermost loop. Thus, both nodes are included in this

loop. Note that the first add instruction (node 4) is not included in its natural loop

(the innermost loop). Inspection of the program reveals that moving node 4 from its

natural loop does not change the outcome of the program.

These two rules are not sufficient to prevent all unsafe code motions with regard

to loops. It is possible to statically restrict all illegal code motions, but at the expense



int a,b,c;

a = istream(0,int); 0 istream RO, #0
b = istream(1,int); 1 istream Ri, #1
loop count = 0,99 2 loop #100
{ 3 loop #100

loop count2 = 0,99 4 iadd32 R2, RO, R1
{ 5 end
c = a + b; 6 iad32 RO, R2, R1

} 7 end
a = c + b;

(a) (b) (c)
Figure 3-9: Static loop analysis (rule 2 only) example program (a), labeled assembly
listing (b), and labeled program graph (c).

of some legal ones. However, dynamic loop analysis offers a less restrictive way to

disallow illegal code motions, but at a runtime penalty.

Dynamic Loop Analysis

Some code motion decisions can be better made dynamically. For example, consider

the program and associated program graph in Figures 3-10a and 3-10b. As a result

of static loop analysis, nodes 3 and 7 are included in the outer loop but are free to

move into the inner loop. Inspection of the program graph reveals that either node

3 or node 7 can safely be moved into the inner loop, but not both. Although the

inner loop is actually independent from the outer loop, moving both nodes into the

inner loop causes the outer loop computation to be repeated too many times. Such

problems can occur whenever a complete dependency cycle is moved from one loop

to another.

Dynamic loop analysis seeks to prevent complete cycles in the program graph



int a,b,c;

a = istream(0,int); 0
b = istream(l,int); 1
loop countl = 0,99 2
{ 3

c=a+b; 4
loop count2 = 0, 99 5
{ 6
ostream(0,int) = b; 7
} 8
a = c + b;

istream
istream
loop
iadd32
loop
ostream
end
iadd32
end

(a)

RO, #0
Ri, #1
#100
R2, RO, R1
#100
R1, #0

RO, R2, R1

(b)

Figure 3-10: Dynamic loop analysis example program (a), labeled assembly listing
(b), and labeled program graph (c).

from changing loops as a result of code motion. Checks are dynamically performed

before each potential change to the program graph ordering. Violations of the cycle

constraint are disallowed.

Central to dynamic loop analysis is the notion of the innermost shared loop of a

set of nodes. The innermost shared loop of a set of nodes is the innermost loop in

the program that contains all the nodes in the set. There is always one such loop for

any subset of program graph nodes; it is assumed that the entire program itself is a

special "outermost" loop, and all nodes share at least this one loop.

When moving a node on a computation cycle, dynamic loop analysis ensures that

the innermost shared loop for all nodes on the cycle is the same as that when the

nodes are arranged in program order. Otherwise, the move is not allowed.



3.2 Annotated Program Graph

Often, a DAG (or some other data structure) is used to guide the code generation

process during compilation [1]. In addition, for complex machines, a separate score-

board structure may be used to centrally record resource usage. However, to facilitate

dynamic modification of the schedule, it is often useful to embed scheduling informa-

tion in the graph structure itself. Embedding such information in a basic program

graph results in an annotated program graph.

Scheduling information is recorded as annotations to the nodes and edges of the

basic program graph. These annotations are directly related to the type of hardware

on which the program is to be scheduled. For the class of machines described in

Section 2.2, node annotations record information about functional unit usage, and

edge annotations record information about communication between functional units.

3.2.1 Node Annotations

Annotated program graph nodes contain two annotations: unit and cycle. The

annotations represent the instruction's functional unit and initial execution cycle.

Node annotations lend concreteness to the notion of ordering in the program

graph. By considering the unit and cycle annotations to be two independent dimen-

sions, the program graph can be laid out on a grid in "space-time" (see Figure 3-11).

This grid is a useful way to visualize program graphs during the scheduling process.

3.2.2 Edge Annotations

Edges in an annotated program graph represent the flow of data from one functional

unit to another. They contain annotations that describe a direct data path through

the machine. Listed in the order encountered in the machine, these annotations

are unit-out-port, bus, reg-in-port, register, reg-out-port, and unit-in-port.

Figure 3-12 illustrates the relationship between edge annotations and the actual path

of data through the machine.
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Figure 3-11: Program graph laid out on grid.

Assigning values to the annotations of an edge that connects two annotated nodes

is called routing data. Two annotated nodes determine a source and destination for

a data word. Many paths may exist between the source and destination, so routing

data is generally done by systematically searching all possibilities for the first valid

path.

Valid paths may not exist if the machine does not have the physical connections,

or if the machine resources are already used for other routing. If no valid paths exist

for routing data, then the edge is considered broken. Broken edges have unassigned

annotations.

3.2.3 Annotation Consistency

The data routing procedure raises the topic of annotation consistency. Annotations

must be assigned such that they are consistent with one another. For example, an

edge cannot be assigned resources that are already in use by a different edge or

resources that do not exist in the machine.

Similarly, two nodes generally can not be assigned the same cycle and unit an-
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Figure 3-12: Edge annotations related to machine structure.

notations. An exception to this rule occurs when the two nodes are compatible. Two

nodes are considered compatible if they compute identical outputs. For example,

common subexpressions in programs generate compatible program graph nodes. Such

nodes would be allowed to share functional unit resources, effectively eliminating the

common subexpression.

Additionally, nodes can not be assigned annotations that cause an invalid ordering

of the program graph nodes. By convention, only edge annotations are allowed to be

unassigned (broken). This restriction implies that data dependency constraints are

always satisfied in properly annotated program graphs.

3.3 Summary

This chapter introduces the program graph, a data structure for representing data and

simple control flow for programs. The scheduler test system uses the program graph

to represent programs for three reasons: (1) it exposes much program parallelism, (2)

it allows code motion into and out of loops, and (3) it is easily modifiable.

A program graph consists of nodes and edges. As in a DAG representation, nodes

correspond to instructions in the program, and edges correspond to data dependencies

between instructions. In addition, special loop nodes and edges represent program

control flow.



Program graphs are constructed with a simple table-based algorithm, similar to

a table-based DAG construction algorithm. Loop edges are created by a static loop

analysis post-processing step. Dynamic loop analysis supplements the static analysis

to ensure that modifications to the program graph to not result in incorrect program

execution.

An annotated program graph is a program graph that has been augmented for use

in a scheduling algorithm. Two types of annotations are used: node annotations and

edge annotations. Node annotations record on which cycle and unit an instruction is

scheduled, and edge annotations encode data flow paths through the machine.



Chapter 4

Scheduling Algorithm

This chapter describes a new instruction scheduling algorithm based on the simu-

lated annealing algorithm. This algorithm is intended for use on communication-

constrained VLIW machines.

4.1 Simulated Annealing

Simulated annealing is a randomized search algorithm used for combinatorial opti-

mization. As its name suggests, the algorithm is modeled on the physical processes

behind cooling crystalline materials. The physical structure of slowly cooling (i.e.,

annealing) material approaches a state of minimum energy despite small random

fluctuations in its energy level during the cooling process. Simulated annealing mim-

ics this process to achieve function minimization by allowing a function's value to

fluctuate locally while slowly "cooling down" to a globally minimal value.

The pseudocode for an implementation of the simulated annealing algorithm is

given in Figure 4-1. This implementation of the algorithm takes T, the current tem-

perature, and a, the temperature reduction factor, as parameters. These parameters,

determined empirically, guide the cooling process of the algorithm, as described later

in this section.

The simulated annealing algorithm uses three data-dependent functions: initial-

ize, energy, and reconfigure. The initialize function provides an initial data point



D = initialize()
E = energy(D)
repeat until 'cool'

repeat until reach 'thermal equilibrium'
newD = reconfigure(D)
newE = energy(D)
if newE < E
P = 1.0

else
P = exp(-(newE - E)/T)

if (random number in [0,1) < P)
D = newD
E = newE

T = alpha*T

Figure 4-1: The simulated annealing algorithm.

from which the algorithm starts its search. The energy function assigns an energy

level to a particular data point. The simulated annealing algorithm attempts to

find the data point that minimizes the energy function. The reconfigure function

randomly transforms a data point into a new data point. The algorithm uses the

reconfigure function to randomly search the space of possible data points. These

three functions, and their definitions for instruction scheduling, are detailed further

in Section 4.2.

4.1.1 Algorithm Overview

The simulated annealing algorithm begins by calculating an initial data point and

initial energy using initialize and energy, respectively. Then, it generates a sequence

of data points starting with the initial point by calling reconfigure. If the energy

of a new data point is less than the energy of the current data point, the new data

point is accepted unconditionally. If the energy of a new data point is greater than

the energy of the current data point, the new data point is conditionally accepted



with some probability that is governed by the following equation:

AE

p(accept) = e - , (4.1)

where T is the current "temperature" of the algorithm, and AE is the magnitude of

the energy change between the current data point and the new one. If a new data

point is accepted, it becomes the basis for future iterations; otherwise the old data

point is retained.

This iterative process is repeated at the same temperature level until "thermal

equilibrium" has been reached. Thermal equilibrium occurs when continual energy

decreases in the data become offset by random energy increases. Thermal equilibrium

can be detected in many ways, ranging from a simple count of data reconfigurations to

a complex trend detection scheme. In this thesis, exponential and window averages

are commonly used to detect when the energy level at a certain temperature has

reached steady-state.

Upon reaching thermal equilibrium, the temperature must be lowered for further

optimization. Lower temperatures allow fewer random energy increases, reducing the

average energy level. In this implementation, the temperature parameter T is reduced

by a constant multiplicative factor a, typically between 0.85 and 0.99.

Temperature decreases continue until the temperature has become sufficiently

"cool," usually around temperature zero. Near this temperature, the probability of

accepting an energy increase approaches zero, and the algorithm no longer accepts

random increases in the energy level. The algorithm terminates when it appears that

no further energy decreases can be found.

It is interesting to note that the inner loop of the algorithm is similar to a simple

"hill-climbing" search algorithm. In the hill-climbing algorithm, new data points are

accepted only if they are better than previous data points. The simulated annealing

algorithm relaxes this requirement by accepting less-fit data points with an exponen-

tially decreasing probability. This relaxation permits the algorithms to avoid getting

trapped in local minima. As the temperature decreases, the behavior of the simulated



annealing algorithm approaches that of the hill-climbing search.

4.2 Simulated Annealing and Instruction Schedul-

ing

Application of the simulated annealing algorithm to any problem requires definition

of the three data-dependent functions initialize, energy, and reconfigure as well

as selection of the initial parameters T and a. The function definitions and initial

parameters for the problem of optimal instruction scheduling are provided in the

following sections.

4.2.1 Preliminary Definitions

A data point for the simulated annealing instruction scheduler is a schedule. A sched-

ule is a consistent assignment of annotations to each node and edge in an annotated

program graph. Schedules may be valid or invalid. A valid schedule is a schedule in

which the annotation assignment satisfies all dependencies implied by the program

graph, respects the functional unit resource restrictions of the target hardware, and

allows all data to be routed (i.e., there are no broken edges). The definition of anno-

tation consistency in Section 3.2.3 implies that a schedule can only be invalid if its

program graph contains broken edges.

4.2.2 Initial Parameters

The initial parameters T and ac govern the cooling process of the simulated annealing

algorithm. A proper rate of cooling is crucial to the success of the algorithm, so good

choices for these parameters are important.

The initial temperature T is a notoriously data-dependent parameter [14]. Con-

sequently, it is often selected automatically via an initial data-probing process. The

data-probing algorithm used in this thesis is shown in Figure 4-2. It is controlled

by an auxiliary parameter P, the initial acceptance probability. The parameter P is



intended to approximate the probability with which an average energy increase will

be initially accepted by the simulated annealing algorithm. Typically, P is set very

close to one to allow sufficient probability of energy increases early in the simulated

annealing process.

The data probing algorithm reconfigures the initial data point a number of times

and accumulates the average change in energy AEavg. Inverting Equation (4.1) yields

the corresponding initial temperature:

Tinitial Eavg (4.2)
InP

probe-initial-temperature (D,P)
E = energy(D)
total = 0
repeat 100 times

D2 = reconfigure(D)
E2 = energy(D2)
deltaE = abs(E - E2)
total = total + deltaE

avgDeltaE = total / 100
T = -avgDeltaE / ln(P)
return T

Figure 4-2: Initial temperature calculation via data-probing.

The initial parameter a is generally less data-dependent than T. In this thesis,

values for a are determined empirically by trial-and-error. The results of these

experiments are discussed later in Chapter 5.

4.2.3 Initialize

The initialize function generates an initial data point for the simulated annealing

algorithm. In the domain of optimal instruction scheduling, the initialize function

takes a program graph as input and produces an annotation assignment for that

program graph (i.e., it creates a schedule).



cycle = 0
for each node N in program graph P do

N->cycle = cycle
N->unit = random unit

cycle = cycle + N->unit->latency + 1
for each edge E in program graph P do
if data can be routed for edge E

assign edge annotations to E
else
mark E broken

Figure 4-3: Maximally-bad initialization algorithm.

The goal of the initialize function is to quickly produce a schedule. The schedules

need not be near-optimal or even valid. One obvious approach is to use a fast, sub-

optimal scheduling algorithm, such as a list scheduler, to generate the initial schedule.

This approach is easy if the alternate scheduling algorithm is available, but may have

the unwanted effect of biasing the simulated annealing algorithm toward schedules

close to the initial one. Initializing the simulated annealing algorithm with a data

point deep inside a local minimum can cause the algorithm to become stuck near that

data point if the initial temperature is not high enough.

Another approach is to construct a "maximally bad" (within reasonable limits)

schedule. Such a schedule lies outside all local minima and allows the simulated

annealing algorithm to discover randomly which minima to investigate. Maximally

bad schedules can be quickly generated using the algorithm shown in Figure 4-3. This

algorithm traverses a program graph in program order and assigns a unique start cycle

and a random unit to each node in the program graph. A second traversal assigns

edge annotations, if possible.

4.2.4 Energy

The energy function evaluates the optimality of a schedule. It takes a schedule

as input and outputs a positive real number. Smaller energy values are assigned

to more desirable schedules. Energy evaluations can be based on any number of



schedule properties including critical path length, schedule density, data throughput,

or hardware resource usage. Penalties can be assigned to undesirable schedule features

such as broken edges or unused functional units. Some example energy functions are

described in the following paragraphs.

Largest-start-time

The largest-start-time energy function is shown in Figure 4-4. The algorithm

simply computes the largest start cycle of all operations in the program graph. Opti-

mizing this energy function results in schedules that use a minimum number of VLIW

instructions, often resulting in fast execution. However, this function is not well suited

to the simulated annealing algorithm, as it is very flat and exhibits infrequent, abrupt

changes in magnitude. In general, flat functions provide no sense of "progress" to the

simulated annealing algorithm, resulting in a largely undirected, random search.

1st = 0

for each node N in program graph P
if N->cycle > 1st

1st = N->cycle
return 1st

Figure 4-4: Largest-start-time energy function.

Sum-of-start-times

The sum-of-start-times energy function appears in Figure 4-5. Slightly more

sophisticated than largest-start-time, this algorithm attempts to measure schedule

length while remaining sensitive to small changes in the schedule. Since all nodes

contribute to the energy calculation (rather than just one as in largest-start-time),

the function output reflects even small changes in the input schedule, making it more

suitable for use in the simulated annealing algorithm.



m= 0
for each node N in program graph P
m = m + N->cycle

return m

Figure 4-5: Sum-of-start-times energy function.

Sum-of-start-times (with penalty)

Figure 4-6 shows the sum-of-start-times energy function with a penalty applied

for broken program graph edges. Assessing penalties for undesirable schedule fea-

tures causes the simulated annealing algorithm to reject those schedules with high

probability. In this case, the simulated annealing algorithm would not likely accept

schedules with broken edges (i.e., invalid schedules).

m= 0
for each node N in program graph P

m = m + N->cycle
brokenedgecount = 0
for each edge E in program graph P
if E is broken
brokenedgecount = brokenedgecount + 1

return m * (1 + brokenedgecount*brokenedgepenalty)

Figure 4-6: Sum-of-start-times (with penalty) energy function.

4.2.5 Reconfigure

The reconfigure function generates a new schedule by slightly transforming an exist-

ing schedule. There are many possible schedule transformations, the choice of which

affect the performance of the simulated annealing algorithm.

In this thesis, good reconfigure functions for simulated annealing possess two re-

quired properties:

reversibility The simulated annealing algorithm should be able to undo any recon-

figurations that it applies during the course of optimization.



completeness The simulated annealing algorithm should be able to generate any data

point from any other data point with a finite number of reconfigurations.

The reconfiguration functions used in this thesis are based on a small set of primi-

tive schedule transformations that together satisfy the above conditions. Those prim-

itives and the reconfiguration algorithms based on them are described in detail in the

next sections.

4.3 Schedule Transformation Primitives

All reconfiguration functions used in this thesis are implemented as a composition of

three primitive schedule transformation functions: move-node, add-pass-node,

and remove-pass-node. Conceptually, these functions act only on nodes in an an-

notated program graph. In practice, they explicitly modify the annotations of a single

node in the program graph, and in doing so may implicitly modify the annotations

of any number of edges. Annotation consistency is always maintained.

4.3.1 Move-node

The move-node function moves (i.e., reannotates) a node from a source cycle and

unit to a destination cycle and unit, if the move is possible. The program graph is

left unchanged if the move is not possible. A move is considered possible if it does not

violate any data or loop dependencies and if the destination is not already occupied

by an incompatible operation. The move-node function attempts to reroute all data

along affected program graph edges. If data rerouting is not possible, the affected

edges become broken. Pseudocode for and an illustration of move-node appear in

Figure 4-7.

4.3.2 Add-pass-node

The add-pass-node function adds a new data movement node along with a new

data edge to a source node in a program graph. The new node is initially assigned



node annotations identical to the source node, as they are considered compatible.

Pseudocode for and an illustration of add-pass-node appear in Figure 4-8.

4.3.3 Remove-pass-node

The remove-pass-node function removes a data movement node along with its

corresponding data edge from the program graph. Pass nodes are only removable if

they occupy the same cycle and unit as the node whose output they pass. Pseudocode

for and an illustration of remove-pass-node appear in Figure 4-9.



bool move-node(node, cycle, unit)
node->cycle = cycle
node->unit = unit
if any dependencies violated
restore old annotations
return failure

for each node N located at (cycle, unit)
if node not compatible with N
restore old annotations
return failure

for each edge E in program graph
if E affected by move

add E to set S
search for edge annotation assignment for set S
if search successful

assign new annotations to edges in set S
else
mark edges in set S broken

return success

unit m unit m+1

/"--

unit m+2

A.

Figure 4-7: The move-node schedule transformation primitive.
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bool add-pass-node(node)
if pass node already exists here
return failure

create new pass node P with input
P->cycle = node->cycle
P->unit = node->unit
move old output edge from node to
attach new edge E to node
return success

cycle n

cycle n+l

cycle n+2

unit m unit m+l unit m+2

A

data edge E

P

Figure 4-8: The add-pass-node schedule transformation primitive.

bool remove-pass-node(passnode)
if passnode is not removable

return failure
N = source node of passnode

move output edge of passnode to N
remove input edge to passnode
destroy passnode
return success

cycle n

cyle n+

cycle ni

unt m+1

9 p

unt m+2

Figure 4-9: The remove-pass-operation schedule transformation primitive.
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4.4 Schedule Reconfiguration Functions

The schedule transformation primitives described in the previous section can be com-

posed in a variety of ways to generate more complex schedule reconfiguration func-

tions. Three such functions are described in the following sections.

4.4.1 Move-only

The move-only reconfiguration function moves one randomly selected node in a

program graph to a randomly selected cycle and unit. Move-only consists of just

one successful application of the move-node transformation primitive, as shown in

the pseudocode of Figure 4-10.

The move-only reconfiguration function satisfies the two requirements of a sim-

ulated annealing reconfiguration function only in special cases. The first requirement,

reversibility, is clearly always satisfied. The second requirement, completeness, is sat-

isfied only for spaces of schedules with isomorphic program graphs. Two program

graphs P1 and P2 are considered isomorphic if for every node and edge in P1, there

exist corresponding nodes and edges in P2. Further, the corresponding nodes and

edges must be connected in an identical fashion. This limited form of completeness

can be shown with the following argument.

Consider two schedules S1 and S2 (for the same original program) with isomorphic

program graphs P1 and P2. Completeness requires that there exist a sequence of

reconfigurations that transform S1 into S2 or, equivalently, P1 into P2. One such

sequence can be constructed in two stages. In the first stage, schedule S1 is translated

in time by moving each node in P1 from its original cycle C to cycle C + CfinalS2,

where CfinalS2 is the last cycle used in schedule S2. These moves are applied in reverse

program order. In the second stage, each node of the translated program graph P1 is

moved to the cycle and unit of its corresponding node in P2. These moves are applied

in program order.

Move-only is a useful reconfiguration function for scheduling fully-connected

machine configurations. These machines never require additional data movement



nodes to generate valid schedules, so the program graph topology need not change

during the course of scheduling.

move-only (P)
schedule random node N from program graph P
repeat

select random unit U
select random cycle C

until move-node(N, C, U) succeeds

Figure 4-10: Pseudocode for move-only schedule reconfiguration function.

4.4.2 Aggregate-move-only

While the move-only function satisfies (nearly) the two requirements of a good re-

configuration function, it does have a possible drawback. For large schedules, moving

a single node is a relatively small change. However, it seems reasonable to assume

that the simulated annealing algorithm might accelerate its search if larger changes

were made possible by the reconfigure function. The aggregate-move-only func-

tion is an attempt to provide such variability in the size of the reconfiguration. The

pseudocode is shown in Figure 4-11.

Aggregate-move-only applies the move-only function a random number of

times. The maximum number of applications is controlled by the parameter M, which

is a fraction of the total number of nodes in the program graph. For example, at M =

2 the maximum number of move-only applications is twice the number of program

graph nodes. At M = 0, aggregate-move-only reduces to move-only. Defined

in this way, aggregate-move-only can produce changes to the schedule that vary

in magnitude proportional to the schedule size. Aggregate-move-only can also

produce changes to the schedule that would be unlikely to occur using move-only,

as it allows chains of move-node operations, with potentially large intermediate

energy increases, to be accepted unconditionally.

Aggregate-move-only performs identically to move-only with respect to the

simulated annealing requirements for good reconfigure functions.



aggregate-move-only(P,M)
Y = number of nodes in P
select random integer X from range [1, M*Y + 1]
repeat X times
move-only(P)

Figure 4-11: Pseudocode for aggregate-move-only schedule reconfiguration function.

4.4.3 Aggregate-move-and-pass

Enforcing the completeness requirement for non-isomorphic program graphs requires

the use of the other two transformation primitives, add-pass-node and remove-

pass-node. These primitives change the topology of a program graph by adding

data movement nodes between two existing nodes.

The aggregate-move-and-pass function, shown in Figure 4-12, randomly ap-

plies one of the two pass-node primitives or the aggregate-move-only function. It

is controlled by three parameters: the aggregate move parameter M, the probability

R of applying a pass node transformation, and the probability S of adding a pass

node given that a pass node transformation is applied.

The aggregate-move-and-pass function is clearly reversible, and it satisfies

a stronger completeness requirement. It is complete for all schedules that have iso-

morphic program graphs after removal of all pass nodes, as shown in the following

argument.

Consider two schedules S1 and S2 (for the same original program) with program

graphs P1 and P2 that are isomorphic after removing all pass nodes. A sequence of

reconfigurations to transform P1 into P2 can be constructed in five stages. In the

first stage, all pass nodes are removed from P1, possibly resulting in broken edges. In

the second stage, schedule S1 is translated in time just as in the argument for move-

only. In the third stage, each node of the translated program graph P1 is moved to

the cycle and unit of its corresponding node in P2. In the fourth stage, a pass node

is added to the proper node in P1 for each pass node in P2. In the final stage, these

newly added pass nodes are moved to the cycles and units of their corresponding pass



nodes in P2.

aggregate-move-and-pass (P, M, R, S)
if random number in [0,1) >= R
aggregate-move-only (P,M)

else
if random number in [0,1) < S

select random node N in P
add-pass-node (N)

else
select random pass node N in P
remove-pass-node (N)

Figure 4-12: Pseudocode for aggregate-move-and-pass schedule reconfiguration func-
tion.

4.5 Summary

This chapter describes the simulated annealing algorithm in general and its specific

application to the problem of optimal instruction scheduling.

The simulated annealing algorithm is presented along with the three problem-

dependent functions initialize, energy, and reconfigure that are required to im-

plement it.

Straightforward implementations of initialize and energy for the problem of

optimal instruction scheduling are given. Versions of reconfigure based on the three

schedule transformation primitives move-node, add-pass-node, and remove-

pass-node are proposed. The reversibility and completeness properties of these

functions are discussed.



Chapter 5

Experimental Results

In theory, the simulated annealing instruction scheduling algorithm outlined in the

previous chapter is able to find optimal instruction schedules given enough time. In

practice, success within a reasonable amount of time depends heavily upon good

choices for the algorithm's various parameters. Good choices for these parameters, in

turn, often depend on the inputs to the algorithm, making the problem of parameter

selection a vexing one. This chapter presents the results of parameter studies designed

to find acceptable values for these parameters.

5.1 Summary of Results

The experiments in this chapter investigate five parameters: the initial acceptance

probability P, the temperature reduction factor a, the aggregate move fraction M, the

pass node transformation probability R, and the pass node add probability S. These

parameters are varied for a selection of input programs and machine configurations

to find values that may apply in more general situations.

The initial acceptance probability P and temperature reduction factor a are ex-

amined together in an experiment described in Section 5.3. It is found that, given

sufficiently high starting temperature, the solution quality and algorithm runtime are

directly influenced by the value of a. Values of P > 0.8 gave sufficiently high starting

temperatures, and values of a > 0.95 gave best final results.



The aggregate move fraction M is considered in the experiment of Section 5.4.

It is found that large aggregate moves do not reduce the number of reconfigurations

needed to reach a solution or the overall run time of the algorithm. In fact, large

reconfigurations may even have a negative effect. Thus, an aggregate move fraction

of M = 0 is recommended.

The pass node transformation probability R and the pass node add probability S

are investigated in Section 5.5. It is found that low values of S (0.1 - 0.3) and mid-

range values of R (0.3 - 0.5) provide the best chance of producing valid schedules

with no broken edges. However, the parameter R did exhibit some input-dependent

behavior. In comparison with hand schedules, no combination of R and S resulted in

optimal schedules that made good use of the machine resources.

5.2 Overview of Experiments

In all experiments, the sum-of-start-times (with penalty) energy function and the

aggregate-move-and-pass reconfigure function are used. The invalid edge penalty

is set at 100.0.

Experiments are conducted using two source input programs: paradd8.i and

paraddl6. i. Both programs are very similar, although paraddl6. i is approximately

twice as large as paradd8.i. These programs are chosen to investigate how the

parameter settings influence the performance of the simulated annealing algorithm

on increasing program sizes. The source code for these programs appears in Appendix

C.

The experiments in Sections 5.3 and 5.4 use two fully-connected machine con-

figurations: small_single_bus.md and large-multi_bus.md. The first machine has

four functional units (adder, multiplier, shifter, and divider) and distributed register

files connected with a single bus. The second machine has sixteen functional units

(four of each from the first machine) and distributed register files connected with

a full crossbar bus network. These machines are chosen to see how the parameter

settings affect the performance of the algorithm on machines of varying complexity.



Figure 5-1: Nearest neighbor communication pattern.

The machine description files for these machines appear in Appendix D.

The pass node experiment in Section 5.5 uses two communication-constrained

machine configurations: cluster_with.move.md and c luster_without move .md.

The first communication-constrained machine has twenty functional units orga-

nized into four clusters with five functional units each. Each cluster has an adder, a

multiplier, a shifter, a divider, and a data movement (move) unit. Within a cluster,

the functional units communicate directly to one another via a crossbar network. Be-

tween clusters, units must communicate through move units. Thus, for data to move

from one cluster to another, it must first be passed through a move unit, adding a

one cycle latency to the operation.

The second communication-constrained machine has sixteen functional units sim-

ilarly organized into four clusters. Clusters cannot communicate within themselves,

but must write their results into other clusters. Thus, data is necessarily transferred

from cluster to cluster during the course of computation.

In both communication-constrained machines, clusters are connected in a nearest-

neighbor fashion, as depicted in Figure 5-1. Because of the move units, cluster_withmove .md

is considered more difficult to schedule than clusterwithout-move .md.

It should be noted that each data point presented in the following sections results

from a single run of the algorithm. Due to its randomized nature, the algorithm

is expected occasionally to produce anomalous results. Such anomalous results are

reflected by outliers and "spikes" in the data. Ideally, each data point should repre-

sent an average of many runs of the algorithm with an associated variance, but the

algorithm's long runtimes do not permit this much data collection.



5.3 Annealing Experiments

Empirically determining cooling parameters is often done when using the simulated

annealing algorithm [14]. In this implementation of the algorithm, the cooling pro-

cess is controlled by two parameters: the initial acceptance probability P and the

temperature reduction factor a. The following experiments attempt to find values

for these parameters which yield a minimum energy in a reasonable amount of time.

These experiments are carried out only on fully-connected machine configurations,

as the parameters needed for communication-constrained machines are yet to be de-

termined. It is hoped that the parameter values found in this experiment carry over

to other programs and machine configurations.

The programs paradd8. i and paraddl6. i are tested on machine configurations

small_singlebus.md and large-multi_bus.md. As the temperature probing al-

gorithm is sensitive to the initial state of the algorithm, both list-scheduler and

maximally-bad initialization strategies are used, resulting in eight sets of data.

For each set of data, P is varied from 0.05 to 0.99, and a is varied from 0.5 to

0.99. All other parameters (M, R, and S) are set to zero. For each pair of P and a,

the minimum energy found and the number of reconfigurations required to find it are

recorded.

The results for paradd8. i are plotted in Figure 5-2, and those for paradd16. i in

Figure 5-3. All the raw data from the experiment can be found in Appendix E.

5.3.1 Analysis

The parameter a has perhaps the largest effect on the scheduling outcomes. As shown

in the graphs, the number of reconfigurations (and consequently the runtime of the

algorithm) exhibits an exponential dependence on the a parameter. In addition, the

quality of the scheduling result, as measured in the graphs of minimum energy, is

strongly correlated with high a values, which is not unexpected given its effect on

runtime. The value of 0.99 gave best results, but at an extreme cost in the number

of reconfigurations. A slightly lower value of 0.95 is probably sufficient in most cases.



The dependence on parameter P is less dramatic. In the minimum energy graphs

that demonstrate some variation in P, it appears that there is some threshold after

which P has a positive effect. This threshold corresponds to some sufficient temper-

ature that allows the algorithm enough time to find a good minimum. In most cases,

this threshold value occurs at P = 0.8 or higher.

The influence of parameters a and P is more clearly illustrated in plots of energy

vs. time. Figure 5-4 shows four such plots for the program paraddl6. i on machine

configuration small_singlebus.md. In these plots, the "time" axis is labeled with

the temperatures at each time, so that the absolute temperature values are evident.

In these plots, it seems that P controls the amplitude of the energy oscillation, and

a controls the number of reconfigurations (more data points indicate more reconfig-

urations).

The initialization strategy has little effect on the scheduling outcomes. At some

low temperatures, the experiments initialized with the list scheduler seem to get hung

up on the initial data point, but this behavior disappears at higher temperatures. This

result is in line with expectations; list schedulers perform fine on fully-connected

machines like the ones in this experiment.

The difference in machine complexity has the expected result: the smaller machine

takes less time to schedule than the more complex one.

The most surprising result is that the smaller program takes more reconfigurations

to schedule than the larger one. This anomaly may be due to the temperature probing

procedure used to determine starting temperature. The probing process may have

been calculating relatively higher starting temperatures for the smaller program.
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Figure 5-2: Annealing experiments for paradd8. i.
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Figure 5-3: Annealing experiments for paraddl6. i.
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5.4 Aggregate Move Experiments

The aggregate-move reconfiguration function is intended to accelerate the simulated

annealing search process by allowing larger changes in the data to occur. The size of

the aggregate-move is controlled by the aggregate-move fraction M. This experiment

attempts to determine a value of M that results in good schedules in a short amount

of time.

The programs paradd8. i and paraddl6. i are tested on machine configurations

smallsingle_bus.md and largemulti_bus.md. Only maximally-bad initialization

is used, as the results from the Annealing Experiments indicate that list-scheduler

initialization does not make much difference for these programs and machine config-

urations.

For each set of data, M is varied from 0.0 to 2.0. Parameters P and a are set to

0.8 and 0.95, respectively. All other parameters (R and S) are set to zero. For each

value of M, the minimum energy found, the number of reconfigurations used to find

it, and the clock time are recorded.

The results for paradd8. i are plotted in Figure 5-5, and those for paradd16. i in

Figure 5-6. All the raw data from the experiment can be found in Appendix E.

5.4.1 Analysis

Variation of the parameter M does not have a significant effect on the minimum

energy found by the algorithm. In the only experiment where there is some variation,

setting M greater than zero results in worse performance. Increasing M also causes

increased runtimes and does not reduce the number of reconfigurations with any

regularity, if at all. In general, the aggregate-move reconfiguration function does

not achieve its intended goal of accelerating the simulated annealing process. Thus,

M = 0 (i.e., a single move at a time) seems the only reasonable setting to use.
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5.5 Pass Node Experiments

The add-pass-node and remove-pass-node schedule transformation primitives are

key to the success or failure of the simulated annealing instruction scheduling algo-

rithm. In order to create efficient schedules for its intended targets, communication-

constrained processors, the algorithm must insert the proper number of pass nodes at

the proper locations in the program graph. In doing so, the algorithm must maintain

a delicate balance between too many pass nodes and not enough. Insert too many,

and the schedule can expand to twice, or even more, its optimal size. Insert too few,

and the schedule may become invalid; data is not routed to where it needs to be.

Adding and removing pass nodes is controlled by two parameters, denoted R and

S. The parameter R is the probability that the algorithm attempts to add or remove

a pass node from the program graph. The parameter S is the probability with which

the algorithm adds a pass node given that it has already decided to add or remove one.

Thus, the overall probability of adding a pass node is RS, and the overall probability

of removing a pass node is R(1 - S). This experiment attempts to find values for R

and S which provide the necessary balance to produce efficient schedules.

The programs paradd8. i and paraddl6. i are tested on communication-constrained

machine configurations cluster_with-move .md and cluster_without _move .md. Both

maximally-bad and list-scheduler initialization are used.

For each set of data, R and S are varied from 0.1 to 0.9. Parameters P, a, and

M are set to 0.8, 0.95, and 0, respectively. For each pair of values, the minimum

energy, the actual schedule length, the number of broken edges, and the number of

pass nodes is recorded. The clock time is not reported here (see Appendix E), but

these experiments took much longer to run than the fully-connected experiments at

the same temperature parameters.

The results for paradd8. i are plotted in Figure 5-5, and those for paraddl6. i in

Figure 5-6. All the raw data from the experiment can be found in Appendix E.



5.5.1 Analysis

These experiments illustrate the potential problem with using the list scheduler for

initialization. The simulated annealing algorithm selects an answer close to the ini-

tial data point in all experiments initialized with the list scheduler, as revealed by

the absence of broken edges in every experiment (the list scheduler always produces

an initial schedule with no broken edges). In some cases, the simulated annealing

algorithm is able to improve the list scheduling answer, but such improvements are

rare.

The results of the list-scheduler-initialized experiments could indicate that the

initial temperature was not set high enough to allow the algorithm to escape from the

local minimum created by the list scheduler. This explanation would be valid if the

maximally-bad-initialized experiments produce much better answers than the list-

scheduler-initialized ones. However, the graphs show that, in almost all cases, the

maximally-bad-initialized experiments produce minimum energies that are equivalent

or worse than those of the list-scheduler-initialized experiments. Thus, it cannot be

determined if the temperature is not set high enough in the list-scheduler-initialized

experiments, as the algorithm rarely, if ever, bests the list scheduler's answer.

Lower values of S (0.1-0.3) generally do a better job of eliminating broken edges

from the schedule, as evidenced by the graphs of broken edge counts. The graphs also

show that, as S increases, the number of pass nodes in the final schedule generally

increases along with the minimum energy. After a point, excess pass nodes cause

the schedules to become intolerably bad regardless of the number of broken edges.

Smaller values of S typically do better on machine clusterwithoutmove .md, which

is reasonable as this machine requires fewer pass operations to form efficient hand

schedules.

Mid-range values of R (0.3-0.7) result in the fewest broken edges, however its

influence on minimum energy and the number of pass nodes is less clear. These

measures peak at low values of R for the program paradd8. i, but they peak at mid-

range values of R for the program paraddl6. i. These results suggest that R might



be more input-dependent than the other parameters.

In general, the algorithm performs better on the clusterwithoutmove .md ma-

chine than on the clusterwithmove.md machine, as is expected. In some instances,

the algorithm finds solutions that are identical to hand-scheduled results for the

cluster_withoutmove .md machine. In no case does the algorithm match hand-

scheduled results on the cluster_with-move.md machine. Most of the automatically

generated schedules for this machine utilize only one or two clusters, while efficient

hand-scheduled versions make use of all four clusters to reduce schedule length.

The failure to match hand-scheduled results could be explained by cosidering the

ease of transformation from one schedule to another given certain energy and temper-

ature levels. At high temperature levels, moving instructions between clusters, while

incurring a large energy penalty, is generally easy to do since high temperatures allow

temporary increases in energy level. However, at the high energy levels generally

associated with high temperatures, instructions are not compacted optimally, and

equivalent energy levels can occur whether instructions are distributed across clus-

ters or not. Thus, at high temperature and energy levels, instructions can become

distributed across clusters, but have no reason to do so.

At low temperature levels, moving instructions between clusters becomes more

difficult. Such moves produce broken edges and large energy penalties, which are

rejected at low temperatures. Additionally, low temperatures imply low energy levels,

at which instructions are more compacted. When schedules become compact, lowering

the energy level further can only be accomplished by distributing instructions across

clusters. Thus, at low temperature and energy levels, instructions cannot become

distributed across, but must do so in order to further optimize the schedule.

In light of the above analysis, truly optimal schedules can only be obtained if the

algorithm happens upon the correct cluster distribution at a medium-high tempera-

ture and does not (or cannot) change it as the temperature decreases. Such a scenario

seems unlikely to happen, as demonstrated by these experiments.
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Chapter 6

Conclusion

This thesis presents the design and preliminary analysis of a randomized instruction

scheduling algorithm based on simulated annealing. It is postulated that such an

algorithm should be able to produce good schedules for processor configurations that

are difficult to schedule with traditional scheduling algorithms. This postulate re-

mains unresolved as the algorithm has not been found to perform consistently for any

setting of its five main parameters. As a result, this thesis presents only the results

of a parameter study of the proposed algorithm.

6.1 Summary of Results

* As expected, the algorithm performs better the longer it is allowed to run.

Setting initial acceptance probability P > 0.8 and temperature reduction factor

a > 0.95 generally allow the algorithm enough time to find optimal schedules

for fully-connected machines.

* The algorithm tends to run longer for more complex, larger machine configura-

tions.

* The algorithm tends to run longer for smaller programs. This anomaly is prob-

ably an artifact of the data probing procedure used to determine an initial

temperature for the simulated annealing algorithm.



* The aggregate move parameter M has only negative effects on scheduling effi-

ciency, both in terms of algorithm runtime and schedule quality. Disabling the

aggregate move function (M = 0) gave best results.

* There are good ranges for the pass node add/remove probability R (0.3-0.7) and

the pass node add probability S (0.1-0.3) that result in very few or no broken

edges in schedules for communication-constrained machines. These ranges are

fairly consistent across programs and machines, but not perfect.

* There are no consistent values of R and S that yield a good pass node "balance."

The numbers of pass nodes in the schedules tend to increase with S, but vary

widely with R for different programs and machines.

* The algorithm occasionally produced schedules for cluster_without _move .md

that matched the performance of hand-scheduled code. The algorithm never

matched the hand schedules for clusterwithmove. md.

6.2 Conclusions

* The algorithm can work. The schedules produced for the "easy" communication-

constrained machine matched the hand-scheduled versions for good settings of

R and S. These schedules often beat the list scheduler, which made poorer

schedules for the communication-constrained machines.

* The pass node parameters are very data-dependent. In these experiments,

they tended to depend more on the hardware configuration than the input

program, but equal dependence can be expected for both. If the hardware

is very communication-constrained, then many pass nodes may be needed for

scheduling. However, if the program's intrinsic communication pattern mirrors

the communication paths in the machine, then fewer pass nodes may be needed.

Similarly, even if the machine is only mildly communication-constrained, a

program could be devised to require a maximum number of pass nodes.



* The temperature probing algorithm is not entirely data-independent. The

anomaly in runtimes for programs of different sizes suggests that the prob-

ing process gives temperatures that are relatively higher for the short program

than the larger one.

* The algorithm has problems moving computations from one cluster to another

when a direct data path is not present. Most of the schedules produced for the

"hard" communication-constrained machine are confined to one or two clusters

only. (The list scheduler schedules only a single cluster as well). Only once ever

did the algorithm find the optimal solution using four clusters.

These problems are probably due to the formulation of the simulated annealing

data-dependent functions. Different energy and reconfigure functions may

be able to move computations more efficiently.

* The algorithm is too slow, regardless of the schedule quality. Many of the

datapoints for the communication-constrained tests took over four hours to

compute, which is far too long to wait for programs that can be efficiently hand-

scheduled in minutes. Perhaps such a long runtime is tolerable for extremely

complex machines, but such machines are likely impractical.

6.3 Further Work

* Data-probing algorithms can be devised for the pass node parameters. Coming

up with an accurate way to estimate the need for pass nodes in a schedule could

make the algorithm much more consistent. Of course, the only way of doing this

may be to run the algorithm and observe what happens. Dynamically changing

pass-node parameters may work in this case, although simulated annealing

generally does not use time varying reconfigure functions.

* Different reconfiguration primitives can be created for the scheduler. There are

many scheduling algorithms based on different sets of transformations. Different

transformations may open up a new space of schedules that are unreachable with



the primitives used in this thesis. In particular, none of the primitives in this

thesis allow code duplication, a common occurrence in other global instruction

scheduling algorithms.

* Different energy functions may give better results. The functions used in this

thesis focus on absolute schedule length, while more intelligent ones may op-

timize inner-loop throughput or most-likely trace length. In addition, more

sophisticated penalties can be used. For example, a broken edge that would

require two pass nodes to reconnect could receive a higher penalty than one

that requires only a single pass node. Broken edges that can never be recon-

nected (e.g., no room for pass node because of precedence constraints) could

be assigned an even greater penalty. Additionally, energy penalties could be

assigned to inefficient use of resources, perhaps encouraging use of all machine

resources even for non-compact schedules.

* A different combinatorial optimization algorithm could be used. Simulated an-

nealing is good for some problems, but not for others. Randomized instruction

scheduling still has promise even if simulated annealing is not the answer.



Appendix A

pasm Grammar

program:

statements:

statement:

decl_id:

idlist:

statements

statements statement
I statement

declaration ';'

I assignment ';'
I loop

ID
ID '[' INUM ']'

idlist ',' decl_id
I decl_id

declaration: TYPE idlist
I UNSIGNED TYPE idlist
SDOUBLE TYPE idlist
IDOUBLE UNSIGNED TYPE idlist

ridentifier: ID
I ID '[' INUM '1'
I ID '[' ID ']'

lidentifier: ID
I '[' ID ',' ID ']'
I ID '[' INUM ']'
ID '[' ID '1'



assignment: lidentifier '=' expr
I OSTREAM '(' INUM ',' TYPE ')' '=' expr

exprlist: exprlist ',' expr
I expr

expr: ridentifier
INUM
FNUM
'(' expr ')'
expr ORL expr
expr ANDL expr
expr AND expr
expr OR expr
expr EQ expr
expr COMPARE expr
expr SHIFT expr
expr ADD expr
expr MUL expr
NOTL expr
NOT expr
ID '?' expr ':' expr
FUNC '(' exprlist ')'
TYPE '(' expr ')'
UNSIGNED TYPE '(' expr ')'
ISTREAM '(' INUM ',' TYPE ')'
COMM '(' ridentifier ',' ID ')'
'[' expr ',' expr ']'

loop: countloop

countloop: LOOPP ID '=' INUM ',' INUM '{' statements '}'



Appendix B

Assembly Language Reference

Instruction

IADD{32,16,8}
UADD{32,16,8}
ISUB{32,16,8}
USUB{32,16,8}
IABS{32,16,8}
IMUL{32,16,8}

UMUL{32, 16,8}

IDIV{32,16,8}

UDIV{32,16,8}

SHIFT{32,16,8}

SHIFTA{32,16,8}

ROTATE{32,16,8}

ANDL{32,16,8}

ORL{32,16,8}

XORL{32,16,8}

NOTL{32,16,8}

AND

OR

XOR

Operands

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

dest, src

[destl, dest2], [srcl,
[destl, dest2], [srcl,
[destl, dest2], [srcl,

[destl, dest2], [srcl,

dest, srcl, src2

dest, src1, src2

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

dest, src1, src2

dest, src

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

src2]

src2]

src2]

src2]

Description

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

word, half-word,

bitwise AND

bitwise OR

bitwise XOR

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

add

unsigned add

subtract

unsigned subtract

absolute value

multiply

unsigned multiply

divide

unsigned divide

shift

arithmetic shift

rotate

logical AND

logical OR

logical XOR

logical NOT

DescriptionOperands



NOT

IEQ{32,16,8}

INEQ{32,16,8}

ILT{32,16,8}

ULT{32,16,8}

ILE{32,16,8}

ULE{32,16,8}

FADD

FSUB

FABS

FEQ

FNEQ

FLT

FLE

FMUL

FNORMS

FNORMD

FALIGN

FDIV

FSQRT

FTOI

ITOF

SHUFFLE

ISELECT{32,16,8}

PASS

SETCC

LOOP

END

ISTREAM

OSTREAM

dest, src

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

dest, src

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

dest, srcl, src2

[desti, dest2], [srcl, src2]

dest, src

dest, [srcl, src2]

[destl, dest2], [srcl, src2]

[destl, dest2], [srcl, src2]

dest, src

dest, src

dest, src

dest, srcl, src2

dest, cc-src, srcl, src2

dest, src

cc-dest, src

#const

dest, #const

src, #const

bitwise NOT

word, half-word, byte equal

word, half-word, byte not-equal

word, half-word, byte less-than

word, half, byte unsigned less-than

word, half-word, byte less-equal

word, half, byte unsigned less-equal

floating-point add

floating-point subtract

floating-point absolute value

floating-point equal

floating-point not-equal

floating-point less-than

floating-point less-or-equal

floating-point multiply

single-prec. floating-pt. norm

double-prec. floating-pt. norm

floating-point mantissa align

floating-point divide

floating-point square root

convert floating-point to integer

convert integer to floating-point

byte shuffle

word, half-word, byte select

operand pass

set condition code

loop start instruction

loop end instruction

istream read

ostream write



Appendix C

Test Programs

C.1 paradd8.i

// paradd8.i
// add a sequence of numbers using tree of adds
// uses eight istreams

int numO, numl, num2, num3, num4, num5, num6, num7;

numO = istream(O,int);
numl = istream(l,int);
num2 = istream(2,int);
num3 = istream(3,int);
num4 = istream(4,int);
num5 = istream(5,int);
num6 = istream(6,int);
num7 = istream(7,int);

numO = numO + numl;
numl = num2 + num3;
num2 = num4 + num5;
num3 = num6 + num7;

numO = numO + numi;
numi = num2 + num3;

numO = numO + numl;



C.2 paraddl6.i

// paraddl6.i
// add a sequence of 16 numbers using tree of adds
// uses eight istreams

int numO, numl, num2, num3, num4, num5, num6, num7;
int sumO, sumi;

numO = istream(O,int);

numl = istream(1,int);
num2 = istream(2,int);

num3 = istream(3,int);
num4 = istream(4,int);
num5 = istream(5,int);

num6 = istream(6,int);

num7 = istream(7,int);

numO = numO + numl;
numl = num2 + num3;
num2 = num4 + num5;
num3 = num6 + num7;

numO = numO + numl;

numl = num2 + num3;

sumO = numO + numl;

numO = istream(O,int);

numl = istream(1,int);

num2 = istream(2,int);

num3 = istream(3,int);
num4 = istream(4,int);

num5 = istream(5,int);
num6 = istream(6,int);

num7 = istream(7,int);

numO = numO + numl;

numi = num2 + num3;
num2 = num4 + num5;

num3 = num6 + num7;

numO = numO + numi;

numl = num2 + num3;



suml = num0 + numl;

sumO = sumO + sumi;



Appendix D

Test Machine Descriptions

D.1 small_single_bus .md
cluster small_single_bus

{
unit ADDER

inputs [2] ;
outputs[1];

operations =

latency = 2;

(FADD, IADD32, IADD16, IADD8, UADD32, UADD16, UADD8,
FSUB, ISUB32, ISUB16, ISUB8, USUB32, USUB16, USUB8,
FABS, IABS32, IABS16, IABS8, IANDL32, IANDL16, IANDL8,
IORL32, IORL16, IORL8, IXORL32, IXORL16, IXORL8,
INOTL32, INOTL16, INOTL8,
FEQ, IEQ32, IEQ16, IEQ8, FNEQ, INEQ32, INEQ16, INEQ8,
FLT, ILT32, ILT16, ILT8, ULT32, ULT16, ULT8,
FLE, ILE32, ILE16, ILE8, ULE32, ULE16, ULE8,
ISELECT32, ISELECT16, ISELECT8, PASS,
IAND, IOR, IXOR, INOT, CCWRITE);

pipelined = yes;
area = 30;

};unit MULTIPLIER

unit MULTIPLIER

inputs [2] ;
outputs[2] ;
operations = (FMUL, IMUL32, IMUL16, IMUL8, UMUL32, UMUL16, UMUL8, PASS);
latency = 3;
pipelined = yes;

area = 300;

};

unit SHIFTER



inputs [2];
outputs [2];
operations = (USHIFT32, USHIFT16, USHIFT8,

USHIFTF32, USHIFTF16, USHIFTF8,
USHIFTA32, USHIFTA16, USHIFTA8,
UROTATE32, UROTATE16, UROTATE8,
FNORMS, FNORMD, FALIGN, FTOI, ITOF, USHUFFLE, PASS);

latency = 1;
pipelined = yes;
area = 200;

};

unit DIVIDER

inputs [2];
outputs [2];
operations = (FDIV, FSQRT, IDIV32, IDIV16, IDIV8, UDIV32, UDIV16, UDIV8);
latency = 5;
pipelined = no;
area = 300;

unit MC
{
inputs [0];
outputs [0];
operations = (COUNT, WHILE, STREAM, END);
latency = 0;
pipelined = yes;
area = 0;

};

unit INPUTO {
inputs [0];
outputs [1];
operations = (INO);
latency = 0;
pipelined = yes;
area = 0;

};

unit INPUT1 {
inputs [0];
outputs [1];
operations = (IN1);
latency = 0;
pipelined = yes;
area = 0;

};

unit INPUT2 {
inputs [0];
outputs [1];
operations = (IN2);



latency = 0;
pipelined = yes;
area = 0;

unit INPUT3 {
inputs [0];
outputs [1];
operations = (IN3);
latency = 0;

pipelined = yes;
area = 0;

unit INPUT4 {
inputs [0];
outputs [1];

operations = (IN4);

latency = 0;

pipelined = yes;
area = 0;

unit INPUT5 {
inputs [0];
outputs [1];
operations = (IN5);
latency = 0;

pipelined = yes;
area = 0;

unit INPUT6 {
inputs [0];
outputs [1];
operations = (IN6);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT7 {
inputs [0];
outputs [1];
operations = (IN7);

latency = 0;

pipelined = yes;

area = 0;

unit OUTPUTO {
inputs [1];
outputs [0];
operations = (OUTO);



latency = 0;

pipelined = yes;
area = 0;

};

unit OUTPUT1 {
inputs [1];
outputs [0];
operations = (OUT1);
latency = 0;
pipelined = yes;
area = 0;

regfile OUTPUTREG
{

inputs [1];
outputs [1];
size = 8;
area = 8;

regfile DATAREGFILE
{

inputs [1];
outputs [1];
size = 8;
area = 64;

ADDER[1],
MULTIPLIER [1],
SHIFTER [1] ,
DIVIDER [1] ,
INPUTO [1] ,
INPUT1 [1],
INPUT2 [1],
INPUT3 [1],
INPUT4[1],
INPUT5 [1],
INPUT6 [],
INPUT7 [1],
OUTPUTO[1],
OUTPUT1 [1],
MC [1] ,
BUS [10],
DATAREGFILE [8],
OUTPUTREG [2];

// unit -> network connections

( ADDER[0:01 ].out[0], MULTIPLIER[0:0] .out [0],
SHIFTER [0:0] .out [0], DIVIDER[0:0] .out [0] ),

( MULTIPLIER [0:0] .out [1], SHIFTER [0:0] .out [1],



DIVIDEREO:O].out[1] ) -> BUS[O:1].in[O];

INPUTO [0] .out [0]
INPUT [0] .out[0]
INPUT2 [0].out[0]
INPUT3[0].out[0]
INPUT4[0].out[0]
INPUT5[0]. out [0]
INPUT6 [0] .out [0]
INPUT7 [].out [0]

BUS[2] .in[O];
BUS[3] .in[O];
BUS[4] .in[O];
BUS[5] .in[O];
BUS[6].in[O];
BUS[7] .in[];
BUS[8] .in[O];
BUS[9] .in[O];

// register file -> unit connections

DATAREGFILE[0 : 7] .out[0:0] -> ADDER[0:0] .in[0:1], MULTIPLIER[0:0] .in[0:1],
SHIFTER[0:0].in[0:1], DIVIDER[0:0].in[0:1];

OUTPUTREG[0].out [0] -> OUTPUTO [O].in [O];
OUTPUTREG[1] .out [0] -> OUTPUT [0] .in [O] ;

// network -> register file connections

( BUS[0:9] .out[0] ) -> ( DATAREGFILE[0:7].in[0:0] , OUTPUTREG[0:1] .in[0] );



D.2 largen-ultibus .md
cluster large_multi_bus

{
unit ADDER

{
inputs[2];

outputs[1];

operations =

latency = 2;

(FADD, IADD32, IADD16, IADD8, UADD32, UADD16, UADD8,
FSUB, ISUB32, ISUB16, ISUB8, USUB32, USUB16, USUB8,
FABS, IABS32, IABS16, IABS8, IANDL32, IANDL16, IANDL8,
IORL32, IORL16, IORL8, IXORL32, IXORL16, IXORL8,
INOTL32, INOTL16, INOTL8,
FEQ, IEQ32, IEQ16, IEQ8, FNEQ, INEQ32, INEQ16, INEQ8,
FLT, ILT32, ILT16, ILT8, ULT32, ULT16, ULT8,
FLE, ILE32, ILE16, ILE8, ULE32, ULE16, ULE8,
ISELECT32, ISELECT16, ISELECT8, PASS,
IAND, IOR, IXOR, INOT, CCWRITE);

pipelined = yes;
area = 30;

unit MULTIPLIER

{
inputs[2] ;
outputs[2] ;
operations = (FMUL, IMUL32, IMUL16, IMUL8, UMUL32, UMUL16, UMUL8, PASS);
latency = 3;
pipelined = yes;
area = 300;

unit SHIFTER

inputs[2];

outputs[2];
operations =

latency = 1;

(USHIFT32, USHIFT16, USHIFT8,
USHIFTF32, USHIFTF16, USHIFTF8,
USHIFTA32, USHIFTA16, USHIFTA8,
UROTATE32, UROTATE16, UROTATE8,
FNORMS, FNORMD, FALIGN, FTOI, ITOF, USHUFFLE, PASS);

pipelined = yes;
area = 200;

unit DIVIDER

{
inputs[2];

outputs[2];

operations = (FDIV, FSQRT, IDIV32, IDIV16, IDIV8, UDIV32, UDIV16, UDIV8);
latency = 5;

pipelined = no;



area = 300;

unit MC

inputs [0];
outputs [0];
operations = (COUNT, WHILE, STREAM, END);

latency = 0;

pipelined = yes;
area = 0;

unit INPUTO {
inputs[0];

outputs [1];

operations = (INO);
latency = 0;

pipelined = yes;
area = 0;

unit INPUT1 {
inputs [0];
outputs [1];
operations = (IN1);

latency = 0;

pipelined = yes;
area = 0;

unit INPUT2 {
inputs[0];
outputs [1];

operations = (IN2);

latency = 0;

pipelined = yes;
area = 0;

unit INPUT3 {
inputs[0];
outputs [1];

operations = (IN3);
latency = 0;

pipelined = yes;
area = 0;

unit INPUT4 {
inputs[0];

outputs [1];

operations = (IN4);
latency = 0;



pipelined = yes;
area = 0;

};

unit INPUT5 {
inputs [0];
outputs [1];
operations = (IN5);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT6 {
inputs [0];
outputs [1];
operations = (IN6);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT7 {
inputs [0];
outputs [1];
operations = (IN7);

latency = 0;
pipelined = yes;
area = 0;

unit OUTPUTO {
inputs [1];
outputs [0];
operations = (OUTO);
latency = 0;
pipelined = yes;
area = 0;

unit OUTPUT1 {
inputs [1];
outputs [0];
operations = (OUTi);

latency = 0;

pipelined = yes;

area = 0;

regfile OUTPUTREG

{
inputs [1] ;
outputs [1];
size = 8;



area = 8;

regfile DATAREGFILE
{

inputs [];
outputs [1] ;
size = 8;

area = 64;

};

ADDER[4],
MULTIPLIER[4] ,
SHIFTER[4],
DIVIDER[4],
INPUTO[1] ,
INPUT1 [1] ,
INPUT2 [1],
INPUT3 [1],
INPUT4[1],
INPUT5 [1],
INPUT6 [1],
INPUT7 [1] ,
OUTPUTO [I],
OUTPUT1 [1],
MC[1],
BUS [36],
DATAREGFILE[32],

OUTPUTREG[2] ;

// unit -> network connections

ADDER[0:3].out[0], MULTIPLIER[0:3].out[0: 1],
SHIFTER[0:3].out[0:1], DIVIDER[0:3].out[0:1] -> BUS[0:27].in[0];

INPUTO[O] .out [0] -> BUS[28] .in[O];
INPUT[0] .out[0] -> BUS[29] .in[O];
INPUT2[0] .out[0] -> BUS[30] .in[O];
INPUT3[O].out[0] -> BUS[31].in[O];
INPUT4[0] .out[0] -> BUS[32] .in[O];
INPUT5[0] .out[0] -> BUS[33] .in[0];
INPUT6[0] .out[0] -> BUS[34] .in[O];
INPUT7[0] .out[0] -> BUS[35] .in[O];

// register file -> unit connections
DATAREGFILE[0:31].out[0:0] -> ADDER[0:3].in[0:1], MULTIPLIER[0:3].in[0:1],

SHIFTER[0:3].in[0:1], DIVIDER[0:3].in[0:1];
OUTPUTREG [O].out [0] -> OUTPUTO [O].in[0];
OUTPUTREG[1] .out [0] -> OUTPUT1 [0] .in[O];

// network -> register file connections
( BUS[0:35].out[O] ) -> ( DATAREGFILE[0:31].in[0:0] , OUTPUTREG[0:1].in[O] );

}



D.3 clusterwithnove .md
cluster clusterwith move

{
unit ADDER

{
inputs[2];

outputs [1] ;
operations = (FADD, IADD32, IADD16, IADD8, UADD32, UADD16, UADD8,

FSUB, ISUB32, ISUB16, ISUB8, USUB32, USUB16, USUB8,
FABS, IABS32, IABS16, IABS8, IANDL32, IANDL16, IANDL8,
IORL32, IORL16, IORL8, IXORL32, IXORL16, IXORL8,
INOTL32, INOTL16, INOTL8,
FEQ, IEQ32, IEQ16, IEQ8, FNEQ, INEQ32, INEQ16, INEQ8,
FLT, ILT32, ILT16, ILT8, ULT32, ULT16, ULT8,
FLE, ILE32, ILE16, ILE8, ULE32, ULE16, ULE8,
ISELECT32, ISELECT16, ISELECT8, PASS,
IAND, IOR, IXOR, INOT, CCWRITE);

latency = 2;
pipelined = yes;
area = 30;

unit MULTIPLIER

{
inputs[2];

outputs[2];

operations = (FMUL, IMUL32, IMUL16, IMUL8, UMUL32, UMUL16, UMUL8, PASS);
latency = 3;
pipelined = yes;
area = 300;

unit SHIFTER

{
inputs[2];

outputs[2];

operations = (USHIFT32, USHIFT16, USHIFT8,
USHIFTF32, USHIFTF16, USHIFTF8,
USHIFTA32, USHIFTA16, USHIFTA8,
UROTATE32, UROTATE16, UROTATE8,
FNORMS, FNORMD, FALIGN, FTOI, ITOF, USHUFFLE, PASS);

latency = 1;
pipelined = yes;
area = 200;

unit DIVIDER

{
inputs[2];

outputs[2];

operations = (FDIV, FSQRT, IDIV32, IDIV16, IDIV8, UDIV32, UDIV16, UDIV8);
latency = 5;
pipelined = no;



area = 300;

unit MOVER

{
inputs [1];
outputs [1];
operations = (PASS);
latency = 0;
pipelined = yes;
area = 100;
};

unit MC
{

inputs [0];
outputs [0];
operations = (COUNT, WHILE, STREAM, END);
latency = 0;
pipelined = yes;
area = 0;

unit INPUTO {
inputs[0];
outputs [1];
operations = (INO);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT1 {
inputs [0];
outputs [1];
operations = (IN1);
latency = 0;
pipelined = yes;

area = 0;

unit INPUT2 {
inputs [0];
outputs [1];
operations = (IN2);

latency = 0;
pipelined = yes;
area = 0;

unit INPUT3 {
inputs [0];
outputs [1];
operations = (IN3);



latency = 0;
pipelined = yes;
area = 0;

unit INPUT4 {
inputs [0];
outputs [1];
operations = (IN4);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT5 {
inputs [0];
outputs [1];
operations = (IN5);
latency = 0;

pipelined = yes;
area = 0;

unit INPUT6 {
inputs [0];
outputs [1];
operations = (IN6);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT7 {
inputs [0];
outputs [1];
operations = (IN7);
latency = 0;
pipelined = yes;
area = 0;

unit OUTPUTO {
inputs [1];
outputs [0];
operations = (OUTO);
latency = 0;
pipelined = yes;
area = 0;

unit OUTPUT1 {
inputs [1];
outputs [0];
operations = (OUT1);



latency = 0;

pipelined = yes;

area = 0;

};

regfile OUTPUTREG

{
inputs [1] ;
outputs [1];
size = 8;
area = 8;

regfile DATAREGFILE

{
inputs [1] ;
outputs [1];
size = 8;

area = 64;

};

ADDER [4] ,
MULTIPLIER[4],

SHIFTER[4],

DIVIDER[4],

MOVERE41,

INPUTO[1],

INPUT1[1],
INPUT2[1],

INPUT3[1],
INPUT4[I],

INPUT5[1],

INPUT6 [1],
INPUT7[I],

OUTPUTO [I],
OUTPUT1 [I],
MC[1] ,
BUS[44],
DATAREGFILE[36],

OUTPUTREG[2] ;

// 9 busses per cluster, 7 for internal data, 2 for moved data x 4 clusters
// + 6 busses for input units = 42 busses total

// unit -> network connections

// cluster 0 contains units 0 of each type
// cluster 0 uses bus 0:6 for internal data, bus 7,38 for moved data

ADDER[0].out[0], MULTIPLIER[O].out[O],

SHIFTER[0].out [0], DIVIDER[0].out[0] -> BUS[0:3].in[0];
MULTIPLIER[0] .out[1], SHIFTER [0].out [1], DIVIDER[0] .out [1] -> BUS[4:6].in[0];
MOVER[O] .out[0] -> ( BUS[15].in[O], BUS[41] .in[] );

// cluster 1 contains units 1 of each type



// cluster 1 uses bus 8:14 for internal data, bus 15,39 for moved data
ADDER[1].out [0], MULTIPLIER[1].out [0],
SHIFTER[1].out[0], DIVIDER[1].out[0] -> BUS[8:11].in[0];
MULTIPLIER[1].out[1], SHIFTER[l].out[1], DIVIDER[1].out[1] -> BUS[12:14].in[0];
MOVER[1].out[O] -> ( BUS[23].in[0], BUS[38].in[0] );

// cluster 2 contains units 2 of each type
// cluster 2 uses bus 16:22 for internal data, bus 23,40 for moved data
ADDER[2].out[0], MULTIPLIER[2].out[0],
SHIFTER[2].out[0], DIVIDER[2].out[0] -> BUS[16:19].in[0];
MULTIPLIER[2].out[1], SHIFTER[2].out [1], DIVIDER[2].out [1] -> BUS[20:22].in[0];
MOVER[2] .out[O] -> ( BUS[31].in[O], BUS[39].in[0] );

// cluster 3 contains units 3 of each type
// cluster 3 uses bus 24:30 for internal data, bus 31,41 for moved data
ADDER[3].out[0], MULTIPLIER[3].out[0],
SHIFTER[3].out[0], DIVIDER[3].out[0] -> BUS[24:27].in[0];
MULTIPLIER[3] .out [1], SHIFTER[3] .out [1], DIVIDER[3].out [1] -> BUS[28:30].in[0];
MOVER[3] .out [0] -> ( BUS[7] .in [O], BUS[40].in[0] );

// input units write to busses 32 - 37
INPUTO [0]. out[0] -> BUS[32] .in[0];
INPUT[0] .out[0] -> BUS[33] .in[];
INPUT2[0] out[0] -> BUS[34].in[0];
INPUT3[0] .out[0] -> BUS[35].in[0];
INPUT4[0] .out[0] -> BUS[36].in[0];
INPUT5[0] .out[0] -> BUS[37].in[O];
INPUT6 [0] .out [0] -> BUS[42].in[0];
INPUT7[0] .out[0] -> BUS[43].in[0];

// register file -> unit connections

// cluster 0
DATAREGFILE[0:8].out[0:0] -> ADDER[0].in[0: 1], MULTIPLIERO[].in[0: 1],

SHIFTER[0].in[0: 1], DIVIDER[0].in[0: 1], MOVERO[].in[O];

// cluster 1
DATAREGFILE[9:17].out[0:0] -> ADDER[1].in[0:1], MULTIPLIER[1].in[0:1],

SHIFTER[1] .in[0:1], DIVIDER[1] .in[0:1], MOVER[1] .in[0];

// cluster 2
DATAREGFILE[18:26].out[0:0] -> ADDER[2].in[0: 1], MULTIPLIER[2].in[0: 1],

SHIFTER[2].in[0: 1], DIVIDER[2].in[0: 1], MOVER[2].in[0];

// cluster 3
DATAREGFILE[27:35].out[0:0] -> ADDER[3].in[0: 1], MULTIPLIER[3].in[0: 1],

SHIFTER[3].in[0: 1], DIVIDER[3].in[0: 1], MOVER[3].in[0];

OUTPUTREG [O].out [0] -> OUTPUTO [O].in [O];
OUTPUTREG[1].out[0] -> OUTPUT1[0].in[0];

// network -> register file connections

// cluster 0



( BUS [: 7] . out [0] , BUS [38] .out [0] ) -> ( DATAREGFILE[0:8] . in[0], OUTPUTREG [0: 1] . in [] );

// cluster 1
( BUS [8:15] .out[0], BUS [39] . out[0] ) -> ( DATAREGFILE[9:17] . in[0], OUTPUTREG [O: 1] . in[O] );

// cluster 2
( BUS[16:23] .out[0], BUS[40] .out[0] ) -> ( DATAREGFILE[18:26] .in[0], OUTPUTREG[0:11] . in [O] );

// cluster 3
( BUS[24:31] .out[0], BUS[41] .out[0] ) -> ( DATAREGFILE[27:35] .in[O], OUTPUTREG[0:1] .in[O] );

// global
(BUS[32:37]. out [0], BUS[42:43].out [0]) -> (DATAREGFILE[0: 35]. in[0:0], OUTPUTREG[0: 1]. in[0]);

}
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D.4 cluster_without move .md
cluster cluster_without_move

{
unit ADDER

{
inputs[2];

outputs [1];
operations = (FADD, IADD32, IADD16, IADD8, UADD32, UADD16, UADD8,

FSUB, ISUB32, ISUB16, ISUB8, USUB32, USUB16, USUB8,
FABS, IABS32, IABS16, IABS8, IANDL32, IANDL16, IANDL8,
IORL32, IORL16, IORL8, IXORL32, IXORL16, IXORL8,
INOTL32, INOTL16, INOTL8,
FEQ, IEQ32, IEQ16, IEQ8, FNEQ, INEQ32, INEQ16, INEQ8,
FLT, ILT32, ILT16, ILT8, ULT32, ULT16, ULT8,
FLE, ILE32, ILE16, ILE8, ULE32, ULE16, ULE8,
ISELECT32, ISELECT16, ISELECT8, PASS,
IAND, IOR, IXOR, INOT, CCWRITE);

latency = 2;
pipelined = yes;
area = 30;

unit MULTIPLIER

{
inputs[2] ;
outputs[2] ;
operations = (FMUL, IMUL32, IMUL16, IMUL8, UMUL32, UMUL16, UMUL8, PASS);
latency = 3;
pipelined = yes;
area = 300;

unit SHIFTER

{
inputs[2];

outputs[2] ;
operations = (USHIFT32, USHIFT16, USHIFT8,

USHIFTF32, USHIFTF16, USHIFTF8,
USHIFTA32, USHIFTA16, USHIFTA8,
UROTATE32, UROTATE16, UROTATE8,
FNORMS, FNORMD, FALIGN, FTOI, ITOF, USHUFFLE, PASS);

latency = 1;
pipelined = yes;
area = 200;

unit DIVIDER

{
inputs[2] ;
outputs[2] ;
operations = (FDIV, FSQRT, IDIV32, IDIV16, IDIV8, UDIV32, UDIV16, UDIV8);
latency = 5;
pipelined = no;
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area = 300;

unit MC

{
inputs [0];
outputs [0];
operations = (COUNT, WHILE, STREAM, END);
latency = 0;
pipelined = yes;
area = 0;

unit INPUTO {
inputs [0];
outputs [1];
operations = (INO);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT1 {
inputs [0];
outputs [1];
operations = (IN1);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT2 {
inputs[0];
outputs[1];
operations = (IN2);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT3 {
inputs [0];
outputs [1];
operations = (IN3);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT4 {
inputs [0];
outputs [1];
operations = (IN4);
latency = 0;
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pipelined = yes;
area = 0;

};

unit INPUT5 {
inputs [0];
outputs [1];
operations = (IN5);
latency = 0;
pipelined = yes;
area = 0;

unit INPUT6
inputs [0];
outputs [1];
operations = (IN6);

latency = 0;

pipelined = yes;
area = 0;

unit INPUT7

inputs [0];
outputs [1];
operations = (IN7);
latency = 0;
pipelined = yes;
area = 0;

unit OUTPUTO

inputs [1];
outputs [0];
operations = (OUTO);
latency = 0;
pipelined = yes;
area = 0;

unit OUTPUT1 {
inputs [1];
outputs [0];
operations = (OUTi);
latency = 0;

pipelined = yes;
area = 0;

regfile OUTPUTREG

{
inputs [1];
outputs [1];
size = 8;

103



area = 8;

regfile DATAREGFILE

{
inputs [1];
outputs [1] ;
size = 8;

area = 64;

ADDER[4],

MULTIPLIER[4],

SHIFTER[4],

DIVIDER[4],

INPUTO [1],

INPUT [1],
INPUT2[1],
INPUT3[1],
INPUT4[1],

INPUT5[1],
INPUT6[1],

INPUT7[1],
OUTPUTO[I],

OUTPUT1[1],

MC[1] ,
BUS[36] ,
DATAREGFILE[32],

OUTPUTREG[2];

// 7 busses per cluster, 7 for internal data x 4 clusters
// + 6 busses for input units = 34 busses total

// unit -> network connections
// cluster 0 contains units 0 of each type
// cluster 0 writes to bus 0:6, reads from 21:27
ADDER [O].out [O], MULTIPLIER [O].out [O],
SHIFTER[0].out [0], DIVIDER[O].out [0] -> BUS[0:3].in[O];
MULTIPLIER[0] .out[1], SHIFTER [0].out[1], DIVIDER[0].out [1] -> BUS[4:6].in[0];

// cluster 1 contains units 1 of each type
// cluster 1 writes to bus 7:13, reads from 0:6
ADDER[1].out[0], MULTIPLIER[1].out[0],
SHIFTER[1].out[0], DIVIDER[1].out[0] -> BUS[7:10].in[0];
MULTIPLIER[l].out[1], SHIFTER[1].out[1], DIVIDER[1].out[1] -> BUS[11:13].in[0];

// cluster 2 contains units 2 of each type
// cluster 2 writes to bus 14:20, reads from 7:13
ADDER[2] .out[O], MULTIPLIER[2] .out[0],
SHIFTER[2].out[0], DIVIDER[2].out[0] -> BUS[14:17].in[0];
MULTIPLIER[2].out [1], SHIFTER[2].out [1], DIVIDER[2].out [1] -> BUS[18:20].in[0];

// cluster 3 contains units 3 of each type

// cluster 3 writes to bus 21:27, reads from 14:20
ADDER[3].out[O], MULTIPLIER[3].out[O],
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SHIFTER[3].out[0], DIVIDER[3].out[0] -> BUS[21 :24].in[0];
MULTIPLIER[3].out [1], SHIFTER[3].out [], DIVIDER[3].out [1] -> BUS[25:27].in[0];

// input units write to busses 28:33
INPUTO [0] .out[0] -> BUS[28] .in[];
INPUT[O] .out[0] -> BUS[29] .in[O];
INPUT2[0] .out[0] -> BUS[30] .in[0];
INPUT3[0].out[O] -> BUS[31] .in[];
INPUT4[] .out[0] -> BUS[32] .in[0];
INPUT5[0] .out[0] -> BUS[33] .in[0];
INPUT6[0] out[0] -> BUS[34] .in[0];
INPUT7[0] .out[0] -> BUS[35] .in[];

// register file -> unit connections
// cluster 0
DATAREGFILE[0:7].out[0:0] -> ADDERO[].in[0:1], MULTIPLIER[0].in[0:1],

SHIFTERO[].in[0:1], DIVIDER[0].in[0: 1];

// cluster 1
DATAREGFILE[8:15] .out[0:0] -> ADDER[1] .in[0:1], MULTIPLIER[1] .in[0:1],

SHIFTER[1].in[0:1], DIVIDER[1].in[0:1];

// cluster 2
DATAREGFILE[16:23].out[0:0] -> ADDER[2].in[0: 1], MULTIPLIER[2].in[0: 1],

SHIFTER[2].in[0: 1], DIVIDER[2].in[0: 1];

// cluster 3
DATAREGFILE[24:31] .out[0:0] -> ADDER[3].in[0:1], MULTIPLIER[3] .in[0:1],

SHIFTER[3].in[0: 1], DIVIDER[3].in[0: 1];

OUTPUTREG [0].out [0] -> OUTPUTO [0].in [0];
OUTPUTREG[1].out[0] -> OUTPUT1 [].in[0];

// network -> register file connections
// cluster 0
( BUS[21:27] .out[O], BUS[7:13] .out[0] ) -> (DATAREGFILE[0:7] .in[0],OUTPUTREG[0:1] .in[0]);

// cluster 1
( BUS[0:6] .out[0], BUS[14:20].out[0] ) -> (DATAREGFILE[8:15] .in[0],OUTPUTREG[0:1] .in[0]);

// cluster 2
( BUS[7:13].out[0], BUS[21:27].out[0] ) -> (DATAREGFILE[16:23].in[0],OUTPUTREG[0:1].in[0]);

// cluster 3

( BUS[14:20] .out[O], BUS[0:6] .out[0] ) -> (DATAREGFILE[24:31] .in[0],OUTPUTREG[0:1].in[0]);

// global
( BUS[28:35].out[0] ) -> ( DATAREGFILE[0:31].in[0:0] , OUTPUTREG[0:1].in[0] );

}
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Appendix E

Experimental Data

E.1 Annealing Experiments

p a schedule minimum accepted total clock
length energy reconfigs reconfigs time

Program paradd8. i on machine configuration small_single_bus. md
with maximally-bad initialization.

0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.20

0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
11
11
11
11
11

52
51
51
52
51
51
52
51
51
49
52
52
51
51
52
52
52
59
51
52
52
52
51

1400
1300
1800
1700
1900
1600
2000
2600
3400
6400
11400
1700
1500
1900
1700
2200
1700
2300
2700
3200
3500
8500
1600

1524
1431
1990
1867
2146
1782
2169
2895
3719
7158
12211
1816
1684
2079
1854
2398
1857
2499
2896
3442
3707
9155
1781

8.312
7.797
10
10.609
11.141
8.953
10.047
14.063
18.125
31.86
62.281
9.031
8.797
10.157
9.688
12.563
9.219
13.734
15.094
15.578
19.781
47.531
9.578
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schedule
length

minimum
energy

accepted
reconfigs

p

0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.90
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total
reconfigs

0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5

2800
1800
2000
2500
2200
2400
2900
3600
6700
27300
1900
2800
2600
2000
2900
2700
3700
3800
6300
10600
41700
2700
2200
2600
3000
3400
3400
4200
6100
9800
15000
71400
2900
4000
3800
4300
5900
4800
8500
7900
13700
24300
103700
2900

a

3068
1961
2143
2753
2388
2525
3125
3878
7224
29377
2024
2976
2791
2177
3233
2877
3954
4080
6776
11314
44639
2865
2351
2741
3201
3575
3662
4457
6409
10512
16066
76149
3113
4226
3955
4582
6221
5036
8919
8368
14481
25463
108995
3063

clock
time
16.281
9.578
10.735
15.109
12.079
13.156
16.109
19.594
33.984
145.719
10.656
15.063
15.468
11.64
17.922
15.657
19.984
20.734
33.343
60.578
234.969
16.828
12.421
15.671
17.953
20.391
19.375
24.219
33.859
57.204
86.063
390.812
16.5
22.766
21.813
24.094
33.469
27.25
46.453
46.141
79.234
134.922
585.922
17.031~---



p

0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99

schedule
length

minimum
energy

accepted
reconfigs
3500
3800
5000
5800
6100
9200
10900
17000
32200
157200
5400
7300
8600
5800
8400
10800
17000
16900
27200
56400
269100

total
reconfigs
3657
4020
5259
6059
6386
9595
11385
17681
33773
163447
5577
7462
8875
5991
8634
11123
17462
17510
27969
57803
275221

clock
time
19.438
22.203
29.61
32.234
35.953
51.875
60.922
94.343
177.047
878.421
30.688
43.203
48.437
35.297
48
62.438
95.844
95.188
150.625
312.703
1496.41

Program paradd8. i on machine configuration small_single_bus.md
with list-scheduler initialization.

0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

1000
1000
1200
1200
1200
1400
1400
1400
1400
1600
2400
1000
1200
1200
1200
1400
1600
1600
1600
1800
2400

1089
1089
1307
1307
1307
1512
1512
1512
1511
1729
2608
1089
1307
1307
1305
1512
1730
1729
1726
1955
2606

8.718
8.718
10.328
10.062
10.328
11.219
11.359
11.219
11.172
12.485
17.625
8.828
10.281
10.422
10.328
11.438
12.672
12.61
12.719
14.031
17.718
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p

0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

a schedule
length

minimum
energy

accepted
reconfigs

0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

total
reconfigs
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6000
1200
1400
1600
1600
1600
1600
1700
2100
2900
5000
13500
1500
1500
1700
1700
1700
1700
2900
2900
4900
7500
23900
1700
1700
2200
2500
3200
2600
2900
3500
6600
11800
38500
2300
4100
2700
4100
3400
4000
4400
5800
9500
20300

6519
1307
1515
1730
1730
1729
1726
1834
2273
3153
5408
14499
1612
1612
1829
1827
1827
1822
3144
3138
5305
8046
25558
1825
1830
2396
2738
3527
2775
3088
3733
7053
12578
41254
2430
4392
2839
4416
3602
4296
4683
6161
10104
21686

clock
time
41.047
10.406
11.453
12.625
12.516
12.75
12.687
13.344
15.703
20.969
34.157
88.563
12.265
12.312
13.375
13.282
13.281
13.39
21
20.937
33.89
50.718
148.125
13.359
13.422
17.297
18.25
22.968
18.735
21.906
25.297
45.172
79.844
248.781
17.266
29.235
19.469
29.219
25.125
29.609
32.469
40.157
64.031
138.968



p

0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99

schedule
length

minimum
energy

accepted
reconfigs
81100
2200
4000
2800
2600
4500
5000
6800
9300
11800
26800
117900
5600
5500
6300
5900
7700
7600
12500
16500
25900
43200
243300

total
reconfigs
86125
2356
4275
2955
2785
4744
5276
7091
9808
12423
28246
123690
5788
5698
6567
6085
7978
7910
12898
17070
26596
44667
250199

clock
time
537.812
16
28.985
20.672
18.484
32.687
35.031
48.234
63.875
81.422
179.703
784.266
37.86
39.078
44.813
39.844
54.016
53
84.547
111.188
173.984
290.484
1615.61

Program paradd8.i on machine configuration largemulti bus.md
with maximally-bad initialization.

0.05 0.5 7 19 1900 2180 14.484
0.05 0.55 7 19 2400 2747 17.844
0.05 0.6 7 19 1900 2200 14.938
0.05 0.65 7 19 2400 2714 17.516
0.05 0.7 7 19 2300 2623 17.359
0.05 0.75 7 19 2500 2847 18.859
0.05 0.8 7 19 2300 2622 17.797
0.05 0.85 7 19 2800 3151 20.36
0.05 0.9 7 19 4000 4426 27.218
0.05 0.95 7 19 4200 4681 30.219
0.05 0.99 7 19 13700 14960 91.344
0.1 0.5 7 19 1400 1549 10.047
0.1 0.55 7 19 1700 1866 11.703
0.1 0.6 7 19 2900 3243 21.047
0.1 0.65 7 19 2400 2641 16.735
0.1 0.7 7 19 2800 3105 20.671
0.1 0.75 7 19 2800 3102 20.937
0.1 0.8 7 19 2600 2888 19.046
0.1 0.85 7 19 4200 4633 30.859
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schedule
length

minimum
energy

0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

accepted
reconfigs

p total
reconfigs

a

0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85

111

19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19

3900
4600
21800
3000
2900
3700
4100
4100
4100
5000
4600
6000
10400
44700
2600
2600
2800
4500
4000
6200
6100
5900
9700
18900
74400
3300
3500
5000
4600
4700
7200
5400
10800
14400
24700
115600
5100
6200
7500
6100
7700
10900
9200
9200

4316
5090
23595
3443
3330
4224
4570
4694
4600
5667
5193
6734
11518
49946
2856
2841
3102
4942
4455
7023
6861
6586
10915
21104
83396
3705
3881
5476
5050
5009
7926
5894
11791
16093
27360
128725
5517
6726
8200
6604
8378
12047
10090
10015

clock
time
29.203
34.687
149.281
26.797
24.812
31.844
31.203
35.39
32.391
43.266
39.937
50.938
80.234
385.313
20.578
20.469
23.719
35.969
34.344
57.062
61.703
54
94.594
177.547
748.234
29.875
31.25
44.016
40.969
34.203
64.297
46.563
98.656
139.532
222.422
1141.95
49.156
59.515
75.594
56.281
72.562
111.36
95.046
94.843

------~



p

0.8
0.8
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

a

0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99

schedule
length

minimum
energy

accepted
reconfigs

total
reconfigs

clock
time

Program paradd8. i on machine configuration large multi_bus .md
with list-scheduler initialization.

0.05 0.5 7 19 1300 1399 23.422
0.05 0.55 7 19 1300 1399 23.313
0.05 0.6 7 19 1300 1399 23.813
0.05 0.65 7 19 1300 1399 23.547
0.05 0.7 7 19 1300 1399 23.719
0.05 0.75 7 19 1300 1399 23.859
0.05 0.8 7 19 1300 1399 23.703
0.05 0.85 7 19 1300 1399 23.641
0.05 0.9 7 19 1500 1610 25.454
0.05 0.95 7 19 1900 2046 29.391
0.05 0.99 7 19 1800 1941 28.531
0.1 0.5 7 19 1200 1291 21.89
0.1 0.55 7 19 1200 1291 22.75
0.1 0.6 7 19 1200 1291 21.907
0.1 0.65 7 19 1200 1291 22.547
0.1 0.7 7 19 1200 1291 21.672
0.1 0.75 7 19 1200 1291 22.844
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16000
42500
177000
5700
8300
6300
5300
8700
9100
10100
15000
24000
52600
240600
8100
6300
10000
10700
15000
15900
18700
21000
37100
75600
398500

17475
46375
193317
6226
9027
6762
5705
9373
9862
10923
16433
26020
56643
259254
8468
6571
10449
11231
15970
16597
19700
21959
38809
79587
417893

167.625
447.532
1903.06
53.437
84.328
61.969
49.329
87.156
93.469
111.812
160.359
258.313
589.11
2730.47
76.843
61.016
105.015
106.203
155.422
160.469
183.86
205.797
370.172
790.094
4124.72



schedule
length

minimum
energy

p

0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.8
0.8
0.8
0.8
0.8
0.8

accepted
reconfigs

a0.8

0.85
0.985
0.95
0.95
0.99
0.55
0.55
0.65
0.65
0.75
0.75
0.85
0.85
0.95
0.95
0.99
0.55
0.55
0.65
0.65
0.75
0.75
0.85
0.85
0.95
0.95
0.99
0.55
0.55
0.65
0.65
0.75
0.75
0.85
0.85
0.95
0.95
0.99
0.55
0.55

0.65

0.7
0.75

total
reconfigs

19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19

1500
1500
1600
1800
2800
1800
1800
1800
1600
1600
1900
3000
2700
3100
4400
18600
1900
1900
2000
2200
2600
2600
3300
3700
3400
5600
28300
1800
1800
2100
2400
4100
3200
4800
7200
8900
12900
62300
3500
3900
4700
3600
5200
5500

1605
1605
1723
1938
3040
1968
1968
1968
1755
1755
2073
3195
2875
3373
4779
20422
2082
2085
2171
2393
2840
2804
3572
4018
3747
6146
31362
1964
1964
2287
2641
4540
3517
5336
8127
9870
14339
70046
3818
4316
5188
3960
5653
6088
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clock
time
24.593
25.469
25.531
28.422
39.281
29.375
29.765
29.157
27.75
27
30.329
40.36
37.484
44.578
58.015
215.531
30.141
30.922
31.391
34.172
38.828
37.219
44.828
50.25
49.594
74.843
342.375
29.625
30.891
32.422
38.297
61.078
47.718
72.219
107.906
124.485
173.735
835.578
52.688
61.609
72.188
57.75
73.375
82.031

-~---



p

0.8
0.8
0.8
0.8
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

a

0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99

schedule
length

minimum
energy

accepted
reconfigs
6300
10400
17100
24900
122700
3000
4300
4300
6900
5100
11500
11300
13000
20600
37100
164700
5900
9000
11300
10900
12000
13700
18000
22800
36400
61800
324900

total
reconfigs
7004
11458
19103
27450
136947
3289
4673
4696
7621
5474
12804
12322
14098
22502
40960
180951
6259
9553
11913
11714
12757
14443
19024
24253
38925
64795
343512

clock
time
94.172
141.032
256.343
342.328
1782.05
48.594
65.828
67.796
105.234
78.859
169.297
165.578
189.281
288.906
541.125
2389.44
95.672
138.328
167.766
165.937
176.844
202.422
271.265
344.609
542.218
900.953
4755.63

Program paradd16. i on machine configuration smallsingle_bus.md
with maximally-bad initialization.

0.05 0.5 22 232 2100 2342 24.685
0.05 0.55 22 233 1700 1891 19.578
0.05 0.6 21 221 2100 2323 21.301
0.05 0.65 21 223 2400 2630 23.995
0.05 0.7 22 231 2000 2201 21.651
0.05 0.75 22 244 2400 2665 29.833
0.05 0.8 24 247 2300 2576 25.617
0.05 0.85 22 233 2700 2955 28.501
0.05 0.9 21 222 3500 3738 31.085
0.05 0.95 21 229 5000 5297 50.092
0.05 0.99 20 219 7900 8292 68.728
0.1 0.5 23 243 2000 2238 23.103
0.1 0.55 22 231 2600 2798 29.713
0.1 0.6 22 233 1800 2003 18.827
0.1 0.65 21 230 2400 2630 29.072
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schedule
length

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.80
0.80
0.80
0.80

minimum
energy

accepted
reconfigs

0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65

115

total
reconfigs

p a

22
21
21
21
20
23
21
21
22
22
22
21
22
22
21
22
22
21
21
21
21
22
21
24
21
22
22
21
23
22
22
22
21
21
22
22
21
21
21
21
23
22
21
22

233
229
229
230
219
234
229
231
231
231
241
229
241
231
229
231
231
230
230
229
229
241
229
237
229
233
232
231
226
234
234
231
221
230
234
242
230
229
222
226
234
231
231
231

2500
2400
2800
3300
3900
7400
23600
2900
2600
2500
2400
2700
2900
2800
3800
4300
7900
21100
2600
2600
3000
2800
3300
3100
3900
5000
6900
9700
37200
3000
3100
3200
3400
3300
4600
4300
5900
8000
12200
41300
3300
3500
3600
3800

2711
2632
3052
3564
4161
7911
24516
3145
2856
2781
2613
2918
3134
2992
4061
4601
8333
22026
2790
2856
3219
2996
3498
3369
4146
5326
7325
10124
38604
3200
3317
3407
3601
3522
4855
4512
6262
8332
12699
42802
3475
3648
3818
3989

clock
time
23.885
26.819
30.514
32.116
36.753
79.575
238.603
28.181
30.023
28.811
25.998
28.341
28.851
29.312
45.976
41.45
73.967
209.441
29.543
29.913
29.853
32.717
34.47
34.991
44.073
52.365
65.955
115.126
384.643
34.019
30.964
37.585
35.771
37.924
49.221
47.468
66.706
77.612
117.379
454.364
37.093
46.447
44.494
45.756

-~---



p

0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

ao

0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99

schedule
length

minimum
energy
234
231
219
221
229
232
222
234
230
233
229
234
229
230
229
230
231
229
231
229
237
219
231
231
231
231
229
221
222

accepted
reconfigs
4500
4100
6100
7100
11300
17400
69000
3200
4000
4000
4000
4700
7100
6400
8300
12900
23100
99700
5000
6500
5800
6600
6900
7800
10600
14300
22400
39000
178900

total
reconfigs
4658
4292
6408
7347
11704
18136
71047
3377
4206
4214
4215
4897
7334
6700
8641
13357
23823
102545
5148
6668
6025
6838
7082
7985
10824
14658
22846
39638
181595

clock
time
47.177
42.781
63.201
72.344
122.055
188.441
780.672
39.396
44.624
44.564
46.938
56.461
78.633
71.523
89.96
152.78
250.741
1064.52
60.638
81.918
66.015
77.021
80.196
92.533
117.919
159.8
275.386
440.804
2030.11

Program paradd 6.i on machine configuration small_singlebus.md
with list-scheduler initialization.

0.05 0.5 22 229 800 843 25.812
0.05 0.55 22 229 800 843 25.828
0.05 0.6 22 229 800 843 25.782
0.05 0.65 22 229 800 843 25.797
0.05 0.7 22 229 800 843 25.829
0.05 0.75 22 229 1000 1053 29
0.05 0.8 22 229 1000 1053 28.703
0.05 0.85 22 229 1000 1053 28.719
0.05 0.9 22 229 1000 1053 28.719
0.05 0.95 22 229 1400 1482 35.375
0.05 0.99 22 229 1800 1900 41.312
0.1 0.5 22 229 800 843 25.829
0.1 0.55 22 229 800 843 25.875
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p

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.8
0.8

a schedule
length

minimum
energy

accepted
reconfigs

total
reconfigs

clock
time
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0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55

22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
21
20
21
22
22

229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
225
229
229
229
229
229
229
229
229
222
219
222
229
229

800
1000
1000
1000
1000
1400
1400
1800
3200
1000
1200
1200
1200
1400
1600
1600
1800
2200
3400
6800
1200
1400
1400
1600
1600
1600
2000
2400
3400
4600
9800
1600
1600
1600
1600
2000
2000
2800
3400
4800
7800
18400
1400
1800

843
1053
1053
1053
1053
1484
1481
1898
3362
1049
1260
1260
1260
1463
1686
1681
1885
2309
3557
7138
1259
1462
1460
1682
1680
1680
2093
2532
3557
4797
10326
1705
1718
1708
1703
2110
2117
2973
3606
5074
8061
19123
1435
1859

25.766
28.954
28.906
29
28.656
35.859
35.688
41.922
62.75
28.765
31.859
31.859
31.859
34.985
38.438
35.351
37.754
43.383
59.195
104.089
31.782
34.906
34.843
38.156
37.829
37.859
40.688
46.427
58.594
74.688
141.423
39.078
38.266
37.907
38.141
44.469
44.641
52.135
59.225
81.857
112.181
262.127
33.25
40.015



p

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

aI

0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99

schedule
length
22
22
22
22
21
22
21
22
21
22
22
21
22
22
22
22
22
22
20
23
22
22
22
22
22
22
22
21
22
22
21

minimum
energy
229
229
229
229
221
229
222
223
221
229
229
222
229
229
229
229
229
229
220
227
229
225
229
229
229
229
229
221
229
229
221

accepted
reconfigs
1800
2100
2900
3300
3500
4800
5300
11400
49000
2000
2200
2200
3000
3100
3200
4700
5900
8400
14800
67800
4000
4000
4100
5300
6100
8000
9800
10300
16600
33300
141800

total
reconfigs
1859
2179
3011
3456
3619
5003
5493
11822
50821
2078
2310
2277
3120
3203
3274
4921
6158
8837
15236
70338
4154
4118
4263
5450
6272
8231
10091
10465
17026
34071
144682

clock
time
40.547
46.281
57.157
63.343
60.527
79.184
81.728
157.376
622.334
43.125
47.375
47.062
57.985
61.188
62.062
80.415
87.366
137.458
201.01
909.007
72.734
70.125
76.125
90.672
106
132.656
150.457
140.242
240.015
459.861
2048.96

Program paradd16. i on machine configuration large-multibus .md
with maximally-bad initialization.

0.05 0.5 11 64 2700 3054 43.765
0.05 0.55 11 64 2900 3266 48.453
0.05 0.6 11 64 3200 3640 52.828
0.05 0.65 11 64 2800 3197 48.109
0.05 0.7 11 64 2900 3267 45.985
0.05 0.75 11 64 3500 3904 51.782
0.05 0.8 11 64 3400 3848 55.063
0.05 0.85 11 64 4000 4399 57.641
0.05 0.9 11 64 5300 5828 74.015
0.05 0.95 11 64 6200 6733 82.312
0.05 0.99 11 64 25100 26669 279.234
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p

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6

a0

0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99

schedule
length
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

minimum
energy
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

accepted
reconfigs
3500
2900
2800
3200
3500
3700
4600
4900
5000
8100
27600
3100
3200
4200
4000
4000
4400
4400
5600
6800
12500
43000
3700
3500
3600
3800
4000
4600
6000
6500
8300
13300
64500
4200
4100
4000
4500
4700
5900
6200
7300
9800
19100
81200

total
reconfigs
3985
3313
3198
3639
3921
4165
5096
5480
5381
8853
29660
3497
3602
4709
4521
4458
4908
4835
6118
7441
13513
46186
4130
3947
4004
4201
4495
5055
6570
7016
8918
14075
68756
4554
4422
4335
4838
5092
6337
6690
7811
10396
20236
85916
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clock
time
61.031
52.015
51.109
56.047
56.703
60.375
69.704
81.641
69.343
123.859
358.906
55.531
58.25
73.594
71.656
65.235
76.766
62.049
74.367
92.783
151.127
538.364
62.266
62.203
60.875
62.484
74
75.219
85.733
92.734
113.072
182.492
850.372
74.328
69.328
71.25
81.797
82.797
97.406
95.187
105.062
143.807
278.2
1225.78-- ~---



p

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

a

0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99

schedule
length

minimum
energy
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

accepted
reconfigs

total
reconfigs

clock
time

5200
4100
5300
5000
5300
6800
8200
9800
14100
27000
119500
6200
6000
7200
6600
8800
7600
8400
11500
17200
37500
152700
7300
7900
7800
7800
10800
11800
15100
18300
26700
53300
225700

Program paraddl6.i on machine configuration largemulti bus.md
with list-scheduler initialization.

0.05 0.5 13 86 1000 1144 73.109
0.05 0.55 13 86 1000 1144 73.047
0.05 0.6 13 86 1000 1144 73.078
0.05 0.65 13 86 1000 1144 73.016
0.05 0.7 13 86 1000 1144 78.266
0.05 0.75 13 86 1200 1367 78.032
0.05 0.8 13 86 1400 1602 83.156
0.05 0.85 13 86 1400 1599 83.125
0.05 0.9 13 86 1800 2074 93.859
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5571
4385
5709
5445
5693
7236
8684
10365
14856
28312
124765
6608
6352
7693
6914
9293
8051
8869
12014
17864
39100
158737
7576
8199
8160
8060
11176
12256
15655
18778
27499
54908
230957

90.578
73.313
101.766
93.187
94.391
126.219
129.015
162.674
229.82
421.957
1888.69
119.75
117.813
142.562
121.282
162.485
151.516
143.185
205.235
293.492
641.503
2633.36
149.735
169.578
163.063
154.156
228
250.672
276.508
324.937
497.676
980.53
4512



schedule
length

minimum
energy

0.05
0.05
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6

accepted
reconfigs
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total
reconfigs

p a

0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9

86
64
86
86
86
86
86
86
86
86
86
64
64
86
86
86
86
86
86
86
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

2400
3000
1000
1000
1200
1200
1400
1400
1400
1600
2200
3500
6300
1200
1200
1400
1400
1400
1600
2200
2900
2700
5000
7400
2000
2000
1700
2100
2300
2200
2800
3200
4200
5300
15000
2500
2500
2200
2600
2500
3000
2900
4500
5400

2732
3318
1134
1134
1372
1369
1589
1589
1588
1822
2488
3815
6813
1366
1366
1587
1588
1588
1815
2478
3186
2926
5378
7815
2163
2161
1852
2270
2502
2395
3035
3419
4444
5634
15988
2771
2731
2417
2801
2694
3281
3145
4888
5751

clock
time
109.719
114.203
73.047
72.906
78.266
78.156
83.062
83.015
83.156
88.578
103.75
119.609
180.391
78.422
78.235
83.235
83.063
83.078
87.765
95.798
100.104
95.016
127.304
159.519
89.719
89
84.218
91
95.765
95.047
93.234
100.784
115.546
135.094
292.701
103.828
101.25
96.312
102.485
102.265
115.218
98.251
130.367
142.885

--- ~-- --~-



p

0.6
0.6
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

a

0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99

schedule
length

minimum
energy

accepted
reconfigs

total
reconfigs
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9200
42300
3400
3200
3900
3700
4200
5000
4700
6100
9700
18300
64600
3800
3300
4000
4000
4700
5500
5700
6700
11400
19800
93400
4600
5400
5600
6600
6200
8800
11600
14600
20200
41700
195600

9829
45213
3707
3473
4192
3935
4502
5367
5035
6554
10285
19478
68368
4082
3528
4243
4291
5009
5762
6002
7127
12192
20804
98353
4814
5717
5947
6963
6455
9198
12057
15161
20877
43302
201369

clock
time
215.701
812.708
131.797
126.938
141.359
131.109
142.718
171.516
142.935
171.156
238.823
409.259
1394.77
137.422
125.703
138.719
146.344
158.281
175.422
160.731
183.724
291.569
457.788
2101.05
161.672
189.187
187.094
217.906
203.516
273.594
333.38
378.844
488.232
1034.2
4693.36



E.2 Aggregate Move Experiments

move schedule minimum accepted total clock
fraction length energy reconfigs reconfigs time
Program paradd8. i on machine configuration small_singlebus. md.
0 11 51 26900 28318 135.435
0.2 11 49 30800 32476 194.67
0.4 11 49 30600 31811 231.743
0.6 11 49 34300 35400 303.436
0.8 11 49 34900 35824 342.663
1 11 49 28600 29466 300.452
1.2 11 49 30000 30741 354.47
1.4 12 51 29100 29625 375.73
1.6 11 49 26700 27137 355.261
1.8 11 49 27900 28316 361.28
2 11 49 30200 30703 421.456
Program paradd8.i on machine configuration large-multi_bus.md.

0 7 19 42500 46375 378.083
0.2 7 19 51100 56905 640.621
0.4 7 19 46300 53378 704.804
0.6 7 19 57300 64827 962.834
0.8 7 19 60800 69549 1048.09
1 7 19 57300 67050 1197.15
1.2 7 19 66600 77564 1468.05
1.4 7 19 66600 78568 1474.75
1.6 7 19 59000 70150 1439.79
1.8 7 19 57600 68926 1358.77
2 7 19 61000 71796 1481.02
Program paraddl6.i on machine configuration small_singlebus. md.
0 21 223 17300 18036 184.795
0.2 23 233 21000 21409 402.088
0.4 22 231 17800 17986 412.934
0.6 24 233 17100 17239 480.18
0.8 26 243 15400 15522 502.122
1 28 261 15700 15796 592.392
1.2 28 254 15200 15276 653.429
1.4 29 248 17200 17266 722.429
1.6 27 242 14000 14063 631.157
1.8 36 279 11400 11417 562.99
2 30 281 12600 12618 691.093
Program paraddl6.i on machine configuration large-multi_bus.md.
0 11 64 27000 28312 441.575
0.2 11 64 42500 45252 1131.89
0.4 11 64 45700 49276 1520.15
0.6 11 64 41100 44899 1469.67
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move schedule minimum accepted total clock
fraction length energy reconfigs reconfigs time
0.8 11 64 46900 51248 2030.18
1 11 64 45300 50023 2094.74
1.2 11 64 46200 51823 2275.97
1.4 11 64 43700 48768 2383.33
1.6 11 64 54600 61040 3197.42
1.8 11 64 47200 53231 2815.34
2 11 64 48700 54865 3243.3



E.3 Pass Node Experiments

R S sched. min. broken pass accepted total clock
prob. prob. length energy edges nodes reconfigs reconfigs time

Program paradd8. i on machine configuration cluster_withmove .md
with maximally-bad initialization.

0.1
0.1
0.1
0.1
0.1
0.3
0.3
0.3
0.3
0.3
0.5
0.5
0.5
0.5
0.5
0.7
0.7
0.7
0.7
0.7
0.9
0.9
0.9
0.9
0.9

0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9

64
28
48
106
129
50
76
47
315
147
79
42
89
249
1187
54
32
381
375
452
39
112
262
210
199

1
2
32
3
1
1
6
18
75
4
4
3
24
40
141
3
2
52
63
63
0
10
32
14
18

124500
117900
90500
50900
39000
143700
115900
94000
55100
36900
114800
121400
83100
58000
48200
126200
99200
49500
61700
57000
89700
62000
30800
24400
20800

152598
151066
121802
67233
57746
175197
139523
124686
72374
49147
126305
142499
104151
69926
58357
134480
106142
55087
69465
64941
90886
63503
31575
25028
21228

Program paradd8.i on machine configuration cluster_with-move.md
with list-scheduler initialization.

0.1 0.1 11 51 0 0 91600 115070 1879.23
0.1 0.3 11 51 0 0 82800 111779 2010.23
0.1 0.5 11 51 0 0 98900 132443 4472.92
0.1 0.7 11 51 0 0 40000 48976 2543.73
0.1 0.9 11 51 0 0 33900 42651 2831.97
0.3 0.1 11 49 0 3 110000 138577 2021.92
0.3 0.3 11 51 0 0 84200 105628 1708.94
0.3 0.5 11 51 0 0 72400 99872 3037.66
0.3 0.7 11 51 0 0 54100 61834 1936.06
0.3 0.9 11 51 0 0 36300 43312 1944.89
0.5 0.1 11 49 0 3 111400 130123 1647.52
0.5 0.3 11 51 0 0 77600 89697 1282.91
0.5 0.5 11 51 0 0 64700 73479 1398.58
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1780.81
2655.73
4534.59
5036.05
6619.19
1718.03
1922.25
4021.81
3584.84
3166.31
1131.75
1753.48
2497.39
1871.92
2838.05
907.36
840.891
824.516
1336.36
1427.67
466.922
373.687
248.516
251.829
202.203



R S sched. min. broken pass accepted total clock
prob. prob. length energy edges nodes reconfigs reconfigs time
0.5 0.7 11 51 0 0 54500 60885 1533.95
0.5 0.9 11 51 0 0 38600 42704 1203.45
0.7 0.1 11 51 0 0 81100 86332 957.907
0.7 0.3 11 51 0 0 87500 96984 1195.13
0.7 0.5 11 51 0 0 54300 58660 915.203
0.7 0.7 11 51 0 0 42200 44933 759.641
0.7 0.9 11 51 0 0 38700 41220 786.407
0.9 0.1 11 51 0 0 62700 63936 594.672
0.9 0.3 11 51 0 0 44300 45207 438.703
0.9 0.5 11 51 0 0 29000 29561 323.156
0.9 0.7 11 51 0 0 26800 27174 309.406
0.9 0.9 11 51 0 0 23800 24026 275.031

Program paradd8.i on machine configuration cluster_withoutmove.md
with maximally-bad initialization.

0.1
0.1
0.1
0.1
0.1
0.3
0.3
0.3
0.3
0.3
0.5
0.5
0.5
0.5
0.5
0.7
0.7
0.7
0.7
0.7
0.9
0.9
0.9
0.9
0.9

0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9

28
31
60
116
133
28
69
68
231
369
31
33
45
184
444
36
81
264
308
527
42
72
506
443
189

0
3
44
4
6
0
7
28
70
167
1
5
14
45
99
2
10
41
49
80
1
6
35
45
17

200800
107900
134600
52300
42700
195300
127600
119900
82500
75400
175900
181100
119000
82500
63500
162000
94800
79800
75100
65000
127500
105100
43300
37500
23700

241020
147537
160890
70250
54433
223238
157227
143935
101363
91456
192615
205153
132310
94396
74160
169476
103050
87522
81104
70077
129333
106850
44269
38227
24092

2597.63
2766.5
5259.03
7325.42
7179.45
2197.05
2341.28
4040.59
4699.44
5800.64
1413.19
2328.94
2338.56
2709.38
3209.78
1074.75
1083.33
1492.75
1400.05
1599.88
578.718
584.469
383.938
308.938
197.406

Program paradd8 . i on machine configuration cluster_without-move .md
with list-scheduler initialization.

0.1 0.1 8 28 0 0 146400 185129 2627.73
0.1 0.3 9 30 0 3 142500 183607 3018.05
0.1 0.5 9 36 0 0 79700 102325 3464.34
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R S sched. min. broken pass accepted total clock
prob. prob. length energy edges nodes reconfigs reconfigs time
0.1 0.7 9 36 0 0 61000 73100 3756.77
0.1 0.9 9 35 0 0 37300 45163 1827.11
0.3 0.1 8 28 0 0 123300 148195 1905.97
0.3 0.3 9 35 0 0 66700 78992 1120.2
0.3 0.5 9 35 0 0 87600 102394 2272.59
0.3 0.7 9 35 0 0 54900 62066 1714.33
0.3 0.9 9 32 0 0 32200 36909 949.922
0.5 0.1 9 30 0 1 133400 149738 1666.27
0.5 0.3 9 33 0 1 103600 119620 1492.5
0.5 0.5 10 48 0 0 64600 74815 1418.53
0.5 0.7 10 39 0 0 49000 53517 1183.06
0.5 0.9 9 35 0 0 43000 47027 1030.13
0.7 0.1 11 37 0 2 118300 126133 1205.06
0.7 0.3 9 33 0 4 93900 101751 1094.47
0.7 0.5 9 32 0 0 75000 80396 1034.28
0.7 0.7 10 39 0 0 70800 74769 1113.72
0.7 0.9 9 35 0 0 40200 42101 566.281
0.9 0.1 9 35 0 0 61800 63092 508.844
0.9 0.3 9 32 0 0 54100 55513 476.734
0.9 0.5 9 36 0 0 25500 25983 249.156
0.9 0.7 9 35 0 0 3700 3710 39.765
0.9 0.9 10 39 0 0 15900 16036 157.344

Program paradd16.i on machine configuration cluster_withmove.md
with maximally-bad initialization.

0.1 0.1 14 101 2 1 92200 107245 2354.24
0.1 0.3 18 161 0 13 100600 166282 6462.95
0.1 0.5 76 1142 0 126 74400 136120 15615.7
0.1 0.7 76 2896 1 302 43200 68386 15240.3
0.1 0.9 62 751 11 2 31800 50137 13326.8
0.3 0.1 18 147 1 2 110900 126181 2472.17
0.3 0.3 20 163 0 12 91000 130704 4239.57
0.3 0.5 69 1106 0 113 71900 105676 10352.8
0.3 0.7 67 738 10 4 43400 61037 7328.33
0.3 0.9 63 818 11 12 18600 22728 2643.86
0.5 0.1 16 141 1 1 87700 96183 1655.75
0.5 0.3 38 218 0 13 100500 123867 3085.71
0.5 0.5 91 2523 1 141 41000 50735 3506.41
0.5 0.7 74 2120 2 149 43200 54028 4030.41
0.5 0.9 58 715 13 11 39600 49169 4556.4
0.7 0.1 19 160 1 6 84100 89756 1175.4
0.7 0.3 50 494 0 19 80800 91459 1527.83
0.7 0.5 83 2013 1 132 47600 54384 2019.39
0.7 0.7 75 1967 5 118 38400 42778 1479.9
0.7 0.9 58 955 15 32 33300 37146 1211.91
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R S sched. min. broken pass accepted total clock
prob. prob. length energy edges nodes reconfigs reconfigs time
0.9 0.1 25 230 2 5 48000 48696 411.131
0.9 0.3 90 982 2 19 50300 51863 542.51
0.9 0.5 60 786 14 14 27000 27721 385.895
0.9 0.7 58 827 19 30 18600 19061 241.007
0.9 0.9 58 1042 18 40 17100 17544 214.339

Program paradd16. i on machine configuration clusterwith-move.md
with list-scheduler initialization.

0.1
0.1
0.1
0.1
0.1
0.3
0.3
0.3
0.3
0.3
0.5
0.5
0.5
0.5
0.5
0.7
0.7
0.7
0.7
0.7
0.9
0.9
0.9
0.9
0.9

0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9

22
19
22
22
22
22
16
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22

229
158
229
229
229
229
155
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229
229

Progr.ain paraddl6.i on rnachin.e conf

0
11
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

79400
84000
42800
32700
26600
68200
88000
72300
34900
26000
70300
54300
61600
33500
32800
71500
57200
39500
36400
27400
39000
34400
24300
17400
15600

99590
146456
71419
47375
34105
77659
121612
103070
43118
31094
79163
66031
78777
39840
37894
75094
63470
43662
38799
29552
39451
35026
24821
17580
15775

2880.41
6379.08
6020.86
6538.22
4393.41
1950.03
4227.79
6628.21
2933.59
2439.3
1860.69
1840.31
4002.59
1887.35
1926.29
1347.19
1372.56
1224.21
1126.17
984.776
610.969
572.984
490.105
314.463
288.525

guration cluster_without-move .md
with maximally-bad initialization.

0.1 0.1 14 109 0 2 168000 197925 4747.22
0.1 0.3 23 173 0 13 99300 141054 5314.17
0.1 0.5 73 1633 1 162 63600 86446 9840.42
0.1 0.7 86 4529 0 397 63800 89383 25903.2
0.1 0.9 75 5779 0 493 54000 75801 24823.7
0.3 0.1 14 101 0 3 135500 156101 3316.59
0.3 0.3 28 245 0 15 100600 126611 4148.57
0.3 0.5 59 1465 0 124 76100 99710 11619.4
0.3 0.7 63 1648 0 182 69200 88152 10441.6
0.3 0.9 64 4074 0 316 62800 79702 15007.7
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R S sched. min. broken pass accepted total clock
prob. prob. length energy edges nodes reconfigs reconfigs time
0.5 0.1 15 95 0 2 132000 145325 2382.28
0.5 0.3 37 356 0 17 90600 105869 2446.48
0.5 0.5 51 1136 0 96 77300 91321 5928.42
0.5 0.7 69 2297 0 187 70900 84288 7608.74
0.5 0.9 62 2773 1 186 50000 58450 5406.31
0.7 0.1 17 117 0 5 125000 130894 1649.06
0.7 0.3 56 782 1 40 64800 71284 1329.74
0.7 0.5 70 1978 0 130 67200 73868 2907.77
0.7 0.7 63 2205 0 159 64500 70654 3340.99
0.7 0.9 72 2792 2 153 41700 45182 1608.66
0.9 0.1 29 245 1 8 76300 77285 553.646
0.9 0.3 30 350 1 17 69300 70532 601.004
0.9 0.5 73 1930 0 86 31700 32454 479.88
0.9 0.7 79 2214 3 100 32100 32744 396.62
0.9 0.9 77 2386 4 102 31500 32170 389.73

Program paraddl6.i on machine configuration cluster_without move .md

with list-scheduler initialization.
0.1
0.1
0.1
0.1
0.1
0.3
0.3
0.3
0.3
0.3
0.5
0.5
0.5
0.5
0.5
0.7
0.7
0.7
0.7
0.7
0.9
0.9
0.9
0.9
0.9

0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9

107
128
119
118
154
109
104
156
148
130
138
124
116
124
128
127
119
134
132
121
120
145
146
178
117

120500
75500
55600
37500
30600
105800
77700
64100
51300
35300
93700
71100
63300
47900
36500
61400
69700
59400
38800
43100
40300
61200
24400
9000
2500

150110
108206
84334
40904
33323
123074
98930
85411
56849
38732
106456
83262
74016
50602
38721
64589
76141
64701
39870
44561
40656
62439
24565
9027
2503

4312.78
4529.82
8539.75
2089.49
1742.43
3014.68
3358.51
6462.7
2633.9
1616.25
2232.03
2188.37
2967.13
1514.22
1238.41
1167.97
1494.4
1760.02
853.447
995.551
536.892
919.642
394.768
174.01
71.272
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