
A Distributed Scheduling Algorithm for Quality of Service

Support in Multiaccess Networks

by

Craig Ian Barrack

S.B. in Mathematics, Massachusetts Institute of Technology (1996)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1998

© Craig Ian Barrack, MCMXCVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

In

Author...............

Certified by

Departmertf Electrical Engineering and Computer Science
July 31, 1998

.9J Kai-Yeung Siu
Assistant Professor

Thesis Supervisor

Accepted by...

MASSACHjUsTTs INSTITUT.
OF tA~g n, DelI

NOV 16 1998

LIBRARIES

Arthur C. Smith
artment Committee on Graduate Students

A Distributed Scheduling Algorithm for Quality of Service

Support in Multiaccess Networks

by

Craig Ian Barrack

Submitted to the Department of Electrical Engineering and Computer Science
on July 31, 1998, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents a distributed scheduling algorithm for the support of quality of
service in multiaccess networks. Unlike most contention-based multiaccess protocols
which offer no quality of service guarantee and suffer the problems of fairness and low
throughput at high load, our algorithm provides fairness and bandwidth reservation in
an integrated services environment and at the same time achieves high throughput.
Moreover, while most reservation-based multiaccess protocols require a centralized
scheduler and a separate channel for arbitration, our algorithm is truly distributed
in the sense that network nodes coordinate their transmissions only via headers in
the packets. We derive theoretical bounds illustrating how our distributed algorithm
approximates the optimal centralized algorithm. Simulation results are also presented
to justify our claims.

Thesis Supervisor: Kai-Yeung Siu
Title: Assistant Professor

Acknowledgments

First and foremost, I would like to thank my thesis supervisor, Professor Kai-Yeung

Siu, for his guidance and support in producing the research results that comprise this

thesis. Over the last thirteen months, I have had many hours of helpful discussions

with Professor Siu, and many of the ideas which arose in these meetings led me

to strive for a tighter and more practical algorithm, with more useful theory at its

foundation. I also want to thank Professor Siu for offering me funding during my

months of working with him.

I am grateful to all of the members of Professor Siu's group at the d'Arbeloff

Laboratory for Information Systems and Technology. In particular, Paolo L. Narvaez

Guarnieri was always available for assistance with C, UNIX, LATEX, and just about

anything related to data networks. Anthony Kam helped me with the bursty traffic

model, and provided me with insight into the performance metrics that matter in

distributed multi-queue systems.

I want to thank Professors Charles E. Leiserson and Michel X. Goemans for allow-

ing me to be a teaching assistant for the class Introduction to Algorithms, during the

fall and spring terms of 1997. Teaching MIT juniors the art and science of algorithm

design was one of my most enjoyable and fulfilling experiences during my six years at

MIT. I learned a lot not only about algorithms, but also about public presentation

and pedagogy from Professors Leiserson and Goemans.

Last and most of all, I would like to thank Mom, Dad, Jennifer, and Mr. Gray

for their love and support.

Contents

1 Multiaccess Communication 6

1.1 M odel . 8

1.2 Background .. . 11

1.2.1 The mutual exclusion problem 11

1.2.2 Contention-based algorithms 12

1.2.3 Reservation-based algorithms 13

1.3 O utline of thesis 14

2 The GlobalTime Algorithm 16

2.1 Machine-job scheduling 17

2.2 Inversions .. . 19

2.3 The GlobalTime algorithm 23

2.4 W orst case delay 27

2.5 Throughput 28

3 Simulations 35

3.1 O bjective .. . 35

3.2 Overview of the code 37

3.3 Generation of traffic 39

3.3.1 Poisson arrivals 39

3.3.2 Bursty arrivals 40

3.4 Algorithm implementations 43

3.4.1 Single queue algorithm 43

3.4.2 Reservation-based algorithms

3.4.3 GlobalTime algorithm

3.5 Simulation results

3.5.1 Poisson traffic

3.5.2 Bursty traffic

3.6 Summary

4 Extending GlobalTime

4.1 Virtual timestamps

4.2 User lockout

4.3 The extended GlobalTime algorithm .

4.3.1 An example execution fragment

5 Conclusion

A Simulation Code

Bibliography

.

. o

Chapter 1

Multiaccess Communication

One of the most familiar and fundamental problems in the field of data communication

networks is the problem of allocating a multiaccess channel among a set of nodes

competing for its use. When most people think of data networks, they imagine nodes

joined by point-to-point communication links. Each such link might consist physically

of a pair of twisted wires, a coaxial cable, an optical fiber, or a microwave radio link.

Developing efficient algorithms for detecting errors in transmitted data, calculating

shortest paths, and controlling the flow of data traffic are some of the research aims

in networks with point-to-point links. A good feature of point-to-point links is that

the received signal on a link depends only on the transmitted signal on that link.

However, there are many practical communication media for which the received

signal at one node depends on the transmitted signal from two or more nodes. In

such media, the received signal is typically a weighted sum of the transmitted sig-

nals. These multiaccess media form the basis for local area networks, metropolitan

area networks, satellite networks, and radio networks. In applications such as these,

the summing effect of the multiaccess medium when two or more nodes attempt to

transmit data simultaneously is undesirable. To efficiently use the medium, be it a

satellite system, radio broadcast, multidrop telephone line, or multitap bus, we re-

quire a protocol that allocates the multiaccess medium among the nodes one at a

time.

I first became interested in multiaccess communication in the fall of 1997, when I

was taking two classes: Distributed Algorithms and Data Communication Networks.

In my class on distributed algorithms, I was intrigued by the fact that even for a

simple protocol, that many processors execute the code in parallel with steps inter-

leaved in some undetermined way implies that there are many different ways that

the algorithm can behave. Because knowledge about the global state of the system

is distributed, special problems of communication and coordination arise. Some of

the most easily stated and useful problems - for example, getting a network of m

distributed processors to agree - are either provably impossible or else require high

time and message complexity to solve. I studied the mutual exclusion problem, in

which access to a single, indivisible resource that can only support one user at a time

must be arbitrated. 1 The problem of handling a sequence of user requests for a single,

shared resource reminded me of the related problem with multiaccess media.

In my class on data networks, I studied existing multiaccess communication al-

gorithms. Although a plethora of strategies for multiaccess communication has been

proposed, I found most of these protocols to be ad hoc and intellectually unsatisfy-

ing. Many protocols adopt a "free-for-all" approach, in which nodes send data along

the multiaccess channel whenever they wish, hoping for no interference from other

nodes [4]. When interference does occur, the data needs to be retransmitted. Be-

cause few performance guarantees can be made for such protocols, I was more curious

about "perfect scheduling" algorithms, in which interference cannot occur, because

nodes receive reserved intervals for channel use. Unfortunately, I was disappointed

to see that existing scheduling algorithms typically polled the nodes in cyclic order,

allowing packets to be transmitted as soon as they were discovered by the scheduler.

Little emphasis was placed on reducing packet delay and increasing channel utiliza-

tion through intelligent, dynamic scheduling, in which the multiaccess communication

algorithm adjusts to the location of the packets waiting in the system.

I soon began thinking about inventing a new distributed scheduling algorithm

for multiaccess communication. My new multiaccess communication algorithm, the

1For example, the mutual exclusion problem arises in a computer cluster with a single printer.
Mutual exclusion will be discussed further in Section 1.2.1.

GlobalTime algorithm, is the topic of this thesis, and as we will see in coming chapters,

much theory can be set forth describing GlobalTime's performance. In this chapter,

we introduce the multiaccess communication problem. In Section 1.1, we discuss

the model for multiaccess communication that will be used in this thesis. Section 1.2

explores some previous work in the field of multiaccess communication. In Section 1.3,

we describe the chapter layout of the remainder of this thesis.

1.1 Model

We have stated that managing access to a multiaccess channel among a set of m nodes

competing for its use is a fundamental problem in the field of data communication

networks. In this multiaccess communication problem, we have m nodes 1, 2,..., m,

each connected to a multiaccess channel C. Each node can be considered a user in the

multiaccess network. A data packet that arrives at node i is inserted into a first-in-

first-out (FIFO) queue at i, where the packet waits until it gains access to C, so that it

can be transmitted to its destination. We assume that the time required to transmit

a data packet is the same for all packets. The job of a multiaccess communication

algorithm is to fairly allocate opportunities to transmit packets among the network's

users.

In our multiaccess communication model, the single channel C is shared; every

node can read the data sent by every other node. If multiple nodes attempt to

transmit packets simultaneously, none of the attempts succeed. Moreover, any com-

munication among users takes place along the single channel C. In particular, there

is no separate control channel, and no centralized scheduler with global knowledge

coordinating the users. Knowledge about the state of the queues is distributed among

the nodes of the system. For simplicity, we assume zero propagation delay; that is, no

time passes from the instant a bit is transmitted from the source node to the instant

the same bit is received by all other nodes.2 Finally, we assume that the nodes and

2In a local area network (LAN), this assumption is valid. Our work can be extended to a model
with nonzero propagation delay between nodes, but in this thesis, unless otherwise noted, we assume
zero propagation delay.

channel are fault-free.

busy slot idle minislot

t I time -'

N
_1

multiaccess channel

1iM 2 3 - r node(oruser)

--- FIFO queue

0 0

arriving packets

Figure 1-1: An illustration of the model for multiaccess communication used in this
thesis.

Figure 1-1 illustrates the model for multiaccess communication that we employ

in this thesis. Observe in the figure that the only link between the m separate

users is the multiaccess channel. Although our focus in this thesis is a protocol for

coordinating the users in which the multiaccess channel will serve as the sole means of

communication, we should not forget that the channel is also a causeway for packets to

move from source to destination. Ironically, we will never again refer to any packet's

destination in this thesis, because destinations are irrelevant to coordinating channel

access among the users. Transmitting packets to their destinations is simultaneously

the whole point of the multiaccess communication problem, yet not the point at all.

Also, notice in Figure 1-1 that if the channel is idle, only a small fraction of the

time required to transmit a packet need be wasted. This small period of wasted time

is called an idle minislot. In practice, an idle minislot can be as small as 1% of the

length of a busy slot in which an actual packet is transmitted.

w

i

F-1
I I

I

I

We say that a distributed algorithm solves the multiaccess communication prob-

lem if it guarantees eventual transmission of all packets that enter the system. Though

nearly any strategy one might think of can be said to "solve the multiaccess com-

munication problem," our concern is algorithm performance. In our model, we are

concerned with two performance metrics in particular:

Throughput How much data is transmitted in a given interval of time?

Delay How long does a packet have to wait for transmission?

With respect to delay, our focus will be geared toward delay variance and worst case

delay rather than mean delay, because in a setting where users pay to receive perfor-

mance guarantees, a low delay bound is more important than low mean delay [15].

High delay variance requires larger packet buffers and greater timing flexibility at the

receiving end. With respect to throughput, our focus will be geared toward maximum

stable throughput. By maximum stable throughput, we mean the maximum aggregate

traffic arrival rate that can be supported by the system. In order for throughput to

be stable, the algorithm must guarantee that packets will be transmitted at the given

rate without queue sizes growing unbounded.

Throughout this thesis, we use a consistent set of notation. Let A be the aggregate

arrival rate to the system, normalized so that A = 1 represents maximum utilization.3

Let m be the number of users. We define 3 to be the length of an idle minislot. Finally,

we define n as the length of a sequence of transmitted packets. Typically, when we

analyze the performance of a multiaccess communication algorithm, we consider the

output transmission sequence in the limit as n approaches infinity.

3If A > 1, then the arrival rate exceeds the service rate, which is clearly unsustainable.

1.2 Background

1.2.1 The mutual exclusion problem

The multiaccess communication problem is related to the more general mutual ex-

clusion problem, a problem of managing access to a single, indivisible resource that

can only support one user at a time. Alternatively, the mutual exclusion problem

can be viewed as the problem of ensuring that "certain portions of program code are

executed within critical regions, where no two processes are permitted to be in critical

regions at the same time" [8]. A central difficulty is that a user does not know which

other users are going to request the resource nor when they will do so.

The mutual exclusion problem is qualitatively somewhat different from the mul-

tiaccess communication problem. In the mutual exclusion problem, the m users can

communicate their needs via messages along point-to-point links, and the shared re-

source might be an output device or database. In the multiaccess communication

problem, however, the users must communicate their needs via messages along a

broadcast channel, yet the desired exclusive-access resource is this same channel. In

other words, the multiaccess channel that the users require in order to transmit their

packets also serves as the medium of communication and coordination. In order to

request access to the channel, a user requires a priori channel access to place the

request.

A distributed algorithm solves the mutual exclusion problem if the following two

conditions are satisfied:

1. Mutual exclusion There is no reachable system state in which more than one

user has access to the resource.

2. Progress If at least one user requests the resource and no user currently has

it, then eventually some user will gain access to the resource.

A correct algorithm for mutual exclusion need not be "fair," in the sense that one

user may hoard the resource, thus depriving other users. Therefore, we often desire

our mutual exclusion algorithms to satisfy a stronger fairness condition than ordinary

progress:

3. Lockout freedom If all users always return the resource, then any user that

requests the resource will eventually receive it.

In Chapter 4, we will return to the issue of lockout freedom, when we modify our

original algorithm to support guaranteed quality of service; we will need to ensure

that no user can flood the system with his own packets, locking out all other users.

Many algorithms have been proposed for mutual exclusion; [8] provides a recent

survey of the area. Dijkstra's mutual exclusion algorithm (1965) requires at most

O(m) time between the time of a user's request and its access to the resource, where

m is the number of users, but the algorithm is not lockout-free. Peterson's algorithm

(1981) was among the first to guarantee lockout freedom, but its time complexity

is exponential in the worst case. Lamport's algorithm (1986) guarantees lockout

freedom with O(m 2) time complexity.

1.2.2 Contention-based algorithms

Strategies for addressing the multiaccess communication problem have traditionally

fallen into two categories. Many proposed strategies have been contention-based

schemes, in which nodes greedily attempt to send new packets immediately. If two

or more nodes attempt to transmit packets simultaneously, then a collision results,

and none of the attempts succeed. Contention-based strategies generally require back-

logged nodes to repeatedly reattempt transmission at random intervals until one node

gains sole access to the channel.4 Such algorithms satisfy the eventuality condition

for multiaccess communication - that is, the condition that states that a correct

algorithm must guarantee eventual transmission of all entering packets - with high

probability, though not with certainty.

4The retransmission interval is random in order to prevent deadlock caused by the packets of
contending users colliding every attempt.

In contention-based schemes, under heavy loading, collisions among contending

packets reduce system throughput and increase packet delay. Furthermore, such

schemes waste time on idle slots as well; because the retransmission interval is random,

it is possible for channel bandwidth to go unused even if there are packets in the

system waiting for transmission. Few quality of service guarantees can be made for

contention-based schemes.

A good survey of contention-based algorithms for multiaccess communication is

provided in [4] and [6]; see also [7], [10], and [12] for clear discussion. The Aloha

system (1970) produces a maximum stable throughput of 0.1839, with delay sub-

stantially lower than other algorithms when A < 0.1839. If nodes can detect and

terminate idle periods and collisions quickly, a technology called carrier sense mul-

tiple access/collision detection (CSMA/CD), throughput can be improved further.

CSMA/CD, also the protocol of the Ethernet (1976), is a popular example of the

use of collision resolution to make implicit reservations. If a collision occurs, the

transmitting node stops after one minislot; therefore, the first minislot of a packet's

transmission initiates an implicit reservation for the rest of its transmission. The max-

imum stable throughput of the Ethernet is [1 + 3(e - 1)]- 1, where / is the length of

a minislot. Additional contention-based schemes include splitting algorithms (1978),

in which the set of colliding nodes is split into subsets, one of which transmits in the

next slot. If the collision is not resolved, then a further splitting into subsets occurs.

[6] provides an overview of the work on splitting algorithms. The best splitting al-

gorithms achieve a maximum stable throughput of 0.4878, with lower expected delay

over a larger range of A than Aloha.

1.2.3 Reservation-based algorithms

The second category of algorithm that has been proposed to solve the multiaccess

communication problem is reservation-based, in which nodes receive reserved intervals

for channel use. Here, in order to reserve a time slot for use of the channel, a node

needs to communicate its need to the remaining nodes. Generally, such systems

alternate short reservation intervals giving each node an opportunity to reserve a time

slot (using round robin or a contention-based approach), with longer data intervals

where actual packet transmissions take place.

Existing reservation-based schemes generally guarantee few interesting delay prop-

erties, primarily because they typically follow a strict cyclic order in serving the users.

In other words, the actual waiting time in queue is ignored; the last packet of a large

data burst arriving in queue may have to wait a very long time to be transmitted.

A survey of reservation-based algorithms is presented in [4]; other worthwhile ref-

erences on the subject are [3] and [5]. Most existing reservation-based schemes are

variations on time-division multiplexing (TDM), in which users are given opportu-

nities to transmit in cyclic order. In the gated system (1972), the rule is that only

those packets that arrived prior to the user's turn are transmitted. By contrast, in

the exhaustive system, those packets that arrive during the user's turn are trans-

mitted as well. A variation on the gated system is gated limited service (1978), in

which only the first packet waiting in queue is transmitted on a user's turn. Queuing

delay analysis has been performed on all three of these reservation-based variations,

and the interested reader is referred to [4]. Token rings (1969) constitute another

popular approach to reservation-based multiaccess communication. The nodes are

arranged logically in a ring, with each node transmitting to the next node around the

ring. When a node completes its communication, it sends a "token." The next node

around the ring either transmits its own data before forwarding the token, or if it has

no data to send, relays the token to the next node. The maximum stable throughput

of the token ring is 1, although no guarantees can be made regarding worst case delay.

1.3 Outline of thesis

This thesis presents a new distributed scheduling algorithm for quality of service sup-

port in multiaccess networks. In Chapter 2, we introduce a new concept called an

inversion, and we apply it in conjunction with classical machine-job scheduling prin-

ciples to inventing what we name the GlobalTime algorithm. Chapter 2 also states

and proves two delay and throughput theorems which guarantee the theoretical per-

formance of our algorithm. In Chapter 3, we simulate the GlobalTime algorithm over

time on random incoming traffic satisfying two different probability distributions.

We also compare the performance of the GlobalTime algorithm to the performance of

other reservation-based disciplines and the optimal centralized scheduler. In Chap-

ter 4, we extend the GlobalTime algorithm to handle bandwidth reservation in an

integrated services environment. The key innovation in Chapter 4 will be the notion

of virtual timestamp, which will enable users that "follow the rules" to receive higher

priority for channel access than overzealous users that attempt to "hog" the channel

by flooding the system with their own packets. In Chapter 5, we summarize the

results of the thesis.

Chapter 2

The GlobalTime Algorithm

In Chapter 1, we introduced the multiaccess communication problem, a fundamen-

tal problem in the field of networking. We outlined several proposed strategies for

tackling this problem, from contention-based schemes like Aloha to reservation-based

schemes like the token ring. Unfortunately, as we have seen, attempts at solving

the multiaccess communication problem to date have been far from perfect. In

contention-based schemes, collisions among contending packets drastically reduce sys-

tem throughput and increase packet delay. Furthermore, existing reservation-based

schemes rarely guarantee interesting delay or fairness properties. For example, under

many existing reservation-based algorithms, no attempt is made to equalize the delay

experienced by each user. A recently arriving packet at node i will be served quickly

if i's queue size is small; meanwhile, a packet that arrived earlier at backlogged node

j may have to wait a much longer time. 1

In this chapter, we introduce a new reservation-based algorithm for multiac-

cess communication. In Section 2.1, we discuss the related problem of machine-job

scheduling. In Section 2.2, we define the concept of an inversion, and we consider its

application as a measure of the deviation of a transmission sequence from the optimal

1We consider fairness from the packet's perspective, in much the same way that we measure
fairness in the checkout lines of a supermarket from the shopper's perspective. Fairness to the
packet is equivalent to fairness to the user if we assume that users generate packets at or below their
reserved rates. For example, if one user floods the system with packets, other users will be locked
out, despite the system's effort to treat all packets equitably. Fairness will be discussed further in
Chapter 4.

sequence. Section 2.3 introduces the main result of this thesis, a timestamp-based

multiaccess communication protocol called the GlobalTime algorithm. In Sections 2.4

and 2.5, we analyze the theoretical performance of the GlobalTime algorithm with

respect to throughput and worst case delay.

2.1 Machine-job scheduling

Recall our framework of m nodes 1, 2,... , m, each with an associated first-in-first-out

(FIFO) queue, and each connected to a single multiaccess channel. A data packet

that arrives at node i waits in the queue at i until it gains access to the channel, and

can be successfully transmitted to its destination. The framework of the multiaccess

communication problem is inherently on-line and distributed; users must decide in

real time whether to attempt packet transmissions, and must do so without the

coordinative assistance of a centralized scheduler.

To gain insight into this problem, we examine the related offline, centralized prob-

lem. In this variation, a system overseer schedules the packet transmissions of all the

users in the order he sees fit. Furthermore, the overseer possesses knowledge of the fu-

ture; he may schedule packet transmissions with a protocol that requires information

about packets yet to arrive. The reason we examine this variant of the multiaccess

communication problem is that we hope a solution to the offline, centralized problem

provides needed intuition for the solution of the on-line, distributed one.

It turns out that the multiaccess communication problem in its offline, central-

ized incarnation is just the machine-job scheduling problem, a well-researched topic

in the dynamic programming and discrete optimization literature. In machine-job

scheduling, there are n equal length jobs J = J1 , J2,... , Jn to be scheduled on a

single machine. 2 Job Ji becomes available at release time ri.3 Let the completion

time of job Ji in schedule S be t', and define the cost of schedule S to be

2The "length" of a job is the time required for the machine to complete it.
3A release time might correspond in practice to a time at which an earlier task is completed

(e.g. lumber must be sawed before it can be sanded), or at which required supplementary resources
become available (e.g. a program cannot run until the necessary disk has been obtained).

C(S) = max (t -r3)

Notice that the cost of a schedule is simply the waiting time between the release

and the completion of the job whose waiting time is the longest. The machine-job

scheduling problem is to find a feasible, cost-minimizing schedule for performing the

n jobs on the single machine.

The machine-job scheduling problem has an optimal solution, described and proved

in Theorem 2.1.

Theorem 2.1 An algorithm A in which jobs are processed in order of increasing

release times is cost-minimizing; that is,

C(A()) = min C(S).

Proof: Let S be a cost-minimizing schedule such that jobs are not processed in

order of increasing release times. Let Ja and Jb be two consecutive jobs in S such

that ra > rb. We now argue that by transposing Ja and Jb in the task sequence, the

cost of the new schedule can be no greater than C(S), producing a contradiction.

Without loss of generality, we assume unit-length jobs. Because ra > rb, we have

tb_- b > t . (2.1)

Furthermore, because tS < tsb by assumption, we have

t - rb > t-b . (2.2)

Combining inequalities (2.1) and (2.2), we obtain

max(t s - rb, tb - ra) < tbS - rb < max(t s - ra, t S - rb) , (2.3)

which shows that the new schedule can cost no more than the original.

This theorem certainly matches our intuition, proving that completing the jobs in

order of increasing release times minimizes waiting time. In the next section, we will

see how Theorem 2.1 provides motivation for a multiaccess communication algorithm

based on machine-job scheduling principles.

2.2 Inversions

In Section 2.1, we saw that the machine-job scheduling problem is an offline, central-

ized variant of the multiaccess communication problem, where jobs take the place of

data packets, and the machine takes the place of the multiaccess channel. We also

proved a theorem that stated that serving the jobs in the order they are released

minimizes the worst case wait.

Because of the correspondence between machine-job scheduling and multiaccess

communication, Theorem 2.1 provides a benchmark to which on-line, distributed

algorithms that solve the multiaccess communication problem can aspire. Though

the optimal solution to the multiaccess communication problem may be unachievable

in a distributed, real time environment, the machine-job scheduling bound provides

the algorithm designer with a reasonable goal. Indeed, Theorem 2.1 suggests that

the more closely the sequence of transmissions generated by a distributed algorithm

approximates first-come-first-served (FCFS), the better the algorithm performs with

respect to worst case delay.4 To quantify this notion, we introduce the concept of an

inversion.

Definition 2.1 Given n packets P1, P2,... , P., where packet Pi arrived in the system

at time as and was transmitted at time ti, we say two packets Pi and P, are inverted

if ti < tj but ai > aj.

In other words, two packets are inverted in a transmission sequence if they "should

4This is a practical observation, because worst case delay (or a guaranteed "delay bound") is the
most important measure of a user's satisfaction - in particular, of what the user is willing to pay.

have" been transmitted in the opposite order according to the FCFS criterion. In-

versions enable the algorithm designer to simply count how far off from optimal his

multiaccess communication algorithm is on a given input.

Before we overstate the case for inversions as a measure of worst case delay, we

need to be careful. It is not strictly correct to claim that 43 inversions are worse than

42, or more generally, that "the more inversions in a transmission sequence, the higher

its worst case delay." However, the asymptotic number of inversions, calculated as the

number of packet transmissions approaches infinity, provides a good measure of the

algorithm's delay performance. By dividing this asymptotic number of inversions by

the number of packet transmissions n, we obtain a quantity representing the average

displacement of a packet from its rightful FCFS spot in the transmission sequence. If

as n approaches infinity, this amortized quantity approaches Q(n), then the average

packet is unfairly displaced by a substantial fraction of its peers; thus, delay variance

(and all higher moments of delay) suffer. On the other hand, if the average packet is

unfairly displaced by only 0(1) other packets, then the output only differs from the

optimal FCFS order within small local neighborhoods of the transmission sequence;

thus, the higher moments of delay are kept small. As we have already observed,

ultimately it is these higher moments of delay that matter most to paying customers,

because higher variation in packet delay requires larger packet buffers and greater

timing flexibility in receiving end protocols. In fact, we can prove that under special

circumstances, mean packet delay is unaffected by the particular choice of multiaccess

communication algorithm.

Theorem 2.2 Consider any two algorithms A and B that solve the multiaccess com-

munication problem, and suppose that the channel is fully utilized. Then on any input,

A and B produce transmission sequences with the same mean delay.

Proof: We consider the transmission sequences A(i) and B(i) generated by algo-

rithms A and B on input i. If A(i) = B(i), then we are done. If not, then there

exist two packets p and q such that tA(i) < tA (i), but tB(i) < tB (i). Without loss of

generality, we consider the case in which there is only one such pair.5

Suppose that the mean delay of sequence A(i) is AIA(i); thus, the total delay of

sequence A(i) is npA(i). But the total delay nrB(i) of sequence B(i) is

UpB(i) = nAA(i) - (t A(i) - a) - (t A(i) - aq) + (tB (i) - a)+(tB(i) - aq)

= nA(i) - tA(i) - A(i) + tB(i) +B(i)

= nUA(i).

Thus, A and B produce transmission sequences with the same total delay, and hence

the same mean delay. Ol

Although Theorem 2.2 no longer strictly holds when the channel is not fully uti-

lized, the spirit of the theorem is still correct. In particular, under high throughput

conditions, the order in which packets are transmitted hardly affects mean packet de-

lay. The intuition is that transposing two packets in the transmission sequence simply

reduces the delay of one packet at the expense of the other, the effects canceling each

other on average. Therefore, we apply the concept of inversion to measure worst case

delay, a performance metric that is sensitive to choice of algorithm.

To our knowledge, existing schemes that solve the multiaccess communication

problem guarantee nothing about the worst case number of inversions. Certainly, any

of the contention-based schemes described in Chapter 1 cannot guarantee anything,

nor can any of the canonical reservation-based protocols. In fact, existing algorithms

generate Q(n 2) inversions in the worst case, where n is the number of packet transmis-

sions. Theorem 2.3 demonstrates this property for a gated limited service or "round

robin" protocol.

Theorem 2.3 Round robin generates a sequence of transmissions with Q(n 2) inver-

sions in the worst case.

5If there exists more than one pair of packets p and q such that tA(i) < t A(i) but () t ()

then the proof of Theorem 2.2 can be applied repeatedly to each such pair to easily obtain the same
result.

Proof: Consider the sequence of packets P = (P1 , P2, ... , P,), listed in the order

they were transmitted. Also, consider the associated sequence of arrival times A =

(al, a2, ... , an). We claim A can have Q(n 2) inversions in the worst case. Because

there are m nodes (where m > 1), each with its own FIFO queue, the sequence A is

guaranteed to be m-ordered.6 Other than m-orderedness, there are no restrictions on

A, since the relative arrival times of packets at different nodes is unconstrained. It

follows by induction on m and n that an m-ordered sequence can have as many as

Q(n 2) inversions. E

(a)

1

2

Packet arrival time 3

n/2

n/2+1

n12+

n

Arriving packets

Packet arrival time

(b)
1 n/2+ 1 2

n/2 + 2 3 ... n/2 n

Transmission time

Figure 2-1: An illustration of the theorem in the case where m = 2. In (a), packets
are labeled with their relative arrival times; all of node A's packets have arrived in the
system before any of node B's. In (b), the packets are interleaved in the transmission
sequence, producing Q(n 2) inversions.

Figure 2-1 illustrates the idea behind the proof of Theorem 2.3 in the case where

m = 2. Under a round robin protocol, the sequence A will be 1, n/2+1, 2, n/2+

6The term m-ordered is used in the sorting literature to mean that the m interleaved subsequences
(ai, ai+m, ai+2m,...) for i = 1, 2,..., m are each sorted.

2, 3, ... , n/2, n. Therefore, the number of inversions in A is

n/2 n/2-1

i = Q(n2)
i=1 i=0

The example extends naturally to m > 2, simply by interleaving m subsequences

rather than 2.

Observe that Q(n 2) inversions signifies that on average, each packet is displaced

from its optimal FCFS position by a length proportional to that of the entire trans-

mission sequence. In theory, this makes sense, but as the system evolves in time, n

approaches infinity. Does this mean the average packet will be delayed indefinitely?

In practice, delays are finite because data traffic would have to be strikingly out of

the ordinary for events like the one in Figure 2-1 to occur. On the other hand, the

fact that delay is theoretically unbounded strongly suggests the need for a better

algorithm.

2.3 The GlobalTime algorithm

In the previous section, we introduced the concept of an inversion as a way of mea-

suring the deviation of a transmission sequence from the optimal sequence. We also

implied the desirability of an algorithm that could guarantee a constant number of

inversions per packet on average.

In this section, we produce a new algorithm called GlobalTime. As we will see,

the GlobalTime algorithm generates a sequence of transmissions with fewer than mn

inversions in the worst case - at most m per packet - where m is the number of users

in the system. Thus, the total number of inversions is linear (not quadratic) in n, the

number of packets transmitted. Indeed, the GlobalTime algorithm guarantees that

packets are transmitted nearly in the order they arrived. This follows immediately

from the fact that each packet is displaced from its correct FCFS position by at most

m other packets, independent of n.

The GlobalTime algorithm works as follows:

1. Each node 1, 2,... , m has a clock. The nodes' clocks are synchronized and are

initialized to 0.

2. When a packet P arrives in the system, it is immediately timestamped with the

current time. This timestamp records the arrival time of P.

3. Each node i has a set of m states known-time[j], one for each node j. All the

known-time states are initialized to 0.

4. At the beginning of a time slot, node i determines the value of j such that

known-time[j] < known-time[k] for all k. If i = j, then node i has gained access

to the channel. (Ties are broken according to predetermined rules.)

5. On its turn, node i transmits the first data packet in its queue. In addition

to actual data, the transmitted frame also contains piggybacked information -

namely, the timestamp of the next packet in node i's queue. However, if the

transmission has exhausted node i's queue, the algorithm instead inserts the

current time in this extra field. Finally, if on node i's turn, i has no packets to

send at all, then i sends a dummy packet (augmented with the current time, as

before).

6. When a packet P is being transmitted from node i, all nodes read the timestamp

piggybacked on P, and then update their local value of known-time[i].

The crucial idea behind the GlobalTime algorithm is that on their turn, users

not only transmit the usual data, but also broadcast the arrival time of the packet

waiting next in queue. Because all users maintain a table of the most recent known-

time declaration by each other user, transmission can proceed in nearly FCFS order.

Notice how the use of timestamp broadcast imposes a global notion of time on the

system, making the name GlobalTime appropriate.

A perceived problem with piggybacking known-time declarations on data packets

is that if a node has no data to send initially, it might never get an opportunity to tell

the other users when it does have a packet to transmit. Indeed, any algorithm that

solves the multiaccess communication problem must give frequent opportunities to all

users to reserve channel bandwidth; otherwise, the worst case result is user lockout.

The GlobalTime algorithm avoids this problem by broadcasting the current time in

lieu of a real packet's arrival time if a user has no next-in-line packet on its turn.

Furthermore, this dummy timestamp is treated no differently from a real timestamp

during the execution of GlobalTime, ensuring that the idle user will eventually get

another turn. On the other hand, because the dummy timestamp carries the current

time, we are guaranteed that all real data packets presently in the system will be

cleared out before the idle user's next turn.7

Figure 2-2 shows a sample execution fragment of the GlobalTime algorithm in the

case where packet transmission time is 5 units. At the left, the state of the queues

(with arrival times of waiting packets) is depicted, and at the right, the common

known-time table is shown. Notice that at t = 40, the head-of-line packet at node

A (with arrival time 26) is transmitted, but there is no waiting next-in-line packet

at A. Therefore, a dummy timestamp indicating the current time (in this case,

t = 40) is sent, and is recorded in the state known-time[A] at each node. The

existence of dummy timestamps leads to a slight deviation from strict FCFS order

in the transmission sequence. The arrival times of the packets in the order they are

transmitted are 25, 26, 27, 29, 48, 47, 46. However, packets are displaced from their

proper FCFS positions only by a few time slots; inversions are local.

What is interesting about the GlobalTime algorithm is the way we exploit the

full power of the multiaccess channel architecture; the ability of all nodes to "snoop

the bus" is paramount here. In particular, after node i has won the competition for

channel access, the other nodes do not simply wait passively for the next round of

competition. Instead, all nodes are active at all rounds - if not transmitting actual

data, then performing local update operations.

7The cleverness of this strategy is subtle, and will be discussed further in Section 2.4, when we
see how the combination of real and dummy timestamps guarantees O(mn) inversions in the worst
case.

48 29 47
~ ~ t

BB~t

D

known-time

time A B C

35 26 29 25

known-time

time A B C

40 26 29 27

known-time

time A B C

45 40 29 2

known-time

time A B C

50 40 @ 45

known-time

time A B C

55 4 46 45

known-time

time A B C

60 55 46 45

Figure 2-2: A sample execution fragment of the GlobalTime algorithm. For each time
step, the state of the queues and the common known-time table is shown. In this
example, the time required to transmit a packet is 5 units.

2.4 Worst case delay

In Section 2.2, we introduced the notion of an inversion in a transmission sequence,

and in Section 2.3, we described a new algorithm designed to reduce inversions. In

this section, we prove the result we alluded to earlier, that the GlobalTime algorithm

indeed addresses the issue of eliminating inversions.

Theorem 2.4 In a sequence of n transmissions generated by the GlobalTime algo-

rithm, a packet P with arrival time ap will be transmitted after at most m-i packets

with later arrival times.

Corollary 2.5 A sequence of n transmissions generated by the GlobalTime algorithm

has O(mn) inversions in the worst case.

Before we prove Theorem 2.4, let us consider the importance of this result. The-

orem 2.4 demonstrates that we can approximate a FCFS discipline in a distributed

setting. The theorem guarantees that a given packet P will be delayed by no more

than m-1 time slots than is fair, in the sense that only m-1 packets can "cut ahead"

of P with respect to the globally optimal order. Put another way, we can divide

worst case packet delay into two parts: a natural delay associated with the optimal

transmission sequence described in Theorem 2.1, and a residual delay, the additional

delay incurred by an on-line, distributed algorithm. The GlobalTime algorithm has

an 0(1)-bounded residual delay - in particular, at most m-1 time slots.8

Proof of Theorem 2.4: First, we define some notation. Let ap be the arrival time

of packet P at node X, and let Tp be the value of known-time[X] at the time packet

P is transmitted. Now consider a packet i that arrives at node B. By step 5 of the

GlobalTime algorithm, clearly T- < ai. Next, consider a packet j that is transmitted

before packet i, but arrived at node A $ B at time aj > ai. By step 4 of the

GlobalTime algorithm, we conclude Tj < Ti.

8In practice, the m-1 bound is not strictly accurate, because idle minislots may add slightly to
the residual delay.

We now argue that there cannot exist another packet k at node A, transmitted

between the transmissions of packets j and i, such that ak > ai. If true, the theorem

and its corollary follow immediately. Assume for the purpose of contradiction that

ak > ai, but k is transmitted before i. If the extra field in packet j contained the

arrival time of the next packet in node A's queue, then

-k = ak > ai > Ti ,

which, by step 4 of the GlobalTime algorithm, is a contradiction. On the other hand,

if the extra field in packet j contained the current time c, then

T7k = c > aj > ai i ,

again a contradiction. O

Suppose that packet x at node X arrives in the system after packet y at node Y,

but that x is transmitted before y. The idea behind the proof of Theorem 2.4 is that no

packet originating at X, other than x, has this property. Observe the role of both real

and dummy timestamps in the proof in ensuring that all inversions remain localized

within small neighborhoods in the transmission sequence. As we have explained

earlier, by reducing inversions in the output, the GlobalTime algorithm minimizes

worst case delay.

2.5 Throughput

One remaining question about the GlobalTime algorithm is the maximum traffic in-

tensity it can sustain while ensuring bounded queues. For example, we have seen in

Chapter 1 that Aloha cannot guarantee throughput higher than 0.1839. Furthermore,

Figure 2-3 illustrates that a traditional TDM protocol produces throughput that in

the worst case can be 1/m, where m is the number of users.

The presence of dummy packets in the GlobalTime algorithm causes one to wonder

(a)

Backlogged queue

- - - ---------........ ----... ...- -.. ..
- - - - - -- --- - -- ---

- -- -------- -----

Empty queues

Turn

(b) 1 2 3 m l 2 m 2

IDLEIDLE ... DLE IDLE IDLE ... IDLE IDLE ...

Transmission time

Figure 2-3: An illustration of the maximum
protocol. If all traffic in the system enters
bounded in size only if the arrival rate does

stable throughput of a traditional TDM
the same queue, that queue will remain
not exceed /rm.

if a similar low-throughput phenomenon can occur here, if the input is sufficiently

tweaked to force the algorithm's worst case behavior. Theorem 2.6 states that this is

not the case.

Theorem 2.6 The maximum sustainable throughput of the GlobalTime algorithm is

100%.

In the remainder of this section, we provide a convincing argument for the validity

of Theorem 2.6. 9 Throughout the argument, the underlying intuition is that the

GlobalTime algorithm quickly adjusts to the location of waiting packets in the system,

thereby limiting the number of dummy packets transmitted and promoting channel

utilization.

First, we consider the following property of a reservation-based algorithm that

solves the multiaccess communication problem.

9A rigorous proof of Theorem 2.6 is more difficult. For further corroborative evidence of the
theorem's validity, see the simulation results in Chapter 3.

· · _·

0~ O

Property P: If on user A's turn, A has no packets to send at time tidle, then all

packets that arrived in the system at times less than tidle must have already been

transmitted.

In a single-user system with one FIFO queue, property P clearly holds. In this

scenario, if the single user has no packet to transmit at time tidle, then all previously

arriving packets have already been transmitted at times less than tidle. Furthermore,

if property P indeed holds, then the corresponding algorithm supports 100% through-

put. Certainly, if the only time an idle occurs is when there are no packets in the

entire system, the channel can be fully utilized if enough data traffic exists to fill it.

In a multi-queue system, however, property P is unsatisfiable. Figure 2-4 sketches

the proof of this assertion. At time t = 56, there is only one packet in the three-

queue system; thus, to obey property P, user A must be served at this time. During

the transmission of A's packet, a new packet arrives at time t = 56.4 in either user

B's or user C's queue. Because executions (1) and (2) are indistinguishable (that

is, in both executions, the presence of the newly arriving packet is unknown to the

remaining users), the user whose turn follows A's must be the same in both cases. 10

Therefore, either execution (1) or (2) must serve as a counterexample to property P;

for example, if B's turn is next, then an adversary can simply place the new packet

at node C, as in execution (2).

Although the GlobalTime algorithm (and indeed any multi-queue algorithm) does

not satisfy property P, it does satisfy a weaker condition expressed in Lemma 2.1.

Lemma 2.1 In the GlobalTime algorithm, if known-time[A] = k, and the timestamp

k is a dummy timestamp recording the last time A had a turn, then all packets with

arrival time less than k will be transmitted before A's next turn.

Proof: At the time known-time[A] = k is recorded, k must be the largest value in

the common known-time table. Therefore, all users will get at least one opportunity

10The notion of user "turns" is specific to reservation-based protocols. However, property P also
fails under any contention-based multiaccess communication algorithm, because idle slots result from
collisions.

55.8

time = 56

56.4

time = 57 time = 57

0

Figure 2-4: Evidence that property P is unsatisfiable in a multi-queue system. If the
packet at A is served at time t = 56, the arrival of the new packet at either B or C
is unknown to the remaining users. Executions (1) and (2) are indistinguishable.

before A's next turn. It follows that all head-of-line packets waiting at time k will

be transmitted before A's next turn. By induction on packet position in queue, any

other packet waiting at time k will be announced by the piggybacked timestamp on

the packet preceding it before A's next turn. We conclude that all packets in the

system at time k will be transmitted before A's next turn. O

Property P and Lemma 2.1 both describe the relationship between any idle slot

and the packets that must have been transmitted prior to it. Property P states that

if user A is idle on its turn, then all packets that had arrived in the system before the

idle turn must have already been transmitted. By contrast, the GlobalTime algorithm

satisfies the weaker condition that if user A is idle on its turn, then all packets that

had arrived before A's previous idle turn must have already been transmitted. We

now can prove an essential corollary of Lemma 2.1.

Corollary 2.2 (Lagging Window Corollary) Let tidle be any time at which user A

is idle on its turn, and let tidle be the kth idle slot in the transmission sequence of

length n. Furthermore, let tlag be the time of the (k-m)th idle slot, where m is the

number of users in the system. Then at time tidle, all packets that arrived in the

system before time tlag must have been transmitted.

Proof: Some user X must have generated two of the m + 1 idle slots between tlag

and tidle, by the pigeonhole principle. Applying Lemma 2.1 to user X proves the

corollary. O

The lagging window property can be used to show that the GlobalTime algorithm

has a maximum stable throughput of nearly 100%. The intuition is that if the ex-

pected time between consecutive idle slots in the transmission sequence is high, then

by definition, the throughput is high. On the other hand, if the expected time be-

tween consecutive idle slots in the transmission sequence is low, then the expected

lagging window size E[tidle - tlag] is small; therefore, by Corollary 2.2 the throughput

is again nearly optimal.

Now we proceed to prove Theorem 2.6. Consider a segment of the transmission

sequence of length N, between to = i - N/2 and tN = i + N/2 - 1 for some i. Define

Pi to be 1/N - (number of transmissions between to and tN). Finally, we define the

throughput p:

p = lim- .
i=N/2

Figure 2-5 illustrates the setup of the proof of Theorem 2.6. Notice that tlast is

defined as the time of the last idle slot in the transmission sequence fragment, and

tlag occurs m idle slots earlier, as in Corollary 2.2. Then

1
p lim E [number of transmissions between to and tN]N t- oo

1
> -lim (E [tN - tlast] + E [number of arrivals in range [to, tlag]])N t- oo

idle slot
lot m idle slots between t and t l .

busy slot lag last

I~j
to= i - N/2 tlag tlast t = i +N/2 -1

Transmission sequence of length N

Figure 2-5: An illustration of a transmission sequence of length N with tlag and tlast
labeled, as described in the proof of the theorem.

the latter term following from the Lagging Window Corollary. Thus,

1
P > t-lim (E[tN - tiast] + A -E[tlag - to]) ,N t-oo

where A is the arrival rate of the system.1' It follows that

1
p >- lim (AN + (1 - A)E[tN - tlast] - A - E[tlast - tlag])

N t-oo
1

> - lim (AN - A - E[tlast - tlag])N t-+oo
1 AN-Am 1

where m -(1 - p)-1 is equal to the expected length of time between tlast (the last idle

slot) and tlag (m idle slots before tlaýt) in a transmission sequence fragment of length

N, the limit taken as time approaches infinity. The factor (1- p)- 1 can be thought of

as the expected spacing between consecutive idle slots in the transmission sequence,

a function of the throughput p. Thus, the maximum stable throughput p satisfies

"Strictly speaking, the validity of this last transformation requires Poisson traffic; in particular,
the expected number of arrivals in an interval must be proportional to the length of the interval.
This is why the argument is suggestive and convincing, but not rigorous.

_ I I -- -- --- -- ---

-- ---

-- :::- -::;-

m
p(1 - p) = A(1 - p) - A

N

Because m < N, we eliminate the negligible Am/N term, and we obtain

p2 - (1 + A)p + A = 0 ,

with roots A and 1.

In conclusion, the GlobalTime algorithm can support as much throughput as there

is arriving traffic, as long as A < 1. Clearly, this is a significant improvement over

traditional TDM, where the maximum stable throughput is /rm. In the next chapter,

we examine the performance of the GlobalTime algorithm in practice.

Chapter 3

Simulations

3.1 Objective

In Chapter 2, we investigated the GlobalTime algorithm as a theoretical solution to the

multiaccess communication problem. Our main objective in that discussion was the

reduction of the number of inversions in a transmission sequence, so as to more closely

approximate first-in-first-out (FIFO) service in a distributed, multi-queue setting. We

proved a theorem bounding the number of inversions in any transmission sequence

generated by the GlobalTime algorithm, and we stated that this bound improved

upon the performance of existing algorithms.

In developing the theory behind the GlobalTime algorithm, our underlying as-

sumption was that inversions can serve as a useful intermediary between the actual

sequence of transmissions produced and the performance measures we really care

about: delay and throughput. Certainly, if this assumption were valid, then we have

greatly simplified the problem; by mapping an input set of real number arrival times

to an associated set of integer ordinals, the space of possible input permutations col-

lapses. Furthermore, we provided theoretical evidence that inversions are indeed a

useful measure. The more inverted the transmission sequence is, the longer some

packet in the system will have to wait for service relative to another packet; thus,

inversions are strongly correlated with end-to-end delay and delay jitter, both highly

undesirable properties [15].

Our objective in running simulations is to observe and measure our algorithm's

performance in practice. We say "in practice" loosely, because we neglect many minor

issues like clock skew, propagation delay, and node failures, all of which would need

to be handled in a real implementation of the GlobalTime algorithm. What we really

mean is that our simulation will first generate a set of random traffic data collected

over a long time frame. Then the simulation will run this input set through the Glob-

alTime algorithm under ideal conditions, collecting data on delay and throughput.

Viewed in this way, the GlobalTime simulation is less a network protocol than it is

an application of an abstract mathematical function, as illustrated in Figure 3-1.

Queue 1 Queue 2 Queue m

12 14 27 28 26 29 7 54 ** 30 5 11 18 IN

GlobalTime
automaton

14 11 5 9 13 7 IDLE 12

Figure 3-1: The GlobalTime algorithm, viewed as an automaton. The automaton
takes as input an array of arrival times, and returns as output a permuted version of
the same array with intervening idle slots. Although the algorithm is a distributed
protocol, we can simulate it as an abstract mathematical "function."

In this chapter, we describe in detail the simulation of the GlobalTime algorithm.

In Section 3.2, we explain the basic layout of the code and the role played by each

of the main functions. In Section 3.3, we delineate the computational procedures

required to generate interesting traffic patterns. Section 3.4 discusses the implemen-

tation of the GlobalTime algorithm and three other reservation-based algorithms; in

particular, Section 3.4 emphasizes the cleverness needed to implement the Global-

Time algorithm in code efficiently. In Section 3.5, we present the results of the sim-

ulations. Applying the familiar yardsticks of throughput and delay, we will see that

the GlobalTime algorithm performs admirably in comparison with other canonical

reservation-based disciplines.

3.2 Overview of the code

The code for the GlobalTime simulation is written in the programming language ANSI

C, selected for its efficiency and power. The code was expected to be computationally

intensive; we would require huge data structures to hold the simulated arrivals, and we

would need millions of arithmetic calculations to keep track of performance statistics. 1

In addition, C is well-supported in MIT's Athena computing environment. The code

was edited in Emacs and compiled with cc. Appendix A contains the complete code

listing for the GlobalTime simulation. Figure 3-2 depicts the graph of dependencies

among the main functions.

At the root of the simulation is the main procedure. In lines 5-20 of the code, the

user specifies a range of m (the number of nodes), N (the time of the simulation), and

A (the aggregate arrival rate) that he wishes to simulate. In addition, the user sets

the desired increments for m, N, and A; for example, he can choose to test all values

of A between 0.05 and 0.55 at increments of 0.05. If the user desires a bursty traffic

simulation, he can also set a range for the mean burst size. The main procedure

is simply a set of nested loops that runs the simulation through all the possible

combinations of requested parameter settings. For example, if the user requests data

for m = 128, 104 < N < 5 x 104 at increments of 104, and 0.6 < A < 0.8 at increments

of 0.02 on Poisson traffic, then the main procedure will call run_simulation 55 times,

producing 55 data points.

The chief "administrator" of the code is the run_simulation procedure. As shown

in Figure 3-2, the code for run_simulation calls all the functions necessary for the

entire simulation, both those involved in traffic generation and in the actual multi-

access communication algorithms. The arguments to run_simulation are a single

value each of m, N, A, and mean burst size, passed to it by main. In line 14 of the

'The author had no bias for C, because he had no prior experience programming in C, or pro-
gramming at all in the last five years. However, the language was surprisingly easy to learn in just
a couple of days, given a strong background in algorithms and data structures.

createpoisson_arrival_array create_arrivals_sortedby_queue

eate_queue_arrival_list

y_input

run simi

mai

/ perform_GLOBALTIME_simulation

ulation

n

perform_reservation_based_simulation

perform_single_queue_simulation

calculate_algorithm_statistics

Figure 3-2: Graph of the dependencies among the primary functions in the code for
the GlobalTime simulation.

code, the user indicates the desired number of trials per simulation; the performance

statistics from the trials are simply averaged in producing a single data point.

Within a single trial, a set of random arrivals is first created according to the

desired traffic distribution. Then this input set is run through both the GlobalTime

algorithm and three other canonical reservation-based algorithms: gated limited ser-

vice, gated unlimited service, and exhaustive. 2 Furthermore, for the sake of compar-

ison, the simulation runs the same set of arrivals through a single FIFO queue. As

run_simulation loops through the assigned number of trials, the performance data

is accumulated and later divided by the total number of trials. At the completion of

a single call to run_simulation, the results are written to the file specified by the

user in the format of 34 comma-separated values per line, constituting a single data

point. The 34 values are m, N, A, mean burst size, and mean delay, delay variance,

and worst case delay for both the average and worst case users in each of the five

scheduling algorithms (4 + 3 - 2 - 5 = 34).

In the next two sections, we describe the procedures for traffic generation and

algorithm implementation in more detail.

3.3 Generation of traffic

3.3.1 Poisson arrivals

The first traffic pattern we consider is the Poisson process, a distribution "generally

considered to be a good model for the aggregate traffic of a large number of similar

and independent users" [4]. Regardless of whether this assertion is actually true,

the Poisson process is well understood and is widely employed in the simulation of

network protocols.

The procedure createpoisson_arrivalarray generates a sequence of Poisson

arrivals between 0 and N, with aggregate arrival rate A. To create this input, C's

pseudorandom number generator first outputs an integer between 0 and 231-1. Sec-

2See Chapter 1 for further discussion of canonical reservation-based disciplines.

ond, this integer is divided by 231- 1 to produce a random decimal between 0 and

1. Next, create_poisson_arrival_array needs to map the uniform distribution on

(0, 1) to the exponential distribution on (0, oc), in order to generate a random inter-

arrival time from the random decimal; the appropriate mapping function is

In(1 - random_decimal)
random_interarrival =- (3.1)A

By iteratively producing random interarrival times, we easily build a list of Poisson

arrivals by adding each new interarrival time to the time of the last arrival to generate

the next arrival. When complete, this list is copied into an array whose first element

is the array's length; this array is returned to the caller.

The poisson_arrival_array created by create_poisson_arrival_array serves

as an input to perf orm_single_queue_simulation. However, we still require another

procedure to generate m Poisson traffic streams for the multi-queue simulations. Ful-

filling this requirement, the procedure create_arrivals_sorted_by_queue generates

an array of random queue assignments for each arrival. The independent random

choices for each queue assignment are again created with C's pseudorandom number

generator, but this time, the resulting integer between 1 and 231 - 1 is evaluated

modulo m. As illustrated in Figure 3-3, the m resulting streams are themselves each

Poisson with rate A/rn [4]. The m queues are placed in order into one long array

the same size as the original poissonarrival array. Queue_offsets, an auxiliary

array of length m, keeps track of where one queue ends and the next begins.

3.3.2 Bursty arrivals

In practice, real data traffic patterns exhibit bursts of activity followed by long idle

periods. In this section, we describe a reasonable model for bursty traffic and the

code used to generate it.

In our bursty traffic model, time is divided into busy periods and idle periods

independently for each user. During busy periods, arrivals are Poisson distributed

with rate 1; during idle periods, no traffic arrives. The length of a busy period is an

6 17 30 38 45 62 66 81 90 95

2, 1,' 2' 2 3 1 31 3 -2 ,2 3

/ \ - / /. .

17 62 6 30 38 81 90 45 66 95

Queue 1 Queue 2 Queue 3

Figure 3-3: A small example of the procedure create_arrivals_sortedby_queue.
Each arriving packet in the system is randomly sent to one of the three queues. The
result is that the arrivals at each queue will be Poisson distributed with rate A/3.

exponential random variable with given mean burst size. Similarly, the length of an

idle period is exponentially distributed, where

mean_burstsize
mean_idle_size -= - mean_burst_size . (3.2)

arrival_rate

Of course, in this case, arrival_rate = A/m, where A is the aggregate arrival rate to

the system and m is the number of users, because we assume that the time-averaged

arrival rate per user is identical. Figure 3-4 illustrates the model for bursty traffic.

Implementing bursty traffic in code requires first that the busy periods be gener-

ated, and then the arrivals within the busy periods. Exactly as its name indicates, the

procedure create_queue_busyperiods produces a list of busy periods given a user's

packet arrival rate and mean burst size and a value for N. Because busy periods are

time intervals, each element of this list is a triple consisting of a starting time, an

ending time, and a pointer to the next element. As in Section 3.3.1, the procedure

generates exponentially distributed busy and idle period lengths by first producing a

decimal uniformly distributed on (0, 1), and then mapping it to the range (0, oo):

random_busy_period = - ln(1 - random_decimal) mean_burst_size (3.3)

random_idle_period = - In(1 - random_decimal) mean_idle_size (3.4)

BUSY IDLE BUSY IDLE BUSI IDLE
4/3 4 7,1 8 9? 9Q

44.5 46.0 47.1 47.5 71.3 71.5 71.8 74.1 75.3 77.9 78.3 80.0 94.1 94.5 94.7 94.9 95.5

Figure 3-4: An illustration of the model for bursty traffic in the GlobalTime simu-
lation. Busy periods and idle periods alternate, each with exponentially distributed
length. Within a busy period, arrivals are Poisson distributed with rate 1. No packets
arrive during idle periods.

Given a list of busy periods, the procedure createqueue_arrival_list now

creates a single list of arrivals, as shown in Figure 3-4. The graph in Figure 3-2

demonstrates the relationship between the procedures create _queue_busyperiods

and create_queue_arrival_list, and their caller, create_bursty_input. The pro-

cedure create_bursty_input first calls the two lower level procedures m times each,

yielding m traffic streams, all inserted into array_of_arrival_lists. The remain-

der of the procedure simply converts the array of lists format to the required format:

namely, a single long array with an accompanying table storing the queue offsets. Ob-

serve that the bursty traffic simulation, unlike the Poisson traffic simulation, starts

by generating the multi-queue input. To provide the associated single queue input,

run_simulation applies quicksort to the arrivals_sorted_by_queue array. An im-

portant benefit of the single array data structure for tracking m queues is this capacity

to sort the arriving packets with no additional overhead from data shuffling.

3.4 Algorithm implementations

3.4.1 Single queue algorithm

The procedure perform_single_queue_simulation requires only a few lines of it-

erative code. The variable time is incremented by 1 if a packet is currently in

the queue, and by BETA < 1 otherwise. The value of BETA represents the length

of an idle minislot, and is a predefined global constant.3 When a packet is in-

deed transmitted, its queuing delay is calculated; this computed packet delay is

used to update total_delay, total_square_delay, and worst case_delay. Finally,

when time exceeds N, the while loop is exited, and the results are recorded in

singlequeue_results: mean delay, delay variance, and worst case delay.

3.4.2 Reservation-based algorithms

A generalized procedure for simulating canonical reservation-based multiaccess com-

munication schemes, perform_reservation_based_simulation can emulate gated

limited service, gated unlimited service, and exhaustive disciplines. As discussed in

Chapter 1, all three are TDM-like protocols - that is, users receive turns in cyclic

order. When it is node i's turn to transmit, i sends all its packets in both a gated

unlimited and an exhaustive service discipline (protocol = 1 and protocol = 2, re-

spectively). The only difference between the two is whether or not packets that arrive

during node i's turn get served during that same turn; in an exhaustive scheme, they

do. Based on the integer value of protocol, the auxiliary function protocol_switch

decides whether gate_time (the time node i's turn began) or time (the current time)

should determine if i's head-of-line packet is eligible to be transmitted.

On the other hand, if protocol = 0, then a gated limited service discipline is being

employed; in this case, at most one packet per user per turn is transmitted. A single

transmission by node i sets a flag which forces i to relinquish its turn the second

time through the while loop. Regardless of the specific reservation-based scheme,

3A minislot is used whenever there is no data to transmit. In the GlobalTime algorithm, a
minislot will also contain a dummy timestamp of a few bytes.

after each packet transmission, the delay statistics are updated as in the single queue

simulation; in the multi-queue case, however, arrays must be maintained to keep track

of the statistics per user. At the end of the simulation, these user statistics tables

are analyzed by the procedure calculate_algorithmstatistics for the following

numerical data:

* Mean delay of the average user

* Mean delay of the user with the highest mean delay

* Delay variance of the average user

* Delay variance of the user with the highest delay variance

* Worst case delay of the average user

* Worst case delay of the user with the highest worst case delay

By examining the performance of both the average and the worst case user, we not

only observe the algorithm's delay characteristics, but also its fairness.

3.4.3 GlobalTime algorithm

The procedure perform_GLOBALTIMEsimulation handles the implementation of the

GlobalTime algorithm. As discussed in Chapter 2, each node in an execution of the

GlobalTime algorithm maintains the state variables known-time[i] for i = 1, 2, ... , m,

each storing a time corresponding to either the arrival time of i's next-in-line packet,

or the last time i received a turn in which i's queue contained no next-in-line packet.

Furthermore, we observed that the main computational task in the GlobalTime al-

gorithm is finding the minimum among the m known-time variables every time slot.4

The node i whose known-time value is smallest receives a turn, and at the end of

its turn, known-time[i] must be updated in each node's local table. This repeated

4Assuming 2 ps time slots, finding the minimum among m real numbers may not be feasible with
1998 technology, despite our efficient implementation. It is quite likely that chips will continue to
scale to higher speeds in coming years.

application of FIND-MIN and INCREASE-KEY operations to a dynamic set of values

suggests a known-time priority queue.

For m < 50, an unsorted array performs fine, but for larger m, we employ a binary

heap, as illustrated in Figure 3-5. The heap is keyed on the actual known-times, and

a second field holds the associated node's unique identifier. As demonstrated in

Figure 3-5, the structure of a binary heap implies that turn = known_time [0] .val.

After a node's turn, known_time.key is increased, and the array is reheapified. Of

course, the asymptotic gain is that the aggregate cost of a node's turn is O(lgm)

rather than O(m), as would be required in linear search for mini {known-time[i]}.

This difference is substantial for large m, especially given the real implementation

issue of time slots only a few microseconds in length. Because a binary heap and

an unsorted array are maintained differently, an indicator variable heap switches

between two sets of related functions in several parts of the code: for example, during

the update of the known-time array.

As in Section 3.4.2, the procedure calculate_algorithm_statistics analyzes

the data in the statistics arrays at the end of the simulation. Data is stored in these

arrays (total_delay, total_square_delay, and worst_casedelay) throughout the

execution.

3.5 Simulation results

As described in Section 3.2, the GlobalTime simulation writes data points to a file in

the format of 34 comma-separated values per line. To analyze this data, we imported

the data. csv file into Xess, a spreadsheet program supported on MIT's Athena work-

stations. The spreadsheet software was practical for sorting the data and performing

additional calculations not computed by the original C code: for example, for taking

the square root of delay variance to obtain delay standard deviation. Xess also pro-

vides aesthetically pleasing line and scatter graphs of specified data sets, the product

of which comprises much of the remainder of this chapter.

In sketching the implementations of the five simulated algorithms in Section 3.4,

known_time.key

knowntime.val

123 130 135 150 131 139 137 155 158 132------- ---- --- ------ ------- --- ------- --- ------ ----------
7 2 3 4 0 8 5 6 9 1

1 2 3 4 5 6 7 8 9

turn = knowntime[O].val = 7

known_time.key

known time.val

(b)

Figure 3-5: Handling of the known_time state variables using a binary heap as priority
queue in the GlobalTime algorithm. In (a), the node whose turn it is to transmit is
simply the number stored in known_time [0] .val. In (b), the heap structure of the
array is illustrated. Nodes are keyed by their known_time.

(a)

we alluded to six performance metrics; the six numbers returned by each algorithm's

simulation correspond to these six performance criteria. Before discussing the results

of the simulations, let us examine these six performance metrics in greater detail:

Mean delay

The mean delay of a user i is defined as the average queuing delay of i's packets.

User i cares about both the mean delay of the average user and of the worst case user

in the system. The reason for this dual concern is that although i certainly wants a

low expected mean delay, more importantly, i wants a low guaranteed mean delay. If

even one user experiences significantly higher mean delay than the others, then from

i's standpoint, the algorithm is unacceptable - unless i could somehow be assured

that he wouldn't be the unlucky one!

Worst case delay

The worst case delay of a user i is defined as the queuing delay of i's most delayed

packet. In a setting where clients pay to receive performance guarantees, a low delay

bound is more important than low mean delay. High variation in packet delay requires

larger packet buffers and greater timing flexibility in receiving end protocols [15]. Of

course, because our model does not deterministically bound the burstiness of incoming

traffic, we say "worst case delay bound" loosely. What we really mean is that with

very high probability, a packet's delay will obey the bound; indeed, this is the best

we can do given a stochastic bounding traffic model as input (such as the models

described in Section 3.3).

Delay variance

Delay variance is a softer measure of delay jitter than a worst case bound, and

is therefore more likely to converge quickly in simulations. As with the previous two

performance criteria, our interest in delay variance extends to both the average and

the worst case user, the latter enabling us to provide a delay variance guarantee.

In running the simulations, we set several parameters. First, all simulations were

run with N = 215, where one time slot is equal to the service time of a single packet.

Assuming 2 ps time slots, the simulations were run for approximately 66 ms.5 Second,

we set BETA, the length of a minislot, equal to 0.01.6 Third, TRIALS was set to 32, so

that all data points are the average of 32 executions.

In Sections 3.5.1 and 3.5.2, we analyze the results of the simulations on Poisson

and bursty traffic, respectively.

3.5.1 Poisson traffic

The graphs in Figures 3-6 through 3-8 plot mean delay, delay variance, and worst

case delay against system arrival rate for four different values of m in an execution

of the GlobalTime algorithm.' The graphs have logarithmic y axes, so that the plots

are easily discernible for both high and low arrival rates. Observe that the delays

caused by the GlobalTime algorithm increase with m. For example, in Figure 3-6,

at 80% throughput, if the simulation is run on 32 nodes, the mean queuing delay is

slightly more than 2 time slots; on 128 nodes, the mean delay jumps to 5, and on

512 nodes, to approximately 20 time slots. This is not surprising, because for the

same value of A, more nodes mean more dispersion of packets throughout the system.

Greater dispersion leads to greater time lag while the GlobalTime algorithm cycles

through the nodes, looking for the small fraction of nodes that actually have a packet

to transmit in any given time slot. As we discussed in Chapter 2 and will see again

shortly, this problem is fundamental to reservation-based algorithms.

Figure 3-8 illustrates statistical worst case bounds in a simulation of 215 time slots.

At 80% throughput on 128 nodes, the worst case delay is approximately 35 time slots.

That an execution run for over 32,000 time slots in an 128 node distributed system

can guarantee end-to-end delay not exceeding 35 time slots is remarkable. Of course,

Poisson traffic is forgiving to multiaccess communication algorithms, and a more

5Furthermore, assuming a 2 Gb/s channel and A = 0.8, then approximately 13.2 MB of data are
transmitted during one execution.

6The assumption BETA = 0.01 might be an underestimate with 2 ps time slots, but is typical in
Ethernet local area networks [4]. In any case, both the GlobalTime algorithm and its competitors
face the same problem, regardless of our choice of BETA.

7Unless otherwise noted, the discussion in this chapter focuses on the performance of the most
poorly treated user in the system.

challenging test of performance is bursty traffic, to be discussed in the next section.

a

2

S

S

0.0

Figure 3-6: Mean delay of
the GlobalTime algorithm.

0.2 0.4 0.
Arrival rate

the user with the
All users generate

-. *m= 32

- m = 128

6 0.8 1.0

highest mean delay in an execution of
Poisson traffic with equal rate.

a

a

S

0.0 0.2 0.4 0.6
Arrival rate

Figure 3-7: Delay variance of
of the GlobalTime algorithm.

the user with the highest delay variance in an execution
All users generate Poisson traffic with equal rate.

In Figure 3-9, we compare delays for the average and worst case user in the

--. m= 32

- -m = 128
-n i - 512

08 10

aI

a

2l
2 ***m=32

- m = 128
--- ii ' 512

0.0 0.2 0.4 0 6 0.8 1.0
Arrival rate

Figure 3-8: Worst case delay of the user with the highest worst case delay in an
execution of the GlobalTime algorithm. All users generate Poisson traffic with equal
rate.

GlobalTime algorithm on 128 nodes. Ideally, the disparity between the average and

most poorly treated user should be minimized, since clients are more interested in

performance guarantees than in luck. As Figure 3-9 illustrates, the average and worst

case user are treated similarly. At 80% throughput, mean delay is nearly identical for

the average and worst case user at approximately 5; as expected, worst case delay is

slightly more disparate, at 20 time slots for the average user and 35 for the most poorly

treated. Clearly, a key advantage of the GlobalTime algorithm is that it distributes

system delay equitably among its users.

Like Figure 3-9, the remaining graphs in this section are 128 node simulations.

In Figures 3-10 through 3-12, the mean delay, delay variance, and worst case delay

of the GlobalTime algorithm are plotted on the same set of axes as the mean delay,

delay variance, and worst case delay of the four other simulated algorithms cited

in Section 3.4. Figure 3-10 illustrates that mean delay is nearly identical for the

four multi-queue algorithms, even for high values of A. The figure strongly suggests

that there is something fundamental to the distributed nature of the multiaccess

communication problem, because the centralized single queue algorithm is able to

200

100

50.(

20.1

- 10.1

5.1

2.1

11

0

- Mean user mn~an dela-

- -*Maximum user mean delay

- -Mean user worst case delay

- 2elaximum ueýr wor,ýE -16ivei.

0.0 02 0.4 0.6 0.8 1.0
Arrival rate

Figure 3-9: Comparison of mean and worst case delays in the average user and the
most poorly treated user in an execution of the GlobalTime algorithm. All users
generate Poisson traffic with equal rate.

achieve substantially lower mean delay. We can understand Figure 3-10 intuitively

by observing that mean delay is insensitive to packet ordering; serving packet i ahead

of packet j or vice versa has no effect on collective delay, and thus on mean delay.

Therefore, whether an algorithm serves packets nearly in the order of their arrivals

(as in the GlobalTime algorithm), or in a round robin fashion by user (as in gated

limited service), or by some other scheme, the mean delay will not change much.

A more practical performance measure, worst case delay, is plotted in Figure 3-12.

As demonstrated in the figure, for A > 0.6, gated limited service is significantly in-

ferior to the other three multi-queue algorithms. Furthermore, at A = 0.8, the gated

unlimited and exhaustive algorithms start to diverge from the GlobalTime algorithm.

A close-up of this divergence is shown in Figure 3-13. At 90% throughput, the Glob-

alTime algorithm reduces the delay bound by approximately 25% over the unlimited

service disciplines and by 60% over gated limited service.

What we can conclude from these graphs is that given Poisson traffic, the Global-

Time algorithm does not show markedly improved delay bounds compared to other

canonical reservation-based schemes unless the throughput is very high. In other

C

C

C

as

- Smigle queue

O GlobalTmne

A Gated, unlimited service

V GaCeU, hule',md ',,v•'ce

0.0 0.2 0.4 0.6 0.8 1.0
Arrival rate

Figure 3-10: Mean delay of the user with the highest mean delay in each of 5 simulated
algorithms. The GlobalTime algorithm is compared with gated unlimited service,
gated limited service, and exhaustive service disciplines, and with a single FIFO
queue for comparison. Simulation is run with Poisson traffic on 128 nodes.

(o

V

c
Ez

-SPig quut.,

O GlobalTime

A Gated, unhmited service

V G(at,,d L:nted ;,-rvcco

00 0.2 0.4 0.6 0.8 1.0
Arrival rate

Figure 3-11: Delay variance of the user with
simulated algorithms. Simulation is run with

the highest delay variance in each of 5
Poisson traffic on 128 nodes.

_^^^^
]

- Smnge queue

O GlobalTime

A Gated, unlimited service

D Exhlast ;le

V Gated !·mltd service

0.0 0.2 0.4 0.6 0.8 1.0
Arrival rate

Figure 3-12: Worst case delay of the user with the highest worst case delay in each
of 5 simulated algorithms. Simulation is run with Poisson traffic on 128 nodes.

200

180

160

,140

%120

100

80

60

40

20

0.7 0.8 0.9
Arrival rate

- Smngl qucari

O GlobalTime

A Gated, unhmited service

V Gartd, ,m)niited se(rv:ci

Figure 3-13: A closer look at the worst case delay of the most poorly treated user in
the system in each of 5 simulated algorithms. With Poisson arrivals, there is little
difference between the delay bound of the GlobalTime algorithm and that of other
unlimited service schemes when A < 0.8.

6
0
2

X

m
a

words, if the traffic is relatively well-behaved and not too intense, the particular

multiaccess communication algorithm employed is unimportant. The best any mul-

tiaccess communication protocol can do is predict the location of packets queued in

the system. If the traffic pattern is low-intensity and memoryless, there simply is not

enough predictability to exploit.

3.5.2 Bursty traffic

In this section, we discuss the results of applying bursty traffic to the GlobalTime

algorithm. Recall that in our bursty traffic model, busy and idle periods alternate

independently at each node. During busy periods, packets arrive with Poisson rate

1. Furthermore, the length of a busy period is an exponential random variable with

parameter mean_burstsize.

In the first set of simulations, depicted in Figures 3-14 through 3-17, mean delay,

delay variance, and worst case delay are plotted against system arrival rate for the

Global Time algorithm and three alternative distributed protocols. As in Section 3.5.1,

all simulations are run with 128 nodes and 215 time slots. In this first set of simu-

lations, the mean burst size is set to 8. If the channel is 2 Gb/s, and the time to

transmit a single packet is 2 ps, then a mean burst size of 8 corresponds to 4 KB.

Certainly, 4 KB is a typical mean burst size, corresponding to the size of a small file

or web document.

As Figure 3-14 illustrates, even under bursty traffic conditions, the GlobalTime

algorithm performs similarly to both exhaustive and gated unlimited service disci-

plines with respect to mean delay. Roughly speaking, by reordering the transmission

of packets, we reduce the delay of some packets only at the expense of others, thereby

conserving the average delay of the system.s However, Figures 3-15 through 3-17

8While correct in the case of 100% throughput, this intuition is a little misleading when consid-
ering idle slots. For example, Figure 3-14 shows that gated limited service results in significantly
greater mean delay than its alternatives. The reason is that limited service tends to push idles
forward in the sequence of transmissions, delaying all subsequent packets. Similarly, as illustrated
by the solid line in Figure 3-14, in a single queue, idle slots are pushed as far back as possible in the
transmission sequence, resulting in lower mean delay. Why can't we achieve such low mean delay
in a multi-queue system? The answer is that any distributed algorithm that minimizes worst case

T"

6mEr.

ccýF

0.0 0.2 0.4 0.6 0.8
Arrival rate

0 GlobalTime

A Gated, unlimited service

V G(ted. Iniuied ser,,xe

Figure 3-14: Mean delay of the user with the highest mean delay in each of 5 algo-
rithms simulated under bursty traffic conditions with mean burst size of 8.

--- Single queue

O GlobalTime

A Gated, unlimited service

0 afxhim drVe

V Gatel. linited ocrvnse

0.0 0.2 0.4 06 0.8
Arrival rate

Figure 3-15: Delay variance of the user with the highest delay variance in each of
5 algorithms simulated under bursty traffic conditions with mean burst size of 8.
The GlobalTime algorithm reduces delay variance by no less than 1/3 over a gated
unlimited service discipline for A > 0.3, and by no less than 1/2 for A > 0.8.

- Sngle qwueu

O GlobalTime

A Gated, unlimited service

O Eedm[.ri'.rr e

7V Gased, tuvied service

0.0 0.2 0.4 0.6 0.8 10
Arrival rate

Figure 3-16: Worst case delay of the user with the highest worst case delay in each
of 5 algorithms simulated under bursty traffic conditions with mean burst size of 8.
The GlobalTime algorithm improves the delay bound over gated unlimited service by
25% or more when A > 0.3 and by 40% or more when A > 0.8.

900

600

300

0.0 0.2 0 4 0.6 0.8
Arrival rate

-8.ngle qu.ue

O GlobalTime

A Gated, unlimited service

V Gated hmited selvice

Figure 3-17: Another look at the worst case delay of the most poorly treated user
in the system under bursty traffic conditions. The GlobalTime algorithm very nearly
follows the lower bound of a single FIFO queue.

500

200

S100

50

20

demonstrate the superiority of the GlobalTime algorithm over reservation-based al-

ternatives with respect to delay variance and worst case delay. For utilization greater

than 30%, the GlobalTime algorithm improves the delay bound over the next best

strategy by at least 25%. At 80% utilization, this improvement percentage increases

to at least 40%.

Observe that in Figures 3-16 and 3-17, the GlobalTime curve closely follows the

single queue curve over all arrival rates. The single queue curve traces the natural

delay of the system - that is, the worst case delay that would have been experienced

by any packet, had all packets entered a single queue. Such natural delay results

from the "natural" burstiness of the traffic; the last packet in a long data burst must

experience a lengthy delay, even in a single first-in-first-out queue. The disparity

between the multi-queue and single queue curves represents the residual delay of the

distributed system - that is, any additional delay required for user coordination, or

caused by a lack thereof. The graph in Figure 3-17 illustrates that with moderately

bursty traffic, the residual delay of the GlobalTime system is near zero. In other

words, the GlobalTime system performs as well as a single server in controlling worst

case packet delay. This is surprising, because with 128 users, one might suspect that

a packet could "get lost in the shuffle," suffering an enormous delay unbeknownst to

the other 127 nodes. The GlobalTime protocol makes such an occurrence impossible.

Of course, the cost of decentralization shows up in mean packet delay, as shown in

Figure 3-14. However, as we have indicated, the GlobalTime algorithm performs no

worse than other unlimited service schemes in this regard, because mean delay is

largely unaffected by the particular transmission sequence permutation.

Finally, we investigate the behavior of the GlobalTime algorithm as the burstiness

of the input stream varies. For this simulation, we again employ 128 nodes for 215

time slots, and we fix channel utilization at 80%. The results of this simulation are

plotted in Figures 3-18 through 3-20.

In Figure 3-18, we observe that the mean delay of the GlobalTime algorithm is

delay must periodically check each user for waiting packets; such an algorithm will produce many
"early" idle slots.

- Suighl, quec,i

O GlobalTime

A Gated, unlimited service

0 EXI\.•slv.'

V (Gaeo1 1mrt•,d seh,(rvw

0 4 8 12 16 20 24 28 32
Mean burst size

Figure 3-18: Mean delay of the user with the highest mean delay plotted against
mean burst size of arriving traffic. Simulation is run on 128 nodes with A = 0.8 for
215 time units. Data points are the average of 32 trials.

8 12 16 20
Mean burst size

- Single queue

O GlobalTime

A Gated, unlimited service

O Ex'hasti-v

V Gated, i'mited 'Vw <,e

24 28 32

Figure 3-19: Delay standard deviation of the most poorly treated user plotted against
mean burst size of arriving traffic. Simulation is run on 128 nodes with A = 0.8.

450

400

350
.8X

r300

250

200

150

100

50

0

1000

800

600

400

200

0

-Sr'gle queue

O GlobalTime

A Gated, unlimited service

V (G•,-i Imited servwc-

0 4 8 12 16 20 24 28 32
Mean burst size

Figure 3-20: Worst case delay of the user with the highest worst case delay plotted
against mean burst size of arriving traffic. Simulation is run on 128 nodes with
A = 0.8. The GlobalTime algorithm very nearly follows the lower bound of a single
FIFO queue.

similar to the mean delay of the other unlimited service algorithms when the mean

burst size is less than 12. As the mean burst size increases, however, so too does

the dispersion between the three unlimited service curves; the GlobalTime algorithm

demonstrates the best mean delay under highly bursty traffic conditions. The im-

provement is more marked when examining the higher moments: delay standard

deviation in Figure 3-19 and worst case delay in Figure 3-20. Notice that for fixed A,

an increase in mean burst size leads to greater natural delay, represented by the solid

line in the figures. Indeed, the burstier the traffic is, the greater the jitter in queue

size, and thus the longer the worst case packet delay will be. However, the GlobalTime

algorithm adds virtually no residual delay, as illustrated by the small circles tracing

the path of the solid line in Figure 3-20. Though the GlobalTime algorithm does add

some residual standard deviation, Figure 3-19 shows that GlobalTime improves even

this second moment by about 50% over other unlimited service protocols.

Although it is tempting to claim that "The burstier the traffic, the bigger the

win for the GlobalTime algorithm," a closer examination of the figures indicates that

Traffic type Improvement in delay Improvement in
standard deviation worst case delay

A = 0.6 < 1% 4%
Poisson A = 0.8 < 1% 13%

A = 0.6 27% 41%
Mean burst size = 8 A = 0.8 32% 47%

Table 3.1: Summary of some of the simulation results from this chapter. Delay
is significantly lower for the GlobalTime algorithm compared to a gated unlimited
service protocol.

such a claim is unfair. A more correct statement is that over a large range of mean

burst size, the percentage improvement in delay of GlobalTime over its alternatives

is constant. However, as we have already seen in the Poisson simulations, when the

traffic is especially unbursty, any unlimited service algorithm performs fine.

3.6 Summary

The GlobalTime algorithm performs as well as we might have hoped. In practice,

most data network traffic is bursty, and GlobalTime exploits this predictability in

keeping the system delay bound close to a natural level. By "natural level," we mean

a level necessitated by the particular timing of packet arrivals, even were the packets

processed by a centralized scheduler. Future simulations might focus on increasing

the number of users m, or on exploring the convergence behavior of GlobalTime as

N approaches infinity. Table 3.1 summarizes some of the results of this chapter.

Chapter 4

Extending GlobalTime

In Chapter 2, we introduced a new algorithm for multiaccess communication that is

practical, easily implementable, and provably efficient at transmitting data packets

with high throughput and low delay. In Chapter 3, we simulated the GlobalTime al-

gorithm with both Poisson and bursty traffic, and we observed up to 50% reductions

in worst case delay when compared with a traditional TDM discipline in which users'

queues are emptied one at a time in cyclic order. The innovation behind the Global-

Time algorithm is that in the process of transmitting packets, a user can also send a

few bytes of piggybacked data, declaring the arrival time of its waiting head-of-line

packet. Instead of passively waiting for a turn as in traditional reservation-based

schemes, a user in the GlobalTime algorithm apprises itself of the states of the other

users by actively listening to the channel and recording the piggybacked data in a

local table. Because all users maintain an identical table, this simple data structure

replaces the need for a centralized scheduler.

In our simulations, we assumed that the packet arrival rate at each user was the

same, equal to a fraction 1/m of the aggregate arrival rate A. Although this equal

bandwidth assumption was made with the goal of simplicity in mind, it turns out that

the particular apportionment of the channel bandwidth among the users is irrelevant

to the GlobalTime algorithm's operation. Indeed, as we have seen, the GlobalTime

algorithm adjusts to the location of the packets waiting in the system. Our discussion

of delay and throughput in Theorems 2.4 and 2.6 never required an assumption about

the distribution of the packets in the system, only about the total number of packets,

wherever they may be located. For example, if packets arrive in user A's queue twice

as fast as they do in user B's, then A will receive twice as many opportunities as

B to transmit during a GlobalTime execution; furthermore, the delay variances for

users A and B will converge over time to be identical, a function of the total arrival

rate of the system. The intuition behind this property of the GlobalTime algorithm

is that because packets are served in the order they arrived (or are displaced from

FCFS order by 0(1) time slots per packet on average), how much bandwidth each

local user is using is immaterial, except as it adds to the global aggregate load. In

other words, the global coordination achieved by the GlobalTime protocol eliminates a

major roadblock in the distributed multiaccess problem: finding the waiting packets. 1

Throughout our discussion of the GlobalTime algorithm, we ignored the human

negotiations associated with a multiaccess network, during which customers pay for

a fraction of the total bandwidth; in return, paying customers receive throughput

and delay guarantees. The reason we disregarded reservations is that if users receive

packets at or below their reserved rates, then all users are guaranteed service with the

delay bounds plotted in Chapter 3. Because the specific distribution of the packets

waiting in the system does not affect the operation of the GlobalTime algorithm,

neither do bandwidth reservations affect its operation - assuming, of course, that

users do not attempt to utilize more bandwidth than they have reserved. On the other

hand, if all users receive packets at a rate much faster than they have reserved, then

the system cannot guarantee anything. Worse yet, if a single user floods the system

with his own packets, then all other users will suffer, as illustrated in Figure 4-1.

In the figure, user X experiences an enormous burst of arriving packets, effectively

locking out user Y from access to the channel. Because the GlobalTime algorithm

1For comparison, we reexamine Figure 2-3, which shows that the location of the packets greatly
affects the performance of a traditional TDM protocol in the absence of idle minislots. Notice that
if all arriving packets enter user l's queue, then channel utilization is at most 1/m. On the other
hand, the GlobalTime algorithm quickly adjusts itself to this traffic pattern, granting user 1 the vast
majority of the opportunities to transmit before long. Furthermore, by Theorem 2.6, user l's queue
will remain bounded even in the absence of idle minislots, and even if the arrival rate to user l's
queue is nearly 1.

ignores reservations, the algorithm treats user X as if it had reserved a huge fraction

of the channel bandwidth, even if this is false. Therefore, one wayward user can

effectively lock out his peers by severe overutilization of the channel.

x y

arrival time -

17.00

17.01

17.02

17.03

17.04

18

Large burst of
data in time

range [17, 18]

Figure 4-1: An example showing that one overzealous user X can lock out another
user Y from accessing the channel, simply because all of X's packets have earlier
arrival times. The extended GlobalTime algorithm handles this anomaly.

Although in theory the basic GlobalTime algorithm supports quality of service,

users do not always "follow the rules" in practice. In this chapter, we propose an ex-

tension of the GlobalTime algorithm that safeguards performance guarantees even in

the presence of misbehaving users. In Section 4.1, we invent a new virtual timestamp

that will replace the arrival-based timestamps employed in the original GlobalTime

algorithm. Section 4.2 extends the GlobalTime algorithm further by introducing a

precaution against user lockout, a step that will also promote improved channel uti-

lization. Finally, in Section 4.3, we list the steps of the extended GlobalTime algorithm

more carefully, and we consider an example of the algorithm in action.

4.1 Virtual timestamps

In the original GlobalTime algorithm, packets are stamped with the current time as

they arrive, and these timestamps, eventually declared via the multiaccess channel

and recorded in a known-time table at each node, serve as the keys to the m identical

priority queues in determining order of transmission. As we indicated in the mo-

tivation for this chapter, these arrival-based timestamps implicitly assume that the

corresponding arrivals follow the rules, in the sense that the arrival rate at a node is

bounded by the reserved rate at that node. In this section, we introduce an exten-

sion to the GlobalTime algorithm, in which packets are stamped when they arrive as

before, but instead of employing a real timestamp that records the current time, the

algorithm uses a virtual timestamp.

Let user A have a reserved rate AA, and let TA = 1/AA. We can interpret TA as

the expected period between packet arrivals at user A, assuming packets enter A's

queue at the reserved rate. In the extended GlobalTime algorithm, we will regulate

the traffic transmitted from node A. We imagine credits periodically arriving at A,

one every TA time units. The incoming credits are stored in a credit bucket up to a

maximum of W; any credits that arrive when the bucket is already full are discarded.

Furthermore, we allow the bucket to contain an arbitrarily negative number of credits,

signifying a credit shortage. The idea behind this credit scheme is that incoming

credits will validate waiting packets; without a credit to validate its presence in the

system, a packet receives lower priority for transmission.' This makes sense, because

credits arrive at a node at the node's reserved rate; if user A attempts to overutilize

the channel, A's unvalidated packets will receive lower priority, and as a result, the

remaining users will not be locked out.

The circulation of credits is a theoretical fiction in the extended GlobalTime algo-

rithm. In reality, user A maintains an additional state NcAedit, where

-oo < NcAedit < W

2Credit-based protocols are often used to shape traffic in data networks. In the field of network
flow control, such approaches are often called "leaky bucket" schemes.

The value of NcAedit is incremented every TA time units, up to a maximum of W.

Moreover, whenever a packet arrives at node A, NcAedit is decremented. The value

of NAedit, if positive, represents the number of packets that may be transmitted

immediately while still keeping A at or below its reserved rate. On the other hand,

if A is generating too many packets, NcAedit may be negative as well. Notice that

the fact that Ncredit can never exceed W ensures that a user cannot stockpile credits

indefinitely and eventually flood the system with validated packets. Indeed, the

bucket threshold of W serves as a regulator of the burstiness of the transmitted

traffic. 3

In addition to NAedit , user A maintains a state tA which records the time at

which the next virtual credit is set to arrive. Of course, tAext is initialized to 0

and is increased by TA whenever tAext is equal to the current time; furthermore,

whenever tA is increased, N Aedit is incremented. The point of all this discussion

about implementation is that only two new states, the real number tnext and the

integer Ncredit, are required to maintain the fictional credit bucket scheme locally at

each node.

When a packet P arrives at A, NcAedit is decremented, as indicated earlier. Then

P receives a virtual timestamp according to the following criterion:

1. If NcAedit 2 0, then set P's timestamp equal to the current time.

2. If NAedit < 0, then set P's timestamp equal to tAex - T A + edit

What is a virtual timestamp? Like a real timestamp, it is recorded immediately

after a packet arrives in the system. In Case 1, at packet P's arrival time, we have

Ncedit > 1, indicating that P can be validated by a waiting credit instantaneously

upon P's arrival. Therefore, Case 1 sets P's virtual timestamp to P's arrival time, as

in the original GlobalTime algorithm. In fact, if packets were to always arrive at times

3In some multiaccess contexts, a user not only reserves a particular rate, but also specifies more
descriptive arrival statistics: for example, maximum burst size. In this case, the extended GlobalTime
algorithm could make W a function of each user's individual contract with the system, greater for
higher paying customers. In this chapter, however, we assume W is a global constant.

when they can be instantly validated, then the behavior of the extended GlobalTime

algorithm would be identical to that of the original. This makes sense, because we

have already proved in Chapter 2 the near optimality of the original GlobalTime

algorithm if all users receive packets at or below their reserved rates.

In Case 2, at packet P's arrival time, we have Ncedit < 0, expressing that the

credit bucket is currently empty. The fact that P cannot be validated immediately

by a waiting credit means that P entered A's queue too early. In other words, packet

P arrived in A's queue faster than expected, given A's reserved rate. With what time

should we stamp packet P? Case 2 stamps packet P with the time P should have

arrived in the system, so as to conform with A's reserved rate. The innovation here

is that if P arrives too early, we measure P's delay not from its actual arrival time,

but from its virtual arrival time: the time at which P's corresponding credit arrived

at A.

\-3/

Ncredit

tnext = 61; credit arrives credit arrives credit arrives credit arrives

T =8A

time -

I I I I I >
56 61 69 77 85

t t
Packet P arrives, Packet P

stamped with validated

time 61+ 3 8 = 85

Figure 4-2: An illustration of Case 2 of the rule generating virtual timestamps. If
packet P arrives too early, it is stamped with the time that it "should have" arrived,
calculated from the reserved rate.

Suppose that at the arrival time ap of packet P at node A, we have NAedit = 0.

Then the virtual credit that validates P is scheduled to arrive at time tAext; thus, P

is stamped with tnext. The calculation gets slightly more complicated if Nedit = -1

at time ap. In this case, the credit shortage indicates that one yet-to-arrive credit

has already been assigned to a packet waiting ahead of P. Thus, P must wait for two

credits to arrive before being validated. Because the credit interarrival period is TA,

P is stamped with next + TA. In general, in Case 2, if Nedit = -k at time ap, then

P is stamped with ext + kTA, the time at which P will be validated by an incoming

credit.4

In the original GlobalTime algorithm, if on user A's turn, A's queue has no next-

in-line packet, a dummy timestamp representing the current time is sent. The idea

is that if A has no waiting packet to declare, A pretends as if it has a waiting packet

that arrived at that very instant; thus, A sends the current time in lieu of a real

packet arrival time. In the extended GlobalTime algorithm, dummy timestamps are

generated similarly. If A has no next-in-line packet to declare on its turn and Ncedit

0, then A sends the current time as in original GlobalTime. On the other hand, if A

has no next-in-line packet and Ncredit < 0, then as before, A pretends as if it has a

packet that just arrived. Such a packet could not be immediately validated, because

the credit bucket is empty, and therefore would be stamped with the time at which

the associated credit is scheduled to arrive. Thus, in this case, a dummy timestamp

of next - TA(1 + Ncredit) is sent.

The original GlobalTime algorithm minimized the deviation of a transmission se-

quence from the optimal sequence. Because we have not touched the basic GlobalTime

framework, this minimization of inversions must remain true, though the optimal se-

quence is now different. We still want a sequence that minimizes the worst case delay

of any packet. However, we now measure delay starting not from a packet's real ar-

rival time, but from its virtual arrival time, the time at which the packet is validated

by a credit. With respect to this new optimal sequence, the O(mn) inversions bound

clearly must hold as before.

4In Cases 1 and 2 for computing the virtual timestamp, note that Ncredit is first decremented
when a packet arrives, and then the rules are followed based on this updated value of Ncredit.

4.2 User lockout

As we have seen, a virtual timestamp simply indicates P's arrival time if P entered

A's queue on time or later than expected; on the other hand, it indicates the time at

which P should have arrived if P entered A's queue too early. The notion of virtual

timestamp circumvents the overzealous user by measuring packet delays not from

their real arrival times but from their virtual arrival times, equal only if the user has

obeyed the rules.

If we run the original GlobalTime algorithm using virtual timestamps in lieu of

real timestamps, we obtain good delay performance. In particular, a transmission

sequence generated by the extended GlobalTime algorithm has O(mn) inversions with

respect to the optimal sequence in the worst case. However, we may encounter a

throughput anomaly depicted in Figure 4-3.

b \ 32 / \-32
CREDITS

packet with
virtual arrival

CREDITS

time = 73

turn

A A A A A A

IDLE IDLE IDLE IDLE IDLE IDLE

41 42 43 44 45 46 47

time -

Figure 4-3: An example showing that the extended GlobalTime algorithm can expe-
rience user lockout. Although user A has an empty queue and user B is backlogged,
user A continually gets turns.

In the figure, although node B is backlogged, node A - with no waiting packets -

gets a turn every time slot. What causes this anomaly? Because node A has N Aedit

0, the next arriving packet will be validated immediately. If on its turn, A has no

packet to transmit, then a dummy timestamp with the current time is sent. In the

original GlobalTime algorithm, this strategy posed no problem because if the current

time was sent, then known-time[i] < known-time[A] for all other users i immediately

after A's turn; that is, the current time served as an upper bound on the values

in the known-time table. The problem in the extended GlobalTime algorithm is

that virtual timestamps can exceed the current time. In the figure, the head-of-line

packet at node B perhaps "should have" arrived a long time from now, particularly

if B's reserved rate is very low. Therefore, even after known-time[A] is updated

with the current time, it will still be the case that known-time[A] < known-time[B],

and A will receive another turn. In the worst case, this throughput anomaly will

continue until the current time "catches up" with the validation time of B's head-

of-line packet; meanwhile, valuable channel bandwidth is wasted. Of course, from

a delay perspective, it is fair for A to continually receive turns, because B's packet

delays will be measured from the time the packets "should have" arrived anyway. On

the other hand, the channel is clearly not being well-utilized.

In this section, we suggest a simple solution to the channel utilization problem. If

on user A's turn, A has no next-in-line packet and sends a dummy timestamp, then

the algorithm freezes user A for a period of time A.

Definition 4.1 A user A has been frozen during an execution of the extended Glob-

alTime algorithm if the protocol ignores A when it uses the known-time table to decide

which user's turn will be next.

The idea is that if a user has no packets in its queue, it must wait at least time A

before getting another turn. Once A has been unfrozen, its virtual timestamp again

is active in the mini{known-time[i]} phase of the GlobalTime algorithm. Because A

is frozen for some time, user B is not locked out of the protocol.

How large should we make A? There is no single, definitive answer to this question.

The tradeoff between utilization and delay makes the choice situation-specific. The

larger we make A, the greater the worst case number of inversions in the transmission

sequence. The smaller we make A, however, the lower the channel utilization in the

worst case.

One proposed solution to the choice of A that will not work is to make A = Ti

(or some other function of Ai) for each node i. The reason we might propose such

an idea is that if user A reserves less bandwidth than user B, then we might expect

to "get away with" freezing A for a long time more easily than freezing B for a long

time. A problem with this idea is that it needlessly couples delay with throughput.

If A = Ti for each node i, then in the worst case, A will experience greater delay

than B, simply because its reserved rate is lower. By contrast, our goal is to equalize

the delay experienced by the system's users; users pay for a guaranteed fraction of

the channel bandwidth, not for a guaranteed delay bound.5 Another problem with

setting A = Ti is that it needlessly couples reserved rate with actual arrival rate. In

our worst case analytical model, it is inappropriate to infer anything about A's actual

arrival rate from A's reserved rate; an adversary can easily defeat any such inference

by making A misbehave, either by receiving far too many or far too few packets for

its reserved rate.

We conclude with an important observation about the choice of A.

Theorem 4.1 Let 0 be the length of an idle minislot. Then if A < (m - 1)0, user

lockout can occur in the worst case.

Proof: If A < (m - 1)/, then the freeze time A is not large enough to prevent an

execution in which m - 1 of the users each obtain opportunities to transmit one after

the other in cyclic fashion, but never have any packets to send. The remaining user

may have a backlogged queue, but will be locked out. El

The proof of Theorem 4.1 is illustrated in Figure 4-4. Notice that backlogged

user D never gets an opportunity to transmit, while the algorithm repeatedly cycles

5Delay is simply a function of the aggregate load, and is not reserved as is bandwidth in our model.
Of course, customer dollars could pay for delay guarantees under a different set of assumptions, but
in any case, the important point is that we want throughput and delay to be decoupled.

through users A, B, and C, giving them each many opportunities to transmit. The

problem is that with A = (m - 1),, the m - 1 idle users effectively lock out the single

backlogged user, needlessly wasting the channel bandwidth.

4.3 The extended GlobalTime algorithm

To summarize, the extended GlobalTime algorithm works as follows:

1. Each node 1, 2,..., m has a clock. The nodes' clocks are synchronized and are

initialized to 0.

2. Each node i has a predefined reserved rate Ai. A state tnext is initialized to 0,

and is increased by Ti = 1/Ai whenever the clock reads tnext. Moreover, each

node i has an integer state Niredit, initialized to 0, and incremented whenever

the clock reads tnext.

3. When a packet P arrives in node i's queue, Ncredit is decremented. Then P is

immediately timestamped according to the following criterion:

" If Ncredit > 0, then set P's timestamp equal to the current time.

If Ncredit < 0, then set P's timestamp equal to ext - Ti (1 + Ncredit)-

4. Each node i has a set of m states known-time[j], one for each node j. Further-

more, each node i has a set of m states unfreeze-time[j], one for each node j.

All the known-time and unfreeze-time states are initialized to 0.

5. At the beginning of a time slot, let F be the set of nodes k such that unfreeze-

time[k] is no greater than the current time. Next, node i determines the value

of j E F such that known-time[j] < known-time[k] for all k E F. If i = j,

then node i has gained access to the channel. (Ties are broken according to

predetermined rules. Moreover, if F = 0, then predetermined rules decide

which user gains access to the channel.)

CREDITS

B
CREDITS

C
CREDITS

D

known-time

A B C

39

39

42
42

37

40

40

43

38

38

41
41@4

150

150

150

150

150

150

turn

IDLE I IDLE I IDLE I IDLE IDLE i
39 40 41 42 43 44

time --

A frozen

B frozen

C frozen

Figure 4-4: An illustration of the theorem in the case where m = 4, 1 = 1, and
A = 3. In (a), the queues at nodes A, B, and C are empty, but the queue at node
D is backlogged. In (b), the evolution of the known-time table is shown. Notice
that because D has a credit shortage, its known-time is never the minimum value
in the table. In (c), a fragment of the transmission sequence is depicted. Because
A = (m - 1),, the three idle users are never all frozen at the beginning of a time
slot, so D never receives an opportunity to transmit.

(a)

(b)

CREDITS

A

time

39

40

41

42

43

44

virtual timestamp

(c)i

I ·

6. On its turn, node i transmits the first data packet in its queue. In addition

to actual data, the transmitted frame also contains piggybacked information -

namely, the timestamp of the next packet in node i's queue (if it exists). The

transmitted frame also contains a freeze bit set to 0.

7. However, if the transmission has exhausted node i's queue, the algorithm instead

inserts the current time in this extra field if N redit 0, and inserts tnext

Ti (1 + Ncredit) otherwise. On the other hand, if on node i's turn, i has no

packets to send at all, then i sends a dummy packet (augmented with either the

current time or tnext - Ti (1 + Ncredit), as before). In either case, the transmitted

frame also contains a freeze bit set to 1.

8. When a packet P is being transmitted from node i, all nodes read the timestamp

piggybacked on P, and then update their local value of known-time[i]. Further-

more, if the freeze bit is set to 1, then all nodes update unfreeze-time[i] to be A

added to the current time, where A is the globally defined freeze period.6

4.3.1 An example execution fragment

Figure 4-5 depicts an example execution fragment of the extended GlobalTime algo-

rithm. In the figure, three users A, B, and C compete for access to the channel, and

AA = Ac = 0.1, and AB = 0.5. The time to transmit a single packet is 5 units, and

the length of an idle minislot is 3 = 1. The freeze period A is 10.

The execution fragment starts at time t = 40. Because known-time[A] = 31 is

the minimum value in the known-time table, user A receives a turn and transmits

its head-of-line packet. Because this transmission exhausts A's queue and because

Ncredit = 1, the new value of known-time[A] is 40, the current time. Furthermore,

user A remains frozen for A = 10 time units - that is, until t = 50.

At time t = 45, user B now receives a turn. B's head-of-line packet is transmitted,

and because B has no next-in-line packet and Ncedit = 3, the new value of known-

6For simplicity, we assume zero clock skew and propagation delay. In practice, we can easily
modify the algorithm to handle these issues.

t= 40o

t= 45

t= 50

t = 51

90

t= 56

t= 57

~8

A B C

known-time 34 60
ttne 50 42 50

eredht 1 1 -2

A B C

known-time 0 (60
t.'t 50 46 50

Nredlt 1 3 -4

A B C

known-time 0 60

xt 60 52 60
Ncdit 2 6 -3

A B C

known-time ' 0 (

t.nt 60 52 60
N.rt 1 6 -4

A B C

known-time 70
tnei 60 58 60

Nr.dlt 1 9 -4

A B C

known-time !

t..t 60 58 60
Ncredit 1 9 -4

A

IDLE

50 51

virtual arrival time

56 57

Figure 4-5: A sample execution fragment of the extended GlobalTime algorithm. For
each time step, the current user states are shown. In this example, AA = Ac = 0.1,
and AB = 0.5. The time to transmit a single packet is 5 units, and the length of
an idle minislot is / = 1. The freeze period A is 10. Packets are labeled with their
virtual arrival times.

67

time -

I

time[B] is set to the current time, 45. User B is frozen for A = 10 time units, or until

t = 55.

At time t = 50, node A is unfrozen. Because known-time[A] = 40 is the minimum

value in the known-time table, A receives an opportunity to transmit. User A's queue

is empty, however, so A sends a dummy packet augmented with a virtual timestamp.

Because Ncredit = 2, this virtual timestamp is simply the current time, 50. User A is

frozen for A = 10 time units.

The execution continues at t = 51, after the idle minislot of length P = 1. Because

A and B are still frozen, node C gets an opportunity to transmit. Notice that the

head-of-line packet at C has arrived too early, but the extended GlobalTime algorithm

enables overzealous users like C to exploit excess bandwidth when other users are

idle. Because the next-in-line packet at C has virtual timestamp 70, all users update

known-time[C] to be 70.

At time t = 56, user B is unfrozen, and because known-time[B] = 45 is the mini-

mum value in the known-time table, B receives a turn. Because B's queue is empty

and Nedit = 9, known-time[B] is updated to 56, the current time. Furthermore, B

is frozen. Finally, at time t = 57, both users A and B are again frozen, so C gets

another opportunity to transmit from its backlogged queue.

Notice that the packet that arrived in user A's queue at time 50.5 will be inverted

relative to two packets transmitted from node C with virtual timestamps 60 and 70.

These inversions are a direct result of the freeze period discussed in Section 4.2. As

we have stated, setting the freeze period A requires a tradeoff between worst case

delay and channel utilization.

Chapter 5

Conclusion

In this thesis, we have presented a new distributed scheduling algorithm, GlobalTime,

that supports quality of service in multiaccess networks. Our algorithm eliminates

the need for a centralized scheduler and a separate control channel by coordinating

transmissions via packet headers. The GlobalTime algorithm exploits the full power

of the multiaccess channel architecture, by actually using the ability of nodes to hear

all the information being transmitted on the channel. Furthermore, our algorithm

provides fairness and bandwidth reservation in an integrated services environment,

while also achieving high throughput. With moderately bursty traffic, GlobalTime

has a worst case delay nearly identical to that produced by the optimal, centralized

algorithm.

There are still many research questions that remain to be answered:

Variable packet size When packets have varying lengths, it is sometimes preferable

to serve a small packet before a larger one with an earlier arrival time. How

should we modify the GlobalTime algorithm to handle variable length packets

efficiently?

Extension to multiple channels How can the GlobalTime algorithm be general-

ized to the multiple channel model? For example, this extension would apply to

wavelength division multiplexing (WDM), where each wavelength corresponds

to a single multiaccess channel.

Priority service How can we incorporate different classes of service into the Global-

Time algorithm? What throughput and delay characteristics can be guaranteed

to high and low priority customers?

Robustness As discussed in this thesis, the GlobalTime algorithm requires perfect

synchronization among the users' clocks, and ceases to work properly if even

one node fails. What modifications to the GlobalTime algorithm can be made

in order to ensure robustness when faced with clock skew or node stopping

failures?

Future investigation of the GlobalTime algorithm will proceed in the direction of

answering these important remaining questions.

Appendix A

Simulation Code

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define MMIN 64
#define M_MAX 128
#define M INC 64
#define NMIN 32768
#define NMAX 32768
#define NINC 1 10
#define LAMBDA_MIN 0.6
#define LAMBDA MAX 0.9
#define LAMBDAINC 0.1
#define TRIALS 32
#define BETA 0.01
#define BURST MIN 4.0
#define BURSTMAX 8.0
#define BURST_INC 4.0
#define NULL 0
#define TRAFFIC_SWITCH 1 20

struct heap_element{
int val;
double key;
};
struct linked_list{

double data;
struct linked_list *next;
};
struct linked list _2 30

double datal;
double data2;
struct linkedlist_2 *next;

};typedef struct inked

typedef struct linked list ELEMENT;
typedef struct linked_;ist_2 ELEMENTPAIR;
typedef ELEMENT *LINK;

typedef ELEMENT_PAIR *LINK2;
40

/**

* The main() procedure is simply a set of nested loops that runs the simulation
* through a range of m, N, lambda, and possibly mean_burst_size, depending on the
* nature of the traffic. The user specifies (in the #define statements above) a
* range of m, N, and lambda. He specifies whether he wants bursty or Poisson
* traffic. If bursty, he specifies the mean burst size desired. The parameter m
* represents the number of nodes in the simulation, N represents the amount of time
* (in units of cell service time) for the simulation, and lambda represents the
* normalized arrival rate, where lambda = 1.0 is the maximum stable arrival rate to
* the system. 50

main(int argc, char *argvy)

{
int m, n, lambda_count, burst_count;
double lambda_count_max = ((LAMBDA_MAX - LAMBDA_MIN) / LAMBDAINC) + 1.0;
double burst_count_max = ((BURST_MAX - BURST_MIN) / BURSTINC) + 1.0;
void run_simulation(int, double, int, double, char *);

srandom(time(0) * getpid(); 60

for (lambda_count = 0; lambda_count < (int)lambda_count max; ++lambda_count){
for (m = MMIN; m <= M MAX; m += MINC){

for (n = NMIN; n <= NMAX; n += NINC){
if (TRAFFIC_SWITCH == 0)

run_simulation(m, (LAMBDA_MIN + lambda_count * LAMBDA_INC), n,
(BURST_MIN + burst_count * BURSTINC), argv[1]);

else{
for (burst count = 0; burst_count < (int)burst_count_max; ++burstcount)

run_simulation(m, (LAMBDA_MIN + lambda_count * LAMBDA_INC), n,
(BURST_MIN + burstcount * BURST INC), argv[l]); 70

}
}

}

/ **

* The run_simulation() procedure is the skeleton of the code. The code for
* run_simulation() calls all the functions necessary for the simulation. It takes a
* value of m, N, lambda, and mean_burst_size, and generates a single data point. The so
* single data point is generated by averaging together a fixed number of trials of

the simulation (stored in the constant TRIALS). In a single trial, a set of
* arrivals is generated according to the desired traffic type (Poisson, or bursty
* with a given mean burst size). The same set of traffic is queued in a single
* queue, and also in m distinct queues. The single queue simulation is run, followed
* by four different multiqueue simulations. One is the GlobalTime simulation, and
* the other three are alternative reservation-based disciplines: gated limited
* service, gated unlimited service, and exhaustive. Mean delay, delay variance, and
* worst case delay are tracked for both the average user and the worst-case user in
* all simulations. The run_simulation0 procedure prints the results to the desired 90

* file.
** ** ************ ***

void run_simulation(int m, double lambda, int n, double meanburst_size,
char *simulationoutput)

{
FILE *ofp;
double *arrival array, *arrivalssorted by_queue;
double single_queue_results[3], cumulativesingle_queueresults[3];
double GLOBALTIMEresults[6], cumulative_GLOBALTIME_results[6]; 100
double limited_service_results[6], cumulative_limited service_results[6];
double gated_results[6], cumulativegatedresults[6];
double exhaustiveresults[6], cumulative_exhaustive results[6];
int *queueoffsets;
int trial_number, number_of arrivals, i;

int compare reals(const void *, const void *);
double *createpoisson arrival_array(double *, double, int);
void create_arrivalssortedby_queue(double *, int *, double *, int, int);
double *create bursty_input(double *, int *, double, int, int, double); 110
void performsinglequeuesimulation(double *, double *, int, int);
void perform_GLOBALTIMEsimulation(double *, int *, double *, int, int, int);
void perform_reservation_based_simulation(double *, int *, double *, int, int, int, int);

queueoffsets = calloc(m, sizeof(int));
for (i = 0; i < 6; ++i){

cumulative_gatedresults[i] = cumulativelimited_serviceresults[i] = 0.0;
cumulative exhaustiveresults[i] = cumulative_GLOBALTIME_results[i] = 0.0;
cumulative single_queueresults[i] = 0.0;

S120

for (trial number = 0; trial number < TRIALS; ++trial_number){
if (TRAFFIC_SWITCH == 1){

arrivalssorted_by_queue = create_bursty_input(arrivals_sorted_by_queue, queueoffsets,
lambda, n, m, mean_burst_size);

number_of arrivals = (int)(arrivalssorted_by_queue[0]);
arrivals_sorted_by_queue += 1;
arrival_array = calloc(number of arrivals, sizeof(double));
for (i = 0; i < number_of arrivals; ++i)

arrivalarray[i] = arrivals_sorted_by_queue[i]; 130

qsort(arrivalarray, numberofarrivals, sizeof(double), comparereals);

}
else{

arrival_array = create_poissonarrival array(arrival_array, lambda, n);
number_of_arrivals = (int)(arrival_array[0]);
arrival_array += 1;
arrivalssorted_by_queue = calloc(number of arrivals, sizeof(double));
create_arrivalssortedby_queue(arrivalarray, queue_offsets, arrivals sorted_by_queue,

number_of_arrivals, m);
}140
perform_single_queue_simulation(arrival_array, single_queue_results, numberof arrivals, n);
for (i = 0; i < 3; ++i)

cumulative_single_queue_results[i] += single_queue_results[i];
perform_GLOBALTIME_simulation (arrivalssorted_by_queue, queueoffsets,

GLOBALTIME_results, number_ofarrivals, m, n);
performreservation basedsimulation(arrivals_sorted_by_queue, queue-offsets,

limited_service results, number_of arrivals,
0, m, n);

perform reservation_basedsimulation(arrivals sorted_by_queue, queue_offsets,
gatedresults, number_of arrivals, 1, m, n); 150

performreservation basedsimulation(arrivals sorted_by_queue, queue_offsets,
exhaustiveresults, number_ofarrivals, 2, m, n);

for (i = 0; i < 6; ++i){
cumulative_GLOBALTIME_results[i] += GLOBALTIME_results[i];
cumulativegatedresults[i] += gatedresults[i];
cumulative_limited_serviceresults[i] += limited_service results[i];
cumulativeexhaustive results[i] += exhaustiveresults[i];

}
if (TRAFFICSWITCH == 1)

arrivalssortedby_queue -= 1; 160
else arrivalarray -= 1;
free(arrivalarray);
free(arrivals sorted_by_queue);

}
free(queue offsets);

ofp = fopen(simulationoutput, "a");
if (TRAFFIC_SWITCH == 0){

printf("%i, %i, %.3f, ", m, n, lambda);
fprintf(ofp, "%i, %i, %.3f, ", m, n, lambda); 170

}
else{

printf("%i, %i, %.3f, %.lf, ", m, n, lambda, mean_burst_size);
fprintf(ofp, "%i, %i, %.2f, %..lf, ", m, n, lambda, mean_burst_size);

}
for (i = 0; i < 6; ++i){

printf("%.3f, %.3f, %.3f, %.3f, %.3f, ",
cumulative singlequeue_results[i % 3] / TRIALS,
cumulative_GLOBALTIMEresults[i] / TRIALS,
cumulativelimited_service_results[i] / TRIALS, 180

cumulativegatedresults[i] / TRIALS,
cumulative_exhaustiveresults[i] / TRIALS);

fprintf(ofp, "%.3f, %.3f, 7%.3f, %.3f, %.3f, ",
cumulative_singlequeuejresults[i % 3] / TRIALS,
cumulative_GLOBALTIME_results[i] / TRIALS,
cumulative limitedservice results[i] / TRIALS,
cumulativegated results[i] / TRIALS,
cumulative_exhaustiveresults[i] / TRIALS);

}
printf("\n"); 190

fprintf(ofp, "\n");
fclose(ofp);

}

200

/******************************

* The perform reservation_ based_simulation0 procedure is a generalized procedure for
* all three of the alternative reservation-based schemes. The integer argument
* "protocol" takes a value 0, 1, or 2, corresponding to gated limited, gated
* unlimited, or exhaustive. In the gated limited version, at most one packet may be
* served on a node's turn. In the gated unlimited version, all packets that arrived
* prior to the node's turn may be served. In the exhaustive version, all packets
* may be served until the queue is exhausted, at which time the node gives up its turn.

210

void performreservationbased_simulation (double *arrivals_sorted_by_queue,
int *queueoffsets, double *results,
int number_of arrivals,
int protocol, int m, int n)

int i, j, turn = 0;
int *copyof queue_offsets, *number of busy_slots;
double time = 0.0, gate_time, packetdelay;
double *total_delay, *total square_delay, *worstcase_delay;

220

void calculate_algorithm_statistics(double *, double *, double *, int *, double *, int);

void update_statistics_arrays(int *, double *, double *, double *, double, int *, int);

double protocol_switch(double, double, int);

copy_of queueoffsets = calloc(m, sizeof(int));
number_of busy_slots = calloc(m, sizeof(int));
total_delay = calloc(m, sizeof(double));
totalsquare_delay = calloc(m, sizeof(double));
worst_case_delay = calloc(m, sizeof(double));

230

for (i = 0; i < m; ++i){
copyofqueue_offsets[i] = queue_offsets[i];
total_delay[i] = total_square_delay[i] = worst_case_delay[i] = 0.0;

}
while (time <= (double) n - 1.0){

gate_time = time;
j = 0;
while ((((turn == m - 1) && (queue_offsets[turn] < number_of_arrivals)) II

((turn < m - 1) && (queueoffsets[turn] < copyof queueoffsets[turn + 1]))) &&
(protocol_switch(time, gate_time, protocol) - 240

arrivals_sorted_byqueue[queueoffsets[turn]] > 0.0) &&
((protocol != 0) II (j != 1))){

packetdelay = time - arrivals_sorted_by_queue[queue_offsets[turn]];
updatestatisticsarrays(number of busy_slots, total_delay, total_square_delay,

worst_case_delay, packet_delay, queue offsets, turn);
time += 1.0;
j= 1;

}
if ((protocol != 0) 11 ((protocol == 0) && (j == 0)))

time += BETA; 250

turn = (turn + 1) % m;

}
for (i = O; i < m; ++i)

queueoffsets[i] = copy_ofqueueoffsets[i];

calculate_algorithm_statistics(total delay, total square_delay, worst_case_delay,
number_of busy_slots, results, m);

free (copy ofqueue offsets);
free(totaldelay);
free(worstcasedelay);
free(totalsquaredelay); 260

free(numberofbusy slots);
}

/ **

* The heart of the code is the procedure perform GLOBALTIME_simulationO. Here we
* run the input in arrivals_sorted_by_queue through our GlobalTime algorithm, and
* record the delay statistics. As discussed, the main computational task in the
* GlobalTime algorithm is finding the min among the m known_time[] variables for each
* time slot. Here, we simulate this process with linear search if m < 50, and we use 270
* a binary heap otherwise, to cut down on computational complexity. Also as
* discussed, we record either the next-in-line timestamp in the known time[]
* variable, or the last time at which a node had its turn and there was no
* next-in-line packet.

$****** +****$$$*****$$**$* ***********$******* *******$$***************/

void perform_GLOBALTIME_simulation(double *arrivals sortedby_queue,
int *queue_offsets, double *GLOBALTIME results,
int numberof_arrivals, int m, int n)

280
int i, turn, heap;
struct heap_element *known_timeheap;
double *known_time_linear;
int *copy of queue_offsets, *number of busyslots;
double time = 0.0, min _known_time, packet_delay;
double *totaldelay, *totalsquaredelay, *worst_case_delay;

void calculatealgorithmstatistics(double *, double *, double *, int *, double ", int);

void update_statistics_arrays(int *, double *, double *, double *, double, int *, int);
void heapify(struct heap_element *, int, int); 290

if (m > 50)
heap = 1;

else heap = 0;
if (heap == 1)

known_time_heap = calloc(m, sizeof(struct heap_element));
else

known_time_linear = calloc(m, sizeof(double));
copy_ofqueue_offsets = calloc(m, sizeof(int));

number_ofbusyslots = calloc(m, sizeof(int)); 300

total_delay = calloc(m, sizeof(double));
totalsquare_delay = calloc(m, sizeof(double));
worst_case_delay = calloc(m, sizeof(double));

for (i = 0; i < m; ++i){
if (heap == 1)

known timeheap[i].val = i;
known_timeheap[i].key = 0.0;

numberof busy_slots[i] = 0;

} 310
else{

known_time_linear[i] = 0.0;
number_ofbusy_slots[i] = 0;

}
copy of queue_offsets[i] = queue_offsets[i];
totaldelay[i] = total_square_delay[i] = worstcase_delay[i] = 0.0;

}
while (time <= (double) n - 1.0){

if (heap == 1)
turn = known_time_heap[0] .val; 320

else{
minknown_time = known_time_linear[0];
turn = 0;
for (i = 1; i < m; ++i){

if (known_time_linear[i] < min_known time) {
min_known_time = known_time_linear[i];
turn = i;

}
}

}330
packetdelay = time - arrivals_sorted_by_queue[queue offsets [turn]];
if ((((turn == m - 1) && (queue_offsets[turn] < numberof_arrivals)) II

((turn < m - 1) && (queue_offsets[turn] < copy of queue_offsets[turn + 1]))) &&
(packet_delay > 0.0)){

updatestatisticsarrays(number of busy_slots, total_delay, totalsquare_delay,
worst_case_delay, packet_delay, queue_offsets, turn);

packet_delay = time - arrivals_sortedby_queue[queueoffsets [turn]];
if ((((turn == m - 1) && (queue_offsets[turn] < numberof_arrivals))

((turn < m - 1) && (queue_offsets[turn] < copy ofqueueoffsets[turn + 1]))) &&
(packet_delay >= 0.0)) 340

if (heap == 1)
known_time_heap[0].key = arrivals_sorted_by_queue[queueoffsets[turn]];

else known_time_linear [turn] = arrivals_sorted_by_queue [queueoffsets [turn]];
else{

if (heap == 1)
known_time_heap[0] .key = time;

else known_time_linear [turn] = time;

}
time += 1.0;
if (heap == 1) 350

heapify(known time_heap, m, 0);

}
else{

time += BETA;
if (heap == 1)

known timeheap[0].key = time;
heapify(known_time_heap, m, 0);

}
else known_time_linear[turn] = time;

360

for (i = 0; i < m; ++i)

queue offsets[i] = copy of queueoffsets[i];
calculate_algorithm_statistics(total_delay, totalsquare_delay, worst_case_delay,

numberof busy_slots, GLOBALTIME_results, m);
if (heap == 1)

free(known_timeheap);
else free(knowntime_linear);
free (copy_of queue_offsets);
free(total_delay); 370
free (worst_casedelay);
free (totalsquaredelay);
free(numberof busy_slots);

/********************************
* The procedure perform singlequeue_simulation() takes as input a sorted array of
* arriving packets, and serves them in order as if they all had entered a single
* queue. If there is no packet to serve at the head of the queue, there is an idle 380
* minislot; otherwise, the packet at the head of the queue is served immediately.
$*$$$$$**********$$$$*$$*$***********$************************************/

void performsingle_queuesimulation(double *arrival array, double *single_queueresults,
int number of arrivals, int n)

{
int number_of busyslots = 0;
double time = 0.0, packet_delay, worst_case_delay = 0.0;
double totaldelay = 0.0, totalsquare_delay = 0.0;

390

while (time <= (double) n - 1.0){
packetdelay = time - arrival_array[number of busy_slots];
if ((packetdelay > 0.0) && (number_of_busy_slots < number_of_arrivals)){

++numberof busy_slots;
time += 1.0;
total_delay += packet_delay;
totalsquaredelay += packet_delay * packet_delay;
if (packetdelay > worst_case_delay)

worstcase_delay = packet_delay;
S400

else time += BETA;

s
single_queue_results[0] = totaldelay / numberof busy-slots;
singlequeueresults[1] = total~square_delay / number of busyslots -

(singlequeueresults[0] * single_queue_results[0]);
single_queuejresults[2] = worst_casedelay;

410

/***

* The next several functions handle input generation. The procedure
* create poissonarrival arrayO takes as input a value for lambda and a value for n
* (the arrival rate of the entire system, and the total time of the simulation, 420
* respectively). The procedure creates a set of Poisson arrivals with parameter
* lambda, in the time frame [0, n]. The arrivals are placed into a sorted array,
* which is then returned. The Poisson arrivals are generated by using C's
* pseudorandom number generator to first generate a random decimal between 0 and 1.
* This [0, 1] space is then mapped to the [0, inf) exponential interarrival
* distribution, which is used to generate a set of Poisson arrivals. As the arrivals
* are first generated, they are linked into a growing list. The arrival list is
* later copied into an array. Technical detail: The first index in the arrival
* array is reserved for recording the total number of arrivals, which is an
* agreed-upon interface between this function and its caller. 430

double *create_poisson arrival array(double *poisson_arrival_array, double lambda, int n)

{
int i, length_of list = 0;
double random_decimal, randominterarrival, last_arrival, new_arrival;
LINK head_ofpoissonarrivallist = NULL, tail of poisson_arrival_list;

random_decimal = (double) random() / (double) Ox7fffffff; 440

new_arrival = -((log (1.0 - random_decimal)) / lambda);
head_of poisson_arrival_list = malloc(sizeof(ELEMENT));
head_ofpoisson_arrival_list -> data = new_arrival;

tail_of poisson_arrival list = head_ofpoisson_arrivallist;
last_arrival = new_arrival;
length of list++;

while (last_arrival < n){
random_decimal = (double) random() / (double) Ox7fffffff;
random_interarrival = -((log(1.0 - random_decimal))/ lambda); 450

newarrival = last_arrival + randominterarrival;
tail of poisson_arrivallist -> next = malloc(sizeof(ELEMENT));

tail_of poisson_arrival_list = tail_of_poisson_arrival_list -> next;
tail of poisson_arrivallist -> data = new_arrival;
last_arrival = new_arrival;
lengthof list++;

}
tail of poisson_arrivallist -> next = NULL;
poisson_arrivalarray = calloc(length_of list + 1, sizeof(double));
for (i = 0; head of poisson_arrival_list != NULL; 460

head_of_poisson_arrivallist = headof poissonarrivallist -> next) {
poisson_arrival_array[i + 1] = headofpoisson_arrivallist -> data;
free (headofpoissonarrival list);

i++;

poisson_arrival_array[0] = (double)lengthof list;
return poisson_arrival_array;

470

/ ***

* The procedure create_arrivalssortedby_queue0 takes a set of Poisson arrivals
* with rate lambda and divides it into m sets of Poisson arrivals, each of rate
* lambda / m. It does this by assigning each arrival to one of the m queues, where
* the assigned queue is selected uniformly at random among the m. This division
* maintains the Poisson distribution at each user. The m queues are all placed in a
* single array the same size as the original sorted arrival array. However, a
* separate array called queue offsets keeps track of the array index at which each of
* the m queues begins within the large arrivalssortedby_queue array.
************************************ ***** 480

void create_arrivals_sorted_by_queue (double *arrival_array, int *queue_offsets,
double *arrivalssorted_by_queue,
int number_ofarrivals, int m)

int *random_queue assignments;
int *numberpktsper_queue, *copy of queue_offsets;
int i, offset = 0;

numberpktsper_queue = calloc(m, sizeof(int)); 490
copyofqueue_offsets = calloc(m, sizeof(int));
random_queueassignments = calloc(number of arrivals, sizeof(int));

for (i = 0; i < m; ++i)
number_pktsper_queue[i] = 0;

for (i = O; i < number_of arrivals; ++i){
random_queue_assignments[i] = random() % m;
number_pkts_per_queue[random_queue_assignments[i]] += 1;

}
copy_ofqueueoffsets[0] = queue_offsets[0] = 0; 500

for (i = O; i < m - 1; ++i){
offset += number pkts-per_queue[i];
copyp of queueoffsets[i + 1] = queue offsets[i + 1] = offset;

}
for (i = 0; i < number_of arrivals; ++i){

arrivals_sorted by_queue[queue offsets[random_queue_assignments[i]] = arrivalarray[i];
queue offsets[random queue_assignments [i]l += 1;

}
for (i = 0; i < m; ++i)

queue offsets[i] = copy ofqueue_offsets[i]; 510

free(numberpktsper_queue);
free(copy_of queue_offsets);
free(random_queue_assignments);

/********************** * ***

* The next few procedures handle generation of bursty, rather than pure Poisson
* traffic. The procedure create_bursty_input() is the highest-level procedure in
* this hierarchy. After calling two supplementary procedures m times each (to be
* described in more detail later), the variable array_of_arrival lists will contain 520
* an array of m sorted lists of bursty arrivals. The rest of the
* procedure simply converts from that format to the format expected by the
* simulations (i.e. a long array with a separate array of queue offsets).
$$****$$**********$***************$ *************************************/

double *create_burstyinput(double *arrivalssorted_by_queue, int *queueoffsets,
double lambda, int n, int m, double mean_burstsize)

{
double queue_arrival-rate = lambda / (double)m;
LINK head_ofqueuearrival_list; 530
LINK2 headof busyperiodlist;
LINK *arrayofarrival lists;
int *numberpktsper_queue;
int i, offset = 0, length_of input = 0, index = 1;

LINK2 createqueue_busyperiods(double, double, int);
LINK create_queue_arrivaldlist(LINK2, int);
void count_numberpktsper_queue(int *, LINK *, int);

array of arrival lists = calloc(m, sizeof(LINK)); 540
for (i = 0; i < m; ++i){

headof_busyperiod_list = create_queue_busy_periods(queue_arrivalrate, mean_burst_size, n);

headofqueue_arrivallist = create_queue_arrival list(head of busy_period list, n);
array of arrival lists[i] = head_of_queue_arrivallist;

number pkts_per_queue = calloc(m, sizeof(int));
count_numberpkts_per_queue(numberpktsper_queue, array_of_arrival-lists, m);
queueoffsets[0] = 0;
for (i = 0; i < m - 1; ++i){

offset += numberpktsper_queue[i]; 550

queue_offsets[i + 1] = offset;

}
for (i = 0; i < m; ++i)

lengthof input += numberpkts_perqueue[i];
arrivals_sortedby_queue = calloc(lengthpofinput + 1, sizeof(double));
arrivals_sorted_by_queue[0] = (double)length of input;
for (i = 0; i < m; ++i){

headof_queuearrival_list = array_of_arrivallists[i];
while (head_ofqueue_arrivallist != NULL){

arrivals_sortedby_queue[index] = headofqueuearrivallist -> data; 560

index++;
free(head_of_queue_arrivallist);
head_of_queue_arrival_list = head-of queue_arrival list -> next;

}
}
free (numberpktsper_queue);
free(array ofarrival lists);
return arrivalssorted_by_queue;
}

570

/***************************

* The procedure create queuearrivalist() produces a list of bursty arrivals for a
* queue. As input, it requires a list of busy periods. Each element in this input

* list is a pair that indicates the beginning and the ending time of a single busy
* period. For each busy period, the procedure generates Poisson traffic with
* parameter 1. The resulting output list will contain bursts of arrivals only

* during the busy periods, and no arrivals during the intermittent idle periods.
S* *** ******** * ******* * * **************************** * ** /

LINK create_queue_arrival list(LINK2 head of busy-period_list, int n)
580

double newbusy_period_start, new_busy_period_end;
double random_decimal, random interarrival, last_arrival, new_arrival;
LINK head of arrivallist = NULL, tail of arrivallist;
int i = 0;

while (head of busyperiodlist != NULL) {
last_arrival = new_busyperiodstart = headofbusyperiodlist -> datal;
if (new_busyperiodstart < (double)n){

if ((head of busy period_list -> data2) < (double)n)
new_busyperiod_end = head of busyperiod_list -> data2; 590

else new_busy_period_end = (double)n;
while (lastarrival < newbusy_periodend) {

random_decimal = (double) random() / (double) Ox7fffffff;
randominterarrival = -(log(1.0 - random_decimal));
newarrival = last_arrival + random_interarrival;
if (new_arrival < newbusy_period_end){

if (i == 0){
head of arrival list = malloc(sizeof(ELEMENT));
headof arrival_list -> data = newarrival;
tailofarrivallist = headof arrivallist; 600

i=l;

}
else{

tail ofarrivallist -> next = malloc(sizeof(ELEMENT));
tail of arrivallist = tail of arrivallist -> next;
tail_of arrival_list -> data = new_arrival;

}
}
last_arrival = new_arrival;

}610
}
free(headofbusyperiodlist);
headof_busyperiod_list = head-ofbusyperiod_list -> next;

}
if (i == 1)

tailofarrival_list -> next = NULL;
return headof arrival list;

~~~********************************** 620

* The procedure create_queuebusy_periods0 is the final helper procedure involved
* in generating bursty traffic. The procedure outputs a list of "busy periods." A
* busy period is represented as a pair of real numbers, corresponding to the "begin
* time" and "end time" of the period. It will later be the task of
* create queuearrivallist( to actually generate the high-rate Poisson traffic
* within these periods. As input, the procedure requires the queue arrival rate
* (that is, lambda / m), and the mean burst size (or mean busy period length).
* [Technical point: The arrival rate is only needed so as to calculate the mean idle
* period length.] Busy periods and idle periods are created in an alternating
* fashion, and each busy or idle period length comes from an exponential distribution 630
* with mean equal to mean_burst_size or meanidlesize respectively.
$**$**$$$******$*$SS* *****$**$*$*******************************************/



LINK2 create_queue_busy_periods(double arrival-rate, double mean_burst_size, int n)

{
double meanidle_size = (mean_burstsize / arrival-rate) - mean burst_size;
double random_decimal, random_busy_period, random_idleperiod;
double new_busyperiod_start, new _busy_period_end, last_busy_period_end;
LINK2 head of busy_periodlist = NULL, tailof busy_period_list;

640

random_decimal = (double) random() / (double) Ox7fffffff;
new_busy_period_start = -((log (1.0 - randomdecimal)) * mean_idlesize);
head of busy_periodlist = malloc(sizeof(ELEMENTPAIR));
head of busy_period_list -> datal = new_busy_period_start;
random decimal = (double) random() / (double) Ox7fffffff;
randombusyperiod = -((log (1.0 - random-decimal)) * meanburst size);
newbusyperiod_end = newbusy_period_start + random_busy-period;
head of busyperiodlist -> data2 = new_busy_period_end;
tail of busy_period_list = head_ofbusy_period_list;
last_busyperiod_end = new busy_period_end; 650

while (last_busyperiod_end < (double)n){
random_decimal = (double) random() / (double) Ox7fffffff;
random_idle_period = -((log(1.0 - randomdecimal)) * mean_idlesize);
new_busy_period_start = last_busy_period_end + random idleperiod;
tail of busyperiod_list -> next = malloc(sizeof(ELEMENT_PAIR));
tail of busy_period_list = tail_of busyperiod_list -> next;
tail of busyperiod_list -> datal = newbusy_period_start;
randomdecimal = (double) random() / (double) Ox7fffffff;
random_busyperiod = -((log(1.0 - randomdecimal)) * mean_burstsize); 660
newbusy_period_end = newbusy_period_start + randombusy_period;
tail-of busy_period_list -> data2 = new_busy_period_end;
lastbusy_period_end = new_busyperiod_end;

}
tail of busy_period_list -> next = NULL;
return head of busy_period_list;

/ ************************************************************************* 670
* The procedure calculate algorithm_statistics simply takes the accrued delay
* statistics from a given simulation, makes additional calculations (that is, computes
* means, variances, and worst cases), and then outputs the results into the desired
* results_array.
************$*******@***** *** $$*$* ** * * *********/

void calculate_algorithmstatistics(double *total_delay, double *total square_delay,
double *worst_case delay, int *number of busy_slots,
double *results_array, int m)

s68
int i;
double sum of user means = 0.0, sum of user_variances = 0.0;
double sumof usermaxes = 0.0, max ofuser_means = 0.0;
double maxof uservariances = 0.0, max-of user_maxes = 0.0;

for (i = 0; i < m; ++i){



if (number_of busy-slots[i] != 0){
total_delay[i] = totaldelay[i] / (double)number of busyslots[i];
totalsquare delay[i] = totalsquare_delay[i] / (double)numberof busy_slots[i] -

(totaldelay[i] * totaldelay[i]); 690

}
sum_of_usermeans += total_delay[i];
sumof usermaxes += worst_casedelay[i];
sum_ofuser_variances += totalsquaredelay[i];
if (worst_case_delay[i] > max of user_maxes)

max_of usermaxes = worstcasedelay[i];
if (totaldelay[i] > maxof user_means)

maxofuser_means = total_delay[i];
if (total squaredelay[i] > max ofuser_variances)

maxof user_variances = total_square_delay[i]; 700

}
results_array[0] = sumof user_means / (double)m;
resultsarray[1] = sum-of user_variances / (double)m;
results array[2] = sum ofuser_maxes / (double)m;

results array[3] = maxof_user means;
resultsarray[4] = maxofuser_variances;
resultsarray[5] = maxofuser_maxes;

710

/*************************************

* A simple procedure, updatestatisticsarrayso just performs an update when a
* packet is transmitted. It adds the delay of the packet to the total delay of the
* associated user, and adds the square delay of the packet to the total square delay
* of the associated user. It also updates worstcasedelay, number ofbusyslots,
* and queueoffsets.

void updatestatistics_arrays(int *numberof busy_slots, double *totaldelay,
double *total_square_delay, double *worst_case_delay, 720
double packet_delay, int *queue_offsets, int turn)

number_of busyslots[turn] += 1;
total_delay[turn] += packetdelay;
total_squaredelay[turn] += packet_delay * packet_delay;
if (packetdelay > worst_casedelay[turn])

worst_case_delay[turn] = packetdelay;
queue offsets[turn] += 1;

730

/**$$$***$*$***$$********************************************************************

* The procedure count numberpktsperqueueue0 is a simple helper procedure that takes

* as input an array of m arrival lists, and returns as output an array of m integers.
* Each integer corresponds to its associated arrival list's length.
$*$****$$**$$$+*$$•$*$*$*** ***$$$$*****$*/

void count_number_pktsper_queue(int *results, LINK *arrayof arrival_lists, int m)

{
LINK headofarrivallist; 740



int count, i;

for (i = 0; i < m; ++i){
head of_arrivallist = array ofarrivallists[i];
count = 0;
while (head_of arrival-list != NULL){

count++;
head of arrival list = head of arrival list -> next;

}
results[i] = count; 750

/****************************************************************************

* The function protocolswitch( simply switches between gatetime and time. This is
* an important distinction between a gated unlimited service discipline and an
* exhaustive service discipline.

double protocolswitch(double time, double gatetime, int protocol) 760

{
if (protocol == 1)

return gatetime;
else return time;

}

/****************************************************************************

* The function comparereals( is an auxiliary procedure required for qsort).
$***$**$$$*$$$****$$$************$$$$$$**************/

770

int comparereals(const void *a, const void *b)

{
double *al = a;
double *bl = b;
if (*al < *bl)
return -1;

if (*bl < *al)
return 1;

if (*bl = *al)
return 0; 780

/*****************************************************************************

* The procedure heapify( is the standard version of heapify for a binary min heap.
****************t***$****t*•*$$*$******$**$$*******************************/

void heapify(struct heap_element *A, int heapsize, int i)

{
int 1, r, smallest;
struct heap_element temp; 790

1= 2*i+1;
r 2* i + 2;
if ((1 <= heapsize - 1) && (A[l].key < A[i].key))



smallest = 1;
else smallest = i;
if ((r <= heapsize - 1) && (A[r].key < A[smallest].key))

smallest = r;
if (smallest != i){

temp = A[i]; 800

A[i] = A[smallest];
A[smallest] = temp;
heapify(A, heapsize, smallest);

}

810



Bibliography

[1] Awerbuch, B. and Azar, Y. "Local Optimization of Global Objectives: Compet-
itive Distributed Deadlock Resolution and Resource Allocation." Symposium on
Foundations of Computer Science, pp. 240-249. 1994.

[2] Bachem, A. et al. Mathematical Programming: The State of the Art. New York:

Springer-Verlag. 1983.

[3] Barry, R. and others. "All-Optical Network Consortium - Ultrafast TDM Net-
works." IEEE Journal on Selected Areas in Communications, 14:999-1013. 1996.

[4] Bertsekas, D. and Gallager, R. Data Networks. New Jersey: Prentice Hall, 271-
353. 1992.

[5] Cooper, R. "Queues Served In Cyclic Order: Waiting Times." em Bell Systems
Journal, 49:399-413. 1970.

[6] Gallager, R. "A Perspective on Multiaccess Channels." IEEE Transactions on
Information Theory, 31:124-142. 1985.

[7] Hajek, B. and Van Loon, T. "Decentralized Dynamic Control of a Multiac-
cess Broadcast Channel." IEEE Transactions on Automatic Control, 27:559-568.
1982.

[8] Lynch, N. Distributed Algorithms. San Francisco: Morgan Kaufmann Publishers,
Inc. 1996.

[9] MacKenzie, P. and others. "On Contention Resolution Protocols and Associated
Probabilistic Phenomena." Journal of the A CM, 45:324-378. 1998.

[10] Metcalfe, R. and Boggs, D. "Ethernet: Distributed Packet Switching for Local
Computer Networks." Communications of the ACM, 395-404. 1976.

[11] Mukherjee, B. "WDM-Based Local Lightwave Networks Part I: Single-Hop Sys-
tems." IEEE Network, 12-27. 1992.

[12] Rivest, R. "Network Control By Bayesian Broadcast." Technical Report. MIT

Laboratory for Computer Science. 1985.

[13] Sanchez, J. and others. "A Survey of MAC Protocols Proposed for Wireless
ATM." IEEE Network, 52-62. 1997.



[14] Stallings, W. Data Computer Communications. New York: Macmillan. 1985.

[15] Zhang, H. "Service Disciplines For Guaranteed Performance Service in Packet-
Switching Networks." Proceedings of the IEEE, 83:1-23. 1995.


