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Abstract

The rapid development of an efficient process to manufacture a new or modified
product within an existing batch manufacturing facility is critical to the success of
many specialty chemical and synthetic pharmaceutical companies. This thesis em-
ploys process modeling technology as the basis for an integrated batch process de-
velopment methodology that complements and enhances laboratory and pilot scale
experimentation. Examples demonstrate that significant benefits can be realized for
these industries.

To develop optimal batch processes using detailed mathematical models, the con-
tinuous decisions defining the operating policies of the processing tasks and the dis-
crete decisions defining the process structure and allocation of plant resources must
be made simultaneously. The first rigorous decomposition algorithm that simulta-
neously considers both types of decisions is derived; the algorithm also extends to
general mixed time invariant integer dynamic optimization problems. This decompo-
sition algorithm requires subproblems that yield rigorous upper and lower bounds on
the objective, and robust numerical techniques to solve each subproblem. Screening
models are derived to provide rigorous lower bounds on the manufacturing cost; upper
bounds on the cost are provided by the solution of a dynamic optimization problem.
The robustness, accuracy, and efficiency of the numerical solution algorithms for the
simulation and optimization of detailed discrete/continuous dynamic models is also
improved, allowing the solution of the dynamic optimization subproblem to be per-
formed more reliably.

Screening models exploit domain specific knowledge to obtain rigorous lower bounds
on the manufacturing cost. The lower bounding property of the screening models is
proven for networks of reaction and distillation tasks and demonstrated on several
case studies that illustrate the ability of the screening models to handle aspects of
process synthesis. The design targets provided by the solution of these models facil-
itate rapid decision making during the early stages of process development, enhance
the application of other design methodologies, and facilitate the formulation and so-
lution of the dynamic optimization subproblems required within the decomposition



algorithm.

Sophisticated equation based modeling environments provide modeling flexibility
by decoupling the solution procedures from the model definition but, at the same time,
place severe expectations on the numerical integration techniques. The application of
these environments to the simulation and optimization of batch reaction and distil-
lation tasks uncovers several previously unreported numerical problems. This thesis
proves that the observed numerical difficulties are caused by an ill-conditioned cor-
rector iteration matrix, demonstrates that the accuracy of DAE integration codes is
limited by the condition number of the corrector iteration matrix, and explains how
the integration code’s error control strategy can permit the generation of ‘spikes’.
Automated scaling techniques are developed and implemented to permit the efficient
solution of poorly scaled problems and to mitigate the effects of ill-conditioned mod-
els; it is proven that this scaling comes very close to the optimal scaling for the sparse
unstructured matrices with which we are concerned. In addition, a novel strategy is
developed to start DAE integration codes efficiently at the frequent discontinuities
experienced in such simulations and optimizations.

The advantages of this integrated design methodology are demonstrated through a
series of realistic examples exhibiting the complexity of typical industrial applications.
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Chapter 1

Introduction

Process modeling technology has changed the way in which continuous/steady state
chemical processes are designed and operated (Evans, 1994), yet a similar impact
has not yet been witnessed for the design of batch processes. The dynamic nature
of batch processing operations coupled with the combinatorial aspects of equipment
scheduling and resource allocation dictate that the effective application of process
modeling to the design of batch processes is a more formidable task.

Recent advances in modeling capabilities and optimization techniques for dynamic
processes now permit the application of detailed modeling technology to batch pro-
cesses (Barton, 1994). However, the benefits afforded by the application of modeling
techniques must outweigh the effort and time required to generate the models, and
apply the design methodology. Drawing the analogy to continuous processes, we feel
that process modeling techniques can reap the most significant benefits when applied
to the design of batch processes by empowering the engineer to exploit interactions
between the processing tasks. Modeling enables alternative operating policies to be
explored, evaluated, and optimized. However, the systematic design methodologies
used for continuous plants do not apply to batch processes, so new methods are
required to realize the potential benefits derived from process modeling technology.

This thesis advocates process modeling technology as the basis for an integrated
batch process development methodology that can complement and enhance laboratory

and pilot scale experimentation. This thesis demonstrates that process modeling
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technology, employing mathematical models of the physical process at several levels
of detail, provides an effective strategy to address the design of batch processes. In
particular, the application of process modeling techniques to the optimal development
of batch processes has led to the development of screening models capable of providing
rigorous lower bounds on the cost of the design, and improvements to the numerical
integration algorithms employed for solving the simulation experiments. Furthermore,
a novel and systematic methodology to address the optimal development of batch

processes is presented.

This chapter motivates the development of a systematic methodology employing
mathematical models of the processing tasks for batch process design and identifies
batch process development — the design of a batch process to manufacture a new or
modified product in an existing manufacturing facility — as a problem of primary
importance. Section 1.1 discusses the economic impact of batch processing, and the
importance of batch process development to the specialty chemical and synthetic
pharmaceutical industries is covered in section 1.2. Previous approaches that have
been applied to the batch process development are then briefly discussed in section 1.3,
demonstrating the need for new approaches to the batch process development prob-
lem. Although the optimal development of batch process can be expressed as a mixed
time invariant integer dynamic optimization problem, no solution techniques to ad-
dress this class of problems are currently available. This thesis has identified that the
key advance that would enable the solution of such problems is the ability to derive
models that provide rigorous lower bounds on the design objective. While deriva-
tion of such models from the mathematical form of the original dynamic problem
formulation may not be possible, alternative models whose solutions provide valid
lower bounds for networks of batch reaction and distillation tasks can be derived
from engineering insight. These models form the basis for the rigorous decomposition
strategy capable of addressing batch process development problem that is introduced
in section 1.5. This strategy requires the formulation and solution of two difficult
subproblems — a rigorous lower bounding or screening model that incorporates the

discrete design decisions, and the dynamic optimization of the detailed mathematical
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models of the process for fixed values of the discrete decisions.

Methods to define and solve these two subproblems are the focus of the two main
parts of this thesis. The introduction of the concept of screening models for batch
process development is the key idea that enables the mixed-integer dynamic optimiza-
tion representation of the batch process development problem to be decomposed in a
rigorous fashion; the development of screening models is the focus of part 1. In part 2,
the numerical integration techniques are improved in order to perform the simulation

and optimization of detailed dynamic models more reliably and more efficiently.

1.1 Batch Process Manufacturing

Batch/semicontinuous processes contribute substantially to the global production of
chemicals. In fact, Shell (1990) reported that the specialty chemicals and synthetic
pharmaceutical industries accounted for $380 billion of the world’s $1 trillion chemical
market in 1988. This contribution is particularly important for developed nations.
Developed nations currently enjoy several advantages that favor the production of
the specialty chemicals (Polastro and Nystrom, 1993). For instance, the demand for
many of these products typically lies within the developed nations, and the impact
of labor and energy costs is typically not that high. In addition, for many of these
products there are perceived technological barriers which make competition from less
developed nations unlikely. This contrasts the commodity chemical market in which
the prevailing economic factors favor production in developing nations, particularly
those with a cheap energy source. This implies that the importance of batch chemical
manufacturing for developed nations is likely to increase as commodity manufacture
begins to shift offshore.

Batch processes have achieved a renewed prominence in the chemical process in-
dustries due to their suitability for the manufacture of high value added specialty
chemicals and synthetic pharmaceuticals. These products are typically required in
low volume, and are subject to both short product life cycles and irregular demands.

Since such chemicals are often the key active ingredient in many marketed products
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such as pharmaceuticals, pesticides, dyes, and fragrances, their efficient manufacture
is becoming increasingly important to the competitiveness of the chemical process

industries (Stinson, 1993).

Batch processes have distinct advantages over continuous processes for the pro-
duction of low volume products. Since batch processes employ shared, multipurpose
equipment, a single multiproduct facility can manufacture many products. Sharing
equipment items among products allows for a more efficient deployment of resources
and generates cost savings based on economies of scale. In addition, the ability to
produce many products in the same equipment provides an operating flexibility not
available in continuous manufacturing plants. This flexibility enables the batch plant
to respond to fluctuating markets and rapidly advancing technologies, and is largely
responsible for its use in the production of specialty chemicals. Production can easily
be shifted among products in response to market conditions, and new products may

be introduced to existing facilities without significant capital investment.

Batch processing facilities derive much of their flexibility from the strong dis-
tinction between the batch plant and the batch process. The plant refers to the
multi-purpose facility itself, while the process refers to the operating procedures and
production plans employed to organize the manufacture of different products within
the facility. The design of the batch process and the batch plant represent two sepa-
rate tasks, although the design of one will be strongly influenced by the design of the
other.

The design of the plant requires decisions concerning the superstructure of the
plant. The superstructure is a physical description of the plant equipment, instru-
mentation, and interconnections. Developing the superstructure requires answering
the questions necessary to produce a process and instrumentation diagram. What
unit operations should it include? How many of each type of unit should be in-
stalled? What size should these be? How should the units be arranged? What
interconnecting piping, utilities, and instrumentation should be installed? A typical
objective is to answer these questions in a way that maximizes the future flexibility

of the plant at minimum cost.
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The process design requires the synthesis (or selection) of a sequence of processing
tasks to manufacture a product, the definition of operating policies for every task, the
allocation and scheduling of plant resources, and the development of detailed operat-
ing procedures to implement these tasks in a manufacturing facility. A process must
be designed for every product that is manufactured within the plant, yet the design
of a process for a particular product may depend on the other products manufactured
within the processing facility at the same time.

Most batch plants have a lifetime far greater than the life cycle of the products
they manufacture. In fact, the current trend in the specialty chemicals industry is
toward the manufacture of products with shorter life cycles and higher functionality
that are tailored to specific market niches. Thus, new products are introduced very
frequently, and each time a new or modified process design is required. Macchietto
(1993) predicts that this trend will accelerate. On the other hand, this trend implies
that the expected production requirements of the plant are often unknown at the
time of its design, complicating the application of systematic design methodologies
for equipment sizing, selection, and plant layout. For these reasons, this thesis has
focused on the design of the process, paying particular attention to the batch process

development problem defined in the next section.

1.2 Batch Process Development

The goal of batch process development is the design of an efficient process rather than
the design of a flexible manufacturing facility. In fact, the new process is usually in-
corporated into an existing facility. The engineer charged with the development task
faces the challenge of designing a large scale process for a recently created or mod-
ified product. The information generated from the original synthesis of the product
(often an experimental procedure) serves as the starting point. The engineer must
derive operating policies for the tasks, and select and schedule the plant’s equipment.
However, the design of the process is driven by economic factors and constraints not

considered at the bench scale. The engineer must also consider issues such as safety,
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environmental impact, scale effects, and the suitability of construction materials in

order to develop a feasible and economic process.

Existing market conditions highlight two motivations for process development to
be addressed from a research standpoint. First, these processes must be developed
rapidly. In some cases, this provides a competitive advantage by facilitating faster
market penetration, by exploiting patent protection to the fullest extent, and by
meeting customer expectations. In other cases, such as custom and toll manufacture,
rapid process development is required to meet contractual obligations and to compete
for new business. Second, these processes must be efficient. Increasing the economic
efficiency of manufacture is required to compete on a cost basis; thus, it may increase
profit margins or determine if a test marketed product is adopted. Efficient man-
ufacture also permits the revenue stream for a product to continue past the patent
expiration, and allows current and expected environmental regulations to be met —
both growing concerns in the specialty chemical and pharmaceutical industries (Ah-
mad, 1997). Moreover, these two objectives, rapid development and high efficiency,
are not necessarily mutually exclusive. However, as Laird points out (Stinson, 1993),
current development procedures typically only address one or the other. The ultimate
objective is to develop efficient batch processes rapidly.

The situation that custom chemical manufacturers often face illustrates the im-
portance of the rapid development of efficient designs. In many cases, a custom
manufacturer receives synthesis information for a specific chemical and must define
feasible operating policies for the tasks and allocate the resources within their manu-
facturing facility. Custom manufacturers must be able to solve these problems quickly
in order to assess the cost and time required to manufacture the requested product.
A manufacturer cannot afford to sign a contract to manufacture a chemical that they
cannot produce on their equipment within the allotted time. These producers must
comply with contractual obligation to remain in business, so rapid evaluation of the
feasibility of the proposed commitments is essential. In addition, they must develop

efficient designs to remain competitive.

The urgency for methods and tools specifically aimed at the synthesis and de-
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velopment of batch processes has been recognized in recent years; for example, at

Chemical Specialties USA ’92 Trevor Laird stated (Stinson, 1993):

. custom producers are still under some pressure to control costs as
well as to comply with changing environmental and safety regulations.
One way in which producers and their clients can meet these needs is by

paying closer attention to chemical process development.

Laird also emphasizes the fact that process design is typically subjected to extreme
time pressure, so often the most economic or environmentally sound processes are
overlooked. The screening models introduced in this thesis employ the available
information in a timely manner to identify promising design alternatives at an early
stage of the design process. The limited time for development can then be devoted

to the most promising alternatives.

1.3 Design Methods for Batch Process Develop-
ment

The information generated from the original synthesis of a product, often an experi-
mental or pilot plant procedure, serves as the starting point for process development.
The synthesis provides the engineer with a sequence of processing tasks capable of
transforming raw materials into the desired products along with a feasible sequence
of operations that purify the product. In addition, the laboratory scale synthesis pro-
vides the engineer with the set of operating policies used for each task at the bench
scale. An operating policy is distinguished from a task in the sense that it assigns spe-
cific values to quantities, and specific functions to control profiles, rather than a class
of similar operations such as “semi-batch operation of Reaction 1.” The sequence
of processing operations (the tasks) combined with operating policies is commonly
referred to as the process recipe. Most of the previous research in the batch area,
typically in the areas of plant design and scheduling, considers the recipe to be fixed

a priori, as documented in the review papers of Rippin (1993) and Reklaitis (1989;
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1992). Such research aids the engineer facing the process development problem by
helping him or her determine a feasible and cost effective allocation of the plant’s
resources (equipment, labor, and utilities), provided that he or she attempts to im-
plement the recipe developed at the bench scale directly in the manufacturing facility.
However, in many cases direct implementation will not be feasible. Moreover, even
if it is feasible, direct implementation is typically inadvisable since the objectives
of the bench scale experiments differ from those of full-scale manufacture (Allgor et
al., 1996). Thus, the engineer may achieve more profitable designs by modifying the

recipe during batch process development.

Obviously, the optimal design of a process to manufacture a given product must
simultaneously consider changes to the process recipe and to the allocation of facility’s
resources. Since limited time is available for process development, recipe modifications
can only be considered if they are evaluated efficiently. We advocate the use of
detailed dynamic models, validated against pilot plant and bench scale experiments,
to predict the performance of a particular design. Since the recipe comprises synthesis

and design information, the modeling procedure must cope with changes to both.

The synthesis information includes reagent and solvent selection, reaction chem-
istry, and the structure of the network of processing tasks. Although the reaction
pathways and processing steps employed at the bench scale need not remain fixed
during the process development, in many cases insufficient information is available to
model potential synthesis changes without resorting to detailed bench scale experi-
mentation. Therefore, this thesis does not consider the identification of new solvents
and reaction pathways (Knight et al., 1993; Knight and McRae, 1993; Crabtree and
El-Halwagi, 1994). However, we consider cases in which decisions involving the se-
lection of reagents and solvents from a list of candidates (see Modi et al. (1996) for
example) can be systematically evaluated using mathematical models during the pro-
cess development. In addition, the selection and location of separation stages and the
recycle structure are considered during the process development. The synthesis deci-
sions typically involve selecting from a set of discrete choices, where different dynamic

models may be employed to describe each.
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The process design specifies the operating policies for the processing tasks de-
fined at the synthesis stage and a feasible allocation of the manufacturing facility’s
resources. For a given equipment assignment, the effect of changes to the operating
policies of the tasks can be predicted using dynamic simulation or dynamic optimiza-
tion. In the remainder of this section, we consider the general approaches that have
been applied to the process development problem, and demonstrate that the problem
in which we are interested can be formulated as a mixed-integer dynamic optimization

problem.

Batch processes have typically been designed using a sequential procedure, similar
to the one shown in figure 1-1, that begins with the discovery of a new product in
the laboratory. The engineer charged with the development task then determines
feasible operating policies for the tasks in the manufacturing-scale equipment and a
feasible allocation of the manufacturing facility’s resources for production. Although
the decisions made at all three stages of the design effect the efficiency of the process,
most batch process design research has considered the process recipe to be fixed
(Rippin, 1993), focusing on the third stage of the sequential design procedure. Only
a few researchers have examined methods to incorporate recipe modifications during
the design of a batch process (discussed in chapter 2), and to date, none have proposed
rigorous techniques that can handle the discrete and dynamic operating decisions

simultaneously.

In many situations, the partitioning between the process synthesis and the latter
stages of process development arises naturally. This is commonly the case with cus-
tom chemical manufacturers who are contracted to deliver a specific chemical to fulfill
an order from a single customer. In many cases, the custom manufacturer receives
the synthesis information for the product and is left with the task of defining feasi-
ble operating policies and allocating the resources within the manufacturing facility.
In large chemical companies, organizational boundaries may implicitly require the
separation between the synthesis and design stages of the process development. For
instance, many companies have separate departments, sometimes located at different

sites, dedicated to research and process engineering. This separation restricts the in-
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Figure 1-1: Sequential design procedure often used for process development.

tegration of design tasks; more complete integration of the design process requires a
change in the structure of manufacturing organizations (Reklaitis and Preston, 1989).
Until such changes are realized, many processes will be designed while the process
synthesis information remains fixed. However, even if the synthesis is separated from
the rest of the design, the development of the operating policies and equipment allo-
cation should not be partitioned.

Barrera and Evans (1989; 1990) demonstrated that the ability to modify the pro-
cess recipe, both to improve performance and ensure feasibility of the processing
tasks, is critical to the success of the design. They decomposed the process devel-
opment problem (without the synthesis aspects) into the performance and structure
subproblems based on the nature of the decisions addressed in each subproblem; these
subproblems are analogous to the final two tasks in figure 1-1. The objective of the
performance subproblem is to determine optimal operating policies for the sequence
of processing tasks once the plant resources (e.g., equipment, labor, and utilities)
have been assigned. The structure subproblem seeks to find the optimal allocation of

plant resources after the process recipe has been fixed, and involves both continuous
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and discrete decision variables, but contains no process dynamics. Methods are cur-
rently available for the solution of each of these subproblems. On the one hand, the
performance subproblem defines a dynamic optimization problem. Solution of this
subproblem requires detailed dynamic models of the processing tasks, or the ability
to evaluate the operating policies using extensive experimentation. Charalambides
et al. (1993) demonstrated that the performance subproblem can be represented and
solved as a multistage dynamic optimization problem, once the processing structure
and control variables have been selected. They have applied this technique to several
examples (Charalambides et al., 1995a; Charalambides et al., 1995b; Charalambides,
1996). On the other hand, the structure subproblem represents a combinatorial opti-
mization problem that can be addressed using mixed-integer linear or nonlinear pro-
gramming techniques. Since the process will typically be operated in campaign mode,
the structure subproblem represents a problem that has been addressed by both the
batch scheduling and batch plant design literature (Reklaitis, 1989; Reklaitis, 1992;
Rippin, 1993).

Although established techniques now exist to solve both subproblems in isolation,
to date no methods exist to address them simultaneously. At best, ad hoc itera-
tions between the two subproblems have been performed, resulting in an evolutionary
procedure for the improvement of a ‘base case’ design (Barrera, 1990; Salomone et
al., 1994). Barrera’s approach iterates between the performance and structure sub-
problems, fixing the variables used in one subproblem while the other subproblem
is solved; i.e., the performance is optimized for a given structure, and the structure
is optimized for fixed operating policies, as shown in figure 1-2. He demonstrated
the significant benefits that could be gained by considering the optimization of both

resource allocation and operating policies together, even using an ad hoc procedure.

With this iteration strategy, either subproblem can be solved to optimality every
time the variables in the other are updated, placing one subproblem in an outer
optimization loop and the other in an inner loop. Placing the performance subproblem
in the outer iteration loop yields a local improvement strategy for the initial design;

iterations are terminated based on the lack of improvement in the current solution.
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Figure 1-2: Ad hoc iteration iteration strategy employed in an evolutionary approach.

At termination the original design has been improved, but no information is available
to indicate how close this design may be to the global optimum or to suggest whether
further optimization is warranted. Placing the structure subproblem in the outer
iteration loop permits enumeration of the discrete space, but provides no way to

prune the discrete space, making total enumeration inevitable.

In order to avoid total enumeration of the discrete space, rigorous lower bounds
on the cost of the overall design are required. Although the structure subproblem is
incapable of providing such bounds, this thesis employs engineering insight to derive
lower bounds on the production cost for networks comprised of batch reaction and
distillation tasks. These models are introduced in the next section. They permit the
derivation of a rigorous iteration strategy for the improvement of batch processes that

is introduced in section 1.5.
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1.4 Screening Models for Batch Process Develop-

ment

This thesis introduces the concept of screening models for batch process development.
Screening models yield a rigorous lower bound on the cost of production, providing
both design targets and a valid way in which to prune or screen discrete alternatives
(process structures and equipment configurations) that cannot possibly lead to the
optimal solution. These models consider changes to the process structure, the op-
eration of the tasks, and the allocation of equipment simultaneously. In addition,
these models embed aspects of the process synthesis not considered in previous re-
search dealing with batch process design. However, they do not provide a detailed
process design, so they must be used in conjunction with techniques that consider
the dynamics of the process in detail, such as the multi-stage dynamic optimization
formulations used to address the performance subproblem (Charalambides, 1996).
Screening models provide targets for the design of batch processes which can either
be used in isolation, used to enhance existing approaches, or used as the foundation
for a rigorous decomposition strategy for the solution batch process development
problems. In isolation, the solution of the screening model may be all that is needed to
determine whether it is worth pursuing further development of a new product. If the
product is not profitable given a lower bound on the manufacturing costs, then there
is no need to pursue further design or experimentation. Screening models provide a
design target to which the solutions from the sequential or evolutionary approaches
may be compared. This comparison can be used to assess the potential benefits of
continued optimization. Since the evolutionary approach is merely a local search
technique, the solution of the screening model may indicate whether the iteration
should be attempted from another initial point. If another sequence of iterations is

justified, the solution provides a prime candidate for the initial point of this sequence.

Screening models can also be used to identify a set of candidate solutions which
may have a lower cost than a given base case design. The performance problem

can then be solved for each of these discrete alternatives. Used in this fashion, the
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screening models provide a rigorous way to prune the space of discrete alternatives.
In addition, the solution of the screening model provides good initial guesses and a
feasible processing structure for the multistage dynamic optimization problem solved
to obtain a detailed design. This point is discussed in more detail in section 2.4.
Although the screening models can be employed merely to identify candidates for
enumeration, their lower bounding properties can also be exploited to derive a rigorous

decomposition algorithm to address batch process development.

1.5 Rigorous Decomposition Algorithm

Screening models also enable the derivation of a rigorous decomposition strategy for
batch process development that is detailed in section 2.4. The strategy is quite simple
and is diagrammed in figure 1-3. First, the screening model is solved to provide a
lower bound on the solution of the corresponding performance subproblem (this is
a lower bound on the global solution on the first iteration). The solution of the
screening model also provides values of the binary variables satisfying all of the logical
constraints (e.g., equipment allocated to performed tasks, equipment assigned from
available inventory, etc.) and initial guesses for the material flows and control profiles
for the dynamic optimization. The performance subproblem, a multistage dynamic
optimization, is then solved. The solution of this problem represents a feasible design,
so if it is better than all of the designs that have been found so far, we update the
value of the objective. We add an integer cut to the screening model to exclude the
solution just found and solve the screening model again. After each solution of the
screening model, we check to see if either the problem is infeasible or the solution is
greater than the best solution of the performance subproblem found so far. If either of
these is true, we terminate the iteration with the confidence that we have rigorously
searched the space of discrete alternatives.

Since this thesis considers campaign manufacture in which every equipment item
is dedicated to a specific task (or set of sequential tasks) and allocated for the duration

of the campaign, the equipment assignment remains fixed over the entire campaign.
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Figure 1-3: Decomposition algorithm for batch process development.

In addition, every batch is processed in exactly the same fashion and end effects are
ignored during the optimization of the process. These assumptions imply that the
integer decision variables are fixed for the duration of the entire campaign, so they
can be represented as time invariant parameters that are restricted to {0,1} within
the dynamic optimization. Thus, the dynamic optimization problem representing
the performance subproblem can be augmented with the constraints of the structure
subproblem to yield a mixed time-invariant integer dynamic optimization (MIDO)
problem (Allgor and Barton, 1997b); MIDO problems are discussed in detail in chap-
ter 9, and the batch process development example from chapter 4 is formulated as
a mixed time invariant integer dynamic optimization problem to demonstrate this
point.

As discussed in chapter 9, the reason that well known decomposition approaches
used for mixed-integer nonlinear programming (MINLP) problems cannot be ex-
tended to the MIDO problem is that valid constraints for the Master problem cannot
be derived from the mathematical form of the primal problem (the dynamic optimiza-
tion). Therefore, the key to deriving a rigorous decomposition strategy for the MIDO

problem is the ability to formulate a model that defines rigorous (and useful) lower
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bounds on the objective function, that overestimates the space of feasible designs,
and that can be solved to guaranteed global optimality. However, we have already
mentioned that the screening models provide valid lower bounds for the solution of
the MIDO representation of the batch process development problem. Thus, the same
decomposition strategy can be applied to other classes of mixed time invariant inte-
ger dynamic optimization problems, provided that suitable screening models can be

derived.

The decomposition algorithm requires models at two very different levels of detail.
The screening models are algebraic models that contain limits of the performance of
the dynamic process and address the discrete design decisions. On the other hand,
the detailed dynamic models of the processing tasks employed within the performance
subproblem represent the processing tradeoffs as accurately as possible. As might be
expected, the tools and expertise needed to address each of these problems also differs.

The subproblems within this algorithm motivate the parts of this thesis.

Engineering insight and combinatorial optimization are required for the formu-
lation and solution of the screening models. The formulation and solution of these
models is the focus of the chapters contained in the first part of this thesis. On the
other hand, the solution of the performance subproblem requires robust techniques for
the solution of hybrid discrete/continuous differential-algebraic systems. The advent
of sophisticated equation based modeling environments (Barton, 1992) coupled with
the increasing availability of libraries of dynamic models facilitate the definition of the
performance subproblem, but the requirement that these models must be solved accu-
rately, efficiently, and robustly places severe expectations on the numerical integration
techniques. The application of state-of-the-art hybrid discrete/continuous simulation
languages to the simulation and optimization of batch reaction and distillation tasks
has uncovered several previously unreported numerical problems encountered during
solution of the initial value problems (IVP) required for both dynamic simulation and
optimization. Part 2 of this thesis identifies and mitigates some of these numerical
problems, improving both the robustness and efficiency of the numerical integration

code. These improvements become particularly important when solving dynamic op-
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timization problems, since the integration code must be robust enough to deal with

the automated manipulation of control profiles without user intervention.

1.6 Numerical Issues in the Detailed Simulation of

Batch Processes

As has been recognized for some time (Fruit et al., 1974), batch processes are charac-
terized by both discrete and continuous dynamic behavior. While phenomena such as
the mass, momentum, and energy balances can be described by continuous dynamic
models, the control actions required to drive these models through the scheduled op-
eration of the processing tasks impose a set of discrete changes. Discrete changes also
arise naturally due to physical changes such as the appearance and disappearance of
phases. Thus, combined discrete/continuous dynamic models are required to repre-
sent the detailed behavior of batch processes. Any suitable simulation environment
must provide facilities to represent both aspects of the behavior and provide robust
techniques for the solution of the resulting models.

The development of simulation methods to address batch processes has evolved
along similar lines to general techniques for combined discrete/continuous simula-
tion. The initial tools developed for the simulation of batch processes (Fruit et al.,
1974; Joglekar and Reklaitis, 1984; Czulek, 1988) augmented discrete event simula-
tors (Pritsker and Hurst, 1973; Pritsker, 1986; Sim, 1975) with limited continuous
dynamic modeling capabilities, usually in the form of models for specific processing
steps. On the other hand, more recent developments have added discrete event ca-
pabilities to sophisticated continuous dynamic modeling languages such as Speedup
(AspenTech, 1993) and DYNSIM (Sgrensen et al., 1991). Barton (1994) provides
a review of these technologies. While the former class has proven to be a useful
complement for production planning and scheduling tools that employ more abstract
models, extension to process development problems has proven problematic, even by

people who have touted the benefits of such tools (Terry et al., 1989).
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For several reasons we feel that the detailed modeling and optimization of batch
processes required for batch process development necessitates the use of sophisticated
dynamic modeling environments augmented with discrete capabilities (e.g., ABA-
CUSS (Barton, 1992)). The modeling environment decouples the description of the
model describing the behavior of the physico-chemical transitions occurring within
the equipment units from the sequence of control actions imposed on the process. Re-
gardless of the nominal mode of operation, only one model of the physical description
of the system needs to be developed. Processing operations are described by deriving
schedules comprised of task entities to represent the external actions applied to the
system. This decomposition into the model of physical behavior and the schedule
of external actions allows a given physical model to be reused under many different
operating scenarios. The discrete attributes are represented by changes to the func-
tional form of the system of differential-algebraic equations describing the continuous
dynamic behavior. This decomposition facilitates the modeling of semi-batch, semi-
continuous, and continuous units along with those operating in a batch mode within
a single environment. It also permits the modeling of processes in which the integrity

of batches is not maintained.

These environments permit individual tasks to be simulated in isolation, but more
importantly, they permit detailed analysis of the dynamic interactions between pro-
cessing tasks, as demonstrated by several examples reported in the literature (von
Watzdorf et al., 1994; Winkel et al., 1995). In particular, modeling the entire batch
process permits a systems approach to the process design. System simulation is re-
quired to assess the process alternatives considered during the design of integrated
batch processes, especially those processes containing recycles of material from one
batch to another. For example, batch processes designed for pollution prevention may
recycle cuts from a batch column to an upstream reaction task (Ahmad and Barton,
1994). System simulation is also required to optimize integrated processes in which
processing tradeoffs between upstream and downstream tasks are exploited, such as
those considered by Charalambides (1996) and those considered within this thesis.

The dynamic interactions between processing steps can be as simple as a model of a
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reaction vessel with an overhead condenser, yet they may complex enough to consider
an entire batch process in which not only the main processing steps are considered,
but also the detailed dynamic interactions between different equipment units, the in-
terconnecting piping, valves, and pumps are modeled. Thus, the environment permits
a convenient framework in which to model and evaluate the operating procedures that

will be carried out by the plant operators and control system.

Combined discrete/continuous modeling environments also provide the flexibility
required to model the batch process at an appropriate level of detail. Models are
constructed from the equations representing the physical behavior of interest. Simple
models are then combined in a hierarchical fashion to construct models of more com-
plex phenomena. As demonstrated by Allgor et al. (1996), this modeling flexibility
is required for the scale-up of a batch process from the laboratory to manufacturing
equipment. For example, the heat transfer equipment and geometry of the manufac-
turing vessels may dictate the feasibility of proposed operating policies. Thus, a basic
model of the processing behavior must be easily adapted to suit the performance of
tasks in specific items of equipment and to model tasks that may not be available
from a standard library of operations. For example, batch distillation simulations
can be posed using models of varying complexity that can be tailored to represent
the specific type of heat transfer equipment, control system, and column configura-
tion (e.g., rectifier, stripper, or middle vessel (Davidyan et al., 1994)) that exist in
the actual manufacturing facility. ABACUSS simplifies the maintenance of models
at different levels of detail through the use of model inheritance, permitting a basic
model of the physical behavior to be refined to suit a particular item of equipment
(Barton, 1992). Modeling flexibility is also required for a quite different reason during
the development of batch processes. In many cases, a limited amount of information
is available at the start of the development process. Thus, the models of both the
physical properties and the behavior of the system may be quite simple at the start
of the development process. For instance, only mass balances and crude approxi-
mations of the processing times of the tasks may be required at the initial stage of

the design. As more information becomes available, more detailed models may be
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employed. Thus, each of the basic processing steps in a manufacturing process may
be represented by a set of models, varying in the level of detail, before the design
is completed. Furthermore, it may not be possible or cost effective to obtain data
(VLE, reaction kinetics, etc.) that may be required for the application of the most
detailed models. Therefore, the modeling environment must provide the flexibility
to combine detailed and simple models not only during different stages of the model

development, but also during a particular simulation experiment.

Combined discrete/continuous modeling environments such as ABACUSS meet
all the requirements outlined above, and we believe that they are the only technology
available that is suited to address the detailed modeling of general batch processes.
Furthermore, the equation-based representation of the models is well-suited to the ap-
plication of dynamic optimization techniques. These environments incorporate useful
features from the standpoint of model development and flexibility, but they require
knowledgeable users to take full advantage of their capabilities because proper model
construction and specification of a correct simulation experiment are both nontrivial
tasks. Not only are features to analyze the index of the DAEs (Feehery and Barton,
1995) and to assist with the specification of initial conditions (AspenTech, 1993) re-
quired, but also facilities to analyze the structure and degrees of freedom during the
model development would be useful. However, the demands placed on the users of
such systems pales in comparison to the expectations placed on the numerical codes
employed to solve these generic combined discrete/continuous problems. The model-
ing environments draw their flexibility from the separation between the description of
the model and the numerical techniques employed to solve the simulation experiments,
which is precisely what places severe demands on the numerical solution techniques.
The numerical analysis portion of this thesis has grown out of the need to improve
the accuracy, efficiency, and robustness of the numerical procedures used to solve the
discrete/continuous dynamic models of the batch processing tasks required for the

design of detailed operating policies.
Using ABACUSS to simulate the batch distillation of wide-boiling azeotropic

mixtures has uncovered some previously unreported numerical difficulties that are
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described in chapter 7. We have determined that the problems observed indicate a
breakdown in the integrator’s error control strategy, demonstrating that the poten-
tial exists for inaccurate results to be obtained without any warnings issued by the
integration code. This research identified the source of the numerical difficulties as
an ill-conditioned corrector matrix. We have developed a strategy to guarantee the
accuracy of the solution to the mathematical model in spite of the fact that the com-
putations are performed on machines of finite precision. Chapter 7 derives a strategy
that automatically determines the optimal scaling the variables and equations of the
models during the integration. This reduces the effect of ill-conditioned models and
provides the modeler the freedom to work with a convenient set of units when writ-
ing the models. When used in conjunction with automatic differentiation techniques,
it permits the automatic determination of the effects of the rounding error on the
solution of the corrector iteration. This allows the integration code to automati-
cally detect simulations in which the potential exists for the integrator’s error control

procedure to break down.

Given the limited time available for process development, efficient solution tech-
niques are required for integration and dynamic optimization of detailed process mod-
els. Therefore, we have improved the efficiency of the numerical integration techniques
available for the type of models in which we are interested. The well known differential
algebraic equation code DASSL (Petzold, 1982a) was tailored for large sparse unstruc-
tured systems as part of this research. The resulting code has been called DSL48S
(Feehery et al., 1997). The code employs the MA48 linear algebra routines, works
with a combined analytical and numerical Jacobian matrix, and has incorporated the
automated scaling algorithm in chapter 7. The code also contains an efficient method
for sensitivity analysis that was developed by Feehery and Barton (1997). In addi-
tion, the code employs a new method to start the backward differentiation formula
integration codes efficiently, an important feature when solving discrete/continuous
systems. This method is described in chapter 8. The method consists of two main
steps. First, the time derivatives of the algebraic variables and the second order time

derivatives of the differential variables are determined at the initial time. We define
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criteria for the optimal initial step size, and demonstrate that the information pro-
vided by the second order time derivatives of the differential variables can be used
to estimate this optimal initial step length. The second step of the procedure si-
multaneously determines the optimal initial step length and the values of the system
variables at this step length by augmenting the system of equations solved during
the corrector iteration. This method improves the efficiency of the integration code
during the initial phase of the integration and substantially reduces the number of

convergence and truncation error failures encountered.

1.7 Outline of Thesis

The thesis is divided into two parts. Each part focuses on techniques for the for-
mulation and solution of one of the two subproblems involved in the decomposition
approach introduced above. The first part emphasizes the formulation and applica-
tion of the screening models to batch process development. The second part focuses
on improvements to the numerical solution techniques employed for the integration
of the discrete/continuous dynamic models.

The first part of this thesis focuses on the derivation and application of screening
models for batch process development. Chapter 2 reviews the previous research that
has addressed batch process development and motivates the development of screening
models. Section 2.4 describes the decomposition algorithm for batch process devel-
opment in more detail. Chapter 3 develops screening models for networks of batch
reaction and distillation tasks. We prove the bounding properties of the models for
the types of processes considered. We show that these models can be cast as mixed-
integer linear programming problems. Chapters 4 and 5 demonstrate the application
of the screening models to case studies. The case studies also show how reaction

targets can be derived and incorporated into the models.

The second part of this thesis improves the numerical solution procedures for the
hybrid discrete/continuous initial value problems. Chapter 6 illustrates the numer-

ical difficulties that motivated this portion of the research and reviews some of the
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mathematical background required to understand the subsequent chapters. Chap-
ter 7 proves that the observed numerical difficulties are caused by an ill-conditioned
iteration matrix, and explains how the integration codes error control strategy can
permit the generation of ‘spikes.” Chapter 7 also derives an automated technique to
scale the iteration matrix, mitigating the effects of ill-conditioning, and proves that
this scaling comes very close to the optimal scaling for the sparse unstructured ma-
trices with which we are concerned. Chapter 8 derives a novel and efficient method
for starting the DAE integration codes employed for the solution of the IVPs en-
countered during hybrid discrete/continuous simulation and optimization. Chapter 9
defines mixed time invariant integer dynamic optimization problems and illustrates
that conventional MINLP algorithms cannot be extended to this class of problems.
However, the decomposition strategy for batch process development can be extended
to this class of problems provided that suitable screening models can be derived. We
prove the correctness of the decomposition algorithm, and illustrate that batch pro-
cess development can be cast as mixed time invariant integer dynamic optimization

problem.
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Chapter 2

Batch Process Development

Batch process development is encountered frequently in the specialty chemical and
synthetic pharmaceutical industries. Process development requires the design of a
manufacturing process for a new or modified product in an existing manufacturing
facility. The engineer’s ability to design an efficient batch process that fits into the
available equipment rapidly is critical to the success of many specialty chemical man-
ufacturers (Allgor et al., 1996).

Traditionally, changes to the process recipe have not been considered, and a se-
quential design procedure has been employed (see figure 1-1). The process synthesis
and operating decisions are made at the bench and/or pilot plant scale, and then
the engineer allocates and schedules the equipment in the manufacturing facility for
production. Recently, researchers have considered employing mathematical models
of the processing tasks to evaluate the impact of recipe modifications during process
development. Their research, reviewed in the next section, highlights the benefits
provided by performing recipe modifications in conjunction with the allocation of
plant resources. However, none of this research considers rigorous methods for the si-
multaneous optimization of the discrete and continuous decisions encountered during
batch process development. This thesis addresses this deficiency.

The screening formulations derived in this work address the discrete and continu-
ous decisions encountered during process development simultaneously. The proposed

screening formulations provide bounds on the best attainable process design by opti-
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mizing the process recipe and equipment allocation concurrently. The resulting mod-
els optimize the processing structure and the allocation of plant resources in detail by
replacing the detailed dynamic performance models with targeting models guaranteed
to provide lower bounds on the design cost and to overestimate the feasible region of
operation. Furthermore, these models can be solved with reasonable computational
effort to guaranteed global optimality. The screening formulations are incorporated
within a design methodology that permits detailed treatment of the continuous oper-
ating decisions as well, allowing an engineer to perform optimal batch process devel-
opment. The approach introduces a novel way in which performance bounds based
on engineering insight can be combined with detailed discrete/continuous models of
process dynamics and sophisticated dynamic optimization algorithms to yield a sys-
tematic methodology for batch process development. The procedure considers both
the discrete and continuous design decisions and incorporates some elements of the
process synthesis during the process design. Chapter 3 describes how the desired
bounding property is preserved during the formulation of the screening models. The
rigorous lower bounds provided by these models also enables a rigorous decomposition
algorithm for optimal batch process development to be derived. This algorithm, which
is discussed in section 2.4, represents the first rigorous and systematic methodology

for the optimization of these processes.

2.1 Previous Research

Allgor et al. (1996) clearly demonstrated the industrial importance of batch process
development, and stressed the need to develop methodologies to address process de-
velopment in a systematic fashion. The ability to modify the process recipe in order
to improve the performance or ensure the feasibility of the processing tasks is critical
to the success of the design obtained. In fact, Rippin (1993) highlighted both the
importance and difficulty of varying task performance during batch process design,
and chronicled the lack of attention that the problem has received. Despite its impor-

tance, only a few researchers have examined systematic methods to incorporate recipe
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modifications during the design of a batch process, and to date, no one has proposed
techniques to consider the discrete and dynamic operating decisions simultaneously.
We will examine the existing research in two categories. First we briefly examine the
research that considers the recipe fixed a priori, and highlight what elements of this
research can be applied to the development problem. Next, we assess the applicability
of the research that has considered recipe modifications to the process development

problem.

Partitioning the research into these two categories follows naturally from the se-
quential approach often used by industrial manufacturing concerns to develop a new
process. The typical sequence of events is shown in figure 1-1. First, a new or mod-
ified product is discovered in the laboratory. Next, improvements in the chemical
synthesis and product purification are performed at the bench scale before present-
ing the engineers with a process recipe. The engineers may then decide to test the
operating policies they receive for feasibility and make minor modifications based on
experience or other analysis tools; for instance, suitable reflux ratios for the columns
could be determined using Batchfrac (AspenTech, 1991). Once the operating policies
are satisfactory, the final process recipe is implemented in the production facility on
the available equipment in the most cost effective manner. Existing research focuses

on one of the steps in this sequential procedure.

As previously mentioned, partitioning the design decisions into two sets, those
defining the operating policies of the tasks and those defining the allocation of the
facility’s resources, decomposes process development into the performance and struc-
ture subproblems. The existing research can only address variations on either one
of these two subproblems. At best, ad hoc iterations (shown in figure 1-2) between
the two subproblems have been performed. The previous research in this field will be
discussed according to its relation with the structure and performance subproblems,
and strategies designed to couple the decisions in the two subproblems will also be

covered.
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2.1.1 Design with Fixed Recipes

Most of the research related to batch process design considers the recipe to be fixed.
Thus, aspects of this research may apply to the structure subproblem encountered
during process development. This research can be broadly classified into the batch
scheduling and plant design problems, and some of the techniques used for each prob-

lem can benefit process development.

In the typical batch plant design formulation, the installation cost of plant re-
sources is minimized subject to a fixed set of production requirements and fixed
recipes. This deterministic design problem was first addressed by Ketner (1960) and
later by Loonkar and Robinson (1970; 1972). The original formulations of the batch
plant design problem considered only simple operating scenarios. Subsequent research
has considered more complicated scheduling aspects, design of multiproduct and mul-
tipurpose plants, uncertainty in the production demands and process performance,
and the selection of equipment in discrete, rather than continuous, sizes (Rippin,
1993). The progress on this problem has been reviewed by Reklaitis (1989) and Rip-
pin (1993). The growth in the list of publications since Rippin’s previous review
(1983a) demonstrates that a significant amount of research has been conducted over
the last ten years. However, progress in these areas has been incremental, and to this
date a rigorous formulation of the problem that accounts for all possible alternatives
has not been found; appendix D reviews this literature in more detail. Hence, in
his most recent review, Rippin (1993) characterized the progress in this research as
“filling in the holes.” In addition, little effort has been devoted to questioning the
fundamental assumptions of the plant design problem. This is disappointing since
many of these assumptions severely limit the application of the technology. For in-
stance, only limited uncertainty in the production demands placed on the plant over
its lifetime have been considered, yet the life cycle of the products is usually far
shorter than the lifetime of the plant. Many products are subject to quickly chang-
ing markets or may be displaced by rapidly advancing technologies, so the products

that will be manufactured in the plant near the end of its lifetime are most probably
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unknown at the time of its design. This fact has not been addressed in the litera-
ture, although organizations considering investment in a new multipurpose facility

are forced to confront this problem.

The batch plant design problem typically assumes that the products will be man-
ufactured in campaigns, either in single product campaigns, or mixed product cam-
paigns (Birewar and Grossmann, 1989) with either single or multiple production
routes (Faqir and Karimi, 1989; Faqir and Karimi, 1990). Since the products con-
sidered in the batch process development problem will also be manufactured in cam-
paigns, the scheduling and equipment allocation techniques created for batch plant
design can be applied to process development. In addition, the equipment allocation
and scheduling constraints developed for the plant design problem can handle some
of the complications that arise from implementing the process in an existing manu-
facturing facility. In particular, Knopf et al. (1982) introduced processing times that
depend on both the equipment item and the batch size, a necessity when dealing with
the recipe modifications considered in process development. In addition, the use of
an existing facility dictates that the equipment must be chosen from an inventory
of available items. The allocation constraints in this situation are similar to those
developed to address plant design when the equipment items are only available in
discrete sizes (Voudouris and Grossmann, 1992a).

Although the objectives of the plant design and the batch process development
problems are different, the constraints related to the allocation of equipment are very
similar because both problems address campaign manufacture. In many cases, the
plant design problem contains both discrete and continuous variables, but contains
no dynamic behavior. This permits the use of MILP and MINLP optimization pro-
cedures to solve the resulting plant design formulations. Heuristic, mathematical,
and hybrid optimization techniques have been applied to the solution of these for-
mulations. In most cases, the ability to solve the resulting optimization problem,
rather than the ability to pose the constraints, governs the complexity of the design

possibilities considered.

The batch process scheduling problem has also received a lot of attention in the
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academic literature (Reklaitis, 1989; Reklaitis, 1991; Reklaitis, 1992; Pekny and Zent-
ner, 1993; Pantelides, 1993). Given a fixed set of demands and fixed process recipes,
the available plant resources are allocated in an optimal fashion over a given time
horizon. Initial approaches for the scheduling problem considered either flexible op-
erating scenarios using heuristic or approximate methods to optimize the operation or
found exact solutions under more restrictive operating configurations. The two major
challenges in the short term scheduling of batch plants is finding a mathematical rep-
resentation that permits fully general operating configurations, and finding efficient
solution techniques to solve the models. The former can be met by abstracting the
batch process as a state task network (Kondili et al., 1988; Kondili et al., 1993) or
resourced task network (Pantelides, 1993), uniformly discretizing the time domain,
and casting the problem as a mixed integer linear program using general discrete
time scheduling techniques (Papadimitriou and Steiglitz, 1982). The disadvantage
with these formulations is that the time discretization must be established prior to
the solution procedure so that all processing events start and end on a boundary be-
tween time intervals. This results in formulations with many discrete variables that
are difficult to solve. Advances in the solution methods for these problems have led to
tailored branch and bound procedures and tighter problem formulations that enable
some reasonably sized problems to be solved (Shah, 1992; Shah et al., 1993). Con-
tinuous time scheduling formulations, commonly employed in the operations research
community (Blazewics et al., 1991), can reduce the number of discrete variables re-
quired in batch scheduling problems (Xueya and Sargent, 1994; Pinto and Grossmann,
1995; Schilling and Pantelides, 1996), but they are not yet as robust as the discrete
time algorithms and still require partitioning of the time horizon into a number of
intervals that exceeds the number of events that occur over this time at the optimal

solution.

The flexible operating configurations afforded by the discrete time scheduling for-
mulations are more than is necessary for the processes considered in the batch process
development problem. Process development assumes that the products will be manu-

factured in campaigns, and every batch will follow the same path through the process-
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ing equipment. Provided that batch size dependent processing times are taken into
account, short term scheduling techniques can be applied to the development problem,
but the difficulty in solving the resulting models is probably not warranted because
the modeling flexibility is not needed. However, the state task network representa-
tion of the process developed for the short term scheduling problems does provide a
convenient framework for defining the multistage optimal control problems that can

be used to optimize the operating policies for a given equipment configuration.

2.1.2 Design with Recipe Modifications

The objective of recipe modifications is to increase the process efficiency by exploiting
tradeoffs between the operating cost and the time profiles of key operating variables
and the values of key operating parameters. Recipe modifications have been consid-
ered as part of the plant design and process development problems. In both cases,
existing research addresses slight variations on the performance subproblem proposed
by Barrera (1990). The performance subproblem determines the optimal operating
policies for the processing tasks given a fixed allocation of plant resources and a
set of design constraints (product purity, limiting temperatures, pressures, etc.). For

example, a typical instance of the performance subproblem could be stated as follows:

A process consisting of a single reaction and distillation task has been
synthesized for the manufacture of a particular product; mathematical
models are available to predict the performance of the operating policies.
A 500 gallon stainless steel reactor has been dedicated to the reaction task,
and a 500 gallon packed distillation column with eight theoretical stages
has been assigned to the distillation task. Determine the reagent and
solvent feed policies for the reaction task, reflux policy for each distillation
cut, the time-averaged flows for any recycled material, and the location
of all the product and off cuts that minimize the per unit production cost

of the desired product.

The performance subproblem requires dynamic models of the processing tasks (as-

sumed in the example above), or the abi%tly to evaluate the operating policies using



extensive experimentation. Further, it can be solved as a multistage dynamic opti-
mization problem provided that models are available and the control variables have
been selected (Charalambides et al., 1995a). For the results to be meaningful the
models must accurately represent the complicated dynamic behavior of the process-
ing tasks.

A large volume of research has addressed the optimization of isolated process-
ing tasks, particularly batch reactors and batch distillation columns (Rippin, 1983b;
Hatipoglu and Rippin, 1984; Cuthrell and Biegler, 1989; Diwekar, 1995; Sundaram
and Evans, 1993; Mujtaba and Macchietto, 1993). However, relatively little has been
published on the dynamic optimization of an entire batch process, in spite of the
fact that Barrera (1990) demonstrated that optimizing isolated unit operations can-
not take advantage of the significant tradeoffs that may exist between processing
operations. Both simple algebraic and detailed dynamic models have been employed
to predict the effects of recipe modifications on the performance of the entire pro-
cess, and both rigorous and ad hoc procedures have been used to solve the resulting
models. These approaches address the continuous decisions defining the operating
policies of the tasks, yet none are able to cope with the discrete decisions related to

the equipment allocation at the same time.

Algebraic Performance Models

Tricoire (1992) considered the planning and design of multiproduct batch polymer
processes. He argued that the detailed operating decisions could not be considered
during the design of the overall plant design, particularly for polymer processes in
which the temperature policy and initiator feed rate offer a huge number of possible
operating scenarios. He identified key parameters associated with the performance of
the tasks and selected these as the decision variables for the plant design, and provided
correlations to relate these variables to the size factor, batch size, and cycle time for
the tasks. The resulting design problem was solved using a simulated annealing
algorithm to improve the operation of the process. Improvements over designs in

which the operating conditions were fixed were gained through the application of
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the procedure. His research demonstrates the benefits that can be obtained through

operating policy modifications, even when approximate models are employed.

Salomone and Iribarren (1992) demonstrate that some batch processing operations
can be approximated using algebraic models. Size factors and processing times are ex-
pressed as explicit posynomial functions of certain key operating parameters through
symbolic rearrangement of the algebraic model. Key operating parameters are se-
lected and manipulated to optimize a heuristic design target suggested by Yeh and
Reklaitis (1987). The size factors and processing time functions that optimize the tar-
get are then used as the data for the posynomial model for plant design formulated by
Grossmann and Sargent (1979). The resulting design incorporates operating decisions
and accounts for the interaction between task performance and plant scheduling, but

the operating parameters are determined before the plant design problem is solved.

Montagna et al. (1994) demonstrate that the optimization of the size factors and
cycle times can be conducted at the same time that the optimal unit sizes are de-
termined, and show that the optimal operating conditions differ for a given product
depending on whether it is produced in a dedicated facility or as one of a slate of
products manufactured in a multiproduct facility. They employ the algebraic models
used by Salomone and Iribarren (1992) and add estimates for the utility costs to the
objective. They embed the equations defining the size factors and cycle times as
constraints in the posynomial model for the optimal plant design, forming a general
(non-convex) nonlinear program. They assume that the discrete decisions relating
to the plant design, such as the number of equipment items in parallel, the storage
policy, and the task to stage assignment, are made either before the optimization is
undertaken or that they are determined in an outer optimization loop. They suggest
that heuristic procedures (Tan et al., 1993) may be used to aid in the calculation of
the optimal values for the discrete decisions.

These two approaches have several drawbacks. Even though these models have
been solved systematically, the usefulness of the resulting solution is called into ques-

tion because the complex time-dependent behavior of the processing tasks has been

replaced with algebraic approximations. In addition, the symbolic rearrangement
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required to generate explicit expressions for the size factors may not be possible.
Although the Montagna et al. (1994) formulation does not require symbolic rear-
rangement, the optimization is likely to suffer from the nonconvexities in the feasible
region. Furthermore, if the discrete decisions are made in an outer optimization
loop, well known MINLP decomposition techniques cannot be employed because the
nonlinear models are nonconvex (Sahinidis and Grossmann, 1991; Bagajewicz and
Manousiouthakis, 1991). Thus, the outer loop iteration will either be entirely heuris-

tic or will be doomed to total enumeration of the discrete space.

Detailed Dynamic Performance Models

Barrera (1989; 1990) demonstrated that detailed dynamic models could be employed
to optimize the performance of a batch process. A set of operating parameters were
identified as the decision variables, and the optimization of the process performance
for a given allocation of equipment was posed as a nonlinear program; the solution
of the dynamic models was considered as part of the objective function evaluation
(essentially a control vector parameterization decomposition). A sequential quadratic
programming algorithm was used to solve the resulting problem. The processes exam-
ined contained no recycles, so dynamic models of the tasks were solved sequentially in
order to evaluate the process performance. Operating constraints related to product
purity and temperature were included as constraints in the NLP. Barrera included
this performance optimization as part of an ad hoc iterative procedure to determine
the operating policies and equipment allocation required for process development.
Wilson (1987) determined the optimal performance of a reactive batch distilla-
tion process. The process consisted of a reaction step and a separation step that
could be conducted in the same vessel. Simultaneous reaction and separation allowed
purification of the product during the reaction step which enhanced the reaction per-
formance. Both the capital cost of the reactive distillation unit and the operating
and raw material costs of the process were considered. The process was modeled
by a set of differential equations which were solved using a Runga-Kutta integrator.

The optimal operating conditions and column size were determined through an ad
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hoc manual search over the key variables. His work demonstrates the benefits of
simulation during the design of both the process and the plant, but the simple, one-
unit process considered avoids the complications caused by the interactions between
different processing stages.

Salomone et al. (1994) extend their earlier work on the batch plant design problem
to enable the use of dynamic models. They developed an iterative algorithm which
utilizes dynamic models to calculate the parameters for the posynomial models used
to minimize the annualized investment and operating cost during equipment sizing.
The formulation results in a nonlinear program in which a subset of the operating
parameters are selected as the decision variables; the authors do not state what
procedure is used to update the decision variables or how the updates are determined.
During what would normally be a function evaluation, the DAE models of each task
are solved, and any material recycles are converged. It is assumed that product
specifications can be met at the assigned values of the decision variables. Next size
factors and expressions for the processing times are determined from the simulation
results using symbolic manipulation. With this information, the posynomial model
is solved to provide both the optimal equipment sizes and the value of the objective
function for these operating conditions. The iteration strategy they propose is very
similar to the process outside-structure inside (POSI)! iteration proposed by Barrera
(1990); the structure subproblem used to optimize the equipment allocation within
process development has merely been replaced by the posynomial model used to select
the optimal equipment sizes for the plant design. The optimization they propose
cannot deal with values of the decision variables that are unable to satisfy the product
specifications, and the method cannot handle path constraints.

Bhatia and Biegler (1996) considered the design of a batch plant in which the
equipment sizes and the operating policies of the tasks were optimized using dynamic
optimization. They considered a sequence of processing tasks without material re-
cycles operating in either the zero-wait or unlimited intermediate storage mode of

operation. The tasks were modeled using simple differential algebraic models of the

1See figure 2-1.
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tasks; for instance, they employed a shortcut distillation model based on the Fenske,
Underwood, and Gilliland correlations. The scheduling of the units is determined
by calculating the limiting batch size and cycle time of the processing trains. They
formulated the optimal process design as a dynamic optimization problem in which
the operating policies of the tasks and the equipment sizes were determined. The
problem was solved by transforming the dynamic optimization to an NLP through
orthogonal collocation on finite elements (Logsdon and Biegler, 1989). Their approach
demonstrates the ability to employ dynamic models directly within the optimization
procedure, but the size of the models employed does not reflect the level of detail
often required. Extension of the method to larger process models will depend on the
ability of the NLP code to handle large process models. In addition, application of
this method requires the user to be able to provide enough finite elements to maintain
the accuracy of the solution of the DAEs, and it is not clear how to determine the re-
quired number of elements beforehand. See section 6.3.2 for a discussion of the merits
and drawbacks of the collocation approach for the solution of dynamic optimization
problems. Furthermore, incorporating discrete decisions into their formulation leads

to the formation of a large nonconvex MINLP.

Charalambides et al. (1993) proposed to determine the optimal operating policies
and equipment sizes via the solution of a multistage dynamic optimization problem
employing detailed differential-algebraic models of the tasks. They demonstrated that
a control vector parameterization approach (Kraft, 1985; Vassiliadis, 1993) could be
used to convert the dynamic optimization to a finite dimensional problem, allowing
the application of conventional gradient based nonlinear programming techniques. In
addition, representing the process as a state task network and defining the material
states in terms of time-invariant optimization parameters removes all direct interac-
tions between the processing tasks. The decoupled task models and corresponding
sensitivity equations can be integrated in isolation, permitting parallelization of the
time-consuming integrations. Charalambides et al. (1995a; 1995b; 1996) applied this
technique to several examples, demonstrating that the formulations could be solved

in times that are reasonable for design calculations. However, their technique is lim-
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ited to continuous dynamic models and cannot employ the hybrid discrete/continuous
dynamic models that we have argued are required to represent many batch process
operations, particularly those in which phases appear and disappear during the op-
eration of the task. Extending their technique requires the ability to transfer the
parametric sensitivities across implicit discontinuities, as formulated by Barton (Bar-

ton, 1996).

2.1.3 Coupling the Structure and Performance Subproblems

A seemingly natural extension of the work of Montagna et al. (1994) would employ
the algebraic performance models within a mixed-integer nonlinear programming
(MINLP) framework. Unfortunately, nonconvexities in the model make the appli-
cation of conventional MINLP techniques invalid (Sahinidis and Grossmann, 1991;
Bagajewicz and Manousiouthakis, 1991), since the bounding properties of the re-
laxed problem cannot be achieved. While an analogy between these algebraic models
and the screening models we present is evident, the models of Montagna et al. (1994)
do not possess provable bounding properties that can be exploited to prune discrete
alternatives.

In contrast, Barrera proposed a method to solve the process development problem
with detailed dynamic models via a decomposition approach. His approach requires
iterating between the performance and structure subproblems, fixing the variables
used in one subproblem when the other subproblem is solved; the performance is
optimized for a given structure, and the structure is optimized for fixed operating
policies. Barrera used an SQP algorithm to solve the performance subproblem (solv-
ing the DAEs during each function evaluation), a local search method to solve the
structure subproblem, and an ad-hoc procedure to iterate between the two subprob-
lems. Using this procedure he clearly demonstrated the benefits that could be gained
by considering the optimization of both resource allocation and operating policies
simultaneously. The strategy is implemented using a nested iteration, and the two
nesting strategies shown in figure 2-1 were examined. He found that the choice of nest-

ing strategy had a significant impact on the solution time because the performance
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subproblem took far longer to solve than the structure subproblem. Therefore, the
POSI strategy, in which the performance subproblem is solved in the outer loop and
the faster local search algorithm is employed on the inner loop, was found to be
more efficient. The outer iteration loop was continued until little improvement in the

objective function was observed.

POSI SOPI
Process Outside, Structure Inside Structure Outside, Process Inside
y Y
Assignment of
1  Operaling policies quip to

processing stages

Solve DAE modeis _ . 3
Evaluate objective 1  Qperating policies
> Ass'?nmmtg Solve DAE models
Ny Evaluate objective

processing stages

using Local Search

Update Performance vanables using SQP
Update Structure vanables using Local Search
Update Performance variables using SQP

Update Structure vanables

Figure 2-1: The two nesting strategies for the performance and structure subproblems
investigated by Barrera (1990).

Barrera’s approach highlights the need to improve the strategies to iterate be-
tween the two subproblems when a decomposition approach is employed; in partic-
ular, discrete alternatives cannot be eliminated from consideration, because neither
subproblem provides a lower bound on the overall objective. More importantly, a
metric for assessing the potential benefits of continued optimization is sorely needed.

Charalambides et al. (1993) also postulated a multistage dynamic optimization

problem containing integer variables for the solution of the batch plant design prob-
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lem. They noted that applying control vector parameterization and treating the
integer variables as time-invariant parameters results in a nonconvex MINLP opti-
mization problem. No solution procedures or examples with discrete decisions have

been presented in the literature to date.

2.2 Applying Screening Models to Process Devel-

opment

Screening models for process development yield a lower bound on the cost of manufac-
ture by considering changes to the process structure, the operation of the tasks, and
the allocation of equipment simultaneously. The models embody a convex underesti-
mate of the objective and a convex overestimate of the feasible region. The screening
models enable a simultaneous approach to the process development problem shown
in figure 2-2 that contrasts the sequential and iterative approaches shown in figures
1-1 and 1-2. The drawback is that the models do not consider the detailed operation
of the tasks, so the model solutions do not correspond to designs that can be imple-
mented directly. Instead, the screening model provides targets for the detailed design
of the actual process. These screening models are also capable of performing aspects
of the process synthesis. In addition, the screening model can be used to enhance
the application of existing approaches, or as the basis for a rigorous decomposition
strategy to address the process development problem as a mixed-integer dynamic
optimization problem (Allgor and Barton, 1997b).

The lower bounding property possessed by these models motivates the term ‘screen-
ing model’, since the bound can be used to prune or screen discrete alternatives that
cannot lead to the optimal solution, avoiding the need for total enumeration of the
discrete decision space. For example, Daichendt and Grossmann (1994a; 1994b) em-
ployed screening models to prune the branch and bound tree in order to improve the
efficiency of a MINLP algorithm used for heat exchanger network optimization. For

batch process development, screening models can be used in a similar fashion. Given
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Figure 2-2: Schematic of the information provided to and produced by the screening
formulations.

an initial ‘base case’ design, these formulations can be used to prune all discrete al-
ternatives with greater cost than the base case, yielding a set of candidate structures
that offer the potential for improved performance. The performance subproblem can
then be solved for each of these candidate discrete alternatives using dynamic opti-
mization. Such a procedure is capable of determining the best design that can be
found using the available dynamic optimization algorithms, without performing to-
tal enumeration of the discrete alternatives. However, global optimality cannot be
guaranteed because the dynamic optimization is not guaranteed to find the global
optimum; in fact, most dynamic optimization problems exhibit multi-modal behavior
almost pathologically (Banga and Seider, 1995).

The design targets provided by the screening formulations can also be used to en-
hance iterative approaches for batch process development. Since Barrera’s approach
is strictly a local search technique, the resulting solution could be far from the global
optimum, yet the approach has no way of measuring or estimating the distance to
the optimum. On the other hand, the solution of the screening model provides an
underestimate of the global optimum that can be used to estimate the quality of the

design obtained by the iterative procedure and to assess the potential benefits of con-
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tinued optimization. If significant improvements are possible, an iterative procedure
can be repeated, starting from a different initial point. The solution of the screening
model provides a reasonable candidate for the initial point of continued optimization

using the iterative procedure.

Screening models also facilitate the application of multistage dynamic optimiza-
tion algorithms to the optimization of the operating policies for a batch manufacturing
process performed in dedicated equipment items. Multistage dynamic optimization
decouples the tasks using the material states (Charalambides et al., 1993), yet it
requires a priori definition of the state task network (STN), initial guesses for the
states (treated as time invariant parameters), and the definition and initialization of
the admissible functions for the control variables. The solution of a screening model

facilitates definition and initialization of all these quantities.

Dynamic optimization requires definition of the STN before the optimization is
attempted. This implies that the number of states included in the process and the
way in which they are connected to the tasks must be defined beforehand, defining
the recycle structure of the process. For example, each distillation cut, including off
cuts, requires a separate state node in the STN, so the number of cuts permitted for
the distillation tasks is also represented in the definition of the STN. The solution of
the screening model defines the number of cuts that would be required if perfect splits
could be achieved and a feasible recycle structure utilizing the sharp splits. The actual
number of cuts provided in the STN must account for off cuts as well, but should
reflect the information gathered from the solution of the screening model. Embedding
redundant process structures within the STN, such as unnecessary distillation cuts,
may create several problems for the dynamic optimization algorithm. First, this
will increase the multi-modal character of the optimization problem. For example,
consider the dynamic optimization of the solution of the screening model for the first
superstructure of the case study considered in chapter 4 shown in figure 4-3. Since
the system contains six components, we would expect that we might require five
overhead distillation cuts if we defined a general state task network for the process.

However, the solution of the screening model indicates that only two overhead cuts
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are required for the first distillation task and only one for the second. Thus, we can
pose a STN for the dynamic optimization based on the information collected from
the solution of the screening model that contains fewer overhead distillation cuts such
as that shown in figure 2-5.2 Note that we could also augment the STN shown in
figure 2-5 to include off cuts. If we had included five overhead cuts with each of
the distillation tasks and permitted each of these cuts to be sent to any of the other
tasks, we would have a superstructure for the dynamic optimization that is highly
redundant. If only two cuts are required, but five are allowed, then the optimal
solution could contain any two of the four cuts (or could take fractions of the two
required cuts). Similarly, incorporating tasks that are not performed in the STN and
relying upon the optimization to remove them by setting the flow rates into the task
to zero may cause problems for the optimization. The model of the task may not
be defined in the absence of material, and even if no material is present, sensitivities
are still required for the controls related to these tasks. Including unnecessary tasks
can also lead to redundancy. For instance if two reaction tasks are allowed but only
one is required, then the active reaction task could be either the first or the second
reaction task. Progress in dynamic optimization techniques may help mitigate these
difficulties, but current algorithms are likely to be more reliable if they are presented
with a reasonable problem and given an initial guess in the vicinity of a unique local
optima.

Since, in general, the dynamic optimization can find a local optimum at best,
the starting point will affect the solution that is obtained. Successful application
of multistage dynamic optimization techniques requires good initial guesses for the
material states and for the control profiles at the very least. Initial guesses for the
intermediate material states can be assigned using the solution of the cyclic steady
state mass balances provided by the screening model. The screening model will
provide compositions of the intermediate states that are consistent with the structure

of the STN and expected to be near the optimal values. Since the performance of the

2The tanks represent the state nodes of the STN, and they are characterized by time invariant
optimization parameters.
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distillation changes qualitatively depending on the location of the feed with respect
to the batch distillation boundaries, the optimization will almost certainly have great
difficulty crossing from one distillation region to another. For example, consider a feed
located in batch distillation region three of figure 4-1. If we expect the first cut from
the distillation to contain mostly B and possibly some A (the lightest components in
the system that both happen to be reactants), we may want to recycle this cut to
the reactor. We would construct a STN that embeds this possibility, and we provide
an initial guess to the dynamic optimization for the composition of this state that
is mostly B. However, if the dynamic optimization moves the feed to the distillation
column into region II, the first cut from the column will have a composition close
to that of P-W; instead of B. This will cause a large violation of the optimization
constraints that equate the composition of the recycled distillation cut to the feed
to the reaction task. Thus, we need to consider the active batch distillation region
when constructing the STN, even though the optimization could theoretically move
from one region to another. More importantly, this observation demonstrates that
the structure of the STN must be consistent with the initial guess provided for the
compositions. Starting with good initial values for the parameters is also likely to
decrease the time required to obtain a solution of the dynamic optimization. However,
the dynamic optimization will contain more variables than the screening models,
so a strategy to approximate the quantities not explicitly defined by the screening

formulation will be required.

Many of the benefits accruing from the use of screening models in conjunction
with dynamic optimization are due to the synthesis features of the screening formu-
lations. The dynamic optimization only addresses the design aspects of the process
recipe, yet the recipe comprises both design and synthesis information. Screening
models have the ability to address aspects of the process synthesis not considered by
previous batch process design procedures. Although the reaction pathways and pro-
cessing steps employed at the bench scale need not remain fixed during the process
development, in many cases sufficient information is not available to predict the effect

of synthesis changes without resorting to detailed bench scale experimentation. For
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instance, screening models require reaction stoichiometry and kinetic information,
so the models can choose between several alternative reaction pathways embedded
within the superstructure, but could not invent new pathways. Similarly, decisions in-
volving the selection of reagents and solvents from a list of candidates (see Modi et al.
(1996) for example) can be determined during the solution of the screening model.
The superstructure provided by the screening model for reaction/distillation networks
allows for the appearance and disappearance of both reaction and distillation tasks.
Thus, the screening model defines the choice of reactants and solvents for the process,
selects the tasks that will be performed, and defines the recycle structure for the pro-
cess — tasks that are traditionally considered the domain of the process synthesis. In
addition, the screening models can distinguish between different process structures.
This ability is illustrated by the case studies considered in chapters 4 and 5; in both
cases the screening model selects a processing structure that differs from the process
structure employed by the chemist at the bench scale.

Screening models also enable the derivation of a rigorous algorithm to address the
mixed-integer dynamic optimization formulation of the batch process development
problem. The lower bound provided by the screening model is the key to generating
an iteration that can rigorously prune portions of the discrete space. A rigorous iter-
ation procedure that guarantees improvement of the solution and potentially avoids
explicit enumeration of the entire discrete decision space is derived by iterating be-
tween the screening model and dynamic optimization of the operating policies (Allgor

and Barton, 1997b); this is discussed in detail in section 2.4 and in chapter 9.

2.3 Scope of Development Problems Considered

The general form of the batch process development problem is too complicated to
propose a systematic model-based solution procedure at present. For example, dy-
namic models for batch reaction and distillation tasks are readily available, but for
many processes, especially those involving biological transformations or other unit

operations most commonly encountered in batch processes (e.g., crystallization, dry-
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ing, extraction), dynamic models capable of accurately predicting the performance of
the task in terms of the operating variables are not yet available. In addition, the
interactions between the processing operations and the manufacturing facility require
that fairly detailed information about the plant is provided.

Therefore, this thesis focuses on a subset of these problems that can benefit from
detailed modeling of the tasks. Future research may allow some of the following

restrictions to be relaxed:

e Only unit operations that can be modeled with state of the art process modeling
technology will be considered. This implies that only limited effects of scale can
be considered. In fact, the screening models further restrict the class of processes

considered to networks of reaction and distillation tasks.

e Sufficient experimental and physical property data is available, or can be ob-

tained and/or estimated to describe the system to the required level accuracy.
e Products will be manufactured in campaigns.

e Although it is an important issue, uncertainty in the model parameters will
not be considered explicitly in the design; however, sensitivity studies can be

conducted.

Since the design of the process defines the interactions between the recipe and
the equipment, we examine the way in which both the process recipe and the manu-
facturing facility are represented for the problems and case studies considered within
this research.

The development problem considered within this research considers manufacture
within an existing manufacturing facility. Since the plant already exists, we merely
need to find a representation that provides sufficient detail for the engineer to ascertain
the feasibility of proposed designs. The notion of a plant superstructure will be used to
represent the processing facility. The superstructure consists of the equipment items,
utilities, valves and interconnecting piping, and plant instrumentation available within

an existing facility.
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The process recipe, on the other hand, requires quite a different representation.
The process can be thought of as a sequence of processing tasks and operations which
transform the raw materials into desired products and waste materials. A powerful
representation of this is provided by the State Task Network (Kondili et al., 1988). Al-
though the state task network has been most frequently associated with discrete time
batch scheduling formulations, it is a general representation for the process recipes
that is particularly appropriate for the purposes of process development. The STN
provides a graphical representation of the process. It is a directed graph composed of
two types of nodes — state nodes and task nodes. The task nodes correspond to pro-
cessing tasks and are just like the nodes in a continuous process flowsheet. However,
in the STN the task nodes are not associated with a particular item of equipment.
The state nodes represent material (e.g., raw materials, intermediates, and products)
in a specific thermodynamic state. Every arc in the digraph connects a node of one
type, state or task, to a node of the other. The networks can be arranged in a gen-
eral fashion, but if two arcs are incident upon the same state node, they must carry
material in exactly the same thermodynamic state. The STN provides a convenient
framework in which to express the equipment assignment constraints (i.e., schedul-
ing). Moreover, the STN provides a general abstract representation of the recipe that
can be used to describe the process in terms of parameters that can be determined by
automatic search procedures such as dynamic optimization. Charalambides (1996)
devotes an entire chapter of his thesis to the representation of process recipes using

the state task network.

Figures 2-3 and 2-4 give examples of the representations employed for both the
plant and the process recipe, respectively. The figures depict a reaction task that
transforms two raw materials into an intermediate. The representation of the process
is not tied to particular equipment items, and the plant is not reserved for a particular
product. Note, however, that the superstructure of the plant limits the operating
procedures that may be considered for implementation of the process. For instance,
the first feed tank has a feed pump for each reactor, but the second tank has only

one feed pump. This limits the feed policies that may be considered. The operating
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Figure 2-3: Plant Superstructure for Batch Reactor

limitations imposed by the plant superstructure must be considered during the process

development.
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Figure 2-4: State Task Network for Batch Reaction

In general, alternative processing structures (i.e., the selection of batch distilla-
tion or an absorption desorption process (Charalambides, 1996)) can be represented
within the framework of the state task network. However, if alternative processing
structures are included, then the design methodology must be capable of deciding
between the alternatives. For this reason, two different abstractions for the structure
of the process recipe are used within the decomposition strategy for batch process

development described in the next section. The process superstructure employed by
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the screening models, which is a restricted form of state task network, provides al-
ternative processing configurations. The screening models are able to select between
these alternatives as demonstrated by the case studies in chapters 4 and 5. However,
current dynamic optimization techniques cannot select between alternative process-
ing configurations in most cases, so the state task networks representing the process
recipe employed during the application of the dynamic optimization do not contain

alternative processing structures.

The reason that the dynamic optimization techniques cannot choose between al-
ternative processing configurations is that different equations are typically required
to represent the processing operations when they are performed and when they are
idle. For example, when a distillation column is operating normally the holdup of
material on the trays and in the reboiler are nonzero and the intensive properties
of the system are well-defined. However, if the column remains idle, the holdup
of material is zero, and the intensive properties are not defined by the typical re-
lationships. Combined discrete/continuous modeling languages permit models that
consider these two cases using separate sets of equations to represent each situation,
switching between them when the appropriate conditions are satisfied (Barton, 1992).
However, current dynamic optimization methods cannot handle situations when the
model equations can change implicitly. Note that this situation may soon change;
in fact, recent theoretical advances defining the parametric sensitivities across im-
plicit discontinuities (i.e., state events) permit gradient based dynamic optimization
of general hybrid discrete/continuous models using control vector parameterization
(Barton, 1996). In either case, the dynamic optimization problems representing the
performance subproblem employ a STN that contains the subset of the processing

alternatives that has been defined by the solution of the screening model.

The flexibility with which equipment can be assigned to processing tasks within
the screening models is similar to the equipment configurations considered in the
batch process scheduling literature. The case studies assume that equipment units
are chosen from the inventory of equipment and reserved for the manufacture of the

desired product until the end of the campaign. At the start of the campaign, a
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pipefitter makes the necessary connections between the processing equipment; these
connections remain in place until the campaign has been completed. The case stud-
ies demonstrate that the screening models can consider this level of flexibility with
respect to the equipment assignment. However, the equipment configurations avail-
able within most manufacturing facilities are far more restrictive that those that have
been allowed within the screening models. Although some toll manufacturers do in
fact operate in this fashion, it is only practical to connect vessels that are situated in
the same vicinity or vessels that can be easily moved. Many large specialty chemical
and pharmaceutical manufacturers have far more structured and restricted equipment
configurations. The processing equipment within their facilities is typically housed in
a number of buildings that each contain several production areas. Each production
area may contain 3 to 4 production bays. The production bays contain a variety of
equipment such as reactors, filters, and storage vessels of similar size. Several bays
may share some common items of equipment for drying and solvent switch operations.
Large facilities may have about 100 production areas on a given site. However, a much
smaller number of these may be suitable for a particular process. For example, some
are reserved for high pressure operation, some for atmospheric operation or slightly
above, and other bays may not possess the equipment required for some processing
steps. Thus, for a particular set of reaction steps a much smaller number of bays may
be appropriate. Many of these facilities also separate the solvent recovery operations
from the reaction steps. All of these restrictions can be represented as additional
constraints in the formulation presented in chapter 3. In summary, the combinatorial
aspects of the equipment allocation considered within this research are more than
adequate to represent the equipment options available to most manufacturers. In
fact, in many cases, the flexibility considered here is far greater than the situation
facing many manufacturers. In particular, note that the scheduling of these processes
is far more restricted that the scheduling of blending and formulation operations,
commonly examined in the scheduling literature, where the combinatorial complexity
can be many orders of magnitude greater, but where detailed dynamic modeling is

not likely to lead to dramatic improvements in the process efficiency (even if adequate
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models exist).

2.4 Decomposition Algorithm for Batch Process

Development

The ability of the screening model to consider the discrete and the dynamic operating
decisions simultaneously and solve the resulting model to guaranteed global optimal-
ity permits the derivation of a rigorous decomposition algorithm for batch process
development. The algorithm employs mathematical models of the processing tasks at
two levels of detail: algebraic screening models that provide rigorous lower bounds on
the production cost, and detailed dynamic models that accurately predict the process
performance.

The extension of traditional mixed-integer nonlinear programming decomposition
methods (Geoffrion, 1972; Duran and Grossmann, 1986) to batch process development
and to other mixed time invariant integer dynamic optimization problems is thwarted
by the inability to derive a valid Master problem using information provided by the
primal, among other problems (Allgor and Barton, 1997b). However, the screening
model’s lower bounding property permits it to be employed as part of a decomposition
strategy for the solution of the mixed-integer dynamic optimization. This algorithm
is discussed in chapter 9.

The algorithm decomposes the original process development problem into two
subproblems. The solution of the first, the screening model, provides a lower bound
on the cost of future solutions. The second subproblem is the performance subproblem
which is formulated as a dynamic optimization problem in which the discrete decision
variables in the original problem take the values determined by the solution of the

corresponding screening model; its solution yields a feasible detailed design.

The screening model provides information that is either required or beneficial for
the formulation and solution of the dynamic optimization problem that corresponds

to the performance subproblem given the allocation of the plant resources defined by
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the solution of the screening model. The solution of the screening model provides:

1. A definition of the processing structure, defining what operations should be

included and what operations are not required.

2. An assignment of equipment items to the tasks that are performed. These
equipment items are selected from the manufacturing facility’s inventory, and
dedicated to a particular task or set of sequential reaction tasks for the duration

of the campaign.

3. Information indicating which batch distillation regions are active. Since the ac-
tive batch distillation region is represented using a discrete variable, qualitative
changes to the performance of the distillation column resulting from feeds in

different regions can be easily identified.

4. The number of distillation cuts required under ideal conditions. While more
cuts may be required in the detailed design, the number of cuts given by the
screening model provides information that can be employed to decide how many

cuts and off cuts should be considered during the dynamic optimization.

5. Definition of the basic structure of the state task network defining the process

for these values of the discrete decision variables.

6. Initial values for the compositions of the state nodes within the STN described
above. The state nodes represent either recycled material or material that
decouples the dynamic interactions between processing tasks (i.e., material that
leaves the reaction task and is fed to the distillation task at the start of the next
batch). The values of these states defined by the screening model may not be
feasible for the dynamic optimization, but they should provide a good initial

guess for the optimal values.

Next, we examine how this information facilitates the formulation and solution of the
corresponding dynamic optimization problem. The solution of the screening model

for the first case study shown in figure 4-3 will be used to demonstrate the points.
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Note that a mixed time invariant integer dynamic optimization formulation of this

same example is given in section 9.5.

Since the performance of a processing task may depend on both the chosen oper-
ating policies and the characteristics of the equipment in which it is carried out, the
performance subproblem requires that the equipment items assigned to each process-
ing task are known. In this algorithm, these assignments are fixed by the solution of
the corresponding screening model, so the appropriate dynamic model can be selected
for each task when formulating the dynamic optimization. In addition, the inequal-
ity path constraints may depend on the equipment assigned to the processing task
(e.g., equipment overflow constraints, maximum vapor rate constraints, etc.), so the
equipment assignment must be known before the appropriate dynamic optimization

can be solved.

In order to formulate the dynamic optimization subproblem, the state task net-
work for the process must be defined. We could choose to include many states and
tasks that may not be required, but this will lead to redundancy in the solutions
that may be obtained. Instead, we choose to employ the information provided by
the solution of the screening model to construct a state task network for the process
that reduces the size of the resulting dynamic optimization by eliminating redundant
processing tasks; removing redundant processing tasks also improves the performance
of the optimization algorithm. The key pieces of information that are required to con-
struct an appropriate state task network are the number of tasks that are included
in the processing network, the number of cuts (and potential off cuts) taken from
each of the separation tasks, and the recycle of material within the process indicat-
ing where the material produced by one task is next used. Once these decisions have
been made, the processing structure is determined. Comparing figure 2-5 to figure 9-3
clearly shows that the process structure defined by the solution of the screening model
is much simpler than the process structure that allows for all the cuts that might be
required in each of the separation tasks. In fact, the screening model predicts that
only two overhead cuts are required for the first distillation and only one is required

for the second. Without this knowledge, we would allow for five overhead cuts in
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the process structure because the process contains six components. Furthermore, the
recycle structure of the process is defined by the screening model, simplifying the
material balances around the tanks defining the material states. Using the process
structure defined by the screening model allows us to eliminate redundancy in the
definition of the process structure which should permit the dynamic optimization al-
gorithms to perform better, since all of the optimization parameters should affect the
objective value. In contrast, including cuts that are not required will lead to multiple
solutions with the same objective value, which will probably degrade the performance

of the optimization algorithm.

The dynamic optimization formulation of the performance subproblem solves for
both the operating profiles of the processing tasks and the values characterizing the
states in the STN simultaneously. In the example shown here, the temperature profile
in the reactor, the reflux ratio of the columns, and the split fraction determining
the distribution of flow between the two overhead cuts on the second column are
treated as the controls. The composition and amount of material in each of the state
nodes generated for each batch is also determined; in figure 2-5 the state nodes are
represented using storage tanks that hold the material. Material transfers occurring
at the beginning and end of a task are represented using the gray lines with larger
dashes, and the constraints depicting the transfer of material from one task to the next
are shown using small black dashed lines. The solid lines represent material transfers
during the task. Note that this picture assumes that both the reactors and columns
are operating in batch rather than fed batch mode. The per unit manufacturing cost

of in-spec product is minimized during the solution of the performance subproblem.

By comparing the STN shown in figure 2-5 to that shown in figure 9-3, we ob-
serve that we are only considering a subset of the potential processing structures.
We recognize that this may exclude better solutions, but the dynamic optimization
algorithms cannot guarantee convergence to a global optimum. This implies that
the initial guess provided to our dynamic optimization procedure may have a greater
impact on the quality of the solution obtained than the number of processing struc-

tures embedded in the STN. The screening model provides initial guesses for all of
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Figure 2-5: The state task network for dynamic optimization of the process devel-
opment example from chapter 4. This corresponds to the screening model solution
obtained from the first process superstructure.

the material states appearing in the process structure defined by the solution of the
screening model. Although the detailed dynamic models may not be able to achieve
the material compositions predicted by the screening model, the values predicted by
the screening model are expected to be near an optimal solution. Therefore, using
the solution of the screening model as the initial guess for the dynamic optimization
may actually enable the dynamic optimization to find a better solution. In addition,
since the material recycles given by the screening model satisfy the cyclic steady state
constraints, the dynamic optimization may be able to determine a solution in fewer

iterations.

Another benefit provided by the this iteration procedure is the fact that aspects
of the continuous behavior that are known to lead to the multi-modal character of the
dynamic optimization are treated as discrete decisions in the screening model. For
instance, the active batch distillation region is identified during the solution of the
screening model. While the dynamic optimization algorithm can move the feed from
one region to another during the optimization, the optimization must also satisfy the

constraints on the parameters defining the material states. Since moving the feed
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from one region to another can change the qualitative behavior of the distillation,
the composition of the material in the accumulator at the end of the distillation
task may differ wildly from the parameters corresponding to material in the tank fed
by the accumulator. Since the optimization contains constraints that require that
the composition of the material in tank representing the state node is equal to the
material in the accumulator at the end of the task, the large difference in composition
will result in a large violation of this constraint. The NLP solver will most likely force
the distillation feed back into the original batch distillation to reduce this constraint
violation. In our algorithm, the dynamic optimization will investigate processes with
feeds in other batch distillation regions, which may also result in different process
structures, during the solution of other instances of the performance subproblem.
The integer cuts added to the screening model at every iteration ensure that
previously examined discrete alternatives are not revisited. We treat the inclusion or
exclusion of tasks, the assignment of equipment to particular tasks, and the active
batch distillation region as the discrete variables defining the structure of the process.
The performance subproblem is solved for each of these discrete alternatives until the
termination criterion of the algorithm is satisfied. Although we could have chosen
to regard only the assignment of equipment and the inclusion of processing tasks
in the definition of the discrete alternatives, we would then rely on the dynamic
optimization to find the best local optimum of functions that we know to be multi-
modal. By defining the discrete alternatives as we have, we account for the some of
the qualitative changes to the process performance in the discrete domain, allowing
us to determine a local optimum in each of these domains through the solution of a

different instance of the performance subproblem.

2.5 Summary

This chapter demonstrates that previous research addressing batch process develop-
ment cannot simultaneously address the discrete and detailed dynamic design deci-

sions in a rigorous fashion. However, previous researchers have derived techniques ca-
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pable of handling subproblems encountered during batch process development. These
techniques are employed within the design method proposed by this thesis. For exam-
ple, the decomposition algorithm for batch process development proposed within this
thesis utilizes the dynamic optimization techniques developed for the performance
subproblem and the type of equipment allocation constraints developed for the plant
design problem.

The screening models introduced in this thesis permit the derivation of a rigorous
decomposition algorithm capable of addressing both the discrete and continuous de-
cisions without requiring total enumeration of the discrete space. This represents the
first rigorous approach to the solution of the batch process development problem with
the potential to avoid total enumeration of the discrete space. The approach couples
insight-based targeting models with gradient based dynamic optimization algorithms.
In addition, the screening models can be employed to enhance the application of ex-
isting design methods. The derivation of the screening models is discussed in the next

chapter.
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Chapter 3

Screening Models for Batch

Process Development

Batch process development — the design of a process to manufacture a new or modi-
fied product within an existing manufacturing facility — is frequently encountered in
the specialty chemical and synthetic pharmaceutical industries. Allgor et al. (1996)
demonstrated the importance of batch process development and stressed the need
to develop systematic methodologies that permit the rapid design of efficient batch
processes. In order to design an optimal batch process, the optimal recipe and the
allocation and scheduling of the plant’s resources must be determined simultaneously.
This chapter introduces screening models for batch process development that yield
a rigorous bound on the cost of the design by considering decisions related to the
operation and scheduling of the processing tasks within a single model that can be
solved to global optimality.

This chapter introduces the notion of screening models for batch process devel-
opment. Screening models yield a rigorous lower bound on the cost of the process,
providing both design targets and a valid way in which to prune or screen discrete
alternatives (process structures and equipment configurations) that cannot possibly
lead to the optimal solution. These models consider changes to the process structure,
the operation of the tasks, and the allocation of equipment simultaneously. In addi-

tion, these models embed aspects of the process synthesis not considered in previous
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research dealing with batch process design. However, they do not provide a detailed
process design, so they must be used in conjunction with techniques that consider
the dynamics of the process in detail, such as the multi-stage dynamic optimization
formulations used to address the performance subproblem (Charalambides, 1996).
In the remainder of this chapter, we discuss the properties that must be satisfied
by screening models and derive screening models for batch process development that
achieve these properties. In the next section we discuss how information calculated
by these models can be employed to enhance existing approaches for batch process
development, and how these models facilitate a rigorous decomposition approach for
the design of these processes. The application of these models to realistic process

development examples is presented in chapters 4 and 5.

3.1 Deriving Screening Models for Reaction/Dis-

tillation Networks

The usefulness of screening models hinges on their ability to yield a rigorous lower
bound on the cost of the process being developed. To achieve this bounding property,
the models must overestimate the feasible region, underestimate the design objective,
and consider all of the optimization variables simultaneously. In addition, the opti-
mization procedures used to solve these models must obtain a global minimum. When
these conditions are satisfied, the solution of a screening model provides a rigorous
lower bound on solution of the original problem.

In order to derive screening models with these properties, constraints related to
the equipment allocation and scheduling are expressed in their original form, but the
constraints defining the dynamic performance of the processing tasks are relaxed.
Algebraic equations representing performance limits replace the differential-algebraic
equations describing the task performance, and time averaged material balances are
enforced. Therefore, the optimization algorithms used to solve the model must handle

both discrete and continuous decision variables, but need not deal with any differential
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equations. In the remainder of this section, we derive convex models with these

properties for the development of batch reaction/distillation networks.

3.1.1 Process Abstraction

We define a superstructure that embeds the synthesis alternatives considered during
the solution of the screening model. The process superstructure is represented with a
directed graph consisting of state and task nodes. The process is assumed to consist of
a sequence of processing trains; each train may contain a reaction and/or a separation
task. Stable material is produced by every task. In any train, either task may not
exist; note that the reaction tasks must exist if only one reaction pathway is considered
and the number of trains equals the number of steps in the reaction pathway. A mixing
task prior to each separation task has been included in the superstructure to clarify
derivation of the model equations and simplify the notation; these tasks do not require
separate equipment items. A diagram of the process superstructure is shown in figure
3-1. In addition, each train of the superstructure is labeled, ordering the reaction
steps in the process. Although this ordering has no impact on the superstructure at
this level of the hierarchy, it becomes important when the superstructure is refined
(see figure 3-5) to consider the purging of recycled streams. The state nodes in this
superstructure can be partitioned into two sets, nodes representing the fixed points of
a simple distillation process (p;—peq in figure 3-1), whose composition is known before
the solution of the model, and nodes leaving the reaction and mixing tasks whose
composition is determined during the solution procedure.

The superstructure looks similar to the state task networks (STN) commonly
used to represent batch processes for scheduling purposes (Kondili et al., 1988), but
it differs from the STN because many of the state nodes in this superstructure do
not represent material that can be found in the actual manufacturing process. The
product will be manufactured in a campaign with all batches following the same
production route, so the process must operate at cyclic steady state. This implies that
the arcs in the superstructure correspond to time-averaged material flows. However,

these arcs need not correspond to material transfers in the physical process. For
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Figure 3-1: Superstructure for networks of reaction and separation tasks.

instance, the targeting procedure used for the distillation tasks permits all feasible
separations to be represented in terms of convex combinations of the material sent
to each of the equilibrium point nodes. The actual distillation cuts, which may
be recycled, processed further, or leave the process as waste or product, are not
represented by any single arc of the superstructure.

The time-averaged flows in the superstructure are specified in terms of compo-
nent molar flow rates; these flows may be specified using either the pure component
or fixed point compositions as the basis. The superstructure permits both splitting
and mixing of streams, but the splitting of streams leaving state nodes whose compo-
sition is not known a priori is not permitted. In order to enforce time-averaged mass
balances for this superstructure, models that define the time-averaged flows leaving
the tasks in terms of the entering flows and the operating variables are required. To
maintain the bounding properties of the formulation, each one of these models must
overestimate the region of the composition space that is reachable from a given in-
put specification. Furthermore, to enforce the material balances, the models of the
reaction and distillation tasks must relate the input and outlet flows using linear

equations. The following sections derive models that overestimate the composition
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space that is reachable using batch distillation and batch reaction tasks.

3.1.2 Batch Distillation Composition Bounds

The targeting model of the batch distillation tasks, coupled with the opportunities
for mixing embedded in the superstructure, must include all of the feasible sequences
of cuts that could be obtained by any batch distillation column processing the same
feed. Although we recognize that separating the mixture into its pure components
represents a bound, the presence of azeotropes results in boundaries in the compo-
sition space that cannot usually be crossed. As a result, the sequence of products
attained from batch distillation depends on the feed composition of the mixture. The
location of these boundaries is likely to affect the solvents and entrainers chosen, the
amount of solvent and reagent that is used, and the operation of the reactors provid-
ing the feeds to the distillation columns. Therefore, the targeting model must embed
these boundaries in order to generate useful information during process development.

We model the distillation tasks shown in the superstructure using batch distilla-
tion targeting techniques (Ahmad and Barton, 1994; Ahmad and Barton, 1995) to
identify the set of sharp splits that can be obtained from a given feed; we assume
that sharp splits are possible when operating under the limiting conditions and the
pot composition boundaries are linear (Ahmad and Barton, 1996). We then prove
that the proposed superstructure contains all feasible sequences of cuts that can be
achieved from a given feed, including non-sharp splits and off-cuts, in spite of the fact
that we have represented distillation tasks shown in the superstructure using sharp

splits.

Targeting for Sharp Splits

Simple residue curves describe the change in composition with time of an open evapo-
ration process. These residue curves can be placed in the composition simplex defined
by the pure component vectors to form a simple distillation residue curve map; an

example map for a ternary system is shown in figure 3-2. These curves can be de-
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fined experimentally, or via the solution of a set of differential equations. Doherty
and Perkins (1978a; 1978b; 1979) showed that the pure components and azeotropes
represent the fixed points of a system of differential equations; further, all of the ho-
mogeneous azeotropes of a given system of components can be found using established
algorithms (Fidkowski et al., 1993). We let the fixed points arranged in increasing
boiling temperature define the ordered set E = {p,, py, p3, . .- p.,}; €p represents the
number of fixed points in the system, and p, represents the composition of each fixed

point.

simple
residue curve

P2 > P4

Figure 3-2: Residue curve map for a ternary system with pure components p;, p,,
and p,. The fixed point p; represents a maximum boiling binary azeotrope between

py and p,.

Van Dongen and Doherty (1985) compared the simple distillation residue curves
to the pot composition trajectory of a batch rectifier and demonstrated that the rec-
tifying curves approach straight lines in the limit of high reflux ratio and a large
number of equilibrium stages. Given a homogeneous ternary mixture under these
limiting conditions, they showed that the exact orbit of the reboiler composition and
the sequence of constant-boiling product cuts can be predicted from the structure
of the residue curve map of the system. Under these limiting conditions, the com-

position simplex can be divided into a set of batch distillation regions. Each batch
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distillation region defines the set of compositions leading to the same sequence of
product cuts. Figure 3-3 shows the batch distillation regions and trajectory of the

reboiler composition for the residue curve map show in figure 3-2.

pot
composition

barrier pot composition

Region II

) >

Figure 3-3: Ternary system with two distillation regions showing the pot composition
trajectory for a feed in distillation region I.

Ahmad and Barton (1994; 1997) have extended and generalized these results to
homogeneous systems with an arbitrary number of components. They demonstrated
that under the assumptions of high reflux ratio, a large number of stages, and linear
pot composition boundaries, a mixture of nc components will separate into at most nc
product cuts. Therefore, each batch distillation region b is represented by an ordered
subset of the fixed points, Fj, of dimension nc. These batch regions cover the nc

component composition simplex.

Ub=Cr={xeR*: x|, =1, >0 Vi=1...nc} (3.1)
beB

Furthermore, the members of E, bound an nc — 1 dimensional simplex, termed the

product simplex. The product simplex P(b) is defined by an nc x nc matrix P? as
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follows:
Pb)={xeC”:x=P'n V meC™} (3.2)

where the columns of P? correspond to the equilibrium point compositions appearing
in the set Ejy. Equation (3.2) defines the barycentric coordinates 7 representing the
fraction of the charge appearing in each of the product cuts. Every batch region b
defines a corresponding product simplex P(b), but the converse is not always true
(Ahmad and Barton, 1995). The targeting formulation presented here assumes that
all batch regions coincide with their corresponding product simplices, so P(b) = b.
For a given mixture of components, these regions can be determined from the stability

of the fixed points (Ahmad et al., 1997).

Given the product sequence defining each batch distillation region E, and the
compositions of all of the fixed points p,, we only need to identify the batch distillation
region that contains the feed in order to perform the mass balance. We call the region
containing the feed the active batch distillation region and identify it with the binary
variable y&. Since the feed lies within the convex hull of the products of the active
region, the barycentric coordinates are positive. For regions that do not contain the
feed, at least one of the barycentric coordinates is negative. We permit only one region
to be active and require that the barycentric coordinates are positive (7 > 0), so
we can express the fact that the feed composition x lies within the active region for

the distillation task in train k£ as follows:

d g =1 Vke K (3.3)
beB
X = E v Z TkePe Vke K (3.4)
beB  ecE,

We derive the time averaged mass balance for the distillation task by multiplying (3.4)
by the total feed fP. We define the variable f,’** = yZ fPrr to eliminate the bilinear

terms from the time-averaged material balance and obtain the following material
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balance for the kth distillation task:

£l =3 "N faep, VieK (3.5)
bEB e€E,
We require that f,ﬁ‘;"‘ > 0 and complete the definition of f,g,‘g‘* using the following
inequality:

3 fe < fyh vkeK,beB (3.6)

e
e€Ey

D

To simplify the expressions in the rest of the model, we define f,_°**, the flow of equi-

librium point e out of the distillation task k. Although this constraint is redundant,
it will be eliminated during the preprocessing stage of the model (IBM, 1991) and

will not effect the solver’s efficiency.

D fgeut = 0o VkeK (3.7)

beB
The distillation targeting model presented above determines the maximum re-
covery for sharp splits. Now we prove that the superstructure embeds all feasible
sequences of cuts that can be obtained from the same feed. Fractions of the sharp
cuts can be combined to produce any feasible combination of cuts, embedding non-
sharp splits and off cuts within the superstructure; therefore, the number of dis-
tillation cuts in the actual process need not correspond to the number of cuts in
the targeting model as demonstrated in figure 3-4. A set of n cut compositions
S ={p},ph,...p, : p; € C* Vj=1...n} is feasible if and only if each cut is in
the active batch distillation region (p} € B*), and the feed composition x lies within
the convex hull of the compositions in S’ (x € conv(S’)). This definition does not
imply that these compositions can actually be achieved in a column operating with
a finite reflux ratio. Thus, the screening model embeds any off cuts and nonsharp

splits that may be performed in the actual process.

Theorem 3.1. Given a feed composition located in a batch distillation region B with
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linear pot composition boundaries that is identified by the sequence of product composi-
tions S = {py, Pas - - - Pnct, all sets of feasible cuts can be obtained by mizing fractions

of the cuts obtained from a column whose cut compositions are defined by S.

Proof. Define the matrix P € R**"¢ as the matrix whose columns are the vectors
in S and the matrix P’ € R**" as the matrix whose columns are the vectors in S’.
Since the batch distillation region is contained in the product simplex, each element
of S’ can be expressed as a convex combination of the elements of S, so there exists

#; € C" such that p) = P#; for every p; € S'. This defines the matrix Il

A~

P’ =PIl (3.8)

Since x € conv(.S’), there exists «’ € C" such that x = P’n’ where 7, represents the
J

fraction of the charge obtained in the jth product cut of S’.

A

x = P'n’ = (PIT)n’ = P(IIx') (3.9)

There exists w € C"¢ defining the barycentric coordinates of the feed with respect to
the extreme points of the distillation region, x = P#, so the amounts collected in the

sharp cuts are linearly related to any feasible cuts obtained from the column.
IIn' == (3.10)

This equation represents the material balance around the product cuts in the set
S. It demonstrates that the amount of the cuts with the compositions in S’ can be
obtained by mixing fractions of the cuts taken at the equilibrium nodes. Figure 3-4
shows that any feasible set of cuts can be obtained from the sharp cuts determined in
the targeting model if mixing is permitted. The labels on the arcs represent the time-
averaged flow rates, and the labels contained in the state nodes denote the material
composition. Since every element of both IT and =’ is positive, all of the flows on the

arcs between the nodes are positive. O
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1 Distillation
@—) Targeting
Model

Figure 3-4: Representation of an arbitrary distillation task by combining sharp dis-
tillation cuts and mixers.

3.1.3 Reactor Targeting Model

Mass balances and reaction stoichiometry are enforced by introducing the extents of
reaction as model variables. For the kth reaction task, stoichiometry is enforced by
expressing the time averaged material balance in terms of stoichiometric coefficients

v and the extent &, of reaction 7.

S fEmpe+ ) Gviy = o Vke K (3.11)
ecE TERy

For components e that do not participate in reaction r of the kth reaction task,
Vire = 0. Since the extent of the reaction is the same for all components, requiring
non-negative flow rates insures that the reaction extents are feasible. The material
balances for the reaction only constrain the feasible composition space of the reac-
tions by enforcing stoichiometry and permitting no more than total conversion of any
reactant.

The extents of the reaction that are achieved in the actual process depend on
the operating policies of the reaction tasks and the kinetics of the reactions. Since
expressions for the reaction kinetics are available (otherwise we could not model the

reaction tasks in detail), bounds on the achievable extents of reaction in terms of
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key operating variables (e.g., processing time, temperature, and feed composition)
can be derived and incorporated within the screening model. In addition, bounds
relating the extents of competing reactions can be provided. We have not derived
general expressions for these bounds since they will almost certainly depend on the
kinetics of the reactions, but the case studies presented in chapters 4 and 5 show
specific examples of how these bounds can be derived. The case studies demonstrate
how bounds for the extents of competing reactions can be derived from the operating
temperature limits imposed on the process. In addition, they demonstrate how upper
bounds on the extents can be derived from the processing time and a bound on the
temperature profile for the task. These bounds do not exclude any feasible operating
policies, yet they manage to incorporate important tradeoffs within the screening

formulation.

3.2 Time Averaged Material Balances

The constraints for the material balances can be derived from the superstructure,
shown in figure 3-1, and the composition targeting models that relate the inlet and
outlet flow rates for the distillation and reaction task nodes in the superstructure. In
fact, the material balances for the distillation and reaction tasks are shown in (3.5-
3.7) and (3.11) respectively. The‘screening model enforces time averaged material
balances around each of the task and state nodes in the superstructure. Material
balances around the state nodes representing the fixed points of the batch distillation

regions are expressed as follows:

feSupply + Zflfzout — feProduct + fel/Vaste + Z flﬁ:m + Z f’i\;fm Vee E (312)

keK keK keK

The following material balances around the ‘hypothetical’ mixing tasks define the

feed to the distillation tasks in terms of pure component flows.

> (M p, + gt = £l Ve K (3.13)

eeFE
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Equations (3.5-3.7), (3.11), and (3.12-3.13) enforce the material balances around
all of the nodes in the superstructure shown in figure 3-1; these constraints denote
the material balance constraints at the highest level of the superstructure hierarchy.
However, we cannot identify streams that are recycled and need to be purged by
examining the superstructure at this level of detail. Since the screening models require
that a fraction of any recycled cut is purged, deriving the purge constraints requires
a more detailed view of the material flows in the process. The fixed point nodes in
the superstructure shown in figure 3-1 are refined as shown in figure 3-5 to provide a
superstructure with more detail that identifies recycled streams and allows them to be
purged. Constraints to enforce the purge requirements require variables introduced
in the material balance constraints for the network depicted in figure 3-5. In general,
a hierarchy of superstructures may be used to describe the process, depending on the

type of constraints that are required.

fProduct
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,’ Mix,
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Figure 3-5: Detailed representation of fixed point node e used to derive the purge
constraints.

The cuts from each distillation task are sent to a splitter contained in the detailed
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representation of the fixed point node. Cuts entering the network are either sent
to waste, to product, forward in the process, or backward in the process. Material
balances are derived around each node that exists in the expanded representation of
the fixed point node in (3.14-3.22). Equation (3.22) ensures that a fraction of every
recycled stream is purged. The purge fraction of each equilibrium point, X?*"9¢ is
data supplied to the screening model based on engineering judgment or prior knowl-
edge about trace contaminants; different purge fractions can be used for each fixed
point node if desired. Incorporating these constraints in the model, allows (3.12) to
be removed from the screening model. We retain (3.14-3.22) and rely on the presolver
contained in OSL to eliminate any unnecessary variables and constraints to reduce
the size of the linear programs actually solved during the branch and bound iteration
(IBM, 1991). If a solver is used that does not eliminate the intermediate variables
that have been introduced here, these should be removed to reduce the size of the

models that are solved.

= S S R T Vhe (319
f]fe — lf:rge + Z eB;cfcr’ V k,e (315)
. K<k
fE = Z B Vke (3.16)
k'>k
N Y vhe  (an)
kl

fSurrly — z 1L Ve (3.18)

k
feProduct — fePTgp + Z féz Ve (319)

k

I Yo e o

k
SR g = fese Ve (3.21)

k

purge XPurge B Vk,e (3.22)
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The supply of raw material to the process is restricted to components that can be
purchased or are available as a by product of another process within the manufactur-
ing facility. Let Er define the set of fixed points that may be supplied to the process

and require that the feed of all other components is zero.

> ffury =0 (3.23)

e¢ER

Finally, the product must adhere to purity specifications and meet manufacturing
demands. The total production is given by the flow of in-spec product over the entire
campaign. Purity specifications are placed on a subset of the fixed points contained
in the product (typically these will be pure components). We let Ep denote the
components whose purity in the product is specified by XPro%<t and Q9™ represent
the manufacturing demand. For example, if the desired product is component P and
it is required at 98 % purity by mass, then the set Ep = {P} and X?P*¢%* = 98. The
demand and purity constraints for the manufacturing campaign are specified below;
in these constraints, the time averaged flow rates denote the material flow for the

entire campaign, and the product purity is specified on a mass basis.

Qdemand S Z fePT'Od“CthW (324)
e€l
Xproduct Z feProduct,we < Z (feProduct Z pre,we,> (325)
ecE ecE eeEp

The elements of w € R™ represent the molecular weights of the pure components.
We could also place restrictions on the amounts of particular impurities that are
permitted in the product. For example, if the product is required at 98 % purity,
but cannot contain water, then a restriction must be placed on the amount of water
that is allowed. Let the parameter X™P“"*%¥ denote the maximum mass fraction of
fixed point e that is permitted in the product. If no special restrictions are imposed,
then Ximpurity — 1 — Xproduct for a]] ¢ ¢ Ep, and X™Pur¥ =1 for all e € Ep. Let

the set E; define the components whose concentration in the product is restricted
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to remain below the limit defined by X "“"* Note that this set need only contain
fixed points whose fraction in the product must be restricted more than the average

impurity, such as water in the example described above.

X;'mpurity Z fgroductwel > Z fe};"roduct pZ‘ PoWe Ve € E; (3.26)
¢'€E e'€E

Screening formulations containing objective functions that depend on only the
material flows in the process can be derived using the constraints presented thus
far (however, constraints that limit the extents of the reactions that were not ex-
plicitly stated should also be included). For instance, the minimum raw material
and waste disposal cost for a process that meets the production requirements or the
minimum amount of waste that can be emitted to the environment can be deter-
mined. We merely need to postulate the objective function, incorporate constraints
(3.5-3.7, 3.11, 3.13, 3.14-3.23, and 3.24-3.26), and solve the resulting mixed-integer
linear program. Similar models have been used for solvent recovery targeting (Ah-
mad and Barton, 1995). However, to account for other production costs and the
assignment and scheduling of equipment, we need to target for the time and utility
requirements for the reaction and distillation tasks and include constraints to ac-
count for the equipment assignment and scheduling. Such constraints are derived in

the following sections.

3.3 Bounding Distillation Processing Time and Util-
ity Requirements

The processing time and hot and cold utility consumption of the distillation task
impact the operating cost of the entire batch process. Since the operating cost of the
process is a nondecreasing function of these variables, underestimates are required
to maintain the bounding properties of the screening model. However, determining
the processing time and utility cost requires knowledge of both the reflux ratio and

the amount of material taken overhead. This requires knowledge of the amount of
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material assigned to the bottoms, f,ﬁ"t, defined later in this section.

3.3.1 Distillation Processing Time Bounds

The distillation columns employed in the process are characterized by a maximum
vapor rate at which they can operate. The maximum vapor rate is based on limits
imposed by the tray and downcomer design (or packing design) that avoids entrain-
ment flooding for reasonable values of the liquid rate in the column (Kister, 1992).
We assume that no loss of efficiency or increase in utility cost is incurred by operat-
ing at this rate. We also assume that no heat integration will be performed. Since
operating at the maximum vapor rate will minimize the operating time but will not
hinder separation efficiency or increase utility cost, all columns will operate at their
maximum vapor rate.

The material balance around the column is used to derive bounds on the processing
time and utility requirements. The column contains product cuts c to nc at the start
of the cth product cut; at the completion of the cut, cuts ¢+ 1 to nc remain. The
amount and composition of the material removed is known,! so the processing time
can be calculated from the vapor and distillate rates. We assume that the vapor flow
rate V is bounded by the maximum rate that can be achieved in a given column; no
assumptions are made regarding the distillate rate D, or the liquid rate L.

To preserve the bounding property of the screening model, a valid underestimate
of the operating time is needed. The time required to obtain each cut depends on
the amount of the cut, the vapor rate, and the reflux ratio used during the cut.
To provide a lower bound, we assume that the columns assigned to the distillation
task will operate at their maximum vapor rates. Although the amount of material
obtained in each product cut is given by fPe+t  when more than one unit is assigned,
the amount of material processed by each column will be a fraction of fP-«t. In the

remainder of this section, we consider Pt to represent the material processed by the

!None of the material assigned to the bottoms cuts is taken overhead, providing an underestimate
of the time and utility requirements. However, some of the overhead cut material may leave the
column as an impurity in the bottoms stream, and this is addressed later in this section.
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assigned equipment units; we adjust for units in parallel (see (3.66)) when deriving
the constraints to determine the campaign time.

The processing time for each cut, t<**, is the time required to remove the cut from
the column. This time is a function of the distillate rate D and can be expressed in
terms of the vapor rate and reflux ratio R. Let M represent the amount of material

collected in the accumulator during the cut (dM = Ddt) and integrate the expression

V = D(1 + R) for the duration of the product cut.?

J

The relationship above holds as long as the reflux policy can be expressed as a function

cut
te

feDout

Vdt = Vit = / (1+ R(M))dM (3.27)

0

of the amount collected in the accumulator during a specific cut. If the reflux ratio is

constant over the entire cut, a simple expression for the time is obtained from (3.27).

ot _ S L+ R) (3.28)
The cut time defined in (3.28) provides a valid underestimate of the processing time
for a cut if R underestimates the integral of the reflux ratio over the entire cut,
R < [I R(M)dM] 2.

In order to obtain an underestimate of the reflux ratio, some limiting cases are
examined. First, since the column is operating at its maximum vapor flow rate, we
recognize that a minimum reflux ratio is required to provide a suitable liquid rate
for proper liquid and gas flow patterns within the column. This minimum ratio may
depend on the particular column, and is required to prevent undesirable operating
phenomena. Kister (1990; 1992) describes correlations to predict these boundaries
for tray and packed columns, so we treat these boundaries as design constraints that

cannot be violated. Thus, we assume that a minimum reflux ratio for the column is

specified as part of the data for the problem. At the very least, any feasible operating

2Note that this relationship does not assert constant molar overflow. The vapor rate V is the
maximum vapor rate that can be achieved in any part of the column. The vapor rate at the top stage
must be less than or equal to V, so the distillate rate D must be less than or equal to V/(1 + R).
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policy must employ a reflux ratio that exceeds this minimum. Since the equilibrium
stage models will not accurately represent the process if we operate below this mini-
mum, we should also include this constraint in any dynamic optimization calculations
performed on the detailed models of the distillation tasks. If no information regard-
ing the purity of the overhead cuts is provided, then the tightest bounds that can
be given for the reflux ratio are those at the limit of the feasible operating regime
based on liquid gas contacting. Letting R™® represent the minimum reflux ratio of

the assigned equipment unit,

Dout

R(M)dM

min fO
Ri S R S fDout

(3.29)

An underestimate of the processing time for the distillation task is obtained by
adding the processing time for all of the overhead cuts, provided that the bottoms
stream is pure. If the bottoms stream contains some impurities from the overhead
stream, then some of the material that would have been taken overhead remains
in the bottoms. To account for the impurity when determining the duties for the
overhead cuts, we require that the amount of impurity that can be tolerated in the
bottoms, 1— X?  is specified for each distillation task. The bottoms impurities must

be fractions of the overhead cuts, so they can be defined as follows:

Bl > fBet vk, e (3.30)
YRS < (1-XxPF Z fBot (3.31)

Valid bounds are obtained by subtracting the time required to collect the tolerated
amount of impurity at the reflux ratio employed during the overhead cut; the opti-
mization is free to select the overhead material that minimizes the processing time
as the impurity. Therefore, operating column ¢ at its minimum reflux ratio defines

the minimum time for one column of type ¢ to distill the material taken overhead in
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distillation task k.
1+ Rwin
tkDiproc 2 _‘_/_l___ Zflgout — kB;Ot . kB;I (332)
? €

Of course, f& = 0 and (3.30-3.31) are not needed if the bottoms streams are required

to be pure.

3.3.2 Bounding the Distillation Utility Requirements

The rate of energy removal, Q, required to condense the vapor passing through the
condenser for a process operating without losses can be expressed in terms of the heat

of vaporization of the condensate AH"?P and the reflux ratio R of the cut.
Q = AH"D(1+ R) (3.33)

The distillate composition corresponds to one of the equilibrium points in the residue
curve map, so AH"?P is known for every cut if the material is condensed at its boiling
temperature; the enthalpy of vaporization and boiling temperature of each equilibrium
point can be provided as data to the screening model.> However, we cannot assume
that all of the material that is collected overhead is condensed at the boiling point
of the fixed point because the cuts that will actually be obtained in the real column
cannot achieve the limit of perfect splits. When the cuts are not sharp, a particular
fixed point will be condensed as part of a mixture, so some fixed points will be
condensed at a temperature above their normal boiling point. At these elevated
temperatures, the enthalpy of vaporization is less than that at the normal boiling

point because the enthalpy of vaporization is a decreasing function of temperature

3The enthalpy of vaporization must be underestimated for the fixed points. These underestimates
must account for the enthalpy of mixing at the boiling temperature. The maximum enthalpy of
mixing can be determined by formulating and solving a global optimization problem. The global
optimization is solved before the screening model is posed, and the solution is treated as data in the
screening model, so AHY*P represents the enthalpy of vaporization at the boiling point reduced by
AH™X_ In principle, global optimization techniques (Adjiman et al., 1996; Maranas and Floudas,
1996; Smith and Pantelides, 1995) can be employed to identify AH™> for the compositions and
temperatures considered using the enthalpy model employed during the detailed dynamic simulation.
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(Reid et al., 1987). This implies that a lower bound on the condenser duty is not
derived by simply assuming that the collected material is condensed at its boiling
temperature and the column operates at minimum reflux. However, the enthalpy of

vaporization at the boiling temperature can be used to bound the reboiler duty.

We assume that material charged to the column is a liquid mixture below the
boiling temperature of the fixed points collected in the overhead cuts. In order to
collect material overhead, vapor must be generated. We adjust for the changes of
enthalpy upon mixing separately when underestimating the energy requirements, so
we ignore mixing effects here and treat the mixture as if it is ideal. Let AH, denote
the difference between the molar enthalpy of the liquid of fixed point e charged to the
column and the molar enthalpy of the vapor generated in the reboiler at some point
during the operation of the column. For a column operating at constant pressure,
a lower bound on the energy supplied to the reboiler during the distillation can be
determined from the amount of material taken overhead, the heat of vaporization of

this material, and the reflux policy employed:

fDout

“ AH.(1+ R(M.))dM, (3.34)

> =3 |

e€Ovhd ecOvhd V0

where M, represents the amount of material collected during cut e. A rigorous un-
derestimate of the reboiler duty is obtained from (3.34) when a valid underestimate
of the integral is provided; this requires valid underestimates for AH, and the reflux
ratio as functions of M, and the temperature of the reboiler. A simple underestimate
of the reflux ratio is obtained by assuming that the column operates at the mini-
mum reflux R™"® during the entire cut. Next, we demonstrate that the enthalpy of
vaporization at the boiling temperature of the fixed points (AH}*) provides a valid

underestimate of AH,.

The enthalpy of vaporization at the boiling temperature of fixed point e under-
estimates the difference in enthalpy between the liquid of fixed point e charged to
the column and the vapor that is generated in the reboiler. To prove this statement

we consider two cases: vapor that is generated below the boiling temperature, and
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vapor that is generated above the boiling temperature. The distillation is assumed
to be carried at constant pressure, so we are concerned with the enthalpy change in
an isobaric process. Let T? represent the normal boiling temperature of fixed point
e, TV represent an arbitrary temperature at which vapor is generated, T represent
the temperature of the feed to the column, AH?(T"??) represent the enthalpy of va-
porization of fixed point e at 7P, and AH P represent the enthalpy of vaporization
at T?.

First consider the case in which vapor is generated below the boiling temperature
(e.g., TV < T®). The enthalpy difference between the liquid charged and saturated

vapor at TV?P can be expressed as follows:

Tvap
AH,(TVP) = C! (T)dT + AH®(T"*P 3.35
Pe €

n

Since the enthalpy of vaporization is a decreasing function of temperature, AHY*P <
AH?(TYP). In addition, C,, is positive, and we assume T™" < T*?P, so substituing
into (3.35) provides an underestimate of the enthalpy change required to generate

vapor of fixed point e below the boiling temperature.
AH (T") > AH*® (3.36)

On the other hand, if the vapor is generated at or above the boiling temperature
(e.g., T¥® > T?) then the enthalpy difference between the liquid charged and the

vapor obtained can be described by the following isobaric path:

T! Tvep
AH,(T"P) = / C) (T)dT + AH(T?) + Cy (T)dT (3.37)
n Teb

Since the temperatures are ordered (T < T® < T*?P) and the vapor and liquid heat
capacities are positive, AH.(T"*P) is also underestimated by AH}*P when the vapor

is generated at temperatures above T?.

AH,(T**) > AH (3.38)
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Thus, the enthalpy of vaporization at the boiling temperature underestimates the
enthalpy difference between vapor at temperatures greater than T? and liquid at T°".
Therefore, an underestimate of the reboiler duty of distillation & can be expressed as

follows:

> Q> ) AHP™(1+RM™) VkeK (3.39)

e€Ovhd e€Ovhd
We note that for an exothermic reactive distillation process this may not be the case,
and the heat of reaction would need to be considered when determining the bound

on the reboiler duty. However, we do not consider reactive distillation in this thesis.

The energy costs in this type of process are typically unimportant, so these crude
underestimates of the utility requirements do not really influence the important design
trade offs. As mentioned in chapter 1, the small energy requirements of these processes
is one of the properties that favors their manufacture in developed nations. The
example problems presented in chapters 4 and 5 demonstrate that the utility costs
are insignificant in comparison to the other manufacturing costs. In fact, these costs

would still be insignificant even if they were an order of magnitude greater.

An underestimate of the duty for the distillation task is obtained by adding the
duties for all of the overhead cuts, provided that the bottoms stream is pure. Valid
bounds are obtained by subtracting the duty required to collect the tolerated amount
of impurity at the reflux ratio employed during the overhead cut; the optimization
will select the overhead material with the greatest heat of vaporization as the impu-
rity. Thus, for a column operating at vapor rate of V and a constant reflux ratio R

satisfying (3.29), the minimum reboiler duty can be defined as follows:

N,
Ox = (1 +y Zyg;nR?in> SOAHP (f - f2 - f2) VEe K  (3.40)

ielp n=1
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3.3.3 Definition of Bottoms Cuts

Whether a separation task is performed or not is determined from the location of the
bottoms cut in the distillation task. If all of the material entering the column is taken
in the bottoms, then the distillation is not performed and the processing time and
utility requirements defined above would both be zero. Therefore, every distillation
task in the superstructure must define which fixed point in the cut sequence will be
the first that is included in the bottoms; y2° = 1 denotes that e is the first product
taken in the bottoms of distillation k. We require a bottoms cut for every distillation

task, so

>yt =1 Vke K (3.41)

ecE

and we require that the bottoms cut exists in the active batch distillation region

et <Y uh VecE ke K (3.42)

beB.
where B, represents the set of all batch regions containing fixed point e (e.g., B, =
{b€ B:e€ Ey}). Any cut appearing after the bottoms cut in the product sequence
will be taken in the bottoms as well, so the bottoms of the distillation task can be

defined as follows:

Bot — fPowt N "y Bot VecE, ke K (3.43)

e'<e
We require that all of the bottoms cuts are processed in the same fashion. The
bottoms may be passed on to the next reaction or mixing task, or out of the process
as product or waste. If the bottoms stream is comprised of only one fixed point (i.e.,
the last cut in the active batch distillation region), then it may be processed in the

same way as any other cut. The constraints defining the way that the bottoms are
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processed are given below.

> =1 Vk € K (3.44)
seS
fk+1 e 2 YK oxn Vk,e (3.45)
Feiie = FEYE mix Vk,e (3.46)
20> i YE prod Vk, e (3.47)
£ 2 L&Y waste Vk, e (3.48)

The bottoms may only be sent anywhere if the cut is the last cut taken from the

active batch distillation region denoted by €’ (i.e., the ncth cut from the region).

Yeuny < D Vblbns. VEk (3.49)
b

3.4 Equipment Allocation

The product will be manufactured in a single product campaign using a subset of the
equipment available within the manufacturing facility. Suitable equipment items must
be assigned to all of the tasks that are performed in the process. Processing tasks
can employ parallel items of equipment, but only identical columns are permitted at
the same processing stage. Allocation and overflow constraints are enforced, and the
performance of the process is analyzed for two storage policies — no intermediate

storage and unlimited intermediate storage.

Since a suitable item of equipment must be assigned to every task that is per-
formed, we require variables to define whether a task is performed. Let y®" and 2
define the existence of reaction and distillation task k, respectively. A distillation task
is performed unless the first cut from the active batch distillation region is included

in the bottoms. Letting e} denote the index of the first cut in region b, the existence
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of the kth distillation task is defined as follows:

X =1- vy Vke K (3.50)
beB

If a reaction task is not performed then all the extents of reaction are zero.

> & Syl vk (3.51)
rERy,
The screening model permits material to flow into tasks that are not performed but the
equipment overflow constraints are relaxed, so no equipment needs to be assigned. For
the columns, (3.43) requires that all of the material leaves these tasks in the bottoms
if the distillation is not performed. Equations (3.52-3.53) ensure that equipment is

assigned to the reactions and distillations that are performed.

> Z 2B > vk (3.52)

i€lp n=1

> Z yS, = zP Yk (3.53)

i€lp n=1

The equipment items of type ¢ assigned to the process cannot exceed the number of

equipment items, [V;, of that type available in the plant’s inventory.

N1

DY ukn< N Vielg (3.54)
n=1 k

N;

>3 yGan <N Vielp (3.55)
n=1 k

We also require that parallel distillation columns are the same type.
> Zyz,m <1 VkeK (3.56)
i€lp n=1
Consecutive reaction tasks may be merged if the distillation task between them
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is not performed; if a distillation is not performed, the optimization is free to choose
whether the adjacent reactions should be merged into the same equipment items.
Let ;"% denote whether reaction k is merged with reaction k + 1, 2, denote the
whether n equipment items of type I are assigned to reaction task k, and yf,, denote

the first reaction task to which these equipment items are assigned.
Yyt <1—2z0 Vk<K (3.57)

If two consecutive reaction tasks are merged, then the same equipment items are used
for each task. This implies that no new equipment items are assigned to the latter

stage which is enforced by (3.58).
N,
Ye + Yyl <1 Vielp k>1 (3.58)
n=1

Using the fact that no new equipment is assigned, the variable zf, can be defined

recursively as follows:

sz_l’ny,:"f;ge +yR =R VieIg, ke K,n (3.59)
where 2z | = 0 and y5"“"* = 0. Equation (3.59) can be expressed using the following

. . . R R _ .R merge
linear constraints since 2, — Yixn = Zik—1.nYk—1

2 = Y < 2 i Vk,i€Ign (3.60)
B —yR <yl VEk>1,i€Ig,n (3.61)
ROyl > Zf_mn +y -1 Vkieclgn (3.62)
B o—yR >0 Y ki€ Ig,n (3.63)

Note that equations (3.60-3.62) are the standard linearization proposed by Glover
(1975) for bilinear terms of binary variables, but (3.63) is required to ensure that z,

is equal to y%  at the first stage to which equipment is assigned.
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3.5 Process Performance and Production Cost

The equipment assigned to the processing tasks and the storage policy selected for the
process affect the production rate of the process and the duration of the manufacturing
campaign. Since the reaction times do not depend on the item of equipment that is
used, and identical distillation columns are assigned to the same task, an unlimited
intermediate storage policy (UIS) is modeled by treating the number of batches of
each task as an integer variable. N;*“*? and N}**? represent the number of batches
used for the reaction and distillation task in train k. The number of batches for tasks
that are not performed is arbitrarily assigned to the maximum number of batches.
The no intermediate storage policy (NIS) is modeled by requiring that the number of
batches used for every task is the same, and the arbitrary assignment for unperformed
tasks is relaxed. The model equations below are derived for the UIS case, recognizing
that the NIS case can be derived by adding constraints, or substituting N*** for both
NPotehr and NPo'hD  Letting the time averaged flows represent the total flows over
the duration of the campaign, the following constraint underestimates the processing
volume required for the reactors and represent a relaxation of the constraint requiring

that the reactors do not overflow:

N,
DS piv < Y Y A N 4 NETTY e (1 yfer) Y E (3.64)
e i€lg n=1
where v is a vector whose components underestimate the molar volume of each of
the pure components in the process over the temperature range of interest. If volume
changes upon mixing are modeled, these underestimates must be chosen so that valid
underestimates are still obtained for the resulting mixture volumes when the volume
is calculated as if it is an ideal mixture.? Note that the volume requirement is based

solely on the underestimate of the final reaction volume in order to account for fed

4To account for volume changes, the molar volume of each component is adjusted to account for
the maximum volume change upon mixing that is possible over the temperature and compositions
considered. This maximum change can, in principle, be calculated by applying global optimization
techniques (Adjiman et al., 1996; Maranas and Floudas, 1996; Smith and Pantelides, 1995) to the
mathematical model used to predict liquid volume in the detailed dynamic models.
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batch operating policies, and that the constraint is relaxed if the reaction task is
not performed and the contents are passed on to the subsequent distillation task.
If the reactions must run in batch mode, then a similar constraint can be imposed
on the initial reactor volume. Detailed simulation of a reactor with these feed flows
may actually overflow since these constraints overestimate the feasible region. Similar
constraints are enforced for the distillation columns, but we assume that all of the

material is charged to the column at the start of the task.

Z vTgMowe < 3" Z nyG NPV, 4 NB™ Y Cmex (1 - 2P)  VE  (3.65)

i€lp n=1

The campaign time for the process depends upon the processing times for the
individual tasks. The processing time for each distillation task depends upon the
columns assigned and the amount of material processed. Parallel distillation columns
are required to be of the same type, so an optimum exists with equal amounts of ma-
terial sent to each. Thus, the processing time for columns operating at the minimum

allowable reflux ratio of R™" to complete distillation task k is given as follows:

D _ (Z fDout _ fBot _ ) Z Z zkn(]' + Rmm) (3.66)

1€lp n<N,

The reaction processing times t& for one batch are independent of the assigned equip-
ment units, yet we need to consider whether the reaction tasks are merged to deter-

mine the total batch processing time for reactors assigned to these tasks.
tmerged — tk + ymergetmerged vV k (367)

The total processing time needs to consider the transfer times and any time allotted
to bring the columns to total reflux. Constant transfer times are assumed, leading to
the following bounds on the campaign time.

geampaign > 4D 4 Npetehp (yeharge | gempty | yreflury vy (3.68)
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tcampaign > N]l:atChR (t;nerged + tcharge +tempty) Yk (369)
In addition, the time available for manufacture is typically restricted.

campaign < horizon (3.70)

The cost of manufacture includes raw material, waste disposal, equipment use, and
utility costs. Each equipment item has associated an hourly rental charge. Equipment
items must be rented for the entire campaign, so the equipment cost for the campaign

can be expressed as follows:

N, N’L
cEIWP — gcampaign Z Z nzgcncf; + tcampaign Z Z nzzRI;nCzE (371)

i€lp n=1 iclg n=1
Utility costs are calculated from the duties for distillation tasks and cost of the spe-
cific utility required. Below, we assume only one level of the hot and cold utility is

available, although this is not necessary in general.
(Chu + Ccu) Z Qk — Cutility (372)
k

Raw material and waste disposal charges are associated with every fixed point node.
Total waste and raw material costs are determined from the total mass of material

entering and leaving the process.

g = 3 psumty (3.73)
ecEp

Cwaste — Zcéufel/l/aste (374)
ecE

An underestimate of the total manufacturing cost is given as the sum of the individual

costs.

ctotal — Craw + cwaste + Cutzlzty + ceqmp (375)
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3.6 Formulating the model to be solved

The constraints presented above permit the minimization of the underestimate of
the manufacturing cost expressed in (3.75) subject to constraints (3.5-3.7), (3.11),
(3.13-3.25), (3.30-3.40), (3.41-3.58), and (3.60-3.74). However, the model, as pre-
sented, cannot be solved to guaranteed global optimality since it is nonconvex. All of
the nonconvexities in the formulation arise from bilinear terms between discrete vari-
ables or between discrete and continuous variables; these terms are present in (3.40),
(3.43-3.49), (3.50), (3.64-3.67), (3.69), and (3.71). Since exact linearizations of these
expressions are possible, the model can be transformed into a mixed-integer linear
program that can be solved to guaranteed global optimality (Glover, 1975; Adams
and Sherali, 1986).

The bilinear products of two binary variables are modeled by defining continuous

variables that are an exact linearization of the bilinear product. For example, the

Bot

iob y2 appearing in (3.50) is replaced by introducing the continuous
1

bilinear product y
variable z,ﬁ,‘ equal to the bilinear product that is defined in terms of linear constraints

following the linearization scheme proposed by Glover (1975):

2 S Y Yk (3.76)
< ye bk (3.77)
%o 2 Yon tYm—1 Yk (3.78)

The bilinear terms of continuous and discrete variables are also linearized following

the scheme proposed by Glover (1975) that exploits the upper and lower bounds (e.g.,

(3.81)) on the continuous variables. For example, the variable tfM is introduced to

replace the bilinear term in (3.67).

tz@erged _ t;nerged"’(l _ y;;nerge) S tIIC%M S t}rcnerged _ t;cnerged_(l _ y7]l\/') Vi< K (379)

e e < g < et VE<K (350
merged™ d+
tk erge S thM S tZ‘LE’I'ge (381)
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These constraints typically increase the integrality gap of the model. Finding tight
upper and lower bounds on the variables helps to mitigate this effect; calculations
to estimate tight bounds on the variables are discussed in chapter 4. Additional
constraints can also be introduced to derive a tighter formulation (Adams and Sherali,
1986).

The integer variables representing the number of batches are modeled as the sum
of binary variables to enable standard linearization techniques to be applied. Special
ordered sets of type 1 are used for these binary variables to improve the efficiency of

the solver’s branch and bound iteration (Beale and Tomlin, 1970).

NBmaX

Nbatch Z myN B (3.82)
m=1

Nanx

NB
mzzl yn

fl
o

(3.83)

3.7 Conclusions

Screening models for batch process development have been derived. A superstructure
for networks of batch reaction/distillation tasks has been presented. This super-
structure embeds sequences of reaction and distillation tasks with material recycles.
Equations to enforce time averaged material balances for the nodes in the superstruc-
ture have been derived. Composition targets for the reaction and distillation tasks
overestimate the feasible region of operation and enforce mass balances for the tasks.
Although the distillation targeting model assumes sharp splits, we have demonstrated
that the superstructure embeds all feasible sequences of distillation cuts. In addition,
the modeling equations for the reaction and distillation tasks provide rigorous un-
derestimates of the processing time and utility requirements. The distillation targets
that have been derived show that when the minimum reflux ratio is determined from
the limit required for proper gas/liquid contacting, the screening model can be cast
as a mixed-integer linear program. Within this formulation, the screening models

address the allocation of equipment to processing tasks for both UIS and NIS storage
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policies, and consider raw material, waste disposal, utility, and equipment costs.

The screening models provide a rigorous lower bound on the cost of the design.
This lower bound can be employed as a design target to enhance existing design
methods, or as the basis for a rigorous decomposition algorithm to address batch pro-
cess development. For instance, the solution of the screening model can be employed
as a metric upon which the benefits of design optimization can be assessed, and it
can be used to determine whether a new product has any chance of being profitable.
Screening models also enable the development of the rigorous decomposition strategy
for the improvement of the design, discussed in section 2.4, that has the potential
to avoid total enumeration of the discrete space. The decomposition strategy also
provides a rigorous bound the distance to the global solution upon termination.

In addition, the screening models consider aspects of the batch process synthesis
that have not previously been systematically addressed. Solvents and reagents can
be selected from a set of candidates and the models can determine the sequence
of processing tasks from a superstructure of processing alternatives. The solution
constructs not only the sequence of tasks to be performed, but also defines the recycle
structure for the process. For these reasons, the solution provided by the screening
model provides a good starting point for detailed design. This solution facilitates the
definition of a state task network of the process that can be used to formulate the
detailed design as a dynamic optimization problem. In addition, the solution of the
screening model provides good initial guesses for the compositions and amounts of
recycled batches of material for the dynamic optimization formulation. The ability to
handle discrete decisions directly within the screening model makes them particularly
appropriate for making decisions such as in which batch distillation region should the
feed to the column be located, and what equipment should be assigned to a particular
processing task.

The screening models are demonstrated on two case studies in chapters 4 and 5.
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3.8 Notation

3.8.1 Indexed Sets

B
B,

The set of all batch distillation regions

The set of all batch distillation regions containing fixed point e. B, = {b €
B:e€ Ep}, s0o B. C B.

The set of all fixed points (azeotropes and pure components) in the system
The set of all fixed points whose maximum composition in the product is
limited (i.e., impurities), E; C E

The set of all fixed points regarded as product species, Ep C E

The set of all fixed points that may be supplied to the process, Er C F

The sequence of fixed points defining the sharp splits from batch distillation
region b

The set of equipment types available in the manufacturing facility

Set of equipment types suitable for distillation tasks Ip C I

Set of equipment types suitable for reaction tasks Ir C I

The set of processing trains

set of reactions occurring in the reaction task in processing train k. r =
1,...NE

The set defining the destination of the bottoms cuts S =
{rxn, mix, waste, prod, any}, indicating whether the bottoms are sent to
the next reaction task, to the next mixing task, to waste, to product, or to

anywhere in the process.

3.8.2 Integer Variables

Nyho - number of batches used for the distillation task &

N#**® number of batches used for the reaction task k

3.8.3 Binary Variables

yd, Is region b the active batch region for distillation k?
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Bot
yke

C
Ykin
merge
Yk

R
Yikn
Rxn

Yk

S
Yks

Is fixed point e the first fixed point appearing in the bottoms of distillation
k?

Are n units of type 7 is assigned to distillation task k?

Is reaction task k is merged with reaction task £ + 17

Do n reactors of type 7 begin processing potentially merged reaction tasks
at stage k7

Is reaction task k is performed?

Are the bottoms from distillation &k are sent to s?

3.8.4 Exact linearizations of bilinear products of binary vari-

ables

D

z;; Is distillation £k is performed?

R

Zikn

Are n reactors of type i are employed for reaction task k7

3.8.5 Continuous Variables

c®™P  equipment cost for the manufacturing campaign

¢ raw material cost for the manufacturing campaign

ctetal  total manufacturing cost

cutility  ytility cost for the manufacturing campaign

c¥*st  waste disposal cost for the manufacturing campaign

fE flow from splitter node k to the corresponding backward node within the

expanded representation of fixed point e

BF

SF, time averaged flow of fixed point e from distillation k to reactors and

mixers at stage k'

BI

51 total flow of overhead species e that could be contained in the bottoms

of distillation k as an impurity

Bot total flow of fixed point e taken in the bottoms of distillation &

Bout
kbe

time averaged flow of the fixed point e out of distillation k in batch

region b
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Dout
ke

e

fke in

Mout
flc

fProduct
e

fie

fErae

Prgp
e

purge
ke

Rln
ke

fie

ffupply

w
fke
fWaste
e

Qk

tcampaign

t

time averaged flow of the fixed point e out of distillation &

flow of fixed point e from distillation k that is sent forward in the process
for further processing

the time averaged flow of fixed point e into mixer k

the time averaged component flows into distillation k, £ € R

the time averaged flow rate of fixed point e in product

flow from splitter node k to the product node within the expanded rep-
resentation of fixed point e

total flow of fixed point e purged from recycle streams that leaves the
process as waste

total flow of fixed point e purged from recycle streams that leaves the
process in the product stream

recycled flow of fixed point e from distillation £ that must be purged
from the process

the time averaged flow of fixed point e into the reactor train k

total flow of fixed point e into the process that is sent to reactors and
mixers in processing train k

the time averaged supply of fixed point e

flow from splitter node & to the waste node within the expanded repre-
sentation of fixed point e

the time averaged waste flow of fixed point e

condenser duty

total length of the manufacturing campaign

processing time for distillation task &

total processing time for any merged reaction tasks ending with stage k&
processing time for reaction task &

The barycentric coordinates, w € R™

the extent of reaction r in reaction task k
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3.8.6 Parameters

Ceu
cy

Chu

Ce

cy
fmax

N;
B
Qdemand

min
Ri

tcharge
tempty
thorizon

tre flux

Ve

S

AH

€

Pe

Viyp

cost of cold utility per unit energy

rental rate for equipment unit ¢

cost of hot utility per unit energy

cost to purchase a unit mass of fixed point e

cost to dispose of a unit mass of fixed point e

upper bound for time averaged flows in the process

number of equipment units ¢ in the manufacturing facility

maximum number of batches that may be employed during the campaign
product demand

the minimum reflux ratio for proper gas/liquid contacting in distillation
column ¢

time required to charge one batch of material to an equipment unit
time required to empty one batch of material from an equipment unit
horizon time for manufacture

time required to bring a column to total reflux

underestimate of the molar volume of equilibrium point e at processing
conditions

processing volume of equipment unit ¢

maximum vapor rate for distillation column ¢ € Ip

molecular weight of equilibrium point e

underestimate of the heat of vaporization of equilibrium point e at the
at the processing conditions

composition of fixed point e

the stoichiometric coefficients for reaction r in reaction task k
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Chapter 4

Using Screening Models to Identify

Favorable Processing Structures

The ability of screening models to discriminate between alternative process structures
is demonstrated on a simple batch process development problem. Although only one
reaction step is required in this process, the complexity of the chemistry and the
thermodynamics is such that the interaction between operation of the separation and
reaction tasks leads to a large set of alternative configurations for the state task
network defining the process. The screening model automatically selects attractive
alternatives meeting the design constraints, allowing the engineer to focus on the
detailed design of these configurations. This example clearly shows the importance
of quickly identifying the most attractive alternatives in order to avoid wasting time
and effort optimizing designs resulting from poor synthesis decisions. Incorporating
the dominant operating tradeoffs within the algebraic bounding models is the key
to deriving an effective screening model for the process. This process demonstrates
the type of processing tradeoffs that are important during the optimization of batch
reaction/distillation networks, yet the level of detail has been minimized to highlight
the specific tradeoffs exploited during the synthesis and to simplify the analysis of
the resulting design.

The process examined consists of a sequence of competing first order reactions.

This example also demonstrates how bounds for the extents of reaction in terms of
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key processing variables can be derived.

4.1 Process Description

The process examined consists of a competing set of reactions that convert the raw
materials to both the desired product (P) and waste materials (W7, W3). The product
can be separated by distillation. The bench scale synthesis employed a simple two-
stage reaction/distillation process, but made use of an ice bath not available in the
existing manufacturing facility. The reaction step comprises the set of competing
reactions shown in (4.1). All of the reactions are first order in either A or I at the
conditions under which the process may be operated. Any of the components B, W,

or W5 can be used to solvate the reactions.

A+B L 1 2, p

E s (41)

Wl W2

The relative rates of the reactions have been chosen so that they agree with an early
study of reaction temperature optimization (Denbigh, 1958); the reaction rates follow
Arrhenius rate expressions according to the constants listed in table 4.1. All of the
reactions are catalyzed by the same catalyst, and we assume that enough catalyst is
present for the rate expressions to remain accurate. Degradation of the catalyst is

not considered.

k E4
Reaction || s7! | -L
1 10% | 37000
2 107 | 61940
3 10! | 37000
4 1073 | 12058

Table 4.1: Constants for the Arrhenius rate expressions for the first order reaction
—Fa
rates (r; = C;k;e R ).
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The process considered contains the six components shown in (4.1). These compo-
nents form one ternary and two binary azeotropes. The azeotropes are all contained
on the facet of the composition simplex formed by B, W1, and P shown in figure
4-1. The composition (p,) of each azeotrope is shown in table 4.2. These azeotropes
divide the composition space into the five batch distillation whose product sequences

are shown in table 4.3.

Azeotrope Composition

P Wl-P B-Wl-P B-W1
B | 0.00 0.72 1 0.35
Wi | 0.15 0.06 | 0.65
P 085 0.22 | 0.00

Table 4.2: Azeotrope compositions for the three azeotropes formed between B, Wi,
and P.

Product sequence
{ A, W)-P, Wy, I, B-Wp, W, }
{ A, W1-P, B-W;-P, I, B-Wy, Wy }
{ B, A, B-W,-P, I, B-W;, W, }
{ B, A, B-W;-P, 1, P, W, }
{ A, W1-P, B-W-P, I, P, W }

UL W N =T

Table 4.3: Product cut sequences for the distillation regions.

4.2 Design Constraints

The equipment and utilities available within the manufacturing facility impose con-
straints on the design of the manufacturing process that often do not exist at the
laboratory scale (Allgor et al., 1996). Other design constraints may be imposed in
order to adhere to environmental and safety regulations or to ensure the proper op-
eration of particular tasks (i.e., temperature constraints to avoid undesirable side

reactions and /or thermal runaway). These constraints must be addressed during pro-
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Figure 4-1: Distillation regions projected onto the facet formed by B, W;, and P.

cess development. Imposing these restrictions may complicate the engineer’s goal of
rapidly designing an efficient process by requiring the engineer to focus much of his
or her effort on satisfying the constraints. However, the design constraints such as
emission limits, solvent to reactant ratios, conversion requirements, and temperature
bounds are easily embedded within the screening models. Furthermore, these con-
straints are exploited during the development of the screening models themselves and
actually aid in the derivation of targets for the reaction tasks.

In this example, the manufacturing facility’s utility system limits the tempera-
tures that may be employed during the operation of the tasks. Since the only cold
utility is cooling water which is available at 310 K, the bench scale policy of run-
ning the reaction in an ice bath cannot be implemented in the manufacturing facility.
The manufacturing facility’s equipment requires that the reactions are conducted at
atmospheric pressure, so the maximum reaction temperature cannot exceed either
the onset temperature for thermal runaway (e.g., decomposition/polymerization) ad-
justed by a safety factor, or the greatest boiling temperature of any of the fixed points

of the residue curve map (W>). However, these temperature restrictions enable the
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derivation of bounds for the extents and selectivity of the competing reactions.

In addition, design constraints are imposed to ensure proper operation of the
reactions. A molar ratio of solvent to reactant (either A or I) of at least 15 is
required to ensure proper solvation of the reactions, and an excess of B (two times A)
are required to maintain the desired reaction kinetics. These constraints are captured

in equations (4.2-4.3).

S FEm (0T g + Pl ow, + PLow,) = 15 (Flr + 1) vk (4.2)

Y fEnplpp > 2fi Vk (4.3)

Since the product will be processed in an existing manufacturing facility, the choice
of equipment is limited. The inventory and cost of the available equipment are shown
in table 4.4; all of the columns contain 8 theoretical stages and must operate at a
reflux ratio above 1.5 for proper gas/liquid contacting. We require that distillation

columns operated in parallel at a stage are identical.

Reactors
Volume Available | Rental Rate
[m?] Units [$/ hr]
2 1 50
3 2 70
4 1 88

Distillation Columns

Volume | Vapor Rate | Available | Rental Rate
[m?] [kmol/hr] Units [$ / hr]
3 15 2 90
4 20 1 110
5 15 1 125

Table 4.4: Inventory and rental rates for processing equipment.

In order to evaluate the cost of manufacture, the raw material and waste disposal
costs are required. In addition, in order to evaluate the utility costs and volume

requirements underestimates of the heat of vaporization and the molar volume is
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required for all of the fixed points. These data are provided in table 4.5. Note that
the waste disposal costs are merely estimates based on the average waste disposal costs
for organic chemicals that are not highly toxic. Of course the most accurate data that
is available should be employed, yet these figures should provide the tradeoffs similar

to those that would be encountered by a manufacturer.

Fixed Raw Waste Molar

Points | Material | Removal | HveP Volume | Molecular

e [$/kg] | [$/kg] | [J/mol] | [1/kmol | | Weight
B 4.50 16.50 29300 69.210 50.08
A 7.00 16.50 35300 124.498 190.40
Wi-P 18.00 62290 196.371 240.48
Wi 18.00 40700 193.708 240.48
B-W;-P 20.00 38080 104.759 103.39
I 18.00 45500 189.270 240.48
B-W; 18.00 36710 150.134 173.84
P 20.00 66100 196.841 240.48
W, 20.00 29700 194.948 240.48

Table 4.5: Material cost, disposal cost, and physical property data for the fixed points.

4.3 Reaction targets

The screening model presented in chapter 3 enforces the mass balances around the
reactors in terms of the extents of the reactions. However, to capture the dominant
operating tradeoffs related to the reaction tasks within the screening model, tighter
bounds on the extents of reaction in terms of the operating variables must be provided.
In this section, bounds for the extents of the reactions shown in (4.1) are derived in
terms of the processing time and a bound on the temperature profile employed during
the reaction task. These reaction targets capture key tradeoffs between the extent of
reaction, selectivity, processing time, and the reactor temperature profile, yet these

targets do not eliminate any portions of the feasible operating space.
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4.3.1 Bounding the selectivity and extent of reaction

First, we obtain bounds on the selectivity of competing reactions. Since the selectivity
of I to W, and the selectivity of P to W, depend on only the operating temperature
profile, we relax the restriction that reactions 1 and 2 occur at the same temperature
as reactions 3 and 4 to derive valid bounds on the selectivity. The reaction kinetics
dictate that the extreme values of the selectivity are achieved at the limits of the fea-
sible temperature range. For instance, the selectivity of reaction 1 to 2 is maximized
at the minimum temperature, and the converse is true for reactions 3 and 4. Upper
and lower bounds on the selectivity of the competing reactions are obtained in (4.4)
and (4.5) by relating the extents of the competing reactions to the limits imposed on

the operating temperature.

R by Ean
fz'l;lengE" <& < §2k—1€iT‘“If“ (4.4)
2 2
ks E4-E3 k 1\~ B3
€4k_ie RTMiIn S 63 S §4k_ze§TmEx (4’5)

These constraints provide valid bounds on the attainable selectivity, but employ a

very crude bound on the temperature profile.

Bounds for the extents of reaction in terms of the processing time are also easily
derived for (4.1). Since the reaction rates are greatest at the maximum temperature
of operation, the extents that can be achieved are less than the extents that would
be achieved if the process operated at the maximum rate. The maximum extents
of reaction are achieved when all the reactants are available at the initial time, and
the reactor is operated at the maximum temperature. The solution of following

differential equations defines the extents of reaction in the isothermal case:

d(gl d_; 52 ) — Kll‘nza.XNA (4.6)
d é-max + fmax) max
& dt = RN (4.7)

The solution of (4.6-4.7) is defined by the following algebraic expressions relating the
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maximum extents of the competing reactions to the processing time when N§ = f,*

and Ny = ffemé;:

€+ & < flin(1 - e Y (4.8)
s+ & < (ffon + &) (1 — e (4.9)
where
—E —F
Kliréa.x — kleWn‘;‘a]Y + k2eRT—n¢i2f (410)
-E —E
/{g:lax — k3eWxi3? + k467ﬁ% (4.11)

Equation (4.9) assumes that all of the reactant [ is available at the start of the reaction
task in order to preserve the bounding property of the model. Note, however, that
(4.8) and (4.9) are nonlinear, and that they define a nonconvex feasible region. Convex

overestimates are developed for these constraints in section 4.3.2.

Equations (4.8-4.9) provide valid bounds, but they are not likely to be very tight
because the constraint requiring that the same temperature determines both the se-
lectivity and the reaction rate has been entirely relaxed. In order to tighten these
bounds, we have to capture the time/temperature dependence of the operating policy
within the targeting model. Incorporating the time/temperature dependence within
the screening model is difficult because we are attempting to represent dynamic oper-
ating decisions using algebraic constraints. However, we can represent a bound on the
feasible temperature profile using algebraic constraints. Furthermore, this represen-
tation allows us to employ the same bounds on the extents of reactions derived above.
The key is to represent the total amount of time the reaction task operates within a
given temperature range; we do not consider in what order the reactor spends time in
each of these temperature intervals or do we require that times spent in each interval
correspond to some continuous temperature profile. The feasible temperature range
is divided into n; intervals indexed by the set J. Let T} define the maximum tem-

perature in each interval, where 7™ =T, < Ty < ... < T,;, = T™*. The time that
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the reaction task operates in temperature interval j is given by t;, and the extent of
reaction that is achieved in each of these intervals is specified by {,Z",j.l The selectivity

targets previously derived are enforced over each of these temperature intervals.

k Eo—F k Ez—E]

hte o < €h < hte Vj=1n (4.12)
ko ko
k. Eg—E‘a k Eg—Ea

e <G < e ¥j=1n; (4.13)

The bounds on the extent of reaction that can be achieved in a given time are also

enforced over each interval.

€L+ €L < flm(1 — e Vj=1,n, (4.14)
e+ 6L < (ffr + &) (1 — e @ Vi =1,n; (4.15)
where
—Eay ~Eaq
K/IZ(T}') = kle RT, + k'26 RT, (416)
—Ea, —Eay
k3a(T}) = ke ™5 + koe ™5 (4.17)

Since we do not account for the order in which the reactor spends time in each of
the intervals, we have to assume that each interval is active when the concentrations
are highest in order to preserve the bounding property of the screening model. Thus,
we have assumed that reaction 1 occurs instantaneously when calculating the rates
of reactions 3 and 4. However, the extent that can be achieved over a sequence of
intervals must be less than the extent that could be achieved if the entire reaction was
carried out in the last of these intervals. This is because the maximum extents are
achieved over these intervals if all the raw materials are available at the initial time
and the reactor operates for the duration of the time spent in all of these intervals

Qi< t7) at the maximum temperature contained in all of these j intervals (T7).

1The 5,% define the extent of reaction r occurring at processing stage k due to the time spent
in temperature interval j. However, to simplify the notation we have dropped the subscript &
throughout the following sections.
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Therefore, the following constraints are also enforced.

; —K o tT .
ZETJ' +§2le < ffin(l _ e gt ) Vj= 1,n; (4.18)
J'<3
—K i 7 T .
YGi < () -—em®Eoh) vi=1n,  (419)
3'<3

Constraints (4.18-4.19) are equivalent to (4.8-4.9) when the sum is taken over all
of the temperature intervals (i.e., j = n;); therefore, (4.8-4.9) need not be included
in the optimization model. Note that (4.18-4.19) provide a tighter bound on the
actual operation of the reactor than (4.8-4.9) because these constraints account for
the fact that the reactions must proceed at a slower rate when not operating in the
maximum temperature interval. In fact, since (4.18-4.19) are equivalent to (4.8-4.9)
when j = n; and the constraints for other values of j are not necessarily inactive,
(4.18-4.19) define a smaller feasible region and are tighter. The operating time for
the reaction task and the extents of reaction are obtained by adding the contributions

from each of the temperature intervals.

Yt =t Vi=Lmny (4.20)
J

Yl =& VY j=1Lmny (4.21)
J

The nonlinear inequalities ((4.18)—(4.19)) and (4.14-4.15) require linear convex over-
estimators in order to formulate the screening model for this example as an MILP.

Linear overestimates of these regions are provided in section 4.3.2.

4.3.2 Convexifying the Extent/Time Boundaries

Although the equations defining the bounds for the extents of reactions to (4.8-4.9),
(4.14-4.15), and ((4.18)—(4.19)) define a feasible region that appears to be convex
on first sight (the region under the surface shown in figure 4-2 appears convex),
the eigenvalues of the Hessian of these functions demonstrate quite clearly that the

expressions on the right hand sides of these inequalities are not concave. All of the
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Figure 4-2: Surface defining the upper bound on the extents of reaction given by

f1—e).

expressions on the right hand side have the form f(1—e™**) where f and ¢ are positive

variables. The Hessian of this expression is given below:
H=% (=g ™) = (4.22)

The Hessian has the following eigenvalues:

A= —%e—”t (f/{2 + Kk fPR%2 4+ 4) Ay = —%e"‘t <f.‘12 — KV f?Kr% + 4) (4.23)

Since the eigenvalues differ in sign, the functions defining the surface are not concave
and the region under the surface is not convex. Therefore, tangents to the surface do
not overestimate the function over the entire space. Examining the tangents of the
surface taken at larger values of f and t shows that these planes lie above surface at
all larger values of f and ¢, but cross the function at smaller, yet positive, values of
both f and ¢. Examining the intersection of the tangent planes with the f-t¢ plane
shows that the line of intersection crosses through the positive orthant of the f-t
plane. Two strategies have been investigated to overestimate these functions with

linear constraints.

The first method defines planes that do not cut off any portions of the feasible

region that are parallel to the tangent planes. Let L and M define index sets used to
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specify points ( fl, fjm)z at which the tangents to the function are evaluated. Hence,
there exists a positive constant representing the displacement C;,, for each of the
tangent planes that defines a parallel plane that touches the surface at only one point
and will overestimate it at all other points in the feasible space (f > 0, ¢ > 0). There
exists a point (f > 0, ¢t > 0) (the sole point of contact of the displaced plane) for
which the following equation uniquely defines the constant C;,, that corresponds to

the point (f;, t;m) at which gradient of the surface has been evaluated:
f (1 - e—”fm) + fike ™ (t — 1) + Cim = f (1 — ™) (4.24)

In this case, (f,t) is the sole point at which the parallel plane contacts the constraint
surface. From the shape of the surface and the slope of the tangent planes, it can be
seen that the single point of contact for the parallel planes is the origin. Essentially,
the displacement ensures that the intersection between the tangent plane and the f-¢
plane does not cross the positive orthant. Setting the right hand side to zero uniquely

defines the constant C ., as shown below:
Cl,m = fllifjme_nfjm (425)

Displacing the tangent planes of the constraint surface by the amount C;,, pro-
vides linear constraints that overestimate the feasible region. This strategy can be
applied to (4.18-4.19) to derive linear constraints that overestimate the feasible re-
gion. Let the sets f* and f/ define the values of f® and (f{% + &) at which the
tangents to the functions appearing on the right hand sides of (4.14) and (4.15) are
evaluated. The following constraints correspond to (4.14-4.15), where f# and f/ rep-
resent fixed values of the input flows and fjm is a time at which the gradients have

been evaluated:

>The hat notation has been employed throughout this chapter to distinguish the constants used
to define the interval boundaries from the subscripted variables appearing in the model.
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+ fPRi(Ty)e 2 @hndT Ve Jle LmeM (4.26)

G+ € < (st ) (1)

+ flkgu(Ty)e s @hmil Vje Jle LimeM (4.27)

A similar strategy is employed to derive a linear overestimate of the feasible region

for (4.18-4.19).

The addition of these constraints does not require the introduction of any addi-
tional integer variables, but these constraints may not be very tight. In fact, these con-
straints do not even provide a tight approximation near the points ( flA, fjm). There-
fore, we have also considered another linearization strategy that employs additional

binary variables, but leads to a tighter approximation of the nonlinear constraints.

The second linearization strategy is based on the fact that (4.14-4.15) and (4.18-
4.19) define a convex feasible region if either the reagent feeds (f5 and 4+ &)
or the processing time in the given temperature interval tf is fixed. Overestimating
the feed flows to a particular reaction task overestimates the feasible region for all
values in time. Therefore, if f&» < fA then the tangent of f (1 — e"‘”m)fm)

overestimates the original feasible region:

§1T] + fg_; < ff’n (1 — e—ﬁlz(T])t]T)

S j:lA (1 _ 6—512(’1‘]-)51'",) + f"\lAK12(/1"'j)e—KIZ(TJ')tAJm (ti‘]T —_ t]m)

The extents of reactions 1 and 2 can be related to the feed of A and the fractional
conversion of A. We introduce the fractional conversion of the reactants A (z'?)
and I (z*') as new variables. The fractional conversions account for the time and
temperature dependence of the reactions, and the fractional conversions z'? and z**

of a batch reaction operating at temperature 7; are defined by the following concave
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expressions of time:

o} =12l Vv j

23 =1— e D)y vV

Since (4.29) and (4.30) define concave functions of time for temperature 7}, tangents
to these curves define upper bounds on the maximum conversion of A and I that can
be achieved in a given temperature interval. Thus, upper bounds on }* and z3* are

defined as follows:

2 < (1 - e—“w(Ta)@m) + k(T 2@bm (T _{, ) YjeJmeM (4.32)

8
Sl
[N

INA

(1 — e—~34<73>fm) +rp(Ty)e @b (T ) VjedmeM (4.33)

By bounding the fractional conversion according to (4.32) and (4.33), the feasible
region for the extents of reaction defined in (4.14-4.15) can be overestimated using

these new variables as follows:

&L+ &y < fima)? VjeJ (4.34)

& + & < (f + &) 2! viedJ (4.35)

Equations (4.34) and (4.35) both contain bilinear terms comprised of continuous
variables. However, we can employ the linear expressions providing upper bounds
on bilinear terms proposed by McCormick (1976), which provide the following linear

upper bounds on fzx:

fx < fLOr 4 foUF — fLOLUP (4.36)

fr < f0Px 4 fol© — fUPLLO (4.37)

where fUF and fL© provide rigorous upper and lower bounds on f; z'F and z©
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provide rigorous upper and lower bounds on z. The only rigorous lower bound on :r}2
and z3 is zero because ¢] could equal zero, so (4.37) applied to (4.34) provides the
same constraint as (4.28). However, if we can provide a nonzero bound for f1©, we
can employ (4.36) to derive tighter upper bounds on the extent of reaction that can

be achieved.

To apply (4.36) and (4.37) bounds on the fi=, ff 4+ £, and on zj? and z3* are
required. Upper and lower bounds on :15}2 and :c;?“ of one and zero are assumed. To
provide tight bounds on the feeds to the reaction tasks fixed values of the feed flows
are selected so that they define an ordered set indexed by [ that covers the feasible
region of feed flows (ie., 0 = fA < fi* < ...fA = f™*); the values of f!; and fA
can be thought to define the upper and lower bounds of a feed interval. The binary
variable y,F 4 is introduced to identify the feed interval in which the feed lies (i.e.,
FAL < fBn < fA). A similar set of values f/ and binary variables y,” are defined for
reactions 3 and 4. These binary variables represent SOS1 sets® and are defined by

the following linear constraints:

S oyt=1 (4.38)

leL
doyt=1 (4.39)
leL
oA <R <> At (4.40)
leL leL
AWl < ra <> (4.41)
leL leL

The upper (f#) and lower (f#,) bounds on the flows are valid if the feed interval is
active (i.e., y/* = 1), so we can derive bilinear constraints that enforce bounds on

the extents of reaction that can be achieved in a given temperature interval in terms

3An SOSI set is a set of binary variables with a natural ordering in which one member takes
value 1 and all the others are 0. Branch and bound algorithms can take advantage of the structure
of these sets during the branching procedure (Beale and Tomlin, 1970).
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of the reagent feed and the time spent in the temperature interval.

[ (fir] +£;Fj) sz1yzFA ]12 flAlylFA +yl AL VieldJlelL (4.42)

(6L + &) < ftal? VieJleL  (4.43)

Similar constraints can be derived for reactions 3 and 4. The exact linearization
proposed by Glover (1975) can be used to transform the bilinear terms appearing
(4.42) and (4.43) into an equivalent set of linear constraints.* To employ this strat-
egy the variables 5{;, = Ef;ylp 4 are introduced to denote the extent of reaction 1 in

temperature interval j and feed interval I. In addition, the variables Z;7 = xlzylF 4,

fRon — yfafBn and fln = yf7(fF 4 ¢€)) are introduced. The same procedure is

applied for reactions 3 and 4. Note that ), , 5,1, &L Vg,

Bounds on the f ;1 are derived by substituting the variables for the bilinear terms

into (4.42) and (4.43), yielding the following:

i+ & < fRER - fRw + T viedleL  (444)
§1ﬂ +&5 < it x;? VjeJlel (4.45)
&+ & < fladt — flyl + fiee Viedlel (4.46)
533'1 + 54]'1 < fI i VielJlelL (4.47)

The constraints (4.44-4.47) overestimate the feasible region defined by the nonlinear

nonconvex constraints (4.14-4.15). We can bound the region defined by (4.18-4.19)

125

in a similar fashion. First, variables z;*" and x34s are defined to represent the total

of a: 2 and :1: 4 that can be achieved in all the temperature intervals up to j:

o = l? VieJ  (4.48)
=

23 =g Vied  (4.49)
F'<j

4Section 4.6.4 discusses the linearization of the bilinear terms between continuous and binary
variables.
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(4.50)

,’1;‘345 S 1— e—n34(TJ)tA]m + K19 T —#34(T) )tJm tT A im V] = J, meM
J

l<]

(4.51)

Fr 34

Fa, 125 =345
and I3, =y, 'z;

By defining #!2° = , we can derive constraints that over-
y g gl yl ]

estimate the feasible region defined by (4.18-4.19) as follows:

(51111 + fzﬂ) A1~Jlt2 fAlyzFA + f}f{" Vie JileL (4.52)
J"SJ
S (Eu+ &) < fita® VieJleL  (453)
7<i

(63]’1 + 54_1 l) fl 1~34 fl 1y + f]lm V] € J,l S L (454)
7'<i

(53111 + 64111) S I 345 VJ S J,l € L (455)
7'<5

“omparison of Convexification Strategies

The second strategy requires the addition of two SOS1 sets of size n; (y™™ and y*7) for
each reactor included in the superstructure. The second strategy also introduces the

FRin ~12 234 z12°

A =345 1 :
continuous variables fmu fRan flon &%, &%, 7,7, and &3 which were not required

for the first linearization strategy. However, the second strategy provides a tighter
linearization than the first. Furthermore, the linearization provided by the second
strategy can be made to approximate the original constraints as tight as is desired by

increasing the sizes of the SOS1 sets. This is not possible with the first strategy.

The effort required to solve the problem given by the second linearization strategy
was on the same order as the time required to solve the first. The objective calculated
using the second strategy was greater than that calculated by the first, demonstrating

the fact that the approximation is tighter.

The solutions that are presented in section 4.5 employ the second convexification
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strategy.

4.3.3 Minimum Extents of Reaction

The targets derived above capture the effects that modifications to the processing
time and the temperature profile have on the selectivity and the maximum extent
that can be achieved. Even though the reactions may be terminated by filtering out
the catalyst, we have not placed lower bounds on the conversion that must be achieved
in a given amount of time. In fact, with only these constraints, the solution of the
screening model chooses to run the first two reactions to completion, separate the I,
react the I to form product in the absence of Wy, and separate the product. With
such a scheme, none of the product is lost in an azeotrope, making this alternative
highly attractive in the screening formulation. Clearly, we would like the screening
model to incorporate a lower bound on the extents of the third and fourth reactions
to capture the fact that the first two reactions cannot be run to completion without
producing some W, and P in the process. Such constraints are derived below.

A lower bound on the extent of the third and fourth reactions can be derived by
underestimating both the rate of conversion of I and the amount of I that is available
for reaction. The amount of I available for reaction can either be produced from the
reaction of A, or it may be charged directly to the reactor. Since the reaction of I
is a first order process, the extents of reactions 3 and 4 coming from each source can
be treated separately; whether I is generated or charged, it obeys a first order decay,
so the conversion of a given charge of I is a function of only time since the charge
and the reaction temperature. Let £, represent the extent of reactions 3 and 4 that
results from I fed directly to the reactor and let £, represent the extent of reactions

3 and 4 resulting from the conversion of A fed to the reactor.

€3 +& =&, + &5 (4.56)

Since semi-batch operation is permitted, &1, could be zero because all of the I could

be charged at the end of the reaction, yet & + & > £4}. We focus on determining a
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lower bound on £3;. We know that &£} cannot be zero for nonzero values of & because
the rates of the first two reactions are finite, so the reactor operates for a period of

time when [ is present.

The first reaction must proceed for a certain amount of time in order to achieve
a given conversion, even if the reaction proceeds at the maximum rate. As I is
generated by this reaction, it immediately begins to react to form either P or W,.
The minimum extent of reactions 3 and 4 is obtained when these reactions occur at
the minimum rate. Based on this observation, bounds are derived for the minimum
extent of reactions 3 and 4. First, an underestimate of the time required to achieve
the extent of reactions 1 and 2 is calculated. The minimum amount of time to
achieve a given extent is obtained when all of the reagents are available at the initial
time and the temperature is set to its upper limit, maximizing the rates. Next, an
underestimate of the conversion of reactions 3 and 4 that must occur during this time
is determined. To underestimate this rate, we assume that only the amount of A
converted to I (i.e., &) is available at the initial time. In addition, to underestimate
€4, we assume that all the reactions proceed at the minimum rate (i.e., the minimum
temperature) for the time determined in the first step. Under these assumptions the
extent of reactions 3 and 4 as a function of time can be determined from the solution

of the following set of ordinary differential equations:

dgA min
d;zx = KN, (4.57)
dN . .
= KN — RN (4.58)
dN; ;
d—tA = —KkP"N; (4.59)
where
. —EA
K:rlnm —_ kl e RT_milﬁ (460)
. _EA _EA
KN = kyeRre 4 ke rm (4.61)

and N;(0) = &, N;(0) = 0, and &4} = 0. Solving (4.57-4.59) subject to the initial
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conditions leads to the following bound on &4.

min min min
K

l{min min Klmin X

_ —emin

G614+ = et L et (4.62)

- min __ _
Ky 34 K1 K34

Equation (4.62) accounts for the fact that some product will be created during the
reaction task as long as A is converted to I in the reactor. The region defined by (4.62)
is nonconvex, yet we can provide a convex overestimate of this region by introducing
an additional set of binary variables to identify a lower bound on the time required to
achieve &. We enforce (4.62) for each of the temperature intervals. Discrete points
in time fjm are selected for each temperature interval, and the following expression
for the maximum fractional conversion of reaction in this time is evaluated at each of

these points:

A ]max

m

=1 — em2)m (4.63)

At these same points in time, the minimum conversion of reactions 3 and 4 is calcu-

lated from (4.62) as follows:

:i.3.;1nmin _ 1 + ’{34(7—:’)—1) e_nl(n—l)fjm
’ k1(Tj1) — k3a(Tj-1)
k1 (Tj-1)

—~ e rD-1)bm (464
(1) — rsa (T, 1) (464)

The active time interval is identified by binary variable y§m which requires that the
conversion of I achieved in temperature interval j (£];) satisfies the following con-

straint:
Rin A~ jmax Rzn A jmax .
PR i S €L+ 6 < £yl dh v j (4.65)
m m
where

> =1 Y j (4.66)

m
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A lower bound on 537,; + §f{j can now be defined in terms of %, as follows:
&+ 81 2 &1 Z Yoo v j (4.67)

By defining the continuous variables NJA = me rE A and &, = yin6 usmg an exact
linearization (Glover, 1975), (4.65) and (4.67) can be expressed as the following linear

constraints:

Z A < eyl < E NA g v j (4.68)

€3] + 64] > Z él]m "?‘i:"_“ v .7 (469)

Equation (4.69) defines a piecewise constant overestimate of the feasible region by

providing a rigorous underestimate for the right hand side of (4.62).

4.4 Process Superstructure

The desired product P was synthesized at the bench scale using a process consisting
of one reaction and one distillation task. During the initial phase of the reaction, the
reactor was kept in at 273 K using an ice bath. After a period of time, the reactor
was removed from the ice bath and heated to drive the reactions to completion.
The experiments indicated that the conversion to product was affected by the time
at which the reactor was removed from the ice bath. The contents remaining in
the reactor at the completion of the reaction task were then separated using batch
distillation.

Although the laboratory process was able to obtain P using only one reaction and
distillation step, this does not imply that the optimal design of the manufacturing
process should contain the same process structure. In fact, the design constraints
imposed by the manufacturing facility dictate the process structure employed at the
bench scale is infeasible. In order to obtain pure product, the feed to the column

must lie within batch distillation regions IV and V. This requires a high selectivity

135



of P to W1, which implies that a high selectivity of I to W; must be obtained. A
high selectivity of I to W) can be achieved when operating in an ice bath, but the
selectivity is reduced at higher temperatures. The maximum selectivity that can be
achieved given the cold utility available within the manufacturing facility does enable
the reactor to provide a feed to the column in either region IV or V. This implies that
the superstructure considered within the screening model must contain more than
one reaction and distillation task to insure feasibility.

The structure of the batch distillation regions and the fact that the reactions are
catalyzed by a heterogeneous catalyst also indicate that a superstructure containing
more than one distillation task should be considered. Since one of the feeds to the
system, B, participates in the azeotropes that are formed, it can be employed as an
entrainer within the process. In addition, a stream can move from one distillation re-
gion to another through the reaction of B. Since the reactions require a heterogeneous
catalyst, the reactions can be terminated by filtering out the catalyst. This indicates
that it may be possible to separate the reaction mixture after a period of time, and
then continue the reaction. Each of these observations indicates that a superstructure
containing more that one reaction and distillation task should be considered. Two
different superstructures are considered for this case study. The first superstructure
contains one reaction and three distillation tasks, and the second superstructure con-
siders three of each. Since the second superstructure contains the first, it cannot lead

to a worse solution.

4.5 Solutions of the Screening Models

The cost of producing 68,039 kg of product P was minimized for both of the pro-
cess superstructures mentioned above. Raw material, waste disposal, utility, and
equipment rental costs were considered for a manufacturing campaign employing no
intermediate storage; end effects were ignored. The product was required at a purity
of 99% defined on a mass basis, and all of the bottoms streams were not permitted

to be contaminated with any overhead species. Two percent of all recycled material
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was purged. As expected, the more flexible superstructure provided a better design
and chose to employ two reaction tasks. The solutions obtained for each of the super-
structures are described in sections 4.5.1 and 4.5.2. Section 4.5.3 compares the two
solutions.

Five temperature intervals (defined by 310, 315, 320, 430, 440, 450 K), five feed
intervals, and six time intervals were selected. The feed intervals were based on the
minimum amount of A and I that is required to generate the desired amount of
product at the highest selectivity possible; the upper bounds on first four intervals
were given by .5, 1.1, 1.3, and 2 times this minimum amount. The bound on the final
interval was given by the maximum allowable flow. A different time discretization
was selected to define z'? and z3* in each temperature interval. The discrete points

in time were selected to correspond to conversions of (.5, .85, .9, .99, .999, and .9999).

4.5.1 Solution obtained from the First Superstructure

The optimal solution employs one reaction and two distillation tasks. A schematic of
the solution is provided in figure 4-3, where the stream labels identify the material
flow in kmols for fixed points in the stream over the entire campaign. Since 345
batches are employed in this campaign, the amounts charged during each batch can
be determined from the figure.

Two distillation tasks are required because a high enough selectivity of P to W;
cannot be achieved to place the reactor effluent in either distillation region IV or V
given the available cold utility. The reaction converts all of the A into products and
waste materials with a small amount of I left unreacted; no A appears in the effluent.
The reactor operates for 1.69 hours in the first temperature interval and for 1.5 hours
in the last temperature interval. The extents of the first two reactions can be almost
exclusively attributed to the time spent in the first temperature interval, and the
extents of the third and fourth reactions are mostly attributed to the time spent in
the last temperature interval. The reactor efluent has a composition in distillation
region II, so all three azeotropes are obtained as products from the first distillation

step. The W, — P azeotrope is passed on to the second distillation step where B is
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Figure 4-3: Process schematic of the solution derived from the superstructure con-
taining only one reaction task. Fixed point flows are given in kmols.
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employed as an entrainer. Enough B is added to the charge of the second distillation
so that the composition of the feed lies on the boundary between distillation regions
IV and V. Therefore, the only products obtained from this column are the ternary
azeotrope, which is taken overhead, and the product which is taken in the bottoms
of the column.

This design suffers from the fact that W; is only removed from the process as part
of an azeotrope. As a consequence, roughly half of the B fed to the process leaves as
waste, and over 40 % of the P that is generated is lost in the ternary azeotrope. Not
surprisingly, the waste disposal costs dominate the production costs for this design,
as shown in table 4.10. Tables 4.6, 4.7, and 4.8 show the material processing costs for
the campaign. Table 4.9 shows the charges incurred for the use of equipment during
the campaign. The 2 and 4 m3 reactors are employed for the reaction step, both 3
m3 columns are employed for the first distillation, and the 4 m? column is used for
the second distillation. The batch size and cycle time are limited by the first reaction

and distillation tasks.

Raw Material Costs
Raw Material | Cost [$/kg] | Feed [kg] | Total Cost [$] | $ / kg product
B 4.50 | 79347.09 357061.89 5.25
A 7.00 | 157787.64 1104513.51 16.23
Total 237134.73 1461575.40 21.48

Table 4.6: Raw material costs for the design obtained from the first superstructure.

Waste Disposal Costs
Waste Material | Cost [$ / kg] | Amount [kg] | Total Cost [$] | $ / kg product
B-W1-P 20.00 87746.25 1754924.95 25.79
I 18.00 59.81 1076.50 0.02
B-W1 18.00 71842.50 1293164.95 19.01
W2 20.00 9447.23 188944.61 2.78
Total 169095.78 3238111.01 47.59

Table 4.7: Waste disposal costs for the design obtained from the first superstructure.
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Utility Costs
Cut Material | Amount [ kg ] | Reboiler Cost [$] | $ / kg product
Distillation 1
W1-P 216212.66 443.97 0.01
B-W1-P 2424.69 7.08 0.00
I 2990.28 4.49 0.00
B-W1 1743455.39 2918.63 0.04
Distillation 2
B-W1-P 227520.80 664.30 0.01
Total 2192603.82 4038.46 0.07

Table 4.8: Utility costs for the design obtained from the first superstructure.

Reactor Rental Costs
Volume Assigned | Rental Rate | Total Cost $ per
[gal] Units [$ / hr] [$] kg product
2 1 50 71558.56 1051.73
4 1 88 125943.07 1851.04
Distillation Column Rental Costs
Volume | Vapor Rate | Assigned | Rental Rate | Total Cost $ per
[gal] | [kmol/hr] | Units [ $ / hr] [$] | kg product
3 15 2 90 257610.82 3786.23
4 20 1 110 157428.83 2313.80
I Total for reactors and columns | 612541.28 | 9.00 ||
Table 4.9: Equipment costs for the design obtained from the first superstructure.
Cost Contributions
Component Percent | Total Cost [$] | $ / kg product
Raw Material 27.49 1461575.40 21.48
Waste Disposal 60.90 3238111.01 47.59
Utility 0.09 5048.08 0.07
Equipment 11.52 612541.28 9.00
Total 5317275.78 78.15

Table 4.10: Comparison of raw material, waste disposal, utility, and equipment for

the design obtained from the first superstructure.
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Utilization Processing Task
Measure Reaction 1 | Distillation 1 | Distillation 2
Cycle Time 4.15 4.15 2.30
Volume Required 6.00 6.00 0.82
Volume Assigned 6.00 6.00 4.00

Table 4.11: Equipment utilization for the design obtained from the first superstruc-
ture.

4.5.2 Solution obtained from the Second Superstructure

The optimal solution obtained from the second superstructure employs two distillation
and two reaction tasks. A schematic of the solution is provided in figure 4-4 in which
the streams are labeled with the flow of material in kmols for the entire campaign
specified in terms of the fixed point flows. Since 233 batches are employed in this

campaign, the amounts charged during each batch can be determined from the figure.
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Figure 4-4: Process schematic of the solution derived from the superstructure per-
mitting multiple reaction tasks. Fixed point flows are given in kmols.

The solution obtained from this superstructure exploits the fact that the reactions
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can be terminated by filtering the heterogeneous catalyst from the reacting mixture.
In the absence of the catalyst, the mixture can be separated by batch distillation
without the reaction continuing as the distillation is performed. The first reaction
task is run to complete conversion of A, but only a portion of the generated I is
converted through the third and fourth reactions. The conversion achieved by the
first two reactions can be attributed to the time spent in the first temperature interval.
At these low temperatures a high selectivity of I to W; is achieved. The extents of
the third and fourth reactions is kept relatively small; these extents must be large
enough to satisfy the minimum conversion constraints which are active for the first
temperature interval. However, most of the conversion obtained for the third and
fourth reactions can be attributed to time spent in the last temperature interval in
which a high selectivity of P to W5 is achieved. Enough time was spent in the first

interval to achieve total conversion of A at high selectivity.

Stopping the second reaction task after a limited conversion was achieved in reac-
tions 3 and 4 allows the separation to be performed in the presence of less product.
A large quantity of W is employed as a solvent for the first reaction task, placing
the composition of the reactor efluent in batch distillation region I. This enables the
first distillation task to obtain pure W; in one of the cuts, permitting W, to leave
the system in pure form. The intermediate is passed on to the second reaction task
for conversion into the desired product. The second reaction task operates at the
highest allowable temperature in order to achieve both fast reaction rates and a high
selectivity of P to W,. Note that a large amount of B is employed as a solvent in this
reaction step. The effluent from this reaction task is combined with the W; — P cut
from the first distillation to place the feed to the second column in batch distillation
region IV. On first sight, the use of B as a solvent for the second reaction task seems
peculiar. However, the solvent requirements were specified on a mole basis, and B has
a smaller molar volume than W, (the other potential solvent). The equipment cost
savings achieved by using B instead of W, and employing a smaller reactor outweigh
the separation cost incurred by taking the B overhead instead of taking W, in the

bottoms.
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This design makes fairly efficient use of both the raw materials and the available
equipment. The only way that reactants and products leave the process as waste is
through the purge of recycled streams. A more detailed summary of the material
processing costs is provided by tables 4.12, 4.13, and 4.14. The equipment items
are all running at or near capacity, except for the column assigned to the second
distillation task. Table 4.15 shows the charges incurred for the use of equipment

during the campaign, and table 4.16 shows the utilization of the equipment items.

Raw Material Costs
Raw Material | Cost [$ / kg] | Feed [kg] | Total Cost [$] | $ / kg product
B 4.50 | 28191.31 126860.91 1.86
A 7.00 | 94867.93 664075.49 9.76
Total 123059.24 790936.40 11.62

Table 4.12: Raw material costs for the design obtained from the second superstruc-
ture.

Waste Disposal Costs
Waste Material | Cost [$ / kg] | Amount [kg] | Total Cost {$] | $ / kg product
B 16.50 2537.91 41875.60 0.62
W1 18.00 41850.19 753303.42 11.07
B-W1 18.00 4949.53 89091.57 1.31
W2 20.00 5682.65 113653.07 1.67
Total 55020.29 997923.66 14.67
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Utility Costs
Cut Material | Amount [ kg ] | Reboiler Cost [$] [ $ / kg product
Distillation 1
W1-P 28431.31 58.38 0.00
W1 1099039.58 1474.56 0.02
I 62407.76 93.61 0.00
B-W1 247476.60 414.29 0.01
Distillation 2
B 126895.75 588.55 0.01
B-W1-P 28916.36 84.43 0.00
P 65931.99 143.67 0.00
Total 1659099.35 2857.48 0.05

Table 4.14: Utility costs for the design obtained from the second superstructure.

Reactor Rental Costs

Volume Assigned | Rental Rate | Total Cost $ per
[gal] Units [ $ / hr] [$] kg product
2 1 50 44023.00 647.03
3 2 70 123264.40 1811.67

Distillation Column Rental Costs

Volume | Vapor Rate | Assigned | Rental Rate | Total Cost $ per
[gal] | [ kmol/hr] | Units [$ / hr] [$] | kg product
3 15 2 90 158482.80 2329.30
4 20 1 110 96850.60 1423.46

Total for reactors and columns | 422620.81 | 6.21 ||

Table 4.15: Equipment costs for the design obtained from the second superstructure.

Utilization Processing Task
Measure Reaction 1 | Distillation 1 | Reaction 2 | Distillation 2
Cycle Time 3.78 3.78 3.78 3.16
Volume Required 6.00 6.00 2.00 2.10
Volume Assigned 6.00 6.00 2.00 4.00

Table 4.16: Equipment utilization for the design obtained from the second super-
structure.
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Cost Contributions
Component Percent | Total Cost [$] | $ / kg product
Raw Material 35.71 790936.40 11.62
Waste Disposal 45.05 997923.66 14.67
Utility 0.16 3571.85 0.05
Equipment 19.08 422620.81 6.21
Total 2215052.72 32.56

Table 4.17: Comparison of raw material, waste disposal, utility, and equipment costs
obtained for the second superstructure.

4.5.3 Solution Comparison

The solution obtained from the second superstructure produces a much more effi-
cient design. This is primarily due to the fact that the waste material W; formed
during the reactions can be removed in pure form in the second case, but not in
the first. This results in much lower raw material and waste costs. The difference
in the equipment costs result from the fact that the first superstructure requires a
much longer campaign, since it obtains much less product for each batch that is pro-
cessed. A comparison of the cost contributions between the two campaigns is given

in table 4.18.

Cost First Superstructure | Second Superstructure
Component [$ / kg Product] [$ / kg Product]
Raw Material 21.48 11.62
Waste Disposal 47.59 14.67
Utility 0.07 0.05
Equipment 9.00 6.21
Total 78.15 32.56

Table 4.18: Comparison of the manufacturing costs of the solutions obtained from
the two superstructures examined.
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4.6 Computational Considerations

The screening models presented in this chapter are formulated as mixed-integer linear
programs. Although the global optimum of such models can be found using standard
algorithms, the solution time may be prohibitive. For these types of problems, strong
formulations are required in order to attempt to solve large problems. In addition,
the ability of the linear programming and branch and bound algorithms to solve
these models reliably requires that the model is well-scaled. Although the focus of
this research has not been to derive the strongest equivalent formulations for these
models, the procedure used to solve these models can dictate whether solution is
possible in a reasonable time using standard MILP solution codes. In this section the
techniques that have been employed to permit the solution of the screening model
are discussed. Specifically, the modifications required to provide a well-scaled model,
the procedure employed to reduce the size of the MILP and obtain tighter bounds
on the continuous variables involved in bilinear terms, and the linearization method

employed for the bilinear terms are described.

4.6.1 Size of the Models solved

The screening models solved within this thesis are fairly large, and can be difficult to
solve. The following sections cover some of the techniques that have been employed
to solve these models in a reasonable amount of time. Table 4.6.1 provides statistics
about the size of the models involved in the case studies presented in chapters 4 and 5.
Note that the number of binary variables reported treats each SOS1 set as one binary
variable; this means that an SOS1 set comprised of five binary variables (e.g., the
variable ylF 4 in chapter 4) is counted as only one binary variable rather than five. For
reference, the number of SOSI1 sets has been included in the table. The solution times
reported for the models are given to provide a rough idea of how long the models take

to solve.> The solution times depend on what type of machine on which the models

5The case study from chapter 4 containing only one reaction task contains more variables and
constraints than the superstructure containing two reaction tasks because more batches were permit-
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Case Binary | SOS1 | Continuous # of Approximate

Study Variables | Sets Variables | Constraints | Solution Time
Chapter 4: One Rxn 47 8 3662 6512 2.4 hrs
Chapter 4: Two Rxns 48 9 2612 4712 2.5 hrs
Chapter 5: Case LA 98 10 2104 3046 3.5 hrs
Chapter 5: Case I.B 98 10 2097 3035 30 min
Chapter 5: Case Il 32 11 2061 3574 25 min
Chapter 5: Case III 32 11 3196 5861 40 min

Table 4.19: Size and approximate solution times for the screening models solved in
chapters 4 and 5 on an HP J200 workstation.

were solved and what other jobs were running on the machine. All the models were

solved using OSL (IBM, 1991) within GAMS (Brooke et al., 1992).

4.6.2 Scaling of the Linear Programs

The model described in the preceding sections can lead to linear programs that are
sufficiently poorly scaled to cause the simplex codes to fail due to numerical problems;
such problems were encountered within both OSL (IBM, 1991) and CPLEX (CPL,
1993). The poorly scaled LPs are the result of nonzero elements of the constraint
matrix that vary over many orders of magnitude. In many situations, such problems
result from a poor choice of units for the modeling variables (analogous to the col-
umn/variable scaling discussed in chapter 7). However, poorly scaled models can also
be the result of modeling decisions such as whether certain tradeoffs are important
or not.

The scaling problems within these models come from the linearized constraints
employed to bound the conversion of reactants with respect to time and temperature
such as those appearing in (4.32) and (4.33). When the terms e *(T)4m become very
small, these constraints are very poorly scaled because the coefficient for the extents

are unity, but the coefficient of time is a nonzero value that is approaching zero

with larger values of ¢;,,. In order to avoid these scaling problems, a different time

ted in the one reaction case. The number of batches is represented by an SOS1 set that is involved
in bilinear terms, so the number of variables and equations is larger.
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discretization was selected for reactions 1 and 2 and reactions 3 and 4 in each time
interval. The times were selected to correspond to conversions that were different from
unity by at least the optimization tolerances. If we had selected only one time grid,

(T} o

then we could ignore these constraints for values of e below some threshold.

This threshold value indicates the point in time at which the slope of 1 — e~*(T)¢
is small enough to be ignored. Eliminating these constraints makes the model well-
scaled. However, the elimination of these constraints defines a threshold time beyond
which total conversion can be achieved, whereas in reality total conversion is never
achieved. We have found that both approaches lead to a well scaled model, but have

chosen to employ different time discretization for each temperature interval in the

examples considered in this chapter.

4.6.3 Solution Procedure

A sequence of simpler models is solved before the full screening model is solved. These
simpler models are solved for three main reasons: 1) to obtain tighter bounds on the
continuous variables that are involved in the bilinear expressions appearing in the
model, and 2) to reduce the size of the MILP that is attempted, and 3) to determine
a feasible assignment of a large number of the integer decision variables, permitting
an incumbent solution to be found with little additional effort.

In the sequence of models that is solved, the number of integer variables appearing
in the model is increased. By solving the simpler models first, a feasible value of the
integer variables for the larger problem can be determined with little additional effort.
For example, first the cost of raw material and waste disposal costs is minimized using
simple bounds for the reaction selectivity that assume only one temperature interval
and no bounds on the extents of reaction versus time. The location of the bottoms
cut is not defined and processing times are not considered. In this model, the only
binary variables that appear are those defining the active batch distillation region
and those identifying whether the reaction tasks are performed. This model can be
solved quickly. The binary variables from the optimal solution are then fixed, and a

more complicated model that includes the definition of the bottoms is then solved for
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the same objective function. The solution to this problem provides what is hoped to
be a good solution, but probably not optimal. All of the integer variables are then
set free, and the problem is solved again. However, the solution just obtained for this
model is provided to the optimizer and is used to prune the branch and bound tree.
All branches with solutions worse than this value (the incumbent) are not examined.
The incumbent value could also be determined using heuristic methods. In fact, good
heuristic methods may provide better incumbent solutions. However, as we discuss in
the next paragraph, some of the simple models must be solved to global optimality,
since we employ their solution to provide rigorous bounds on parameters appearing

in the model.

Another reason for solving the simple models is to provide tighter bounds on
parameters appearing in the screening model that are used to linearize the bilinear
expressions, or to reduce the size of the screening model. For instance, the mini-
mum campaign length is used in the linear expressions defining the time that each
equipment item is employed. While we have found that solving for the minimum
campaign length is more difficult than solving the screening model, we can obtain
a lower bound on the minimum campaign length by solving two simpler problems.
We determine both the minimum number of batches that is required to meet the
production demands and a lower bound on the processing time for the distillation
tasks. If we ignore the equipment allocation constraints, a lower bound on the min-
imum distillation processing time can be determined from the amount of material
taken overhead in the distillation columns. This bound may not be very tight since
the same distillation columns can be used for all of the distillations, yet it tightens
the linearization of the bilinear terms, improving the efficiency of the branch and
bound procedure. Similarly, determining the minimum number of batches serves two
purposes: it defines a lower bound for the campaign length when used in conjunction
with the lower bound on the distillation processing time, and it allows the size of the
MILP to be reduced. The number of batches is represented using an SOS1 set, i.e.,
Nbateh — 5~ yNB. Some of the constraints that are generated result from linearizing

bilinear terms involving yV2. These constraints are only generated for values of nb
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that are greater than or equal to the minimum number of batches; for values of nb that
are less than the minimum, any feasible solution has y%? = 0, and the corresponding
constraints are inactive. Therefore, these constraints can be safely eliminated.

The sequence of models that is solved is listed below, with a short description of

the reason for solving each model.

Material: This model determines a lower bound on the raw material and waste
disposal cost for the manufacturing campaign. Simple bounds on the selectivity
are imposed. No dependence on time is considered. The solution provides a
lower bound on the raw material and waste costs and identifies the active batch

distillation regions.

Bottoms: This model identifies the location of the bottoms cuts and minimizes the
raw material, utility, and waste disposal costs. The targets for the extents
of reaction described in this chapter are employed. The utility cost that is
calculated represents a lower bound on the utility cost determined by the full
screening model, because the minimum reflux ratio of all of the columns that

are available is employed to calculate the utility costs.

Distillation Time This model determines a lower bound on the total processing
time required for the distillation tasks. The model is first solved with the binary
variables fixed at the solution of the Bottoms model to provide an incumbent
solution. The model is then solved to optimality with all of the binary variables

remaining free.

Batches The minimum number of batches is determined. This model determines a
feasible allocation of the equipment units that minimizes the number of batches
required. First, the model is solved with the location of the distillation cuts
held fixed, providing an upper bound on the optimal solution. Next, a relaxed
model is solved. The solutions of these two models provide upper and lower
bounds on the minimum number of batches and are used to reduce the size of

the Batches model. Finally, the model is solved to optimality. The optimal
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solution of Batches is used to reduce the size of the screening model. Note that
the fact that the number of batches is an integer value can be exploited when
determining the termination criteria of the branch and bound algorithm. The
solution also provides a lower bound on the campaign cost when combined with

the solution of the Distillation Time model.

Units The minimum number of equipment units required to manufacture the product
is determined. This quantity has been employed to tighten the constraints
defining the time that the equipment units are used which result from the exact
linearization of the bilinear expressions involving the campaign length and the
SOS1 variables denoting how many equipment items of a particular type are

employed (see section 4.6.5).

Screening Model This model minimizes the equipment, utility, raw material, and
waste disposal costs. The values of the integer values determined from the
solution of Units and Batches can be employed to quickly solve the Screening
Model to obtain an upper bound on the solution. The smallest of these can
be employed as an incumbent. Heuristics can also be employed to define an
incumbent solution, but this has not been investigated in any detail. However,
the screening model can be solved quickly when the allocation of the equipment
items is fixed, so this could be exploited in deriving a heuristic procedure to

specify the incumbent.

4.6.4 Linearization of Bilinear Terms

The screening model that has been presented has been written in a form that con-
tains only binary and continuous variables. The integer variables in the model have
been replaced by binary variables; for example, N8 = ij:l yNn. However, the
model originally contained bilinear expressions that have been eliminated through
the introduction of additional continuous variables and constraints to cast the model
as a MILP. Since all of the bilinear terms in the original model are between two

binary variables or between a binary and a continuous variable, an exact transfor-
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mation exists and has been employed. Although several ways in which to generate
linear constraints defining an equivalent convex hull of integral solutions exist, the
choice of the linearization technique can have a major impact on the strength of the
formulation (the way in which the relaxed problem approximates the convex hull).
We have applied ideas developed in the operations research community to carry out
this transformation in a systematic fashion, employing the method leading to the
strongest formulation whenever the choice between the methods was clear. We have
not considered algorithms designed to deal directly with the bilinear models (Quesada
and Grossmann, 1995; Al-Khayyal, 1992) although we recognize that research in this
area may enable these models to be solved more efficiently. We have employed the
techniques of Glover (1974; 1975) and Adams and Sherali (Adams and Sherali, 1986;
Adams and Sherali, 1990; Adams and Sherali, 1993) to transform the original bilinear

expressions into linear inequalities.

First, we show the way that the bilinear terms in the model can be replaced with
new continuous variables that equal the original bilinear expression for all integer val-
ues of the binary variables. The screening model contains bilinear terms between two
binary variables, or between a binary and a continuous variable. An exact lineariza-
tion for each type of expression was proposed by Glover (1975). Let z € [z19,zUF]
and y1, > € {0, 1} represent the continuous and binary variables involved in the bilin-
ear terms zy; and y;v. Continuous variables 2¢ = xy; and 22 = y,y, are introduced

to replace these terms. The following inequalities (Glover, 1975) define 2¢:

z—2"P(1-y) <2€

IA

r -0 —y) (4.70)

Lo

c
r "y

z

IA
IA

zVPy, (4.71)

and the following inequalities define z® (Glover and Wolsey, 1974):

B o< oy (4.72)
&< oy (4.73)
< yty-1 (4.74)
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However, (4.70-4.74) only define 2¢ and 2% exactly when y; and y, take integer
values. Since the binary variables are relaxed during the solution of the MILP, how
well these constraints approximate the convex hull is important. The values chosen
for 210 and zYF have a major impact on the way in which (4.70-4.71) affect the
integrality gap of the problem.® A poor choice of 2%? and zVF will lead to a loose
LP relaxation. These models may be solved more efficiently if tight bounds on the
continuous variables involved in the bilinear expressions can be derived. The solution
procedure that we have proposed attempts to derive tight bounds for these quantities,
but we recognize that these constraints have a negative impact on the performance
of the solution algorithms.

The work of Adams and Sherali (1986; 1990; 1993) addresses the strength of
the formulation resulting from the exact linearization of bilinear terms involving bi-
nary variables. They address mixed-integer zero-one quadratic programming prob-
lem (MIQPP) and mixed integer bilinear programming problems (MIBLP). MIQPP
and MIBLP problems can be reformulated using one of several exact linearization
methods (Adams and Sherali, 1990; Adams and Sherali, 1993). The different lin-
earization schemes affect the number of constraints in the resulting mixed integer
zero-one linear program and the tightness of the linear programming relaxation. The
linearization technique proposed by Adams and Sherali (1990) has been shown to the-
oretically dominate previously proposed linearization techniques (Glover and Wolsey,
1974; Glover, 1975) for MIQPP problems. However, this technique results in a larger
number of constraints. They also propose an efficient solution algorithm for the MI-
BLP problems (Adams and Sherali, 1993).

Their technique generates a tight linear reformulation for mixed-integer zero-one
programming problems. The original constraints in the problem are multiplied by
every binary variable to derive an additional set of nonlinear constraints. The con-
straints involving only binary variables are multiplied by the differences between the

P

continuous variables and their bounds (e.g., zVF — z and z — 2%?). Continuous vari-

ables are then introduced to represent the bilinear terms using the same linearization

6Sometimes constraints in this form are referred to as ‘Big M’ constraints.
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scheme proposed by Glover (1975), resulting in a mixed-integer linear model.

Unfortunately, the screening model developed in the preceding chapter is not in
MIQPP or MIBLP form; MIQPP and MIBLP models require that all of the bilinear
terms in the model appear in the objective function. All of the bilinear terms defining
costs, (3.71-3.74), can be moved into objective function, but the remaining bilinear

terms in the screening model cannot be directly moved to the objective function.

Noting that the techniques developed by Adams and Sherali lead to a tighter for-
mulation, but do not apply directly to our problem, we have applied their ideas in the
following fashion. First, we employ the exact linearization proposed by Glover (1975)
to generate an exact linearization of all of the bilinear terms originally appearing in
our model. Next, we apply the basic idea proposed by Adams and Sherali (1986;
1990) in a limited sense. We look at the set of new continuous variables that we have
introduced and multiply any equations containing only binary variables by the differ-
ence between the continuous variables and their bounds or by other binary variables
if these multiplications will not introduce any additional continuous variables. We
multiply the other constraints by any binary variables that will not introduce any
additional continuous variables due to new bilinear terms. This idea was carried out
manually, so new equations that could have been introduced may have been missed.
The application of the idea presented above seems to have the biggest impact when
the SOS1 variables were involved in bilinear expressions. For example, consider the
bilinear term y,f = f, where Y y, = 1 and f € [0, fF]. The application of the
procedure results in Y., (y.fUF — f.) = fUP — f which reduces to ), f, = f. Al-
though these constraints are somewhat obvious from a physical understanding of the
system, they are derived by this procedure. Although other constraints were derived
and added to the model, the biggest impact on the efficiency seemed to come from

the constraints involving the SOS1 variables.

To compare the benefits of the different linearization strategies effectively, the
transformations from the bilinear model to the different equivalent linear representa-
tions must be performed automatically. This was not attempted because the proposed

models could be solved with the strategy that was applied. However, if the solution
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of much larger models is attempted, automatic derivation of a tighter equivalent lin-
ear model may be required. With different strategies implemented automatically, the

tradeoff between model size and solution efficiency can be investigated empirically.

4.6.5 Influencing the Branch and Bound Algorithm

Features of the models have been exploited to improve the performance of the branch
and bound procedure. These include the identification of SOS1 sets and the use of
variable priorities.

Many of the binary variables in the system represent special ordered sets of type
1 (SOS1) (Beale and Tomlin, 1970), such as the number of batches and the type of
distillation column assigned to a distillation task. Declaring these variables as SOS1
sets allows the branch and bound algorithm to employ a different branching procedure
for these sets. Typically, during the branching procedure, the variables in the set are
divided into subsets in which one subset contains the nonzero element and the other
does not. This differs from the usual practice of fixing a binary variable to either
zero or one along each branch, and is much more efficient when the SOS1 sets contain
many elements. For small sets, the benefits may not be very pronounced. In addition,
the fact that these variables must sum to one helps when linearizing the bilinear terms
between the SOS1 and continuous variables. This is explained in section 4.6.4.

Since some of the decisions in the design of the process are naturally made in a
sequential fashion, this sequence can be used to indicate a preferred branching order
for the branch and bound algorithm. For instance, there is no point in deciding which
distillation column to assign to a separation task if the separation is not performed.
The same holds for the reaction tasks. Variable priorities are a way to represent the
preferred branching order to the solvers embedded within GAMS (Brooke et al., 1992).
Empirical evidence has also suggested the addition of an SOS1 set to represent the
number of items of a particular equipment item assigned to the process. When this set
is employed in conjunction with the setting of priorities, the branch and bound decides
whether to employ a particular item of equipment before determining where to assign

the unit. Experience solving these models has shown that the following ordering of
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the discrete decisions (from top to bottom in the tree) improves the performance of

the algorithm:
1. the existence of the reaction tasks
2. the existence of the distillation tasks
3. the identity of the active batch regions
4. the number of distillation columns assigned to a particular separation
5. the location of the bottoms cuts
6. what equipment units are employed within the process
7. the allocation of reactors and columns to particular tasks
8. identifying the active feed and time intervals

9. determining the number of batches

4.6.6 Tailored Solution Procedures

This research has not investigate tailored solution procedures for the solution of the
screening models. However, it is easy to recognize that a tailored solution procedure
would be more effective on the screening models, particularly one that can exploit
the way in which the number of batches has been modeled. For the models with no
intermediate storage, all units employ the same number of batches, so the number
of batches has been represented using a single SOS1 set. The size of this set affects
the number of equations in the model to be solved. In addition, the upper and lower
bounds on the number of batches appear in the constraints used to linearize the
bilinear expressions involving the number of batches and any continuous variables
(e.g., terms defining the charge of material to a particular task for each batch). Thus,
by restricting the number of batches to several smaller ranges, not only can the
size of the model in each range be reduced, but each of these models will result in

a tighter formulation since the tighter upper and lower bounds can be employed.
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A tailored branch and bound procedure could reduce the size of the models and
update the parameters when branching on members of the SOS1 set. Although the
implementation of such a procedure is a nontrivial task, it may be required to handle
situations employing unlimited intermediate storage, or cases in which intermediate
storage is employed to decouple only some of the processing trains. In these situations,

the screening model includes a number of batches for each processing step.

4.6.7 Representation of Batch Distillation Boundaries

The boundaries of each of the product simplices are included in the each of the batch
distillation regions. Thus, if the feed to a distillation column is located on a boundary,
two choices of the binary variables lead to exactly the same solution. This requires
the branch and bound procedure to search each of the trees to verify the solution.
These situations are common and will almost always arise from the addition of an
entrainer. For instance, in the solution to the superstructure containing only one
reaction task, both distillation tasks have feeds located on the boundary located
between two distillation regions. Future work should investigate ways to avoid this

type of problem.

4.7 Summary

The application of the screening models to a fairly simple process has been examined.
This chapter demonstrates how the design constraints and the restrictions imposed
by the manufacturing facility can be used to derive bounds for the extent of reac-
tion versus time and for the selectivity of competing reactions. However, even for a
reasonably simple problem, the derivation of these bounds may be a nontrivial task.

The application of the bounds to two different superstructures demonstrates that
even rough approximations of the reaction behavior can capture many of the tradeoffs
that need to be considered at the design stage. In fact, solution of the screening
model may exploit tradeoffs that are not obvious to the engineer. In some cases, these

solutions may indicate that the screening model should be augmented with additional
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constraints to capture some particular physical behavior that was relaxed during the
derivation of the screening model. For example, the solution chose not to perform
any of the third and fourth reactions in the one of the reactors until a constraint
requiring a minimum conversion with respect to the reaction time was added. In other
cases, the solution of the screening model may generate design alternatives that differ
substantially from the designs produced through minor modifications of the chemists
recipe. In retrospect, the solution determined from the second superstructure seems
obvious. However, if we had started with the mindset of adapting the chemists design
to account for the fact that we could not operate at such a low temperature, we may
have ended up with a design looking much more like the one obtained from the first
superstructure.

The difference in the solution obtained from the two superstructures demonstrates
the need to consider a broad range of alternatives early in the design of the process.
This highlights both a strength and a weakness of the screening models in the ex-
ample presented. First, by only including a subset of the constraints the models do
not eliminate any promising designs contained within the superstructure. However,
since only reaction/distillation processes are included within the current superstruc-
ture, many batch processes of interest cannot be described by the screening models
described here. Thus, targeting models for other common processing tasks such as

extraction, crystallization, etc. should be investigated in the future.

4.8 Notation

The notation that has been introduced in this chapter is defined in the lists below.

4.8.1 Indexed Sets

J  The set defining the temperature intervals. For j € J, T;_; and T} represent

the lower and upper bounds of the interval.

158



L The set defining the feed intervals. For [ € L, f,_l and fl represent the lower
and upper bounds of the interval.
M The set defining the time intervals. For m € M, t,,_; and t,, represent the

lower and upper bounds of the interval. Note that ¢, = 0.

4.8.2 Binary Variables

ylF 4 SOS1 set denoting the active feed interval for the A charged.
ylF T SOS1 set denoting the active feed interval for the I charged and the I gen-
erated by reaction 1.

y;m SOS1 set denoting the active time interval in temperature interval j.

4.8.3 Variables

N/, the amount of A available for reaction in the time interval m and tempera-
M N A — t R’LTL
ture interval j. Nj,, = Y fa™"-
&t;m Continuous variable representing a bilinear product between the following
continuous and binary variables &, =y}, £1.

TTj the extent of reaction r attributed to temperature interval j

T the extent of reaction r attributed to temperature interval j and feed interval

rjl
I. Note 3, €%, = €7
z12  the fractional conversion of A achieved in reactions 1 and 2 in temperature
interval j.
234 the fractional conversion of I achieved in reactions 3 and 4 in temperature
interval j.
712°  the fractional conversion of A achieved in reactions 1 and 2 in temperature
intervals 1 to j.

S . . . . . .
x23%°  the fractional conversion of I achieved in reactions 3 and 4 in temperature

intervals 1 to j.

4.8.4 Parameters

f# upper bound on £~ in feed interval [.
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upper bound on feed of I (ff%» 4 ¢,) in feed interval I.

time discretization point m for temperature interval j.

Upper bound on temperature in temperature interval j.

Maximum fractional conversion achieved in reaction 1 in temperature in-
terval j and time interval m.

Minimum fractional conversion achieved in reactions 3 and 4 in temperature

interval 7 and time interval m.
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Chapter 5

Siloxane Monomer Case Study

In this chapter screening models are applied to the design of a process for the campaign
manufacture of siloxane monomer (Barrera, 1990; Allgor et al., 1996). This example
is an abstraction of a problem actually encountered by a major specialty chemical
manufacturer. The identities of the compounds involved have been concealed.

The scenario is as follows. Research chemists have recently discovered a new
siloxane based polymer, and a significant quantity is now required for test marketing.
This example focuses on the development of a campaign to manufacture a fixed
quantity of the monomer. Since the development of similar products by competitors
is imminent, both the process development activity and the resulting campaign are
subject to a strict time horizon constraint. It is also likely that the design will be
used to estimate the cost of long term manufacture. Hence, rapid development of an
efficient process is pivotal to the success of the new product. The goal of the screening
model is to identify favorable process structures quickly, so that these may serve as
the starting point for the detailed design.

The process consists of three reaction tasks that manufacture two products; prod-
uct A is generated in the first reaction and product D is generated in the third. Two
applications for the mixed-integer linear screening models are considered. First, the
solution from the screening models is compared to that obtained when minimizing
the waste generated by the process (Ahmad and Barton, 1995) to examine whether a

process generating the minimum amount of waste can make efficient use of equipment
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and energy. This model contains simple bounds on the extents and selectivity of re-
action that can be achieved in the reactors. The second example employs targets for
the conversion and selectivity that can be achieved in terms of the operating time and
temperature and investigates whether it is cost effective to employ the downstream

reaction and separation tasks required to convert intermediate C into product D.

5.1 Laboratory Scale Process

The experimental procedure for the production of siloxane monomer developed by
the chemist is a sequential process consisting of batch reaction and distillation tasks.
During the bench scale experiments, kinetic expressions governing the reaction mech-
anisms of the three reaction tasks were developed; these are described in sections
5.1.1 to 5.1.3. In addition, the experiments identified temperature limits required to
avoid unwanted side reactions. Both the reaction and distillation tasks must operate
below these temperature limits. The batch distillations can operate under vacuum in
order to avoid violating these limits. Following Ahmad (1997), we have assumed that
pressure changes do not affect the structure of the batch distillation regions. The
detailed dynamic models that have been used consider the effect of pressure changes

on the performance of the distillation tasks and indicate that the assumption holds.

5.1.1 First Reaction Task

The chemist’s experiments determined that the following reaction mechanism best

represents the data in the range of temperatures and compositions examined.

RI+R2 5 Il (5.1)
RI+I1 2 A (5.2)
n = c+H, (5.3)
In+c =4 12 (5.4)
2 > 1+cC (5.5)
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pt % pt* (5.6)

Note that the first reaction is catalyzed by the platinum catalyst (Pt); the cata-
lyst can deactivate to Pt* over the course of the reaction. The chemists discovered
that unwanted side reactions are catalyzed at temperatures above 413 K; therefore,
such temperatures must be avoided. Further analysis determined that the following
expressions best describe the rates of reaction. The constants for these equations
are provided in table 5.1 where the units of the preexponential factors (k.q) provide

reaction rates in mols~'m~2 when the concentrations are measured in mol/m?.

rate; = ﬂlCR]CRQ'k%; (5.7)
rate, = koCri1Cr1 (5.8)
rates = k3Chn (5.9)
rates = kaCnCc (5.10)
rates = k5Cp2 (5.11)
rateg = kgClpt (5.12)

where the temperature dependence of the rate constants are given by the following

Arrhenius expression:

K, = nroe{_}i_lg"l} YVr=1.7

5.1.2 Second Reaction Task

The second reaction task converts the intermediate C generated in the first reaction
task to a second intermediate E by reacting C with methanol (M) according to the

following stoichiometric relationship:

M+C—E (5.13)
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r | Eq[Jmol™] | k.9

1 78240 | 7.50 x 104
2 45605 | 1.01

3 103345 | 1.22 x 101!
4 32217 | 3.58 x 1072
5 91211 | 7.33 x 10°
6 0]1.39x10°*
7 0{7.00x10!

Table 5.1: Preexponential factors and activation energies defining the rate constants
(5.7-5.12) for reactions (5.1-5.6) occurring within the first reaction task

Equation (5.14) defines the rate of reaction (5.13). The chemists imposed an up-
per temperature limit of 70 K on the operating temperature and determined a rate
constant at this temperature of 1.0 m®/(kmol hr) for concentrations measured in

kmol/m?3.

rate = KJCCCM (514)

5.1.3 Third Reaction Task

The third reaction task converts the intermediate E generated in the second reaction
task to product D by reacting E with water W according to the following stoichio-

metric relationship:

2F + W — D +2M (5.15)

Equation (5.16) defines the rate of reaction (5.13) for the stoichiometry written in
(5.15).

rate = kCcCy (5.16)
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The preexponential factor and the activation energy for this reaction are given below:

11 m®
=90142x 1 —_— A7
Ko = 9.142 x 10 [kmol hr] (5.17)
E, = 83354 [5‘;—] (5.18)

The chemists advise that this reaction is run below 95 C, and this is treated as a

design constraint.

5.1.4 Design Constraints

Several design decisions have been made that restrict the operation of the reactors.
Total conversion of R2 is required in the first reaction, a minimum of 98% conversion
of C to E is required in the second reaction, and a minimum of 85% conversion of E

to D is required in the final reaction.

fow = 0 (5.19)

(1—.98)> frplpe > fre (5.20)
ecFE

(1-85)) fimplps > fig" (5.21)
eelF

Restrictions are also placed on the amount of toluene needed to solvate the first
reaction. In addition, an excess of the non-limiting reagent is required in each of the
reactions: at least a 15% excess of R1, a three to one ratio of methanol to C, and a

25 to one ratio of water to E are required.

> flmplor > 15> fmplppo (5.22)
ecE ecE
ot > 15 fienplpm (5.23)
eckE
> famplon > 3Y fEnplpe (5.24)
eckE eckE
Y fimplpw > 25 fimplpe (5.25)
ecFE e€E
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In addition, we require that only toluene, water, methanol, R1, and R2 may be
supplied to the process. The product must consist of 98% A and D on a mass basis.
Letting X?roduct = 98 and Ep = {A, D}, the purity constraint (3.25) reduces to the

following:

98> " fFplw < fRphw + fhppw (5.26)

5.2 Case Study I: Comparison of minimum cost

versus minimum waste

We require the manufacture of 136,078 kilograms of monomer in less than sixty days.
In this problem we compare the difference between minimizing the manufacturing
cost and minimizing the manufacturing cost subject to minimum waste emissions.
Ahmad (1997) has shown that an embedded optimization that first minimizes the
waste emitted by the process and then minimizes the total flow of recycled material
while permitting no more than the minimum waste to be emitted leads to sensible
process designs with minimum environmental impact. In this section, we compare
the difference between minimizing the total cost and minimizing the total cost of a
design that emits no more than the minimum amount of waste.

The screening models employed for this case study employ a simplified model
of the first reaction task that considers the two dominant reactions given in (5.27-
5.28), rather than the set of competing reactions (5.1-5.6). The intermediate species
generated in the first reaction are not included in the screening model. We assume
that hydrogen remains in the gas phase, and that no cost is incurred when sending

the hydrogen to the flare.

2RI+R2 - A (5.27)

Rl1+R2 % C+H, (5.28)

Toluene is not permitted to mix with water in order to avoid the formation of two
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liquid phases. We require total conversion of R2 in the first reaction (5.19), so R2 does
not appear in the batch distillation regions. Since all of the mixtures in the process are
homogeneous, the batch distillation targeting procedure can be employed. Two super
simplices are formed, one containing the pure components C, M, R1, W, E, A, and D,
and the other containing C, M, R1, T, E, A, and D. The batch distillation regions are
extracted from the two super simplices. The batch distillation regions calculated by
Ahmad (1997) have been employed; the azeotropic behavior was approximated using
the Wilson model to calculate the activity coefficients (see Ahmad (1997) for details).
The fourteen distillation regions represented by the product sequences shown in table
5.2 cover the composition space of the allowable distillation feeds. Each super simplex
contains seven pure components, so each region is represented by an ordered sequence
of seven fixed points taken from the set F = {C, M-T, M, R1-W, R1-T, R1, W~
E, W, C-R1-T, C-R1, T, E, A, D}. Since heterogeneous mixtures often appear in
specialty chemical process, the separation targets should be extended to include these
systems. We recognize that the lower bounds derived from the screening model are
subject to the fact that we have imposed the restriction that heterogeneous mixtures
are not formed. Note that the mass balances around the distillation tasks forbid the

mixing of water and toluene.

Experimental and limited simulation experience has shown that the relative extent
that can be achieved in the first reactor at high conversions lies within a restricted
range. It should be noted that these bounds are not rigorous, but they serve as
suitable bounds for illustration purposes and for a fair comparison with the minimum
waste process design found by Ahmad (1997). To compare with the minimum waste
solution, we also fix the conversion achieved in the second and third reactions at the

lower bounds given by (5.20) and (5.21). These limits are treated as constraints.

§i1 > 1788, (5.29)

11 < 4926 (5.30)

The data needed to implement screening formulation are provided in tables 5.4,
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Product sequence
{C-M, C, R1-W, R1, E, A, D}
{C-M, C, R1-W, W-E, W, A, D}
{C-M, C, R1I-W, W-E, E, A, D}
{C-M, M, R1-W, R1, E, A, D}

{C-M, M, R1-W, W-E, W, A, D}
{C-M, M, R1-W, W-E, E, A, D}
{C-M, M-T, M, R2, R, E, A, D}

E
{C-M, M-T, R1-T, R1, E, A, D}
{C-M, M-T, R1-T, T, E, A, D}
10| {C-M, C, C-RI-T, T, E, A, D}

11| {CM, C, C-R1-T, C-R1, E, A, D}
12 | {C-M, R1-T, C-R1-T, C-R1, E, A, D}
13| {C-M, R1-T, C-R1-T, T, E, A, D}
14| {C-M,R1-T,R1, C-R1,E, A, D}

© 00 3O Ut W N D

Table 5.2: Feasible product sequences for the first case study of the siloxane monomer
process.

5.5, and 5.6. Table 5.3 defines the compositions of the azeotropic fixed points, p,;
for the pure components, p, is merely a column of the identity matrix and has not

been included in the table. The raw material and waste disposal costs for each fixed

Pure Fixed Points
Component | po_y | Pu—7 | Pr-w | Pr-T | Pw-E | Pc—r-T | Pc—R
C 0.675 0.18 0.31
M 0.325 0.89
R2
R1 0.40 0.65 0.30 0.69
A% 0.60 0.914
T 0.11 0.35 0.52
E 0.086
A
D

Table 5.3: Composition of the fixed points that are not pure components.

point are given in table 5.4. The disposal costs are estimates based on the cost for

incineration or waste water treatment. Table 5.4 also gives the normal boiling point,
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the heat of vaporization, and the molar volume and molecular weight of the fixed
points. Note that the molar volume and heat of vaporization are underestimates
for these quantities over the temperature range that the process operates; the molar
volume, molecular weight, and heat of vaporization for the azeotropes represent ideal
mixture values. These bounds are chosen so that the ideal mixing rule employed in

the screening model bounds the mixture volume and heat of vaporization calculated

using an activity coefficient model or equation of state.

Raw Waste Molar

e Material | Removal Ty Hver Volume Molecular
[$/ke] | [$/kg]| (K] |[J/mol] |[1/kmol]| Weight
C-M 16.50 323.4 | 31250 98.47 138.934
C 16.50 336.6 | 29300 125.87 190.400
M-T 18.00 337.3 | 35080 48.89 38.653
M 16.50 337.8 | 35300 41.56 32.042
R2 8.85 16.50 346.0 | 29700 128.39 134.320
R1-W 16.50 365.4 | 40420 38.95 30.841
R1-T 18.00 367.5 | 37655 83.26 64.801
R1 4.11 16.50 370.0 | 40000 69.84 50.080
W-E 16.50 370.8 | 41113 28.50 35.595
W 0.01 1.70 373.2 | 40700 18.35 18.015
C-R1-T 16.50 373.6 | 34590 99.87 97.