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Abstract

We formulate four stochastic steady-state bottleneck models to calculate economically
optimal equilibrium congestion fees. The models use Little's Law to obtain closed form
expressions for steady-state marginal cost congestion fees in M/M/1 and M/G/1 systems
for n types of users with and without nonpreemptive priorities. We show that the models
can be used to calculate equilibrium congestion fees and demand levels for any
monotonically decreasing demand function. We also demonstrate that marginal cost
congestion pricing can decrease delays significantly in a socially optimal way at a
relative low decrease in utilization of the facility.
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Chapter 1

Introduction

How many times have you found yourself being delayed waiting for takeoff when

flying out of Logan Airport? Why is it that so many flights need to wait before they gain

access to the runway? The reason is simple: when the airport is operating near capacity

the runways become congested and during peak hours delays become very long.

The problem of congestion is naturally not limited to airports, but applies to any facility

with a finite capacity. Thus, the models and results presented in this thesis can be applied

to any congested facility, even if the examples shown here are specific to the framework

of an airport.

Throughout the thesis, we examine peak-load pricing as a means to decrease

delays at congested facilities. We develop four related queueing models that calculate

equilibrium congestion tolls. In Section 2, we present the background and look at

previous work on this problem. In Section 3, we introduce the queueing models, which

calculate optimal congestion fees given the characteristics of the facility as well as the

users. In Section 4, we examine some numerical applications intended to clarify the main

characteristics of the models. In section 5, we draw conclusions and discuss directions for

future work.



Chapter 2

Literature Review

As air transportation has evolved into a nearly ubiquitous mode of travel, airports

all over the world have struggled with the increasingly challenging problem of runway

congestion. The FAA (Federal Aviation Administration) estimates that in the U.S. alone,

congestion costs airlines and passengers about five billion dollars every year [DANI 95].

In Europe, that number is closer to 6.5 billion dollars [REED 92]. Traditionally, capital

investments such as the construction of new runways or entire new airports have been the

means of expanding airport capacity to alleviate congestion problems [ODON 76].

However, making these capital investments has become increasingly difficult due to their

high costs in conjunction with the prohibitive political climate for airport expansion, due

to increased noise levels near airports, environmental and safety concerns associated with

air traffic, etc. In some cases, there is simply no additional physical space available for

further airport expansion.

Thus, airports have attempted to devise measures to accommodate increased

demand. At most airports there is one or two large demand peaks during the day, and

there is very little demand in the evening and at night. It would therefore be desirable to

balance demand between the peak and the off-peak periods. The main three attempted

types of measures in this respect are listed in Table 2-1 [ROSE 75].



Type of Measure Description

Administrative Imposing limits on the number of aircraft that may use the runways

during given time periods.

Economic Charging higher runway usage fees at peak hours.

Hybrid Combinations of the two.

Table 2-1: Different measures aimed to decrease congestion at airports

Administrative methods have been implemented at several airports around the

world, and many have proven to work reasonably well to decrease congestion. However,

it is far from clear that administrative limitations provide desirable long-term effects. The

system tends to be biased toward maintaining status quo, and does not give preference to

the users that derive the most benefit from using the airport [ECKE 72 and PULL 72].

Pure economic measures try to link the private as well as social costs and benefits of

utilizing the runway. An additional aircraft should not only consider its own cost when

deciding whether to use the airport, but should also consider the impact on all other users,

the external cost [ODON 76].

The seminal paper on marginal cost congestion pricing is "Congestion Theory and

Transport Investment" by Nobel laureate William Vickrey [VICK 69]. Vickrey

introduces modeling congestion as a queue behind a bottleneck as well as the concept of

time-varying congestion tolls. After Vickrey, other studies have used simple deterministic

processes to generate equilibrium fees using the bottleneck model. Good examples

include Arnott, de Palma, and Lindsey [ARNO 93], and Henderson [HEND 85].

Koopman [KOOP 72] uses a stochastic queueing model to calculate congestion fees, but



assumes that arrival rates are fixed and thus does not determine the equilibrium fees.

Daniel [DANI 95] uses numerical methods to combine a stochastic queueing model and

the bottleneck model to find equilibrium congestion fees at airports. This thesis utilizes

Little's Law [LITT 61] to obtain closed form expressions for optimal steady-state

congestion fees. Furthermore, we calculate equilibrium congestion fees and associated

equilibrium demand levels for any monotonically decreasing demand function.



Chapter 3

General Approach

3.1 Model Description

In this section, four different single server queueing models will be developed.

Each provides a framework for marginal cost pricing of congested facilities. All of the

models assume that there are several distinct types of facility users, e.g. private aircraft,

small commercial aircraft, and large commercial aircraft, in the case of an airport. The

models can be divided into two categories; one that uses a pure first come, first served

(FCFS) queue discipline, and one that gives certain types of users priority over other

types. Before getting into the details of the various models, a general description of

queueing systems is needed.

Most queueing systems can be described using the A/B/m notation where

- A indicates the probability distribution of the user interarrival times

- B the distribution of the service times

- m is an integer indicating the number of servers (e.g. runways) available.

In this paper the M/M/1 and the M/G/1 queue will be discussed, where M stands for

"memoryless" or "Markovian" meaning a Poisson distribution, and G means a "general"

distribution (i.e. any distribution). Each queueing model will be examined in the context

of nonpreemptive priorities (the user currently in service will not be forced back to the



queue if a user of higher priority arrives) as well as in the context of no priorities. See

Table 3-1 below.

M/M/1 M/G/1

Without priorities Yes Yes

Nonpreemptive priorities Yes Yes

Table 3-1: The four different models examined

The probability density function for the first-order interarrival times of a Poisson

process is given by f, (t) = Ae - , where 2 is the user arrival rate, and the random

variable T is the time until the next arrival. From this definition we can obtain the mean

interarrival time E[T]=1/2, and the variance o-2 = 1/ 2 . Thus, a Poisson process can be

fully described by 2, the arrival rate (users/unit time). The properties of the Poisson

process have been thoroughly examined and it is arguably the best understood non-trivial

arrival process. Due to its relative simplicity, the Poisson distribution is commonly used

in urban operations research when modeling any type of arrivals (e.g. emergency calls to

911, arrivals of people to a customer service desk etc.), and it often turns out to be a

reasonable model. For example, the Poisson model works quite well for modeling the

arrivals (and departures) of airplanes at an airport during periods when average demand is

approximately constant and reasonably high.

However, since the Poisson distribution is fully characterized by the arrival rate,

2, the variance and the mean cannot be set independently. This means that we lose one

degree of freedom for the advantage of the relative analytical ease of use. If the process

we wish to model does not fit this assumption, the need for a more flexible model arises.



For instance, in the airport setting, most planes in a specific category need approximately

the same time (i.e. the variance is low), for landings or takeoffs, which motivates the use

of the general distribution for the service times. In the M/G/1 queueing model, the

distribution of the service time, S, is characterized by the average service time,

E[S]=1/i (service rate = it) and the variance, o,2 which can both be set independently of

each other.

3.2 Steady-State Considerations

Queueing theory is quite powerful at estimating the low moments and central

moments of quantities such as expected waiting time and expected length of the queue

under equilibrium or "steady-state" conditions. However, using steady-state expressions

clearly leads to a problem if the arrival rate exceeds the available service rate. This would

lead to an infinite build-up in the queue over time and the system is said to "blow up."

The implications of this dilemma are quite different depending on whether the system

operates with or without priorities. In the context of first come, first served (FCFS), the

simple answer is that no steady-state expressions can be found and there is no equilibrium

solution to the problem. However, if there are classes of users that have priority over

other classes, there may be cases where the higher priority customers receive full service

and reach an equilibrium state, but customers in lower priority classes do not, as will be

illustrated below.

First, we define the overall arrival rate and the available service rate as A and ,u,

respectively. Furthermore we define p as the utilization ratio,

p = (3.1)



If p<1, the arrival rate is less than the available service rate and steady-state

expressions for such quantities as average queue length and average waiting time can

indeed be found.

Now assume that there are r distinct types of users at a facility and let p be

defined by p = .~ In the context of no priorities, as described above, if p<l all types
i=I

of users will receive service and otherwise the queue grows to infinity. In the context of

nonpreemptive priorities, however, there could be the case that

p <1 (3.2)

but

m+1

P, > 1 (3.3)

where the first m classes receive full service and reach an equilibrium state, and the

others do not.

There are two appropriate conclusions we can draw here. Without priorities the

system may or may not reach steady-state depending on whether the overall arrival rate is

smaller or greater than the available service capacity. In the context of nonpreemptive

priorities the system will always reach steady-state for one or more classes except if the

arrival rate of the highest priority class exceeds the available service capacity. For the

remainder of this thesis, m will denote the number of high priority types of users, that

satisfies the two conditions in (3.2) and (3.3) when steady-state is not reached for all

classes. Note that m=r when steady-state is reached for all classes. In the context of no

priorities m is always equal to r (if p is not less than one, no steady-state expressions can



be obtained and the analysis breaks down). In other words: m indicates the number of

types of users that reach an equilibrium state and is fully served at the facility. However,

for the remainder of this thesis it will be assumed that only m types of users continue to

use the facility, and that users of types that do not experience bounded waiting times drop

out. This assumption guarantees that p<l and steady-state is reached for all remaining

types of users.

3.3 Definitions

Assume that each type of users arrives in a Poisson manner with an arrival rate of

i. Thus, the overall arrival rate is given by

r

A = Y (3.4)
i=1

Similarly, the average service times for the different types are defined as 1/pii, and the

weighted average service time can be written as

1 x 1 (3.5)

U i=1K 'Ui)

where Xi/X = Prob( a user is of type i). Note that only the m first types are included, since

those are the only customers receiving full service. Furthermore, the overall utilization

ratio is thus given by

p=p mA. (3.6)

and the service rate

P .- (3.7)
p



For the M/G/1 system, we define (i 2 to be the variance of the service time of users of

type i. From basic probability theory, the second moments of the service times can be

written as

E[S1]= 2 + (3.8)

and,

E [S 2] = L E[S 2] (3.9)

is the overall second moment of the service times of users receiving full service.

Finally, ci is defined to be the cost of delay/unit time per user of type i. In the

context of no priorities, the average cost of delay/unit time per user can be written as

c = - c z (3.10)

However, in the nonpreemptive priority scheme, only the specific type costs will be used.

3.4 A Fundamental Observation

We begin with a fundamental observation on the relation between queueing

theory and marginal cost pricing. To keep things simple we focus on a single queue

without priorities, but entirely analogous ideas apply to priority queues. Furthermore,

these ideas are discussed in the context of congested airport runways, but again the

concepts are easily transferred to other settings.

Pure economic measures try to link the private and the social costs and benefits of

utilizing the runways of a congested airport. An aircraft should not only consider its own



cost when deciding whether to use the airport, but should also consider the impact on all

other airport users [ODON 76]. This leads to the concept of social marginal cost pricing,

which is what this thesis intends to explore in some detail.

The nature of the impact of an additional aircraft on other users is eloquently

described by Carlin and Park:

During a period when an airport is continuously busy, each user imposes

some delay on all following users until the end of the busy period. That is,

an additional user shoves those following him one space back in the

queue, and the effect persists until the queue dissipates [CARL 70].

The marginal cost of an additional user at a facility can conveniently be broken

into two parts, which are referred to as "internal cost" and "external cost" respectively.

The internal cost represents the waiting cost experienced by the additional user due to the

already present congestion, and the external cost is the increased cost for all other users

due to the increased congestion caused by the additional user.

Thus, if the runway landing fee were set to equal the external cost, every user

would have to consider the impact of its use of the runway on all other users, in addition

to the internal cost which the user already pays implicitly (gas, flight crew salary,

opportunity cost of lost time, etc.). If the benefit to a user of using the runway exceeds the

external cost, that user will be willing to pay the landing fee. Conversely, if the negative

impact imposed on the other users is greater than the benefit the additional user derives

from using the airport, that user will choose not to use the airport.



Hence, the basic idea of marginal cost pricing is as follows: in order to maximize

social economic welfare, when deciding whether to use a facility, prospective users

should be forced to consider not only their own internal cost but also the external costs,

i.e., the increased cost imposed on other users of the facility. In plain terms, if someone

wants to use a facility, he or she needs to consider the increased cost to those users that

experience delay due to his or her occupying the facility for some period of time.

3.5 Cost of queueing: Without priorities

In order to appropriately calculate the congestion fees, it is necessary to find an

expression for the total expected cost/unit time, C, associated with delay in the system. In

the context of no priorities, C can be written as the average cost of delay/unit time per

user multiplied by the expected number of users in the queue,

C = CLq (3.11)

where Lq is the steady-state expected length of the queue. Using Little's Law,

Lq = AqW (3.12)

where Wq is the expected waiting time in the queue, (3.11) can be re-written as

C = cAWq (3.13)

Thus, the marginal cost of an additional user of type i,

dC - dW
MC(i)= - =W + c q (3.14)

d2l, d2



The marginal cost is thus divided into two terms, which can be referred to as the internal

cost, (cW,), and the external cost, respectively. The internal cost is indeed the cost

experienced by the user due to the already existing delay, and the external cost is the

increased cost for all other users due to the additional user.

3.6 M/M/1 Queue: Without Priorities

For the M/M/1 queue, the steady-state expected waiting time in the queue is well-

known [LARS 81 and GROS 85]

Wq= (3.15)W -

Differentiating Wq,,

2,u - A -1-p)2f)
q (.6dWi

dAi

which, using (3.14), gives the final expression,

dC P 2p -A
dC = c i  + cA (3.17)
dA '-A (P-)2

For the case where there is only one type of user, this expression simplifies considerably

to

dC p cAdC_= c + CA (3.18)
dA. U-A (p-A4

(3.16)



3.7 M/G/1 Queue: Without Priorities

The analysis for the MIG/1 queue follows closely the M/M/1 analysis, but now

the different service time variances must be taken into account. Again, the expected

waiting time in the queue is well-known [LARS 81 and GROS 85],

- E[S2]
W =2( ) (3.19)

W 2(1 - p)

where E[S 2] is defined as in (3.9). Differentiating this expression with respect to 2i

- (1- p)E[S 2 ]+ E[S2]
dWq Pi (3.20)
d2A 2(1- p)2

and substituting into (3.14)

(1- p)E[S ]+ E[S2]
dC AE[S2] (3.21)= C, +c2 (3.21)
dAt 2(1- p) 2(1- p) 2

Again, when there is only one type of user, the expression simplifies notably:

dC cE[S 2] + cAE [S 2] (3.22)-=c + (3.22)
dA 2(1- p) 2(1- p) 2

3.8 Cost of Queueing: Nonpreemptive Priorities

In a queue where certain types of users have priority over other types, the low-

priority users are likely to experience longer delays than the high-priority users.

Equations (3.11), (3.13) and (3.14) are not valid in this context, and need to be replaced.

The overall cost can be calculated by treating each class separately, and adding up all of

the costs.



C =C~ k kWqk (3.23)
k=1

where Wqk is the expected time of waiting in the queue for a user of type k. Users in

classes that never receive service are ignored, under the assumption that they do not

affect the situation for the users that gain full access to the facility. Thus,

dC - i[ k  (3.24)
di k=1 dA,

and again, the two terms represent the internal cost and the external cost as defined

above. The expected waiting time in queue for a user has been found [COBH 54] to be

o ,k <m
Wqk  -k- X1 -ak) (3.25)

o0 ,k>m

k
ak Pi (3.26)

i=1

ao - 0 (3.27)

where W represents the expected remaining time in service for the user occupying the

server (e.g. using the runway) when a new user arrives, and ak is used to simplify the

notation for the terms that describe how different types of users experience different

delays. In general, W consists of two parts: one represented by the m classes of users that

experience bounded waiting times at the server, and another by those users in class m+ 1

that receive service only during the fraction of the time when there are no queues in the

top m classes. Using random incidence and the fact that when we have Poisson arrivals



the probability of finding a user of a particular class occupying the server is simply equal

to the fraction of the time the users of that class occupy the server. Those fractions in turn

are equal to the utilization ratios p, [LARS 81].

S = pE[S2 ] + (1-am)E[S+,] (3.28)

i=1 2E[S,] 2E[S,,+i

The term (i-am) corresponds to the fraction of the time that class m+ occupies the

server. For the case of negative exponential service times, (3.28) reduces to

Wo =  + - (3.29)
i=1 Ui ,Um+l

However, under the assumption that only the first m classes continue to use the facility,

expressions (3.28) and (3.29) reduce to

W- = pE[S7 ] (3.30)
j=1 2E[S,]

and,

m

W =I i (3.31)
i=1 Pi

respectively.

3.9 M/M/1 Queue: Nonpreemptive Priorities

Thus, by combining (3.25) and (3.31) the expected waiting time in queue for the

M/M/1 nonpreemptive priority queue for a user of type k can be written as

,k<m (3.32)

,k>m

Differentiating (3.32) with respect to A, for the case where k m ,

Wqk



(1-ak-1 X1-ak) d[(1-ak-1 X-ak

dA a 1- ak Xi- -ak

where,

ak +ak
- 12 i<k

d[(1-a - -1d[(1-aklXl-ak)] a-1 = k (3.34)

0 , i>k

The expressions in (3.32) and (3.33) can then finally be substituted back into (3.24) to

find the marginal cost for the M/M/1 queue with nonpreemptive priorities. For the case

with only one class, this complex expression reduces to (3.18), which is expected since

priorities should not matter in the absence of multiple types of users.

3.10 M/G/1 Queue: Nonpreemptive Priorities

Similarly to the M/M/1 system, the expected waiting time for the M/G/1 queue

can be found by combining (3.25) and (3.30)

Wqk ,k<m (3.35)

,k>m

Again, differentiating with respect to 2, for the case where k m ,

E[S 2 ] d[(1- ak-1 X1- ak

dWqk - 2u E[S, ] 1 Xak) d2 dA
___ = d2 (3.36)
dA, [(1- ak__ X1- ak 2



with all terms defined as above. Now, the expressions in (3.35) and (3.36) can then

finally be substituted back into (3.24) to find the marginal cost for the M/G/1 queue with

nonpreemptive priorities. Again, the resulting expression reduces to (3.18) for the case of

only one class.

3.11 Elasticity of Demand

We have shown that for Poisson arrivals, if the cost of delay for each type of user

and the first and second moments of the service time are known, it is possible to calculate

the appropriate congestion fee. But, if the demand for using the facility is price sensitive,

introducing a congestion fee will have a dampening effect on the arrival rates to the

system. One approach to taking this effect into account would be to wait and see what the

new conditions are, and then recalculate the appropriate congestion fee. However, that

would again alter the conditions and the process would have to be repeated until

convergence. Hopefully, equilibrium would eventually be reached where the congestion

fee and demand would be consistent, but this process is very cumbersome and time-

consuming. For instance, in the case of airports the process would take many years. Thus,

it is likely that demand and service characteristics will change during this time, and the

system may never get sufficiently close to equilibrium.

However, if the demand function for each type of user is known, it should be

possible to immediately calculate a congestion fee such that equilibrium is obtained. The

following sections intend to demonstrate this proposition. Examining the form of the

expressions used to calculate the congestion fees, it should be clear that the appropriate

congestion fee is a monotonically increasing function of demand. The closer to capacity

the system is operating, the more congested it is and more users are affected by the



marginal user which translates to a higher external cost. Using similar reasoning, we can

argue that the internal cost is a monotonically increasing function of demand as well,

meaning that the total cost for a user is monotonically increasing which intuitively makes

sense.

Assuming that price sensitive users take their total cost of using a facility into

account when deciding whether to use a facility, we need to include the internal cost into

the user demand functions. Furthermore, if we assume that the demand function is

monotonically decreasing with the total cost of using the facility there must be a unique

equilibrium. See Figure 3-1 below.

Figure 3-1: Supply Curve for Marginal Cost Congestion Pricing

3.12 Finding Equilibrium Congestion Fees

We can summarize the problem as follows: given a demand curve for each type of

user, calculate the optimal equilibrium congestion fee for each type. This can be done by

finding the intersection between the supply curve (the total cost of using the facility) and

the aggregate demand curve. In order to find this aggregate equilibrium we must

Total cost
buDDIVA

Demand
curve

A trmr~

I Demand
Capacity

M1 DemaCapacitye



simultaneously find m equilibrium points since the total cost for each type depends on the

arrival rate of all types of users. First, we need to define some notation for the problem.

xi - Total cost of using the facility for a user of type i.

x=-{x, x2,... } - The set of all total costs.

2i (x i ) - Arrival rate of type i users as a function of the total cost for type i; it can

be any monotonically decreasing function.

A(x) - Total arrival rate.

W, (x) - The expected waiting time.

u(x) - Total available service rate.

E[S 2(x)] - Second moment of the service time as a function of all total costs.

It may not be immediately obvious why the overall service rate and the second

moment of the overall service time may be dependent on the total costs of using the

facility. However, remember that these quantities are dependent on the arrival rates,

which in turn are cost dependent. Some users may be more price sensitive than others and

change the proportion of arrivals due to different user classes, which in turn alters the

overall service characteristics.

3.13 Equilibrium without Priorities

Recall the expression (3.14) for finding the total marginal cost for a system

without priorities. Combining (3.10) and (3.14), using our slightly extended notation, the

total cost of using the facility for type i users can be written as

xi = cW (x) + c ,(xA , Vi (3.37)



Thus we have a system of m=r equations that need to be solved simultaneously to find

the total cost for each type of user. Generally, it is not possible to obtain a closed form

expression due to the non-linearity of the expected waiting time and the general nature of

the demand functions. However, it is not difficult to find numerical solutions to (3.37)

using a simple iterative search. Any guess in the right-hand side of (3.37) will yield a

result that indicates if the guess is below or above the equilibrium point.

For the M/M/1 system we can re-write (3.15) as

W,(x)= () (3.38)

and (3.16) as

2p(x)- A(x)-1p x
dW, (x) p, )(3.39)
dA, (x,) ((x)- A(x)) 2

which leads to the following set of equations

2p(x)- A(x)

X , =C ( .(x) cI, X Vi (3.40)
p(x) + r A(x) = ((x)- (x))2

If there is only one type of user, (3.38) reduces to

x =c p(x) + c(x) (3.41)
,U-A(X) 0(- 2(x))2

Note that in this case the service rate is independent of the total cost.

Similarly, for the M/G/1 queue we can re-write (3.19) and (3.20)

, (X)= A(x)E[S 2 (x)] (3.42)
2(1- p(x))



d- (x) p(x))E[S ] + E S (x)]

dA (xi) 2(1- p(x)) 2

which together yield the following set of equations

i =i 2()E[S 2(x)]

2(1- p(x))
+McJ

(1- p(x))E[S + (x E[S 2(x

2(1- p(x))2

(3.43)

' Vi (3.44)

For the case of only one type, (3.44) reduces to

S= (x)E[S] + c2(x)E[S 2]
2(1 -p(x)) 2(1- p(x))2

(3.45)

3.14 Equilibrium with Nonpreemptive Priorities

The case with nonpreemptive priorities follows closely the reasoning in paragraph

3.13, with the substitution of the appropriate equations. First, we re-write the general

expression for calculating the total cost of using the facility.

dAk Xk (Xk VidkAk , d2(xi) ,J (3.46)

Next we re-write (3.25), (3.26), (3.27), (3.30), and (3.31) as follows

Wqk (x)
O

ak-1 (x)Xi - ak (X)
,k<m

,k>m

(3.47)

(3.48)
k

ak () pi (x)
i =1

ao - 0 (3.49)

k=1



W (x)= p (x)E[S2 ] (3.50)
1 2E[Si]

For the case of negative exponential service times, (3.50) reduces to

Wo (x) = ) (3.51)
i-WI Ii

For the M/M/1 queue, we can combine (3.47) and (3.51) for an expression for the

expected waiting time in queue for a user of type k

Wqk (x) = ,k <_ m (3.52)

,k>m

Differentiating with respect to A, (x,)

(1 - ak1 (x)X - a(x) d[( - ak1 (x)XI - ak (x))]
dWqk 2. ) dA, (x,)(3.53)
dA (xi,) [(1- ak-1 (x)X- ak (x))]2 (3.53)

Substituting (3.51), (3.52) and (3.53) into (3.46) we can calculate the total cost of using

the facility for the M/M/1 queue.

For the M/G/1 queue, the same logic can be applied to obtain the following

expressions.

F p (x)E[S7 ]
I = 2E[Si ]

Wqk W i=1 2S ,k:m (3.54)
(1 - ak- (x)X - ak (x)) ,k

o00 ,k>m



Again, differentiating with respect to i, for the case where k < m,

(E[S2 ] ad[(- ak- (x)X- ak ())]

qk (x) _ 2 pE[S, ] d2 (x)
d2Ai (x,) - [(1 - ak- (x)X1- ak(X))]2

Substituting (3.50), (3.54) and (3.55) into (3.46) we can calculate the total cost of using

the facility for the M/G/1 queue



Chapter 4

Applications

4.1 Examples with One Type of User

In this section, sample results are presented to highlight some of the

characteristics of the different queueing models. First, we demonstrate a simple example

with only one type of user in an M/G/1 system. The issue of priorities naturally becomes

irrelevant when there is only one type of user, so either model will yield the same results.

We have chosen parameter values typical of an airport setting (see Table 4-1), but as

mentioned earlier the models can be applied to any type of congested facility. The

examples use a linear demand function, but the models work equally well with any

monotonically decreasing function, as is demonstrated in section 4.2

Parameter Value
Available service rate (h2 ) i20
Standard deviation of expected service time (seconds) 10
Cost of delay ($/hr) 2000
Demand with no delay cost (hri ) 115
Elasticity of demand ((users/hr)/$ 100) 3

Table 4-1: Parameter Settings for One User Type Example

Figure 3 below shows the demand function using the data in Table 2 with the

calculated equilibrium demand indicated by a circle. Recall that users take the total cost,



which includes the internal cost (due to waiting) and the external cost (the congestion

fee), into account when deciding whether to use the facility.

Equilibrium Demand. 1 type, M/G/1 queue
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Figure 4-1: M/G/I Equilibrium Demand for 1 Type of User

The next example is intended to illustrate the effects of varied demand elasticity.

The zero cost demand is set fixed at 115 users/hour, and the slope of the demand function

is varied from being flat (inelastic demand) to twenty users/hour per $100. Figures 4-2

and 4-3 show the equilibrium demand level and the equilibrium congestion fee as a

function of elasticity. In the figures it can be seen that as elasticity increases, making the

users more price-sensitive, the equilibrium demand and the equilibrium congestion fee

both decrease.



Equilibrium demand as a function of elasticity
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Figure 4-2: Equilibrium Demand Level

Equilibrium congestion fee as a function of elasticity.
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Figures 4-4 and 4-5 are intended to show more clearly how the equilibrium

demand level and the equilibrium congestion fee vary together with the elasticity of the

users. Figure 4-4 is a 2-D plot of how demand and external cost increase as elasticity

decreases, and Figure 4-5 is a 3-D representation of the same data. The demand levels are

given in users per hour, and the congestion fee in dollars. The numbers on the curve

indicate the elasticities in users per hour/$100.

Equilibrium Demand vs. Congestion Fee at Various Elasticities
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Figure 4-4: Demand and Congestion Fee as a Function of Elasticity (2D)
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Figure 4-5: Demand and Congestion Fee as a Function of Elasticity (3D)

4.2 Examples with Multiple Types of Users

Here, we use several examples with multiple types of users to illustrate some of

the differences between the queueing models. For simplicity, the examples use only three

types of users, but the models can be extended to include any number of types of users.

The parameters used in the following examples are listed in Table 4-2.

......... ................................. l ..Parameter Type 1 Type 2 Type 3
Service rate (hr- ) 80 90 100
Standard deviation of
service time (seconds) 10 10 10
Cost of delay ($/hr) 2,500 1,000 400
Demand function , = 40 - 0.00 lx 2 = 50 - 0.003x A3 = 60 -0.0 1x

(x= total cost) -1*10 - 5x2  -2*10 -5 x2  -8*10 5 x 2

Table 4-2: Parameter Settings for Multiple Types of Users Examples



The given standard deviations in Table 3 are only used in the M/G/1 models,

since the negative exponential service times in the M/M/1 model intrinsically have 1/u2

variance. Figure 4-6 shows the different demand functions for the three types of users. In

order to make the examples easier to follow, the three types could be viewed as three

different types of aircraft; large commercial jets (Type 1), small commercial jets (Type

2), and private aircraft (Type 3). For instance, large commercial jets are likely to be less

price-sensitive than other aircraft. It should be noted that it is very difficult to estimate the

demand functions of aircraft, and that the numbers used in these examples are

hypothetical.

Demand Functions for three types of users
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Total cost ($)

Figure 4-6: Demand Functions for Multiple
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4.2.1 Fee versus No Fee Comparison

Perhaps the most important question to be asked is: "How will equilibrium

demand levels, costs and delays change when a congestion fee is introduced?" The idea

of marginal cost congestion pricing would be of little use if we were not to see significant

decreases in delay. Figure 4-7 shows how the demand levels change in an M/G/1 system

without priorities, when the optimal congestion fee is introduced using the data in Table

4-2.

Comparison of Congestion Fee vs. No Fee
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Figure 4-7: Comparison of Congestion Fee vs. No Fee

As can be seen in Figure 4-7, the different types of users react differently to the

congestion fee. The Type 1 equilibrium demand level increases significantly, while it

decreases for the other two types. This should not be surprising, but is explained by the



cost structure for this example and the changes in delays according to Table 4-3 below.

The cost of delay associated with Type 1 is much higher than for the other types

($2,500/hr vs. $1,000/hr and $400/hr), which makes Type 1 users much more sensitive to

delays. Thus, in this example, the increase in cost due to the congestion fee is more than

offset by the reduction in delay costs, and more Type 1 users choose to use the facility.

Conversely, the reduced cost of delay for Type 2 and Type 3 users is not enough to

compensate for the congestion fee. Thus, these users experience a net increase in total

cost and their demand levels decrease.

Variable Without congestion fee With congestion fee

Expected Delay/User 43 min 15 sec 3 min 15 sec

Utilization (rho) 99.22% 89.89%

Type 1 Congestion Fee $0 $853.47

Type 2 Congestion Fee $0 $750.44

Type 3 Congestion Fee $0 $669.58

Type 1 Delay Cost/User $1,802.20 $135.03

Type 2 Delay Cost/User $720.88 $54.12

Type 3 Delay Cost/User $288.35 $21.65

Table 4-3: Comparison of No Congestion Fee vs. Optimal Congestion Fee

The overall demand decreased by slightly less than 10%, and the average delays

decreased from 43 to 3 min! This indicates that introducing a congestion fee is a very

powerful tool for decreasing congestion.



4.2.2 M/M/1 versus M/G/1 Comparison

In this section, we make a comparison between the M/M/1 and the M/G/1

queueing models. First, we note that the results from the M/M/1 model are the same as

the M/G/1 model when the variance is set to 1/,U2. In this example, the standard deviation

of the expected service time is 10 seconds (=1/360 hours), which is less than 1/P =1/120

hours. Thus, since increased variance translates to increased delays (eq. 3.22), our M/G/1

queue should yield lower costs at a given demand level. That, in turn, should translate to

lower equilibrium costs and higher equilibrium demand levels. Figure 4-8 below shows

that this is indeed the case.
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4.2.3 Nonpreemptive Priorities versus No Priorities Comparison

This is an example using the same parameters as the previous example, but this

time the effects of introducing nonpreemptive priorities are illustrated. Figure 4-9 shows

how the equilibrium demand levels in the M/G/1 queues are affected by the introduction

of priorities. In this specific example, the equilibrium demand levels of the Type 1 and

Type 3 users increase noticeably, while the Type 2 demand level decreases slightly. In

general, there does not seem to be a simple relationship governing which types of users

benefit from priorities and which types do not. In appendix A, there is an example with

only two types of users intended to illustrate the complexity of the problem.
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Figure 4-9: Nonpreemptive Priorities vs. No Priorities



4.2.4 Ordering of Types with Nonpreemptive Priorities, Inelastic Demand

It is a well-known result of queueing theory that the expected waiting time in a

pure FCFS (First Come, First Served) system can be decreased using priorities [LARS

82]. This decrease can be achieved by giving priority to the users with the shortest

expected service time. More generally, the optimal strategy to minimize the expected cost

of waiting (internal cost) to all users is to always give priority to the user in the queue

with the maximum ratio of (unit time cost)/(expected service time), ri=c,/(j1/) = ci*pt. An

intuitive argument for this strategy is that it is desirable to maximize the rate at which

expected cost leaves the system. The ratio, ri, is proportional to the cost per unit time of

having a user in the system, and inversely proportional to the time the server spends

servicing that user. Thus, by ordering the types of users according to their cost/service

time ratios (the higher the value, the higher the priority), the rate at which expected cost

leaves the system is maximized.

This result is valid for minimizing the internal cost, but the question we are

interested in is whether it can be extended to include the external cost. More specifically,

is the strategy still optimal for minimizing the total cost? It turns out that the strategy

does not necessarily minimize the external cost, and therefore the total cost is not

minimized either. Table 4-4 shows the parameters for an example that illustrates how the

total cost is not minimized by ordering the types according to their r ratios.

Type Lambda Mu Sigma Cost of Delay Cost/Service Time Ratio
(Arrival Rate) (Service Rate) (Standard Deviation) ($/hour) (ri)

H (1) 20 80 10 2000 160000

M (2) 30 60 10 2500 150000

L (3) 3 40 10 3000 120000

Table 4-4: Parameters for Ordering Example



The example has three types of users with fixed arrival rates (perfectly inelastic

demand). The three types are denoted by H (high), M (medium), and L (low),

respectively, corresponding to their relative cost/service time ratios. The internal and

external costs were calculated for all six ordering permutations, and the results are shown

in Table 4-5 and Figure 4-10. The order denotes what priority each type receives, e.g.

LHM means that Type L (3) has the highest priority, followed by Type H (1) and Type M

(2). It can be seen in Table 4-5 that the internal cost is minimized by order HML as

expected, but that the external cost and the total cost are minimized by MHL.

Order Internal Cost External Cost Total Cost

LHM $4,870 $27,785 $32,654
LMH $5,073 $29,374 $34,447
MLH $5,017 $28,123 $33,140
MHL $4,643 $24,342 $28,985
HML $4,528 $24,594 $29,122
HLM $4,851 $27,618 $32,469

Table 4-5: Equilibrium Costs with Different Priority Orders
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Chapter 5

Conclusions and Discussion

In this thesis, we have utilized Little's Law to formulate stochastic steady-state

bottleneck models to calculate economically optimal equilibrium congestion fees. The

four models use Little's Law to obtain closed form expressions for optimal steady-state

congestion fees in M/M/1 and M/G/1 systems with and without nonpreemptive priorities.

We have shown that the models can be used to calculate equilibrium congestion fees and

demand levels for any monotonically decreasing demand function. Furthermore, we have

given examples that emphasize the characteristics of the models, and the key differences

between them. We have demonstrated how marginal cost congestion pricing can decrease

delays significantly in a socially optimal way with only a relatively low decrease in

utilization of the facility. In one example, a 10% decrease in demand led to a more than

90% decrease in delay.

If the concept of marginal cost pricing has been shown to optimize social welfare,

why has it not yet been universally accepted? One of the reasons is that, in reality, it is

not quite as simple as above to calculate the marginal cost. For example, an airport is a

dynamic system; demand varies throughout the day and service capacity varies as the

weather changes, which makes the steady-state assumption questionable. The models are

thus best suited for systems where demand stays approximately constant for a longer



period of time. Dividing up the day into periods and averaging demand and predicted

service capacity (according to a weather forecast) over that period is not as trouble-free as

it may at first seem for the following reasons:

* Utilization could temporarily be greater than the capacity of the airport, a condition

for which no steady-state expressions exist.

* The system time-constant can be on the order of days when the airport is operating

near capacity and thus the system will never get sufficiently close to steady-state for

the assumption to be reasonable.

* The delay is a highly non-linear and concave function of the demand, so averaging

the demand leads to an inherent underestimation of the delay.

* Different time periods are not independent since it is likely that there is a queue left

from a peak period into the next time period.

Another reason why marginal cost pricing has not been more widely implemented in

the air transport industry, is that there is a strong resistance to change in many parts of the

aviation community. For instance, one effect of marginal cost pricing would doubtlessly

be that small private aircraft would experience such a tremendous hike in landing fees

that they would no longer afford them. One could argue that these small planes should

not use the runways during peak hours if the benefit they derive from such use is not so

great that they are willing to compensate for the social cost that they cause due to

increased delays. However, the fact remains that it is politically very difficult to change

the present system.

In addition, if marginal cost pricing is introduced in a highly congested system,

the fees would almost invariably be higher than they were before. This may lead to a



significant change in demand, which means that an accurate demand function is needed

to predict where the equilibrium will be. In the air transport industry, for instance, it is

very difficult to make an estimate of how airlines will react to changes in the landing

fees. The demand function may even be discrete (e.g. an airline may decide to terminate

its entire service to an airport), or highly dependent on network effects (e.g. if an airline

terminates its Stockholm - New York route, it may terminate some of its NY - Boston

flights as well). This makes changes in demand at a particular airport extremely

unpredictable. Thus, it would be desirable to investigate the sensitivity of the models

presented here to numerous variations of the demand functions.

This thesis raises several other questions for future research. It would be

beneficial to extend the models to include multi-server queues that more closely resemble

many real-world applications. A more rigorous method to determine when the steady-

state assumption breaks down is also needed to ascertain under what conditions the use of

our models is appropriate.
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Appendix A

Examination of What Types of Users
Benefit From Priorities

A factorial design was set up to examine what factors determine which types of

users benefit from priorities and which types do not. An M/M/1 queue was used with two

types of users, and the cost of delay and the demand elasticity were varied. Table A-i

below shows how the parameter settings were changed as well as the resulting changes in

demand. Each row is a performed run with and without nonpreemptive priorities. The

second and third column show the cost of delay per unit time for Type 1 and Type 2

users, respectively. The next two columns indicated the relative demand elasticities. The

last two columns show the change in demand when nonpreemptive priorities are

introduced. A positive number indicates that the type of user benefited from priorities,

(i.e. demand increased).

We were looking for relationships of the form: "Users with relatively high cost of

delay and low demand elasticity benefit from being high priority users," or simply "users

with high demand elasticity are generally at a disadvantage when priorities are

introduced." Multiple linear regressions were performed but the results proved

inconclusive. Unfortunately it seems that there is no clear relationship between the cost

structure or the demand elasticities, and what types of users benefit from priorities.



RUN Cost(l) Cost(2) Elast(1) Elast(2) Demand(1) Demand(2)
1 1200 1200 High High 0.3561 -0.2968
2 1200 500 High High 2.0484 -0.0667
3 500 1200 High High -1.3395 -0.1821
4 500 500 High High 0.1632 -0.1412
5 1200 1200 High Low 0.0686 -0.0378
6 1200 500 High Low 1.628 -0.1974
7 500 1200 High Low -1.1969 0.1728
8 500 500 High Low 0.0319 -0.0197
9 1200 1200 Low High 0.2404 -0.2186

10 1200 500 Low High 0.6135 1.4697
11 500 1200 Low High -0.2405 -1.4446
12 500 500 Low High 0.1013 -0.0942
13 1200 1200 Low Low 0.1394 -0.1133
14 1200 500 Low Low 1.2661 -0.0254
15 500 1200 Low Low -0.9472 -0.0351
16 500 500 Low Low 0.061 -0.0557

Table A-1: Factorial Design Parameters


