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Abstract

The rapid development of an efficient process to manufacture a new or modified
product within an existing batch manufacturing facility is critical to the success of
many specialty chemical and synthetic pharmaceutical companies. This thesis em-
ploys process modeling technology as the basis for an integrated batch process de-
velopment methodology that complements and enhances laboratory and pilot scale
experimentation. Examples demonstrate that significant benefits can be realized for
these industries.

To develop optimal batch processes using detailed mathematical models, the con-
tinuous decisions defining the operating policies of the processing tasks and the dis-
crete decisions defining the process structure and allocation of plant resources must
be made simultaneously. The first rigorous decomposition algorithm that simulta-
neously considers both types of decisions is derived; the algorithm also extends to
general mixed time invariant integer dynamic optimization problems. This decompo-
sition algorithm requires subproblems that yield rigorous upper and lower bounds on
the objective, and robust numerical techniques to solve each subproblem. Screening
models are derived to provide rigorous lower bounds on the manufacturing cost; upper
bounds on the cost are provided by the solution of a dynamic optimization problem.
The robustness, accuracy, and efficiency of the numerical solution algorithms for the
simulation and optimization of detailed discrete/continuous dynamic models is also
improved, allowing the solution of the dynamic optimization subproblem to be per-
formed more reliably.

Screening models exploit domain specific knowledge to obtain rigorous lower bounds
on the manufacturing cost. The lower bounding property of the screening models is
proven for networks of reaction and distillation tasks and demonstrated on several
case studies that illustrate the ability of the screening models to handle aspects of
process synthesis. The design targets provided by the solution of these models facil-
itate rapid decision making during the early stages of process development, enhance
the application of other design methodologies, and facilitate the formulation and so-
lution of the dynamic optimization subproblems required within the decomposition



algorithm.
Sophisticated equation based modeling environments provide modeling flexibility

by decoupling the solution procedures from the model definition but, at the same time,
place severe expectations on the numerical integration techniques. The application of
these environments to the simulation and optimization of batch reaction and distil-
lation tasks uncovers several previously unreported numerical problems. This thesis
proves that the observed numerical difficulties are caused by an ill-conditioned cor-
rector iteration matrix, demonstrates that the accuracy of DAE integration codes is
limited by the condition number of the corrector iteration matrix, and explains how
the integration code's error control strategy can permit the generation of 'spikes'.
Automated scaling techniques are developed and implemented to permit the efficient
solution of poorly scaled problems and to mitigate the effects of ill-conditioned mod-
els; it is proven that this scaling comes very close to the optimal scaling for the sparse
unstructured matrices with which we are concerned. In addition, a novel strategy is
developed to start DAE integration codes efficiently at the frequent discontinuities
experienced in such simulations and optimizations.

The advantages of this integrated design methodology are demonstrated through a
series of realistic examples exhibiting the complexity of typical industrial applications.

Thesis Supervisor: Paul I. Barton
Title: Assistant Professor

Thesis Supervisor: Lawrence B. Evans
Title: Adjunct Professor
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Chapter 1

Introduction

Process modeling technology has changed the way in which continuous/steady state

chemical processes are designed and operated (Evans, 1994), yet a similar impact

has not yet been witnessed for the design of batch processes. The dynamic nature

of batch processing operations coupled with the combinatorial aspects of equipment

scheduling and resource allocation dictate that the effective application of process

modeling to the design of batch processes is a more formidable task.

Recent advances in modeling capabilities and optimization techniques for dynamic

processes now permit the application of detailed modeling technology to batch pro-

cesses (Barton, 1994). However, the benefits afforded by the application of modeling

techniques must outweigh the effort and time required to generate the models, and

apply the design methodology. Drawing the analogy to continuous processes, we feel

that process modeling techniques can reap the most significant benefits when applied

to the design of batch processes by empowering the engineer to exploit interactions

between the processing tasks. Modeling enables alternative operating policies to be

explored, evaluated, and optimized. However, the systematic design methodologies

used for continuous plants do not apply to batch processes, so new methods are

required to realize the potential benefits derived from process modeling technology.

This thesis advocates process modeling technology as the basis for an integrated

batch process development methodology that can complement and enhance laboratory

and pilot scale experimentation. This thesis demonstrates that process modeling



technology, employing mathematical models of the physical process at several levels

of detail, provides an effective strategy to address the design of batch processes. In

particular, the application of process modeling techniques to the optimal development

of batch processes has led to the development of screening models capable of providing

rigorous lower bounds on the cost of the design, and improvements to the numerical

integration algorithms employed for solving the simulation experiments. Furthermore,

a novel and systematic methodology to address the optimal development of batch

processes is presented.

This chapter motivates the development of a systematic methodology employing

mathematical models of the processing tasks for batch process design and identifies

batch process development - the design of a batch process to manufacture a new or

modified product in an existing manufacturing facility - as a problem of primary

importance. Section 1.1 discusses the economic impact of batch processing, and the

importance of batch process development to the specialty chemical and synthetic

pharmaceutical industries is covered in section 1.2. Previous approaches that have

been applied to the batch process development are then briefly discussed in section 1.3,

demonstrating the need for new approaches to the batch process development prob-

lem. Although the optimal development of batch process can be expressed as a mixed

time invariant integer dynamic optimization problem, no solution techniques to ad-

dress this class of problems are currently available. This thesis has identified that the

key advance that would enable the solution of such problems is the ability to derive

models that provide rigorous lower bounds on the design objective. While deriva-

tion of such models from the mathematical form of the original dynamic problem

formulation may not be possible, alternative models whose solutions provide valid

lower bounds for networks of batch reaction and distillation tasks can be derived

from engineering insight. These models form the basis for the rigorous decomposition

strategy capable of addressing batch process development problem that is introduced

in section 1.5. This strategy requires the formulation and solution of two difficult

subproblems - a rigorous lower bounding or screening model that incorporates the

discrete design decisions, and the dynamic optimization of the detailed mathematical



models of the process for fixed values of the discrete decisions.

Methods to define and solve these two subproblems are the focus of the two main

parts of this thesis. The introduction of the concept of screening models for batch

process development is the key idea that enables the mixed-integer dynamic optimiza-

tion representation of the batch process development problem to be decomposed in a

rigorous fashion; the development of screening models is the focus of part 1. In part 2,

the numerical integration techniques are improved in order to perform the simulation

and optimization of detailed dynamic models more reliably and more efficiently.

1.1 Batch Process Manufacturing

Batch/semicontinuous processes contribute substantially to the global production of

chemicals. In fact, Shell (1990) reported that the specialty chemicals and synthetic

pharmaceutical industries accounted for $380 billion of the world's $1 trillion chemical

market in 1988. This contribution is particularly important for developed nations.

Developed nations currently enjoy several advantages that favor the production of

the specialty chemicals (Polastro and Nystrom, 1993). For instance, the demand for

many of these products typically lies within the developed nations, and the impact

of labor and energy costs is typically not that high. In addition, for many of these

products there are perceived technological barriers which make competition from less

developed nations unlikely. This contrasts the commodity chemical market in which

the prevailing economic factors favor production in developing nations, particularly

those with a cheap energy source. This implies that the importance of batch chemical

manufacturing for developed nations is likely to increase as commodity manufacture

begins to shift offshore.

Batch processes have achieved a renewed prominence in the chemical process in-

dustries due to their suitability for the manufacture of high value added specialty

chemicals and synthetic pharmaceuticals. These products are typically required in

low volume, and are subject to both short product life cycles and irregular demands.

Since such chemicals are often the key active ingredient in many marketed products



such as pharmaceuticals, pesticides, dyes, and fragrances, their efficient manufacture

is becoming increasingly important to the competitiveness of the chemical process

industries (Stinson, 1993).

Batch processes have distinct advantages over continuous processes for the pro-

duction of low volume products. Since batch processes employ shared, multipurpose

equipment, a single multiproduct facility can manufacture many products. Sharing

equipment items among products allows for a more efficient deployment of resources

and generates cost savings based on economies of scale. In addition, the ability to

produce many products in the same equipment provides an operating flexibility not

available in continuous manufacturing plants. This flexibility enables the batch plant

to respond to fluctuating markets and rapidly advancing technologies, and is largely

responsible for its use in the production of specialty chemicals. Production can easily

be shifted among products in response to market conditions, and new products may

be introduced to existing facilities without significant capital investment.

Batch processing facilities derive much of their flexibility from the strong dis-

tinction between the batch plant and the batch process. The plant refers to the

multi-purpose facility itself, while the process refers to the operating procedures and

production plans employed to organize the manufacture of different products within

the facility. The design of the batch process and the batch plant represent two sepa-

rate tasks, although the design of one will be strongly influenced by the design of the

other.

The design of the plant requires decisions concerning the superstructure of the

plant. The superstructure is a physical description of the plant equipment, instru-

mentation, and interconnections. Developing the superstructure requires answering

the questions necessary to produce a process and instrumentation diagram. What

unit operations should it include? How many of each type of unit should be in-

stalled? What size should these be? How should the units be arranged? What

interconnecting piping, utilities, and instrumentation should be installed? A typical

objective is to answer these questions in a way that maximizes the future flexibility

of the plant at minimum cost.



The process design requires the synthesis (or selection) of a sequence of processing

tasks to manufacture a product, the definition of operating policies for every task, the

allocation and scheduling of plant resources, and the development of detailed operat-

ing procedures to implement these tasks in a manufacturing facility. A process must

be designed for every product that is manufactured within the plant, yet the design

of a process for a particular product may depend on the other products manufactured

within the processing facility at the same time.

Most batch plants have a lifetime far greater than the life cycle of the products

they manufacture. In fact, the current trend in the specialty chemicals industry is

toward the manufacture of products with shorter life cycles and higher functionality

that are tailored to specific market niches. Thus, new products are introduced very

frequently, and each time a new or modified process design is required. Macchietto

(1993) predicts that this trend will accelerate. On the other hand, this trend implies

that the expected production requirements of the plant are often unknown at the

time of its design, complicating the application of systematic design methodologies

for equipment sizing, selection, and plant layout. For these reasons, this thesis has

focused on the design of the process, paying particular attention to the batch process

development problem defined in the next section.

1.2 Batch Process Development

The goal of batch process development is the design of an efficient process rather than

the design of a flexible manufacturing facility. In fact, the new process is usually in-

corporated into an existing facility. The engineer charged with the development task

faces the challenge of designing a large scale process for a recently created or mod-

ified product. The information generated from the original synthesis of the product

(often an experimental procedure) serves as the starting point. The engineer must

derive operating policies for the tasks, and select and schedule the plant's equipment.

However, the design of the process is driven by economic factors and constraints not

considered at the bench scale. The engineer must also consider issues such as safety,



environmental impact, scale effects, and the suitability of construction materials in

order to develop a feasible and economic process.

Existing market conditions highlight two motivations for process development to

be addressed from a research standpoint. First, these processes must be developed

rapidly. In some cases, this provides a competitive advantage by facilitating faster

market penetration, by exploiting patent protection to the fullest extent, and by

meeting customer expectations. In other cases, such as custom and toll manufacture,

rapid process development is required to meet contractual obligations and to compete

for new business. Second, these processes must be efficient. Increasing the economic

efficiency of manufacture is required to compete on a cost basis; thus, it may increase

profit margins or determine if a test marketed product is adopted. Efficient man-

ufacture also permits the revenue stream for a product to continue past the patent

expiration, and allows current and expected environmental regulations to be met -

both growing concerns in the specialty chemical and pharmaceutical industries (Ah-

mad, 1997). Moreover, these two objectives, rapid development and high efficiency,

are not necessarily mutually exclusive. However, as Laird points out (Stinson, 1993),

current development procedures typically only address one or the other. The ultimate

objective is to develop efficient batch processes rapidly.

The situation that custom chemical manufacturers often face illustrates the im-

portance of the rapid development of efficient designs. In many cases, a custom

manufacturer receives synthesis information for a specific chemical and must define

feasible operating policies for the tasks and allocate the resources within their manu-

facturing facility. Custom manufacturers must be able to solve these problems quickly

in order to assess the cost and time required to manufacture the requested product.

A manufacturer cannot afford to sign a contract to manufacture a chemical that they

cannot produce on their equipment within the allotted time. These producers must

comply with contractual obligation to remain in business, so rapid evaluation of the

feasibility of the proposed commitments is essential. In addition, they must develop

efficient designs to remain competitive.

The urgency for methods and tools specifically aimed at the synthesis and de-



velopment of batch processes has been recognized in recent years; for example, at

Chemical Specialties USA '92 Trevor Laird stated (Stinson, 1993):

... custom producers are still under some pressure to control costs as

well as to comply with changing environmental and safety regulations.

One way in which producers and their clients can meet these needs is by

paying closer attention to chemical process development.

Laird also emphasizes the fact that process design is typically subjected to extreme

time pressure, so often the most economic or environmentally sound processes are

overlooked. The screening models introduced in this thesis employ the available

information in a timely manner to identify promising design alternatives at an early

stage of the design process. The limited time for development can then be devoted

to the most promising alternatives.

1.3 Design Methods for Batch Process Develop-

ment

The information generated from the original synthesis of a product, often an experi-

mental or pilot plant procedure, serves as the starting point for process development.

The synthesis provides the engineer with a sequence of processing tasks capable of

transforming raw materials into the desired products along with a feasible sequence

of operations that purify the product. In addition, the laboratory scale synthesis pro-

vides the engineer with the set of operating policies used for each task at the bench

scale. An operating policy is distinguished from a task in the sense that it assigns spe-

cific values to quantities, and specific functions to control profiles, rather than a class

of similar operations such as "semi-batch operation of Reaction 1." The sequence

of processing operations (the tasks) combined with operating policies is commonly

referred to as the process recipe. Most of the previous research in the batch area,

typically in the areas of plant design and scheduling, considers the recipe to be fixed

a priori, as documented in the review papers of Rippin (1993) and Reklaitis (1989;



1992). Such research aids the engineer facing the process development problem by

helping him or her determine a feasible and cost effective allocation of the plant's

resources (equipment, labor, and utilities), provided that he or she attempts to im-

plement the recipe developed at the bench scale directly in the manufacturing facility.

However, in many cases direct implementation will not be feasible. Moreover, even

if it is feasible, direct implementation is typically inadvisable since the objectives

of the bench scale experiments differ from those of full-scale manufacture (Allgor et

al., 1996). Thus, the engineer may achieve more profitable designs by modifying the

recipe during batch process development.

Obviously, the optimal design of a process to manufacture a given product must

simultaneously consider changes to the process recipe and to the allocation of facility's

resources. Since limited time is available for process development, recipe modifications

can only be considered if they are evaluated efficiently. We advocate the use of

detailed dynamic models, validated against pilot plant and bench scale experiments,

to predict the performance of a particular design. Since the recipe comprises synthesis

and design information, the modeling procedure must cope with changes to both.

The synthesis information includes reagent and solvent selection, reaction chem-

istry, and the structure of the network of processing tasks. Although the reaction

pathways and processing steps employed at the bench scale need not remain fixed

during the process development, in many cases insufficient information is available to

model potential synthesis changes without resorting to detailed bench scale experi-

mentation. Therefore, this thesis does not consider the identification of new solvents

and reaction pathways (Knight et al., 1993; Knight and McRae, 1993; Crabtree and

El-Halwagi, 1994). However, we consider cases in which decisions involving the se-

lection of reagents and solvents from a list of candidates (see Modi et al. (1996) for

example) can be systematically evaluated using mathematical models during the pro-

cess development. In addition, the selection and location of separation stages and the

recycle structure are considered during the process development. The synthesis deci-

sions typically involve selecting from a set of discrete choices, where different dynamic

models may be employed to describe each.



The process design specifies the operating policies for the processing tasks de-

fined at the synthesis stage and a feasible allocation of the manufacturing facility's

resources. For a given equipment assignment, the effect of changes to the operating

policies of the tasks can be predicted using dynamic simulation or dynamic optimiza-

tion. In the remainder of this section, we consider the general approaches that have

been applied to the process development problem, and demonstrate that the problem

in which we are interested can be formulated as a mixed-integer dynamic optimization

problem.

Batch processes have typically been designed using a sequential procedure, similar

to the one shown in figure 1-1, that begins with the discovery of a new product in

the laboratory. The engineer charged with the development task then determines

feasible operating policies for the tasks in the manufacturing-scale equipment and a

feasible allocation of the manufacturing facility's resources for production. Although

the decisions made at all three stages of the design effect the efficiency of the process,

most batch process design research has considered the process recipe to be fixed

(Rippin, 1993), focusing on the third stage of the sequential design procedure. Only

a few researchers have examined methods to incorporate recipe modifications during

the design of a batch process (discussed in chapter 2), and to date, none have proposed

rigorous techniques that can handle the discrete and dynamic operating decisions

simultaneously.

In many situations, the partitioning between the process synthesis and the latter

stages of process development arises naturally. This is commonly the case with cus-

tom chemical manufacturers who are contracted to deliver a specific chemical to fulfill

an order from a single customer. In many cases, the custom manufacturer receives

the synthesis information for the product and is left with the task of defining feasi-

ble operating policies and allocating the resources within the manufacturing facility.

In large chemical companies, organizational boundaries may implicitly require the

separation between the synthesis and design stages of the process development. For

instance, many companies have separate departments, sometimes located at different

sites, dedicated to research and process engineering. This separation restricts the in-
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Figure 1-1: Sequential design procedure often used for process development.

tegration of design tasks; more complete integration of the design process requires a

change in the structure of manufacturing organizations (Reklaitis and Preston, 1989).

Until such changes are realized, many processes will be designed while the process

synthesis information remains fixed. However, even if the synthesis is separated from

the rest of the design, the development of the operating policies and equipment allo-

cation should not be partitioned.

Barrera and Evans (1989; 1990) demonstrated that the ability to modify the pro-

cess recipe, both to improve performance and ensure feasibility of the processing

tasks, is critical to the success of the design. They decomposed the process devel-

opment problem (without the synthesis aspects) into the performance and structure

subproblems based on the nature of the decisions addressed in each subproblem; these

subproblems are analogous to the final two tasks in figure 1-1. The objective of the

performance subproblem is to determine optimal operating policies for the sequence

of processing tasks once the plant resources (e.g., equipment, labor, and utilities)

have been assigned. The structure subproblem seeks to find the optimal allocation of

plant resources after the process recipe has been fixed, and involves both continuous



and discrete decision variables, but contains no process dynamics. Methods are cur-

rently available for the solution of each of these subproblems. On the one hand, the

performance subproblem defines a dynamic optimization problem. Solution of this

subproblem requires detailed dynamic models of the processing tasks, or the ability

to evaluate the operating policies using extensive experimentation. Charalambides

et al. (1993) demonstrated that the performance subproblem can be represented and

solved as a multistage dynamic optimization problem, once the processing structure

and control variables have been selected. They have applied this technique to several

examples (Charalambides et al., 1995a; Charalambides et al., 1995b; Charalambides,

1996). On the other hand, the structure subproblem represents a combinatorial opti-

mization problem that can be addressed using mixed-integer linear or nonlinear pro-

gramming techniques. Since the process will typically be operated in campaign mode,

the structure subproblem represents a problem that has been addressed by both the

batch scheduling and batch plant design literature (Reklaitis, 1989; Reklaitis, 1992;

Rippin, 1993).

Although established techniques now exist to solve both subproblems in isolation,

to date no methods exist to address them simultaneously. At best, ad hoc itera-

tions between the two subproblems have been performed, resulting in an evolutionary

procedure for the improvement of a 'base case' design (Barrera, 1990; Salomone et

al., 1994). Barrera's approach iterates between the performance and structure sub-

problems, fixing the variables used in one subproblem while the other subproblem

is solved; i.e., the performance is optimized for a given structure, and the structure

is optimized for fixed operating policies, as shown in figure 1-2. He demonstrated

the significant benefits that could be gained by considering the optimization of both

resource allocation and operating policies together, even using an ad hoc procedure.

With this iteration strategy, either subproblem can be solved to optimality every

time the variables in the other are updated, placing one subproblem in an outer

optimization loop and the other in an inner loop. Placing the performance subproblem

in the outer iteration loop yields a local improvement strategy for the initial design;

iterations are terminated based on the lack of improvement in the current solution.
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Figure 1-2: Ad hoc iteration iteration strategy employed in an evolutionary approach.

At termination the original design has been improved, but no information is available

to indicate how close this design may be to the global optimum or to suggest whether

further optimization is warranted. Placing the structure subproblem in the outer

iteration loop permits enumeration of the discrete space, but provides no way to

prune the discrete space, making total enumeration inevitable.

In order to avoid total enumeration of the discrete space, rigorous lower bounds

on the cost of the overall design are required. Although the structure subproblem is

incapable of providing such bounds, this thesis employs engineering insight to derive

lower bounds on the production cost for networks comprised of batch reaction and

distillation tasks. These models are introduced in the next section. They permit the

derivation of a rigorous iteration strategy for the improvement of batch processes that

is introduced in section 1.5.

Recipe

t



1.4 Screening Models for Batch Process Develop-

ment

This thesis introduces the concept of screening models for batch process development.

Screening models yield a rigorous lower bound on the cost of production, providing

both design targets and a valid way in which to prune or screen discrete alternatives

(process structures and equipment configurations) that cannot possibly lead to the

optimal solution. These models consider changes to the process structure, the op-

eration of the tasks, and the allocation of equipment simultaneously. In addition,

these models embed aspects of the process synthesis not considered in previous re-

search dealing with batch process design. However, they do not provide a detailed

process design, so they must be used in conjunction with techniques that consider

the dynamics of the process in detail, such as the multi-stage dynamic optimization

formulations used to address the performance subproblem (Charalambides, 1996).

Screening models provide targets for the design of batch processes which can either

be used in isolation, used to enhance existing approaches, or used as the foundation

for a rigorous decomposition strategy for the solution batch process development

problems. In isolation, the solution of the screening model may be all that is needed to

determine whether it is worth pursuing further development of a new product. If the

product is not profitable given a lower bound on the manufacturing costs, then there

is no need to pursue further design or experimentation. Screening models provide a

design target to which the solutions from the sequential or evolutionary approaches

may be compared. This comparison can be used to assess the potential benefits of

continued optimization. Since the evolutionary approach is merely a local search

technique, the solution of the screening model may indicate whether the iteration

should be attempted from another initial point. If another sequence of iterations is

justified, the solution provides a prime candidate for the initial point of this sequence.

Screening models can also be used to identify a set of candidate solutions which

may have a lower cost than a given base case design. The performance problem

can then be solved for each of these discrete alternatives. Used in this fashion, the



screening models provide a rigorous way to prune the space of discrete alternatives.

In addition, the solution of the screening model provides good initial guesses and a

feasible processing structure for the multistage dynamic optimization problem solved

to obtain a detailed design. This point is discussed in more detail in section 2.4.

Although the screening models can be employed merely to identify candidates for

enumeration, their lower bounding properties can also be exploited to derive a rigorous

decomposition algorithm to address batch process development.

1.5 Rigorous Decomposition Algorithm

Screening models also enable the derivation of a rigorous decomposition strategy for

batch process development that is detailed in section 2.4. The strategy is quite simple

and is diagrammed in figure 1-3. First, the screening model is solved to provide a

lower bound on the solution of the corresponding performance subproblem (this is

a lower bound on the global solution on the first iteration). The solution of the

screening model also provides values of the binary variables satisfying all of the logical

constraints (e.g., equipment allocated to performed tasks, equipment assigned from

available inventory, etc.) and initial guesses for the material flows and control profiles

for the dynamic optimization. The performance subproblem, a multistage dynamic

optimization, is then solved. The solution of this problem represents a feasible design,

so if it is better than all of the designs that have been found so far, we update the

value of the objective. We add an integer cut to the screening model to exclude the

solution just found and solve the screening model again. After each solution of the

screening model, we check to see if either the problem is infeasible or the solution is

greater than the best solution of the performance subproblem found so far. If either of

these is true, we terminate the iteration with the confidence that we have rigorously

searched the space of discrete alternatives.

Since this thesis considers campaign manufacture in which every equipment item

is dedicated to a specific task (or set of sequential tasks) and allocated for the duration

of the campaign, the equipment assignment remains fixed over the entire campaign.
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Figure 1-3: Decomposition algorithm for batch process development.

In addition, every batch is processed in exactly the same fashion and end effects are

ignored during the optimization of the process. These assumptions imply that the

integer decision variables are fixed for the duration of the entire campaign, so they

can be represented as time invariant parameters that are restricted to {0, 1} within

the dynamic optimization. Thus, the dynamic optimization problem representing

the performance subproblem can be augmented with the constraints of the structure

subproblem to yield a mixed time-invariant integer dynamic optimization (MIDO)

problem (Allgor and Barton, 1997b); MIDO problems are discussed in detail in chap-

ter 9, and the batch process development example from chapter 4 is formulated as

a mixed time invariant integer dynamic optimization problem to demonstrate this

point.

As discussed in chapter 9, the reason that well known decomposition approaches

used for mixed-integer nonlinear programming (MINLP) problems cannot be ex-

tended to the MIDO problem is that valid constraints for the Master problem cannot

be derived from the mathematical form of the primal problem (the dynamic optimiza-

tion). Therefore, the key to deriving a rigorous decomposition strategy for the MIDO

problem is the ability to formulate a model that defines rigorous (and useful) lower
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bounds on the objective function, that overestimates the space of feasible designs,

and that can be solved to guaranteed global optimality. However, we have already

mentioned that the screening models provide valid lower bounds for the solution of

the MIDO representation of the batch process development problem. Thus, the same

decomposition strategy can be applied to other classes of mixed time invariant inte-

ger dynamic optimization problems, provided that suitable screening models can be

derived.

The decomposition algorithm requires models at two very different levels of detail.

The screening models are algebraic models that contain limits of the performance of

the dynamic process and address the discrete design decisions. On the other hand,

the detailed dynamic models of the processing tasks employed within the performance

subproblem represent the processing tradeoffs as accurately as possible. As might be

expected, the tools and expertise needed to address each of these problems also differs.

The subproblems within this algorithm motivate the parts of this thesis.

Engineering insight and combinatorial optimization are required for the formu-

lation and solution of the screening models. The formulation and solution of these

models is the focus of the chapters contained in the first part of this thesis. On the

other hand, the solution of the performance subproblem requires robust techniques for

the solution of hybrid discrete/continuous differential-algebraic systems. The advent

of sophisticated equation based modeling environments (Barton, 1992) coupled with

the increasing availability of libraries of dynamic models facilitate the definition of the

performance subproblem, but the requirement that these models must be solved accu-

rately, efficiently, and robustly places severe expectations on the numerical integration

techniques. The application of state-of-the-art hybrid discrete/continuous simulation

languages to the simulation and optimization of batch reaction and distillation tasks

has uncovered several previously unreported numerical problems encountered during

solution of the initial value problems (IVP) required for both dynamic simulation and

optimization. Part 2 of this thesis identifies and mitigates some of these numerical

problems, improving both the robustness and efficiency of the numerical integration

code. These improvements become particularly important when solving dynamic op-



timization problems, since the integration code must be robust enough to deal with

the automated manipulation of control profiles without user intervention.

1.6 Numerical Issues in the Detailed Simulation of

Batch Processes

As has been recognized for some time (Fruit et al., 1974), batch processes are charac-

terized by both discrete and continuous dynamic behavior. While phenomena such as

the mass, momentum, and energy balances can be described by continuous dynamic

models, the control actions required to drive these models through the scheduled op-

eration of the processing tasks impose a set of discrete changes. Discrete changes also

arise naturally due to physical changes such as the appearance and disappearance of

phases. Thus, combined discrete/continuous dynamic models are required to repre-

sent the detailed behavior of batch processes. Any suitable simulation environment

must provide facilities to represent both aspects of the behavior and provide robust

techniques for the solution of the resulting models.

The development of simulation methods to address batch processes has evolved

along similar lines to general techniques for combined discrete/continuous simula-

tion. The initial tools developed for the simulation of batch processes (Fruit et al.,

1974; Joglekar and Reklaitis, 1984; Czulek, 1988) augmented discrete event simula-

tors (Pritsker and Hurst, 1973; Pritsker, 1986; Sim, 1975) with limited continuous

dynamic modeling capabilities, usually in the form of models for specific processing

steps. On the other hand, more recent developments have added discrete event ca-

pabilities to sophisticated continuous dynamic modeling languages such as Speedup

(AspenTech, 1993) and DYNSIM (Serensen et al., 1991). Barton (1994) provides

a review of these technologies. While the former class has proven to be a useful

complement for production planning and scheduling tools that employ more abstract

models, extension to process development problems has proven problematic, even by

people who have touted the benefits of such tools (Terry et al., 1989).



For several reasons we feel that the detailed modeling and optimization of batch

processes required for batch process development necessitates the use of sophisticated

dynamic modeling environments augmented with discrete capabilities (e.g., ABA-

CUSS (Barton, 1992)). The modeling environment decouples the description of the

model describing the behavior of the physico-chemical transitions occurring within

the equipment units from the sequence of control actions imposed on the process. Re-

gardless of the nominal mode of operation, only one model of the physical description

of the system needs to be developed. Processing operations are described by deriving

schedules comprised of task entities to represent the external actions applied to the

system. This decomposition into the model of physical behavior and the schedule

of external actions allows a given physical model to be reused under many different

operating scenarios. The discrete attributes are represented by changes to the func-

tional form of the system of differential-algebraic equations describing the continuous

dynamic behavior. This decomposition facilitates the modeling of semi-batch, semi-

continuous, and continuous units along with those operating in a batch mode within

a single environment. It also permits the modeling of processes in which the integrity

of batches is not maintained.

These environments permit individual tasks to be simulated in isolation, but more

importantly, they permit detailed analysis of the dynamic interactions between pro-

cessing tasks, as demonstrated by several examples reported in the literature (von

Watzdorf et al., 1994; Winkel et al., 1995). In particular, modeling the entire batch

process permits a systems approach to the process design. System simulation is re-

quired to assess the process alternatives considered during the design of integrated

batch processes, especially those processes containing recycles of material from one

batch to another. For example, batch processes designed for pollution prevention may

recycle cuts from a batch column to an upstream reaction task (Ahmad and Barton,

1994). System simulation is also required to optimize integrated processes in which

processing tradeoffs between upstream and downstream tasks are exploited, such as

those considered by Charalambides (1996) and those considered within this thesis.

The dynamic interactions between processing steps can be as simple as a model of a



reaction vessel with an overhead condenser, yet they may complex enough to consider

an entire batch process in which not only the main processing steps are considered,

but also the detailed dynamic interactions between different equipment units, the in-

terconnecting piping, valves, and pumps are modeled. Thus, the environment permits

a convenient framework in which to model and evaluate the operating procedures that

will be carried out by the plant operators and control system.

Combined discrete/continuous modeling environments also provide the flexibility

required to model the batch process at an appropriate level of detail. Models are

constructed from the equations representing the physical behavior of interest. Simple

models are then combined in a hierarchical fashion to construct models of more com-

plex phenomena. As demonstrated by Allgor et al. (1996), this modeling flexibility

is required for the scale-up of a batch process from the laboratory to manufacturing

equipment. For example, the heat transfer equipment and geometry of the manufac-

turing vessels may dictate the feasibility of proposed operating policies. Thus, a basic

model of the processing behavior must be easily adapted to suit the performance of

tasks in specific items of equipment and to model tasks that may not be available

from a standard library of operations. For example, batch distillation simulations

can be posed using models of varying complexity that can be tailored to represent

the specific type of heat transfer equipment, control system, and column configura-

tion (e.g., rectifier, stripper, or middle vessel (Davidyan et al., 1994)) that exist in

the actual manufacturing facility. ABACUSS simplifies the maintenance of models

at different levels of detail through the use of model inheritance, permitting a basic

model of the physical behavior to be refined to suit a particular item of equipment

(Barton, 1992). Modeling flexibility is also required for a quite different reason during

the development of batch processes. In many cases, a limited amount of information

is available at the start of the development process. Thus, the models of both the

physical properties and the behavior of the system may be quite simple at the start

of the development process. For instance, only mass balances and crude approxi-

mations of the processing times of the tasks may be required at the initial stage of

the design. As more information becomes available, more detailed models may be



employed. Thus, each of the basic processing steps in a manufacturing process may

be represented by a set of models, varying in the level of detail, before the design

is completed. Furthermore, it may not be possible or cost effective to obtain data

(VLE, reaction kinetics, etc.) that may be required for the application of the most

detailed models. Therefore, the modeling environment must provide the flexibility

to combine detailed and simple models not only during different stages of the model

development, but also during a particular simulation experiment.

Combined discrete/continuous modeling environments such as ABACUSS meet

all the requirements outlined above, and we believe that they are the only technology

available that is suited to address the detailed modeling of general batch processes.

Furthermore, the equation-based representation of the models is well-suited to the ap-

plication of dynamic optimization techniques. These environments incorporate useful

features from the standpoint of model development and flexibility, but they require

knowledgeable users to take full advantage of their capabilities because proper model

construction and specification of a correct simulation experiment are both nontrivial

tasks. Not only are features to analyze the index of the DAEs (Feehery and Barton,

1995) and to assist with the specification of initial conditions (AspenTech, 1993) re-

quired, but also facilities to analyze the structure and degrees of freedom during the

model development would be useful. However, the demands placed on the users of

such systems pales in comparison to the expectations placed on the numerical codes

employed to solve these generic combined discrete/continuous problems. The model-

ing environments draw their flexibility from the separation between the description of

the model and the numerical techniques employed to solve the simulation experiments,

which is precisely what places severe demands on the numerical solution techniques.

The numerical analysis portion of this thesis has grown out of the need to improve

the accuracy, efficiency, and robustness of the numerical procedures used to solve the

discrete/continuous dynamic models of the batch processing tasks required for the

design of detailed operating policies.

Using ABACUSS to simulate the batch distillation of wide-boiling azeotropic

mixtures has uncovered some previously unreported numerical difficulties that are



described in chapter 7. We have determined that the problems observed indicate a

breakdown in the integrator's error control strategy, demonstrating that the poten-

tial exists for inaccurate results to be obtained without any warnings issued by the

integration code. This research identified the source of the numerical difficulties as

an ill-conditioned corrector matrix. We have developed a strategy to guarantee the

accuracy of the solution to the mathematical model in spite of the fact that the com-

putations are performed on machines of finite precision. Chapter 7 derives a strategy

that automatically determines the optimal scaling the variables and equations of the

models during the integration. This reduces the effect of ill-conditioned models and

provides the modeler the freedom to work with a convenient set of units when writ-

ing the models. When used in conjunction with automatic differentiation techniques,

it permits the automatic determination of the effects of the rounding error on the

solution of the corrector iteration. This allows the integration code to automati-

cally detect simulations in which the potential exists for the integrator's error control

procedure to break down.

Given the limited time available for process development, efficient solution tech-

niques are required for integration and dynamic optimization of detailed process mod-

els. Therefore, we have improved the efficiency of the numerical integration techniques

available for the type of models in which we are interested. The well known differential

algebraic equation code DASSL (Petzold, 1982a) was tailored for large sparse unstruc-

tured systems as part of this research. The resulting code has been called DSL48S

(Feehery et al., 1997). The code employs the MA48 linear algebra routines, works

with a combined analytical and numerical Jacobian matrix, and has incorporated the

automated scaling algorithm in chapter 7. The code also contains an efficient method

for sensitivity analysis that was developed by Feehery and Barton (1997). In addi-

tion, the code employs a new method to start the backward differentiation formula

integration codes efficiently, an important feature when solving discrete/continuous

systems. This method is described in chapter 8. The method consists of two main

steps. First, the time derivatives of the algebraic variables and the second order time

derivatives of the differential variables are determined at the initial time. We define



criteria for the optimal initial step size, and demonstrate that the information pro-

vided by the second order time derivatives of the differential variables can be used

to estimate this optimal initial step length. The second step of the procedure si-

multaneously determines the optimal initial step length and the values of the system

variables at this step length by augmenting the system of equations solved during

the corrector iteration. This method improves the efficiency of the integration code

during the initial phase of the integration and substantially reduces the number of

convergence and truncation error failures encountered.

1.7 Outline of Thesis

The thesis is divided into two parts. Each part focuses on techniques for the for-

mulation and solution of one of the two subproblems involved in the decomposition

approach introduced above. The first part emphasizes the formulation and applica-

tion of the screening models to batch process development. The second part focuses

on improvements to the numerical solution techniques employed for the integration

of the discrete/continuous dynamic models.

The first part of this thesis focuses on the derivation and application of screening

models for batch process development. Chapter 2 reviews the previous research that

has addressed batch process development and motivates the development of screening

models. Section 2.4 describes the decomposition algorithm for batch process devel-

opment in more detail. Chapter 3 develops screening models for networks of batch

reaction and distillation tasks. We prove the bounding properties of the models for

the types of processes considered. We show that these models can be cast as mixed-

integer linear programming problems. Chapters 4 and 5 demonstrate the application

of the screening models to case studies. The case studies also show how reaction

targets can be derived and incorporated into the models.

The second part of this thesis improves the numerical solution procedures for the

hybrid discrete/continuous initial value problems. Chapter 6 illustrates the numer-

ical difficulties that motivated this portion of the research and reviews some of the



mathematical background required to understand the subsequent chapters. Chap-

ter 7 proves that the observed numerical difficulties are caused by an ill-conditioned

iteration matrix, and explains how the integration codes error control strategy can

permit the generation of 'spikes.' Chapter 7 also derives an automated technique to

scale the iteration matrix, mitigating the effects of ill-conditioning, and proves that

this scaling comes very close to the optimal scaling for the sparse unstructured ma-

trices with which we are concerned. Chapter 8 derives a novel and efficient method

for starting the DAE integration codes employed for the solution of the IVPs en-

countered during hybrid discrete/continuous simulation and optimization. Chapter 9

defines mixed time invariant integer dynamic optimization problems and illustrates

that conventional MINLP algorithms cannot be extended to this class of problems.

However, the decomposition strategy for batch process development can be extended

to this class of problems provided that suitable screening models can be derived. We

prove the correctness of the decomposition algorithm, and illustrate that batch pro-

cess development can be cast as mixed time invariant integer dynamic optimization

problem.





Chapter 2

Batch Process Development

Batch process development is encountered frequently in the specialty chemical and

synthetic pharmaceutical industries. Process development requires the design of a

manufacturing process for a new or modified product in an existing manufacturing

facility. The engineer's ability to design an efficient batch process that fits into the

available equipment rapidly is critical to the success of many specialty chemical man-

ufacturers (Allgor et al., 1996).

Traditionally, changes to the process recipe have not been considered, and a se-

quential design procedure has been employed (see figure 1-1). The process synthesis

and operating decisions are made at the bench and/or pilot plant scale, and then

the engineer allocates and schedules the equipment in the manufacturing facility for

production. Recently, researchers have considered employing mathematical models

of the processing tasks to evaluate the impact of recipe modifications during process

development. Their research, reviewed in the next section, highlights the benefits

provided by performing recipe modifications in conjunction with the allocation of

plant resources. However, none of this research considers rigorous methods for the si-

multaneous optimization of the discrete and continuous decisions encountered during

batch process development. This thesis addresses this deficiency.

The screening formulations derived in this work address the discrete and continu-

ous decisions encountered during process development simultaneously. The proposed

screening formulations provide bounds on the best attainable process design by opti-



mizing the process recipe and equipment allocation concurrently. The resulting mod-

els optimize the processing structure and the allocation of plant resources in detail by

replacing the detailed dynamic performance models with targeting models guaranteed

to provide lower bounds on the design cost and to overestimate the feasible region of

operation. Furthermore, these models can be solved with reasonable computational

effort to guaranteed global optimality. The screening formulations are incorporated

within a design methodology that permits detailed treatment of the continuous oper-

ating decisions as well, allowing an engineer to perform optimal batch process devel-

opment. The approach introduces a novel way in which performance bounds based

on engineering insight can be combined with detailed discrete/continuous models of

process dynamics and sophisticated dynamic optimization algorithms to yield a sys-

tematic methodology for batch process development. The procedure considers both

the discrete and continuous design decisions and incorporates some elements of the

process synthesis during the process design. Chapter 3 describes how the desired

bounding property is preserved during the formulation of the screening models. The

rigorous lower bounds provided by these models also enables a rigorous decomposition

algorithm for optimal batch process development to be derived. This algorithm, which

is discussed in section 2.4, represents the first rigorous and systematic methodology

for the optimization of these processes.

2.1 Previous Research

Allgor et al. (1996) clearly demonstrated the industrial importance of batch process

development, and stressed the need to develop methodologies to address process de-

velopment in a systematic fashion. The ability to modify the process recipe in order

to improve the performance or ensure the feasibility of the processing tasks is critical

to the success of the design obtained. In fact, Rippin (1993) highlighted both the

importance and difficulty of varying task performance during batch process design,

and chronicled the lack of attention that the problem has received. Despite its impor-

tance, only a few researchers have examined systematic methods to incorporate recipe



modifications during the design of a batch process, and to date, no one has proposed

techniques to consider the discrete and dynamic operating decisions simultaneously.

We will examine the existing research in two categories. First we briefly examine the

research that considers the recipe fixed a priori, and highlight what elements of this

research can be applied to the development problem. Next, we assess the applicability

of the research that has considered recipe modifications to the process development

problem.

Partitioning the research into these two categories follows naturally from the se-

quential approach often used by industrial manufacturing concerns to develop a new

process. The typical sequence of events is shown in figure 1-1. First, a new or mod-

ified product is discovered in the laboratory. Next, improvements in the chemical

synthesis and product purification are performed at the bench scale before present-

ing the engineers with a process recipe. The engineers may then decide to test the

operating policies they receive for feasibility and make minor modifications based on

experience or other analysis tools; for instance, suitable reflux ratios for the columns

could be determined using Batchfrac (AspenTech, 1991). Once the operating policies

are satisfactory, the final process recipe is implemented in the production facility on

the available equipment in the most cost effective manner. Existing research focuses

on one of the steps in this sequential procedure.

As previously mentioned, partitioning the design decisions into two sets, those

defining the operating policies of the tasks and those defining the allocation of the

facility's resources, decomposes process development into the performance and struc-

ture subproblems. The existing research can only address variations on either one

of these two subproblems. At best, ad hoc iterations (shown in figure 1-2) between

the two subproblems have been performed. The previous research in this field will be

discussed according to its relation with the structure and performance subproblems,

and strategies designed to couple the decisions in the two subproblems will also be

covered.



2.1.1 Design with Fixed Recipes

Most of the research related to batch process design considers the recipe to be fixed.

Thus, aspects of this research may apply to the structure subproblem encountered

during process development. This research can be broadly classified into the batch

scheduling and plant design problems, and some of the techniques used for each prob-

lem can benefit process development.

In the typical batch plant design formulation, the installation cost of plant re-

sources is minimized subject to a fixed set of production requirements and fixed

recipes. This deterministic design problem was first addressed by Ketner (1960) and

later by Loonkar and Robinson (1970; 1972). The original formulations of the batch

plant design problem considered only simple operating scenarios. Subsequent research

has considered more complicated scheduling aspects, design of multiproduct and mul-

tipurpose plants, uncertainty in the production demands and process performance,

and the selection of equipment in discrete, rather than continuous, sizes (Rippin,

1993). The progress on this problem has been reviewed by Reklaitis (1989) and Rip-

pin (1993). The growth in the list of publications since Rippin's previous review

(1983a) demonstrates that a significant amount of research has been conducted over

the last ten years. However, progress in these areas has been incremental, and to this

date a rigorous formulation of the problem that accounts for all possible alternatives

has not been found; appendix D reviews this literature in more detail. Hence, in

his most recent review, Rippin (1993) characterized the progress in this research as

"filling in the holes." In addition, little effort has been devoted to questioning the

fundamental assumptions of the plant design problem. This is disappointing since

many of these assumptions severely limit the application of the technology. For in-

stance, only limited uncertainty in the production demands placed on the plant over

its lifetime have been considered, yet the life cycle of the products is usually far

shorter than the lifetime of the plant. Many products are subject to quickly chang-

ing markets or may be displaced by rapidly advancing technologies, so the products

that will be manufactured in the plant near the end of its lifetime are most probably



unknown at the time of its design. This fact has not been addressed in the litera-

ture, although organizations considering investment in a new multipurpose facility

are forced to confront this problem.

The batch plant design problem typically assumes that the products will be man-

ufactured in campaigns, either in single product campaigns, or mixed product cam-

paigns (Birewar and Grossmann, 1989) with either single or multiple production

routes (Faqir and Karimi, 1989; Faqir and Karimi, 1990). Since the products con-

sidered in the batch process development problem will also be manufactured in cam-

paigns, the scheduling and equipment allocation techniques created for batch plant

design can be applied to process development. In addition, the equipment allocation

and scheduling constraints developed for the plant design problem can handle some

of the complications that arise from implementing the process in an existing manu-

facturing facility. In particular, Knopf et al. (1982) introduced processing times that

depend on both the equipment item and the batch size, a necessity when dealing with

the recipe modifications considered in process development. In addition, the use of

an existing facility dictates that the equipment must be chosen from an inventory

of available items. The allocation constraints in this situation are similar to those

developed to address plant design when the equipment items are only available in

discrete sizes (Voudouris and Grossmann, 1992a).

Although the objectives of the plant design and the batch process development

problems are different, the constraints related to the allocation of equipment are very

similar because both problems address campaign manufacture. In many cases, the

plant design problem contains both discrete and continuous variables, but contains

no dynamic behavior. This permits the use of MILP and MINLP optimization pro-

cedures to solve the resulting plant design formulations. Heuristic, mathematical,

and hybrid optimization techniques have been applied to the solution of these for-

mulations. In most cases, the ability to solve the resulting optimization problem,

rather than the ability to pose the constraints, governs the complexity of the design

possibilities considered.

The batch process scheduling problem has also received a lot of attention in the



academic literature (Reklaitis, 1989; Reklaitis, 1991; Reklaitis, 1992; Pekny and Zent-

ner, 1993; Pantelides, 1993). Given a fixed set of demands and fixed process recipes,

the available plant resources are allocated in an optimal fashion over a given time

horizon. Initial approaches for the scheduling problem considered either flexible op-

erating scenarios using heuristic or approximate methods to optimize the operation or

found exact solutions under more restrictive operating configurations. The two major

challenges in the short term scheduling of batch plants is finding a mathematical rep-

resentation that permits fully general operating configurations, and finding efficient

solution techniques to solve the models. The former can be met by abstracting the

batch process as a state task network (Kondili et al., 1988; Kondili et al., 1993) or

resourced task network (Pantelides, 1993), uniformly discretizing the time domain,

and casting the problem as a mixed integer linear program using general discrete

time scheduling techniques (Papadimitriou and Steiglitz, 1982). The disadvantage

with these formulations is that the time discretization must be established prior to

the solution procedure so that all processing events start and end on a boundary be-

tween time intervals. This results in formulations with many discrete variables that

are difficult to solve. Advances in the solution methods for these problems have led to

tailored branch and bound procedures and tighter problem formulations that enable

some reasonably sized problems to be solved (Shah, 1992; Shah et al., 1993). Con-

tinuous time scheduling formulations, commonly employed in the operations research

community (Blazewics et al., 1991), can reduce the number of discrete variables re-

quired in batch scheduling problems (Xueya and Sargent, 1994; Pinto and Grossmann,

1995; Schilling and Pantelides, 1996), but they are not yet as robust as the discrete

time algorithms and still require partitioning of the time horizon into a number of

intervals that exceeds the number of events that occur over this time at the optimal

solution.

The flexible operating configurations afforded by the discrete time scheduling for-

mulations are more than is necessary for the processes considered in the batch process

development problem. Process development assumes that the products will be manu-

factured in campaigns, and every batch will follow the same path through the process-



ing equipment. Provided that batch size dependent processing times are taken into

account, short term scheduling techniques can be applied to the development problem,

but the difficulty in solving the resulting models is probably not warranted because

the modeling flexibility is not needed. However, the state task network representa-

tion of the process developed for the short term scheduling problems does provide a

convenient framework for defining the multistage optimal control problems that can

be used to optimize the operating policies for a given equipment configuration.

2.1.2 Design with Recipe Modifications

The objective of recipe modifications is to increase the process efficiency by exploiting

tradeoffs between the operating cost and the time profiles of key operating variables

and the values of key operating parameters. Recipe modifications have been consid-

ered as part of the plant design and process development problems. In both cases,

existing research addresses slight variations on the performance subproblem proposed

by Barrera (1990). The performance subproblem determines the optimal operating

policies for the processing tasks given a fixed allocation of plant resources and a

set of design constraints (product purity, limiting temperatures, pressures, etc.). For

example, a typical instance of the performance subproblem could be stated as follows:

A process consisting of a single reaction and distillation task has been

synthesized for the manufacture of a particular product; mathematical

models are available to predict the performance of the operating policies.

A 500 gallon stainless steel reactor has been dedicated to the reaction task,

and a 500 gallon packed distillation column with eight theoretical stages

has been assigned to the distillation task. Determine the reagent and

solvent feed policies for the reaction task, reflux policy for each distillation

cut, the time-averaged flows for any recycled material, and the location

of all the product and off cuts that minimize the per unit production cost

of the desired product.

The performance subproblem requires dynamic models of the processing tasks (as-

sumed in the example above), or the ability to evaluate the operating policies using
51



extensive experimentation. Further, it can be solved as a multistage dynamic opti-

mization problem provided that models are available and the control variables have

been selected (Charalambides et al., 1995a). For the results to be meaningful the

models must accurately represent the complicated dynamic behavior of the process-

ing tasks.

A large volume of research has addressed the optimization of isolated process-

ing tasks, particularly batch reactors and batch distillation columns (Rippin, 1983b;

Hatipoglu and Rippin, 1984; Cuthrell and Biegler, 1989; Diwekar, 1995; Sundaram

and Evans, 1993; Mujtaba and Macchietto, 1993). However, relatively little has been

published on the dynamic optimization of an entire batch process, in spite of the

fact that Barrera (1990) demonstrated that optimizing isolated unit operations can-

not take advantage of the significant tradeoffs that may exist between processing

operations. Both simple algebraic and detailed dynamic models have been employed

to predict the effects of recipe modifications on the performance of the entire pro-

cess, and both rigorous and ad hoc procedures have been used to solve the resulting

models. These approaches address the continuous decisions defining the operating

policies of the tasks, yet none are able to cope with the discrete decisions related to

the equipment allocation at the same time.

Algebraic Performance Models

Tricoire (1992) considered the planning and design of multiproduct batch polymer

processes. He argued that the detailed operating decisions could not be considered

during the design of the overall plant design, particularly for polymer processes in

which the temperature policy and initiator feed rate offer a huge number of possible

operating scenarios. He identified key parameters associated with the performance of

the tasks and selected these as the decision variables for the plant design, and provided

correlations to relate these variables to the size factor, batch size, and cycle time for

the tasks. The resulting design problem was solved using a simulated annealing

algorithm to improve the operation of the process. Improvements over designs in

which the operating conditions were fixed were gained through the application of



the procedure. His research demonstrates the benefits that can be obtained through

operating policy modifications, even when approximate models are employed.

Salomone and Iribarren (1992) demonstrate that some batch processing operations

can be approximated using algebraic models. Size factors and processing times are ex-

pressed as explicit posynomial functions of certain key operating parameters through

symbolic rearrangement of the algebraic model. Key operating parameters are se-

lected and manipulated to optimize a heuristic design target suggested by Yeh and

Reklaitis (1987). The size factors and processing time functions that optimize the tar-

get are then used as the data for the posynomial model for plant design formulated by

Grossmann and Sargent (1979). The resulting design incorporates operating decisions

and accounts for the interaction between task performance and plant scheduling, but

the operating parameters are determined before the plant design problem is solved.

Montagna et al. (1994) demonstrate that the optimization of the size factors and

cycle times can be conducted at the same time that the optimal unit sizes are de-

termined, and show that the optimal operating conditions differ for a given product

depending on whether it is produced in a dedicated facility or as one of a slate of

products manufactured in a multiproduct facility. They employ the algebraic models

used by Salomone and Iribarren (1992) and add estimates for the utility costs to the

objective. They embed the equations defining the size factors and cycle times as

constraints in the posynomial model for the optimal plant design, forming a general

(non-convex) nonlinear program. They assume that the discrete decisions relating

to the plant design, such as the number of equipment items in parallel, the storage

policy, and the task to stage assignment, are made either before the optimization is

undertaken or that they are determined in an outer optimization loop. They suggest

that heuristic procedures (Tan et al., 1993) may be used to aid in the calculation of

the optimal values for the discrete decisions.

These two approaches have several drawbacks. Even though these models have

been solved systematically, the usefulness of the resulting solution is called into ques-

tion because the complex time-dependent behavior of the processing tasks has been

replaced with algebraic approximations. In addition, the symbolic rearrangement



required to generate explicit expressions for the size factors may not be possible.

Although the Montagna et al. (1994) formulation does not require symbolic rear-

rangement, the optimization is likely to suffer from the nonconvexities in the feasible

region. Furthermore, if the discrete decisions are made in an outer optimization

loop, well known MINLP decomposition techniques cannot be employed because the

nonlinear models are nonconvex (Sahinidis and Grossmann, 1991; Bagajewicz and

Manousiouthakis, 1991). Thus, the outer loop iteration will either be entirely heuris-

tic or will be doomed to total enumeration of the discrete space.

Detailed Dynamic Performance Models

Barrera (1989; 1990) demonstrated that detailed dynamic models could be employed

to optimize the performance of a batch process. A set of operating parameters were

identified as the decision variables, and the optimization of the process performance

for a given allocation of equipment was posed as a nonlinear program; the solution

of the dynamic models was considered as part of the objective function evaluation

(essentially a control vector parameterization decomposition). A sequential quadratic

programming algorithm was used to solve the resulting problem. The processes exam-

ined contained no recycles, so dynamic models of the tasks were solved sequentially in

order to evaluate the process performance. Operating constraints related to product

purity and temperature were included as constraints in the NLP. Barrera included

this performance optimization as part of an ad hoc iterative procedure to determine

the operating policies and equipment allocation required for process development.

Wilson (1987) determined the optimal performance of a reactive batch distilla-

tion process. The process consisted of a reaction step and a separation step that

could be conducted in the same vessel. Simultaneous reaction and separation allowed

purification of the product during the reaction step which enhanced the reaction per-

formance. Both the capital cost of the reactive distillation unit and the operating

and raw material costs of the process were considered. The process was modeled

by a set of differential equations which were solved using a Runga-Kutta integrator.

The optimal operating conditions and column size were determined through an ad



hoc manual search over the key variables. His work demonstrates the benefits of

simulation during the design of both the process and the plant, but the simple, one-

unit process considered avoids the complications caused by the interactions between

different processing stages.

Salomone et al. (1994) extend their earlier work on the batch plant design problem

to enable the use of dynamic models. They developed an iterative algorithm which

utilizes dynamic models to calculate the parameters for the posynomial models used

to minimize the annualized investment and operating cost during equipment sizing.

The formulation results in a nonlinear program in which a subset of the operating

parameters are selected as the decision variables; the authors do not state what

procedure is used to update the decision variables or how the updates are determined.

During what would normally be a function evaluation, the DAE models of each task

are solved, and any material recycles are converged. It is assumed that product

specifications can be met at the assigned values of the decision variables. Next size

factors and expressions for the processing times are determined from the simulation

results using symbolic manipulation. With this information, the posynomial model

is solved to provide both the optimal equipment sizes and the value of the objective

function for these operating conditions. The iteration strategy they propose is very

similar to the process outside-structure inside (POSI)1 iteration proposed by Barrera

(1990); the structure subproblem used to optimize the equipment allocation within

process development has merely been replaced by the posynomial model used to select

the optimal equipment sizes for the plant design. The optimization they propose

cannot deal with values of the decision variables that are unable to satisfy the product

specifications, and the method cannot handle path constraints.

Bhatia and Biegler (1996) considered the design of a batch plant in which the

equipment sizes and the operating policies of the tasks were optimized using dynamic

optimization. They considered a sequence of processing tasks without material re-

cycles operating in either the zero-wait or unlimited intermediate storage mode of

operation. The tasks were modeled using simple differential algebraic models of the

1See figure 2-1.



tasks; for instance, they employed a shortcut distillation model based on the Fenske,

Underwood, and Gilliland correlations. The scheduling of the units is determined

by calculating the limiting batch size and cycle time of the processing trains. They

formulated the optimal process design as a dynamic optimization problem in which

the operating policies of the tasks and the equipment sizes were determined. The

problem was solved by transforming the dynamic optimization to an NLP through

orthogonal collocation on finite elements (Logsdon and Biegler, 1989). Their approach

demonstrates the ability to employ dynamic models directly within the optimization

procedure, but the size of the models employed does not reflect the level of detail

often required. Extension of the method to larger process models will depend on the

ability of the NLP code to handle large process models. In addition, application of

this method requires the user to be able to provide enough finite elements to maintain

the accuracy of the solution of the DAEs, and it is not clear how to determine the re-

quired number of elements beforehand. See section 6.3.2 for a discussion of the merits

and drawbacks of the collocation approach for the solution of dynamic optimization

problems. Furthermore, incorporating discrete decisions into their formulation leads

to the formation of a large nonconvex MINLP.

Charalambides et al. (1993) proposed to determine the optimal operating policies

and equipment sizes via the solution of a multistage dynamic optimization problem

employing detailed differential-algebraic models of the tasks. They demonstrated that

a control vector parameterization approach (Kraft, 1985; Vassiliadis, 1993) could be

used to convert the dynamic optimization to a finite dimensional problem, allowing

the application of conventional gradient based nonlinear programming techniques. In

addition, representing the process as a state task network and defining the material

states in terms of time-invariant optimization parameters removes all direct interac-

tions between the processing tasks. The decoupled task models and corresponding

sensitivity equations can be integrated in isolation, permitting parallelization of the

time-consuming integrations. Charalambides et al. (1995a; 1995b; 1996) applied this

technique to several examples, demonstrating that the formulations could be solved

in times that are reasonable for design calculations. However, their technique is lim-



ited to continuous dynamic models and cannot employ the hybrid discrete/continuous

dynamic models that we have argued are required to represent many batch process

operations, particularly those in which phases appear and disappear during the op-

eration of the task. Extending their technique requires the ability to transfer the

parametric sensitivities across implicit discontinuities, as formulated by Barton (Bar-

ton, 1996).

2.1.3 Coupling the Structure and Performance Subproblems

A. seemingly natural extension of the work of Montagna et al. (1994) would employ

the algebraic performance models within a mixed-integer nonlinear programming

(MINLP) framework. Unfortunately, nonconvexities in the model make the appli-

cation of conventional MINLP techniques invalid (Sahinidis and Grossmann, 1991;

Bagajewicz and Manousiouthakis, 1991), since the bounding properties of the re-

laxed problem cannot be achieved. While an analogy between these algebraic models

and the screening models we present is evident, the models of Montagna et al. (1994)

do not possess provable bounding properties that can be exploited to prune discrete

alternatives.

In contrast, Barrera proposed a method to solve the process development problem

with detailed dynamic models via a decomposition approach. His approach requires

iterating between the performance and structure subproblems, fixing the variables

used in one subproblem when the other subproblem is solved; the performance is

optimized for a given structure, and the structure is optimized for fixed operating

policies. Barrera used an SQP algorithm to solve the performance subproblem (solv-

ing the DAEs during each function evaluation), a local search method to solve the

structure subproblem, and an ad-hoc procedure to iterate between the two subprob-

lems. Using this procedure he clearly demonstrated the benefits that could be gained

by considering the optimization of both resource allocation and operating policies

simultaneously. The strategy is implemented using a nested iteration, and the two

nesting strategies shown in figure 2-1 were examined. He found that the choice of nest-

ing strategy had a significant impact on the solution time because the performance



subproblem took far longer to solve than the structure subproblem. Therefore, the

POSI strategy, in which the performance subproblem is solved in the outer loop and

the faster local search algorithm is employed on the inner loop, was found to be

more efficient. The outer iteration loop was continued until little improvement in the

objective function was observed.
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Figure 2-1: The two nesting strategies for the performance and structure subproblems
investigated by Barrera (1990).

Barrera's approach highlights the need to improve the strategies to iterate be-

tween the two subproblems when a decomposition approach is employed; in partic-

ular, discrete alternatives cannot be eliminated from consideration, because neither

subproblem provides a lower bound on the overall objective. More importantly, a

metric for assessing the potential benefits of continued optimization is sorely needed.

Charalambides et al. (1993) also postulated a multistage dynamic optimization

problem containing integer variables for the solution of the batch plant design prob-



lem. They noted that applying control vector parameterization and treating the

integer variables as time-invariant parameters results in a nonconvex MINLP opti-

mization problem. No solution procedures or examples with discrete decisions have

been presented in the literature to date.

2.2 Applying Screening Models to Process Devel-

opment

Screening models for process development yield a lower bound on the cost of manufac-

ture by considering changes to the process structure, the operation of the tasks, and

the allocation of equipment simultaneously. The models embody a convex underesti-

mate of the objective and a convex overestimate of the feasible region. The screening

models enable a simultaneous approach to the process development problem shown

in figure 2-2 that contrasts the sequential and iterative approaches shown in figures

1-1 and 1-2. The drawback is that the models do not consider the detailed operation

of the tasks, so the model solutions do not correspond to designs that can be imple-

mented directly. Instead, the screening model provides targets for the detailed design

of the actual process. These screening models are also capable of performing aspects

of the process synthesis. In addition, the screening model can be used to enhance

the application of existing approaches, or as the basis for a rigorous decomposition

strategy to address the process development problem as a mixed-integer dynamic

optimization problem (Allgor and Barton, 1997b).

The lower bounding property possessed by these models motivates the term 'screen-

ing model', since the bound can be used to prune or screen discrete alternatives that

cannot lead to the optimal solution, avoiding the need for total enumeration of the

discrete decision space. For example, Daichendt and Grossmann (1994a; 1994b) em-

ployed screening models to prune the branch and bound tree in order to improve the

efficiency of a MINLP algorithm used for heat exchanger network optimization. For

batch process development, screening models can be used in a similar fashion. Given
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Figure 2-2: Schematic of the information provided to and produced by the screening
formulations.

an initial 'base case' design, these formulations can be used to prune all discrete al-
ternatives with greater cost than the base case, yielding a set of candidate structures
that offer the potential for improved performance. The performance subproblem can
then be solved for each of these candidate discrete alternatives using dynamic opti-
mization. Such a procedure is capable of determining the best design that can be
found using the available dynamic optimization algorithms, without performing to-
tal enumeration of the discrete alternatives. However, global optimality cannot be
guaranteed because the dynamic optimization is not guaranteed to find the global
optimum; in fact, most dynamic optimization problems exhibit multi-modal behavior
almost pathologically (Banga and Seider, 1995).

The design targets provided by the screening formulations can also be used to en-
hance iterative approaches for batch process development. Since Barrera's approach

is strictly a local search technique, the resulting solution could be far from the global

optimum, yet the approach has no way of measuring or estimating the distance to

the optimum. On the other hand, the solution of the screening model provides an
underestimate of the global optimum that can be used to estimate the quality of the
design obtained by the iterative procedure and to assess the potential benefits of con-
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tinued optimization. If significant improvements are possible, an iterative procedure

can be repeated, starting from a different initial point. The solution of the screening

model provides a reasonable candidate for the initial point of continued optimization

using the iterative procedure.

Screening models also facilitate the application of multistage dynamic optimiza-

tion algorithms to the optimization of the operating policies for a batch manufacturing

process performed in dedicated equipment items. Multistage dynamic optimization

decouples the tasks using the material states (Charalambides et al., 1993), yet it

requires a priori definition of the state task network (STN), initial guesses for the

states (treated as time invariant parameters), and the definition and initialization of

the admissible functions for the control variables. The solution of a screening model

facilitates definition and initialization of all these quantities.

Dynamic optimization requires definition of the STN before the optimization is

attempted. This implies that the number of states included in the process and the

way in which they are connected to the tasks must be defined beforehand, defining

the recycle structure of the process. For example, each distillation cut, including off

cuts, requires a separate state node in the STN, so the number of cuts permitted for

the distillation tasks is also represented in the definition of the STN. The solution of

the screening model defines the number of cuts that would be required if perfect splits

could be achieved and a feasible recycle structure utilizing the sharp splits. The actual

number of cuts provided in the STN must account for off cuts as well, but should

reflect the information gathered from the solution of the screening model. Embedding

redundant process structures within the STN, such as unnecessary distillation cuts,
may create several problems for the dynamic optimization algorithm. First, this

will increase the multi-modal character of the optimization problem. For example,

consider the dynamic optimization of the solution of the screening model for the first

superstructure of the case study considered in chapter 4 shown in figure 4-3. Since

the system contains six components, we would expect that we might require five

overhead distillation cuts if we defined a general state task network for the process.

However, the solution of the screening model indicates that only two overhead cuts



are required for the first distillation task and only one for the second. Thus, we can

pose a STN for the dynamic optimization based on the information collected from

the solution of the screening model that contains fewer overhead distillation cuts such

as that shown in figure 2-5.2 Note that we could also augment the STN shown in

figure 2-5 to include off cuts. If we had included five overhead cuts with each of

the distillation tasks and permitted each of these cuts to be sent to any of the other

tasks, we would have a superstructure for the dynamic optimization that is highly

redundant. If only two cuts are required, but five are allowed, then the optimal

solution could contain any two of the four cuts (or could take fractions of the two

required cuts). Similarly, incorporating tasks that are not performed in the STN and

relying upon the optimization to remove them by setting the flow rates into the task

to zero may cause problems for the optimization. The model of the task may not

be defined in the absence of material, and even if no material is present, sensitivities

are still required for the controls related to these tasks. Including unnecessary tasks

can also lead to redundancy. For instance if two reaction tasks are allowed but only

one is required, then the active reaction task could be either the first or the second

reaction task. Progress in dynamic optimization techniques may help mitigate these

difficulties, but current algorithms are likely to be more reliable if they are presented

with a reasonable problem and given an initial guess in the vicinity of a unique local

optima.

Since, in general, the dynamic optimization can find a local optimum at best,

the starting point will affect the solution that is obtained. Successful application

of multistage dynamic optimization techniques requires good initial guesses for the

material states and for the control profiles at the very least. Initial guesses for the

intermediate material states can be assigned using the solution of the cyclic steady

state mass balances provided by the screening model. The screening model will

provide compositions of the intermediate states that are consistent with the structure

of the STN and expected to be near the optimal values. Since the performance of the

2 The tanks represent the state nodes of the STN, and they are characterized by time invariant
optimization parameters.



distillation changes qualitatively depending on the location of the feed with respect

to the batch distillation boundaries, the optimization will almost certainly have great

difficulty crossing from one distillation region to another. For example, consider a feed

located in batch distillation region three of figure 4-1. If we expect the first cut from

the distillation to contain mostly B and possibly some A (the lightest components in

the system that both happen to be reactants), we may want to recycle this cut to

the reactor. We would construct a STN that embeds this possibility, and we provide

an initial guess to the dynamic optimization for the composition of this state that

is mostly B. However, if the dynamic optimization moves the feed to the distillation

column into region II, the first cut from the column will have a composition close

to that of P-W1 instead of B. This will cause a large violation of the optimization

constraints that equate the composition of the recycled distillation cut to the feed

to the reaction task. Thus, we need to consider the active batch distillation region

when constructing the STN, even though the optimization could theoretically move

from one region to another. More importantly, this observation demonstrates that

the structure of the STN must be consistent with the initial guess provided for the

compositions. Starting with good initial values for the parameters is also likely to

decrease the time required to obtain a solution of the dynamic optimization. However,

the dynamic optimization will contain more variables than the screening models,

so a strategy to approximate the quantities not explicitly defined by the screening

formulation will be required.

Many of the benefits accruing from the use of screening models in conjunction

with dynamic optimization are due to the synthesis features of the screening formu-

lations. The dynamic optimization only addresses the design aspects of the process

recipe, yet the recipe comprises both design and synthesis information. Screening

models have the ability to address aspects of the process synthesis not considered by

previous batch process design procedures. Although the reaction pathways and pro-

cessing steps employed at the bench scale need not remain fixed during the process

development, in many cases sufficient information is not available to predict the effect

of synthesis changes without resorting to detailed bench scale experimentation. For



instance, screening models require reaction stoichiometry and kinetic information,

so the models can choose between several alternative reaction pathways embedded

within the superstructure, but could not invent new pathways. Similarly, decisions in-

volving the selection of reagents and solvents from a list of candidates (see Modi et al.

(1996) for example) can be determined during the solution of the screening model.

The superstructure provided by the screening model for reaction/distillation networks

allows for the appearance and disappearance of both reaction and distillation tasks.

Thus, the screening model defines the choice of reactants and solvents for the process,

selects the tasks that will be performed, and defines the recycle structure for the pro-

cess - tasks that are traditionally considered the domain of the process synthesis. In

addition, the screening models can distinguish between different process structures.

This ability is illustrated by the case studies considered in chapters 4 and 5; in both

cases the screening model selects a processing structure that differs from the process

structure employed by the chemist at the bench scale.

Screening models also enable the derivation of a rigorous algorithm to address the

mixed-integer dynamic optimization formulation of the batch process development

problem. The lower bound provided by the screening model is the key to generating

an iteration that can rigorously prune portions of the discrete space. A rigorous iter-

ation procedure that guarantees improvement of the solution and potentially avoids

explicit enumeration of the entire discrete decision space is derived by iterating be-

tween the screening model and dynamic optimization of the operating policies (Allgor

and Barton, 1997b); this is discussed in detail in section 2.4 and in chapter 9.

2.3 Scope of Development Problems Considered

The general form of the batch process development problem is too complicated to

propose a systematic model-based solution procedure at present. For example, dy-

namic models for batch reaction and distillation tasks are readily available, but for

many processes, especially those involving biological transformations or other unit

operations most commonly encountered in batch processes (e.g., crystallization, dry-



ing, extraction), dynamic models capable of accurately predicting the performance of

the task in terms of the operating variables are not yet available. In addition, the

interactions between the processing operations and the manufacturing facility require

that fairly detailed information about the plant is provided.

Therefore, this thesis focuses on a subset of these problems that can benefit from

detailed modeling of the tasks. Future research may allow some of the following

restrictions to be relaxed:

* Only unit operations that can be modeled with state of the art process modeling

technology will be considered. This implies that only limited effects of scale can

be considered. In fact, the screening models further restrict the class of processes

considered to networks of reaction and distillation tasks.

* Sufficient experimental and physical property data is available, or can be ob-

tained and/or estimated to describe the system to the required level accuracy.

* Products will be manufactured in campaigns.

* Although it is an important issue, uncertainty in the model parameters will

not be considered explicitly in the design; however, sensitivity studies can be

conducted.

Since the design of the process defines the interactions between the recipe and

the equipment, we examine the way in which both the process recipe and the manu-

facturing facility are represented for the problems and case studies considered within

this research.

The development problem considered within this research considers manufacture

within an existing manufacturing facility. Since the plant already exists, we merely

need to find a representation that provides sufficient detail for the engineer to ascertain

the feasibility of proposed designs. The notion of a plant superstructure will be used to

represent the processing facility. The superstructure consists of the equipment items,

utilities, valves and interconnecting piping, and plant instrumentation available within

an existing facility.



The process recipe, on the other hand, requires quite a different representation.

The process can be thought of as a sequence of processing tasks and operations which

transform the raw materials into desired products and waste materials. A powerful

representation of this is provided by the State Task Network (Kondili et al., 1988). Al-

though the state task network has been most frequently associated with discrete time

batch scheduling formulations, it is a general representation for the process recipes

that is particularly appropriate for the purposes of process development. The STN

provides a graphical representation of the process. It is a directed graph composed of

two types of nodes - state nodes and task nodes. The task nodes correspond to pro-

cessing tasks and are just like the nodes in a continuous process flowsheet. However,

in the STN the task nodes are not associated with a particular item of equipment.

The state nodes represent material (e.g., raw materials, intermediates, and products)

in a specific thermodynamic state. Every arc in the digraph connects a node of one

type, state or task, to a node of the other. The networks can be arranged in a gen-

eral fashion, but if two arcs are incident upon the same state node, they must carry

material in exactly the same thermodynamic state. The STN provides a convenient

framework in which to express the equipment assignment constraints (i.e., schedul-

ing). Moreover, the STN provides a general abstract representation of the recipe that

can be used to describe the process in terms of parameters that can be determined by

automatic search procedures such as dynamic optimization. Charalambides (1996)

devotes an entire chapter of his thesis to the representation of process recipes using

the state task network.

Figures 2-3 and 2-4 give examples of the representations employed for both the

plant and the process recipe, respectively. The figures depict a reaction task that

transforms two raw materials into an intermediate. The representation of the process

is not tied to particular equipment items, and the plant is not reserved for a particular

product. Note, however, that the superstructure of the plant limits the operating

procedures that may be considered for implementation of the process. For instance,

the first feed tank has a feed pump for each reactor, but the second tank has only

one feed pump. This limits the feed policies that may be considered. The operating
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Figure 2-3: Plant Superstructure for Batch Reactor

limitations imposed by the plant superstructure must be considered during the process

development.

Reactant_2

Figure 2-4: State Task Network for Batch Reaction

In general, alternative processing structures (i.e., the selection of batch distilla-

tion or an absorption desorption process (Charalambides, 1996)) can be represented

within the framework of the state task network. However, if alternative processing

structures are included, then the design methodology must be capable of deciding

between the alternatives. For this reason, two different abstractions for the structure

of the process recipe are used within the decomposition strategy for batch process

development described in the next section. The process superstructure employed by

" .



the screening models, which is a restricted form of state task network, provides al-

ternative processing configurations. The screening models are able to select between

these alternatives as demonstrated by the case studies in chapters 4 and 5. However,

current dynamic optimization techniques cannot select between alternative process-

ing configurations in most cases, so the state task networks representing the process

recipe employed during the application of the dynamic optimization do not contain

alternative processing structures.

The reason that the dynamic optimization techniques cannot choose between al-

ternative processing configurations is that different equations are typically required

to represent the processing operations when they are performed and when they are

idle. For example, when a distillation column is operating normally the holdup of

material on the trays and in the reboiler are nonzero and the intensive properties

of the system are well-defined. However, if the column remains idle, the holdup

of material is zero, and the intensive properties are not defined by the typical re-

lationships. Combined discrete/continuous modeling languages permit models that

consider these two cases using separate sets of equations to represent each situation,

switching between them when the appropriate conditions are satisfied (Barton, 1992).

However, current dynamic optimization methods cannot handle situations when the

model equations can change implicitly. Note that this situation may soon change;

in fact, recent theoretical advances defining the parametric sensitivities across im-

plicit discontinuities (i.e., state events) permit gradient based dynamic optimization

of general hybrid discrete/continuous models using control vector parameterization

(Barton, 1996). In either case, the dynamic optimization problems representing the

performance subproblem employ a STN that contains the subset of the processing

alternatives that has been defined by the solution of the screening model.

The flexibility with which equipment can be assigned to processing tasks within

the screening models is similar to the equipment configurations considered in the

batch process scheduling literature. The case studies assume that equipment units

are chosen from the inventory of equipment and reserved for the manufacture of the

desired product until the end of the campaign. At the start of the campaign, a



pipefitter makes the necessary connections between the processing equipment; these

connections remain in place until the campaign has been completed. The case stud-

ies demonstrate that the screening models can consider this level of flexibility with

respect to the equipment assignment. However, the equipment configurations avail-

able within most manufacturing facilities are far more restrictive that those that have

been allowed within the screening models. Although some toll manufacturers do in

fact operate in this fashion, it is only practical to connect vessels that are situated in

the same vicinity or vessels that can be easily moved. Many large specialty chemical

and pharmaceutical manufacturers have far more structured and restricted equipment

configurations. The processing equipment within their facilities is typically housed in

a number of buildings that each contain several production areas. Each production

area may contain 3 to 4 production bays. The production bays contain a variety of

equipment such as reactors, filters, and storage vessels of similar size. Several bays

may share some common items of equipment for drying and solvent switch operations.

Large facilities may have about 100 production areas on a given site. However, a much

smaller number of these may be suitable for a particular process. For example, some

are reserved for high pressure operation, some for atmospheric operation or slightly

above, and other bays may not possess the equipment required for some processing

steps. Thus, for a particular set of reaction steps a much smaller number of bays may

be appropriate. Many of these facilities also separate the solvent recovery operations

from the reaction steps. All of these restrictions can be represented as additional

constraints in the formulation presented in chapter 3. In summary, the combinatorial

aspects of the equipment allocation considered within this research are more than

adequate to represent the equipment options available to most manufacturers. In

fact, in many cases, the flexibility considered here is far greater than the situation

facing many manufacturers. In particular, note that the scheduling of these processes

is far more restricted that the scheduling of blending and formulation operations,

commonly examined in the scheduling literature, where the combinatorial complexity

can be many orders of magnitude greater, but where detailed dynamic modeling is

not likely to lead to dramatic improvements in the process efficiency (even if adequate



models exist).

2.4 Decomposition Algorithm for Batch Process

Development

The ability of the screening model to consider the discrete and the dynamic operating

decisions simultaneously and solve the resulting model to guaranteed global optimal-

ity permits the derivation of a rigorous decomposition algorithm for batch process

development. The algorithm employs mathematical models of the processing tasks at

two levels of detail: algebraic screening models that provide rigorous lower bounds on

the production cost, and detailed dynamic models that accurately predict the process

performance.

The extension of traditional mixed-integer nonlinear programming decomposition

methods (Geoffrion, 1972; Duran and Grossmann, 1986) to batch process development

and to other mixed time invariant integer dynamic optimization problems is thwarted

by the inability to derive a valid Master problem using information provided by the

primal, among other problems (Allgor and Barton, 1997b). However, the screening

model's lower bounding property permits it to be employed as part of a decomposition

strategy for the solution of the mixed-integer dynamic optimization. This algorithm

is discussed in chapter 9.

The algorithm decomposes the original process development problem into two

subproblems. The solution of the first, the screening model, provides a lower bound

on the cost of future solutions. The second subproblem is the performance subproblem

which is formulated as a dynamic optimization problem in which the discrete decision

variables in the original problem take the values determined by the solution of the

corresponding screening model; its solution yields a feasible detailed design.

The screening model provides information that is either required or beneficial for

the formulation and solution of the dynamic optimization problem that corresponds

to the performance subproblem given the allocation of the plant resources defined by



the solution of the screening model. The solution of the screening model provides:

1. A definition of the processing structure, defining what operations should be

included and what operations are not required.

2. An assignment of equipment items to the tasks that are performed. These

equipment items are selected from the manufacturing facility's inventory, and

dedicated to a particular task or set of sequential reaction tasks for the duration

of the campaign.

3. Information indicating which batch distillation regions are active. Since the ac-

tive batch distillation region is represented using a discrete variable, qualitative

changes to the performance of the distillation column resulting from feeds in

different regions can be easily identified.

4. The number of distillation cuts required under ideal conditions. While more

cuts may be required in the detailed design, the number of cuts given by the

screening model provides information that can be employed to decide how many

cuts and off cuts should be considered during the dynamic optimization.

5. Definition of the basic structure of the state task network defining the process

for these values of the discrete decision variables.

6. Initial values for the compositions of the state nodes within the STN described

above. The state nodes represent either recycled material or material that

decouples the dynamic interactions between processing tasks (i.e., material that

leaves the reaction task and is fed to the distillation task at the start of the next

batch). The values of these states defined by the screening model may not be

feasible for the dynamic optimization, but they should provide a good initial

guess for the optimal values.

Next, we examine how this information facilitates the formulation and solution of the

corresponding dynamic optimization problem. The solution of the screening model

for the first case study shown in figure 4-3 will be used to demonstrate the points.



Note that a mixed time invariant integer dynamic optimization formulation of this

same example is given in section 9.5.

Since the performance of a processing task may depend on both the chosen oper-

ating policies and the characteristics of the equipment in which it is carried out, the

performance subproblem requires that the equipment items assigned to each process-

ing task are known. In this algorithm, these assignments are fixed by the solution of

the corresponding screening model, so the appropriate dynamic model can be selected

for each task when formulating the dynamic optimization. In addition, the inequal-

ity path constraints may depend on the equipment assigned to the processing task

(e.g., equipment overflow constraints, maximum vapor rate constraints, etc.), so the

equipment assignment must be known before the appropriate dynamic optimization

can be solved.

In order to formulate the dynamic optimization subproblem, the state task net-

work for the process must be defined. We could choose to include many states and

tasks that may not be required, but this will lead to redundancy in the solutions

that may be obtained. Instead, we choose to employ the information provided by

the solution of the screening model to construct a state task network for the process

that reduces the size of the resulting dynamic optimization by eliminating redundant

processing tasks; removing redundant processing tasks also improves the performance

of the optimization algorithm. The key pieces of information that are required to con-

struct an appropriate state task network are the number of tasks that are included

in the processing network, the number of cuts (and potential off cuts) taken from

each of the separation tasks, and the recycle of material within the process indicat-

ing where the material produced by one task is next used. Once these decisions have

been made, the processing structure is determined. Comparing figure 2-5 to figure 9-3

clearly shows that the process structure defined by the solution of the screening model

is much simpler than the process structure that allows for all the cuts that might be

required in each of the separation tasks. In fact, the screening model predicts that

only two overhead cuts are required for the first distillation and only one is required

for the second. Without this knowledge, we would allow for five overhead cuts in



the process structure because the process contains six components. Furthermore, the

recycle structure of the process is defined by the screening model, simplifying the

material balances around the tanks defining the material states. Using the process

structure defined by the screening model allows us to eliminate redundancy in the

definition of the process structure which should permit the dynamic optimization al-

gorithms to perform better, since all of the optimization parameters should affect the

objective value. In contrast, including cuts that are not required will lead to multiple

solutions with the same objective value, which will probably degrade the performance

of the optimization algorithm.

The dynamic optimization formulation of the performance subproblem solves for

both the operating profiles of the processing tasks and the values characterizing the

states in the STN simultaneously. In the example shown here, the temperature profile

in the reactor, the reflux ratio of the columns, and the split fraction determining

the distribution of flow between the two overhead cuts on the second column are

treated as the controls. The composition and amount of material in each of the state

nodes generated for each batch is also determined; in figure 2-5 the state nodes are

represented using storage tanks that hold the material. Material transfers occurring

at the beginning and end of a task are represented using the gray lines with larger

dashes, and the constraints depicting the transfer of material from one task to the next

are shown using small black dashed lines. The solid lines represent material transfers

during the task. Note that this picture assumes that both the reactors and columns

are operating in batch rather than fed batch mode. The per unit manufacturing cost

of in-spec product is minimized during the solution of the performance subproblem.

By comparing the STN shown in figure 2-5 to that shown in figure 9-3, we ob-

serve that we are only considering a subset of the potential processing structures.

We recognize that this may exclude better solutions, but the dynamic optimization

algorithms cannot guarantee convergence to a global optimum. This implies that

the initial guess provided to our dynamic optimization procedure may have a greater

impact on the quality of the solution obtained than the number of processing struc-

tures embedded in the STN. The screening model provides initial guesses for all of



- ---------------------------------.

Figure 2-5: The state task network for dynamic optimization of the process devel-
opment example from chapter 4. This corresponds to the screening model solution
obtained from the first process superstructure.

the material states appearing in the process structure defined by the solution of the

screening model. Although the detailed dynamic models may not be able to achieve

the material compositions predicted by the screening model, the values predicted by

the screening model are expected to be near an optimal solution. Therefore, using

the solution of the screening model as the initial guess for the dynamic optimization

may actually enable the dynamic optimization to find a better solution. In addition,

since the material recycles given by the screening model satisfy the cyclic steady state

constraints, the dynamic optimization may be able to determine a solution in fewer

iterations.

Another benefit provided by the this iteration procedure is the fact that aspects

of the continuous behavior that are known to lead to the multi-modal character of the

dynamic optimization are treated as discrete decisions in the screening model. For

instance, the active batch distillation region is identified during the solution of the

screening model. While the dynamic optimization algorithm can move the feed from

one region to another during the optimization, the optimization must also satisfy the

constraints on the parameters defining the material states. Since moving the feed



from one region to another can change the qualitative behavior of the distillation,

the composition of the material in the accumulator at the end of the distillation

task may differ wildly from the parameters corresponding to material in the tank fed

by the accumulator. Since the optimization contains constraints that require that

the composition of the material in tank representing the state node is equal to the

material in the accumulator at the end of the task, the large difference in composition

will result in a large violation of this constraint. The NLP solver will most likely force

the distillation feed back into the original batch distillation to reduce this constraint

violation. In our algorithm, the dynamic optimization will investigate processes with

feeds in other batch distillation regions, which may also result in different process

structures, during the solution of other instances of the performance subproblem.

The integer cuts added to the screening model at every iteration ensure that

previously examined discrete alternatives are not revisited. We treat the inclusion or

exclusion of tasks, the assignment of equipment to particular tasks, and the active

batch distillation region as the discrete variables defining the structure of the process.

The performance subproblem is solved for each of these discrete alternatives until the

termination criterion of the algorithm is satisfied. Although we could have chosen

to regard only the assignment of equipment and the inclusion of processing tasks

in the definition of the discrete alternatives, we would then rely on the dynamic

optimization to find the best local optimum of functions that we know to be multi-

modal. By defining the discrete alternatives as we have, we account for the some of

the qualitative changes to the process performance in the discrete domain, allowing

us to determine a local optimum in each of these domains through the solution of a

different instance of the performance subproblem.

2.5 Summary

This chapter demonstrates that previous research addressing batch process develop-

ment cannot simultaneously address the discrete and detailed dynamic design deci-

sions in a rigorous fashion. However, previous researchers have derived techniques ca-



pable of handling subproblems encountered during batch process development. These

techniques are employed within the design method proposed by this thesis. For exam-

ple, the decomposition algorithm for batch process development proposed within this

thesis utilizes the dynamic optimization techniques developed for the performance

subproblem and the type of equipment allocation constraints developed for the plant

design problem.

The screening models introduced in this thesis permit the derivation of a rigorous

decomposition algorithm capable of addressing both the discrete and continuous de-

cisions without requiring total enumeration of the discrete space. This represents the

first rigorous approach to the solution of the batch process development problem with

the potential to avoid total enumeration of the discrete space. The approach couples

insight-based targeting models with gradient based dynamic optimization algorithms.

In addition, the screening models can be employed to enhance the application of ex-

isting design methods. The derivation of the screening models is discussed in the next

chapter.



Chapter 3

Screening Models for Batch

Process Development

Batch process development - the design of a process to manufacture a new or modi-

fied product within an existing manufacturing facility - is frequently encountered in

the specialty chemical and synthetic pharmaceutical industries. Allgor et al. (1996)

demonstrated the importance of batch process development and stressed the need

to develop systematic methodologies that permit the rapid design of efficient batch

processes. In order to design an optimal batch process, the optimal recipe and the

allocation and scheduling of the plant's resources must be determined simultaneously.

This chapter introduces screening models for batch process development that yield

a rigorous bound on the cost of the design by considering decisions related to the

operation and scheduling of the processing tasks within a single model that can be

solved to global optimality.

This chapter introduces the notion of screening models for batch process devel-

opment. Screening models yield a rigorous lower bound on the cost of the process,

providing both design targets and a valid way in which to prune or screen discrete

alternatives (process structures and equipment configurations) that cannot possibly

lead to the optimal solution. These models consider changes to the process structure,

the operation of the tasks, and the allocation of equipment simultaneously. In addi-

tion, these models embed aspects of the process synthesis not considered in previous



research dealing with batch process design. However, they do not provide a detailed

process design, so they must be used in conjunction with techniques that consider

the dynamics of the process in detail, such as the multi-stage dynamic optimization

formulations used to address the performance subproblem (Charalambides, 1996).

In the remainder of this chapter, we discuss the properties that must be satisfied

by screening models and derive screening models for batch process development that

achieve these properties. In the next section we discuss how information calculated

by these models can be employed to enhance existing approaches for batch process

development, and how these models facilitate a rigorous decomposition approach for

the design of these processes. The application of these models to realistic process

development examples is presented in chapters 4 and 5.

3.1 Deriving Screening Models for Reaction/Dis-

tillation Networks

The usefulness of screening models hinges on their ability to yield a rigorous lower

bound on the cost of the process being developed. To achieve this bounding property,

the models must overestimate the feasible region, underestimate the design objective,

and consider all of the optimization variables simultaneously. In addition, the opti-

mization procedures used to solve these models must obtain a global minimum. When

these conditions are satisfied, the solution of a screening model provides a rigorous

lower bound on solution of the original problem.

In order to derive screening models with these properties, constraints related to

the equipment allocation and scheduling are expressed in their original form, but the

constraints defining the dynamic performance of the processing tasks are relaxed.

Algebraic equations representing performance limits replace the differential-algebraic

equations describing the task performance, and time averaged material balances are

enforced. Therefore, the optimization algorithms used to solve the model must handle

both discrete and continuous decision variables, but need not deal with any differential



equations. In the remainder of this section, we derive convex models with these

properties for the development of batch reaction/distillation networks.

3.1.1 Process Abstraction

We define a superstructure that embeds the synthesis alternatives considered during

the solution of the screening model. The process superstructure is represented with a

directed graph consisting of state and task nodes. The process is assumed to consist of

a sequence of processing trains; each train may contain a reaction and/or a separation

task. Stable material is produced by every task. In any train, either task may not

exist; note that the reaction tasks must exist if only one reaction pathway is considered

and the number of trains equals the number of steps in the reaction pathway. A mixing

task prior to each separation task has been included in the superstructure to clarify

derivation of the model equations and simplify the notation; these tasks do not require

separate equipment items. A diagram of the process superstructure is shown in figure

3-1. In addition, each train of the superstructure is labeled, ordering the reaction

steps in the process. Although this ordering has no impact on the superstructure at

this level of the hierarchy, it becomes important when the superstructure is refined

(see figure 3-5) to consider the purging of recycled streams. The state nodes in this

superstructure can be partitioned into two sets, nodes representing the fixed points of

a simple distillation process (pl-peq in figure 3-1), whose composition is known before

the solution of the model, and nodes leaving the reaction and mixing tasks whose

composition is determined during the solution procedure.

The superstructure looks similar to the state task networks (STN) commonly

used to represent batch processes for scheduling purposes (Kondili et al., 1988), but

it differs from the STN because many of the state nodes in this superstructure do

not represent material that can be found in the actual manufacturing process. The

product will be manufactured in a campaign with all batches following the same

production route, so the process must operate at cyclic steady state. This implies that

the arcs in the superstructure correspond to time-averaged material flows. However,

these arcs need not correspond to material transfers in the physical process. For



Figure 3-1: Superstructure for networks of reaction and separation tasks.

instance, the targeting procedure used for the distillation tasks permits all feasible

separations to be represented in terms of convex combinations of the material sent

to each of the equilibrium point nodes. The actual distillation cuts, which may

be recycled, processed further, or leave the process as waste or product, are not

represented by any single arc of the superstructure.

The time-averaged flows in the superstructure are specified in terms of compo-

nent molar flow rates; these flows may be specified using either the pure component

or fixed point compositions as the basis. The superstructure permits both splitting

and mixing of streams, but the splitting of streams leaving state nodes whose compo-

sition is not known a priori is not permitted. In order to enforce time-averaged mass

balances for this superstructure, models that define the time-averaged flows leaving

the tasks in terms of the entering flows and the operating variables are required. To

maintain the bounding properties of the formulation, each one of these models must

overestimate the region of the composition space that is reachable from a given in-

put specification. Furthermore, to enforce the material balances, the models of the

reaction and distillation tasks must relate the input and outlet flows using linear

equations. The following sections derive models that overestimate the composition



space that is reachable using batch distillation and batch reaction tasks.

3.1.2 Batch Distillation Composition Bounds

The targeting model of the batch distillation tasks, coupled with the opportunities

for mixing embedded in the superstructure, must include all of the feasible sequences

of cuts that could be obtained by any batch distillation column processing the same

feed. Although we recognize that separating the mixture into its pure components

represents a bound, the presence of azeotropes results in boundaries in the compo-

sition space that cannot usually be crossed. As a result, the sequence of products

attained from batch distillation depends on the feed composition of the mixture. The

location of these boundaries is likely to affect the solvents and entrainers chosen, the

amount of solvent and reagent that is used, and the operation of the reactors provid-

ing the feeds to the distillation columns. Therefore, the targeting model must embed

these boundaries in order to generate useful information during process development.

We model the distillation tasks shown in the superstructure using batch distilla-

tion targeting techniques (Ahmad and Barton, 1994; Ahmad and Barton, 1995) to

identify the set of sharp splits that can be obtained from a given feed; we assume

that sharp splits are possible when operating under the limiting conditions and the

pot composition boundaries are linear (Ahmad and Barton, 1996). We then prove

that the proposed superstructure contains all feasible sequences of cuts that can be

achieved from a given feed, including non-sharp splits and off-cuts, in spite of the fact

that we have represented distillation tasks shown in the superstructure using sharp

splits.

Targeting for Sharp Splits

Simple residue curves describe the change in composition with time of an open evapo-

ration process. These residue curves can be placed in the composition simplex defined

by the pure component vectors to form a simple distillation residue curve map; an

example map for a ternary system is shown in figure 3-2. These curves can be de-



fined experimentally, or via the solution of a set of differential equations. Doherty

and Perkins (1978a; 1978b; 1979) showed that the pure components and azeotropes

represent the fixed points of a system of differential equations; further, all of the ho-

mogeneous azeotropes of a given system of components can be found using established

algorithms (Fidkowski et al., 1993). We let the fixed points arranged in increasing

boiling temperature define the ordered set E = {Pi, P2, P3,... Pep ; ep represents the

number of fixed points in the system, and Pe represents the composition of each fixed

point.

sin
residui
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Figure 3-2: Residue curve map for a ternary system with pure components pl, P2,
and P4 . The fixed point P3 represents a maximum boiling binary azeotrope between
Pi and P2-

Van Dongen and Doherty (1985) compared the simple distillation residue curves

to the pot composition trajectory of a batch rectifier and demonstrated that the rec-

tifying curves approach straight lines in the limit of high reflux ratio and a large

number of equilibrium stages. Given a homogeneous ternary mixture under these

limiting conditions, they showed that the exact orbit of the reboiler composition and

the sequence of constant-boiling product cuts can be predicted from the structure

of the residue curve map of the system. Under these limiting conditions, the com-

position simplex can be divided into a set of batch distillation regions. Each batch



distillation region defines the set of compositions leading to the same sequence of

product cuts. Figure 3-3 shows the batch distillation regions and trajectory of the

reboiler composition for the residue curve map show in figure 3-2.

nposition

Figure 3-3: Ternary system with two distillation regions showing the pot composition
trajectory for a feed in distillation region I.

Ahmad and Barton (1994; 1997) have extended and generalized these results to

homogeneous systems with an arbitrary number of components. They demonstrated

that under the assumptions of high reflux ratio, a large number of stages, and linear

pot composition boundaries, a mixture of nc components will separate into at most nc

product cuts. Therefore, each batch distillation region b is represented by an ordered

subset of the fixed points, Eb, of dimension nc. These batch regions cover the nc

component composition simplex.

U b = Cnc = {x E RnC : IIXl1 = 1, xi > 0 Vi =- 1... nc} (3.1)
bEB

Furthermore, the members of Eb bound an nc - 1 dimensional simplex, termed the

product simplex. The product simplex P(b) is defined by an nc x nc matrix pb as

I
I z,



follows:

P(b)={x Cn:x=Pbx r V -r E n } (3.2)

where the columns of pb correspond to the equilibrium point compositions appearing

in the set Eb. Equation (3.2) defines the barycentric coordinates ir representing the

fraction of the charge appearing in each of the product cuts. Every batch region b

defines a corresponding product simplex P(b), but the converse is not always true

(Ahmad and Barton, 1995). The targeting formulation presented here assumes that

all batch regions coincide with their corresponding product simplices, so P(b) = b.

For a given mixture of components, these regions can be determined from the stability

of the fixed points (Ahmad et al., 1997).

Given the product sequence defining each batch distillation region Eb and the

compositions of all of the fixed points pe, we only need to identify the batch distillation

region that contains the feed in order to perform the mass balance. We call the region

containing the feed the active batch distillation region and identify it with the binary

variable yB. Since the feed lies within the convex hull of the products of the active

region, the barycentric coordinates are positive. For regions that do not contain the

feed, at least one of the barycentric coordinates is negative. We permit only one region

to be active and require that the barycentric coordinates are positive (7rk e > 0), so

we can express the fact that the feed composition x lies within the active region for

the distillation task in train k as follows:

YkB = 1 V k E K (3.3)
bEB

xk =• •Y b kePe V k E K (3.4)
bEB eCEb

We derive the time averaged mass balance for the distillation task by multiplying (3.4)

by the total feed fD. We define the variable fbBou, = yBfDr to eliminate the bilinear

terms from the time-averaged material balance and obtain the following material



balance for the kth distillation task:

fkMout f Boutp V k e K (3.5)
bEB eEEb

We require that fkBout > 0 and complete the definition of fj~t using the following

inequality:

BOut < fmakBb V k E K, b e B (3.6)
eEEb

To simplify the expressions in the rest of the model, we define fkjDout the flow of equi-

librium point e out of the distillation task k. Although this constraint is redundant,

it will be eliminated during the preprocessing stage of the model (IBM, 1991) and

will not effect the solver's efficiency.

fBo D = Dout V k e K (3.7)

bEB

The distillation targeting model presented above determines the maximum re-

covery for sharp splits. Now we prove that the superstructure embeds all feasible

sequences of cuts that can be obtained from the same feed. Fractions of the sharp

cuts can be combined to produce any feasible combination of cuts, embedding non-

sharp splits and off cuts within the superstructure; therefore, the number of dis-

tillation cuts in the actual process need not correspond to the number of cuts in

the targeting model as demonstrated in figure 3-4. A set of n cut compositions

S' = {p', p,... p : I E C n c Vj = 1 ... n} is feasible if and only if each cut is in

the active batch distillation region (pe G B*), and the feed composition x lies within

the convex hull of the compositions in S' (x E conv(S')). This definition does not

imply that these compositions can actually be achieved in a column operating with

a finite reflux ratio. Thus, the screening model embeds any off cuts and nonsharp

splits that may be performed in the actual process.

Theorem 3.1. Given a feed composition located in a batch distillation region B with



linear pot composition boundaries that is identified by the sequence of product composi-

tions S = {Pi, P2,... Pnc, all sets of feasible cuts can be obtained by mixing fractions

of the cuts obtained from a column whose cut compositions are defined by S.

Proof. Define the matrix P E RncXc as the matrix whose columns are the vectors

in S and the matrix P' e IRnc xn as the matrix whose columns are the vectors in S'.

Since the batch distillation region is contained in the product simplex, each element

of S' can be expressed as a convex combination of the elements of S, so there exists

7j Cn c such that p' = P-rj for every p E S'. This defines the matrix HI.

P' = PHI (3.8)

Since x E conv(S'), there exists rr' E Cn such that x = P'ir' where wr represents the

fraction of the charge obtained in the jth product cut of S'.

x = P'rr' = (PlI)nr' = P(l^Ir') (3.9)

There exists 7r e Cn' defining the barycentric coordinates of the feed with respect to

the extreme points of the distillation region, x = Pir, so the amounts collected in the

sharp cuts are linearly related to any feasible cuts obtained from the column.

^Inr' = r (3.10)

This equation represents the material balance around the product cuts in the set

S. It demonstrates that the amount of the cuts with the compositions in S' can be

obtained by mixing fractions of the cuts taken at the equilibrium nodes. Figure 3-4

shows that any feasible set of cuts can be obtained from the sharp cuts determined in

the targeting model if mixing is permitted. The labels on the arcs represent the time-

averaged flow rates, and the labels contained in the state nodes denote the material

composition. Since every element of both HI and ir' is positive, all of the flows on the

arcs between the nodes are positive. O



Figure 3-4: Representation of an arbitrary distillation task by combining sharp dis-
tillation cuts and mixers.

3.1.3 Reactor Targeting Model

Mass balances and reaction stoichiometry are enforced by introducing the extents of

reaction as model variables. For the kth reaction task, stoichiometry is enforced by

expressing the time averaged material balance in terms of stoichiometric coefficients

vkr and the extent Gkr of reaction r.

Sfk P +  krVkr = fRout V k c K (3.11)
eEE rERk

For components e that do not participate in reaction r of the kth reaction task,

Vkre = 0. Since the extent of the reaction is the same for all components, requiring

non-negative flow rates insures that the reaction extents are feasible. The material

balances for the reaction only constrain the feasible composition space of the reac-

tions by enforcing stoichiometry and permitting no more than total conversion of any

reactant.

The extents of the reaction that are achieved in the actual process depend on

the operating policies of the reaction tasks and the kinetics of the reactions. Since

expressions for the reaction kinetics are available (otherwise we could not model the

reaction tasks in detail), bounds on the achievable extents of reaction in terms of



key operating variables (e.g., processing time, temperature, and feed composition)

can be derived and incorporated within the screening model. In addition, bounds

relating the extents of competing reactions can be provided. We have not derived

general expressions for these bounds since they will almost certainly depend on the

kinetics of the reactions, but the case studies presented in chapters 4 and 5 show

specific examples of how these bounds can be derived. The case studies demonstrate

how bounds for the extents of competing reactions can be derived from the operating

temperature limits imposed on the process. In addition, they demonstrate how upper

bounds on the extents can be derived from the processing time and a bound on the

temperature profile for the task. These bounds do not exclude any feasible operating

policies, yet they manage to incorporate important tradeoffs within the screening

formulation.

3.2 Time Averaged Material Balances

The constraints for the material balances can be derived from the superstructure,

shown in figure 3-1, and the composition targeting models that relate the inlet and

outlet flow rates for the distillation and reaction task nodes in the superstructure. In

fact, the material balances for the distillation and reaction tasks are shown in (3.5-

3.7) and (3.11) respectively. The screening model enforces time averaged material

balances around each of the task and state nodes in the superstructure. Material

balances around the state nodes representing the fixed points of the batch distillation

regions are expressed as follows:

[SUPlY+SkDt = fP'uct+fe+ ' +e k + 5 fke V e C E (3.12)

kEK kEK kEK

The following material balances around the 'hypothetical' mixing tasks define the

feed to the distillation tasks in terms of pure component flows.

SfM'np + fpRout f V kEK (3.13)
eEE



Equations (3.5-3.7), (3.11), and (3.12-3.13) enforce the material balances around

all of the nodes in the superstructure shown in figure 3-1; these constraints denote

the material balance constraints at the highest level of the superstructure hierarchy.

However, we cannot identify streams that are recycled and need to be purged by

examining the superstructure at this level of detail. Since the screening models require

that a fraction of any recycled cut is purged, deriving the purge constraints requires

a more detailed view of the material flows in the process. The fixed point nodes in

the superstructure shown in figure 3-1 are refined as shown in figure 3-5 to provide a

superstructure with more detail that identifies recycled streams and allows them to be

purged. Constraints to enforce the purge requirements require variables introduced

in the material balance constraints for the network depicted in figure 3-5. In general,

a hierarchy of superstructures may be used to describe the process, depending on the

type of constraints that are required.

Figure 3-5: Detailed representation of fixed point node e used to derive the purge
constraints.

The cuts from each distillation task are sent to a splitter contained in the detailed



representation of the fixed point node. Cuts entering the network are either sent

to waste, to product, forward in the process, or backward in the process. Material

balances are derived around each node that exists in the expanded representation of

the fixed point node in (3.14-3.22). Equation (3.22) ensures that a fraction of every

recycled stream is purged. The purge fraction of each equilibrium point, XPurge ,is

data supplied to the screening model based on engineering judgment or prior knowl-

edge about trace contaminants; different purge fractions can be used for each fixed

point node if desired. Incorporating these constraints in the model, allows (3.12) to

be removed from the screening model. We retain (3.14-3.22) and rely on the presolver

contained in OSL to eliminate any unnecessary variables and constraints to reduce

the size of the linear programs actually solved during the branch and bound iteration

(IBM, 1991). If a solver is used that does not eliminate the intermediate variables

that have been introduced here, these should be removed to reduce the size of the

models that are solved.

f~,o _ fW Prod + ff V k,e (3.14)

f= fpurge + f V k, e (3.15)

k'<k

f = fe k Vk,e (3.16)
k'>k

fR n f M •f V k, e (3.17)

k

fSply = f Ve (3.18)

k

k

Sfkw + fyrg, = fWaste Ve (3.21)
k

fpurge _ xPurge B V k, e (3.22)fke -- "e ke



The supply of raw material to the process is restricted to components that can be

purchased or are available as a by product of another process within the manufactur-

ing facility. Let ER define the set of fixed points that may be supplied to the process

and require that the feed of all other components is zero.

S fSuPPly = 0 (3.23)
e£ER

Finally, the product must adhere to purity specifications and meet manufacturing

demands. The total production is given by the flow of in-spec product over the entire

campaign. Purity specifications are placed on a subset of the fixed points contained

in the product (typically these will be pure components). We let Ep denote the

components whose purity in the product is specified by Xproduct , and Qdemand represent

the manufacturing demand. For example, if the desired product is component P and

it is required at 98 % purity by mass, then the set Ep = {P} and Xproduct = .98. The

demand and purity constraints for the manufacturing campaign are specified below;

in these constraints, the time averaged flow rates denote the material flow for the

entire campaign, and the product purity is specified on a mass basis.

Qdemand _< E eProduct W (3.24)

eCE

Xproduct fProductw < Product 5 P wPee'i) (3.25)
eEE eEE e'EEp

The elements of w E IRJn represent the molecular weights of the pure components.

We could also place restrictions on the amounts of particular impurities that are

permitted in the product. For example, if the product is required at 98 % purity,

but cannot contain water, then a restriction must be placed on the amount of water

that is allowed. Let the parameter Xmp purity denote the maximum mass fraction of

fixed point e that is permitted in the product. If no special restrictions are imposed,

then Ximpurity = 1 - X product for all e V Ep, and Ximpurity = 1 for all e E Ep. Let

the set E, define the components whose concentration in the product is restricted



to remain below the limit defined by Xm" purity. Note that this set need only contain

fixed points whose fraction in the product must be restricted more than the average

impurity, such as water in the example described above.

Xmpurity froduct e Product P Ve E(3.26)w, > l Pe Pe'We
e'EE e'EE

Screening formulations containing objective functions that depend on only the

material flows in the process can be derived using the constraints presented thus

far (however, constraints that limit the extents of the reactions that were not ex-

plicitly stated should also be included). For instance, the minimum raw material

and waste disposal cost for a process that meets the production requirements or the

minimum amount of waste that can be emitted to the environment can be deter-

mined. We merely need to postulate the objective function, incorporate constraints

(3.5-3.7, 3.11, 3.13, 3.14-3.23, and 3.24-3.26), and solve the resulting mixed-integer

linear program. Similar models have been used for solvent recovery targeting (Ah-

mad and Barton, 1995). However, to account for other production costs and the

assignment and scheduling of equipment, we need to target for the time and utility

requirements for the reaction and distillation tasks and include constraints to ac-

count for the equipment assignment and scheduling. Such constraints are derived in

the following sections.

3.3 Bounding Distillation Processing Time and Util-

ity Requirements

The processing time and hot and cold utility consumption of the distillation task

impact the operating cost of the entire batch process. Since the operating cost of the

process is a nondecreasing function of these variables, underestimates are required

to maintain the bounding properties of the screening model. However, determining

the processing time and utility cost requires knowledge of both the reflux ratio and

the amount of material taken overhead. This requires knowledge of the amount of



material assigned to the bottoms, f"ot, defined later in this section.
mateialassinedto he bttoske

3.3.1 Distillation Processing Time Bounds

The distillation columns employed in the process are characterized by a maximum

vapor rate at which they can operate. The maximum vapor rate is based on limits

imposed by the tray and downcomer design (or packing design) that avoids entrain-

ment flooding for reasonable values of the liquid rate in the column (Kister, 1992).

We assume that no loss of efficiency or increase in utility cost is incurred by operat-

ing at this rate. We also assume that no heat integration will be performed. Since

operating at the maximum vapor rate will minimize the operating time but will not

hinder separation efficiency or increase utility cost, all columns will operate at their

maximum vapor rate.

The material balance around the column is used to derive bounds on the processing

time and utility requirements. The column contains product cuts c to nc at the start

of the cth product cut; at the completion of the cut, cuts c + 1 to nec remain. The

amount and composition of the material removed is known, 1 so the processing time

can be calculated from the vapor and distillate rates. We assume that the vapor flow

rate V is bounded by the maximum rate that can be achieved in a given column; no

assumptions are made regarding the distillate rate D, or the liquid rate L.

To preserve the bounding property of the screening model, a valid underestimate

of the operating time is needed. The time required to obtain each cut depends on

the amount of the cut, the vapor rate, and the reflux ratio used during the cut.

To provide a lower bound, we assume that the columns assigned to the distillation

task will operate at their maximum vapor rates. Although the amount of material

obtained in each product cut is given by fDo,•, when more than one unit is assigned,

the amount of material processed by each column will be a fraction of fDout. In the

remainder of this section, we consider fDout to represent the material processed by the

1None of the material assigned to the bottoms cuts is taken overhead, providing an underestimate
of the time and utility requirements. However, some of the overhead cut material may leave the
column as an impurity in the bottoms stream, and this is addressed later in this section.



assigned equipment units; we adjust for units in parallel (see (3.66)) when deriving

the constraints to determine the campaign time.

The processing time for each cut, tLut, is the time required to remove the cut from

the column. This time is a function of the distillate rate D and can be expressed in

terms of the vapor rate and reflux ratio R. Let M represent the amount of material

collected in the accumulator during the cut (dM = Ddt) and integrate the expression

V = D(1 + R) for the duration of the product cut.2

cut Dout

Vd = Vt Ut= (1 + R(M))dM (3.27)

The relationship above holds as long as the reflux policy can be expressed as a function

of the amount collected in the accumulator during a specific cut. If the reflux ratio is

constant over the entire cut, a simple expression for the time is obtained from (3.27).

tcut  fD°u(1+R) (3.28)

The cut time defined in (3.28) provides a valid underestimate of the processing time

for a cut if R underestimates the integral of the reflux ratio over the entire cut,
D0 -t

R • fo R(M)dM/fDout

In order to obtain an underestimate of the reflux ratio, some limiting cases are

examined. First, since the column is operating at its maximum vapor flow rate, we

recognize that a minimum reflux ratio is required to provide a suitable liquid rate

for proper liquid and gas flow patterns within the column. This minimum ratio may

depend on the particular column, and is required to prevent undesirable operating

phenomena. Kister (1990; 1992) describes correlations to predict these boundaries

for tray and packed columns, so we treat these boundaries as design constraints that

cannot be violated. Thus, we assume that a minimum reflux ratio for the column is

specified as part of the data for the problem. At the very least, any feasible operating

2Note that this relationship does not assert constant molar overflow. The vapor rate V is the
maximum vapor rate that can be achieved in any part of the column. The vapor rate at the top stage
must be less than or equal to V, so the distillate rate D must be less than or equal to V/(1 + R).



policy must employ a reflux ratio that exceeds this minimum. Since the equilibrium

stage models will not accurately represent the process if we operate below this mini-

mum, we should also include this constraint in any dynamic optimization calculations

performed on the detailed models of the distillation tasks. If no information regard-

ing the purity of the overhead cuts is provided, then the tightest bounds that can

be given for the reflux ratio are those at the limit of the feasible operating regime

based on liquid gas contacting. Letting R" in represent the minimum reflux ratio of

the assigned equipment unit,

SfjfDt R(M)dMRmain "< R< 0 (3.29)f Dout

An underestimate of the processing time for the distillation task is obtained by

adding the processing time for all of the overhead cuts, provided that the bottoms

stream is pure. If the bottoms stream contains some impurities from the overhead

stream, then some of the material that would have been taken overhead remains

in the bottoms. To account for the impurity when determining the duties for the

overhead cuts, we require that the amount of impurity that can be tolerated in the

bottoms, 1- X B P , is specified for each distillation task. The bottoms impurities must

be fractions of the overhead cuts, so they can be defined as follows:

fB ' > fJo t Vk, e (3.30)

fB' < (1 - B P )  fko t Vk (3.31)
e e

Valid bounds are obtained by subtracting the time required to collect the tolerated

amount of impurity at the reflux ratio employed during the overhead cut; the opti-

mization is free to select the overhead material that minimizes the processing time

as the impurity. Therefore, operating column i at its minimum reflux ratio defines

the minimum time for one column of type i to distill the material taken overhead in



distillation task k.

• D p,-o• 1 + R m in
t ro > Do_ fBot fBI (3.32)

Of course, fkB = 0 and (3.30-3.31) are not needed if the bottoms streams are required

to be pure.

3.3.2 Bounding the Distillation Utility Requirements

The rate of energy removal, Q, required to condense the vapor passing through the

condenser for a process operating without losses can be expressed in terms of the heat

of vaporization of the condensate AHvaP and the reflux ratio R of the cut.

Q = AHVapD(1 + R) (3.33)

The distillate composition corresponds to one of the equilibrium points in the residue

curve map, so AH ya p is known for every cut if the material is condensed at its boiling

temperature; the enthalpy of vaporization and boiling temperature of each equilibrium

point can be provided as data to the screening model.3 However, we cannot assume

that all of the material that is collected overhead is condensed at the boiling point

of the fixed point because the cuts that will actually be obtained in the real column

cannot achieve the limit of perfect splits. When the cuts are not sharp, a particular

fixed point will be condensed as part of a mixture, so some fixed points will be

condensed at a temperature above their normal boiling point. At these elevated

temperatures, the enthalpy of vaporization is less than that at the normal boiling

point because the enthalpy of vaporization is a decreasing function of temperature

3The enthalpy of vaporization must be underestimated for the fixed points. These underestimates
must account for the enthalpy of mixing at the boiling temperature. The maximum enthalpy of
mixing can be determined by formulating and solving a global optimization problem. The global
optimization is solved before the screening model is posed, and the solution is treated as data in the
screening model, so AHvaP represents the enthalpy of vaporization at the boiling point reduced by
AH mix . In principle, global optimization techniques (Adjiman et al., 1996; Maranas and Floudas,
1996; Smith and Pantelides, 1995) can be employed to identify AH mix for the compositions and
temperatures considered using the enthalpy model employed during the detailed dynamic simulation.



(Reid et al., 1987). This implies that a lower bound on the condenser duty is not

derived by simply assuming that the collected material is condensed at its boiling

temperature and the column operates at minimum reflux. However, the enthalpy of

vaporization at the boiling temperature can be used to bound the reboiler duty.

We assume that material charged to the column is a liquid mixture below the

boiling temperature of the fixed points collected in the overhead cuts. In order to

collect material overhead, vapor must be generated. We adjust for the changes of

enthalpy upon mixing separately when underestimating the energy requirements, so

we ignore mixing effects here and treat the mixture as if it is ideal. Let AHe denote

the difference between the molar enthalpy of the liquid of fixed point e charged to the

column and the molar enthalpy of the vapor generated in the reboiler at some point

during the operation of the column. For a column operating at constant pressure,

a lower bound on the energy supplied to the reboiler during the distillation can be

determined from the amount of material taken overhead, the heat of vaporization of

this material, and the reflux policy employed:

Z, (ke Z k AHej(1 + R(Me))dMe (3.34)
eEOvhd eEOvhd

where Me represents the amount of material collected during cut e. A rigorous un-

derestimate of the reboiler duty is obtained from (3.34) when a valid underestimate

of the integral is provided; this requires valid underestimates for AHe and the reflux

ratio as functions of Me and the temperature of the reboiler. A simple underestimate

of the reflux ratio is obtained by assuming that the column operates at the mini-

mum reflux R ra i n during the entire cut. Next, we demonstrate that the enthalpy of

vaporization at the boiling temperature of the fixed points (AH waP) provides a valid

underestimate of AHe.

The enthalpy of vaporization at the boiling temperature of fixed point e under-

estimates the difference in enthalpy between the liquid of fixed point e charged to

the column and the vapor that is generated in the reboiler. To prove this statement

we consider two cases: vapor that is generated below the boiling temperature, and



vapor that is generated above the boiling temperature. The distillation is assumed

to be carried at constant pressure, so we are concerned with the enthalpy change in

an isobaric process. Let Te, represent the normal boiling temperature of fixed point

e, Tvap represent an arbitrary temperature at which vapor is generated, Ti" represent

the temperature of the feed to the column, AHv(Tvap) represent the enthalpy of va-

porization of fixed point e at Tv p , and AH waP represent the enthalpy of vaporization

at Tb.

First consider the case in which vapor is generated below the boiling temperature

(e.g., Tva p  T,). The enthalpy difference between the liquid charged and saturated

vapor at Tvap can be expressed as follows:

AHe(TvaP) = C (T)dT + AH:(Tvap) (3.35)

Since the enthalpy of vaporization is a decreasing function of temperature, AH wp <

AH'(Tvap). In addition, CPe is positive, and we assume T in < T' p , so substituing

into (3.35) provides an underestimate of the enthalpy change required to generate

vapor of fixed point e below the boiling temperature.

AHe(Tvap) > AH w
yap (3.36)

On the other hand, if the vapor is generated at or above the boiling temperature

(e.g., Tv ap > Tb) then the enthalpy difference between the liquid charged and the

vapor obtained can be described by the following isobaric path:

Tb Tvap

AHe (Tvap) = C(T)dT + AHe(Tb) + Cv (T)dT (3.37)
JT • , P J Tb

Since the temperatures are ordered (Ti" < T, < Tvap) and the vapor and liquid heat

capacities are positive, AHe(TvP) is also underestimated by AH wap when the vapor

is generated at temperatures above T,.

AHe(Tvap) > AH wp (3.38)



Thus, the enthalpy of vaporization at the boiling temperature underestimates the

enthalpy difference between vapor at temperatures greater than Tb and liquid at T i".

Therefore, an underestimate of the reboiler duty of distillation k can be expressed as

follows:

( ke AH aP apI+ Rnin) V k E K (3.39)
eEOvhd eEOvhd

We note that for an exothermic reactive distillation process this may not be the case,

and the heat of reaction would need to be considered when determining the bound

on the reboiler duty. However, we do not consider reactive distillation in this thesis.

The energy costs in this type of process are typically unimportant, so these crude

underestimates of the utility requirements do not really influence the important design

trade offs. As mentioned in chapter 1, the small energy requirements of these processes

is one of the properties that favors their manufacture in developed nations. The

example problems presented in chapters 4 and 5 demonstrate that the utility costs

are insignificant in comparison to the other manufacturing costs. In fact, these costs

would still be insignificant even if they were an order of magnitude greater.

An underestimate of the duty for the distillation task is obtained by adding the

duties for all of the overhead cuts, provided that the bottoms stream is pure. Valid

bounds are obtained by subtracting the duty required to collect the tolerated amount

of impurity at the reflux ratio employed during the overhead cut; the optimization

will select the overhead material with the greatest heat of vaporization as the impu-

rity. Thus, for a column operating at vapor rate of V and a constant reflux ratio R

satisfying (3.29), the minimum reboiler duty can be defined as follows:

Qk= (-- - R min AHap (fDo,,t _ Bot _ BI) VkEK (3.40)

iEID n=l



3.3.3 Definition of Bottoms Cuts

Whether a separation task is performed or not is determined from the location of the

bottoms cut in the distillation task. If all of the material entering the column is taken

in the bottoms, then the distillation is not performed and the processing time and

utility requirements defined above would both be zero. Therefore, every distillation

task in the superstructure must define which fixed point in the cut sequence will be

the first that is included in the bottoms; yBot = 1 denotes that e is the first product

taken in the bottoms of distillation k. We require a bottoms cut for every distillation

task, so

ykBot = 1 V k c K (3.41)
eEE

and we require that the bottoms cut exists in the active batch distillation region

yke t < B Vee E E, k EK (3.42)
bEBe

where Be represents the set of all batch regions containing fixed point e (e.g., Be =

{b E B : e E Eb}). Any cut appearing after the bottoms cut in the product sequence

will be taken in the bottoms as well, so the bottoms of the distillation task can be

defined as follows:

f fDout y kot V e E, k E K (3.43)
e'<e

We require that all of the bottoms cuts are processed in the same fashion. The

bottoms may be passed on to the next reaction or mixing task, or out of the process

as product or waste. If the bottoms stream is comprised of only one fixed point (i.e.,

the last cut in the active batch distillation region), then it may be processed in the

same way as any other cut. The constraints defining the way that the bottoms are
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processed are given below.

ES Y = 1 Vk E K (3.44)
sES

fiR,e rBot Yk,rxn Vk, e (3.45)
k -t-l , e J e ,r x n

fine 2 fBot Yk,mix Vk, e (3.46)

JfProd >  Bot Sprod Vk, e (3.47)

Sfki YBot YS te Vk e (3.48)

The bottoms may only be sent anywhere if the cut is the last cut taken from the

active batch distillation region denoted by e. (i.e., the ncth cut from the region).

S YkYk B Vk (3.49)
b

3.4 Equipment Allocation

The product will be manufactured in a single product campaign using a subset of the

equipment available within the manufacturing facility. Suitable equipment items must

be assigned to all of the tasks that are performed in the process. Processing tasks

can employ parallel items of equipment, but only identical columns are permitted at

the same processing stage. Allocation and overflow constraints are enforced, and the

performance of the process is analyzed for two storage policies - no intermediate

storage and unlimited intermediate storage.

Since a suitable item of equipment must be assigned to every task that is per-

formed, we require variables to define whether a task is performed. Let y+xn and zD

define the existence of reaction and distillation task k, respectively. A distillation task

is performed unless the first cut from the active batch distillation region is included

in the bottoms. Letting e' denote the index of the first cut in region b, the existence
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of the kth distillation task is defined as follows:

Dz = 1. ykB V k E K (3.50)
bEB

If a reaction task is not performed then all the extents of reaction are zero.

Z kr < YRxnf max Vk (3.51)
rERk

The screening model permits material to flow into tasks that are not performed but the

equipment overflow constraints are relaxed, so no equipment needs to be assigned. For

the columns, (3.43) requires that all of the material leaves these tasks in the bottoms

if the distillation is not performed. Equations (3.52-3.53) ensure that equipment is

assigned to the reactions and distillations that are performed.

N,

Z z,• > yŽxn V k (3.52)
iEIR n=l1

N,

Yikn = zk V k (3.53)
iEID n=1

The equipment items of type i assigned to the process cannot exceed the number of

equipment items, Ni, of that type available in the plant's inventory.

N,

yiknn < Ni V IR (3.54)
n=l k

Ni

yfknr N V i D (3.55)
n=1 k

We also require that parallel distillation columns are the same type.

N,

yi 1< V k e K (3.56)
iEID n=1

Consecutive reaction tasks may be merged if the distillation task between them
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is not performed; if a distillation is not performed, the optimization is free to choose

whether the adjacent reactions should be merged into the same equipment items.

Let merge denote whether reaction k is merged with reaction k + 1, z R denote the

whether n equipment items of type I are assigned to reaction task k, and yR, denote

the first reaction task to which these equipment items are assigned.

rmerge < 1- zD V k < K (3.57)

If two consecutive reaction tasks are merged, then the same equipment items are used

for each task. This implies that no new equipment items are assigned to the latter

stage which is enforced by (3.58).

N,
ymerge e <Rk-1 + Yikn 1

n=1

Vi E IR, k > 1

Using the fact that no new equipment is assigned, the variable z R can be defined

recursively as follows:

zR merge + = R
Zi,k-l,nYk-1 Yikn Zikn Vi E IR, k E K, n

where ,n = 0 and yomerge = 0. Equation (3.59) can be expressed using the following

linear constraints since zn R R Z merge.

R R < ZR
Zikn -- Yin zk-1,in

R R < ,ymerge
Zikn - Yikn Yk-1

R R > Z• +Y- merge

zkn - Yikn k-1,in kmge - 1

R R 0Zikn - Yickn-

V k, iE IR, n

V k > 1,i E IR, n

V k, i IR, n

V k, i IR, n

Note that equations (3.60-3.62) are the standard linearization proposed by Glover

(1975) for bilinear terms of binary variables, but (3.63) is required to ensure that z R

is equal to yin at the first stage to which equipment is assigned.
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3.5 Process Performance and Production Cost

The equipment assigned to the processing tasks and the storage policy selected for the

process affect the production rate of the process and the duration of the manufacturing

campaign. Since the reaction times do not depend on the item of equipment that is

used, and identical distillation columns are assigned to the same task, an unlimited

intermediate storage policy (UIS) is modeled by treating the number of batches of

each task as an integer variable. N batchR and N batchD represent the number of batches

used for the reaction and distillation task in train k. The number of batches for tasks

that are not performed is arbitrarily assigned to the maximum number of batches.

The no intermediate storage policy (NIS) is modeled by requiring that the number of

batches used for every task is the same, and the arbitrary assignment for unperformed

tasks is relaxed. The model equations below are derived for the UIS case, recognizing

that the NIS case can be derived by adding constraints, or substituting Nbatch for both

NZb tchR and Nkt hD. Letting the time averaged flows represent the total flows over

the duration of the campaign, the following constraint underestimates the processing

volume required for the reactors and represent a relaxation of the constraint requiring

that the reactors do not overflow:

N,

SRt PV< ZR NbatchNRV + NBmax Cmax (1 - ykRxn) V k (3.64)
e iEIR n=l1

where v is a vector whose components underestimate the molar volume of each of

the pure components in the process over the temperature range of interest. If volume

changes upon mixing are modeled, these underestimates must be chosen so that valid

underestimates are still obtained for the resulting mixture volumes when the volume

is calculated as if it is an ideal mixture.4 Note that the volume requirement is based

solely on the underestimate of the final reaction volume in order to account for fed

4To account for volume changes, the molar volume of each component is adjusted to account for
the maximum volume change upon mixing that is possible over the temperature and compositions
considered. This maximum change can, in principle, be calculated by applying global optimization
techniques (Adjiman et al., 1996; Maranas and Floudas, 1996; Smith and Pantelides, 1995) to the
mathematical model used to predict liquid volume in the detailed dynamic models.
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batch operating policies, and that the constraint is relaxed if the reaction task is

not performed and the contents are passed on to the subsequent distillation task.

If the reactions must run in batch mode, then a similar constraint can be imposed

on the initial reactor volume. Detailed simulation of a reactor with these feed flows

may actually overflow since these constraints overestimate the feasible region. Similar

constraints are enforced for the distillation columns, but we assume that all of the

material is charged to the column at the start of the task.

N,

v TfiM•ot < Z SE fYfi kn N batchD V i + NBmaX Cmax (1 - kD) V k (3.65)
e iEID n=1

The campaign time for the process depends upon the processing times for the

individual tasks. The processing time for each distillation task depends upon the

columns assigned and the amount of material processed. Parallel distillation columns

are required to be of the same type, so an optimum exists with equal amounts of ma-

terial sent to each. Thus, the processing time for columns operating at the minimum

allowable reflux ratio of R m in to complete distillation task k is given as follows:

tD = •kDout fBot BI i (3.66)
e iEID nNi

The reaction processing times tR for one batch are independent of the assigned equip-

ment units, yet we need to consider whether the reaction tasks are merged to deter-

mine the total batch processing time for reactors assigned to these tasks.

tmerged = tR + merget merged V k (3.67)

The total processing time needs to consider the transfer times and any time allotted

to bring the columns to total reflux. Constant transfer times are assumed, leading to

the following bounds on the campaign time.

campaign > tD ± N•batchD (tcharge tempty + treflux V k (3.68)
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tcampaign NbatchR (tmerged + charge empty Vk (3.69)

In addition, the time available for manufacture is typically restricted.

tcampaign < thor i z on (3.70)

The cost of manufacture includes raw material, waste disposal, equipment use, and

utility costs. Each equipment item has associated an hourly rental charge. Equipment

items must be rented for the entire campaign, so the equipment cost for the campaign

can be expressed as follows:

N, N,

Sequp tcampaign + tE campaign R Z C (3.71)
iEID n=1 iCIR n=l

Utility costs are calculated from the duties for distillation tasks and cost of the spe-

cific utility required. Below, we assume only one level of the hot and cold utility is

available, although this is not necessary in general.

(Chu + ccu) Qk = Cu ti li t y (3.72)
k

Raw material and waste disposal charges are associated with every fixed point node.

Total waste and raw material costs are determined from the total mass of material

entering and leaving the process.

craw" = CfSupply (3.73)
eEER

cWaste = C, waste (3.74)
eEE

An underestimate of the total manufacturing cost is given as the sum of the individual

costs.

Ctota l = C r a w + Cw a s te + Cu t i li t y + Cequip (3.75)
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3.6 Formulating the model to be solved

The constraints presented above permit the minimization of the underestimate of

the manufacturing cost expressed in (3.75) subject to constraints (3.5-3.7), (3.11),

(3.13-3.25), (3.30-3.40), (3.41-3.58), and (3.60-3.74). However, the model, as pre-

sented, cannot be solved to guaranteed global optimality since it is nonconvex. All of

the nonconvexities in the formulation arise from bilinear terms between discrete vari-

ables or between discrete and continuous variables; these terms are present in (3.40),

(3.43-3.49), (3.50), (3.64-3.67), (3.69), and (3.71). Since exact linearizations of these

expressions are possible, the model can be transformed into a mixed-integer linear

program that can be solved to guaranteed global optimality (Glover, 1975; Adams

and Sherali, 1986).

The bilinear products of two binary variables are modeled by defining continuous

variables that are an exact linearization of the bilinear product. For example, the

bilinear product B Ykeo Yk appearing in (3.50) is replaced by introducing the continuous

variable zkB1 equal to the bilinear product that is defined in terms of linear constraints

following the linearization scheme proposed by Glover (1975):

zkBb1 < Yko V b, k (3.76)

zb,< Y B Vb, k (3.77)
B1  Bot (3.7)

Zkb Ye kb 1 Vb, k (3.78)

The bilinear terms of continuous and discrete variables are also linearized following

the scheme proposed by Glover (1975) that exploits the upper and lower bounds (e.g.,

(3.81)) on the continuous variables. For example, the variable tRM is introduced to

replace the bilinear term in (3.67).

tmerged _ erged+(1 merge RM merged - tmerged- (1 - y) V k < K (3.79)
Y -t• t1-yI •kme3.79

tmerged- merge RM merged+ merge V k < K (3.80)
k Yk -t -• Y< (3.810)

tmerged- < tRM < tmerged+  (3.81)k - k - k
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These constraints typically increase the integrality gap of the model. Finding tight

upper and lower bounds on the variables helps to mitigate this effect; calculations

to estimate tight bounds on the variables are discussed in chapter 4. Additional

constraints can also be introduced to derive a tighter formulation (Adams and Sherali,

1986).

The integer variables representing the number of batches are modeled as the sum

of binary variables to enable standard linearization techniques to be applied. Special

ordered sets of type 1 are used for these binary variables to improve the efficiency of

the solver's branch and bound iteration (Beale and Tomlin, 1970).

NBmax

Nbatch = 7 myNB (3.82)
m=l

NBmax

SyNB = 1 (3.83)
m=l

3.7 Conclusions

Screening models for batch process development have been derived. A superstructure

for networks of batch reaction/distillation tasks has been presented. This super-

structure embeds sequences of reaction and distillation tasks with material recycles.

Equations to enforce time averaged material balances for the nodes in the superstruc-

ture have been derived. Composition targets for the reaction and distillation tasks

overestimate the feasible region of operation and enforce mass balances for the tasks.

Although the distillation targeting model assumes sharp splits, we have demonstrated

that the superstructure embeds all feasible sequences of distillation cuts. In addition,

the modeling equations for the reaction and distillation tasks provide rigorous un-

derestimates of the processing time and utility requirements. The distillation targets

that have been derived show that when the minimum reflux ratio is determined from

the limit required for proper gas/liquid contacting, the screening model can be cast

as a mixed-integer linear program. Within this formulation, the screening models

address the allocation of equipment to processing tasks for both UIS and NIS storage
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policies, and consider raw material, waste disposal, utility, and equipment costs.

The screening models provide a rigorous lower bound on the cost of the design.

This lower bound can be employed as a design target to enhance existing design

methods, or as the basis for a rigorous decomposition algorithm to address batch pro-

cess development. For instance, the solution of the screening model can be employed

as a metric upon which the benefits of design optimization can be assessed, and it

can be used to determine whether a new product has any chance of being profitable.

Screening models also enable the development of the rigorous decomposition strategy

for the improvement of the design, discussed in section 2.4, that has the potential

to avoid total enumeration of the discrete space. The decomposition strategy also

provides a rigorous bound the distance to the global solution upon termination.

In addition, the screening models consider aspects of the batch process synthesis

that have not previously been systematically addressed. Solvents and reagents can

be selected from a set of candidates and the models can determine the sequence

of processing tasks from a superstructure of processing alternatives. The solution

constructs not only the sequence of tasks to be performed, but also defines the recycle

structure for the process. For these reasons, the solution provided by the screening

model provides a good starting point for detailed design. This solution facilitates the

definition of a state task network of the process that can be used to formulate the

detailed design as a dynamic optimization problem. In addition, the solution of the

screening model provides good initial guesses for the compositions and amounts of

recycled batches of material for the dynamic optimization formulation. The ability to

handle discrete decisions directly within the screening model makes them particularly

appropriate for making decisions such as in which batch distillation region should the

feed to the column be located, and what equipment should be assigned to a particular

processing task.

The screening models are demonstrated on two case studies in chapters 4 and 5.
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3.8 Notation

3.8.1 Indexed Sets

B The set of all batch distillation regions

Be The set of all batch distillation regions containing fixed point e. Be = {b E

B: e E Eb}, SO Be C B.

E The set of all fixed points (azeotropes and pure components) in the system

E1  The set of all fixed points whose maximum composition in the product is

limited (i.e., impurities), E, C E

Ep The set of all fixed points regarded as product species, Ep C E

ER The set of all fixed points that may be supplied to the process, ER C E

Eb The sequence of fixed points defining the sharp splits from batch distillation

region b

I The set of equipment types available in the manufacturing facility

ID Set of equipment types suitable for distillation tasks ID C I

IR Set of equipment types suitable for reaction tasks IR C I

K The set of processing trains

Rk set of reactions occurring in the reaction task in processing train k. r =

1,... NkR

S The set defining the destination of the bottoms cuts S =

{rxn, mix, waste, prod, any}, indicating whether the bottoms are sent to

the next reaction task, to the next mixing task, to waste, to product, or to

anywhere in the process.

3.8.2 Integer Variables

NkbatchD number of batches used for the distillation task k

NkbatchR number of batches used for the reaction task k

3.8.3 Binary Variables

ykB Is region b the active batch region for distillation k?
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yLBot Is fixed point e the first fixed point appearing in the bottoms of distillation

k?

yn Are n units of type i is assigned to distillation task k?

Yk"erge Is reaction task k is merged with reaction task k + 1?

yR, Do n reactors of type i begin processing potentially merged reaction tasks

at stage k?

yRxn Is reaction task k is performed?Yk

y'S Are the bottoms from distillation k are sent to s?

3.8.4 Exact linearizations of bilinear products of binary vari-

ables

Dz Is distillation k is performed?

Zikn Are n reactors of type i are employed for reaction task k?

3.8.5 Continuous Variables

cequ ip equipment cost for the manufacturing campaign

cra w  raw material cost for the manufacturing campaign

ctotal total manufacturing cost

Cutility utility cost for the manufacturing campaign

cwaste waste disposal cost for the manufacturing campaign

fB flow from splitter node k to the corresponding backward node within the

expanded representation of fixed point e

fBk' time averaged flow of fixed point e from distillation k to reactors and

mixers at stage k'

fB' total flow of overhead species e that could be contained in the bottoms

of distillation k as an impurity

f B ot total flow of fixed point e taken in the bottoms of distillation k

f "ut time averaged flow of the fixed point e out of distillation k in batch

region b
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f,~out time averaged flow of the fixed point e out of distillation k

f[ flow of fixed point e from distillation k that is sent forward in the process

for further processing

fkMin the time averaged flow of fixed point e into mixer k

fMout the time averaged component flows into distillation k, fMout E Enc

fFroduct the time averaged flow rate of fixed point e in product

fP flow from splitter node k to the product node within the expanded rep-

resentation of fixed point e

fPrgw total flow of fixed point e purged from recycle streams that leaves the

process as waste

fPrgp total flow of fixed point e purged from recycle streams that leaves the

process in the product stream

f2,~uge recycled flow of fixed point e from distillation k that must be purged

from the process

fk,'" the time averaged flow of fixed point e into the reactor train k

fkSe total flow of fixed point e into the process that is sent to reactors and

mixers in processing train k

f upply the time averaged supply of fixed point e

fk' flow from splitter node k to the waste node within the expanded repre-

sentation of fixed point e

fW"aste the time averaged waste flow of fixed point e

Qk condenser duty

tcampaign total length of the manufacturing campaign

t °  processing time for distillation task k

tmerged total processing time for any merged reaction tasks ending with stage k

tk processing time for reaction task k

7r The barycentric coordinates, 7r E Rnc

4kr the extent of reaction r in reaction task k
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3.8.6 Parameters

CC" cost of cold utility per unit energy

CE  rental rate for equipment unit i

Ch" cost of hot utility per unit energy

C7 cost to purchase a unit mass of fixed point e

Ce cost to dispose of a unit mass of fixed point e

fmax upper bound for time averaged flows in the process

Ni number of equipment units i in the manufacturing facility

NBmax maximum number of batches that may be employed during the campaign

Qdemand product demand

Rmin the minimum reflux ratio for proper gas/liquid contacting in distillation

column i

tcharge time required to charge one batch of material to an equipment unit

tempty time required to empty one batch of material from an equipment unit

thorizon horizon time for manufacture

treflux time required to bring a column to total reflux

ve underestimate of the molar volume of equilibrium point e at processing

conditions

V1 processing volume of equipment unit i

Vi maximum vapor rate for distillation column i E ID

We molecular weight of equilibrium point e

AH wap underestimate of the heat of vaporization of equilibrium point e at the

at the processing conditions

Pe composition of fixed point e

vkr the stoichiometric coefficients for reaction r in reaction task k
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Chapter 4

Using Screening Models to Identify

Favorable Processing Structures

The ability of screening models to discriminate between alternative process structures

is demonstrated on a simple batch process development problem. Although only one

reaction step is required in this process, the complexity of the chemistry and the

thermodynamics is such that the interaction between operation of the separation and

reaction tasks leads to a large set of alternative configurations for the state task

network defining the process. The screening model automatically selects attractive

alternatives meeting the design constraints, allowing the engineer to focus on the

detailed design of these configurations. This example clearly shows the importance

of quickly identifying the most attractive alternatives in order to avoid wasting time

and effort optimizing designs resulting from poor synthesis decisions. Incorporating

the dominant operating tradeoffs within the algebraic bounding models is the key

to deriving an effective screening model for the process. This process demonstrates

the type of processing tradeoffs that are important during the optimization of batch

reaction/distillation networks, yet the level of detail has been minimized to highlight

the specific tradeoffs exploited during the synthesis and to simplify the analysis of

the resulting design.

The process examined consists of a sequence of competing first order reactions.

This example also demonstrates how bounds for the extents of reaction in terms of
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key processing variables can be derived.

4.1 Process Description

The process examined consists of a competing set of reactions that convert the raw

materials to both the desired product (P) and waste materials (W1 , W2). The product

can be separated by distillation. The bench scale synthesis employed a simple two-

stage reaction/distillation process, but made use of an ice bath not available in the

existing manufacturing facility. The reaction step comprises the set of competing

reactions shown in (4.1). All of the reactions are first order in either A or I at the

conditions under which the process may be operated. Any of the components B, W1 ,

or W2 can be used to solvate the reactions.

1 3
A+B 1 I1 --+ P

2 4 (4.1)

W1 W2

The relative rates of the reactions have been chosen so that they agree with an early

study of reaction temperature optimization (Denbigh, 1958); the reaction rates follow

Arrhenius rate expressions according to the constants listed in table 4.1. All of the

reactions are catalyzed by the same catalyst, and we assume that enough catalyst is

present for the rate expressions to remain accurate. Degradation of the catalyst is

not considered.

Table 4.1: Constants for the Arrhenius rate expressions for the first order reaction
rates (ri = Cke RT).

116

k EA
Reaction s-1 i

1 103 37000
2 107 61940
3 101 37000
4 10-3 12058



The process considered contains the six components shown in (4.1). These compo-

nents form one ternary and two binary azeotropes. The azeotropes are all contained

on the facet of the composition simplex formed by B, W1, and P shown in figure

4-1. The composition (Pe) of each azeotrope is shown in table 4.2. These azeotropes

divide the composition space into the five batch distillation whose product sequences

are shown in table 4.3.

Table 4.2: Azeotrope compositions for the three azeotropes formed between B, W1,
and P.

Table 4.3: Product cut sequences for the distillation regions.

4.2 Design Constraints

The equipment and utilities available within the manufacturing facility impose con-

straints on the design of the manufacturing process that often do not exist at the

laboratory scale (Allgor et al., 1996). Other design constraints may be imposed in

order to adhere to environmental and safety regulations or to ensure the proper op-

eration of particular tasks (i.e., temperature constraints to avoid undesirable side

reactions and/or thermal runaway). These constraints must be addressed during pro-
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Azeotrope Composition
p Wi-P B-W1-P B-W1
B 0.00 0.72 0.35

W1 0.15 0.06 0.65
P 0.85 0.22 0.00

b Product sequence
1 { A, Wi-P, W1, I, B-Wi, W2 }
2 { A, Wi-P, B-Wi-P, I, B-Wi, W2 }
3 { B, A, B-Wi-P, I, B-W1, W2
4 { B, A, B-Wi-P, I, P, W2
5 { A, Wi-P, B-W1-P, I, P, W2 }



V

WI
I· Wi-P

Figure 4-1: Distillation regions projected onto the facet formed by B, W1, and P.

cess development. Imposing these restrictions may complicate the engineer's goal of

rapidly designing an efficient process by requiring the engineer to focus much of his

or her effort on satisfying the constraints. However, the design constraints such as

emission limits, solvent to reactant ratios, conversion requirements, and temperature

bounds are easily embedded within the screening models. Furthermore, these con-

straints are exploited during the development of the screening models themselves and

actually aid in the derivation of targets for the reaction tasks.

In this example, the manufacturing facility's utility system limits the tempera-

tures that may be employed during the operation of the tasks. Since the only cold

utility is cooling water which is available at 310 K, the bench scale policy of run-

ning the reaction in an ice bath cannot be implemented in the manufacturing facility.

The manufacturing facility's equipment requires that the reactions are conducted at

atmospheric pressure, so the maximum reaction temperature cannot exceed either

the onset temperature for thermal runaway (e.g., decomposition/polymerization) ad-

justed by a safety factor, or the greatest boiling temperature of any of the fixed points

of the residue curve map (W2). However, these temperature restrictions enable the

118



derivation of bounds for the extents and selectivity of the competing reactions.

In addition, design constraints are imposed to ensure proper operation of the

reactions. A molar ratio of solvent to reactant (either A or I) of at least 15 is

required to ensure proper solvation of the reactions, and an excess of B (two times A)

are required to maintain the desired reaction kinetics. These constraints are captured

in equations (4.2-4.3).

f'R (pB P P + PwPw) + PT 2) > 15 (fkb + fkRn) Vk (4.2)
e

eZfki PePB P2f - A Vk (4.3)

Since the product will be processed in an existing manufacturing facility, the choice

of equipment is limited. The inventory and cost of the available equipment are shown

in table 4.4; all of the columns contain 8 theoretical stages and must operate at a

reflux ratio above 1.5 for proper gas/liquid contacting. We require that distillation

columns operated in parallel at a stage are identical.

Table 4.4: Inventory and rental rates for processing equipment.

In order to evaluate the cost of manufacture, the raw material and waste disposal

costs are required. In addition, in order to evaluate the utility costs and volume

requirements underestimates of the heat of vaporization and the molar volume is
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Reactors
Volume Available Rental Rate

[m3 ] Units [$ / hr]
2 1 50
3 2 70
4 1 88

Distillation Columns
Volume Vapor Rate Available Rental Rate

[m3 ] [kmol/hr] Units [ $ / hr]
3 15 2 90
4 20 1 110
5 15 1 125



required for all of the fixed points. These data are provided in table 4.5. Note that

the waste disposal costs are merely estimates based on the average waste disposal costs

for organic chemicals that are not highly toxic. Of course the most accurate data that

is available should be employed, yet these figures should provide the tradeoffs similar

to those that would be encountered by a manufacturer.

Table 4.5: Material cost, disposal cost, and physical property data for the fixed points.

4.3 Reaction targets

The screening model presented in chapter 3 enforces the mass balances around the

reactors in terms of the extents of the reactions. However, to capture the dominant

operating tradeoffs related to the reaction tasks within the screening model, tighter

bounds on the extents of reaction in terms of the operating variables must be provided.

In this section, bounds for the extents of the reactions shown in (4.1) are derived in

terms of the processing time and a bound on the temperature profile employed during

the reaction task. These reaction targets capture key tradeoffs between the extent of

reaction, selectivity, processing time, and the reactor temperature profile, yet these

targets do not eliminate any portions of the feasible operating space.
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Fixed Raw Waste Molar
Points Material Removal HVap Volume Molecular

e [$/kg] [ $/kg] [J/mol] [l/kmol] Weight
B 4.50 16.50 29300 69.210 50.08
A 7.00 16.50 35300 124.498 190.40

W1-P 18.00 62290 196.371 240.48
W1 18.00 40700 193.708 240.48

B-W1-P 20.00 38080 104.759 103.39
I 18.00 45500 189.270 240.48

B-W1  18.00 36710 150.134 173.84
P 20.00 66100 196.841 240.48
W2 20.00 29700 194.948 240.48



4.3.1 Bounding the selectivity and extent of reaction

First, we obtain bounds on the selectivity of competing reactions. Since the selectivity

of I to W1 and the selectivity of P to W2 depend on only the operating temperature

profile, we relax the restriction that reactions 1 and 2 occur at the same temperature

as reactions 3 and 4 to derive valid bounds on the selectivity. The reaction kinetics

dictate that the extreme values of the selectivity are achieved at the limits of the fea-

sible temperature range. For instance, the selectivity of reaction 1 to 2 is maximized

at the minimum temperature, and the converse is true for reactions 3 and 4. Upper

and lower bounds on the selectivity of the competing reactions are obtained in (4.4)

and (4.5) by relating the extents of the competing reactions to the limits imposed on

the operating temperature.

kI E2- k1 E2-E

(2 e 
RTmax < 61 ý2 - RT

m
i
n  (4.4)

k2 k2
k3 E4-E3 k3 E4-

4 4 RTmin < 63 4
<  4 e RTmax (4.5)

k4 k4

These constraints provide valid bounds on the attainable selectivity, but employ a

very crude bound on the temperature profile.

Bounds for the extents of reaction in terms of the processing time are also easily

derived for (4.1). Since the reaction rates are greatest at the maximum temperature

of operation, the extents that can be achieved are less than the extents that would

be achieved if the process operated at the maximum rate. The maximum extents

of reaction are achieved when all the reactants are available at the initial time, and

the reactor is operated at the maximum temperature. The solution of following

differential equations defines the extents of reaction in the isothermal case:

d(nmax +max)1 2 = KrmaxNA (4.6)
dt

3 4 = KmaxN (4.7)
dt

The solution of (4.6-4.7) is defined by the following algebraic expressions relating the
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maximum extents of the competing reactions to the processing time when Ný = fAR"

and NO = ffRj"li:

•1 - •2 • fRi-(1 - e- Yaxt) (4.8)

J3 + f4 i (fR + ±)(1 - e- 4axt) (4.9)

where

max -EA 1  -EA
lK2n a x = kle RTmax + k 2 eRTmax (4.10)

-EA 3  -EA4
4ax = k3eRTm + k4e  (4.11)

Equation (4.9) assumes that all of the reactant I is available at the start of the reaction

task in order to preserve the bounding property of the model. Note, however, that

(4.8) and (4.9) are nonlinear, and that they define a nonconvex feasible region. Convex

overestimates are developed for these constraints in section 4.3.2.

Equations (4.8-4.9) provide valid bounds, but they are not likely to be very tight

because the constraint requiring that the same temperature determines both the se-

lectivity and the reaction rate has been entirely relaxed. In order to tighten these

bounds, we have to capture the time/temperature dependence of the operating policy

within the targeting model. Incorporating the time/temperature dependence within

the screening model is difficult because we are attempting to represent dynamic oper-

ating decisions using algebraic constraints. However, we can represent a bound on the

feasible temperature profile using algebraic constraints. Furthermore, this represen-

tation allows us to employ the same bounds on the extents of reactions derived above.

The key is to represent the total amount of time the reaction task operates within a

given temperature range; we do not consider in what order the reactor spends time in

each of these temperature intervals or do we require that times spent in each interval

correspond to some continuous temperature profile. The feasible temperature range

is divided into nj intervals indexed by the set J. Let Tj define the maximum tem-

perature in each interval, where T m in = To < T1 < ... < Tj = Tmax. The time that
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the reaction task operates in temperature interval j is given by tj, and the extent of

reaction that is achieved in each of these intervals is specified by ýT . The selectivity

targets previously derived are enforced over each of these temperature intervals.

k 1E-E k 1
T2jT e  j < 2T •RTj- Vj = 1, nj (4.12)

Sk2 k2

4T k3 E4-E Tk3e (4.13)E-
4-e RT<-1 < y4 T e Vj = 1, nj (4.13)

The bounds on the extent of reaction that can be achieved in a given time are also

enforced over each interval.

S+ T  fR (1 - e - "
12(Tl)tT) Vj = 1, nj (4.14)

3T + 4 (fn + 1 -,
3

4 T ) .
)  Vj = 1, nj (4.15)

where

-EA 1  -EA

K12(Tj) = kle RT + k 2e k RT (4.16)
-EA

3  -EA
4

K34(Tj) = kle RTj + k 2 e RTj (4.17)

Since we do not account for the order in which the reactor spends time in each of

the intervals, we have to assume that each interval is active when the concentrations

are highest in order to preserve the bounding property of the screening model. Thus,

we have assumed that reaction 1 occurs instantaneously when calculating the rates

of reactions 3 and 4. However, the extent that can be achieved over a sequence of

intervals must be less than the extent that could be achieved if the entire reaction was

carried out in the last of these intervals. This is because the maximum extents are

achieved over these intervals if all the raw materials are available at the initial time

and the reactor operates for the duration of the time spent in all of these intervals

(Ej,<j tf) at the maximum temperature contained in all of these j intervals (Tj).

1The ElTj define the extent of reaction r occurring at processing stage k due to the time spent
in temperature interval j. However, to simplify the notation we have dropped the subscript k
throughout the following sections.
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Therefore, the following constraints are also enforced.

z ;,•-j 2 ,  fRn(1me -12() N j' <-j ta) Vj = 1, n (4.18)
j'-j

Zc tual -3 (f/tin)(herectrhn +_ be<cau t) Vj = 1,nj (4.19)

Constraints (4.18-4.19) are equivalent to (4.8-4.9) when the sum is taken over all

of the temperature intervals (i.e., j = nj); therefore, (4.8-4.9) need not be included

in the optimization model. Note that (4.18-4.19) provide a tighter bound on the

actual operation of the reactor than (4.8-4.9) because these constraints account for

the fact that the reactions must proceed at a slower rate when not operating in the

maximum temperature interval. In fact, since (4.18-4.19) are equivalent to (4.8-4.9)

when j = nj and the constraints for other values of j are not necessarily inactive,

(4.18-4.19) define a smaller feasible region and are tighter. The operating time for

the reaction task and the extents of reaction are obtained by adding the contributions

from each of the temperature intervals.

tj = t Vj = 1, n (4.20)

ZT' = r V r, j=1, nj (4.21)

The nonlinear inequalities ((4.18)-(4.19)) and (4.14-4.15) require linear convex over-

estimators in order to formulate the screening model for this example as an MILP.

Linear overestimates of these regions are provided in section 4.3.2.

4.3.2 Convexifying the Extent/Time Boundaries

Although the equations defining the bounds for the extents of reactions to (4.8-4.9),

(4.14-4.15), and ((4.18)-(4.19)) define a feasible region that appears to be convex

on first sight (the region under the surface shown in figure 4-2 appears convex),

the eigenvalues of the Hessian of these functions demonstrate quite clearly that the

expressions on the right hand sides of these inequalities are not concave. All of the
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Figure 4-2: Surface defining the upper bound on the extents of reaction given by
f(1 - e-Kt).

expressions on the right hand side have the form f (1 - e- t) where f and t are positive

variables. The Hessian of this expression is given below:

H = V2f(1 - e-Kt) = e- t  (4.22)
Ke- t fK 2 e - K

t

The Hessian has the following eigenvalues:

A -t (f2 J K f 2K2 + 4) A2 = -e' (fK2 - f2 + 4 (4.23)
2 2

Since the eigenvalues differ in sign, the functions defining the surface are not concave

and the region under the surface is not convex. Therefore, tangents to the surface do

not overestimate the function over the entire space. Examining the tangents of the

surface taken at larger values of f and t shows that these planes lie above surface at

all larger values of f and t, but cross the function at smaller, yet positive, values of

both f and t. Examining the intersection of the tangent planes with the f-t plane

shows that the line of intersection crosses through the positive orthant of the f-t

plane. Two strategies have been investigated to overestimate these functions with

linear constraints.

The first method defines planes that do not cut off any portions of the feasible

region that are parallel to the tangent planes. Let L and M define index sets used to
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specify points (f1, ijm) 2 at which the tangents to the function are evaluated. Hence,

there exists a positive constant representing the displacement Ci,m for each of the

tangent planes that defines a parallel plane that touches the surface at only one point

and will overestimate it at all other points in the feasible space (f > 0, t > 0). There

exists a point (f > 0, t > 0) (the sole point of contact of the displaced plane) for

which the following equation uniquely defines the constant Ci,m that corresponds to

the point (ft, ijm) at which gradient of the surface has been evaluated:

f (1 - e-r 3m) + fine -Km (t - jm) + Ci,m = f (1 - e- t) (4.24)

In this case, (f, t) is the sole point at which the parallel plane contacts the constraint

surface. From the shape of the surface and the slope of the tangent planes, it can be

seen that the single point of contact for the parallel planes is the origin. Essentially,

the displacement ensures that the intersection between the tangent plane and the f-t

plane does not cross the positive orthant. Setting the right hand side to zero uniquely

defines the constant CI,m as shown below:

Ci,m = fitjmeK- ••" m (4.25)

Displacing the tangent planes of the constraint surface by the amount Ci,m pro-

vides linear constraints that overestimate the feasible region. This strategy can be

applied to (4.18-4.19) to derive linear constraints that overestimate the feasible re-

gion. Let the sets jA and f/ define the values of fjRf and (fR"i + 1) at which the

tangents to the functions appearing on the right hand sides of (4.14) and (4.15) are

evaluated. The following constraints correspond to (4.14-4.15), where fj4 and fI rep-

resent fixed values of the input flows and tjm is a time at which the gradients have

been evaluated:

2The hat notation has been employed throughout this chapter to distinguish the constants used
to define the interval boundaries from the subscripted variables appearing in the model.
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1j + (2 ^ fA (i - e 12 (T m

+ Al 2( )e 12 (Tj)emtT Vj E J, I E L, m E M (4.26)

C + T < (fj" .+ (1 -e -34(1)i,)

±+ fIT 34 (Tj)e-K34(T j mt Vj E J,l E L, mEM (4.27)

A similar strategy is employed to derive a linear overestimate of the feasible region

for (4.18-4.19).

The addition of these constraints does not require the introduction of any addi-

tional integer variables, but these constraints may not be very tight. In fact, these con-

straints do not even provide a tight approximation near the points (fA, ijm). There-

fore, we have also considered another linearization strategy that employs additional

binary variables, but leads to a tighter approximation of the nonlinear constraints.

The second linearization strategy is based on the fact that (4.14-4.15) and (4.18-

4.19) define a convex feasible region if either the reagent feeds (fZnR and fIR" + (1)

or the processing time in the given temperature interval tT is fixed. Overestimating

the feed flows to a particular reaction task overestimates the feasible region for all

values in time. Therefore, if fj'R < flA then the tangent of fA (1- e-~2(Ti)i jm

overestimates the original feasible region:

(T + ( fT " R 1 e-12(T Ty
S <fA 

(4.28)

_ f 1A (i-~ e, 12 •()) + ~Al 2(T)-r jm (2-(-_ j)

The extents of reactions 1 and 2 can be related to the feed of A and the fractional

conversion of A. We introduce the fractional conversion of the reactants A (x12)

and I (x34 ) as new variables. The fractional conversions account for the time and

temperature dependence of the reactions, and the fractional conversions x12 and x3 4

of a batch reaction operating at temperature Tj are defined by the following concave
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expressions of time:

X1 1 - e -K12( TJ)t j  Vj

X34 - 1 - e- K34 (Tj ) t j  V j

Since (4.29) and (4.30) define concave functions of time for temperature T,, tangents

to these curves define upper bounds on the maximum conversion of A and I that can

be achieved in a given temperature interval. Thus, upper bounds on x!2 and x4 are

defined as follows:

12 < 1-T - a 12(T .) t K12(T )tjm (4_2

xa -12j - 12 T (+ - im) Vj E J, m M (4.32)

x 4 < (1- e34(Tj)¶'m) + Kl 2 (Tj)6e-
34(T

i)m (tT - tjm) Vj E J, m E M (4.33)

By bounding the fractional conversion according to (4.32) and (4.33), the feasible

region for the extents of reaction defined in (4.14-4.15) can be overestimated using

these new variables as follows:

-_ + x2) fAR j Vj E J (4.34)

3T j+ 4j < (fR,, + 1) 3 4  Vj E J (4.35)

Equations (4.34) and (4.35) both contain bilinear terms comprised of continuous

variables. However, we can employ the linear expressions providing upper bounds

on bilinear terms proposed by McCormick (1976), which provide the following linear

upper bounds on fx:

fx < fLOX + fxUP - fLOXUP (4.36)

fx < fUPX + fxLO - fUPXLO (4.37)

where fUP and fLO provide rigorous upper and lower bounds on f; xUp and xLO
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provide rigorous upper and lower bounds on x. The only rigorous lower bound on x12

and x i4 is zero because t could equal zero, so (4.37) applied to (4.34) provides the

same constraint as (4.28). However, if we can provide a nonzero bound for fLO, we

can employ (4.36) to derive tighter upper bounds on the extent of reaction that can

be achieved.

To apply (4.36) and (4.37) bounds on the fR,", fi" + j1, and on 2 and are

required. Upper and lower bounds on12 and 34 f one and zero are assumed. To

provide tight bounds on the feeds to the reaction tasks fixed values of the feed flows

are selected so that they define an ordered set indexed by 1 that covers the feasible

region of feed flows (i.e., 0 = foA < fA <... fA = fmax); the values of fi-1 and fA

can be thought to define the upper and lower bounds of a feed interval. The binary

variable yFA is introduced to identify the feed interval in which the feed lies (i.e.,

fA 1  fAn _fIA). A similar set of values f/ and binary variables yF are defined for

reactions 3 and 4. These binary variables represent SOS1 sets3 and are defined by

the following linear constraints:

S ,FA = 1 (4.38)
IEL

yl = 1 (4.39)
1EL

fi_1yA < fARn - A J FA (4.40)
lEL 1EL

Sf/- 1Yfy fRin -+- 1 6 E f/Ay (4.41)
1EL IEL

The upper (fA) and lower (fA 1) bounds on the flows are valid if the feed interval is

active (i.e., yFA = 1), so we can derive bilinear constraints that enforce bounds on

the extents of reaction that can be achieved in a given temperature interval in terms

3An SOS1 set is a set of binary variables with a natural ordering in which one member takes
value 1 and all the others are 0. Branch and bound algorithms can take advantage of the structure
of these sets during the branching procedure (Beale and Tomlin, 1970).
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of the reagent feed and the time spent in the temperature interval.

AlFA ( I 1  FA 12 1A FA FARAn <Vj E J,l EL (4.42)

FSA (ýT. + ý fA 12
ylA (j 2~ j < • iA2  Vj E J,1 E L (4.43)

Similar constraints can be derived for reactions 3 and 4. The exact linearization

proposed by Glover (1975) can be used to transform the bilinear terms appearing

(4.42) and (4.43) into an equivalent set of linear constraints. 4 To employ this strat-

egy the variables lT= -jTyFA are introduced to denote the extent of reaction 1 in

temperature interval j and feed interval 1. In addition, the variables J21 = 2 FA

A = ylA F aRn, and fj-t = (flF n + n 1) are introduced. The same procedure is
! '- Yl JA ýJl -- Yr

applied for reactions 3 and 4. Note that EIEL V] = V , r

Bounds on the jl are derived by substituting the variables for the bilinear terms

into (4.42) and (4.43), yielding the following:

~ T "A 1 12 FA F r Rn_r Tj + A2 + TlI n Vj J, 1 L (4.44)

-Tlj± + -T -A 12 Vj C J,l E L (4.45)

t+ T f-1 4 - 1 F- n J Vj C J, l E L (4.46)I331 + 34<f 7l A0I+i

-T+ TI ^ f 4 Vj E J,le L (4.47)

The constraints (4.44-4.47) overestimate the feasible region defined by the nonlinear

nonconvex constraints (4.14-4.15). We can bound the region defined by (4.18-4.19)

in a similar fashion. First, variables 2S and x are defined to represent the total

of x12 and xj34 that can be achieved in all the temperature intervals up to j:

x 2 s V2 Vj E J (4.48)
ji•j

x34S 34xx4SJVj E J (4.49)

4Section 4.6.4 discusses the linearization of the bilinear terms between continuous and binary
variables.
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x12s < (e- - 12(T) 3 m) -+ ~I 2 (Tr)e -
12(T
) ImX --

X34s < (1 -e - K34(T, )im) ± -1 2 (Tj)e -K34(TJ)tmj -

By defining 12s = FA 12

estimate the feasible region

Sl~
j,•j

Sll
ii •j

(z tiT m VjEJ, mCM

(4.50)

(zt;>-tjim) VjEJ, mE .M

(4.51)

and . S = yF x 3 4, we can derive constraints that over-

defined by (4.18-4.19) as follows:

fA 11 2 S iA 1,FA + Ri
1-lj -- J- lY1 -JAl

T+ •T fA 12S

f I 3 4S - +1 FI R
--l1j l -j - J-•Y I II

T ) <I fx34S+ ý4j,) <- 1 xj

VjE J, IEL

Vj c J, I L

Vj e J, leL

Vj e J, IEL

(4.52)

(4.53)

(4.54)

(4.55)

Comparison of Convexification Strategies

The second strategy requires the addition of two SOSI sets of size n, (yFA and yFi) for

each reactor included in the superstructure. The second strategy also introduces the
Tcontinuous variables S Al l ,2 34 12 34S

continuous variables R, If , f ,I j 2 -34 12 ,and . 34 which were not required

for the first linearization strategy. However, the second strategy provides a tighter

linearization than the first. Furthermore, the linearization provided by the second

strategy can be made to approximate the original constraints as tight as is desired by

increasing the sizes of the SOS1 sets. This is not possible with the first strategy.

The effort required to solve the problem given by the second linearization strategy

was on the same order as the time required to solve the first. The objective calculated

using the second strategy was greater than that calculated by the first, demonstrating

the fact that the approximation is tighter.

The solutions that are presented in section 4.5 employ the second convexification
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strategy.

4.3.3 Minimum Extents of Reaction

The targets derived above capture the effects that modifications to the processing

time and the temperature profile have on the selectivity and the maximum extent

that can be achieved. Even though the reactions may be terminated by filtering out

the catalyst, we have not placed lower bounds on the conversion that must be achieved

in a given amount of time. In fact, with only these constraints, the solution of the

screening model chooses to run the first two reactions to completion, separate the I,

react the I to form product in the absence of W1 , and separate the product. With

such a scheme, none of the product is lost in an azeotrope, making this alternative

highly attractive in the screening formulation. Clearly, we would like the screening

model to incorporate a lower bound on the extents of the third and fourth reactions

to capture the fact that the first two reactions cannot be run to completion without

producing some W2 and P in the process. Such constraints are derived below.

A lower bound on the extent of the third and fourth reactions can be derived by

underestimating both the rate of conversion of I and the amount of I that is available

for reaction. The amount of I available for reaction can either be produced from the

reaction of A, or it may be charged directly to the reactor. Since the reaction of I

is a first order process, the extents of reactions 3 and 4 coming from each source can

be treated separately; whether I is generated or charged, it obeys a first order decay,

so the conversion of a given charge of I is a function of only time since the charge

and the reaction temperature. Let /4 represent the extent of reactions 3 and 4 that

results from I fed directly to the reactor and let A4 represent the extent of reactions

3 and 4 resulting from the conversion of A fed to the reactor.

3 +~4 34 3A4 (4.56)

Since semi-batch operation is permitted, (4 could be zero because all of the I could

be charged at the end of the reaction, yet 63 + 4 > 3A. We focus on determining a
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lower bound on A4. We know that A4 cannot be zero for nonzero values of (1 because

the rates of the first two reactions are finite, so the reactor operates for a period of

time when I is present.

The first reaction must proceed for a certain amount of time in order to achieve

a given conversion, even if the reaction proceeds at the maximum rate. As I is

generated by this reaction, it immediately begins to react to form either P or W2.

The minimum extent of reactions 3 and 4 is obtained when these reactions occur at

the minimum rate. Based on this observation, bounds are derived for the minimum

extent of reactions 3 and 4. First, an underestimate of the time required to achieve

the extent of reactions 1 and 2 is calculated. The minimum amount of time to

achieve a given extent is obtained when all of the reagents are available at the initial

time and the temperature is set to its upper limit, maximizing the rates. Next, an

underestimate of the conversion of reactions 3 and 4 that must occur during this time

is determined. To underestimate this rate, we assume that only the amount of A

converted to I (i.e., (1) is available at the initial time. In addition, to underestimate

(A we assume that all the reactions proceed at the minimum rate (i.e., the minimum

temperature) for the time determined in the first step. Under these assumptions the

extent of reactions 3 and 4 as a function of time can be determined from the solution

of the following set of ordinary differential equations:

d3A4 nN (4.57)
dt 34

dt nmnN - mmN, (4.58)
t - A- K 3 4 NI

dtA

where

-EA

ni = kileRTmin (4.60)
-EA 3  -EA 4

34 = k 3 eRTmin + k 4 eRTmin (4.61)

and NA(O) = J1, NI(0) = 0, and A4 = 0. Solving (4.57-4.59) subject to the initial
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conditions leads to the following bound on (sA3.

Smin min
(33 >1 1 (+ n - t  • - n (4.62)

1- K4 K1 m34

Equation (4.62) accounts for the fact that some product will be created during the

reaction task as long as A is converted to I in the reactor. The region defined by (4.62)

is nonconvex, yet we can provide a convex overestimate of this region by introducing

an additional set of binary variables to identify a lower bound on the time required to

achieve (1. We enforce (4.62) for each of the temperature intervals. Discrete points

in time tim are selected for each temperature interval, and the following expression

for the maximum fractional conversion of reaction in this time is evaluated at each of

these points:

xjm = 1 - en12(T33- (4.63)

At these same points in time, the minimum conversion of reactions 3 and 4 is calcu-

lated from (4.62) as follows:

,,34rmin 1+ K34 (Tj-1)
jm K1(Tj-l) - I'34(Tj-1)

K1(Tj-1) e-_K34(T -l 1)m (4.64)
Ki(Tp-1) - K34(71-1)

The active time interval is identified by binary variable y m which requires that the

conversion of I achieved in temperature interval j (f ,) satisfies the following con-

straint:

fRi ,mx T T t .lmrxaxfAin Z < ,m j + 2j m ax Vj (4.65)
m m

where

S m = 1 Vj (4.66)
m
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A lower bound on (a + 4 can now be defined in terms of y•m as follows:

3T +_T > IT t ^34
m in

3ymxjm V4j (4.67)
m

By defining the continuous variables NA _= U in and ýjm = yl l r using an exact

linearization (Glover, 1975), (4.65) and (4.67) can be expressed as the following linear

constraints:

,I m a x  T + maZN4,m 1 <j m ax V j (4.68)
m m

S+ '*> S ljm,34mi V j (4.69)
m

Equation (4.69) defines a piecewise constant overestimate of the feasible region by

providing a rigorous underestimate for the right hand side of (4.62).

4.4 Process Superstructure

The desired product P was synthesized at the bench scale using a process consisting

of one reaction and one distillation task. During the initial phase of the reaction, the

reactor was kept in at 273 K using an ice bath. After a period of time, the reactor

was removed from the ice bath and heated to drive the reactions to completion.

The experiments indicated that the conversion to product was affected by the time

at which the reactor was removed from the ice bath. The contents remaining in

the reactor at the completion of the reaction task were then separated using batch

distillation.

Although the laboratory process was able to obtain P using only one reaction and

distillation step, this does not imply that the optimal design of the manufacturing

process should contain the same process structure. In fact, the design constraints

imposed by the manufacturing facility dictate the process structure employed at the

bench scale is infeasible. In order to obtain pure product, the feed to the column

must lie within batch distillation regions IV and V. This requires a high selectivity
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of P to W1, which implies that a high selectivity of I to W1 must be obtained. A

high selectivity of I to W1 can be achieved when operating in an ice bath, but the

selectivity is reduced at higher temperatures. The maximum selectivity that can be

achieved given the cold utility available within the manufacturing facility does enable

the reactor to provide a feed to the column in either region IV or V. This implies that

the superstructure considered within the screening model must contain more than

one reaction and distillation task to insure feasibility.

The structure of the batch distillation regions and the fact that the reactions are

catalyzed by a heterogeneous catalyst also indicate that a superstructure containing

more than one distillation task should be considered. Since one of the feeds to the

system, B, participates in the azeotropes that are formed, it can be employed as an

entrainer within the process. In addition, a stream can move from one distillation re-

gion to another through the reaction of B. Since the reactions require a heterogeneous

catalyst, the reactions can be terminated by filtering out the catalyst. This indicates

that it may be possible to separate the reaction mixture after a period of time, and

then continue the reaction. Each of these observations indicates that a superstructure

containing more that one reaction and distillation task should be considered. Two

different superstructures are considered for this case study. The first superstructure

contains one reaction and three distillation tasks, and the second superstructure con-

siders three of each. Since the second superstructure contains the first, it cannot lead

to a worse solution.

4.5 Solutions of the Screening Models

The cost of producing 68,039 kg of product P was minimized for both of the pro-

cess superstructures mentioned above. Raw material, waste disposal, utility, and

equipment rental costs were considered for a manufacturing campaign employing no

intermediate storage; end effects were ignored. The product was required at a purity

of 99% defined on a mass basis, and all of the bottoms streams were not permitted

to be contaminated with any overhead species. Two percent of all recycled material
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was purged. As expected, the more flexible superstructure provided a better design

and chose to employ two reaction tasks. The solutions obtained for each of the super-

structures are described in sections 4.5.1 and 4.5.2. Section 4.5.3 compares the two

solutions.

Five temperature intervals (defined by 310, 315, 320, 430, 440, 450 K), five feed

intervals, and six time intervals were selected. The feed intervals were based on the

minimum amount of A and I that is required to generate the desired amount of

product at the highest selectivity possible; the upper bounds on first four intervals

were given by .5, 1.1, 1.3, and 2 times this minimum amount. The bound on the final

interval was given by the maximum allowable flow. A different time discretization

was selected to define x12 and x34 in each temperature interval. The discrete points

in time were selected to correspond to conversions of (.5, .85, .9, .99, .999, and .9999).

4.5.1 Solution obtained from the First Superstructure

The optimal solution employs one reaction and two distillation tasks. A schematic of

the solution is provided in figure 4-3, where the stream labels identify the material

flow in kmols for fixed points in the stream over the entire campaign. Since 345

batches are employed in this campaign, the amounts charged during each batch can

be determined from the figure.

Two distillation tasks are required because a high enough selectivity of P to W1

cannot be achieved to place the reactor effluent in either distillation region IV or V

given the available cold utility. The reaction converts all of the A into products and

waste materials with a small amount of I left unreacted; no A appears in the effluent.

The reactor operates for 1.69 hours in the first temperature interval and for 1.5 hours

in the last temperature interval. The extents of the first two reactions can be almost

exclusively attributed to the time spent in the first temperature interval, and the

extents of the third and fourth reactions are mostly attributed to the time spent in

the last temperature interval. The reactor effluent has a composition in distillation

region II, so all three azeotropes are obtained as products from the first distillation

step. The W1 - P azeotrope is passed on to the second distillation step where B is
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Figure 4-3: Process schematic of the solution derived from the superstructure con-
taining only one reaction task. Fixed point flows are given in kmols.
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employed as an entrainer. Enough B is added to the charge of the second distillation

so that the composition of the feed lies on the boundary between distillation regions

IV and V. Therefore, the only products obtained from this column are the ternary

azeotrope, which is taken overhead, and the product which is taken in the bottoms

of the column.

This design suffers from the fact that W1 is only removed from the process as part

of an azeotrope. As a consequence, roughly half of the B fed to the process leaves as

waste, and over 40 % of the P that is generated is lost in the ternary azeotrope. Not

surprisingly, the waste disposal costs dominate the production costs for this design,

as shown in table 4.10. Tables 4.6, 4.7, and 4.8 show the material processing costs for

the campaign. Table 4.9 shows the charges incurred for the use of equipment during

the campaign. The 2 and 4 m 3 reactors are employed for the reaction step, both 3

m3 columns are employed for the first distillation, and the 4 m3 column is used for

the second distillation. The batch size and cycle time are limited by the first reaction

and distillation tasks.

Raw Material Costs
Raw Material Cost [$/kg] Feed [kg] Total Cost [$] $ / kg product

B 4.50 79347.09 357061.89 5.25
A 7.00 157787.64 1104513.51 16.23

Total 237134.73 1461575.40 21.48

Table 4.6: Raw material costs for the design obtained from the first superstructure.

Waste Disposal Costs
Waste Material Cost [$ / kg] Amount [kg] Total Cost [$] $ / kg product

B-WI-P 20.00 87746.25 1754924.95 25.79
I 18.00 59.81 1076.50 0.02

B-W1 18.00 71842.50 1293164.95 19.01
W2 20.00 9447.23 188944.61 2.78
Total 169095.78 3238111.01 47.59

Table 4.7: Waste disposal costs for the design obtained from the first superstructure.
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Utility Costs
Cut Material Amount [ kg ] Reboiler Cost [$] $ / kg product

Distillation 1
WI-P 216212.66 443.97 0.01

B-W1-P 2424.69 7.08 0.00
I 2990.28 4.49 0.00

B-W1 1743455.39 2918.63 0.04
Distillation 2

B-W1-P 227520.80 664.30 0.01
Total 2192603.82 4038.46 0.07

Table 4.8: Utility costs for the design obtained from the first superstructure.

Reactor Rental Costs

Distillation Column Rental Costs
Volume Vapor Rate Assigned Rental Rate Total Cost $ per

[gal] [ kmol/hr ] Units [ $ / hr] [$] kg product
3 15 2 90 257610.82 3786.23
4 20 1 110 157428.83 2313.80

Total for reactors and columns 612541.28 9.00

Table 4.9: Equipment costs for the design obtained from the first superstructure.

Cost Contributions
Component Percent Total Cost [$] $ / kg product
Raw Material 27.49 1461575.40 21.48
Waste Disposal 60.90 3238111.01 47.59
Utility 0.09 5048.08 0.07
Equipment 11.52 612541.28 9.00
Total 5317275.78 78.15

Table 4.10: Comparison of raw material, waste disposal, utility, and equipment for
the design obtained from the first superstructure.
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Table 4.11: Equipment utilization for the design obtained from the first superstruc-
ture.

4.5.2 Solution obtained from the Second Superstructure

The optimal solution obtained from the second superstructure employs two distillation

and two reaction tasks. A schematic of the solution is provided in figure 4-4 in which

the streams are labeled with the flow of material in kmols for the entire campaign

specified in terms of the fixed point flows. Since 233 batches are employed in this

campaign, the amounts charged during each batch can be determined from the figure.

252.0B 50.7 B

Product

.6 W2

Figure 4-4: Process schematic of the solution derived from the superstructure per-
mitting multiple reaction tasks. Fixed point flows are given in kmols.

The solution obtained from this superstructure exploits the fact that the reactions
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Utilization Processing Task
Measure Reaction 1 Distillation 1 Distillation 2

Cycle Time 4.15 4.15 2.30
Volume Required 6.00 6.00 0.82
Volume Assigned 6.00 6.00 4.00



can be terminated by filtering the heterogeneous catalyst from the reacting mixture.

In the absence of the catalyst, the mixture can be separated by batch distillation

without the reaction continuing as the distillation is performed. The first reaction

task is run to complete conversion of A, but only a portion of the generated I is

converted through the third and fourth reactions. The conversion achieved by the

first two reactions can be attributed to the time spent in the first temperature interval.

At these low temperatures a high selectivity of I to W1 is achieved. The extents of

the third and fourth reactions is kept relatively small; these extents must be large

enough to satisfy the minimum conversion constraints which are active for the first

temperature interval. However, most of the conversion obtained for the third and

fourth reactions can be attributed to time spent in the last temperature interval in

which a high selectivity of P to W2 is achieved. Enough time was spent in the first

interval to achieve total conversion of A at high selectivity.

Stopping the second reaction task after a limited conversion was achieved in reac-

tions 3 and 4 allows the separation to be performed in the presence of less product.

A large quantity of W1 is employed as a solvent for the first reaction task, placing

the composition of the reactor effluent in batch distillation region I. This enables the

first distillation task to obtain pure W1 in one of the cuts, permitting W1 to leave

the system in pure form. The intermediate is passed on to the second reaction task

for conversion into the desired product. The second reaction task operates at the

highest allowable temperature in order to achieve both fast reaction rates and a high

selectivity of P to W2. Note that a large amount of B is employed as a solvent in this

reaction step. The effluent from this reaction task is combined with the W 1 - P cut

from the first distillation to place the feed to the second column in batch distillation

region IV. On first sight, the use of B as a solvent for the second reaction task seems

peculiar. However, the solvent requirements were specified on a mole basis, and B has

a smaller molar volume than W2 (the other potential solvent). The equipment cost

savings achieved by using B instead of W2 and employing a smaller reactor outweigh

the separation cost incurred by taking the B overhead instead of taking W2 in the

bottoms.
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This design makes fairly efficient use of both the raw materials and the available

equipment. The only way that reactants and products leave the process as waste is

through the purge of recycled streams. A more detailed summary of the material

processing costs is provided by tables 4.12, 4.13, and 4.14. The equipment items

are all running at or near capacity, except for the column assigned to the second

distillation task. Table 4.15 shows the charges incurred for the use of equipment

during the campaign, and table 4.16 shows the utilization of the equipment items.

Raw Material Costs
Raw Material Cost [$ / kg] Feed [kg] Total Cost [$] $ / kg product

B 4.50 28191.31 126860.91 1.86
A 7.00 94867.93 664075.49 9.76

Total 123059.24 790936.40 11.62

Table 4.12: Raw material costs for the design obtained from the second superstruc-
ture.

Waste Disposal Costs
Waste Material Cost [$ / kg] Amount [kg] Total Cost [$] $ / kg product

B 16.50 2537.91 41875.60 0.62
W1 18.00 41850.19 753303.42 11.07

B-W1 18.00 4949.53 89091.57 1.31
W2 20.00 5682.65 113653.07 1.67

Total 55020.29 997923.66 14.67

Table 4.13: Waste disposal costs for the design obtained from the second superstruc-
ture.
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Utility Costs
Cut Material Amount [ kg ] Reboiler Cost [$] $ / kg product

Distillation 1
WI-P 28431.31 58.38 0.00
W1 1099039.58 1474.56 0.02

I 62407.76 93.61 0.00
B-W1 247476.60 414.29 0.01

Distillation 2
B 126895.75 588.55 0.01

B-WI-P 28916.36 84.43 0.00
P 65931.99 143.67 0.00

Total 1659099.35 2857.48 0.05

Table 4.14: Utility costs for the design obtained from the second superstructure.

Reactor Rental Costs

Distillation Column Rental Costs
Volume Vapor Rate Assigned Rental Rate Total Cost $ per

[gal] [ kmol/hr ] Units [ $ / hr] [$] kg product
3 15 2 90 158482.80 2329.30
4 20 1 110 96850.60 1423.46

Total for reactors and columns 422620.81 6.21

Table 4.15: Equipment costs for the design obtained from the second superstructure.

Utilization Processing Task
Measure Reaction 1 Distillation 1 Reaction 2 Distillation 2

Cycle Time 3.78 3.78 3.78 3.16
Volume Required 6.00 6.00 2.00 2.10
Volume Assigned 6.00 6.00 2.00 4.00

Table 4.16: Equipment utilization for the design obtained from the second super-
structure.
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Cost Contributions
Component Percent Total Cost [$] $ / kg product
Raw Material 35.71 790936.40 11.62
Waste Disposal 45.05 997923.66 14.67
Utility 0.16 3571.85 0.05
Equipment 19.08 422620.81 6.21
Total 2215052.72 32.56

Table 4.17: Comparison of raw material,
obtained for the second superstructure.

waste disposal, utility, and equipment costs

4.5.3 Solution Comparison

The solution obtained from the second superstructure produces a much more effi-

cient design. This is primarily due to the fact that the waste material W1 formed

during the reactions can be removed in pure form in the second case, but not in

the first. This results in much lower raw material and waste costs. The difference

in the equipment costs result from the fact that the first superstructure requires a

much longer campaign, since it obtains much less product for each batch that is pro-

cessed. A comparison of the cost contributions between the two campaigns is given

in table 4.18.

Cost First Superstructure Second Superstructure
Component [$ / kg Product] [$ / kg Product]

Raw Material 21.48 11.62
Waste Disposal 47.59 14.67
Utility 0.07 0.05
Equipment 9.00 6.21
Total 78.15 32.56

Table 4.18: Comparison of the manufacturing costs of the solutions obtained from
the two superstructures examined.
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4.6 Computational Considerations

The screening models presented in this chapter are formulated as mixed-integer linear

programs. Although the global optimum of such models can be found using standard

algorithms, the solution time may be prohibitive. For these types of problems, strong

formulations are required in order to attempt to solve large problems. In addition,

the ability of the linear programming and branch and bound algorithms to solve

these models reliably requires that the model is well-scaled. Although the focus of

this research has not been to derive the strongest equivalent formulations for these

models, the procedure used to solve these models can dictate whether solution is

possible in a reasonable time using standard MILP solution codes. In this section the

techniques that have been employed to permit the solution of the screening model

are discussed. Specifically, the modifications required to provide a well-scaled model,

the procedure employed to reduce the size of the MILP and obtain tighter bounds

on the continuous variables involved in bilinear terms, and the linearization method

employed for the bilinear terms are described.

4.6.1 Size of the Models solved

The screening models solved within this thesis are fairly large, and can be difficult to

solve. The following sections cover some of the techniques that have been employed

to solve these models in a reasonable amount of time. Table 4.6.1 provides statistics

about the size of the models involved in the case studies presented in chapters 4 and 5.

Note that the number of binary variables reported treats each SOS1 set as one binary

variable; this means that an SOS1 set comprised of five binary variables (e.g., the

variable yFA in chapter 4) is counted as only one binary variable rather than five. For

reference, the number of SOS1 sets has been included in the table. The solution times

reported for the models are given to provide a rough idea of how long the models take

to solve.5 The solution times depend on what type of machine on which the models

5 The case study from chapter 4 containing only one reaction task contains more variables and
constraints than the superstructure containing two reaction tasks because more batches were permit-
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Case Binary SOS1 Continuous # of Approximate
Study Variables Sets Variables Constraints Solution Time

Chapter 4: One Rxn 47 8 3662 6512 2.4 hrs
Chapter 4: Two Rxns 48 9 2612 4712 2.5 hrs
Chapter 5: Case I.A 98 10 2104 3046 3.5 hrs
Chapter 5: Case I.B 98 10 2097 3035 30 min
Chapter 5: Case II 32 11 2061 3574 25 min
Chapter 5: Case III 32 11 3196 5861 40 min

Table 4.19: Size and approximate solution times for the screening models solved in
chapters 4 and 5 on an HP J200 workstation.

were solved and what other jobs were running on the machine. All the models were

solved using OSL (IBM, 1991) within GAMS (Brooke et al., 1992).

4.6.2 Scaling of the Linear Programs

The model described in the preceding sections can lead to linear programs that are

sufficiently poorly scaled to cause the simplex codes to fail due to numerical problems;

such problems were encountered within both OSL (IBM, 1991) and CPLEX (CPL,

1993). The poorly scaled LPs are the result of nonzero elements of the constraint

matrix that vary over many orders of magnitude. In many situations, such problems

result from a poor choice of units for the modeling variables (analogous to the col-

umn/variable scaling discussed in chapter 7). However, poorly scaled models can also

be the result of modeling decisions such as whether certain tradeoffs are important

or not.

The scaling problems within these models come from the linearized constraints

employed to bound the conversion of reactants with respect to time and temperature

such as those appearing in (4.32) and (4.33). When the terms e- 6(Tj)i-m become very

small, these constraints are very poorly scaled because the coefficient for the extents

are unity, but the coefficient of time is a nonzero value that is approaching zero

with larger values of tjm. In order to avoid these scaling problems, a different time

ted in the one reaction case. The number of batches is represented by an SOS1 set that is involved
in bilinear terms, so the number of variables and equations is larger.
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discretization was selected for reactions 1 and 2 and reactions 3 and 4 in each time

interval. The times were selected to correspond to conversions that were different from

unity by at least the optimization tolerances. If we had selected only one time grid,

then we could ignore these constraints for values of e-K (T )tm below some threshold.

This threshold value indicates the point in time at which the slope of 1 - e- T( 3)t

is small enough to be ignored. Eliminating these constraints makes the model well-

scaled. However, the elimination of these constraints defines a threshold time beyond

which total conversion can be achieved, whereas in reality total conversion is never

achieved. We have found that both approaches lead to a well scaled model, but have

chosen to employ different time discretization for each temperature interval in the

examples considered in this chapter.

4.6.3 Solution Procedure

A sequence of simpler models is solved before the full screening model is solved. These

simpler models are solved for three main reasons: 1) to obtain tighter bounds on the

continuous variables that are involved in the bilinear expressions appearing in the

model, and 2) to reduce the size of the MILP that is attempted, and 3) to determine

a feasible assignment of a large number of the integer decision variables, permitting

an incumbent solution to be found with little additional effort.

In the sequence of models that is solved, the number of integer variables appearing

in the model is increased. By solving the simpler models first, a feasible value of the

integer variables for the larger problem can be determined with little additional effort.

For example, first the cost of raw material and waste disposal costs is minimized using

simple bounds for the reaction selectivity that assume only one temperature interval

and no bounds on the extents of reaction versus time. The location of the bottoms

cut is not defined and processing times are not considered. In this model, the only

binary variables that appear are those defining the active batch distillation region

and those identifying whether the reaction tasks are performed. This model can be

solved quickly. The binary variables from the optimal solution are then fixed, and a

more complicated model that includes the definition of the bottoms is then solved for
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the same objective function. The solution to this problem provides what is hoped to

be a good solution, but probably not optimal. All of the integer variables are then

set free, and the problem is solved again. However, the solution just obtained for this

model is provided to the optimizer and is used to prune the branch and bound tree.

All branches with solutions worse than this value (the incumbent) are not examined.

The incumbent value could also be determined using heuristic methods. In fact, good

heuristic methods may provide better incumbent solutions. However, as we discuss in

the next paragraph, some of the simple models must be solved to global optimality,

since we employ their solution to provide rigorous bounds on parameters appearing

in the model.

Another reason for solving the simple models is to provide tighter bounds on

parameters appearing in the screening model that are used to linearize the bilinear

expressions, or to reduce the size of the screening model. For instance, the mini-

mum campaign length is used in the linear expressions defining the time that each

equipment item is employed. While we have found that solving for the minimum

campaign length is more difficult than solving the screening model, we can obtain

a lower bound on the minimum campaign length by solving two simpler problems.

We determine both the minimum number of batches that is required to meet the

production demands and a lower bound on the processing time for the distillation

tasks. If we ignore the equipment allocation constraints, a lower bound on the min-

imum distillation processing time can be determined from the amount of material

taken overhead in the distillation columns. This bound may not be very tight since

the same distillation columns can be used for all of the distillations, yet it tightens

the linearization of the bilinear terms, improving the efficiency of the branch and

bound procedure. Similarly, determining the minimum number of batches serves two

purposes: it defines a lower bound for the campaign length when used in conjunction

with the lower bound on the distillation processing time, and it allows the size of the

MILP to be reduced. The number of batches is represented using an SOS1 set, i.e.,

Mbatch = Lb b Some of the constraints that are generated result from linearizing

bilinear terms involving yNB. These constraints are only generated for values of nb
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that are greater than or equal to the minimum number of batches; for values of nb that

are less than the minimum, any feasible solution has y N B = 0, and the corresponding

constraints are inactive. Therefore, these constraints can be safely eliminated.

The sequence of models that is solved is listed below, with a short description of

the reason for solving each model.

Material: This model determines a lower bound on the raw material and waste

disposal cost for the manufacturing campaign. Simple bounds on the selectivity

are imposed. No dependence on time is considered. The solution provides a

lower bound on the raw material and waste costs and identifies the active batch

distillation regions.

Bottoms: This model identifies the location of the bottoms cuts and minimizes the

raw material, utility, and waste disposal costs. The targets for the extents

of reaction described in this chapter are employed. The utility cost that is

calculated represents a lower bound on the utility cost determined by the full

screening model, because the minimum reflux ratio of all of the columns that

are available is employed to calculate the utility costs.

Distillation Time This model determines a lower bound on the total processing

time required for the distillation tasks. The model is first solved with the binary

variables fixed at the solution of the Bottoms model to provide an incumbent

solution. The model is then solved to optimality with all of the binary variables

remaining free.

Batches The minimum number of batches is determined. This model determines a

feasible allocation of the equipment units that minimizes the number of batches

required. First, the model is solved with the location of the distillation cuts

held fixed, providing an upper bound on the optimal solution. Next, a relaxed

model is solved. The solutions of these two models provide upper and lower

bounds on the minimum number of batches and are used to reduce the size of

the Batches model. Finally, the model is solved to optimality. The optimal
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solution of Batches is used to reduce the size of the screening model. Note that

the fact that the number of batches is an integer value can be exploited when

determining the termination criteria of the branch and bound algorithm. The

solution also provides a lower bound on the campaign cost when combined with

the solution of the Distillation Time model.

Units The minimum number of equipment units required to manufacture the product

is determined. This quantity has been employed to tighten the constraints

defining the time that the equipment units are used which result from the exact

linearization of the bilinear expressions involving the campaign length and the

SOS1 variables denoting how many equipment items of a particular type are

employed (see section 4.6.5).

Screening Model This model minimizes the equipment, utility, raw material, and

waste disposal costs. The values of the integer values determined from the

solution of Units and Batches can be employed to quickly solve the Screening

Model to obtain an upper bound on the solution. The smallest of these can

be employed as an incumbent. Heuristics can also be employed to define an

incumbent solution, but this has not been investigated in any detail. However,

the screening model can be solved quickly when the allocation of the equipment

items is fixed, so this could be exploited in deriving a heuristic procedure to

specify the incumbent.

4.6.4 Linearization of Bilinear Terms

The screening model that has been presented has been written in a form that con-

tains only binary and continuous variables. The integer variables in the model have

been replaced by binary variables; for example, NB = EN yN n. However, the

model originally contained bilinear expressions that have been eliminated through

the introduction of additional continuous variables and constraints to cast the model

as a MILP. Since all of the bilinear terms in the original model are between two

binary variables or between a binary and a continuous variable, an exact transfor-
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mation exists and has been employed. Although several ways in which to generate

linear constraints defining an equivalent convex hull of integral solutions exist, the

choice of the linearization technique can have a major impact on the strength of the

formulation (the way in which the relaxed problem approximates the convex hull).

We have applied ideas developed in the operations research community to carry out

this transformation in a systematic fashion, employing the method leading to the

strongest formulation whenever the choice between the methods was clear. We have

not considered algorithms designed to deal directly with the bilinear models (Quesada

and Grossmann, 1995; Al-Khayyal, 1992) although we recognize that research in this

area may enable these models to be solved more efficiently. We have employed the

techniques of Glover (1974; 1975) and Adams and Sherali (Adams and Sherali, 1986;

Adams and Sherali, 1990; Adams and Sherali, 1993) to transform the original bilinear

expressions into linear inequalities.

First, we show the way that the bilinear terms in the model can be replaced with

new continuous variables that equal the original bilinear expression for all integer val-

ues of the binary variables. The screening model contains bilinear terms between two

binary variables, or between a binary and a continuous variable. An exact lineariza-

tion for each type of expression was proposed by Glover (1975). Let x G [xLO, xUP]

and Yi, Y2 G {0, 1} represent the continuous and binary variables involved in the bilin-

ear terms xyl and yly2. Continuous variables z C = xyl and zB = Y1Y2 are introduced

to replace these terms. The following inequalities (Glover, 1975) define zC:

x- xUP(l y) <z C < x- o(1- y) (4.70)

XLOy 1 < z < xUPy (4.71)

and the following inequalities define zB (Glover and Wolsey, 1974):

zB < yl (4.72)

z B  < y2 (4.73)

z s • Y1+Y2-1 (4.74)
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However, (4.70-4.74) only define z C and zB exactly when yl and y2 take integer

values. Since the binary variables are relaxed during the solution of the MILP, how

well these constraints approximate the convex hull is important. The values chosen

for xLO and x"U P have a major impact on the way in which (4.70-4.71) affect the

integrality gap of the problem.6 A poor choice of xLO and xU P will lead to a loose

LP relaxation. These models may be solved more efficiently if tight bounds on the

continuous variables involved in the bilinear expressions can be derived. The solution

procedure that we have proposed attempts to derive tight bounds for these quantities,

but we recognize that these constraints have a negative impact on the performance

of the solution algorithms.

The work of Adams and Sherali (1986; 1990; 1993) addresses the strength of

the formulation resulting from the exact linearization of bilinear terms involving bi-

nary variables. They address mixed-integer zero-one quadratic programming prob-

lem (MIQPP) and mixed integer bilinear programming problems (MIBLP). MIQPP

and MIBLP problems can be reformulated using one of several exact linearization

methods (Adams and Sherali, 1990; Adams and Sherali, 1993). The different lin-

earization schemes affect the number of constraints in the resulting mixed integer

zero-one linear program and the tightness of the linear programming relaxation. The

linearization technique proposed by Adams and Sherali (1990) has been shown to the-

oretically dominate previously proposed linearization techniques (Glover and Wolsey,

1974; Glover, 1975) for MIQPP problems. However, this technique results in a larger

number of constraints. They also propose an efficient solution algorithm for the MI-

BLP problems (Adams and Sherali, 1993).

Their technique generates a tight linear reformulation for mixed-integer zero-one

programming problems. The original constraints in the problem are multiplied by

every binary variable to derive an additional set of nonlinear constraints. The con-

straints involving only binary variables are multiplied by the differences between the

continuous variables and their bounds (e.g., x U P - x and x - xLO). Continuous vari-

ables are then introduced to represent the bilinear terms using the same linearization

6 Sometimes constraints in this form are referred to as 'Big M' constraints.
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scheme proposed by Glover (1975), resulting in a mixed-integer linear model.

Unfortunately, the screening model developed in the preceding chapter is not in

MIQPP or MIBLP form; MIQPP and MIBLP models require that all of the bilinear

terms in the model appear in the objective function. All of the bilinear terms defining

costs, (3.71-3.74), can be moved into objective function, but the remaining bilinear

terms in the screening model cannot be directly moved to the objective function.

Noting that the techniques developed by Adams and Sherali lead to a tighter for-

mulation, but do not apply directly to our problem, we have applied their ideas in the

following fashion. First, we employ the exact linearization proposed by Glover (1975)

to generate an exact linearization of all of the bilinear terms originally appearing in

our model. Next, we apply the basic idea proposed by Adams and Sherali (1986;

1990) in a limited sense. We look at the set of new continuous variables that we have

introduced and multiply any equations containing only binary variables by the differ-

ence between the continuous variables and their bounds or by other binary variables

if these multiplications will not introduce any additional continuous variables. We

multiply the other constraints by any binary variables that will not introduce any

additional continuous variables due to new bilinear terms. This idea was carried out

manually, so new equations that could have been introduced may have been missed.

The application of the idea presented above seems to have the biggest impact when

the SOS1 variables were involved in bilinear expressions. For example, consider the

bilinear term yJf = f, where E, yn = 1 and f E [0, fUP]. The application of the

procedure results in E•(ynf UP - fn) = f UP - f which reduces to EC fn = f. Al-

though these constraints are somewhat obvious from a physical understanding of the

system, they are derived by this procedure. Although other constraints were derived

and added to the model, the biggest impact on the efficiency seemed to come from

the constraints involving the SOS1 variables.

To compare the benefits of the different linearization strategies effectively, the

transformations from the bilinear model to the different equivalent linear representa-

tions must be performed automatically. This was not attempted because the proposed

models could be solved with the strategy that was applied. However, if the solution
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of much larger models is attempted, automatic derivation of a tighter equivalent lin-

ear model may be required. With different strategies implemented automatically, the

tradeoff between model size and solution efficiency can be investigated empirically.

4.6.5 Influencing the Branch and Bound Algorithm

Features of the models have been exploited to improve the performance of the branch

and bound procedure. These include the identification of SOS1 sets and the use of

variable priorities.

Many of the binary variables in the system represent special ordered sets of type

1 (SOS1) (Beale and Tomlin, 1970), such as the number of batches and the type of

distillation column assigned to a distillation task. Declaring these variables as SOS1

sets allows the branch and bound algorithm to employ a different branching procedure

for these sets. Typically, during the branching procedure, the variables in the set are

divided into subsets in which one subset contains the nonzero element and the other

does not. This differs from the usual practice of fixing a binary variable to either

zero or one along each branch, and is much more efficient when the SOS1 sets contain

many elements. For small sets, the benefits may not be very pronounced. In addition,

the fact that these variables must sum to one helps when linearizing the bilinear terms

between the SOS1 and continuous variables. This is explained in section 4.6.4.

Since some of the decisions in the design of the process are naturally made in a

sequential fashion, this sequence can be used to indicate a preferred branching order

for the branch and bound algorithm. For instance, there is no point in deciding which

distillation column to assign to a separation task if the separation is not performed.

The same holds for the reaction tasks. Variable priorities are a way to represent the

preferred branching order to the solvers embedded within GAMS (Brooke et al., 1992).

Empirical evidence has also suggested the addition of an SOS1 set to represent the

number of items of a particular equipment item assigned to the process. When this set

is employed in conjunction with the setting of priorities, the branch and bound decides

whether to employ a particular item of equipment before determining where to assign

the unit. Experience solving these models has shown that the following ordering of
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the discrete decisions (from top to bottom in the tree) improves the performance of

the algorithm:

1. the existence of the reaction tasks

2. the existence of the distillation tasks

3. the identity of the active batch regions

4. the number of distillation columns assigned to a particular separation

5. the location of the bottoms cuts

6. what equipment units are employed within the process

7. the allocation of reactors and columns to particular tasks

8. identifying the active feed and time intervals

9. determining the number of batches

4.6.6 Tailored Solution Procedures

This research has not investigate tailored solution procedures for the solution of the

screening models. However, it is easy to recognize that a tailored solution procedure

would be more effective on the screening models, particularly one that can exploit

the way in which the number of batches has been modeled. For the models with no

intermediate storage, all units employ the same number of batches, so the number

of batches has been represented using a single SOS1 set. The size of this set affects

the number of equations in the model to be solved. In addition, the upper and lower

bounds on the number of batches appear in the constraints used to linearize the

bilinear expressions involving the number of batches and any continuous variables

(e.g., terms defining the charge of material to a particular task for each batch). Thus,

by restricting the number of batches to several smaller ranges, not only can the

size of the model in each range be reduced, but each of these models will result in

a tighter formulation since the tighter upper and lower bounds can be employed.
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A tailored branch and bound procedure could reduce the size of the models and

update the parameters when branching on members of the SOS1 set. Although the

implementation of such a procedure is a nontrivial task, it may be required to handle

situations employing unlimited intermediate storage, or cases in which intermediate

storage is employed to decouple only some of the processing trains. In these situations,

the screening model includes a number of batches for each processing step.

4.6.7 Representation of Batch Distillation Boundaries

The boundaries of each of the product simplices are included in the each of the batch

distillation regions. Thus, if the feed to a distillation column is located on a boundary,

two choices of the binary variables lead to exactly the same solution. This requires

the branch and bound procedure to search each of the trees to verify the solution.

These situations are common and will almost always arise from the addition of an

entrainer. For instance, in the solution to the superstructure containing only one

reaction task, both distillation tasks have feeds located on the boundary located

between two distillation regions. Future work should investigate ways to avoid this

type of problem.

4.7 Summary

The application of the screening models to a fairly simple process has been examined.

This chapter demonstrates how the design constraints and the restrictions imposed

by the manufacturing facility can be used to derive bounds for the extent of reac-

tion versus time and for the selectivity of competing reactions. However, even for a

reasonably simple problem, the derivation of these bounds may be a nontrivial task.

The application of the bounds to two different superstructures demonstrates that

even rough approximations of the reaction behavior can capture many of the tradeoffs

that need to be considered at the design stage. In fact, solution of the screening

model may exploit tradeoffs that are not obvious to the engineer. In some cases, these

solutions may indicate that the screening model should be augmented with additional
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constraints to capture some particular physical behavior that was relaxed during the

derivation of the screening model. For example, the solution chose not to perform

any of the third and fourth reactions in the one of the reactors until a constraint

requiring a minimum conversion with respect to the reaction time was added. In other

cases, the solution of the screening model may generate design alternatives that differ

substantially from the designs produced through minor modifications of the chemists

recipe. In retrospect, the solution determined from the second superstructure seems

obvious. However, if we had started with the mindset of adapting the chemists design

to account for the fact that we could not operate at such a low temperature, we may

have ended up with a design looking much more like the one obtained from the first

superstructure.

The difference in the solution obtained from the two superstructures demonstrates

the need to consider a broad range of alternatives early in the design of the process.

This highlights both a strength and a weakness of the screening models in the ex-

ample presented. First, by only including a subset of the constraints the models do

not eliminate any promising designs contained within the superstructure. However,

since only reaction/distillation processes are included within the current superstruc-

ture, many batch processes of interest cannot be described by the screening models

described here. Thus, targeting models for other common processing tasks such as

extraction, crystallization, etc. should be investigated in the future.

4.8 Notation

The notation that has been introduced in this chapter is defined in the lists below.

4.8.1 Indexed Sets

J The set defining the temperature intervals. For j E J, Tj_1 and Tj represent

the lower and upper bounds of the interval.
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4

4

4.8.4 Parameters

fjA upper bound on fjRf in feed interval 1.
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L The set defining the feed intervals. For 1 E L, fi-1 and Af represent the lower

and upper bounds of the interval.

M The set defining the time intervals. For m E M, t,-1 and tm represent the

lower and upper bounds of the interval. Note that to = 0.

[.8.2 Binary Variables

y A SOS1 set denoting the active feed interval for the A charged.

yF' SOS1 set denoting the active feed interval for the I charged and the I gen-

erated by reaction 1.

Yjm SOS1 set denoting the active time interval in temperature interval j.

1.8.3 Variables

NA the amount of A available for reaction in the time interval m and tempera-

ture interval j. NAm = ytmfR•.

$Ajm Continuous variable representing a bilinear product between the following

continuous and binary variables Sjm= Yjmij'

rT  the extent of reaction r attributed to temperature interval j

T the extent of reaction r attributed to temperature interval j and feed interval

1. Note El ýTl = •T.

X12 the fractional conversion of A achieved in reactions 1 and 2 in temperature

interval j.

x34 the fractional conversion of I achieved in reactions 3 and 4 in temperature

interval j.

x12s the fractional conversion of A achieved in reactions 1 and 2 in temperature

intervals 1 to j.

x34s the fractional conversion of I achieved in reactions 3 and 4 in temperature

intervals 1 to j.



f upper bound on feed of I (f!R + 1) in feed interval 1.

tjm time discretization point m for temperature interval j.

Tj Upper bound on temperature in temperature interval j.

jrax Maximum fractional conversion achieved in reaction 1 in temperature in-

terval j and time interval m.

j3mi Minimum fractional conversion achieved in reactions 3 and 4 in temperature

interval j and time interval m.
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Chapter 5

Siloxane Monomer Case Study

In this chapter screening models are applied to the design of a process for the campaign

manufacture of siloxane monomer (Barrera, 1990; Allgor et al., 1996). This example

is an abstraction of a problem actually encountered by a major specialty chemical

manufacturer. The identities of the compounds involved have been concealed.

The scenario is as follows. Research chemists have recently discovered a new

siloxane based polymer, and a significant quantity is now required for test marketing.

This example focuses on the development of a campaign to manufacture a fixed

quantity of the monomer. Since the development of similar products by competitors

is imminent, both the process development activity and the resulting campaign are

subject to a strict time horizon constraint. It is also likely that the design will be

used to estimate the cost of long term manufacture. Hence, rapid development of an

efficient process is pivotal to the success of the new product. The goal of the screening

model is to identify favorable process structures quickly, so that these may serve as

the starting point for the detailed design.

The process consists of three reaction tasks that manufacture two products; prod-

uct A is generated in the first reaction and product D is generated in the third. Two

applications for the mixed-integer linear screening models are considered. First, the

solution from the screening models is compared to that obtained when minimizing

the waste generated by the process (Ahmad and Barton, 1995) to examine whether a

process generating the minimum amount of waste can make efficient use of equipment
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and energy. This model contains simple bounds on the extents and selectivity of re-

action that can be achieved in the reactors. The second example employs targets for

the conversion and selectivity that can be achieved in terms of the operating time and

temperature and investigates whether it is cost effective to employ the downstream

reaction and separation tasks required to convert intermediate C into product D.

5.1 Laboratory Scale Process

The experimental procedure for the production of siloxane monomer developed by

the chemist is a sequential process consisting of batch reaction and distillation tasks.

During the bench scale experiments, kinetic expressions governing the reaction mech-

anisms of the three reaction tasks were developed; these are described in sections

5.1.1 to 5.1.3. In addition, the experiments identified temperature limits required to

avoid unwanted side reactions. Both the reaction and distillation tasks must operate

below these temperature limits. The batch distillations can operate under vacuum in

order to avoid violating these limits. Following Ahmad (1997), we have assumed that

pressure changes do not affect the structure of the batch distillation regions. The

detailed dynamic models that have been used consider the effect of pressure changes

on the performance of the distillation tasks and indicate that the assumption holds.

5.1.1 First Reaction Task

The chemist's experiments determined that the following reaction mechanism best

represents the data in the range of temperatures and compositions examined.

1
R1+R2 -+ II (5.1)

2
R1 + I1 - A (5.2)

3II -- + C+H 2  (5.3)
4

I1 + C -+ 12 (5.4)

12 -4 I + C (5.5)
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Pt -- + Pt*

Note that the first reaction is catalyzed by the platinum catalyst (Pt); the cata-

lyst can deactivate to Pt* over the course of the reaction. The chemists discovered

that unwanted side reactions are catalyzed at temperatures above 413 K; therefore,

such temperatures must be avoided. Further analysis determined that the following

expressions best describe the rates of reaction. The constants for these equations

are provided in table 5.1 where the units of the preexponential factors (kro) provide

reaction rates in mols-lm -3 when the concentrations are measured in mol/m 3 .

CPt
rate = '1CR1CR2 (5.7)

k7 + CPt

rate2 - K 2 CR1CI1 (5.8)

rate3 = K3CI1 (5.9)

rate4 = K4CI1Cc (5.10)

rate5 = K5 CI2  (5.11)

rate6 = K6CPt (5.12)

where the temperature dependence of the rate constants are given by the following

Arrhenius expression:

--Ea

K, = roe V r - 1..7

5.1.2 Second Reaction Task

The second reaction task converts the intermediate C generated in the first reaction

task to a second intermediate E by reacting C with methanol (M) according to the

following stoichiometric relationship:

M + C - E (5.13)
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Table 5.1: Preexponential factors and activation energies defining the rate constants
(5.7-5.12) for reactions (5.1-5.6) occurring within the first reaction task

Equation (5.14) defines the rate of reaction (5.13). The chemists imposed an up-

per temperature limit of 70 K on the operating temperature and determined a rate

constant at this temperature of 1.0 m3/(kmol hr) for concentrations measured in

kmol/m3 .

rate = KCcCM (5.14)

5.1.3 Third Reaction Task

The third reaction task converts the intermediate E generated in the second reaction

task to product D by reacting E with water W according to the following stoichio-

metric relationship:

2E + W -- + D + 2M (5.15)

Equation (5.16) defines the rate of reaction (5.13) for the stoichiometry written in

(5.15).

rate = KICcCM (5.16)
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r Ea [Jmol-] 'Kro

1 78240 7.50 x 104
2 45605 1.01
3 103345 1.22 x 1011
4 32217 3.58 x 10-2
5 91211 7.33 x 109
6 0 1.39 x 10-4

7 0 7.00 x 10-1



The preexponential factor and the activation energy for this reaction are given below:

= 9.142 x 101 [kmol hr (5.17)

Ea = 83354 mol (5.18)

The chemists advise that this reaction is run below 95 C, and this is treated as a

design constraint.

5.1.4 Design Constraints

Several design decisions have been made that restrict the operation of the reactors.

Total conversion of R2 is required in the first reaction, a minimum of 98% conversion

of C to E is required in the second reaction, and a minimum of 85% conversion of E

to D is required in the final reaction.

fRou" = 0 (5.19)

(1 - .98)E f2R"ip T PC RotJ (5.20)
eEE

(1 -. 85) f'P PE , > fRout (5.21)
eEE

Restrictions are also placed on the amount of toluene needed to solvate the first

reaction. In addition, an excess of the non-limiting reagent is required in each of the

reactions: at least a 15% excess of R1, a three to one ratio of methanol to C, and a

25 to one ratio of water to E are required.

E•Rn T R 1.5 •R,, Tp (5.22)fS J Pe PT - 1.5 E fle Pe PR2 (5.22)
eEE eEE

fR out > .15 fE pTpR1 (5.23)

eEE

f 2
1RinPPM 3 f RiPn P (5.24)

eEE eEE

f W 25" f P PE (5.25)
3e Pe PW

eEE eEE
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In addition, we require that only toluene, water, methanol, RI, and R2 may be

supplied to the process. The product must consist of 98% A and D on a mass basis.

Letting Xproduct = .98, and Ep = {A, D}, the purity constraint (3.25) reduces to the

following:

.98 fp w < f' pPw + f~A w (5.26)
e

5.2 Case Study I: Comparison of minimum cost

versus minimum waste

We require the manufacture of 136,078 kilograms of monomer in less than sixty days.

In this problem we compare the difference between minimizing the manufacturing

cost and minimizing the manufacturing cost subject to minimum waste emissions.

Ahmad (1997) has shown that an embedded optimization that first minimizes the

waste emitted by the process and then minimizes the total flow of recycled material

while permitting no more than the minimum waste to be emitted leads to sensible

process designs with minimum environmental impact. In this section, we compare

the difference between minimizing the total cost and minimizing the total cost of a

design that emits no more than the minimum amount of waste.

The screening models employed for this case study employ a simplified model

of the first reaction task that considers the two dominant reactions given in (5.27-

5.28), rather than the set of competing reactions (5.1-5.6). The intermediate species

generated in the first reaction are not included in the screening model. We assume

that hydrogen remains in the gas phase, and that no cost is incurred when sending

the hydrogen to the flare.

1
2R1+R2 - A (5.27)

2
R1 + R2 -- + C +H 2  (5.28)

Toluene is not permitted to mix with water in order to avoid the formation of two
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liquid phases. We require total conversion of R2 in the first reaction (5.19), so R2 does

not appear in the batch distillation regions. Since all of the mixtures in the process are

homogeneous, the batch distillation targeting procedure can be employed. Two super

simplices are formed, one containing the pure components C, M, R1, W, E, A, and D,

and the other containing C, M, R1, T, E, A, and D. The batch distillation regions are

extracted from the two super simplices. The batch distillation regions calculated by

Ahmad (1997) have been employed; the azeotropic behavior was approximated using

the Wilson model to calculate the activity coefficients (see Ahmad (1997) for details).

The fourteen distillation regions represented by the product sequences shown in table

5.2 cover the composition space of the allowable distillation feeds. Each super simplex

contains seven pure components, so each region is represented by an ordered sequence

of seven fixed points taken from the set E = {C, M-T, M, R1-W, R1-T, R1, W-

E, W, C-R1-T, C-R1, T, E, A, D}. Since heterogeneous mixtures often appear in

specialty chemical process, the separation targets should be extended to include these

systems. We recognize that the lower bounds derived from the screening model are

subject to the fact that we have imposed the restriction that heterogeneous mixtures

are not formed. Note that the mass balances around the distillation tasks forbid the

mixing of water and toluene.

Experimental and limited simulation experience has shown that the relative extent

that can be achieved in the first reactor at high conversions lies within a restricted

range. It should be noted that these bounds are not rigorous, but they serve as

suitable bounds for illustration purposes and for a fair comparison with the minimum

waste process design found by Ahmad (1997). To compare with the minimum waste

solution, we also fix the conversion achieved in the second and third reactions at the

lower bounds given by (5.20) and (5.21). These limits are treated as constraints.

T1,1 > 1.78t1,2 (5.29)

_1, < 4.921,2 (5.30)

The data needed to implement screening formulation are provided in tables 5.4,
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Table 5.2: Feasible product sequences for the first case study of the siloxane monomer
process.

5.5, and 5.6. Table 5.3 defines the compositions of the azeotropic fixed points, Pe;

for the pure components, Pe is merely a column of the identity matrix and has not

been included in the table. The raw material and waste disposal costs for each fixed

Pure Fixed Points
Component PC-M PM-T PR-W PR-T PW-E PC-R-T PC-R

C 0.675 0.18 0.31
M 0.325 0.89
R2
R1 0.40 0.65 0.30 0.69
W 0.60 0.914
T 0.11 0.35 0.52
E 0.086
A
D

Table 5.3: Composition of the fixed points that are not pure components.

point are given in table 5.4. The disposal costs are estimates based on the cost for

incineration or waste water treatment. Table 5.4 also gives the normal boiling point,
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b Product sequence
1 {C-M, C, R1-W, R1, E, A, D}
2 {C-M, C, R1-W, W-E, W, A, D}
3 {C-M, C, R1-W, W-E, E, A, D}
4 {C-M, M, R1-W, R1, E, A, D}
5 {C-M, M, R1-W, W-E, W, A, D}
6 {C-M, M, R1-W, W-E, E, A, D}
7 {C-M, M-T, M, R2, R1, E, A, D}
8 {C-M, M-T, R1-T, R1, E, A, D}
9 {C-M, M-T, R1-T, T, E, A, D}
10 {C-M, C, C-R1-T, T, E, A, D}
11 {C-M, C, C-R1-T, C-R1, E, A, D}
12 {C-M, R1-T, C-R1-T, C-R1, E, A, D}
13 {C-M, R1-T, C-R1-T, T, E, A, D}
14 {C-M, R1-T, R1, C-R1, E, A, D}



the heat of vaporization, and the molar volume and molecular weight of the fixed

points. Note that the molar volume and heat of vaporization are underestimates

for these quantities over the temperature range that the process operates; the molar

volume, molecular weight, and heat of vaporization for the azeotropes represent ideal

mixture values. These bounds are chosen so that the ideal mixing rule employed in

the screening model bounds the mixture volume and heat of vaporization calculated

using an activity coefficient model or equation of state.

Raw Waste Molar
e Material Removal Tb Hvap  Volume Molecular

[ $ / kg] [ $ / kg] [K] [J/mol] [ / kmol] Weight
C-M 16.50 323.4 31250 98.47 138.934

C 16.50 336.6 29300 125.87 190.400
M-T 18.00 337.3 35080 48.89 38.653
M 16.50 337.8 35300 41.56 32.042
R2 8.85 16.50 346.0 29700 128.39 134.320

R1-W 16.50 365.4 40420 38.95 30.841
R1-T 18.00 367.5 37655 83.26 64.801
R1 4.11 16.50 370.0 40000 69.84 50.080

W-E 16.50 370.8 41113 28.50 35.595
W 0.01 1.70 373.2 40700 18.35 18.015

C-R1-T 16.50 373.6 34590 99.87 97.209
Il 16.50 374.0 40300 117.59 192.400

C-R1 16.50 378.8 36683 87.21 93.579
T 1.464 18.00 383.8 33300 108.20 92.141
E 16.50 416.5 45500 136.38 222.430
A 16.50 532.0 62900 131.94 250.480
12 16.50 618.3 60600 292.44 382.800
D 16.50 752.0 66100 435.50 398.790

Table 5.4: Cost and physical property data for the fixed points.

5.2.1 Solution

We require the manufacture of 300,000 pounds of monomer in less than sixty days.

The MILP screening formulation was augmented with the additional constraints

(5.19-5.30) and solved using GAMS/OSL (Brooke et al., 1992; IBM, 1991) on an
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Reactors
Volume Available Rental Rate

[gal] Units [$ / hr]
500 2 50
750 2 70

1250 1 88
Distillation Columns

Volume Vapor Rate Number of Minimum Available Rental Rate
[gal] [kmol/hr] Trays Reflux Ratio Units [ $ / hr]
750 15 8 1.5 2 90
1000 20 8 1.5 2 110
1250 15 8 1.5 2 125

Table 5.5: Inventory and rental rates for processing equipment.

Utility Cost [$ / kW yr]
hot 100
cold 25

Table 5.6: Utility cost data for the siloxane monomer example.
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HP J200 computer. Two cases have been considered. In the first case, the total

production cost was minimized subject to the model constraints. The second case

examines the use of an embedded optimization (Ahmad, 1997). In this case, the min-

imum amount of waste emitted from a process meeting the production requirements

was determined first.' Next, the manufacturing cost of a process emitting no more

than this amount of waste was minimized. The amount of waste that can be emitted

is treated as a constraint, and the same objective function (e.g., the manufacturing

cost) employed in the first case is used. The solutions of the two cases are compared.

Case IA: Minimum Cost Design

The minimum cost design determined by the screening model chooses to perform two

separation tasks and merge the first and second reaction tasks into a single equipment

stage. The design employs three reactors and three columns and requires 40 batches to

complete the campaign. This design manufactures the product at a cost of $7.40/kg.

Figure 5-1 depicts a schematic of the process showing the allocation of equipment and

the flow of material in kmols for the campaign. Tables 5.7-5.12 show the breakdown

of the costs in the process.

Raw Material Costs
Raw Material Cost [$ / kg] Feed [kg] Total Cost [$] $ / kg product

M 1.23 193.03 237.43 0.00
R2 8.85 74104.44 655824.31 4.82
R1 4.11 50769.81 208663.93 1.53
W 0.01 1803.11 18.03 0.00
T 1.46 1525.03 2232.64 0.02

Total 128395.43 866976.35 6.37

Table 5.7: Raw material costs for the entire campaign when minimizing total cost in
the first case study.

1All waste streams were weighted equally when determining the minimum amount of waste
emitted.
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1803.1 W

Product

Waste

Figure 5-1: Process schematic of the solution derived for Case I.A. Streams labels
denote the flow of each fixed point in kmols for the campaign.
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Waste Disposal Costs
Waste Material Cost [$ / kg] Amount [kg] Total Cost [$] $ / kg product

W 1.70 211.65 359.80 0.00
Total 211.65 359.80 0.00

Table 5.8: Waste disposal costs for the entire campaign when minimizing total cost
in the first case study.

Utility Costs
Cut Material Amount [ kg ] Reboiler Cost [$] $ / kg product

Distillation 2
CM 391.30 0.00 0.00
MT 8299.40 0.06 0.00
RT 17772.73 0.08 0.00
T 65230.27 0.19 0.00
E 20720.39 0.03 0.00

Distillation 3
M 2974.36 0.03 0.00

WE 6780.06 0.06 0.00
W 45212.16 0.81 0.00

Total 167380.68 1.26 0.00

Table 5.9: Utility costs for the entire campaign when minimizing total cost in the
first case study.

Reactor Rental Costs
Volume Assigned Rental Rate Total Cost $ per

[gal] Units [ $ / hr] [ $ ] kg product
500 2 50 29275.02 0.22
750 1 70 20492.51 0.15

Distillation Column Rental Costs
Volume Vapor Rate Assigned Rental Rate Total Cost $ per

[gal] [ kmol/hr ] Units [ $ / hr] [$] kg product
750 15 2 90 52695.03 0.39

1250 15 1 125 36593.77 0.27

Total for reactors and columns 139056.33 1.02

Table 5.10: Equipment costs for the entire campaign when minimizing total cost in
the first case study.
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Table 5.11: Equipment utilization for the design obtained when minimizing total cost
in the first case study.

Cost Contributions
Component Percent Total Cost [$] $ / kg product
Raw Material 86.15 866976.35 6.37
Waste Disposal 0.04 359.80 0.00
Utility 0.00 1.26 0.00
Equipment 13.82 139056.33 1.02
Total 1006393.73 7.40

Table 5.12: Comparison of raw material, waste disposal, utility, and equipment costs.

Case IB: Minimum Cost subject to Minimum Waste

In this case, a lower bound on the mass of waste emitted by a process meeting

the production requirements was determined by minimizing the following objective

function:

waste Y fWasteWe

eEE

(5.31)

subject to the mass balance constraints in the screening model (i.e., (3.5-3.7, 3.11,

3.13, 3.14-3.23, and 3.24-3.26)) and the design and reaction targeting constraints

presented in this chapter. The solution of the resulting MILP determined that at

least 211.65 kg of waste must be emitted from a process meeting the production
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Utilization Processing Task
Measure Rxn 1 Rxn 2 Dist 2 Rxn 3 Dist 3

Cycle Time 1.00 1.00 6.89 1.00 7.32
Volume Required 1192.01 1201.17 1201.17 495.78 495.78
Volume Assigned 1250.00 1250.00 1250.00 500.00 1500.00



requirement.2 Next, a design with minimum cost that does not emit more than this

much waste was determined by adding the following constraint to the model solved

in Case IA:

SfeWastewe _< waste (5.32)
eEE

Since only 211.65 kg of waste is emitted by the solution of Case IA, (5.32) is satisfied

by the solution of Case IA, and the solution to this problem is the same as the

solution to Case IA. For this example, the solution with minimum environmental

impact (measured by the total mass of waste emitted) is the same as the solution

with minimum cost.

Next, we examine how the structure of the process defined by the solution to

this problem compares to structure of the minimum waste process found by Ahmad

(1997). In her method, first the minimum amount of waste is determined, and then

the total flow of recycled material is minimized subject to the minimum waste con-

straint. In this method, the first minimization is the same as the first subproblem

solved in Case IB, except that she minimized the total moles of waste eeEE fWaste

rather than the mass. The second subproblem that she solves differs from the second

problem solved here because the procedure used by Ahmad (1997) does not con-

sider the equipment costs. Instead, she minimizes the total flow of recycled material.

We compare these results to see whether considering the equipment costs during the

optimization changes the structure of the resulting process for this example.

Surprisingly, the design obtained from the solution of Case 2 has the same pro-

cess structure as the design found by Ahmad (1997), in which total flow of recycled

material was minimized subject to the minimum emission requirement. Although

equipment costs were not considered in the approach taken by Ahmad (1997), less

waste is generated by eliminating the first distillation task, so the processing structure

happens to be the same. Section 5.3 shows that this occurs because the methanol in-

2Note that the waste generated is small compared to the 136,078 kg of product that is
manufactured.
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troduced in the second reaction task avoids generating C-R1-T and C-Ri azeotropes.

However, if the minimum emission is specified on a molar basis (as in Ahmad (1997)),

the solution of case IA does not satisfy the minimum waste requirement (even though

the operation of the distillation and reaction tasks is the same). Both designs emit

211.65 kg of waste, yet the minimum cost design emits water (which costs less, but

contains more mols), and the solution of IB emits toluene and the C-M azeotrope

because fewer moles are contained in the same mass of waste. These results demon-

strate that for some problems in which the material and waste costs dominate, the

embedded optimization procedure presented by Ahmad (1997) may generate a process

structure leading to a favorable design from a cost point of view.

We have ignored the end effects during the design of these processes, yet the

recycled material will need to be disposed at the end of the campaign. In these

designs, the amount of material recycled per batch is known, and this provides a good

estimate for the amount of waste that may be generated at the end of the campaign.

Since 2% (one fiftieth) of the recycled material is purged, but only 40 batches are

required, the amount of waste generated by disposing of the recycled material at the

conclusion of the campaign is greater than the amount purged during the duration of

the campaign, if the the design is not modified to account for the cost of this waste

disposal. If we assume that we must simply dispose of this material (i.e., no change in

the operation of the process near the end of the campaign is considered) then we can

incorporate this cost into our objective function. It may be advantageous to employ

a greater number of smaller batches during the campaign, balancing equipment and

waste disposal costs. This is investigated in section 5.3.3; we employ the reaction

targeting model explained in the next section in order to consider the reaction time,

which impacts the tradeoff between the number of batches employed and the length

of the campaign.
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5.3 Case Study II: Including Reaction Targets

This example demonstrates that bounds can be derived for the reaction tasks in this

process. In this example, we consider partial conversion of R2, and we account for

the intermediate components II, and 12. These components do not form azeotropes

with any of the other components in the system.3 Table 5.13 shows the distillation

regions for this process.

Table 5.13: Feasible product sequences for the second case study of the siloxane

monomer process.

5.3.1 First Reaction Task

Targets have been developed for the reaction tasks. These targets consider all of the

components in the reactions, except for the catalyst. We ignore the limitation on

the reaction rate imposed by the deactivation of the catalyst, so only five reactions

3The property estimation methods indicate that R2 does not behave ideally, but the predicted
interactions were not realistic, so for the purposes of illustration R2 has been assumed to interact
ideally. Note that for the design of an industrial process, experimental VLE data defining the
interaction of R2 would be crucial to the validity of the results.
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b Product sequence
1 {C-M, C, R2, R1-W, R1, II, E, A, 12, D}
2 {C-M, C, R2, R1-W, W-E, W, II, A, 12, D}
3 {C-M, C, R2, R1-W, W-E, II, E, A, 12, D}
4 {C-M, M, R2, R1-W, Ri, R1, E, A, 12, D}
5 {C-M, M, R2, R1-W, W-E, W, II, A, 12, D}
6 {C-M, M, R2, R1-W, W-E, II, E, A, 12, D}
7 {C-M, M-T, M, R2, R1, I1, E, A, 12, D}
8 {C-M, M-T, R2, R1-T, R1, I1, E, A, 12, D}
9 {C-M, M-T, R2, R1-T, II, T, E, A, 12, D}
10 {C-M, C, R2, C-R1-T, 11, T, E, A, 12, D}
11 {C-M, C, R2, C-R1-T, I1, C-R1, E, A, 12, D}
12 {C-M, R2, R1-T, C-R1-T, 11, C-R1, E, A, 12, D}
13 {C-M, R2, R1-T, C-R1-T, I1, T, E, A, 12, D}
14 {C-M, R2, R1-T, R1, II, C-R1, E, A, 12, D}



(5.1-5.5) are considered in this case study. This assumption maintains the bounding

property of the screening model.

Upper bounds on the extent of reaction in terms of the operating time and temper-

ature are enforced on all of the reactions except for the reversible reaction (5.4-5.5).

Since (5.4-5.5) denote a reversible reaction, the extents of these reactions can be un-

bounded since the mass balance is satisfied if any feasible values for ý14 and (15 are

both increased by an arbitrary constant. The difference between (14 and ý15 is the

quantity with which we are concerned. We bound the 615 according to the amount of

12 charged to provide a reference for the extent of these reactions.

615 • f!R2"n (5.33)

Given the reference established by (5.33), all of the extents are bounded by the mass

balances. In addition, we place bounds on the extents of the first three reactions in

terms of the reaction time, temperature, and the amount of material charged to the

task. For the first and second order reactions occurring in this task, the conversion

of material per unit volume will always be less than the conversion that would be

achieved if the same material occupied a smaller volume. Thus, the following upper

bounds can be placed on the extents of the first three reactions:

d_11 NR1NR2
dt ll(T) Vmin Kl(T)CRmlaXNR2  (5.34)dt Vmin

d12 NR1NI1
d t 1 mn </ 12( T )  CmlaxNI (5.35)

d< = 'u13 (T)NI1  (5.36)

where Cmla represents a rigorous upper bound on the concentration of R1 in the

reactor. The maximum extents of reaction can be achieved when operating at the

maximum temperature and when all of the reactants are available at the initial time.

Upper bounds on 611, 612, and 613 are derived by assuming that the maximum rates

given by the expressions above can be achieved and solving (5.34-5.36). Since we

bound the selectivity according to the temperature at which the reactions occur, the
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feasible operating temperature range is divided into intervals following the procedure

employed in chapter 4. Since R2 can be converted to Il at one temperature and

converted to either A or C at another temperature, we cannot assume that the only

II available at the start of any temperature interval is that which is charged directly

to the reactor. We make the assumption that all of the Il generated by reaction 1

is available at the initial time, which preserves the bounding property of the model.

Thus, to bound the extents of reaction, (5.34-5.36) is solved for the initial conditions

61l(0) = 612(0) = 613(0) = 0, NR2(0) = Ný 2 , NIl(0) = N7I + i11, which leads to the

following upper bounds on the extents of reaction:

1(tR ) < Nj2 ( 1 -e t 1)  (5.37)

_(tR (N°Ij + 11) 2 - 3
(12 t) 1 1  a ( - e (5.38)
j13(t ) < (N01 + ) 1 3 (Tmax) 1 - e- (5.39)

a 3 (5.39)

where

a1 = K11 (Tmax)CmRa x  (5.40)

a 2 = K 2 (Tmax)Cmlax (5.41)

a 3 = K13(T m a x ) + a 2  (5.42)

An upper bound on the the extents of the competing reactions can be expressed as

follows:

612 + 13 • (N 1 + 1) (1 -eat) (5.43)

The bounds on the extent of reaction depend on the charge of material and a function

of the temperature, concentration of R1, and the time. Following the procedure

employed in chapter 4, these bounds on the extents are expressed in terms of the

new variables xi and x23 that account for the time, temperature, and concentration
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dependence:

'11 < No2x 1  (5.44)

ý12 + 613 (N•1 + 11) X23  (5.45)

x = 1 - e- 1tP (5.46)

x 23 = 1 - e - ast (5.47)

As shown in chapter 4 these bilinear expressions do not define a convex feasible region.

However, for given values of T m " and CR•ax the hypograph of the functions x' and

x23 define convex regions. Overestimates for the variables x1 and X23 are derived as

follows. First, the feasible temperature range is partitioned into a set of temperature

intervals, denoted by the subscript j, so that T m in = To < ... Tj < T m a
x. Next,

a bound on the maximum concentration of R1 in the reactor is defined in terms

of the ratio of R1 to R2 fed to the reactor. The maximum of concentration of RI

in the reactor is partitioned into intervals denoted by the subscript c. In each of

these intervals, -y defines the upper limit of the ratio of R1 to R2 and CR l max defines

an upper bound on the maximum concentration of R1 that is possible. An integer

variable ye R1 is used to indicate the overall ratio of R1 to R2 charged as follows:

7- fCR2 - L ef PeRl V C > 1, k = 1 (5.48)
e

Cmax CmaxyRC" feR; m zR1 V C, k = 1 (5.49)Y Jek PeR- J kR2
e

C
m a x

Sc = 1 (5.50)
C

A large value for 7y, was selected so that these equations can always be satisfied
cmax

for some value of Yc R1 , but the maximum concentration of R1 in the last interval

(i.e., c = no) is defined by the molar volume of R1 (see (5.52)), knowing that the

concentration can never be higher than that of the pure component. The maximum

concentration of R1 in each of these intervals is defined from the knowledge that

the number of moles of toluene charged to the reactor must be at least 1.5 times the
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amount of R2 charged. Since the solvent toluene is required to be in the reactor during

the entire reaction, the maximum concentration of R1 can be determined assuming

that only toluene and R1 are present. Thus, an upper bound on the maximum

concentration of R1 in each of the c intervals can be calculated as follows:

YcRmax if c < nc (5.51)
YcVR1 + 1.5VT

C max if c = n, (5.52)
VR1

We define values 6l,j-a64c corresponding to Tj = Tmax and Cc mmax that overesti-

mate the rates of reaction when operating in temperature interval j and concentration

interval c. We assign the variable tjT to denote the time the first reaction spends in

temperature interval j. 4 The variables x1, and x are defined in terms of these

parameters and tT as follows:

= 1 - t V c, (5.53)

xCi = 1 - e-3tT V c, (5.54)

Since xcj and x are defined by concave functions, tangents to these functions over-

estimate the feasible region that defines the reaction extents in terms of time. We

pick m discrete points in time (icjm) for each temperature and concentration interval

at which we define the tangents to the function. The region lying beneath the tan-

gent curves overestimates the hypograph of x1 and x 2. These tangents generate the

following bounds:

c < 1-e- 'cjim + 6 e- 1jtC m (t - tjm) V c, j, m (5.55)

x < 1 - e&3c_ Jm + &3 e- a' Itm (tT - tcjm) V c, j, m (5.56)

Bounds on the extents of reaction in each temperature interval are calculated by

4Note that the performance of the other reactions is not assigned to different temperature inter-
vals, so tT applies only to the first reaction.
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employing linear overestimators (4.36-4.37) (McCormick, 1976) for the bilinear ex-

pressions in (5.44) and (5.45). Following the same procedure used in chapter 4, the

total charge of Ný 2 and N7I + l11 are divided into intervals denoted by the subscript

1, and the active feed intervals for R2 and 11 are identified by a binary variables ylFR2

and y F"':
1l *

Z y[FR2 = 1Y1

1EL

Z Fil
Yl

lEL

1R21 yFR2 <fL
IEL

IEL

(5.57)

(5.58)

(5.59)

(5.60)

Rn < R2 FR2
R2 -- fi Y

1EL

1•in + 6 < ill FI1

1EL

To employ this strategy the variables Cc = =Tly R2 are introduced to denote the

extent of reaction 1 in concentration interval c, temperature interval j, and feed

interval 1, so c j E cjl = 11. In addition, the variables cj= xyFR2, 1R 21
"Xlcjl • "jYl lcR21

2F'R2 Rn, and f ,= yFA (fR•n + 11) are introduced. The same procedure is applied

for reactions 2 and 3. Note that V j, = 1..3.for reactions 2 and 3. Note that E Tljl E LTrj V j, r = 1..3.

cT R2 1 - R2 FR2 R•n•lc31  J - -R2x +
ZIT _R2 1
Clcji < fiX~

V c, jE J, l c L

V c,j E J, 1E L

and similar constraints are derived to bound the extents of reactions 2 and 3:

2T l T 3 I1 23 lfjI1 FI +Rlin
ý2cjl + ý3c3l • -lXcjl - ll

cýT2cjl + ý3cjl A XC JE1Z

V c, j J, IEL

V c, j E J, EL

Constraints to bound the extents in consecutive temperature intervals analogous to

(4.52-4.55) are also derived and included with the screening model.

An upper bound on the selectivity of reaction 2 to 3 is imposed in each temperature
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interval based on the relative rates of reaction. The ratio of the rate of reaction 2 to

3 is defined as follows:

rate2  12(T)CR1CIl K 12(T)C
Cat (5.65)

rate3  KI3 (T)C,1 Ki13(T)

Since the selectivity is a function of only temperature and the concentration of R1

and the activation energy of reaction 2 is less than that of reaction 3, the selectivity

can be bounded in each temperature interval j as follows:

rate2 < 12(Tj-1)max (5.66)
rate3 - 113(T3-1)RI

Since Cax is bounded by the active feed interval, (5.66) can be expressed as follows:

T 12 (Zj-1) R1max
Tc C "-T
2cjl 13(Tj-1) l Vc, jE J (5.67)

These bounds assume that the concentration of R1 is held constant throughout the

reaction, so they are rigorous but may not be very tight. Since the selectivity varies

exponentially with temperature and only linearly with concentration, these bounds

capture the dominating tradeoff.

Second Reaction Task

The following reaction occurs in the second reaction task:

C + M -- + E (5.68)

In the second reaction task an upper bound on the reaction rate can be obtained by

by overestimating the concentration of methanol in the reactor.

21 NN NCNM max K21NC
- K2 1  • K2 1  < K21 •CM < (5.69)

dt V Vmin VM
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We have employed the fact that the concentration of methanol cannot be greater

than the concentration of pure methanol, defined by the molar volume of the species.

While this is a crude approximation, it is not too far (within 30 %) from the initial

methanol concentration if there are no other solvents in the reactor, and it provides

a rigorous bound. Therefore,

21 <2 1 - e (5.70)

Since the second reaction task did not typically limit the cycle time, this bound was

deemed sufficient.

For this reaction task, linear bounds are enforced by providing a piecewise constant

overestimation of the feasible region. Since high conversion is required in this reactor,

the conversion is divided into intervals, and an SOS1 set (i.e., c, yConvC = 1) of binary

variables y onvo is employed to indicate in what range the conversion achieved lies.

Denoting the upper and lower bounds on the conversion in each interval by ~u and
cLo respectively, the active region can be identified as follows:

yConvC CLO Rn < •21<  
ycConvC CUP 2 Rj (5.71)

C C

The bilinear terms are replaced by introducing a new variable N C - fRn ConvC

defined using an exact linearization. A lower bound on the time required to achieve

(21 is given as follows:

In 1 - CLO)

t-/ yc Cnv/VM (5.72)c -K21/VM

Third Reaction Task

The third reaction task converts intermediate E into product D. The reaction is

carried out in a large excess of water (at least 25 times E). This reaction is restricted

to temperatures below 95 C, so an upper bound on the rates that can be achieved is

imposed by this temperature. Since the reaction is second order in E, the rates will
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be maximized if the same material is contained in a smaller volume. This implies

that the rate can be overestimated by assuming no dilution by inert materials, by

underestimating the volume during the entire reaction, and by assuming that all

the reactants are available initially. The volume increase upon reaction is ignored

to overestimate the rate of reaction. If the reaction is carried out isothermally, the

reaction time can be related to the conversion of E as follows:

2K31t 1  
>  - E  1 (5.73)

S- CE CE. (1 - XE)NEo NE NE.

An underestimate of the time required to achieve a given conversion occurs can be

derived from (5.73) by assuming the reactor is operated at the maximum temperature

for the duration of the reaction and by underestimating the Vo/NEo term by assuming

the concentration of E is not diluted by excess water or other components.

tRX1 + 25Vw1 (5.74)

(- 2•lax

In (5.74) •a•ax denotes the value of the rate constant at 95 C.

Equation (5.74) can be used to derive a simple lower bound on the reaction time in

the same fashion used to derive a lower bound for the processing time of the second

reaction. The conversion that is achieved in the reactor is restricted to lie in one

of several intervals that cover the range of feasible conversions for this reaction; a

SOS1 set of binary variables yConvE (i.e., C, YyC nvE = 1) is employed to indicate in

what range the conversion achieved lies. Denoting the upper and lower bounds on

the conversion in each interval by xf and . LO respectively. New variables NE =

3ffEfyconvC are defined using an exact linearization in order to relate the conversion

to the extent of the reaction.

ENE xEL°  E 2•31 E rE 'E U P

E 2 5 NE (5.75)
C C

A lower bound on the time required to achieve 631 is given by replacing the xE in
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(5.74) with the lower bound of the active conversion interval:

tR > VE+ 25Vw3 _ConvE ( 1 )3 2 max ELO - 1 (5.76)

5.3.2 Solutions to Case Study II

The screening model was employed to determine the minimum cost design for the pro-

duction of siloxane monomer. In determining the minimum cost design the screening

model determines whether the downstream processing to convert C into D is cost

efficient. Two superstructures were considered in this case study. The first includes

only the first reaction task, and the second requires all three. The screening model

will select between these two options if it is allowed to decide whether the reaction

tasks should be performed or not, but solving the problem using two different su-

perstructures allows us to compare the optimal screening solution derived from each

superstructure, rather than simply finding out which structure leads to the best so-

lution. In addition, it reduces the combinatorial complexity of the model.

Lower bounds on the manufacturing cost for 136,078 kg of product are determined

for each superstructure. Raw material, waste disposal, utility, and equipment rental

costs were considered for a manufacturing campaign employing no intermediate stor-

age; end effects were ignored. The product was required at a purity of 98% defined

on a mass basis. Two percent of all recycled material was purged. Material transfers

are assumed to take .5 hours, and .5 hours are required to bring the columns to total

reflux before drawing product. The solutions obtained for each of the superstructures

are described in the next two sections.

Eight temperature intervals defined by (310, 320, 330, 340, 350, 360, 370, 390,

410 K) were employed when deriving the targets for the first reaction task. Five feed

intervals were employed. The upper bound on the first four feed intervals represent

increases of 2 % over the minimum amount of R2 required to achieve the required

production. The ratio of R1 to R2 was partitioned into five intervals, with the upper

bounds on the first four intervals defined by 2.0, 2.5, 3.0, and 4.0.
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Case II.A: One Reaction Task Allowed

A lower bound on the manufacturing cost of $6.59/kg was obtained using only one

reaction and one distillation task. A schematic of the solution is provided in figure 5-2.

The streams are labeled with the material flows for the entire campaign for each of the

fixed points contained in the stream. Since 45 batches are employed in this campaign,

the amounts charged during each batch can be determined from the figure 5-2.

The solution of the screening model for the three reaction process, chooses not to

perform any of the second and third reactions even though we imposed constraints

that required equipment to be assigned to the third reaction and distillation tasks.

Hence, it cost more that the solution above.

534.1 R2
1070.2 R1

23.8 T 5.8 RT
1.11 a 7

.8 M Product

Figure 5-2: Process schematic of the solution derived from the superstructure con-
taining only one reaction task. Streams labels denote the flow of each fixed point in
kmols for the campaign.

The reaction task employs the 1000 gallon reactor and converts all of the R2

charged into A and C, with no II left unreacted. The reactor operates for a total
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of 3.25 hours, spending over 99 % of the processing time in the first temperature

interval. Seventy percent of the extent of the first reaction is achieved in the first

temperature interval, and over 96 % of the extent of the second and third reactions can

be attributed to the time spent in the first temperature interval. The other 30% of the

extent of the first reaction is attributed to the time spent in the higher temperature

intervals, with 20% being attributed to time spent in the 370-410 K range. A high

selectivity is achieved by operating at a low temperature. The performance given

by the screening model represents a bound on the performance of an actual reactor,

so the detailed dynamic model of the reaction task may not be able to achieve the

performance predicted by the screening model.

In order to operate at cyclic steady state, any C generated by the reaction task

must be removed from the process. It can be removed as either impurity in the

product or as waste; the screening model generates no waste by incorporating all of

the C generated in the process as impurity in the product. In order to remove this

C at minimum cost, the screening model chooses to add methanol to the feed to the

distillation column. This permits the C to be removed in the C-M azeotrope and

prevents the formation of the C-R1-T azeotrope. Although the screening model does

not consider the difficulty of the separation task (e.g., the purity of each cut employed

in the detailed process design and whether the fixed points are close boiling), the use

of methanol as an entrainer makes the separation of C from the rest of the components

easier, because C is removed in the minimum boiling azeotrope formed between C

and methanol that has a normal boiling point below all of the other fixed points in

the system. The reactor effluent combined with the methanol places the feed to the

distillation task in batch distillation region 9. The first overhead cut contains the

C-M azeotrope, which is sent to waste. The next overhead cut contains the solvent

and unused reagents and is recycled to the reaction task. The product A is taken in

the bottoms of the column.

Raw material costs dominate the production costs for this design, as shown in

table 5.18. Tables 5.14, and 5.15 show the material processing costs for the campaign.

Table 5.16 shows the charges incurred for the use of equipment during the campaign,
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and table 5.16 shows the utilization of the equipment. The batch size and cycle time

are the same for both tasks.

Raw Material Costs
Raw Material Cost [$ / kg] Feed [kg] Total Cost [$] $ / kg product

M 1.23 25.48 31.34 0.00
R2 8.85 71734.25 634848.15 4.67
R1 4.11 53596.72 220282.52 1.62
T 1.46 2193.08 3210.67 0.02

Total 127549.54 858372.68 6.31

Table 5.14: Raw material costs for the entire
only one reaction task.

campaign for the process containing

Utility Costs
Cut Material Amount [ kg ] Reboiler Cost [$] $ / kg product

Distillation 1
CM 339.98 0.00 0.00
RT 18762.33 0.09 0.00
T 64475.18 0.18 0.00

Total 83577.48 0.27 0.00

Table 5.15: Utility costs for the distillations for the entire
containing only one reaction task.

campaign for the process

Case II.B: All Reaction Tasks Required

A lower bound on the manufacturing cost of $6.80/kg is obtained when all we require

that all three reaction tasks are performed. In order to ensure that all the reactions

are performed, we require that at least 98% of the C generated in the first reaction

is converted to E in the in the second reaction, and we require that at least 85% of

the E is converted into D. A schematic of the solution is provided in figure 5-2. The

streams are labeled with the material flows for the entire campaign for each of the

fixed points contained in the stream. Since 36 batches are employed in this campaign,

the amounts charged during each batch can be determined from the figure 5-3.
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Figure 5-3: Process schematic of the solution derived from the superstructure requir-
ing all three reaction tasks. Streams labels denote the flow of each fixed point in
kmols for the campaign.
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Reactor Rental Costs
Volume Assigned Rental Rate Total Cost $ per

[gal] Units [ $ / hr] [$] kg product
1000 1 88 16849.01 0.12

Distillation Column Rental Costs
Volume Vapor Rate Assigned Rental Rate Total Cost $ per

[gal] [ kmol/hr ] Units [ $ / hr] [$] kg product
1000 20 1 110 21061.26 0.16

Total for reactors and columns 37910.26 0.28 J

Table 5.16: Equipment costs for the entire campaign for the process
one reaction task.

Table 5.17: Equipment utilization for
one reaction task.

containing only

the design obtained from the process containing

Cost Contributions
Component Percent Total Cost [$] $ / kg product
Raw Material 95.77 858372.68 6.31
Waste Disposal 0.00 0.00 0.00
Utility 0.00 0.27 0.00
Equipment 4.23 37910.26 0.28
Total 896283.22 6.59

Table 5.18: Comparison of raw material, waste disposal, utility, and equipment costs
for the process containing only one reaction task.

191

Utilization Processing Task
Measure Reaction 1 Distillation 1

Cycle Time 4.25 4.25
Volume Required 999.58 999.78
Volume Assigned 1000.00 1000.00



The first reaction task employs the 500 and 750 gallon reactors and converts all of

the R2 charged into A and C, with no II left unreacted. The reactor operates for a

total of 3.27 hours, spending over 99 % of the processing time in the first temperature

interval. Roughly seventy percent of the extent of the first reaction is achieved in

the first temperature interval, and over 96 % of the extent of the second and third

reactions can be attributed to the time spent in the first temperature interval. The

other 30% of the extent of the first reaction is attributed to the time spent in the

higher temperature intervals. A high selectivity is achieved by operating at a low

temperature. The operation of the first reactor given by the solution is very similar

to the reactor operation for Case II.A. However, in this case, we require that the C

generated in the first reactor is processed to product D.

The effluent from the first reactor is separated using both 750 gallon distillation

columns. The columns operate in batch distillation region 9; note that the methanol

recycled from the third distillation to the first reactor acts as an entrainer. A is taken

in the bottoms of the column, the C-M azeotrope is passed on to the second reaction,

and the unused reagent and solvent are recycled.

The second and third reaction tasks are merged into a single equipment stage

that employs a 500 gallon reactor. The effluent from these reaction tasks is separated

in the 1000 gallon distillation column. Since very little C is generated in the first

reaction and the manufacturing facility does not contain any reactors and columns

an order of magnitude smaller, these equipment items are underutilized as shown in

table 5.22.

As with study case II.A, raw material costs dominate the production costs for this

design, as shown in table 5.23. Tables 5.19 and 5.20 show the material processing costs

for the campaign. Table 5.21 shows the charges incurred for the use of equipment

during the campaign. The batch size and cycle time are limited by the first reaction

task.
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Raw Material Costs
Raw Material Cost [$ / kg] Feed [kg] Total Cost [$] $ / kg product

M 1.23 3.29 4.04 0.00
R2 8.85 71557.98 633288.14 4.65
R1 4.11 53464.90 219740.75 1.61
W 0.01 1071.74 10.72 0.00
T 1.46 1472.62 2155.92 0.02

Total 127570.54 855199.57 6.28

Table 5.19: Raw material costs for the entire campaign for the process requiring three
reaction tasks.

Utility Costs
Cut Material Amount [ kg ] Reboiler Cost [$] $ / kg product

Distillation 1
CM 339.60 0.00 0.00
RT 18716.19 0.09 0.00
T 64316.76 0.18 0.00

Distillation 3
M 158.48 0.00 0.00

WE 75.71 0.00 0.00
W 1056.22 0.02 0.00

Total 84662.96 0.29 0.00

Table 5.20: Utility costs for the distillations for the entire campaign for the process
requiring three reaction tasks.

Comparison of the two superstructures

The design that requires that all three reaction tasks are performed results in higher

manufacturing costs than the design with only one reaction task. Although the three

reaction process has slightly lower raw material costs, this savings is outweighed by

the additional equipment cost incurred by dedicating a reactor and column to the

downstream processing for the duration of the campaign. Thus, the one reaction

task design is more desirable if this high selectivity can be achieved through dynamic

optimization of the operating policy of the first reaction.

The screening model superstructure used in this example did not consider employ-
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Reactor Rental Costs
Volume Assigned Rental Rate Total Cost $ per

[gal] Units [ $ / hr] [ $ ] kg product
500 2 50 15363.07 0.11
750 1 70 10754.15 0.08

Distillation Column Rental Costs
Volume Vapor Rate Assigned Rental Rate Total Cost $ per

[gal] [ kmol/hr ] Units [ $ / hr] [$] kg product
750 15 2 90 27653.52 0.20

1000 20 1 110 16899.38 0.13

Total for reactors and columns 70670.12 0.52

Table 5.21: Equipment costs for the entire campaign for the process requiring three
reaction tasks.

Utilization Processing Task
Measure Rxn 1 Dist 1 Rxn 2 Rxn 3 Dist 3

Cycle Time 4.27 3.79 1.29 2.25 1.73
Volume Required 1246.65 1246.65 2.66 12.48 12.48
Volume Assigned 1250.00 1500.00 500.00 500.00 1000.00

Table 5.22: Equipment utilization for the design obtained from the process requiring
three reaction tasks.

Cost Contributions
Component Percent Total Cost [$] $ / kg product
Raw Material 92.37 855199.57 6.28
Waste Disposal 0.00 0.00 0.00
Utility 0.00 0.29 0.00
Equipment 7.63 70670.12 0.52
Total 925869.98 6.80

Table 5.23: Comparison of raw material, waste disposal, utility, and equipment costs
for the process containing only one reaction task.

ing intermediate storage or the possibility of changing the operation of the process at

some point during the campaign (i.e., using an item of equipment for different tasks

at different times), so the downstream items of equipment are underutilized. The
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use of intermediate storage alone will not improve the equipment utilization much

since the same task already limits both the batch size and cycle time, but if we relax

the restriction that equipment items are dedicated to a particular task for the entire

campaign, a process employing three reaction tasks may become more attractive. For

example, if sufficient intermediate storage is available, we might consider operating

the first reaction and distillation tasks as suggested by the solution of the screening

model and storing the C - M azeotrope until all the batches of the first two tasks

are completed. At this point, the same equipment could be employed for the second

and third reactions and final distillation. Although the use of intermediate storage is

considered by the screening models formulated in chapter 3, extensions to the screen-

ing model are required to consider process that do not operate in campaign mode

(i.e., those in which equipment items are not dedicated to a particular task for the

duration of the campaign).

5.3.3 Case III: Disposing of Recycle Streams

This example considers the cost of disposing of recycled material at the completion

of the campaign. We employ the reaction targets described above and consider the

process containing only one reaction task. The trade off between the size of the

batches and the campaign length is considered.

We assume that the amount of material recycled per batch must be disposed of

at the conclusion of the campaign, unless this material is one of the raw materials

used by the process. The cost of disposing of this material is added to the objective

function, and the cost to manufacture 300,000 pounds of monomer is minimized.

The solution of the screening model results in a process that differs from the

one obtained when the disposal of the recycle streams was not considered. This

design employs 60 batches, instead of 45, to manufacture the product at a cost of

$6.63/kg. A smaller reactor is employed and the cycle time of the process is reduced,

but the campaign length is increased from 191 to 214 hours. Raw material costs are

identical between this design, shown in figure 5-4, and the design shown in figure 5-2.

Tables 5.24-5.26 show the raw material, waste disposal, utility, and equipment rental
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costs. All of the waste generated results from the disposal of the recycle streams. We

assume that the recycled toluene, one of the raw materials, can be reused in another

process, so no cost is assessed for this recycle. Although the distillation column is

larger than necessary as shown in table 5.28, using the 1000 gallon column reduces the

cycle time because it has the largest vapor rate of the available columns. Table 5.29

shows breakdown of the processing costs, demonstrating that the raw material costs

still dominate.

534.1 R2
1070.2 R1
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Figure 5-4: Process schematic of the solution derived from the superstructure con-

taining only one reaction task in which the disposal of recycle streams at the end

of the campaign is considered. Stream labels indicate the fixed point flows for the

campaign given in kmols.

5.4 Conclusions

Computationally tractable models can be derived that provide bounds on the cost of

manufacture for processes commonly encountered by synthetic pharmaceutical and
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Raw Material Costs
Raw Material Cost [$ / kg] Feed [kg] Total Cost [$] $ / kg product

M 1.23 25.94 31.91 0.00
R2 8.85 71738.25 634883.47 4.67
R1 4.11 53598.21 220288.65 1.62
W 0.01 0.00 0.00 0.00
T 1.46 2186.96 3201.71 0.02

Total 127549.36 858405.75 6.31

Table 5.24: Raw material costs for the process considering the disposal of recycled
material at the completion of the campaign.

Waste Disposal Costs
Waste Material Cost [$ / kg] Amount [kg] Total Cost [$] $ / kg product

RT 18.00 306.46 5516.28 0.04
Total 306.46 5516.28 0.04

Table 5.25: Waste disposal costs for the process considering the disposal of recycled
material at the completion of the campaign.

Utility Costs
Cut Material Amount [ kg ] Reboiler Cost [$] $ / kg product

Distillation 1
CM 346.09 0.00 0.00
RT 18762.85 0.09 0.00
T 64479.02 0.18 0.00

Total 83587.97 0.27 0.00

Table 5.26: Utility costs for the distillation task in the process considering the disposal
of recycled material at the completion of the campaign.

specialty chemical manufacturers. These models embody many of the processing

limitations governing the process design, yet they are able to consider continuous and

discrete aspects of the design simultaneously. They also enable some of the process

synthesis decisions to be systematically considered during the design procedure. The

screening models do not consider the process dynamics, so these models must be used
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Reactor Rental Costs
Volume Assigned Rental Rate Total Cost $ per

[gal] Units [$ / hr] [$] kg product
750 1 70 14978.44 0.11

Distillation Column Rental Costs
Volume Vapor Rate Assigned Rental Rate Total Cost $ per

[gal] [ kmol/hr ] Units [ $ / hr] [$] kg product
1000 20 1 110 23537.55 0.17

Total for reactors and columns 38515.99 0.28

Table 5.27:
material at

Equipment costs for the process considering the disposal
the completion of the campaign.

Utilization Processing Task
Measure Reaction 1 Distillation 1

Cycle Time 3.57 3.57
Volume Required 749.73 749.87
Volume Assigned 750.00 1000.00

Table 5.28: Equipment utilization for the process considering the disposal of recycled
material at the completion of the campaign.

Component Percent Total Cost [$] $ / kg product
Raw Material 95.12 858405.75 6.31
Waste Disposal 0.61 5516.28 0.04
Utility 0.00 0.27 0.00
Equipment 4.27 38515.99 0.28
Total 902438.28 6.63

Table 5.29: Comparison of raw material, waste disposal, utility, and equipment costs
for the process considering the disposal of recycled material at the completion of the
campaign.

in conjunction with detailed dynamic simulation or pilot plant experiments. However,

the solution of the screening models facilitates the cyclic steady state simulation of

a dynamic process containing recycles and the formulation of a multi-stage dynamic
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optimization of the process by providing both initial estimates of the flowrates in the

process and alternative process structures.

The solution of the process development example demonstrates that integrated

processes employing recycles can significantly reduce the waste generated during the

manufacture of these products. The process operates at cyclic steady state, so the

recycled material does not accumulate. However, at the conclusion of the campaign,

this material must either be stored indefinitely, or sent to a recovery facility. As

demonstrated by the process development example the amounts that are recycled

can be on the same order as the total waste generated during the campaign. The end

effects of the campaign are important from the standpoint of pollution prevention

and may possibly impact the design from a cost standpoint as well. Section 5.3.3

shows that if the number of batches is not very large, the cost of waste disposal at

the conclusion of the campaign can affect the way in which the process is operated,

trading off operating and waste costs.

As in chapter 4, the screening models demonstrate the ability to perform some

aspects of the process synthesis. In fact, the results of the case study II demonstrate

that the process employing only one reaction task is potentially more efficient than

one that contains the downstream processing to convert C to D.5 However, detailed

dynamic models are required to perform an accurate comparison of the costs, but the

solutions of the screening model provides good initial guesses for a material states

involved in the dynamic optimization of the process performance.

This chapter also highlights the need to extend the screening formulations to han-

dle both reactive distillation processes and heterogeneous mixtures. These examples

assume that reaction does not occur in the distillation columns, although some reac-

tion must occur. This was not a limitation in chapter 4 since the reactions employed

a heterogeneous catalyst which was filtered before entering the distillation columns.

5A complete comparison requires the detailed design, but the one reaction process will be more
efficient provided that a sufficiently high conversion of A versus C can be achieved using detailed
dynamic optimization of the reaction I operating policy.

199



200



Chapter 6

Numerical Issues in the Simulation

and Optimization of Hybrid

Dynamic Systems

Section 1.6 described the need to employ hybrid discrete/continuous modeling envi-

ronments for the detailed simulation and optimization of batch processes. A key to

the application of modeling technology to the design of batch processes has been the

evolution of equation-based simulation tools, such as SpeedUp (AspenTech, 1993),

ASCEND (Westerberg et al., 1994), POLYRED (Ray, 1993), or ABACUSS (Barton,

1992), into process modeling environments in which a common reusable process model

may be used reliably for a variety of different computational tasks (Pantelides and

Barton, 1993), such as both steady-state and dynamic simulation, optimization, sensi-

tivity analysis, uncertainty analysis, etc. Such environments decouple the description

of the process model from the solution procedure, yielding major advantages for the

user of the system. The user is free to concentrate on the correct formulation of the

model and simulation experiment rather than the details of the numerical solution

procedures; thus, the user need not be an expert in numerical analysis. While this is

a desirable goal, it places stringent demands and high expectations on the robustness,

accuracy, and generality of the solution procedures. For example, our experience with

the application of the state-of-the-art numerical algorithms employed within ABA-
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CUSS to the batch distillation of wide-boiling azeotropic mixtures has demonstrated

that the numerical technologies have not yet attained the level of robustness required

for the routine simulation and optimization of batch processes.

The following chapters focus on improvements to the robustness and efficiency of

the numerical algorithms employed within the ABACUSS process simulator. Two

main areas have been investigated: 1) improving the accuracy and robustness of

the integration procedure for models that become locally ill-conditioned during the

course of the transient, and 2) improving the efficiency of the integration algorithm

during the initial phase of the integration procedure. These improvements have been

incorporated within an integration code designed for the integration of large sparse

unstructured systems of differential-algebraic equations called DSL48S (Feehery et al.,

1997). Therefore, although the development of these techniques has been motivated

by the needs of hybrid discrete/continuous simulation environments, the techniques

apply to general sparse unstructured systems of DAEs.

6.1 Accuracy of Solution Procedures

Mathematical models provide a formalism with which to encapsulate our understand-

ing of the physical world and apply this knowledge to calculations of engineering

interest. The derivation of useful models comprises two tasks: a) identifying the

physical phenomena relevant to the current engineering activity, and b) accurately

representing this phenomena within the mathematical formalism. Identifying the rel-

evant phenomena permits the model to capture important behavior in the physical

process without obscuring the results in a sea of detail and without burdening the

computation with unnecessary calculations. Accurately capturing the relevant phe-

nomena within the mathematical model is critical to the utility of the simulation

results. The derivation of good models remains a difficult task, but process model-

ing environments provide a framework in which to apply these models to a variety

of engineering calculations. In fact, a single reusable mathematical model can be

employed for engineering calculations performed over the lifetime of a process (Bar-

202



ton, 1992). However, the user of such an environment expects the results provided

from all simulations to meet certain minimal accuracy requirements. While any user

recognizes that the numerical solution is an approximation of the exact solution of

the mathematical model, the solution should be a good approximation to the exact

solution.

The first question to ask is how should the quality of the numerical solution

be measured. In most cases, a numerical approximation that is close to the exact

solution is desired; letting x* define the exact solution and x define its numerical

approximation, a close solution is one that satisfies IIx* - xll j < T where 7 is the

tolerance. This definition also requires specification of the norm, which could be the

maximum norm, the two norm, or any other norm that is desired. The norm reflects

both the knowledge about the expected solution (e.g., are all the variables on the

same scale?) and any requirements that the solution should satisfy (e.g., should some

average property be enforced, or does every component of the solution need to satisfy

a requirement in order to employ the solution for engineering purposes). The norm

should also indicate whether we require relative accuracy in the solution or whether

we require that some absolute tolerances are achieved. The difference between the

exact and the calculated solution is referred to as the forward error of the solution.

Usually, a small forward error would satisfy our expectations. However, in other

cases we may require that we have found a solution that achieves small residuals. For

instance in an interpolation problem we are likely to be more interested in whether the

solution provides a good approximation of the data (either in an absolute or relative

sense) rather than how well it approximates the exact solution of the problem. In

many cases, bounds relating these quantities are easily derived (Higham, 1996).

Differences between the numerical solution of our mathematical model and the

performance of the process being modeled come from several sources:

1. Approximations made during the abstraction of the physical process into a

mathematical model.

2. Errors in the problem data. These errors may be attributed to imprecise mea-
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surements of physical quantities (e.g., VLE or property measurements), the

error in a previous calculation (e.g., parameter estimation), or they may simply

be the result of representing an exact quantity in finite precision.

3. Truncation error arising from terminating an exact approximation (such as a

Taylor series) after a finite number of terms. In many cases, the truncation error

is a function of the discretization (i.e., the step size and order of a numerical

integration).

4. Rounding errors arising from the fact that the computations are carried out on

machines of finite precision.

The users of process modeling environments typically expect that the applicability

of their simulation results depends on the errors attributed to the abstraction of the

physical process, and the errors in the measured data incorporated in the model such

as the parameters employed to predict physical properties. It is the user's duty to

make certain that these approximations are valid and apply the results with an under-

standing of the potential inaccuracies. Some process modeling environments ease the

interpretation of uncertainty in the problem data by calculating the sensitivity of the

results to perturbations in the problem data (Barton and Galin, 1997; Tatang, 1995).

The user expects the contributions of the other error components to be controlled by

the numerical solution procedure to achieve the requested accuracy. The user indi-

cates the desired solution accuracy by specifying the tolerance for the computations.

This tolerance is then typically used to control the truncation error, balancing the

speed of computation with the need for accuracy.

While simulating the batch distillation of wide-boiling azeotropic mixtures, we

have uncovered situations where the implicit assumption that the effect of rounding

errors is negligible certainly breaks down; figure 6-1 provides a dramatic illustration

of this phenomenon. While the simulation results appear to predict the dominant

processing characteristics correctly (ignoring the spikes), large contributions of the

rounding errors were witnessed as spikes in the values of certain variables, without any

accompanying warnings being issued by the numerical routines (except in cases where
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the algorithms simply failed). This highlights a major problem for the application

of the results. The results clearly do not meet the desired accuracy requirements,

but the numerical procedures do not provide any indication that this has occurred.

The uninformed user may then go on to employ these results as if they were correct.

Since detailed dynamic models of chemical processes are employed for the design of

operating policies (Ochs et al., 1996), control strategies (Zitney et al., 1995), and the

specification of equipment (Naess et al., 1993), the application of incorrect results

can waste money. Even worse, these results may be used to verify the safety of

proposed operating procedures, or the safety of the process under abnormal operating

conditions (Sedes, 1995). Although we have not encountered situations where these

errors have changed the qualitative behavior of the simulation, it is not hard to

imagine that the perturbations of the variables that have been witnessed could cause

the improper identification of state events, changing the functional form of the model

and leading to very different qualitative behavior (Park and Barton, 1996). In other

cases, the breakdown in the control of the accuracy is not signaled by a large deviation

in a variable value, but rather a failed simulation. While this result is also not

desirable, at least the results are not likely to be interpreted as if they are correct.

Condenser Duty versus Time
Du
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Figure 6-1: Plot of condenser duty resulting from ABACUSS simulation showing one
'spike' in detail.

It is unreasonable to expect that any level of accuracy can be achieved using
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finite precision computations.1 However, numerical algorithms should make attempts

to mitigate the effects of rounding errors (many effective algorithms are backward

stable, guaranteeing a solution with small backward error), and warn users when

the desired accuracy has not been maintained due to the effects of rounding error

and the conditioning of the problem. As we shall prove in chapter 7, the problems

we have observed are the result of ill-conditioning. We have found that automatic

scaling of the equations and variables during the integration procedure improves the

performance of the numerical algorithms and permits evaluation of the accuracy of the

solution. Not only does this allow the computation to maintain the desired accuracy,

but also improves the robustness and efficiency of the method. Before addressing

the results contained in chapter 7, some background on conditioning and linear error

analysis may prove useful.

6.1.1 Backward Error and Conditioning

Finite precision arithmetic imposes barriers on the accuracy that can be achieved due

to the effects of the rounding errors. Even if the computations could be carried out

exactly, rounding errors are encountered merely by representing the problem data in

finite precision. Wilkinson (1963) recognized that the solution obtained by a numer-

ical calculation in finite precision arithmetic is equivalent to the exact solution of a

similar problem with perturbed data; the size of these perturbations is termed the

backward error. The backward error interprets the errors committed during the cal-

culation as perturbations of the problem data. Since errors in the problem data are

encountered just from storing the problem, if the backward error is of that order we

can hope to do no better during the calculation. The second motivation for bounding

the backward error is that the relationship between the backward and forward errors

of the problem can be determined from perturbation theory. Perturbation theory

is understood for many problems (Stewart and Sun, 1990); an advantage of pertur-

bation analysis is that it is a characteristic of the problem and not the algorithm.

'It is assumed that the computations are employing the machine's standard arithmetic operations
and are not simulating arithmetic of arbitrarily high precision (Higham, 1996).
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Backward error analysis possesses advantages over direct round-off analysis, where

each algebraic computation is regarded as an operation which approximates the true

algebraic process. By using the backward or inverse round-off analysis, the analysis

of the solution procedure can be undertaken assuming the standard algebraic axioms.

In contrast, in direct round-off analysis the multiplication and addition operations

do not follow either the associative or distributive laws. Thus, an entirely different

system of analysis must be devised.

The relationship between the forward and backward errors is given by the condi-

tioning of the problem. The conditioning of a problem measures the sensitivity of the

solution of the problem to perturbations in the problem data, so it is a function of the

problem and not the solution algorithm. For scalar functions, the relative condition

number measures the relative change in the output caused by a relative change in

the input. For vector functions the changes are measured using a suitable norm, and

the condition number measures the maximum relative change in the output caused

by a relative change in the input. The maximum change in the output is achieved

by some, but not all, input perturbations. When the forward error, backward error,

and the condition number are defined in a consistent fashion, the following rule of

thumb (Higham, 1996) demonstrates that an ill-conditioned problem can lead to a

large forward error even if small backward is achieved:

forward error < condition number x backward error (6.1)

The conditioning of the linear systems solved during the corrector iteration of the

BDF code indicate that large error in the values of some of the variables can be ob-

tained even when the residuals are evaluated accurately, and the Gaussian elimination

produces small backward error. Rounding error analysis and conditioning of linear

systems is reviewed in section 6.3.3.
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6.2 Efficiency of Integration Codes

The routine simulation and optimization of large DAE models containing discon-

tinuities will only be realized once the solution algorithms and computer hardware

enable these calculations to be performed in reasonable time on desktop workstations.

When using BDF integration codes (see section 6.3.1), the computation time of the

solution algorithm is dominated by the time spent factoring the corrector iteration

matrix. Thus, the number of times the matrix is factored and the efficiency of the

linear algebra used to factor the matrix dictate the efficiency of the BDF code. Nu-

merical analysts have devoted years of effort developing efficient codes to factor the

large sparse unstructured matrices that are obtained during the dynamic simulation

of chemical processes (Duff and Reid, 1993; Zitney, 1992; Zitney and Stadtherr, 1993;

Zitney et al., 1996), so these algorithms will not be examined here. The heuristics

employed within the implementation of the BDF method contained in a particular

code typically seek to minimize the number of times the corrector iteration matrix is

factored. Since the need to factor the matrix depends on the changes in the variable

values and the change in the step size, it is important that the step size is on scale

for the problem.

This thesis proposes two techniques to keep the step size on scale for the problem.

First, the automatic scaling technique described in chapter 7 mitigates the effects of

ill-conditioned models in order to avoid situations in which the step size is cut unnec-

essarily due to inaccurate solutions of the corrector. In addition, chapter 8 develops

a method to determine an initial step size that is on scale for the problem which is

required at the start of the simulation or following any discontinuity. Although both

techniques benefit all dynamic models, the second technique is most applicable to

simulation and optimization of hybrid dynamic systems because these calculations

require the integration code to be started many times during a single simulation or

optimization experiment.
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6.3 Mathematical Background

Since the focus of this thesis is the application of mathematical modeling technology

to the design of batch processes, the reader is likely to be more interested in the

benefits provided by improvements to the numerical algorithms than the details of

the numerical analysis required to develop the new solution procedures. However,

some details of the numerical analysis are required to understand both the motiva-

tion and the application of the techniques developed in the following chapters. This

section describes the components of the integration algorithm on which our numerical

advances have focused, and provides background that is required to understand the

following chapters for the reader who has not devoted a career to numerical analysis.

6.3.1 BDF Integration Codes

Backward differentiation formula (BDF) methods are a class of linear multistep meth-

ods suitable for the solution of stiff ODE systems and index-1 DAEs (Gear, 1971).

In particular, BDF methods can solve DAEs expressed in fully implicit form (6.2)

directly.

f(, z, t) = 0 (6.2)

The kth order BDF method approximates the time derivative of the solution i(t)

using the derivative of a kth order polynomial that approximates the solution z(t)

over the last k + 1 points (including the current point). The simplest BDF method

is equivalent to the implicit Euler method in which i is replaced by the first order

backward difference approximation. This reduces the system of equations that must

be satisfied at every time step to the following:

fz -z n-1
f n( , Zn , tn) = 0 (6.3)

where h_-1 = tn - tn_~ denotes the length of the integration step and z, denotes the

numerical approximation to the solution at tn. For higher order BDF methods, the
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equations solved at each time step can be written as follows (Brenan et al., 1996):

f( (az + ý, zn, tn) = 0 (6.4)

where a is a constant that depends on the order of the approximation and the step size,

and , is a constant that contains the contributions of the solution from previous steps

to the BDF approximation of i(tn). Although many other methods have been applied

to the solution of index-1 DAEs, the greatest success has been achieved from codes

based on BDF methods, probably due to their large regions of absolute stability and

high accuracy (Brenan et al., 1996). Several texts describe the theoretical properties

of these methods in detail (Lambert, 1991; Hairer and Wanner, 1993; Brenan et al.,

1996).

The BDF codes examined within this thesis are implemented using a predictor-

corrector scheme that automatically adjusts both the step size and the order of the

approximation. The BDF method requires the solution of the system of nonlinear

equations given by (6.4) at each time step, which is solved using a modified version

of Newton's method. BDF predictor-corrector methods employ an explicit predictor

based on extrapolation of the BDF polynomial approximation of the solution to pro-

vide an initial value for the iterative procedure used to determine the solution of the

nonlinear equations zn at tn. The equations are converged in what is referred to as

the corrector iteration. For convenience, we define zP and z, as the predicted and

corrected solutions; note that zc is the final Newton iterate, and not the exact solu-

tion of the model equations at t,. After zc has been determined, the quality of the

approximation of the derivatives over the step is evaluated. The step is accepted if

the approximation, measured an approximation of the local truncation error, is good.

If the approximation is poor, then the step is rejected, and the integrator attempts

another step of smaller size, noting that the approximation should be exact as the

step size approaches zero.

A flowchart of the BDF integration algorithm is given in figure 6-2. We will ex-

amine the calculations performed at each step in this algorithm in more detail below.
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Figure 6-2: Flowchart for the predictor corrector implementation of the BDF method.

Since factorization of the corrector iteration matrix is expensive, these algorithms em-

ploy the factored matrix from a previous integration step until the convergence rate

of the corrector deteriorates or the step size changes substantially; either situation

indicates that the factored matrix is providing a poor approximation to the current

iteration matrix.

Our analysis of the BDF method focuses on the solution of the nonlinear equations

performed by the corrector iteration. We will also examine the truncation error

criteria to see how these criteria can be satisfied when the corrector has been converged

numerically, yet z~ may still be far from the exact solution of the BDF equations at

t,. However, we will not discuss the theory justifying the use of an approximation to

the local truncation error to control the error in the time evolution of the system; for

this, the reader is referred to other texts (Lambert, 1991; Hairer and Wanner, 1993;

Brenan et al., 1996).

Corrector Iteration

The corrector step in the BDF integration method solves the model equations for the

variable values, employing the BDF approximation to z at the integration points. At

time t, the system of equations given by (6.4) is solved using a modified version of

Newton's method in which a deferred Jacobian is employed. The corrector iteration

updates the value of z, at each step of the iteration (i.e., z k) = zk) + Azk)) using
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the solution of the following linear system:

E 8+ 9 az, [ + a] Azz = -f(az, + , zt) (6.5)

The corrector iteration is continued until IIAz nlIBDF < Tolerance. This tolerance is

defined to be small enough so that the error incurred from terminating the Newton

iteration 2 will not be so large as to adversely affect the truncation error check. For

example, the heuristics within DASSL require that the Newton iteration is converged

to within a tolerance that is one third the size of the permissible truncation error

(Brenan et al., 1996).

Truncation Error Tolerance

The local truncation error is used to measure the accuracy of the backward difference

approximation to the derivatives. DASSL also enforces a bound on the interpolation

error - the error in the solution interpolated between the integration points. DASSL

estimates the truncation error using the principle term in the infinite series expansion

of the local truncation error (Brenan et al., 1996). The interpolation error is estimated

in a similar fashion. Both DASSL and DASOLV (Jarvis and Pantelides, 1991) require

that the following condition is satisfied before an integration step is accepted (Brenan

et al., 1996):

error = M. I z C - Z Pc BDF < 1.0 (6.6)

where z C is the corrected solution, z P is the predicted solution and M is a constant

that depends on the order of approximation and the current step size. The user

requested integration tolerances are buried in the definition of the norm employed in

(6.6). Let ||'||BDF represent default norm used by the BDF integration routines to

measure the truncation error and size of the corrector updates. It is defined in (6.7),

2This error is also commonly referred to as truncation error, the error from truncating the infinite
series of Newton iterates after a finite number of iterations, but we will simply refer to it as the
termination error to avoid confusion with the local truncation error.
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where zP is the value of the variable zi from the previous integration step, Ti is the

relative error tolerance and Tai is the absolute error tolerance for variable i (Brenan

et al., 1996).

i= 1IIZIIBDF__ _ _ 2TriIJZJ+Tai
(6.7)

Section 7.2.2 discusses this truncation error criterion (6.6) in more detail and

explains how it permits the generation of 'spikes' in the solution trajectory.

6.3.2 Dynamic Optimization

The performance subproblem described in section 2.4 defines a dynamic optimization

problem. The goal is to determine the operating policies for the tasks that minimize

the operating cost for a fixed allocation of the plant's resources. A relatively general

formulation for the dynamic optimization problem can be stated as follows:

minm (z(tf), u(tf), v, tf) + L(z(t), u(t), v, t)dt
u(t),v,t to

(6.8)

Subject to:

-0

<0

<0

Vt E [to, tf]

Vt E [to, tf]

Vp C {0, n,}

(6.9)

(6.10)

(6.11)

where

f (z(t), 4(), U(t), v, t)

g(z(t), i(t), u(t), v, t)

kp(z(tp), I(t), u (tp)I v, tp)

zEZCRfz uEUC]

f : Z x R xUx

g:ZxRnz xUx

kp:ZxRxn xUx

IVU V  V C En V

V x R -+ Rnkp
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and z(t) are the continuous variables describing the state of the dynamic system, u(t)

are the controls whose optimal time variations on the interval [to, tf] are required,

v are time invariant parameters whose optimal values are also required, and tf is a

special time invariant parameter known as the final time. Equation (6.9) represents

a general set of differential-algebraic equations (DAEs) describing the dynamic sys-

tem. As such, they will include a lumped dynamic model of the system in question

coupled with any path equality constraints the system must satisfy; the number of

controls that remain as decision variables in the optimization is reduced by each path

equality constraint added to the formulation; we assume that (6.9) defines a solvable

DAE. However, the choice of controls u(t) and the presence of path constraints may

have a profound influence on the differential index (Brenan et al., 1996) of (6.9). For

practical purposes, we will further assume that, while (6.9) may have arbitrary index,

the index is time invariant and both the index and the dynamic degrees of freedom

can be correctly determined using structural criteria. Hence, the method of dummy

derivatives may be used either for numerical solution of the initial value problems

(IVPs) in (6.9) (Mattsson and S6derlind, 1993; Feehery and Barton, 1996a), or to de-

rive an equivalent index-i discretization of (6.9) via collocation (Feehery and Barton,

1995).

Solving Dynamic Optimization Problems

Two approaches that have been applied to the numerical solution of dynamic opti-

mization problems are discussed here. The traditional approach (Pontryagin et al.,

1962) employs the classical necessary conditions for optimality derived from the cal-

culus of variations directly. This formulation of the problem requires the solution of

a two-point boundary value problem (TPBVP). Although this results in an mathe-

matically elegant formulation, numerical solution of the resulting TPBVP is difficult,

particularly when the controls appear linearly in (6.9) or inequality path constraints

(6.10) are imposed on the state variables. A more practical approach is to transform

the variational problem into a nonlinear program (NLP) and then solve the NLP us-

ing standard codes. This approach has been applied successfully to some fairly large
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problems (Mujtaba and Macchietto, 1993; Charalambides, 1996).

Two methods, control vector parameterization (Kraft, 1985) and collocation (Logs-

don and Biegler, 1989), have been used to transform the DO problem into a NLP.

The resulting NLPs differ in both form and size, but the conditions defining a local

optima of the NLPs correspond to the classical necessary conditions for the dynamic

optimization (Bryson and Ho, 1975). The first approach approximates the control

variables using functions defined in terms of a finite number of parameters that are

the decision variables of the NLP (Sargent and Sullivan, 1977; Morison and Sargent,

1986; Vassiliadis, 1993). The objective function is evaluated by solving the initial

value problem, and the function gradients are calculated by augmenting the DAE sys-

tem with the equations defining the parametric sensitivities and solving the resulting

initial value problem. In this approach, the discretization of the control variables is

defined during the problem formulation, but the discretization of the state variables

of the DAE, which controls the accuracy of the solution to the dynamic model, is

determined automatically during solution of the IVP. On the other hand, the collo-

cation approach discretizes the state and control variables simultaneously. The NLP

is used to solve the optimization and the simulation at the same time (Logsdon and

Biegler, 1989; Vasantharajan and Biegler, 1990; Tanartkit and Biegler, 1995).

Although both approaches have advantages and disadvantages, the control vector

parameterization approach appears to be more practical for the types of problems in

which we are interested for several reasons. First, the method can be implemented

directly within equation-based simulation environments so that the same models of

the processing tasks and the same integration codes can be used for simulation and

optimization (Barton et al., 1996).3 The approach also automatically controls the ac-

curacy of the solution to the DAE model. Finally, the resulting NLP is much smaller

since the only decision variables are the parameters defining the control variables.

Although the problem size may impose the greatest barrier to the implementation

of the collocation approach, the inability to control the accuracy of the DAE solu-

3We note that the dynamic optimization cannot yet handle implicitly discontinuous models al-
though the simulation can.
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tion automatically during the NLP begs the question of whether the results of the

optimization are meaningful.

This thesis employs the control vector parameterization approach to dynamic

optimization that has been implemented within ABACUSS. A schematic of the im-

plementation is shown in figure 6-3. The implementation uses Lagrange polynomials,

defined on finite elements, to specify the control functions. The user is free to spec-

ify the number of finite elements, the order of the polynomial approximation, and

whether the controls should be continuous across finite element boundaries. Note

that when the dynamic model decomposes into subsystems in which no dynamic in-

teractions between the subsystems exist (e.g., (6.13-6.14), the initial value problems

for each subsystem can be solved independently.

Figure 6-3: Implementation of the dynamic optimization algorithm within ABA-
CUSS.

Dynamic Optimization of Batch Processes

For the optimization of batch processes using control vector parameterization, a

slightly different form of the dynamic optimization problem is sometimes preferred

than the one given by (6.8-6.11). If the dynamic interactions between processing tasks
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can be safely ignored, and if the process is operating at cyclic steady state, then the

interactions between different processing tasks can be decoupled through the state

of the material that is transferred between the tasks. These states do not change

from batch to batch, so they can be represented using a subset of the time-invariant

parameters v appearing in the original formulation. This allows us to partition both

the equations and the variables in the formulation given by (6.8-6.11) according to

the tasks with which both are associated; these tasks are identified by the subscript

k. We introduce an additional set of time invariant parameters tf < tf to denote

the final time of each of the k tasks. We choose not to partition the time invariant

parameters, noting that some parameters are associated with more than one task in

order to obtain the following alternative dynamic optimization formulation:

min u(Xzk(tk), Uk(t ), V, t) + L(Xk(t), Uk(t), v, t)dt) (6.12)

Subject to:

fk(xk (t),k(t),uk(t), v, t) = 0 Vk, t E [t0 , t f ] (6.13)

gk(xk(t), k (t), Uk(t), v, t) < 0 Vk, t c [to, t7] (6.14)

kp(x(tp), x(tp), u(tp), v, tp) < 0 Vp e {0, np} (6.15)

Note that the point constraints do not partition the variables into the k subsets,

since these constraints are used to relate the parameters in multiple tasks (e.g., a

parameter may represent the effluent rate from one task, which must be equal to

another parameter representing the charge rate to another task).

A couple of reasons exist for formulating the problem in this fashion. First, the

integration of each of the k DAE systems can be performed separately, facilitating the

application of parallel computation. It also reduces the computational effort required

to integrate the DAE and the associated sensitivity equations on single processor

machines. Although significant savings may be obtained because each system is

smaller, any decent linear algebra routines would also recognize this structure of the
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original system, and factor the overall system as a sequence of blocks (Harwell, 1993).

However, significant additional benefits are achieved because the dynamic interactions

between tasks are not important, so each task k can employ a different sequence of

step sizes to control the truncation error of only those variables appearing in task

k. For example, consider a batch reactor and a batch distillation column. For the

purpose of illustration, assume that rapid transients exist in the reactor during the

initial phase of the reaction, requiring small integration steps to maintain accuracy. If

the column is in the midst of a product cut at the same time, then the compositions

and temperatures within the column are changing slowly. When the two tasks are

integrated separately, the column is able to take large integration steps during this

period; however, when they are integrated together, the step size is restricted to

maintain accuracy of the reactor's variables. The opposite situation arises if the

column contains rapid transients because it is near the end of a product cut, but

the reaction is nearly completed and possesses transients that are slow. Integrated

separately, the reactor can take large steps, but integrated together, small steps must

be taken. Hence, by integrating the problems separately, the number of integration

steps that must be taken to simulate each problem is reduced.

The second reason for expressing the optimization in this form is because it intro-

duced the additional time invariant parameters tf, permitting each task to operate

for a different length of time. If the dynamic optimization considers a single pro-

cessing train (i.e., no intermediate storage between tasks), then the difference t f - tf

defines the idle time of task k. This formulation attempts to make up for the fact

that current implementation of control vector parameterization cannot handle dis-

crete changes to the models, which makes it difficult to model the idling of many of

the processing tasks. For example, the equations modeling the batch distillation may

not apply if the column is sitting idle. When the column is idle, the vapor flow in

the column goes to zero. This changes the equations governing the hydrodynamics

in the tray section (actually the hydrodynamics change dramatically well before the

vapor flow gets to zero (Kister, 1990)). Thus, the optimization must either handle

models that can represent both hydrodynamic regimes, or the optimization must deal
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with idle tasks in a different fashion. This technique for dealing with the idle tasks

can be viewed as a work around. Clearly, the dynamic optimization would be far

more applicable if general discrete/continuous models of the processing tasks could

be employed. For instance, discontinuous models are often used to define the physical

properties of the components in the system. For example, the Antoine vapor pressure

equation is only valid over a limited temperature range, and a different correlation

is used to extrapolate outside that temperature range (Reid et al., 1987). While the

ability to handle discontinuous models is not currently implemented, recent theoret-

ical developments permit the transfer of the parametric sensitivities across implicit

discontinuities (Barton, 1996), so a practical implementation to optimize DAE models

with implicit discontinuities will be achieved soon.

Charalambides (1996) choose to formulate and solve the performance subproblems

encountered during batch process development according to the formulation given by

(6.12-6.15). He notes that the number of optimization parameters can be reduced

by exploiting the fact that for sequences of tasks without recycles feeds to the down-

stream tasks are entirely determined by feed and operating conditions of the upstream

tasks. Thus, the parameters defining the state of the feeds to the downstream tasks

can be eliminated from the optimization, since these are determined by the perfor-

mance of the upstream task. However, he has found that exploiting this 'state task

coupling' and reducing the size of the NLP is not warranted. At each iteration of the

NLP, the DAE model along with the associated sensitivity equations must be inte-

grated. Exploiting the state task coupling does not reduce the number of sensitivity

equations; in fact, the sensitivity equations for the downstream models are simply

defined with respect to the upstream parameter when the parameter associated with

the downstream model is eliminated. Therefore, exploiting the state task coupling

does not reduce the effort required to solve the IVPs. On the other hand, exploiting

state task coupling will reduce the size of the NLP. However, Charalambides notes

that the effort required for the solution of each IVP is far greater than that required

for solving the quadratic programming subproblem used to determine the updates of

the optimization parameters. He argues that only small savings could be achieved
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by eliminating the intermediate parameters. In addition, his experience solving these

problems has demonstrated that the NLP performs better when state task coupling

is not exploited. He asserts that this is due to better conditioning of the NLP, since

small changes to parameters associated with upstream tasks may have little effect on

the performance of a task several stages downstream (Charalambides, 1996).

Dynamic optimization using control vector parameterization requires the solution

of multiple initial value problems. For the formulation (6.12-6.15), the controls of

every subproblem k are defined on a domain containing nek finite elements. An initial

value problem is solved on each of these elements, where the initial conditions for the

IVP of subproblem k on element ek are defined in terms of the values of the controls

and time invariant parameters associated with task k and the conditions existing at

the end of the element e-1. Therefore, at each iteration of the NLP, NIVP IVPs must

be solved, where NIVP = Ek ek . Since the solution of a single dynamic optimization

requires the solution of many IVPs, the solution efficiency of the IVP is important.

Chapter 8 improves the efficiency of the initial phase of the integration for each of

the IVPs encountered. Moreover, in order for the dynamic optimization algorithm to

succeed, the solution of each initial value problem must be carried out without user

intervention. Therefore, a robust IVP code is needed. This research improves the

robustness of the numerical integration method used for the solution of the IVP in

chapter 7.

6.3.3 Rounding Error Analysis

Determining the effect that rounding errors have on the performance of the corrector

iteration employed within the BDF integration code requires a basic understanding

of the methods for analyzing the effect of rounding error, rounding error analysis for

linear systems, and the properties of Newton's method. This section reviews some of

the basic concepts that are exploited in the following chapters.

The calculation of each Newton update requires the solution of the system of linear

equations. In order to examine the performance of Newton's method in the presence

of rounding error, we first review the error analysis typically applied when solving a
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linear system of equations on a computer using a floating point number system.

Linear Error Analysis

To ease the notation, consider the linear system in (6.16) which is equivalent to (6.37)

for a particular iteration.

Ax = b (6.16)

Consider that the problem data, A and b, are subject to uncertainty (either from

their calculation or simply from rounding the elements of A and b to store them in

the computer); we need to know what effect this error has on the calculated solution x.

Assume that A is known exactly and the vector b contains uncertainty. The solution

obtained is the solution to the similar problem

A(x + 6x) = b + 6b (6.17)

Since the error obeys A6x = 6b, we can obtain a bound for the Is6xll for any

nonsingular matrix A.

Sx = A-1'b (6.18)

|11-6x < IIA- 1  11bll (6.19)

In similar fashion, (6.16) imposes a bound on Ilbll which can be combined with (6.19)

to bound the relative error in x in terms of the relative error in b.

Ilbll < IIAI IIxJl (6.20)
164 lI16bllx4 | | A|| {A-lbI (6.21)
HIxl - IblH

For any nonsingular matrix A, the quantity IIAJI 11A-| 1A is defined as the condition

number of A for any consistent norm. Thus, the value of the condition number
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depends upon the norm on which it is defined. When the underlying norm is to be

stressed, subscripts are used. We define

N'o(A) = IIA||, IIA-1' o (6.22)

as the condition number of A dependent upon the a-norm. For the Euclidean norm,

the condition number is a measure of the maximum distortion that the linear trans-

formation A makes on the unit sphere. Equality holds for the inequality in (6.21)

if the directions b and Ab are chosen appropriately, so no sharper bound is possible.

In fact, choosing b in the direction of the eigenvector of ATA corresponding to the

largest singular value of A and choosing Ab in the direction of the eigenvector of ATA

corresponding to the smallest singular value of A (the largest singular value of A - ')

leads to equality in (6.21).

The error analysis performed above makes no reference to the rounding errors that

are invariably encountered at each algebraic operation during the solution of the linear

system, the backward error of the solution algorithm. The preceding perturbation

analysis assumed uncertainty in the initial problem data, but exact arithmetic was

used to analyze the effect of this uncertainty on the solution of the problem. Next,

we review the techniques employed to assess the backward error associated with the

solution of a system of linear equations by Gaussian elimination.

Wilkinson (1963) has shown that the rounding error encountered during the solu-

tion of the system by Gaussian elimination is equivalent to attributing the rounding

error to uncertainty in the original problem data. For instance, Forsythe and Moler

(1967) demonstrated that the rounding error from the matrix factorization and back

substitution (for a dense system) can be associated with an uncertainty in the original

matrix A, even though error is encountered at each step of the solution procedure

(e.g., storing A in finite precision with error E, then solving A + E = LU, Lz = b,

and Ux = z). The rounding error is attributed to uncertainty in the matrix data in

each step, and the sum of these uncertainties is lumped together as the uncertainty
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in A, denoted by 6A.

LU = A + E (6.23)

(L + 6L)(U + 6U)x = b (6.24)

(A + E + (6L)U + L(6U) + 6L6U)x = b (6.25)

(A + 6A)x = b (6.26)

IIEIM + 11Lll IU + IU |U + ILL|| IUU + +l -6 116Allo (6.27)

Forsythe and Moler (1967) provide a bound for the quantity 116Aloo in terms of

IIA|Il and other quantities (e.g., the growth factor) that can be calculated during the

solution process. However, they found no systems of equations which even approached

this bound. Wilkinson (1963) states that l|6AI[| is rarely larger than nu IIA|lo, where

u4 is the machine unit rounding error and n is the dimension of A, and Golub and

Van Loan (1989) use this approximation of ||16A|| in their analysis of the error in

the solution of a linear system.

The theoretical bounds for the backward error encountered during Gaussian elim-

ination with either partial or full pivoting are typically stated in terms of the growth

factor. When the solution of Ax = b is computed using Gaussian elimination in finite

precision arithmetic, the computed solution ±ý obeys the equation (A + 6A), = b,

where the backward error is bounded in terms of the growth factor g(A) (Golub and

Van Loan, 1989):

116AI o < 8n 3g(A) IIA|11 (6.28)

The n3 is hardly ever seen and can be replaced by n in practice (Higham and Higham,

1989), but the theoretical bound for g(A) is 2"- 1 when partial pivoting is employed.

Although bounds on the growth factor when full-pivoting is employed are tighter,

matrices that approach the theoretical bounds have not been discovered, in spite of

the fact that classes of real matrices exist for which a growth factor of at least n/2 is

4For floating point arithmetic using base 3 with t digits stored in the mantissa, u = P-t
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assured (Higham and Higham, 1989). It was conjectured that the growth factor for

Gaussian elimination with full pivoting was bounded by n, but a counter example was

recently found (Gould, 1991; Edelman, 1992). The conclusion to be drawn from this

analysis is that when a tight bound on the backward error resulting from Gaussian

elimination is required, it should be calculated for the particular matrix on hand,

unless the matrix has very specific structure for which tight theoretical bounds are

possible.

A posteriori analysis of the backward error resulting from Gaussian elimination

can be performed. Letting L and U denote the computed upper and lower triangu-

lar matrices corresponding to A, we see that the backward error 6A is defined by

A + SA = LU. While the exact calculation of A - LU[ is expensive, fairly tight

bounds for the backward error can be computed quite cheaply to verify the stability

of the matrix factorization (Higham, 1996). In fact, for sparse matrices it has been

argued that the direct computation of the backward error is inexpensive and can be

performed during the elimination (Reid, 1987), so these quantities can be made avail-

able for a posteriori analysis of computed solutions, especially if the factored matrix

is employed for repeated calculations, which is precisely the situation encountered

with the corrector iteration matrix used by BDF integration codes. Furthermore,

Arioli et al. (1989) have developed a method to bound the backward error for the LU

factorization of sparse unstructured matrices.

It is important to note the problems we have encountered during the integration of

DAEs are the result of ill-conditioning of the problem and not the result of a particular

matrix that exhibits poor backward stability during Gaussian elimination5 . Therefore,

our analysis of the error in the linear systems has focused on the conditioning of the

problem and not the stability of the Gaussian elimination.

'The solution of linear systems obtained using a backward stable algorithm (SVD) were virtually
identical to those obtained from Gaussian elimination
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6.3.4 Scaling of Linear Systems

Typical methods for scaling the linear system Ax = b employ two nonsingular diagonal

scaling matrices, D 1 and D2 , to produce a linear system in terms of transformed

variables (D-1 AD 2)y = D 1
1 b. The matrix AD 2 is often referred to as a column-

scaled equivalent of A, and D 1 A is referred to as a row-scaled equivalent. The

objective of the scaling process is to improve the quality of the computed solution of

the linear system. If we select the column scaling based on other information, such

as the appropriateness of the measuring the solution error in terms of that norm,

then the scaling problem is reduced to the search for the optimal row scaling matrix

D• 1 . For the corrector iterations with which we are concerned, the way in which the

error is measured is dictated by the user requested tolerances. Therefore, this thesis is

concerned with the row scaling that will improve the quality of the computed solution.

Row scaling techniques to improve the solution of linear systems are discussed below.

We desire a matrix D 1 that minimizes the condition of the scaled matrix D71 A,

where A can be regarded as the original matrix A or a matrix that has already been

transformed by a column scaling to reflect the appropriate error criteria. Since the

bound on the error in the computed solution is a function the backward error of the

solution method (Gaussian elimination) and the condition of the matrix, we would

like to reduce both. The LU factorization codes seek to reduce the backward error

of the Gaussian elimination algorithm, so we focus on reducing the condition number

of the system. This provides us with tighter bounds on the accuracy of the solution

(the forward error), given the same backward error. To simplify the notation, we

will minimize the condition number of the matrix DA, where D is a diagonal matrix.

Obviously, the choice of the optimum scaling depends on the norms upon which the

condition number is defined. For certain classes of norms, an optimal scaling can

be found easily using row equilibration (Bauer, 1963; van der Sluis, 1969). Even

though these classes do not include the two norm, we can derive bounds on the

difference between the two norm condition number provided by the optimal scaling

matrix obtained for one of these norms and the condition number of the optimally
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row scaled matrix according to the two norm; for the sparse matrices in which we are

interested, we show that these bounds are tight enough to allow simple row scaling

techniques to bring us very close to the best possible row scaling for an arbitrary

sparse matrix.

6.3.5 Row Equilibration

van der Sluis (1969) generalizes the work of Bauer (1963), demonstrating that row

equilibration can satisfy the optimal row scaling for a fairly wide class of norms. The

following definitions are required to understand the theorems and proofs that follow.

Mmn will denote the set of real or complex m x n matrices, m > n, and A will always

be an member of Mmn. Dm and D2 will denote the class of non-singular real or

complex m x m or n x n diagonal matrices. X and Y denote real or complex metric

spaces of dimension n and m with distance functions 11-l and II , respectively. All

of Mmn, rnD, Dn, X, and Y will be real or all will be complex. This induces the

quantities

sup(A) = max Ax and inf(A) = min Ax
aw xOo IIXOIW aw jjA IIXjL

for any A C Mmn.

A vector norm' is absolute if |Ixj| = |x|lIII, and it is monotonic if |xI < yi =-

xl < ]y vl. 7 Absoluteness and monotonicity of a vector norm are equivalent (Bauer

et al., 1961). A vector norm is strongly monotonic if it is monotonic and ixI < Yll and

lxI = y - ||xl| < Ilyll. Any Hblder p-norm of index p < oc is strongly monotonic.

These definitions extend to matrix functions as follows.

Definition 6.1. A non-negative function ¢ on M C 4mn will be called left-, right-,

6Any function d(p, q) defined on a metric space that has the following three properties can be
considered a distance function (W. Rudin, 1976)[pg. 30]: d(p, q) is positive if p $ q, symmetric (
d(p, q) = d(q,p)), and d(p, q) satisfies the triangle inequality. Golub and van Loan (1989) define a
vector norm according to these same properties.

7 The 1-1 notation implies an element by element comparison of the modulus.
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or two-sided monotonic if for all A E M either

DmM = M and q(DA) < O(A) max Idiil V D E M (6.29)

or

MD),= M and O(AD) < O(A) max |dii V D E M (6.30)

or both are satisfied.

van der Sluis' Th. 1.14 (1969) proves that if |j. |• and 1-I•1, are Hdlder norms of

any index, the functions sup,, and inf,, are two-sided monotonic.

For any two matrices A and B and any two matrix functions 4 : Mmn -+ R and

: Mmn -4 R we define

V(B)X(B, A) = O(B) (6.31)
4(A)

if the right hand side exists. These definitions permit the statement of the row

equilibration theorem (van der Sluis, 1969).

Theorem 6.1. If V) (B) = maxj II(BH)j I (where (BH)j denotes the j-th column of

•gH which is the j-th row of f)8 and 4 is left-monotonic on DmA and Dz E Dm is

such that DB is row-equilibrated in the sense of |11-11 (i.e., all columns of (DB)H have

equal u-norm). Then

X(DB, DA) = min X(DB, DA) (6.32)
DEVm

Furthermore, any matrix D for which the minimum above is attained may be obtained

by multiplying D by a diagonal matrix whose diagonal elements have equal modulus

if and only if 4 is strongly left-monotonic at DA.

8B denotes the matrix whose elements are the complex conjugates of the corresponding elements
of B.
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The final statement of the theorem indicates that the diagonal matrix is deter-

mined from B while the uniqueness of the matrix is determined by the properties

of A. The important result provided by this theorem is that row equilibration mini-

mizes some of the commonly used matrix condition numbers obtained when A and B

represent the same matrix. For convenience, define X(A) = 4(A)/I(A). Some useful

relationships are derived from the theorem for square matrices A in which O(A) is rep-

resented by any Holder p-norm of A- 1 ; these relationships generalize for non-square

A by replacing IIA-' 1 l with 1/inf(A) since both IIA- 1 1P and 1/ inf(A) are two-sided

monotonic functions of A (van der Sluis, 1969) [Th. 1.14]. The following relationships

illustrate the result of the theorem 6.1:

* X(DA) = max I((DA)H) ll I!DA- 1  is minimized when the rows of DA have

equal 2-norm.

* X(DA) = Di)AII )DA- 1 1 is minimized when the rows of DA have equal

1-norm.

* X(DA) = (max ldaij1) 1 DA-ll is minimized when when the rows of DA have

equal oco-norm.

The first relationship follows directly from theorem 6.1 when ()(DA) = maxj 1 ((bA)H)j 2

The second follows when I()(DA)= max, ((DA)H)j = IDA . The third follows

when V)(DA) = maxj I((DA)H)j

When examining the accuracy of the corrector iteration, we are concerned with

the condition number defined on the 11. 'BDF' which is the two norm condition num-

ber in a transformed system of coordinates. Unfortunately, none of the row equi-

librations above minimize the condition number defined on the two-norm of the

matrix. However, van der Sluis (1969) has demonstrated that the two norm con-

dition number of the optimally row scaled matrix is within a factor of V/m of two

norm condition number produced by row equilibration. We prove this below. Let

X(DA) = maxj I ((DA)H)j 2 /q(DA), and let D be a matrix that equilibrates the

two norm of the rows of DA (e.g., I(DA)i = (DA) Vi, j). The row equilibra-
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tion theorem states the following:

max l((DA)H)jll max- _I((A)H

min X(DA)= min 2 2 (6.33)
DEnD, DEDvn (DA) ((DA)

which simplifies to the following since the rows are equilibrated:

min 2 A)H)k V k = 1 ... m (6.34)
DE:Dn (DA) /(DbA)

From the properties of matrix norms (see appendix A for proof) we know the following:

maxj I]((DA)H)j ]2 b< min ] DA < 2 max, ((DA)H)j 12 (6.35)mm < min < mm (6.35)
DEDn. O(DA) - DED,•(DA) - DEDn (DA)

The desired result is obtained by combining (6.34) and (6.35) to yield the following:

IDA 112 I((DA)H)kl
min 2 V k = 1,...m (6.36)
DEDn (DA) - ((DA)

In chapter 7 we extend the key result given in (6.36) to sparse unstructured ma-

trices scaled by diagonal matrices that are integer powers of the machine base. We

prove that row equilibration provides much tighter bounds for sparse matrices and

that the scaling can be performed cheaply.

6.3.6 Properties of Newton's Method

Consider the mapping f : W" -+ W. A solution x e R• to the system of equations

defined by f such that f(x) = 0 is desired. Let x0 E IR denote the initial approx-

imation to the solution of the system of equations. Newton's method attempts to

improve x0 using the iteration defined in (6.37).

Xk+1 = Xk - (V f(xk)T)-lf(k) (6.37)
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Newton's method defines a sequence of approximations {xo, x 1,X 2 , ... k-l, Xk to

the exact solution. When x0 is chosen to lie "close enough" to the solution, and the

function is continuously differentiable, the Newton iteration will converge to the true

solution. The following theorem taken from More and Sorensen (1984) gives a precise

statement of the local convergence properties of Newton's method. 9

Theorem 6.2. Let f : R -+ R~  be a continuously differentiable mapping defined

on an open set D, and assume that f(x*) = 0 for some x* in D and that V f(x*)T

is nonsingular. Then there is an open set S such that for any x0o in S the Newton

iterates (6.37) are well defined, remain in S, and converge to x*.

Theorem 6.2 proves that if xo E S, the Newton iteration will eventually converge

to the solution of the equations x* as k -+ oo. However, in a practical implementation,

the iterations are usually terminated once the current iterate is "close enough" to the

solution. To decide on when Xk is close enough, we need to know how fast we are

progressing toward the solution and how far the current approximation xk is from the

solution. Asymptotic convergence analysis of Newton's method estimates how rapidly

the iterates are progressing in the region of the solution, and it provides inequalities

that bound the distance from the solution based on the size of the current Newton

step. The following definitions of convergence rate will be used for the convergence

analysis. Define the error ek of Xk as follows:

ek = IXk - x*ll (6.38)

The sequence {xk} is linearly convergent if there exists a constant P3 (0, 1) such

that

ek+1 • /3ek (6.39)

for all k > k where k = inf{k I Zk e S}. However if i is close to unity, this rate may

9See More and Sorensen (1984) for a proof of this theorem.
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not be acceptable. We say the sequence {Xk} converges quadratically if:

ek+1 l3e V k > k (6.40)

The sequence converges superlinearly if

ek+1 • /lkek V k > k (6.41)

and the sequence {ilk} converges to zero. Thus, a quadratically convergent series is

superlinearly convergent, and a superlinearly convergent series is linearly convergent.

Theorem 6.3, also taken from More and Sorensen (1984), states the results of the

asymptotic convergence analysis for Newton's iteration. 10

Theorem 6.3. Let f : RW - WRn satisfy the assumptions of Theorem 6.2. The

sequence {zk} produced by the iteration defined in (6.37) converges superlinearly to

x*. Moreover, if

IIVf(x)T - Vf (x*)TI • K x - x*11 (6.42)

for x E D and some finite constant r, > 0, then the sequence converges quadratically

to x*.

Therefore, if x0 lies within the region of convergence S and f is continuously dif-

ferentiable at the solution, Newton's method is guaranteed to converge superlinearly.

If the termination criterion for the Newton iteration is based on I|Xk+1 - Xk I, then the

asymptotic rate of convergence can be used to bound the distance from the solution.

For convenience, define Axk E RIn as the Newton step or update, so we can rewrite

(6.37) and the series of iterates that it defines as follows:

Ak = - (V-f(Xk)T)lIf(xk) (6.43)

Xk+1 = Xk + Xk (6.44)

10See Mor6 and Sorensen (1984) for the proof.
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= O+ Axo +Ax+... + AXk
k

= Xo + E Axi
i=O

(6.45)

(6.46)

Since x* is the limit point of the Newton iterates, (6.46) defines the solution of the

system of equations x* as k -- oc:

x* = X + A x ii

i=0

(6.47)

Hence, (6.46) and (6.47) define the difference between the current iterate and the

solution as follows:

00k+

Xk±1 - X* = E (.8

Moreover, since Newton's method is superlinearly convergent, successive iterates sat-

isfy:

|IXk+1 - X* • 3k IIXk - x* II (6.49)

where /k satisfies the conditions set forth in (6.41). Therefore, the error in the current

Newton iterate can be expressed in terms of the convergence rate by combining (6.49)

and (6.48), making use of the triangle inequality:

Axi

IIXk+1 - X*

00

K k
i=k

Axi

Thus, (6.53) shows that the size of the current Newton step (I AXkll) provides a
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(1- ik)
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bound on the distance from the current iterate Xk+l to the solution x*. For /k < .5,

the distance to the solution is always less than the norm of the current Newton

update. Furthermore, the fact that !k approaches zero as Xk approaches x* implies

that requiring a small Newton update insures that Xk is very close to x*. Brenan et.

al. (1996) estimate the convergence rate whenever two or more corrector iterations

have been taken using (6.54).

I(xk1l - xk 011 (6.54)

Since {/k} is an absolutely convergent series, the value of / provided by (6.54) over-

estimates /k and generates a conservative estimate of the distance from the solution.

Therefore, when exact arithmetic is employed, terminating the Newton iteration

based on the norm of the current Newton step provides a rigorous bound on the

distance from the final iterate to the exact solution of the system at hand. Given

exact arithmetic and a good initial guess, we can determine the appropriate tolerance

to achieve any desired accuracy. Furthermore, since the preceding analysis did not

specify the norm to be used, any consistent norm can be used when evaluating the

termination criteria. For instance, if a bound on the maximum error in any variable is

needed, the infinity norm can be used. The choice of norm will in no doubt be affected

by the scale of the variables, so either the system should be well-scaled or the norm

should be in some way self-correcting. Since the norm employed by BDF integration

codes (||IIIBDF) incorporates the absolute and relative error tolerances specified for

each variable, it accounts both for differences in the relative size of the variables and

for the fact that the user may wish to calculate some variables more accurately than

others.

6.4 Summary

The severe demands and high expectations placed on the numerical solution proce-

dures employed by equation-based modeling environments requires robust and effi-
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cient algorithms. This chapter has highlighted the fact that the accuracy of numer-

ical computations is limited by the machine precision, the stability of the numerical

algorithm, and the conditioning of the problem. Figure 6-1 provides compelling evi-

dence that sometimes the numerical integration codes may produce inaccurate results

without warning. Chapter 7 demonstrates that current BDF integration codes can-

not maintain the user requested accuracy when solving some simulations of interest

and proves that ill-conditioned corrector iteration matrices can lead to the observed

problems. The scaling techniques reviewed in this chapter are extended to sparse

unstructured systems to mitigate the effects of ill-conditioning on the systems of

interest.

We have also identified the fact that both dynamic optimization and combined

discrete/continuous simulation may require the solution of many IVPs during a single

simulation or optimization calculation. Thus, the efficiency of the integration codes

during the initial phase of integration impacts the solution efficiency more than it does

during the solution of continuous dynamic models, which only require the integration

to start once. In chapter 8, we introduce a new method to start DAE integration

codes efficiently.
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Chapter 7

Automatic Scaling of

Differential-Algebraic Systems

As argued in section 1.6, detailed modeling of batch processes requires the use of hy-

brid discrete/continuous simulation applied to differential-algebraic models exhibit-

ing complex and highly nonlinear behavior (Barton, 1994). The advent of sophis-

ticated equation-based discrete/continuous process modeling environments such as

ABACUSS (Barton, 1992) ease the burden placed on the modeler by decoupling the

model from the solution algorithm, yet they increase the demands and expectations

placed on the numerical solution procedures. This problem is further complicated by

the fact that during a batch operation state variables may vary over many orders of

magnitude (e.g., the composition profile in a batch distillation column or the holdup

of the limiting reagent in a batch reaction), and several physical regimes (e.g., the

thermodynamic phase changes in a solvent switch operation).

The severe demands placed on the solution procedures are illustrated through the

simulation of the batch distillation of wide-boiling azeotropic mixtures.

This chapter demonstrates and explains why the BDF integration techniques are

unable to obtain the desired accuracy when simulating such mixtures on desktop

workstations. The difficulties are a property of the mathematical model that results

in an ill-conditioned corrector iteration matrix during the integration. Note that

these problems are not unique to batch distillation, but the batch distillation models
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provide a convenient system with which to demonstrate the phenomena. In fact, the

examples presented clearly demonstrate the previously unreported result that BDF

integration codes applied to DAEs are limited by the accuracy that can be attained in

the corrector iterations. This accuracy is governed by the condition of the corrector

iteration matrix, the accuracy to which the iteration matrix and the function residuals

have been evaluated, the machine unit roundoff, and the stability of the method used

to factor the iteration matrix. We prove that inaccurate solutions of the corrector

iteration may be caused by an ill-conditioned corrector matrix.

This chapter also explores scaling techniques to mitigate the problem and identify

situations in which these problems can be expected. Since chemical process models

give rise to large sparse unstructured corrector iteration matrices, our results will

focus on this class of matrices. We have found that these techniques not only improve

the accuracy that can be expected, but they can also improve the efficiency of the

integration code. The chapter also shows that the problem of ill-conditioning is not

necessarily related to stiffness, even for ordinary differential equations in state space

form.

7.0.1 Modeling Flexibility Derived from the Automatic Scal-

ing of DAE Models

Automatic scaling of the differential-algebraic models enhances the robustness of the

numerical solution procedures. In doing so, it provides additional flexibility to the

modeler working within equation-based modeling environments. A common problem

when working within commercially available equation-based simulation environments

is the need to work within a sometimes inconvenient set of units; for example, SpeedUp

(AspenTech, 1993) does not employ SI units in its model libraries. Attempting to

use SI units for these same models leads to numerical difficulties. Since the BDF

integration codes control both the relative and absolute error (whichever dominates),

the numerical difficulties are not the result of a change in the way the error in the

solution is measured. Instead, the problems are caused by the conditioning of the

236



linear systems solved during the integration. By automatically scaling the problem

during the integration, an equivalent model that is better conditioned is employed

during the solution of the linear systems. This renders changes to the units employed

during the model development unnecessary, providing the modeler the freedom to

work in the units in which he or she is most comfortable. However, the modeler

should still ensure that the absolute tolerances for the variables reflect the units

specified for those quantities.

7.1 Demonstration of Problem

Batch distillation of wide boiling azeotropic mixtures is common in the specialty

chemical and synthetic pharmaceutical industries where a heavy product is separated

from volatile solvents and reagents that form azeotropes. The simulation of such

operations in ABACUSS provides a dramatic illustration of the limitations imposed by

finite precision floating point arithmetic on numerical integration routines. ABACUSS

results from the purification of a monomer product from the reagents and solvents

employed in its synthesis clearly illustrate the problems that may be encountered.

Although the time profiles of most of the variables are continuous and change

smoothly, a handful of variables, such as the condenser duty shown in figure 7-1,

appear to contain discontinuities. However, the model has no discontinuities, and the

'spikes' observed are the result of successful integration steps with a very small step

size. Figure 7-2 shows that the 'spike' is the result of a successful integration of very

small length which supports the fact that the discontinuity checking algorithm (Park

and Barton, 1996) reports no events during the simulation. Note that the spikes are

not restricted to variables of small magnitude, and the jumps in the variable values

are not always in the same direction. In section 7.2, we explain how the BDF code's

error control mechanism can permit such behavior, and that the observed behavior

can be expected from ill-conditioned systems.

Three index one models' of the distillation column were examined to ascertain

1The differential index was determined using structural criteria.
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Condenser Duty vs. Time
Condenser Duty [J/S] x 103
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Figure 7-1: "Spikes" in the time profile of the condenser duty.
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Condenser Duty over Time
Condenser Duty [J/s] x 103

89.87 89.87 89.87 89.87 89.87

Figure 7-2: One of the 'spikes' shown in detail.
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whether the numerical difficulties were a property of a particular mathematical ab-

straction of the physical system, or the underlying physics of the problem. One model

contains a static energy balance and constant liquid molar holdup on the trays (Mu-

jtaba and Macchietto, 1991), one approaches the index-2 model used in BatchFrac

(Boston et al., 1981), and one relates the vapor and liquid flowrates according to the

pressure, tray geometry, and liquid holdup on the trays (Fair et al., 1984; AspenTech,

1995). Simulations performed with each of the three models contained similar spikes

whether the liquid phase activity coefficients were modeled using the Wilson equation

(Reid et al., 1987) or assumed to be unity. Hence, the phenomenon observed stems

from a property of the physical system that is embodied in each of the mathematical

abstractions. We infer that the problem is a mathematical property in the resulting

systems of equations, and we shall prove this in later sections of this chapter.

We have witnessed this same phenomenon on other models as well. In fact, by

constructing models that will lead to ill-conditioned corrector matrices (perhaps ones

with an infinite condition number) over a portion of the solution domain, we can

expose these numerical problems. For example, consider the following expression

approximating the relationship between the flow and the pressure drop across a valve

(Jarvis and Pantelides, 1991):

f = kvVPin - pot lsign(Pi" - pout ) (7.1)

where pin and Pout represent the upstream and downstream pressures for positive

values of the flowrate f. Such an expression leads to an ill-conditioned system when

pin , pout, causing severe numerical problems if flow reversals occur. In fact, when

pin = Pout no Lipschitz constant for the system exists and, equivalently, the condition

number of the Jacobian matrix is infinity. In this case, the undesirable numerical

behavior may be averted by making a different modeling approximation (Mandler,

1992):

k, (Pin _ pout)
b + pPin _ pout (7.2)
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where b is a small positive regularization constant. Experience has clearly shown that

the latter modeling approximation performs much better. The former approximation

has been shown to lead to the spikes similar to the ones illustrated here on models

unrelated to batch distillation. However, if the regularization constant b in (7.2)

is made sufficiently small (but not zero), the spiking phenomenon can occur. This

demonstrates that spikes may be observed in systems with large, but not infinite,

condition numbers; hence, the phenomenon is not restricted to those systems not

admitted by the conditions for existence and uniqueness of a solution of an ODE

(i.e., those that are not Lipschitz continuous like (7.1)). A model of the Imperial

College Pilot Plant (Barton, 1992) was run with using the flow pressure relationship

shown in (7.2). For values of the regularization parameter b that were greater than

10-6 the model did not produce any spikes. For values below 10- 7 or when (7.1) was

used the model produced a spike that led to the improper determination of a state

event.

Two different implementations of the BDF integration method were tested to

make sure that the observed problems were not caused by a specific implementation.

The first code, DASOLV (Jarvis and Pantelides, 1992), employs a fixed coefficient

implementation of the BDF method. It was the application of this code that enabled

elucidation of phenomena. We have also used DSL48S for the integration of these

models. DSL48S is a version of DASSL (Petzold, 1982a), the widely used fixed

leading coefficient BDF code for the solution of DAEs, modified for large sparse

unstructured systems.2 DSL48S did not tend to produce as many spikes as DASOLV

on the same models,3 but it would sometimes fail after the step size became too

small. As explained later, failure of the integration code is probably more likely than

the appearance of a spike when these situations are encountered. Thus, both codes

exhibited similar behavior when integrating these models, so the phenomena are not

caused by the implementation of a specific code. In fact, the next section identifies

2DSL48S also contains a novel and highly efficient method for the integration of parametric
sensitivities (Feehery et al., 1997).

3In general, DSL48S is more robust and much more efficient than DASOLV.
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the conditioning of the corrector iteration matrix as the source of these numerical

difficulties.

7.2 Explanation of the Phenomenon

In this section, we demonstrate that the spikes observed are a numerical artifact

introduced by the BDF integration technique, and indicate that a breakdown in the

error control strategy has occurred. Solution accuracy is maintained by adapting

the step size to control the local truncation error. A step is only accepted after the

corrector iteration has converged, meaning that BDF approximation of the model

equations (6.4) has been satisfied at t,, and then after satisfying the truncation error

criterion (see figure 6-2). The existence of spikes shows that a solution returned from

a converged corrector has managed to pass the truncation error criterion in spite of

the fact that the predicted and corrected values differ significantly.

The spikes indicate that the results are inaccurate which severely restricts the

application of these results to engineering decisions. Moreover, this phenomenon is

extremely detrimental to the efficiency of the integrator, which requires many tiny

steps and several Jacobian factorizations before returning to the original trajectory

and regaining its previous level of confidence.

Sections 7.2.1-7.3 explain how a spike can be generated. Section 7.2.1 explains

the computational sequence of the integration code on the integration step that gen-

erates a spike. We then examine how a step can pass the truncation error criterion

when the predicted and corrected solutions differ significantly, demonstrating that

the truncation error criterion may permit significant changes in some variables over a

small integration step. Finally, we examine the cause for the large difference between

the predicted and corrected solution. Since the predictor provides a value that is

consistent with the past integration steps, it will not indicate an abrupt change from

the current trajectory. Section 7.3 demonstrates that the large differences between

the corrected and predicted solutions are caused by an ill-conditioned corrector iter-

ation matrix, which permits the converged solution of the corrector iteration to be
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inaccurate.

7.2.1 Generation of a 'spike'

The spikes are the result of repeated truncation error failures and step reductions. On

the first attempt to take the step, the corrector is converged but the truncation error

criterion (7.3) is not satisfied. As illustrated by 6-2 the code reduces the step size

and attempts the step again. Once again the corrector converges, but the truncation

error test is not satisfied. This process continues. After the third error test failure,

DASSL reduces the order of the approximation to one and continues the sequence

of step reductions. This process of step reductions continues until one of two things

occur: the step eventually passes the truncation error test, or the step size becomes

smaller than the minimum permitted and the integrator gives up.4

The logic behind this procedure is that the local truncation error represents the

error from truncating the infinite Taylor series expansion of the solution at t, after a

finite number of terms; the expansion is expressed in terms of backward differences

(stored in the code as modified divided differences (Brenan et al., 1996)), so the order

of magnitude of the neglected terms is a function of the step size. Thus, the error in

the BDF approximation of the solution can be reduced by reducing the step size. In

the limit as the step size approaches zero, the truncation error approaches zero.

The truncation error is approximated as a function of the difference between the

corrected and predicted solutions at t,. On the one hand, the solution of the corrector

iteration zc solves the kth order BDF approximation of the model equations. On the

other hand, the infinite series divided difference approximation of the solution at t,

is exact if the divided differences are defined using x(t,). The error in the BDF

approximation (the local truncation error) is given by the difference between this

infinite series and the series containing only k + 1 terms. The leading term in the

difference between these two series is used to approximate the local truncation error,

and it is a multiple of the k + 2 divided difference, denoted by ok+2(n). Since the exact

4DASOLV allows eight step reductions before declaring that the step is too small and terminating
the integration whereas DASSL permits step reductions until the step becomes too small.
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solution at t, was not determined, ck+2(n) is approximated using zX instead of x(tn);

with this approximation, the qk+2(n) is equal to the difference between the corrected

and predicted solutions at tn (xC - xP). The coefficient of Ck+2(n) is a function

of the order of the approximation and the past step sizes and defines parameter M

appearing in (7.3) whenever the truncation error dominates the interpolation error.

The solution of the corrector iteration xc differs from the exact solution x(t,) due

to error contributions from two sources: the inaccuracy of the BDF approximation

of the model equations (the truncation error), and the error from determining the

numerical, rather than the exact, solution of (6.4). Following Bujakiewicz (1994),

we will refer to the latter error as the algebraic error; we measure the accuracy of

the corrector iteration in terms of the size of the algebraic error. The algebraic error

consists of two contributions, the error from terminating the corrector iteration after

a finite number of iterations (termination error) and the error due to the propaga-

tion of rounding error during the solution of the linear systems encountered within

the corrector iteration (the forward error). The termination error is controlled by

the BDF algorithm and is guaranteed to be significantly smaller than the permissible

truncation error; the BDF method assumes that the forward error is insignificant. Sec-

tion 7.3 demonstrates that it is a large forward error, resulting from an ill-conditioned

corrector matrix, that leads to inaccurate solutions.

Figure 7-3 shows the values of the predicted and corrected solution at each of the

attempted step lengths for a variable that exhibits a spike on this integration step.

This figure cannot be used to prove that the corrector solutions are inaccurate, but

it certainly provides compelling evidence. The figure shows the converged corrector

solution and the predicted solution at each of the step sizes attempted during this

integration step; these results were produced by DASOLV. The step was accepted at

the eighth attempted step size. The figure illustrates that at the longer attempted

step lengths the difference between the predicted and corrected value of this variable

was not so large. However, as the step length was reduced, the predicted and cor-

rected solutions diverged. At the largest observed difference between these values,

the integration step passed the truncation error criterion. Furthermore, this step was
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not accepted because Ixc - xPI for other system variables was decreasing faster than

it was increasing for this variable. In the following section we show why the trunca-

tion error permits larger differences between x c and x" to be accepted at small step

lengths. Section 7.3 explains why the divergence between the corrected and predicted

solutions can be expected, since the system becomes more ill-conditioned at smaller

step lengths.

.11 2150

-12200

0.

10

-122500

"-123000cl

-123500

-124000

-124500

-125000

*predicted
Mcorrected

Step Size [sec]

Figure 7-3: A comparison of the predicted and corrected solution as a function of the
step size during the generation of a spike.

In this case, the sequence of step reductions generated a spike and permitted the

batch distillation simulation to continue; this enabled elucidation of the underlying

cause of the problem. However, in many cases the truncation error tolerance is never

satisfied and the integration terminates once the step length becomes too small.
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7.2.2 Truncation Error Criterion

The step size and order of the BDF approximation is based on the estimates of

the accuracy of the BDF approximation provided by the local truncation error. An

integration step is only accepted if the local truncation error tolerance is satisfied. The

criterion is defined as follows for DASOLV (Jarvis and Pantelides, 1992), DSL48S,

and DASSL (Brenan et al., 1996):

error = M. IxC - XP IBDF < 1.0 (7.3)

where x C is the corrected solution and x P is the predicted solution. Note that the

user requested tolerances are buried in the definition of the norm (see (6.7)) used in

(7.3). In both DASOLV and the variants of DASSL M varies with the step size (h)

and the order of the method. In DASOLV, M is proportional to h. While M is not

directly proportional to h in the variants of DASSL, M is proportional to h for a first

order method when hn+ < ha as shown below in table 7.1. Therefore, in situations

when spikes may be generated, the truncation error scales with the integration step

size. With this type of check, if the step size is small enough, almost any value will

pass the truncation error check. This is what happens during the creation of the

spikes in the example simulations, and either code could accept a step that produces

spikes in the values of some variables. Thus, the truncation error check cannot be

relied upon to prevent such a spike from being created.

Truncation Error Criteria Imposed by DASSL

DASSL and its variants control both the local truncation error and the interpolation

error, the error in the solution at values of t between those at the mesh points tn.

The larger of the two quantities is used to decide whether a step is accepted and to

determine the length of the subsequent step. The constant M is defined in terms of

the coefficients of the BDF approximation as follows (Brenan et al., 1996):

M = max(ak+l(n + 1), jak+1(n + 1) + as - a((n + 1)1) (7.4)
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where

Cnk+l(n + +1) n (7.5)
hn+l + hn + - hn+l-k

= -k (7.6)

j=1

ah(n + 1) k n+(7.7)

°i=1 hn+2-i

where k represents the current order of the BDF method and n represents the last

successful integration step. The first term in the max expression controls the interpo-

lation error and the second controls the local truncation error. M is a function of the

current and previous step sizes and the order of the difference approximation. While

(7.4-7.7) do not provide much insight of the general behavior of M, two limiting

cases are illuminating. Table 7.1 depicts the values of M for first to third order BDF

approximations when either the current step length is the same as the previous step

(the typical behavior of the code), or when the current step is much smaller than the

previous (the behavior that could potentially result in a spike).'

BDF Value of M
Order hi constant hn+ < ha

1 1/2 E
2 1/3 1/2 - 3/2
3 1/4 5/6 - 11E/6

Table 7.1: Value of the local truncation error parameter M in the limits of constant
and drastically reduced step sizes.

The expressions in table 7.1 for the higher order methods assume that the previous

steps were roughly the same size (i.e., hn = hn-1 = hn-2). We define e = hn+l/hn as

the ratio of the current to the previous step size, so the terms in the last column are

not exact but should be very good approximations. For example, the first term in the

last column is hn+1/(hn+l+hn). The table demonstrates that M is bounded away from

5If the current step is much smaller than the previous (e.g., more than three step reductions),
then the code switches to a first order method (Brenan et al., 1996).
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zero in the higher order methods. Thus, for any of the higher order approximations,

DASSL will not accept a step unless the corrected and predicted solutions are close.

On the other hand, when the step size is dramatically reduced, DASSL will employ

a first order method, so the error control may permit the predicted and corrected

solutions to differ by a significant amount since the e can be very small.

7.3 Ill-conditioned Corrector Iterations

Even when the residuals of the equations are evaluated accurately, an ill-conditioned

corrector iteration matrix can lead to inaccurate corrector solutions. A set of criteria

is derived that defines conditions under which the accuracy of the corrector iteration

can be guaranteed in spite of the roundoff error encountered during solution of the

Newton updates. The distillation models studied here do not meet these criteria;

thus, the corrector iterations admit the possibility of the inaccurate solutions that

have been observed in the integration results.

The corrector employs a modified Newton method, terminating iterations when

the norm of the numerically calculated update satisfies some tolerance. Assuming that

the predictor provides an initial guess within the region of convergence of Newton's

method and that the operations are performed using exact arithmetic, the superlinear

convergence of Newton's method (More and Sorensen, 1984) bounds the distance

from the current iterate Xk to the solution x* using the Newton update Ax and the

convergence rate /k according to (7.9). Thus, terminating the Newton iteration when

Ilax|| satisfies the convergence tolerance 7 controls the accuracy of the solution.

IIAxIl < (7.8)

Xk+ - X* < Xk < T (7.9)- 1- ISk 1 - k<

Unfortunately, the criterion defined in (7.8) cannot be applied directly because

the only information available is the size of the Newton update Ax calculated using

floating point arithmetic. However, we need only demonstrate that (7.8) is satisfied
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to assure that the desired accuracy is attained. We employ linear error analysis to

derive relationships between Ax and the condition number of the iteration matrix

K(J) to guarantee that (7.8) holds.

Figure 7-4: Relationship between the exact Newton update Ax, the numerically
calculated Newton update Ax, and the convergence tolerance 7T.

Criterion (7.8) dictates that Ax must lie in a closed neighborhood of the origin

of radius T, defined by N,(0). Although the exact location of Ax is not known, Ax

lies within a closed neighborhood of radius r = 115xll of the numerically calculated

update Ax. Thus, (7.8) will hold whenever N,(Ax) C N,(0). Figure 7-4 illustrates

that this condition is satisfied as long as the ball centered around the numerically

calculated Newton update is contained within the neighborhood of size T centered

at the origin. The numerical solution of JAx = f is the exact solution of the nearby

system (J + 6J)(Ax + 6x) = f + 6f. Using the perturbed system the following

bounds are derived for the error in the solution (Duff et al., 1986):

llJlH - (J) ls (f JI
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S6xl= _< K(J) +(If lsJII = "a (7.11)
Ax 1 - (J) [SJ Iff 3' IiJl =

Let (7.11) define a, the bound on the relative error in the Newton update. Define

Ax + 5x = Ax and relate the norms.

IlAxI - 3ISxll 5 _ X _< I AxIl + IIS64 (7.12)

Rearrange (7.12) using the definition of a to produce (7.13) which bounds IlAx||

whenever a < 1.

IlAxll I X (7.13)
1- a

Thus, whenever (7.14) is satisfied, then N,(Ax) C N7 (O), and (7.8) must hold.

SA-x /(1 - ) < (7.14)

This demonstrates that for well-conditioned problems with little error in the residual

evaluations (a -+ 0), criterion (7.8) is virtually the same as bounding the numerically

calculated update since x A-x ] IlAxf|. However, when the problem is ill-conditioned,

IAxx may need to be considerably smaller than jlAxjj to ensure that the variables are

being controlled to the desired accuracy at the mesh points, indicating that the con-

dition of the iteration matrix should be considered when establishing the convergence

criterion that ]lAx|] must satisfy.

If a > 1, then (7.13) cannot be used to ensure that the accuracy is maintained

because N,(Ax) contains the origin. The quantity I]AxI] + 116x11 can be overesti-

mated using (7.10) and compared to 7 to see if N,(Ax) C N,(0); this is discussed

in section 7.6. In fact if 156xll > 7, then we admit the possibility that the accu-

racy is not maintained. For ill-conditioned matrices such as the ones encountered

in the examples above, we admit this possibility. Even if the residuals are calcu-

lated accurately, the calculations are performed without introducing error, and the
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Jacobian evaluation is exact, an ill-conditioned corrector can introduce the possi-

bility that the desired accuracy cannot be achieved. For example, consider a Jaco-

bian with r(J) = 1J11 I1J- 111 = 1051015 = 1020. Even if the error 6J is neglected

and the residuals are on the order of 10- 3 and evaluated to full machine precision6

(I|SflI I Ilfll u 10-19), the value of 116x 1 could be 10- 4 according to (7.10), ren-

dering it impossible to guarantee an accuracy of 10- 5 . This demonstrates that ill-

conditioning on its own can admit the possibility of solutions that do not meet the

requested accuracy. However, in actual simulations the residuals will not be known

this accurately, so the threshold value of K(J) that may lead to problems is reduced.

For instance, the rounding error in the difference between two order one variables is

on the order of u, roughly 10- 16, even if the difference has value 10- 3 .

This section has demonstrated that the corrector iteration should only be termi-

nated once the desired accuracy has been achieved, not simply when the numerically

calculated update has become small. In many cases, these two situations are one in

the same, but this is clearly not the case when the iteration matrix is ill-conditioned

and the function residuals are not known to full machine precision. In order warn the

user of simulations that admit the possibility of introducing errors in excess of the

desired accuracy, methods to bound or calculate k(J) and 1S6f 1 are required; efficient

methods are needed if these checks are to be performed automatically.

7.4 Stiffness, Conditioning, and Index

It is well known that DAEs represent the limit of an ODE system with infinite tran-

sients and that a similar relationship exists between index-1 and higher index DAE

systems, etc. In this section, we examine the relationship between the way ODE and

DAE systems behave near these limits, and how they behave in the limiting cases

(either the DAE or the high index DAE). We demonstrate that ill-conditioning is

likely to be a problem near these limits, but that it may be that a well-conditioned

solution can be achieved at the limit itself. We demonstrate that the problems which

6 u represents the machine unit rounding error.
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some authors (Chung and Westerberg, 1990; Chung and Westerberg, 1992) have at-

tributed to what they term near-index problems are in fact ill-conditioned DAEs. In

some cases, ill-conditioned DAEs may occur near the high-index member of a family

of models, but this need not be the case.

First, we examine ill-conditioning in terms of the relationship between ODE and

DAE systems.

7.4.1 Stiffness and Conditioning of ODEs

In this section, we lay to rest any notion that ill-conditioning of the corrector iteration

matrix is simply the result of a model with widely varying time constants. We show

that a system may be ill-conditioned when it is not 'stiff', even for constant coefficient

linear ODEs in state space form. Since these are merely a subset of DAEs, we can

expect that certain DAEs will be ill-conditioned without possessing widely varying

time constants.

We examine linear ordinary differential equations in state space form and measure

the 'stiffness' according to the stiffness ratio, even though a precise mathematical

definition for stiff systems is still argued (Shampine, 1985; Lambert, 1991; Hairer and

Wanner, 1991). We consider systems of the following form:

dxd= = Ax (7.15)
dt

where x E R7 and A E RI". If A E R7 defines the eigenvalues of A ordered such

that IReA1 l > IReA2I > ... > IReA•, the stiffness ratio is defined by IReAlI/ IReA~I

(Lambert, 1991). We restrict ourselves to asymptotically stable systems (ReAj < 0)

and demonstrate the following two results: if A is symmetric, then the condition

number of the iteration matrix is always less than the stiffness ratio of the system;

if A is unsymmetric, the corrector iteration matrix can be ill-conditioned even if

IReAi / IReA, I is an order one quantity.

We define the residual equations and the corrector iteration matrix J of systems
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in the form (7.15) as follows:

f(x,x) = Ax - (7.16)

J [f [- + f OXJ (7.17)

J= [A - I] (7.18)

where as is the leading coefficient of the BDF method and h is the integration step

size. Let A represent the eigenvalues of J ordered in the same way as A.

Theorem 7.1. If A is a symmetric matrix, and (7.15) is asymptotically stable, then

the condition number of the iteration matrix J is bounded by the stiffness ratio. Specif-

ically, the following holds for any size integration step using A and A defined above:

1 < V h > 0 (7.19)

Proof. J is a symmetric matrix with eigenvalues Aý satisfying det(J - AXI) = 0. From

(7.18) we see that:

det(J - AiI) = det (A - ( + i) ) (7.20)

which means that a/h + Ai is an eigenvalue of A. Therefore, the eigenvalues of J are

just shifted by a/h from the corresponding Ai, so we can define Ai = Ai - a/h. We

observe that the ratio between the condition number of J, A1/An, and the stiffness

ratio increases monotonically with h.

d Al/An An An-A1S[A,/An - A (An )2 > 0 (7.21)

Hence, the lower bound on the ratio is defined as h -- 0 and the upper bound occurs
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as h -+ 00.

lim =-- (7.22)
h-+O A/Aln A1

lim = 1 (7.23)
h-+oo 1 n

However, this bound on the condition number of the iteration matrix does not

generalize to arbitrary DAE systems. In fact, it does not even hold for linear time

invariant ODEs in state space form if the matrix A is unsymmetric. Remember that

for unsymmetric matrices the condition number is given by the singular values rather

than the eigenvalues, and that the singular values and the eigenvalues are unrelated

(Strang, 1980). An example demonstrates that the system can have a stiffness ratio

near one, but possess an ill-conditioned iteration matrix. Consider the following

matrix defined in terms positive real constants a and b.

-1 + a -b
0 -1 - a

The eigenvalues of the matrix above lie along the diagonal. By selecting 0 < a < 1,

we can see that the stiffness ratio (1 + a)/(1 - a) remains close to one for any value of

b. Selecting b as a large number causes the iteration matrix to become ill-conditioned

for a given step size h. However, as we demonstrate in the next section, as the step

size h decreases, the corrector iteration matrix becomes better conditioned (in the

ODE case).

7.4.2 Conditioning of ODE and DAE systems

Shampine (1993) has noted that ill-conditioning of the corrector matrix does not

preclude the accurate solution of systems of ordinary differential equations when

BDF methods are used for the integration. He examines the error control procedures

and demonstrates that the integration procedure is essentially self-compensating, and
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the step size control mechanism ensures accurate solution of the equations. However,

as the simulation results of section 7.1 have demonstrated, this is not the case for

DAE systems. Let's examine why.

The conditioning of the corrector iteration matrix behaves very differently with

changes in the step size for ODE and DAE systems. In fact, this is precisely the reason

why the situation we have reported cannot occur within ODE systems as Shampine

(1993) has demonstrated. Examine the corrector iteration matrix JODE for the ODE

system given below:

= f(x) (7.24)

JODE = hf I (7.25)
a Ox

and for the DAE system that follows: 7

f(I, x) = 0 (7.26)

JDAE = h Of OfJAE = + (7.27)
as Ox 0±

The condition number of these two matrices behave very differently as the step size

is reduced. To examine the extreme case, take the limit as the step size tends toward

zero:

lim K(JODE) = 1 (7.28)
h-+•0

lim K(JDAE) = 00 (7.29)
h--+

since aff/Oi is by definition singular for a DAE (Petzold, 1982b).

Now consider the behavior of each of these two systems when a truncation error

failure is encountered. In either system, the truncation error failure triggers a step

reduction, which improves the accuracy of the predicted solution. For the ODE case,

the step reduction improves the condition of the corrector iteration matrix, which in

7Note that this matrix differs by a factor of h/a from the form of the corrector iteration matrix
that is usually presented, but this does not change the condition number of the matrix.
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turn improves the accuracy of the solution to the corrector; therefore, the predicted

and corrected solutions will eventually converge. On the other hand, the step size

reduction increases the condition of the corrector iteration matrix of the DAE system.

If the original truncation error failure was do to an inaccurate predictor, then the step

reduction may permit the smaller step to be accepted. On the other hand, if the step

originally failed because the corrector solution was inaccurate, reducing the step size

will tend to make the situation worse. The predicted and corrected solutions will

diverge as illustrated in figure 7-3, causing another truncation error failure and the

cycle will continue. Typically, this will result in several step reductions until the step

size reaches the minimum allowable length; the integrator will then quit. In rare

situations, the fact that the truncation error scales with the step length may permit

the step to be accepted after repeated step reductions, in spite of the fact that the

difference between the predicted and corrected values of some variables may be large.

This results in the spikes that we have observed.

The situation is even more dramatic if a standard BDF integration code is applied

directly to a high index DAE. In this case, the condition number of the corrector

iteration matrix scales as (1/h)m where m is the index of the DAE (Brenan et al.,

1996). Bujakiewicz (1994) shows that the positive powers of (1/h)m- 1 appearing in

the matrix inverse cause an amplification of the truncation error by corresponding

powers of 1/h. In fact, this is precisely the reason why standard BDF integration

codes often fail when applied to high index problems, in spite of the fact that the

truncation error breaks down and solution accuracy cannot be maintained even if the

integration continues (Petzold, 1982b). Any truncation error failure triggers a step

size reduction which tends to amplify the truncation error due to the increased error

in the corrector; eventually the step size becomes so small the integrator gives up.

7.4.3 Modeling Decisions Related to the Index

Modeling assumptions can be made that are equivalent to taking the asymptotic limit

of another model. This is one way to view the relationship between DAEs and ODEs.

It is well known that DAEs represent the limit of an ODE system as the stiffness
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ratio tends toward infinity (Brenan et al., 1996). Consider:

y' = f (y, z, E) (7.30)

Ez' = g(y,z,E) (7.31)

where E is a small number, making the system stiff. When e = 0, the following DAE

system is obtained.

y' = f(y,z) (7.32)

0 = g(y,z) (7.33)

The stiffness ratio of the DAE system is infinite if we employ the ODE definition of

stiffness, but we have removed the fast transient from the problem and required that

the solution lie on a lower dimensional manifold defined by the DAE (i.e., satisfying

(7.33)). Observe that the components of the solution of the ODE not lying on the

DAE solution manifold rapidly decay away (see Hairer et al. (1993)) for small e.

A similar relationship exists between some index-1 and high index DAEs; the

following system serves as an example:

Xl = -x 1 - y (7.34)

x2 = -X2 - y (7.35)

x1 -Ey = sin(t) (7.36)

When e = 0, (7.34-7.36) form an index-2 DAE, and for 6 = 0 the DAE is index-1.

As e approaches zero, the solution of the index-1 DAE approaches the solution of

the high index system; components of the solution not lying on the solution manifold

of the index-2 system rapidly decay away. Figure 7-5 shows the values of xl and x2

versus time for e = 10- 3 and the index-2 problem, demonstrating that the solution is

close to that of the high index system. In fact, the solutions lie on top of each other.

Figures 7-6 and 7-7 show how the value of y at the start of the simulation decays onto
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the high index manifold for various values of e

ABACUSS Dynamic Simulation
Values for Xl and X2

5.00 10.00 15.00 20.00

X1, Index-i
X2, Index-i

X1, Index-2

X2, Index-2

Time

Figure 7-5: Values for xl and x2 for the index-2 system and when = 10- 3.

Does it make sense to solve the high index system instead of the index-1 system?

First, we determine whether the difference between the solution of the high index

system and that obtained for nonzero values of 6 is small enough to be ignored during

the application of the results. If not, there is no point in proceeding further. If

the difference is small enough, then we compare whether the high index model is

easier to solve. The high index model can be solved by automatically transforming

the high index system to an equivalent index-1 DAE using the method of dummy

derivatives (Mattsson and S6derlind, 1993) implemented within ABACUSS (Feehery

and Barton, 1995); the method is demonstrated in the next section. Note that the

equivalent index-1 system contains more equations. Table 7.2 shows that the high

index model is substantially easier to solve than the index-1 model for small values
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Figure 7-6: Demonstration of the difference between e = .1 and the other values of E.
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Jacobian Integration Residual Convergence Error
e Factorizations Steps Evaluations Failures Failures

1 x 10- 1  14 210 422 0 1
1 x 10- 2  25 238 501 0 7
1 x 10- 3  9501 5040 19395 0 4744
1 x 10-4  136848 68704 228001 0 68404
1 x 10-5  61213 43646 152498 0 30594

0 12 136 273 0 1

Table 7.2: Numerical statistics for the solution of (7.34-7.36) at different values of E.

of E.8

This example demonstrates that in some cases it may be beneficial to make mod-

eling assumptions that require the solution of the high index DAE because the numer-

ical solution of the equivalent index-1 system obtained using the method of dummy

derivatives is better behaved that the original index-1 system that was approaching

the high index problem.

7.4.4 The myth of 'Near Index' Systems

As section 7.4.3 demonstrated, we can make modeling decisions that lead to a higher

index problem (e.g., an index-1 or high index DAE) in which the solution lies in a

space of reduced dimensionality. This limits the degrees of freedom with which to

specify the initial condition because the initial condition must lie within the reduced

space. What modeling assumptions are made is simply a modeling decision that

should be based on the validity of the approximation, although they may also impact

the efficiency of the solution procedure as shown above. In some cases, these modeling

assumptions are not valid, so we cannot hope to introduce a method to transform

systems automatically. To illustrate this point, let's examine the solution technique

for 'near index' problems studied by Chung and Westerberg (1990; 1992). Their

examples clearly show the danger of such a procedure, and indicate that the behavior

of the high index system may be qualitatively different from that of the lower index

8The statistics presented are for the DSL48S integrator embedded within ABACUSS. DASOLV
failed to produce a solution for all values of E below .001.
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system as it parametrically approaches the high index system.

Chung and Westerberg (1992) consider the following DAE:

f(x, , y,t) = il - x2 0 (7.37)

f 2(x,,y,t) = 2 - y = 0 (7.38)

f3 (x2,, y,t) = 1 -y -g(t) = 0 (7.39)

When e = 0, (7.37-7.39) form an index-3 DAE and for E -$ 0 the system is index-1.

We employ the method of Mattsson and Soderlind (1993) to derive an equivalent

index-1 model corresponding to the index-3 system, such as the following system:

x 1 -x 2  = 0 (7.40)

x2 -y = 0 (7.41)

xI = g(t) (7.42)

, gX/ t (7.43)
X1  a

82g
x2 2 (7.44)

2  at2

where the variables x' and x' are the dummy derivatives that have been introduced.

Observe that this system contains no degrees of freedom with which to specify the

initial condition and amounts to an analytic solution to the problem. All variables in

the system are algebraically related to the forcing function g(t). Selecting g(t) = sin(t)

(following Chung and Westerberg (1992)), we obtain the solution shown in figure 7-8

in which all of the variables are defined in terms of sine and cosine functions and vary

over the range [-1,1].

Thus, the solution of the high index system is bounded and is easy to obtain.

Now we examine the solution of the index-1 system for g(t) = sin(t). To ease the

derivation of the analytic solution, eliminate the algebraic variable y from (7.37-7.39)

to yield the following ODE:

'1 = X2 (7.45)
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Figure 7-8: The solution the index-3 system found by solving the equivalent index-i
system (7.40-7.44).
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1
2 = (x + sin(t)) (7.46)

The general solution of the linear constant coefficient ODE (7.45-7.46) is given below

in terms of the parameter E:

xl(t) = sin(t)+ Cle'/ + C2e-t l' (7.47)
1+E

x2(t) = Cos(t + - (7.48)

where the constants C1 and C2 are determined by the initial condition. Note that this

system is unstable; any rounding error in the initial condition or introduced during

the integration procedure will grow exponentially. Although the analytic solution

remains bounded for the special case in which the initial condition specified requires

that C1 = 0, 9 any attempt to integrate this system numerically will result in a solution

that grows exponentially since perturbations to the initial condition are introduced

by rounding error and these will grow in an unbounded fashion.

Integrating the index-1 system within ABACUSS demonstrates the fact that the

system is unstable. Values of e approaching zero simply make the solution grow more

rapidly. Figure 7-9 shows the solution for e = .5, xz (0) = 0, x 2(0) = 1. The initial

values of xl and x 2 place the solution on the manifold defined by the high index

system at the initial time.

The algorithm proposed by Chung and Westerberg (1992) calculates the solution

of (7.37-7.39) as a perturbation of the high index solution. A perturbation of the

high index system cannot capture the qualitative behavior of the index-1 system (i.e.,

instability). Their results define a bounded oscillating solution for the index one

model for small values of e; their algorithm has stabilized the unstable system onto

the solution manifold defined by the high index system. Clearly, the solution of the

nearby high index system does not behave the same way as the index-1 model does

as the limit is approached, since the index-1 DAE does not decay onto the solution

manifold defined by the high index DAE. Therefore, the modeling approximation

9For positive e. C2 = 0 would lead to a stable analytic solution for e < 0.
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Figure 7-9: The unstable solution of the index-i system.
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setting e = 0 is not valid and should not be made. This example highlights the

danger of blindly transforming an index-1 system to the 'nearby' high index system,

indicating that 'near index' systems do not, in general, exist. Some of the arguments

employed in the Chung and Westerberg paper (1992) to demonstrate the existence of

near index systems were mathematically incorrect, so the authors were obviously led

to incorrect conclusions. In addition, they applied their algorithm to several unstable

systems, but never mentioned or recognized that the systems were unstable. However,

in some cases, such as those demonstrated in section 7.4.3, the behavior of the high

index system represents the limit of the index-1 DAE and the modeler may choose to

formulate the high index system to improve the solution efficiency.

7.5 Scaling Variables and Equations

Scaling the linear system solved at each corrector iteration offers the potential to

increase the accuracy of the solution obtained. Typical scaling methods (reviewed in

section 6.3.4) employ two diagonal scaling matrices to transform the original system

(7.49) into a scaled equivalent (7.50). The choice of scaling matrices encompasses

two issues: the condition of the scaled system and the validity of measuring the error

in the scaled system of variables. If the condition number of the scaled system is

considerably smaller than the original, then we expect a more accurate answer in

terms of the transformed variables Ay = D•l Ax (Golub and Van Loan, 1989).

JAx = f (7.49)

(D 1JD 2 )Ay = Dxf (7.50)

However, accuracy can only be improved if the scaling can be performed without

introducing any significant error. As long as the diagonal elements of the scaling

matrices are restricted to integer powers of the machine base, the transformation is

exact even if it is performed using finite precision floating point arithmetic. The

mantissas are not altered, so no rounding error is introduced (ANSI/IEEE Std. 754,
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1985).

Diagonal matrices that minimize the condition number of the scaled system exist

(Braatz and Morari, 1994), yet their determination requires J-1 , so calculating them

is clearly not an option when our goal is to improve the accuracy of the solution to

(7.49) in an efficient manner. We have implemented a scaling strategy to improve

the accuracy of Ax, measured in the norm used by the integrator, at each corrector

iteration. The strategy employs column scaling followed by row equilibration using

diagonal matrices composed of elements that are integer powers of the machine base.

When the error is measured in the norm used by the integrator, this scaling policy

brings the condition number of the scaled system close to the minimum value that

can be achieved using any diagonal matrices. This scaling policy improves the bounds

on the relative solution error. The details of the row and column scaling algorithms

employed are justified and explained in the following sections.

7.5.1 Scaling the Variables

The way in which the error is measured dictates the choice of the matrix D 2 used to

scale the variables. The matrix D 2 could be chosen to minimize the condition of the

column scaled equivalent Jc = JD2 , but as van der Sluis (1970) has shown K(JD 2)

may provide misleading information about the accuracy in the solution of (7.49) if

the way in which the error in Ax is measured is important. In fact, he states that

selecting D 2 to minimize K(JD 2) is similar to answering the question "in which norm

does the error look most favorable" (van der Sluis, 1970). Since we would like the

condition number of the resulting system to be indicative of the quality of the solution

that will be obtained, we select D 2 to reflect our error criterion.

The default norm used by the BDF integration routines to estimate the truncation

error and measure the size of the corrector updates was defined in (6.7) and has been

repeated here for convenience:

1 2
IXHBDF = 1i- ixNTn IX~ i + Tai
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where x2' is the value of the variable xi from the previous integration step, Tj is the

relative error tolerance and Tai is the absolute error tolerance for variable i. This

weighted root mean square norm is equivalent to 1/V/n times the Euclidean norm

in the transformed system of coordinates, D-'Ax, when D 2 is chosen according to

(7.51).

D 2 ={D Rnxn : dii =Tri X + Tai, dij = 0 V i : j} (7.51)

The condition number of the transformed matrix Jc provides an indication of the

quality of the solution that can be expected from the solution of the linear sys-

tem (7.49) in the absence of row scaling. Let 5x and 6f represent the error in

f and Ax respectively. Assuming that the only error introduced during the cal-

culation is due to the initial storage of f, then linear error analysis shows that

1163x / IAxI < ni(J) 116 f / IIfl . However, the quality of the solution of (7.49) is

given by 116 XIIBDF / IIAXlIBDF. A bound on this quantity is provided by the same

linear error analysis applied to the transformed system shown in (7.52).

JD 2D2IAx = JcAy = f (7.52)

15XIIBDF -_ 16YI2 < 2 (Jc) If L2 (7.53)||ax1BDF IAy1 2  2lf112

Thus, when D 2 is selected according to (7.51), K2 (Jc) is the condition number that

reflects the accuracy of the solution of the linear system.

Scaling the variables in this way is easy to implement and has several advantages.

It reflects the physics of the problem by using information that is available within the

integrator and passes this information to the linear algebra. It permits the modeler to

work in a convenient set of units, greatly diminishing the need to select units for the

simulation variables merely to improve the performance of the numerical algorithms. 10

It automatically adapts when variables change over many orders of magnitude during

the course of the simulation, a common occurrence in batch process simulations.

10The consistent initialization of such problems is not affected by this scaling and remains sensitive
to the units selected.
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In addition, this scaling ensures that the magnitude of each of the elements of the

iteration matrix properly reflects the way in which the error of the linear system will

be measured; the selection of pivots during Gaussian elimination and the selection of

the scale factors used during row equilibration are governed by the magnitude of the

elements in the iteration matrix. Since pivots are selected to reduce the growth in

the solution error and the row scaling factors are chosen to reduce the condition of

the linear system, choosing D2 to reflect the way in which the integrator measures

the error should result in a more accurate solution of the linear system in terms of

the BDF norm. Furthermore, the condition of the scaled iteration matrix can be

calculated using a Euclidean norm; this provides the condition of the original matrix

calculated according to the norm used by the integrator. Therefore, the condition of

the scaled iteration matrix indicates the difficulty in obtaining an accurate solution in

terms of the way in which the integrator measures accuracy. Using the scaled iteration

matrix Jc, the accuracy criterion (7.14) derived in section 7.3 can be applied using

the condition number defined on the two norm.

To implement the scaling defined above as part of a numerical algorithm, D2 is

approximated using integer powers of the machine base 0. This provides the matrix

D 2 defined in (7.54) for a base two machine.

)2 = {D E R n n  : dii = 2
l1og 2 (-r

-, 
IX'

l+
a)J

,  dij = 0 V i Z j} (7.54)

Only integer powers of the machine base need to be stored to define the matrix. These

can be calculated efficiently using the functions recommended in the IEEE floating

point standard (ANSI/IEEE Std. 754, 1985).

7.5.2 Scaling the Equations

The equations are scaled to minimize the condition number of the column scaled

iteration matrix. The scaling employed balances the rows of Jc; an integer scale
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factor is chosen so that the scaled norm of each row is between one and 3.

D1 = {D E Rnxn : dii = 3 - 1og (l0IJi)]J, dij = 0 V i j} (7.55)

In the rest of this section we will demonstrate that although this approach does not

guarantee a reduction of the condition of the matrix, for the sparse matrices in which

we are interested, it guarantees that the condition of the scaled matrix is close to the

condition of the optimally row scaled matrix. We extend the results of van der Sluis

(1969) to prove that the scaling matrix defined in (7.55) provides a /3-scaled equivalent

of Jc with a condition number that is within a factor of 3\v/- of the optimally row

scaled matrix defined on the two norm, where q is the maximum number of non-zero

elements in any column of Jc.

Van der Sluis (1969) generalized the work of Bauer (1963), proving the row equili-

bration theorem and demonstrating that row equilibration can satisfy the optimal row

scaling for a fairly wide class of norms. However, row equilibration does not find the

optimal scaling matrix to minimize the condition number defined on the two norm,

which is the condition number of Jc that reflects the fact that the error is measured

in the BDF norm. We extend this work to show that simple row equilibration allows

us to determine a 3-scaled equivalent of the iteration matrix that is with a factor of

/3p/l of the optimal.

Van der Sluis (1969) used the row equilibration theorem (theorem 6.1) to show

that K2(DA) is within a factor of \/'i of the optimally scaled matrix in terms of the

two norm. We extend his result (6.36) to sparse matrices in the following corollary.

Corollary 7.1. Let D be the scaling matrix that equilibrates the two norm of the rows

of DA. The condition number of DA defined on the two norm is within a factor of

V of the condition number of the optimal row scaled matrix, so:

K2 (DA) q (7.56)
minDEDm K2(DA)

Proof. Given IIA112 < f/maxj II(AH)j 2 (van der Sluis, 1969), we obtain the follow-
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ing inequality.

DA maxj ((I)A)H)j 1 2

O(DA) - - (DA)

We employ the fact that DA is row equilibrated and divide both sides of (7.57).

|DA ((DA)H)k211
< (DA) V k = 1 2. m (7.58)|IDA112 -- IIDA112minDEk7m (DA) minDEDm (DA)

Use (6.34) and (6.35) to substitute for the numerator on the right hand side of (7.58):

DA 2 |IDA112(DA) minDem IIDAII2
()A) < DE- (DA) V k = 1, 2 ... m (7.59)mi IIDA112 -- IDA 2 .minDErm O(DA) minDEDm 4(DA)

which simplifies to the desired result for the appropriate choice of 0:

IoDA112
4(DA) DA < | v  

(7.60)
minDE-Dm (DA)

Let O(A) = infxE-,lxlli.0 IIAx|| 2 / Ilx112 = IIA-'112 •  l

Row-equilibration "solves" the scaling problem for certain classes of norms and

bounds the distance to the optimal for K2(DA) when optimizing over D E D,. How-

ever, when using the matrix in a numerical algorithm, the scaling matrix must be se-

lected from the space of diagonal matrices consisting of integer powers of the machine

base to eliminate the possibility of introducing roundoff error during the transfor-

mation."1 At first glance, this indicates that an integer programming problem must

be solved to find the optimal scaling matrix, but theorem 7.2 demonstrates that a

solution with condition number that is within a factor 3 of the best obtainable can

be found easily.

"An added benefit is that functions usually exist (ANSI/IEEE Std. 754, 1985) to manipulate
the exponent of the floating point number directly, allowing such manipulations to be performed
extremely efficiently.
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Let 1%m be the class of nonsingular m x m diagonal matrices with nonzero elements

that are integer powers of the machine base (dii = /7i where qi is any integer). The

following theorem proves that the optimal value of O(DB)/O(DA) over 15m is within

a factor of / of the optimum over Dm for any functions 4' and q satisfying the

assumptions of the row equilibration theorem.

Theorem 7.2. For A, B E R m xn with 4'(DB) = maxj II((DB)H)jl3 l, where I-11, is

an absolute norm, and ¢(DA) is left-monotonic on DmA, define D E D,, as the

matrix that minimizes V)(DB)/¢(DA) over Dm. Let 1i = - [log(dii)J and define )

as an integer approximation to D with elements dci defined as follows

=ii = if </3 dii < /30+1-w

p/37+1 if /3P+1-" < dii </3+1 (7.61)

The minimum of V)(DB)/¢(DA) over fl, is within a factor of 3 of the optimal over

min (DB) < min (DB) min (DB) (7.62)mm < min </3 mm (7.62)
DGEDm ¢(DA) - DEDm ¢(DA) DEDm •(DA)

Furthermore, rounding the nonzero elements of D to an integer power of the machine

base according to (7.61) defines the matrix D E Tbm that satisfies (7.63) for all w such

that 0 < w < 1.12

(DIB) V(DB)</3 min (7.63)
O(DA) DEDm ¢(DA)

Proof. Let bil and bD2 be the classes of nonsingular m x m diagonal matrices with

nonzero elements satisfying dli E (1//, 1] and di E [1, /) for i= 1... m respectively.

12The parameter w allows the theorem to apply whether the elements of the diagonal scaling
matrix D is rounded up or down to the nearest integer power of two.
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Define m = f U 1. Since • ,Dm = Dm for k = 1, 2,

min O(DB) = min (DiDOB)
DEDm ¢(DA) DWED ,DOE-m ¢(DIfDA)

(7.64)

Using the facts that / is left-monotonic and maxj ((DB)T)j _> mink Idkkl maxj (BT)j l,

we have the following.

min
Df rEb,DO P Em

V(DIDOB)
¢(DfD A)

> min
DfEDk,DO EDm

V(DIfD 3 B)

maxj Idýj (DPA)

mini Idif4(DWB)
> min

DP Dm maxj |df3jl(DPA)

1 7 (D B)
> min

D/3 EDm /P (D A)

The left hand inequality in (7.62) is self evident.

To prove the second part of the theorem, define D) = D-1ID and use (7.61) to

show the following holds:

1 <_ dii :51-w if <3Th dii •/3•1w-

O-w < dii <1 if <3r+1-W < dii < /3i+l

Therefore, djj E (3 - 1, 31-") for all j = 1,... m. Substitute )D for D to show that

D satisfies the same bound given for the optimal D E Dm.

min (DB)m (DA)
DE'Dm q(DA)

_ (DDB)
¢(DDA)

mini |diiIV)(D)B)
maxj Idjj l(DA)

3-"w,(IDB)

031-w0(I)A)

1 (DB)

/3 (D)A)

Theorem 7.2 demonstrates that we can easily determine a row scaling that gen-

erates a 3-scaled equivalent of A that is within a factor of 3 of the best possible

row scaled matrix for any condition number for which the row equilibration theorem

applies. Moreover, if A = B E R •X" and D equilibrates the two norm of the rows

of A and O(A) = infxIinllxll0 IIAxI 2 / IIX 2, then combining the results of (7.57)

and (7.62) demonstrates that K2 (DA) is within a factor of pVi/ from the minimum
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K2(DA) over D E rD, for the diagonal matrix D defined in (7.61).

DIIA L maxj ((DA)T)j L

5(DA) -(DA)

maxj II ((DA)T)j1< M ||DA112
< /v' min ax ((DA) min2 (7.70)

DEDTm O(DA) DEDm O(DA)

Equation (7.70) shows that we can easily calculate a P-scaled equivalent of the

scaled corrector iteration matrix Jc, simply by equilibrating the two norm of the

rows of Jc and rounding to an integer power of the machine base according to (7.61).

Thus, we can scale the corrector iteration matrix by first scaling its columns, and

then scale its rows using the matrix D. The resulting matrix is within a factor 3 'F

of the optimally scaled matrix in terms of the way the integrator measures the error,

and it can be calculated efficiently.

The scaling algorithm that we have implemented within DASOLV and DSL48S

scales the iteration matrix every time it is reevaluated, typically after several integra-

tion steps. First the columns of the matrix are scaled, then the rows are scaled using

the D defined in (7.61) when w = 0. However, the ri used to define D are determined

without actually calculating the two norms of the rows of Jc to make the algorithm

more efficient. Let ji = (J). The ni must satisfy the definition given in theorem 7.2

which can be rearranged as follows to eliminate the square root operation (proved in

theorem A.4):

i = - [log10(f3ji 2)] = -[log ((Ji)1 2)] log (i (7.71)

Since the rows of Jc are sparse, the dot product jTji can be calculated efficiently

(requiring O(T/n) operations13 ). The floor of logo can be performed very efficiently

by employing the logb function recommended by the IEEE floating point standard

(ANSI/IEEE Std. 754, 1985) which is defined as logb(x) = [LlogQ(x)l . The func-

13Duff et al. (1986) define 7 as the number of nonzero entries in the matrix, so 7/n is the average
number of nonzeroes per row.
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tion merely accesses the exponent of the binary representation of the floating point

number. The right hand side of (7.71) can be rewritten using the fact that Ly/kJ =

[[yJ /kJ for any integer k to make use of logb. Thus, mi can be calculated according

to (7.72); the cost of this calculation is dominated by the computation of the dot

product of a sparse vector.

=i [Iogb(jTji) (7.72)

Only the vector rl needs to be stored to represent the matrix D. The iteration matrix

may be scaled either implicitly (Forsythe and Moler, 1967) during the calculation or

explicitly before it is factored using the function scalb (ANSI/IEEE Std. 754, 1985).

Currently, we use explicit scaling to avoid making any changes to the sparse linear

algebra routines.

The combination of row and column scaling just presented has reduced the con-

dition number of the iteration matrix on all of the example problems on which it has

been tested. In fact, scaling has reduced the condition number on the batch distil-

lation models from approximately 1022 to 108 . Thus, the scaling method offers the

opportunity to extend the range of problems that may be solved with a machine of

given precision. If the condition number of the corrector iteration matrix is reduced

substantially, the scaled iteration matrix may meet the conditions under which accu-

racy may be guaranteed while the unscaled matrix cannot. The scaling has entirely

eliminated the spikes observed on some simulations where the requested tolerance has

been loosened, and on other simulations the scaling has reduced the number of spikes

that have been observed. The scaled simulation is solved more efficiently because

there are fewer truncation error failures, residual evaluations, and Jacobian factoriza-

tions. However, in both cases the residual error combined with the condition of the

iteration matrix are not sufficient to guarantee the accuracy of the solution.

An efficient implementation of this scaling has been coded directly within the

DASOLV and DSL48S integrators and is transparent to the user. 14 The scaling algo-

14The user merely sets a flag to indicate that scaling should be performed. In ABACUSS, this
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rithm can be applied to any BDF integration code on any machine that adheres to the

IEEE floating point standard, although it is most suited for sparse systems. We have

already ported and tested the scaling on more than five Unix platforms. Preliminary

results show improvements to the integrator's efficiency even on problems that can

be solved accurately with the standard integration scheme; these improvements are

more noticeable using DASOLV.

7.6 Automatic Detection of Potential Inaccuracy

The criterion indicating an accurate solution of the corrector iteration (7.14) can be

checked after the solution of every corrector iteration. In order to apply this criterion

the following quantities are required:

1. A bound on the error in the residual values.

2. The condition number of the corrector iteration matrix, or an upper bound on

the condition number.

3. A bound on the backward error resulting from the LU factorization of the

corrector iteration matrix.

In order to apply the criterion automatically, these quantities must be calculated effi-

ciently so the checks can be performed without reducing the efficiency of the numerical

integration code.

A bound on the rounding error in the equation residuals can be calculated every

time the terms in the corrector iteration matrix are evaluated provided that the re-

verse mode of automatic differentiation is employed (Iri et al., 1988; Iri and Kubota,

1991; Kubota and Iri, 1991). Since the reverse mode of automatic differentiation is

implemented within ABACUSS (Tolsma and Barton, 1997), estimates of the residual

error 6f are available. In addition, the backward error resulting from the LU fac-

torization of the iteration matrix can be determined during the factorization of the

matrix itself at little additional cost (Reid, 1987; Arioli et al., 1989).
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In general, estimating the condition number of a matrix is a difficult task. How-

ever, since the matrix with which we are dealing is a sparse, row-equilibrated matrix,

fairly tight upper bounds on the condition number can be obtained. For a row equi-

librated matrix, a bound on the condition number is obtained from the determinant

of the row equilibrated matrix as follows (Guggenheimer et al., 1995):

2K2(DJ) < (7.73)
det(D J)

Guggenheimer et al. (1995) show that no tighter bound on the constant 2 is possible.

From theorem 7.2, the condition number of the /-equilibrated matrix, rK2(DJ), is

within a factor of 0 of the row equilibrated matrix, so

2(DJ) < 2 (7.74)
det(DJ)

The determinant of the row equilibrated matrix can be evaluated simply by multi-

plying the pivots of the factored, row equilibrated matrix. Unfortunately, the matrix

DJ was not formed during the scaling process; instead, the /-equilibrated matrix was

formed and factored. However, the elements of D were calculated before the matrix

was scaled in order to obtain D. Since D = )DD, the determinant of DJ can be

calculated as long as the elements of ID are stored when ID is calculated. In fact,

det(DJ) = det(DJ) det(DI) (7.75)

The determinant of DJ can be determined by multiplying the pivots of the /3-

equilibrated iteration matrix, and the det(D) can be determined as the row scaling

factors are calculated. For the scaling that has been implemented, 1 < dii < 0/3.

The criterion (7.14) required that a < 1, and we noted that if this was not

satisfied, then (7.10) should be applied directly in order to estimate 16XIIBDF. We

now argue that we can bound the value of ||6XIIBDF from the information provided by

the evaluation and factorization of the corrector iteration matrix. During evaluation
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of the matrix we obtain an estimate for 6f and during the factorization we obtain

an estimate of 6J. Our estimates for these quantities will not change during the

corrector iteration unless the matrix is reevaluated. Newton's method for the solution

of nonlinear systems is stable when started from within the region of convergence

(Wozniakowski, 1977), so we consider the rounding error introduced if we had the

exact solution of the system. Numerical evaluation of the function at the exact

solution x* differs from zero only by the error in evaluation the function Sf:

f(x*) = 6f + 0 (7.76)

and from perturbation analysis of the system at x*:

(J + 6J) (Ax + Sx) = 6f (7.77)

Since we have assumed that x* is the exact solution to the f(x) = 0, Ax = 0. Using

the perturbed system (7.77), a result analogous to (7.10) obtained:

115XIIBDF (J) II1fl BDF (7.78)IIJIIBDF-- r) 1JIIBDF

Thus, every time the corrector iteration matrix is factored and evaluated we can

determine whether |11•sIBDF > 1 indicating the possibility that the desired corrector

tolerance cannot be achieved even when the numerically calculated Newton update

is zero. We note that we would like to converge the corrector iteration so that the

numerically calculated Newton updates are less than .33 - IIS I BDF.

7.7 Effect of Scaling

The implemented scaling technique serves two purposes. First it enables us to auto-

matically scale models better than any user of the system could scale the models by

selecting appropriate units for the system variables, because a scale factor is selected

locally (in time) for each variable, rather than each type of variable (e.g., enthalpy,
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temperature, etc.). Second, the scaling determines the optimal condition of the sys-

tem for the purposes of error analysis, and enables us to bound the condition number

of the iteration matrix efficiently.

We recognize that the improvements to the performance of the code hinge upon

whether the scaling affects the selection of the pivots during Gaussian elimination.

Since the matrix has been scaled by integer powers of the machine base, Gaussian

elimination will calculate exactly the same answer if the same pivots are selected

(Forsythe and Moler, 1967). However, if the pivots change, then the answer may

change as well. Therefore, the scaling helps the integration if it leads to better

pivot selection during the linear algebra. The column scaling is required so that

the pivot selection is attempting to minimize the backward error in the appropriate

norm. The row scaling can only help the performance if it reduces the backward

error of the matrix factorization. However, many linear algebra packages decide to

row equilibrate matrices before attempting to factor them, so this is normally a good

procedure. Since MA48 does not row equilibrate the matrix, this should help, but we

cannot guarantee that it will. Since the backward error of the Gaussian elimination

grows with the system size, larger systems are more likely to cause problems when the

condition number is the same, and our scaling is more likely to benefit these systems.

The scaling also permits us to analyze the answers that we obtain from the Newton

iteration. The accuracy of the Newton iteration is limited by the error in the residuals

and the condition number of the Jacobian. The condition number that we should use

in these circumstances is the minimum condition number, so we would like to have

a well-scaled matrix. Our scaling provides us with a reasonably tight bound on the

condition number that can be employed to detect systems in which the potential for

loss of accuracy exists.

The scaling will have no effect on the performance of the integration code if the

same pivots are selected, so for systems that are well scaled over the entire time

domain the same performance can be expected. Since the scaling is implemented very

efficiently, it will not decrease the performance. However, for poorly scaled systems,

the scaling will probably change the pivots that are selected and thus change the
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performance of the code. This is easily seen by noting that the choice of units in

which the model variables are expressed can cause simulations to fail. The ability

to automatically detect the potential for inaccurate solutions due to ill-conditioning

allows the code to warn users of this possibility. However, we should note that this is a

worst case scenario. Note that the maximum magnification of the error in the solution

is rare; both the error and the residuals must be in the appropriate directions for this

to occur. Therefore, on many ill-conditioned systems, the integrator may perform

quite well because the maximum amplification of the error is not observed. Our

examples merely demonstrate that in some cases the amplification of the error does

occur.

7.8 Conclusions

Equation-based simulation languages provide a flexible environment in which to pose

dynamic simulation problems, yet this flexibility puts severe demands on the embed-

ded numerical solution algorithms. We have found that the batch distillation of wide

boiling azeotropic mixtures is a very difficult problem for the numerical integrator

used within ABACUSS. In fact, we have discovered difficulties during the integra-

tion of such problems that clearly indicate that the desired solution accuracy cannot

be achieved. We have proven that that these problems stem from the inability to

obtain accurate solutions from the corrector iteration of the BDF integrator. Using

linear error analysis, we have proven that the accuracy of the corrector depends on

both the condition of the iteration matrix and the accuracy to which the residuals

are evaluated. We then proved that an ill-conditioned iteration matrix can lead to

the observed problems. Furthermore, we have demonstrated that even nonstiff linear

time invariant ODE systems can become ill-conditioned.

We have derived a criterion under which we can ensure that the desired accu-

racy can be maintained and that the simulation results can be trusted. For well-

conditioned systems, the BDF methods should have no problem obtaining an accu-

rate solution as long as the residuals are accurate. However, the batch distillation
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examples given here do not meet this criterion, and we admit the possibility of the

observed inaccurate solutions.

Since well-conditioned systems can be solved reliably, we have investigated scal-

ing techniques to improve the conditioning of the corrector iteration matrix. Two

diagonal scaling matrices, with nonzero elements that are integer powers of the ma-

chine base, are used to transform the linear system encountered at each corrector

step without introducing any rounding error. We have shown that the column scaling

must be chosen to reflect the error criterion imposed by the BDF integrator. Once

the columns have been scaled to reflect this error criterion, we are free to choose the

row scaling that minimizes the two norm condition number of the resulting system.

Finding an exact minimizer of the two norm condition requires the solution of an

integer programming problem. However, by extending the results of van der Sluis,

we have proven that for the sparse matrices in which we are interested, we can obtain

an approximate solution of this problem with a condition number that is quite close

to the minimum. We have demonstrated that this approximate minimizer can be

determined without even evaluating the condition number of the system. This scal-

ing can be performed automatically and efficiently within any BDF integrator. We

have implemented the algorithm within both DASOLV and DSL48S - the integration

codes used within ABACUSS. The code is very efficient, making use of functions that

manipulate the exponents of the binary representation of the floating point numbers,

and is entirely transparent to the user of the integration code.

This numerical scaling technique has been shown to mitigate the problem of ill-

conditioning on the distillation examples, reducing the condition number of the system

by 14 orders of magnitude in some cases. Unfortunately, problems can always be

constructed which are sufficiently ill-conditioned that the desired accuracy cannot be

guaranteed with a given machine precision. In such cases, the simulation must be

performed in higher precision. Note that these results apply to the dynamic simulation

of any system, not just batch distillation.

Identifying potential problems in controlling the integration accuracy requires

bounding the condition of the iteration matrix, the error of the evaluated residu-

281



als, and the backward error of the matrix factorization. Efficient strategies for all are

required to identify and warn of potential problems automatically.

Finally, the ability to make modeling decisions that improve the condition of

the DAE that is integrated has been illustrated. Future development of these ideas

may focus on ways to interpret the information within the corrector iteration ma-

trix to identify specific elements or sets of equations that may be leading to the

ill-conditioning of the matrix. Proper identification of the problematic terms may

permit the user to reformulate the model, if suitable modeling assumptions can be

made without sacrificing the applicability of the results, in a way that enables the

numerical routines to perform better. In addition, symbolic techniques capable of re-

ducing the error in the calculated residuals may also increase the number of problems

that can be solved reliably, and these should be investigated further.
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Chapter 8

Initial Step Size Selection for

Differential-Algebraic Systems

8.1 Introduction

The transient behavior of many physical systems of interest exhibits both continuous

and discrete characteristics. On the one hand, continuous behavior is naturally for-

mulated mathematically as differential-algebraic equations (DAEs) (Pantelides et al.,

1988; Brenan et al., 1996; Mattsson, 1989; Cellier and Elmqvist, 1993), and on the

other, discrete behavior is typically the result of either external control actions or au-

tonomous discontinuities (Barton and Park, 1997). Mathematically, discrete aspects

of the system behavior are modeled as changes in the functional form of the under-

lying DAE. The existence of such discontinuities complicates the solution procedure

and increases the need to start integration codes efficiently.

The solution of an initial value problem described by DAEs containing discon-

tinuities can be formulated as a combined discrete/continuous simulation problem

(Cellier, 1979; Barton and Pantelides, 1994). In fact, the mathematical formulation

of this problem is typically represented as a sequence of initial value problems con-

taining continuous models. Discontinuities, commonly known as events, define the

boundaries between these continuous domains and may result in a discrete change

to either the variable values, the functional form of the model, or both. Thus, the
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simulation domain of interest [to, tf) is partitioned into NC continuous sub-domains

[t(k - 1), t(k )) V k = 1... NC in which to = t(°) and tf = t(NC). The combined simula-

tion problem is defined as follows:

f(k)(Z(k), (k) y(k) u(k), t) = 0(k)( k)(k)(k)t) = 0 tE [t(k-1), t(k)) V k = 1...NC (8.1)
u(k) = u(k)(t)J

where (k) E n k) y(k) E u(k) k) and f(k) : k) x k)  Rk) x
(k) (k) (k)

Rz (u x R -+ Rn ( + n  . The event times t(k) may be defined either explicitly (time

events) or implicitly (state events) during the course of the simulation. If all of the

discontinuities are defined explicitly, the solution of each of the initial value problems

may proceed in a straightforward fashion (Ellison, 1981). Otherwise, the time at

which these events occur must be determined simultaneously with the solution of the

initial value problems; an efficient algorithm for detecting and locating state events

within a linear multistep method has been developed by Park and Barton (1996).

In any case, the solution of a single combined simulation problem may require

the solution of many initial value problems. Integration codes with the ability to

handle stiff systems, such as BDF methods, automatically adjust both the step size

and the order to produce an accurate solution efficiently. To maintain credibility

of the error estimates, which are based on the local error in the solution, the step

size control permits only moderate changes in the step length on any given step.

Practical experience has shown that this strategy permits an efficient solution once

the step size is 'on scale' for the problem. This implies that the step size chosen at the

beginning of each sub-domain should be 'on scale' for the current system dynamics.

If the initial step is not chosen properly, the step size control is quite inefficient at

finding a value that is on scale. Moreover, the error estimates may fail to recognize

an unacceptable solution when the step size is not on scale. Since the integrator

will be started many times during a combined simulation experiment, the reliability

and efficiency of the initial phase of the integration algorithm can have a significant

impact on the performance of the overall solution procedure.
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This chapter derives an efficient method to start the integration code for an ar-

bitrary initial value problem in DAEs, corresponding to any particular instance (k)

in (8.1). Since this work has been motivated by combined simulation problems, the

method has been tailored for the calculation sequence encountered during the com-

bined simulation of DAE models (Park and Barton, 1996) and the information that

is readily available in combined simulation environments such as ABACUSS1 and

gPROMS (Barton, 1992). The method applies to DAE systems with index < 1 for

which a consistent initial condition is known.

Next, we examine the heuristics commonly used to select the initial step length

within ODE and DAE codes, and examine methods that have been employed to

improve upon these heuristics for ODE codes. We then consider how some of the

fundamental differences between DAEs and ODEs (Petzold, 1982b) affect the initial

phase of the integration code. For example, the information available at the start

of the integration and the form of the equations to be solved preclude the direct

extension of the ODE methods. However, since the underlying problem is similar,

the same basic ideas used to increase efficiency and reliability at the start of the

integration apply. In particular, the method we propose addresses the differences that

exist in the specification of initial conditions for DAE systems. We exploit the facts

that a consistent initialization calculation must be performed before the integration

method is called, and that expressions for the partial derivatives of the equations are

now commonly available within combined simulation environments.

8.2 Initial Step Size Selection

The initial step size that is selected must be 'on scale' for the problem under con-

sideration. It should be small enough to capture the dynamics of interest within

the requested accuracy, yet it should not be so small that it significantly affects the

efficiency of the solution. A number of authors have addressed the selection of initial

1ABACUSS (Advanced Batch and Continuous Unsteady-State Simulator) Process Modeling Soft-
ware, a derivative work of gPROMS Software, Copyright 1992 by the Imperial College of Science,
Technology and Medicine.
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step length in codes used to solve ordinary differential equations (Gear, 1980a; Watts,

1983; Gladwell et al., 1987; Shampine, 1987), and a more complete description of the

previous work can be found there. Here we address the heuristics for initial step size

selection contained within popular DAE codes.

Several rules of thumb are commonly employed to select the initial step size in

codes designed to solve ordinary differential equations. The simplest strategy is to

require the user to provide an initial step size. Another technique seen in practice is

to calculate the length of the initial step as a (fixed) fraction of the length of the first

output interval. These are two of the strategies implemented within DASSL (Petzold,

1982a); if the user does not supply a value, DASSL defaults to either a fraction of

initial output length or the inverse of the norm of the variable derivatives (Shampine

and Gordon, 1972), whichever is smaller. Allowing the user to specify the initial step

size permits educated users to exploit knowledge about the specific system they want

to solve, but most users will supply a somewhat arbitrary value because they may not

have a good idea of what an appropriate initial step length is. On the other hand,

the length of the first output interval should provide some indication of the scale

of the problem. However, as Watts (1983) discusses, the user may not care about

the initial behavior of the solution, so the first output interval may not reflect the

initial dynamics of the problem. Furthermore, this criterion does not even consider

the solution accuracy desired. Using the norm of the variable derivatives is more

sensible; however, the time derivatives of the algebraic variables are not required to

specify a consistent set of initial conditions for the DAE, and for systems evolving

from a steady state the time derivatives are initially zero.

To ensure accuracy during the initial step, Sedgwick (1973) suggested starting

the integration at the smallest permissible step size given the machine precision.

The integrator will then steadily increase the step size until it reaches a reasonable

value. Since most codes do not permit the step size to change too rapidly, with

this approach many steps will probably be required before the step size levels off

at a reasonable value. For example, DASSL only permits the step size to increase

by a factor of two on any step where an increase in step size is desired, in order
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to insure that the error estimates remain valid (Brenan et al., 1996). For linear

multistep methods, a doubling of the step size often requires refactorization of the

corrector iteration matrix. Therefore, starting with too small a step size will incur

unnecessary computational costs (for a dramatic illustration of this, see the bouncing

ball example in section 8.9). In addition, the asymptotic error estimates may become

so contaminated with roundoff errors that they prevent the step size from increasing

as it should (Watts, 1983), reducing the efficiency of the integrator even further.

This phenomenon is likely to be magnified when dealing with DAE systems, since the

condition number of the iteration matrix scales as (1/h) for index-1 DAEs (Petzold,

1982b), implying that the accuracy of the solution to the linear system solved at each

corrector iteration is more sensitive to rounding errors when the step size is small.

If an initial step that is too large is attempted, the user relies on the integrator

to reduce the step size until the error criterion is satisfied. Such a situation arises

when the initial step length is selected as a fraction of the initial output interval

and the user is not particularly interested in the initial behavior of the solution.

Several problems may result from such an approach. The asymptotic error estimates

may not be valid for the large step sizes attempted initially. In such cases, the

predictor will not be close to the true solution and may cause the corrector iteration

to fail. The step size is reduced and the procedure is repeated until the corrector

converges and the integration tolerance is satisfied. For linear multistep methods,

the heuristics typically require refactorization of the corrector iteration matrix after a

failed corrector iteration or a significant step reduction, so successive step reductions

are inefficient. In addition, the possibility exists that the error criterion could be

satisfied at a step size which is too large for the asymptotic error estimates to be

valid. In such a case, some local phenomena may be missed entirely (Watts, 1983).

For example, the norm of the difference between the predicted and corrected solutions

may not be a unimodal function; this implies that a solution that satisfies the error

tolerances may exist for which the corrector polynomial does not accurately represent

the true solution over the initial interval. Although this phenomenon is probably rare,

the initial step size selection procedure should avoid such situations.

287



More sophisticated strategies to select the initial step size have been developed.

These strategies are based on estimates of the norm of the variables' derivatives

(Shampine and Gordon, 1972), the value of the local Lipschitz constants (Shampine,

1980) for the system, or the norm of the higher order derivatives (Watts, 1983; Glad-

well et al., 1987; Shampine, 1987) of the variables at the initial time. These methods

are concerned with both stability and accuracy when selecting the initial step size,

but in most cases it is assumed that the equations will not be stiff at the initial

conditions. Although these ideas are applicable to linear multistep methods, most of

this work has focused on the application of one-step methods to explicit systems of

ODEs. An estimate of the behavior of the solution at the initial time is developed,

and this estimate is used to find an appropriate initial step size. In most cases, these

methods rely on the existence of explicit expressions for ± in terms of x and t.

In this work, we follow the basic idea of deriving an approximation for the behavior

of the solution at the initial condition, but the treatment of fully implicit DAE systems

(8.1) requires a different approach to derive estimates of the initial solution behavior.

In the next section, we highlight the differences between the explicit ODE systems

addressed in the past and the DAEs with which we are concerned.

8.3 Scope

This work addresses the initial phase of the integration of index-1 DAE systems in

implicit form using a linear multistep method. The systems considered are those

defined in (8.1) corresponding to a particular instance (k). We determine an efficient

step size to be used during the first integration step on which a first order linear

multistep method is employed. Consistent initial values (see section 8.5) x(to), x(to),

and y(to) are supplied to the integration routine. These values are the result of a

consistent initialization calculation performed before the integrator is called. Kr6ner

et al. (1992) have shown that failure to provide consistent initial conditions will result

in a myriad of problems including possible failure of the integrator on the first step

and inaccurate solution of the problem. In addition, routines to evaluate the partial
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derivatives of f, and the derivatives of the input functions, du/dt, are supplied.

We do not consider any of these requirements as serious limitations of our approach

because we envision the primary application for this technique to be integration codes

embedded within modern combined simulation environments. Within such environ-

ments the functional form of the model is explicitly available, so the partial derivatives

can be calculated automatically and efficiently (Tolsma and Barton, 1997). Since the

user can specify a DAE model of arbitrary index within these systems, we advocate

the calculation of the consistent initial condition as a separate phase of the solution

procedure; the structure of the model is analyzed in this phase of the calculation.

First, the equations that define a consistent initial condition are identified and solved

(Pantelides, 1988; Feehery and Barton, 1996a). Next, if the system is high index, in

most practical cases an equivalent index-1 DAE can be derived automatically (Fee-

hery and Barton, 1996a). Hence, even in the high index case, it can be assumed

that an index-1 system will always be passed to the numerical integration code for

solution. Previous researchers have determined conditions under which the solutions

of the reinitialization problems required at the junctions of the simulation domains

(t = t(k)) are defined unambiguously (Briill and Pallaske, 1991; Briill and Pallaske,

1992; Barton and Park, 1997).

BDF (Gear, 1971) integration codes have been shown to be efficient and highly

reliable for the solution of index-1 DAEs, so these are typically employed within

simulation environments. It is possible to start these methods at a higher order by

using one-step methods, such as a fourth order Runge-Kutta method (Gear, 1980a;

Gear, 1980b; Brankin et al., 1988). However, these techniques are most applicable

when the system is not stiff and an explicit RK method can be employed. The

applicability of implicit RK methods for the same purpose is questionable because a

set of p nonlinear systems of equations must be solved to start a pth order method

(Gear, 1980b). In many situations, the systems are not stiff during the initial portion

of the integration because the fast transients in the system are excited and the step size

is chosen based on accuracy rather than stability requirements (Lambert, 1991), but

this property is not guaranteed. In a simulation environment we wish to emphasize
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the reliability of the numerical solution, and to minimize the need for user intervention

in tuning the solution process. Hence, to ensure stability, we employ a first order BDF

method which is A-stable (Hairer and Wanner, 1993); this also permits us to take

advantage of the order selection strategies within DASSL.

Hybrid techniques employing an explicit RK method initially that switches to

a BDF scheme for stability (Keeping, 1995) were not considered in order to retain

the guarantees for the detection of state events provided by the method of Park and

Barton (1996). In cases where state events are guaranteed not to occur in the initial

phase of the integration these methods may be effective, but guarantees concerning

stability and state event location cannot be provided in general.

8.4 Methodology

A higher order approximation of the behavior of the solution at the initial time

is employed to start the first order BDF method efficiently. This approximation

estimates the difference between the first order method and the true solution to

provide an estimate of the initial step size. The estimate is then employed to advance

the solution over the initial integration step and to solve for the length of this step

simultaneously. The method consists of the following steps:

1. Determine the derivatives of the algebraic variables ro, at the initial time. The

second derivatives of the differential variables do are also obtained.

2. Estimate the value for the initial step size.

3. Advance the simulation over the first integration step, calculating the initial

step size and the variable values simultaneously.

The objectives of the final two steps in this procedure are similar to those of

Gladwell et al. (1987) and Shampine (1987); these employ the basic concept proposed

by Sedgwick (1973) in a more efficient fashion. The procedure is implemented by

modifying the integrator's behavior over the first integration step. Our approach
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differs from those employed for ODEs because we are dealing with fully implicit DAE

models, and we assume that the Jacobian will be available.

The first step is required because the consistent initial condition for the index-1

DAE passed to the integration code does not define y; on the other hand, for the

explicit ODE case, the time derivatives of all the variables are always available from

a function evaluation. The benefits obtained by using this information for the first

order prediction are demonstrated in section 8.9. The estimate of 'i also derived

at this step provides a convenient way to estimate the initial step size (hest) at the

second stage of our procedure. This contrasts with the initial estimates employed

for ODE codes in which only first derivative information is typically available at the

start. Attempts to obtain more information by taking small steps are complicated

by the fact that while the truncation error is reduced as the step size decreases, the

relative contribution of rounding error is increased as the step size decreases.

The last step in the procedure involves the solution of a nonlinear system of

equations to determine the optimal initial step size and the solution of the DAE at

this time simultaneously. The availability of the Jacobian matrix and an estimate for

the optimal step size from the previous steps in our method enables this system of

equations to be solved using a modified Newton iteration. The solution of this system

of equations satisfies the DAE model and the criteria employed to define the optimal

initial step size, which are described in section 8.7. Note that these criteria consider

the step size and order selection heuristics employed by the integration code. While

the examples provided within this paper employ the heuristics of the integration

code DASSL (Brenan et al., 1996), the same ideas apply to other linear multistep

methods. At the conclusion of this step, we verify that the estimate of the local

truncation error decreases as the step size is reduced to support the assumption that

we have determined the first point at which the desired error norm is attained.

The method outlined above exploits the fact that a consistent initialization calcu-

lation has been performed in order to derive a linear system to calculate the algebraic

derivatives. Although solution of this linear system is not required (a zero order

approximation for the algebraic variables could be employed in the predictor), avail-
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ability of the derivatives of the algebraic variables enables much larger initial step

sizes to pass the truncation error tolerance. In cases where any of the algebraic vari-

ables are changing significantly at the initial time, the zero order approximation will

not be very accurate. This will result in a large difference between the predicted

and corrected solution on the initial integration step, requiring a very small initial

step in order to meet the error criterion. Many additional steps are then required to

increase the step size to the value that might have been possible if these derivatives

were available. In contrast, the algebraic derivatives can be determined with little

computational effort. The benefits that this calculation has on the efficiency of the

initial stages of the integration is demonstrated on a collection of example problems

detailed in section 8.9.

The remainder of this chapter discusses each of the steps described above in more

detail. First, the consistent initialization calculation is reviewed since the derivation

of the system employed in step 1 of our procedure relies upon the equations used to

determine the consistent initial condition. This method is then compared with the

heuristics currently employed within DASSL, demonstrating the benefits of employing

this technique within combined simulation environments.

8.5 Consistent initial conditions

Before the integration of a system of DAEs can begin, a set of consistent initial con-

ditions must be defined. These are represented by initial values for the differential

variables x, their derivatives ,±, and the algebraic variables y that satisfy the model

equations, their first and higher order time derivatives, and an additional set of speci-

fications enforced at the initial time. The additional specifications take up the degrees

of freedom that remain when all constraints on 2, x, and y implied by the DAE model

and its time derivatives are taken into account. The ability to express the initial con-

ditions in terms of general algebraic relationships between the model variables at the

initial time, rather than simply specifying initial values for a subset of the variables, is

required to formulate many simulation problems of interest (Barton and Pantelides,
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1994). This work considers index-1 DAEs (8.3) for which the following matrix has

full rank:

Of Of (8.2)

When the matrix in (8.2) has full rank, the model equations (8.3) and additional

initial specifications (8.4) need to be solved simultaneously to determine initial values

io = it(t 0o), xo = x(to), and yo = y(to):

f(o, zXo, yo, u(t), to) = 0 (8.3)

c( 0, xo, o, u(t), to) = 0 (8.4)

Therefore, c : IW" x IRnf x RT x IR'" x R -+ RI ". We refer to the solution of (8.3-8.4)

as a set of consistent initial conditions. Note that full rank of the matrix shown in

(8.2) is a sufficient condition for the index < 1.

The index one DAEs considered in this work represent models that are either

naturally expressed as index-i differential algebraic systems, or that are a member of

the family of equivalent index-i systems corresponding to a model that is naturally

expressed as a high index (i.e., index > 2) DAE. The equivalent index-i models con-

sidered have been derived from the application of the dummy derivative algorithm

(Mattsson and Soderlind, 1993), which can be applied to high index models automat-

ically (Feehery and Barton, 1996a). This algorithm yields a DAE whose structural

index is one; for all such systems, the matrix appearing in (8.2) is structurally non-

singular (Duff et al., 1986). The algorithm can also be applied to the class of special

index-i DAEs (Pantelides, 1988) that do not satisfy (8.2) based on structural crite-

ria. Thus, the implementation described here applies to all index-1 systems for which

structural criteria can correctly determine the additional equations constraining the

initial condition.

Consistent initial conditions are obtained by solving f(i 0, ox 0, o,, u0, to) = 0 and

g(±io, Xo, yo, u(to), to) = 0. Typically an initial guess that is close to the solution
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is provided, either from a physical analysis or a solution obtained using another

numerical strategy such as homotopy continuation, and a modified Newton method

is used to converge the system; we assume that an appropriate guess is provided, so the

method will succeed. Implementation of this method requires the partial derivatives

of the f and g with respect to 2, x, and y. These derivatives are easily calculated by

applying symbolic (Hearn, 1987) or automatic differentiation techniques (Hillstrom,

1985; Bischof et al., 1992) to the functions f and g, so they are readily available within

equation based modeling environments such as SpeedUp, ABACUSS, and gPROMS

(AspenTech, 1993; Barton, 1992).

The convergence criterion specified for the Newton iteration must take into ac-

count the way in which error in the solution to the DAEs will be measured by the

integrator. At the very least, the size of the final Newton updates for x and y must

satisfy the truncation error criterion employed on the first integration step to enable

the first integration step to proceed. To ensure that the desired accuracy can be

achieved during the integration, the distance of the numerical approximation from

the exact solution to the initialization problem should be controlled; the impact that

the termination criterion has on accuracy of the numerical solution is discussed in

chapter 7 and elsewhere (Allgor and Barton, 1997a; Iri, 1988). Insufficiently accu-

rate convergence of the initialization problem will lead to the same type of numerical

difficulties caused by an inconsistent initial condition (Kroner et al., 1992).

It is therefore assumed that the values of 2o, zo, and y, at the conclusion of

the Newton iteration provide sufficiently accurate consistent initial conditions for the

solution of the DAE model (8.3). Theoretically, no more information is required to

start the integration. However, the integrator can be started more efficiently if yo is

provided. The next section demonstrates that both yo and ,o can be calculated quite

cheaply using a portion of the Jacobian matrix employed during the initialization

calculation.
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8.6 Derivatives of algebraic variables

The derivative of the DAEs with respect to time determines yo and Xo. We fix Xo,

xo, and yo at the values calculated during initialization, and solve the following linear

system for the values of i and y:

f d f dx f dy f du Of= 0 (8.5)+=0 (8.5)
82 dt Ox dt ay dt Ou dt Ot

Noting that &i = didt and y = dy/dt and rearranging (8.5) produces the following

system of equations:

f .. Of. Of. Of du -fx + y = x (8.6)
-*-x  a y xx  du dt at

which can be evaluated at the initial time to produce the following linear system

whose solution defines the new variables:

X0 af . f af
fOf o i(to) - (8.7)

-ý Ox au at

Note that all of the partial derivatives appearing in (8.7) are defined entirely in

terms of quantities that have already been calculated (i.e., ±o, Xo, yo, and to) or are

known (i.e., it(to)). In addition, Of/O±., Of/Oy, and Of/Ox were evaluated during the

Newton iteration employed to determine the initial conditions, and we have assumed

that a routine that returns them is available; alternatively, these quantities could

be calculated using finite differences since u is an explicit function of t and f is an

explicit function of ,, x, y, and t. These matrices are simply evaluated using Xo, xo,

yo, and to. The remaining terms on the right hand side require the derivatives of

the input functions appearing in the DAE; these can be derived and evaluated using

automatic differentiation techniques (see appendix C for the derivation of the linear

system defining the derivatives of the algebraic sensitivity variables.). In typical

applications, (8.7) defines a sparse unstructured linear system that can be solved

efficiently (Duff and Reid, 1993; Duff and Reid, 1995; Harwell, 1993).
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To guarantee that (8.7) can be solved to determine unique Xo and yo, the matrix

on the left hand side must be nonsingular. During the consistent initialization, we

can check that the matrix shown in (8.7) is structurally nonsingular (Duff et al., 1986)

(deriving an equivalent index-1 system for which this holds by applying the method

of dummy derivatives, if necessary). Thus, for any DAE system to which we have

obtained a consistent set of initial conditions for the equivalent index-1 model, we

will have a structurally nonsingular matrix in (8.7). However, this matrix may still

be singular, so we need to check the pivots of this factored matrix as we attempt to

solve this system. Singularity of this matrix is not sufficient to show that (8.3) is even

locally index > 2, but it raises the suspicion that the index of the system and/or the

degrees of freedom for consistent initialization cannot be properly determined using

structural criteria. In these situations, the code terminates with a warning indicating

the strong suspicion that the model is still high index despite any attempts at index

reduction. For example, consider the following linear constant coefficient DAE:

l - X •2 - Y 0 (8.8)

22 - X1 -X2 = 0 (8.9)

x1+2 = 0 (8.10)

The combination of Pantelides' algorithm and the method of dummy derivatives will

yield the following system:

t1 - X1 + Y2 - Y1 0 (8.11)

Y3 - -Y2+Y1= 0 (8.12)

1 + 2 = 0 (8.13)

1 + Y3 = 0 (8.14)

where x2 and ý2 have been replaced by the algebraic variables y2 and y3. The matrix
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[Of/f O8f/Dy] is given by:

1 -1 1 0

0 1 -1 1

0 0 1 0

1 0 0 1

which, while structurally nonsingular, is still singular. In the linear time invariant

case, this indicates that the structural algorithm has underestimated the true index of

this DAE, which is 3. Unfortunately, in general, no conclusions can be drawn about

the index of general nonlinear DAE systems based on the singularity of this matrix,

but we can suspect that the index has been underestimated.

Factorizing the matrix on the left hand side of (8.7) dominates the computational

cost of determining o, and yo. Since this matrix is smaller than the Jacobian matrix

used in the Newton iteration during initialization, the additional cost of calculating yo

and io is expected to be small compared to the effort required to solve the initialization

problem.

8.7 Initial step size

The integration will start using a first order method, so the initial step length can be

determined based on accuracy requirements alone, since the first order BDF method

is stable. We consider the accuracy criteria when choosing the initial step size. In

particular, larger steps will lead to a more efficient solution if the accuracy can be

maintained using larger step sizes.

The heuristics used to control the step size within DASSL adjust the step size

based on the estimate of the local error. These error estimates are asymptotically

correct in the case of constant step size and order (Brenan et al., 1996), so the

heuristics within DASSL favor sequences of steps at constant size and order. We

employ the following criteria to identify a step size to use on the initial step that will

lead to an efficient integration:
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1. The initial step must satisfy the requested error tolerances.

2. The length of the second integration step must be the same size or greater than

the length of the initial step.

3. The norm used to measure local error in the solution must accurately represent

the deviation from the predicted solution, i.e., the first order approximation

should interpolate the solution to within the requested tolerances over the do-

main of the initial step.

These criteria warrant some explanation. The requested error tolerances are enforced

using the weighted norm of the difference between the predicted and corrected solu-

tion. Based solely on this criterion, the maximum step that satisfies the local error

criterion would be selected.

The second criterion limits the size of the initial step in order to ensure that

the next step can be carried out at the same size. The purpose of this criterion is

to take advantage of the heuristics employed within multistep methods that favor

sequences of steps of constant length and order. The initial step size considers the

heuristic used to determine the length of the subsequent step. For example, DASSL

employs a conservative strategy to select the size of the next step in order to limit

the number of truncation error failures; therefore, a fairly aggressive initial step can

pass the convergence tolerance, but the size of the succeeding step will be reduced. In

addition, successive steps of the same size are typically required to increase the order of

the integration method. DASSL only considers increasing the order of approximation

of a kth order method after k + 1 successful steps of the same length at order k.

We assume that the potential benefits afforded by increasing the integration order

outweigh any advantage that may be obtained by taking a slightly larger initial step.

Since the second step will also employ a first order approximation, we will see that the

conservative step size heuristics dictate that our second criterion is more restrictive

than our first.

The third criterion is included to ensure that no local phenomena in which we

are interested are missed because the initial time discretization is too coarse. The
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first order approximation to the solution is asymptotically correct, but the initial step

size needs to be small enough so that the local estimate of the error represents the

divergence from this asymptotic limit. Therefore, the first point in time at which the

local error reaches the value defined by the second criterion is desired. Although we

cannot guarantee that some important phenomena have not been missed, we select

the initial step size in a way that attempts to ensure that the first order approximation

properly interpolates the solution over the initial step. Over this region, we expect

the norm of the difference between the predicted and corrected solution to increase

with step size, and we can easily evaluate the derivative of the error norm with

respect to step size at the completion of the initial step. However, ensuring that

important phenomena are not overlooked is difficult, because the numerical accuracy

of the solution to the model equations tends to decrease as the step size is decreased

because the corrector matrix becomes more ill-conditioned as h approaches zero for

index-1 DAEs.

We refer to a step of maximum length that meets these criteria as the optimal

initial step size hopt in the remainder of this chapter; note that our definition differs

slightly from the definition of hopt used by Gladwell (1979) and Watts (1983) due to

the introduction of the second and third criteria. Equations that define hopt according

to the first two criteria are derived in the following section. We demonstrate that these

equations can be solved during the first integration step by augmenting the system

of equations solved during the corrector iteration.

8.7.1 Defining the optimal initial step size

Although the consistent initialization calculations distinguish between the differential

and algebraic variables of the model, the integration code makes no such distinction.

For convenience, the model equations are defined in terms of a single vector of vari-

ables throughout the remainder of the paper. Let n, = n, + ny, zT = [xTyT], and

zT = [.TyT]. Rather than defining a new function, we let the function f operate on

the vectors z and i with the assumption that f (, x, y, u, t) = f (i, z, u, t) where by

the definition of a DAE, Of/8O is singular everywhere. The first criterion defining
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the optimal initial step size is satisfied by any solution to the following system of

nonlinear equations for 6 E R such that 0 < E < 1:

f((zC - zo)/h, zC, u(to + ho),to + ho) = 0 (8.15)

f,(zC, ho, E) = M C - _ zP BDF- 1 + = 0 (8.16)

where M is a constant associated with the integration method and zo is the solution

of the DAE at initial time to. For example, M has a value of 1/2 at the conclusion of

the first integration step for the fixed leading coefficient BDF method. The parameter

E represents the approach to the limit of acceptable error. The norm used to evaluate

the error in the solution I -||BDF is the weighted root mean square norm defined by

(6.7) and repeated below for convenience:

nz 2

|IZ||BDF riZiTN i= 1

where the vector i takes the values of z from the previous time step.

The value of h at the solution of (8.15-8.16) with e = 0 corresponds to the

definition of hopt defined by Gladwell (1979) and Watts (1983). In our case, the

requirement that the second step will not be smaller than the first defines the value

of e. The second step taken by DASSL will be another first order step, so the heuristic

used to suggest the size for for the next step reduces to the following (Brenan et al.,

1996):

ho
hi = 2M zC  (8.17)

2M ||z - zII BDF

When hi is chosen according to this heuristic, the second criterion defining the optimal

initial step size (h, > ho) is satisfied as long as E > 1/2. Thus, e = 1/2 provides the

maximum length initial step that satisfies the first two criteria.

The predicted values of the solution are defined by the first order approximation

z P = zo + hoio, using the values of zo and 4o calculated during the solution of (8.3),
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(8.4), and (8.7). Equations (8.15-8.16) are then solved for z C and ho using a modified

Newton method that permits the use of a deferred Jacobian. Initial guesses for z C

and ho must be provided in order for the method to converge. A method to estimate

an initial guess for h is discussed in the next section. This estimate seeks to find the

smallest value of h for which (8.15-8.16) hold in order to satisfy the third criterion

above.

8.7.2 Initial step size estimator

Any solution of (8.15-8.16) satisfies the first two criteria for hopt provided f cor-

responds to the step size heuristics of the particular code. We also desire a value

ho for which the error estimate is also valid, noting that the values of ho satisfying

(8.15-8.16) may not be unique.

For small ho, the difference between the solution predicted by the linear approxi-

mation at to and the exact solution of the DAE is given by the higher order terms in

a Taylor series expansion about the initial point:

h2
z(to + ho) - (zo + h.o) = z(to + ho) - z P = -2 o + O(h 3 ) (8.18)

2

The BDF method approximates the exact solution z(to+ho) with the solution of (8.15)

zC . The integration code maintains the validity of the approximation by controlling

the local truncation error, so the calculated solution z C obeys a similar relationship:

h2
z C - (zo + hio) = z C - z -o + O(h 3 ) (8.19)2

From (8.19), we estimate the quantity zC - zP used to define the local truncation

error in (8.16) using h2 o/2. Using this approximation, an estimate of the initial step

size that satisfies (8.16) is given as follows:

2 (1 - E)
hest = (8.20)

e M ||EollBDF
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The error estimate is credible if the second term in the Taylor series dominates the

higher order terms in the series over a step of length hest. The algebraic derivative

calculation provides fo, but jo0 is required to define zo completely. Since only the norm

of ýo is required to estimate the initial step size and II'IIBDF scales with the square

root of the number of elements in the vector, we assume that IIZ•IIBDF = 11OlIBDF as

an initial approximation. At the conclusion of the initial integration step, we attempt

to verify that the difference between the predicted value and the solution zC at hest

for the differential variables is approximated by the second order term in the Taylor

series indicating that the contributions from the higher order terms are negligible.

8.7.3 Initial time step combined with step size selection

The variable values and the optimal size for the initial step are simultaneously deter-

mined during the first integration step. The nonlinear system (8.15-8.16) is solved

for [z(ho), ho]T using a modified Newton iteration in which a deferred Jacobian is

employed.

The linear system solved at each step of the standard corrector iteration (i.e., if

ho were specified) on the initial integration step follows:

[O + _±L J [Azk] = GAzk ((k - zo)/h 0 ozk, u, ho) (8.21)

In order to solve for both z(ho) and ho simultaneously, we solve the following system

at each step of the Newton iteration:

-af + 1 Of Zk- + 2- + 2 Zk Az k -((zk - Zo)/h, zk, u,hk
Oh, Of lAhk hk - k h E)
L 9Z h L J [ j [

(8.22)

Observe that the standard corrector iteration matrix G is equivalent to the first nz

rows and columns of the Jacobian matrix J used for the modified corrector iteration.

On large problems, factoring the corrector iteration matrix dominates the compu-

tational cost of the integration method, so BDF codes avoid factoring the corrector
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iteration matrix at each time step by employing the already factored corrector itera-

tion matrix from a previous time step until the convergence of the Newton iteration

deteriorates to an unacceptable level. This implies that as long as the guess for hest is

reasonably close, the same Jacobian matrix can be used throughout the entire New-

ton iteration, and that only the matrix G should be factored, so it can be used on

the subsequent integration step without requiring a refactorization.

For the type of systems in which we are interested, the matrix G is sparse and

unstructured, so the integration code employs linear algebra routines that take ad-

vantage of this (Duff and Reid, 1993; Duff and Reid, 1995). Although the additional

row contained in J is dense, the matrix J remains sparse. The structure of J is ex-

ploited by factoring only the matrix G and by treating the last row and column of J

separately. At each Newton iteration (8.22) can be solved for the cost of two backsub-

stitutions on a system of size nz and a couple of dot products; the solution procedure

is described in appendix B. The main reason to avoid forming and factoring J is to

avoid having to refactor the corrector matrix on the next integration step. However,

some additional benefits are obtained by exploiting the fact that the additional row

contained in J is dense. The dense row in J removes any block diagonal structure

from J that may have existed in G. Treating the additional row separately takes full

advantage the block structure of G, which is particularly important for the simulta-

neous integration of a DAE system and its parametric sensitivities; for these systems,

efficient solution techniques have been developed that exploit the fact that the linear

systems encountered will block decompose (Maly and Petzold, 1996; Feehery et al.,

1997).

The derivative expressions appearing in the last column of J were required to

compute the derivatives of the algebraic variables in section 8.6, so routines to provide

them are assumed. Let D define the diagonal matrix of variable weights for the root

mean square norm:

D x1nz di if i =j,
D c R { = zo, 1+ (8.23)

0 if i 0#j.
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The derivatives of f, are expressed below in terms of the diagonal matrix D.

f M D2- z P ] (8.24)
Oz nz I|z - z P IBDF

Ohf-i - FM [z - zP]D2io (8.25)Oh nz 11z - zP 1|BDF

All the information needed to evaluate these terms is available at each step in the

iteration. The denominators defined in (8.24-8.25) are guaranteed to be nonzero at

the solution of the system because z - z P IBDF = (1 - e)/M. This ensures that

the last row of J is nonzero at the solution. Another advantage obtained when the

additional row and column are excluded from the factored portion of the Jacobian

matrix is that the elements of these vectors can be updated at every step of the

modified Newton iteration.

Initial guesses for z(hest) are provided from the second order Taylor series evalu-

ated at hest. If the iteration fails to converge, the solution of the system is attempted

again at .5hest. After two failures, we revert to a standard corrector iteration until a

feasible, not optimal, step size is determined.

After successful completion of the integration step, we verify that the interpolation

of the calculated solution satisfies the BDF approximation of the model equations.

We select a time h < hopt, such that h is not so small that it requires refactorization

of the corrector iteration matrix. We check that the truncation error at this step size

is smaller. While this does not guarantee that we have determined the smallest value

of h that satisfies (8.16), it verifies that the first interpolated solution approximates

the computed solution of the BDF approximation of the model equations (8.15) at

the selected time.

The iteration matrix G employed during the modified Newton iteration is refac-

tored according to the same heuristics used to decide whether to reevaluate the cor-

rector iteration matrix in response to a step size change. Therefore, the method

proposed will obtain the desired initial step size in the same number or fewer matrix

factorizations than would be achieved by simply starting the integrator with the ini-

tial guess provided by our estimator, as long as the initial guess hest is close enough
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to hopt to permit the Newton iteration to converge. If hest is slightly larger than hopt,

we obtain the advantage that the second integration step can be taken at the same

step size by calculating hopt. If hest is slightly smaller than hopt, a larger step can

be employed. Since superlinear convergence of the corrector is achieved, the optimal

initial step size is determined with little additional effort. The performance of the

method is discussed in section 8.9.

8.8 Implementation within DSL48S

The algorithm described in the preceding sections has been implemented within the

DAE code DSL48S (Feehery et al., 1997) - a code derived from DASSL (Petzold,

1982a) that has been designed for large unstructured sparse systems of DAEs, em-

ploying the MA48 (Harwell, 1993) linear algebra routines. The code automatically

scales the corrector iteration matrix to reflect the error norm employed and minimize

the condition number of the resulting corrector iteration matrix (Allgor and Barton,

1997a). In addition, DSL48S employs an efficient method for the integration of the

DAE with its associated sensitivity equations. The code either uses a user-supplied

routine to evaluate the vector udu/dt + Of/1t required by the algebraic derivative

calculation or it determines these using finite differences. If sensitivity equations are

integrated as well, then DSL48S either employs the user-supplied routine that pro-

vides 02 f/OaOt O±/Op+&2 f/OyOt Oy/Op+ 2f/OpOt evaluated at to, to determine the

derivatives of the algebraic sensitivities, or it determines them using finite differences.

All of the other information required to implement the algorithm is readily available

within the previous implementation of the code as since the Jacobian is required for

integration (DSL48S permits the use of a mixed analytic and numerical Jacobian).

A robust and efficient implementation of the method described in the previous

sections requires that certain 'special' cases are identified and dealt with appropriately.

First, the value for hest must be provided in cases when ILiOlIBDF = 0. Two cases are

considered depending on whether |Iio IBDF = 0. If IliolBDF 0 0, then the following
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estimate developed by Shampine (1987) is employed:

hest = (1- ) (8.26)
5 'ZBDF

On the other hand, if IIoIBDF = 0, then the code defaults to a fraction of the requested

initial output length. The difficulty with the implementation of this scheme is to

determine when the norms are close enough to zero to be considered zero. We check

to see whether IIPolBDF tout/ oI ZIBDF is small in order to relate the norm to the scale

of the problem. Although this scheme may take a conservative initial step size in the

case when the system is sitting at steady state, or when only the second derivatives

are zero, we feel it is better to take a conservative approach rather than attempt to

take the maximum size step that the code will allow. Recognize that if the system is

truly operating at steady state, then the augmented system of equations will not have

a solution because (8.16) cannot be solved since the prediction is the exact solution

of the system.

The efficiency of the iteration is affected by the criteria that are used to determine

whether the augmented system of equations (8.15-8.16) is converged. Obviously, the

convergence of the variables z C of the DAE must adhere to the same criteria used

for a typical integration step. Since this criteria is based on the size of the updates

to the variable values, it will be difficult to satisfy this criteria unless the step size is

no longer changing by an appreciable amount. However a slightly smaller initial step

size, one that leads to a negative residual in (8.16), is acceptable if the magnitude of

the negative residual is close enough to zero; this is analogous to choosing a value of

c that is slightly larger than 1/2. These facts indicate that efficiency advantages may

be obtained by fixing the step size and merely converging the variable values once

(8.16) obtains a negative value close enough to zero. In general, such a strategy is not

appropriate to implement within Newton's method because updates for all variables

are determined. However, since (8.16) is the last equation in the system and ho is

the last variable, the update to ho can be set to zero before the back substitution on

the rest of the matrix is performed. This is particularly easy to implement in our
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augmented system since the last row and column are treated separately. As shown in

appendix B, the updates to the variables in the absence of a change in ho are given

by vl. The other advantage to this strategy is that the derivatives of f, with respect

to both z C and h often contain significant contributions from numerical error in the

evaluation of z C - z P which means that the step size may continue to change by

small amounts even when its value has essentially converged. By fixing the step size

once it is near the answer, these small changes to the step size (possibly caused by

numerical error in the derivative expressions) cannot deteriorate the convergence rate

of the DAE variables.

The Newton iteration has been modified slightly to improve the convergence when

hest is a poor initial guess for hopt. First, every time h is changed by a substantial

factor, or on the initial Newton step, only the DAE variables are updated in order

to get a more accurate value for f, and to be able to evaluate the derivatives of

f,. This is a tailored recovery strategy from the guaranteed numerical singularity of

the Jacobian on the first Newton step that occurs because zP = zC(o). This allows

the Newton step to update the values of the DAE variables on the first step and

determine the convergence rate of the Newton iteration. Furthermore, large changes

to h are not permitted on a given Newton step; h is not permitted to change by more

than an order of magnitude on any given step. If such a large change is indicated,

h is changed by an order of magnitude, and the variable values z are determined by

the predictor polynomial for a step of this length. This strategy has improved the

convergence of the method in situations where hest provides a poor estimate for hopt.

On most problems, the largest initial step length that will satisfy the error criteria is

desired because the relative size of the contributions of the numerical rounding error

to the variable updates will be smaller. Since the error in the approximation of the

derivatives is being controlled by the truncation error criterion, the largest step that

satisfies the truncation error check should approximate the derivatives to the desired

accuracy.

Finally, cases in which the addition of (8.16) to the DAE system leads to a singular

system must be handled. These cases arise whenever z C - z P = 0, so the last row
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of the matrix becomes zero. Since this always happens on the first Newton step,

the tailored recovery strategy mentioned above is employed. However, singularity

of this matrix may occur on other steps as well. Whenever the pivot corresponding

to h becomes too small, h is doubled (in an attempt to avoid situations where the

predictor is extremely accurate), and a standard integration step is attempted at this

step length.
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8.9 Computational Performance

The computational performance of the algorithm is reported for a set of hybrid dis-

crete/continuous simulation problems. These examples show the benefits of this tech-

nique in terms of both an increase in the initial step length and a reduction in the

number of Jacobian factorizations and residual evaluations that are required for the

overall simulation.

First, the technique is demonstrated for a classic discrete/continuous simulation,

the bouncing ball. When the ball is falling, the equations of motion in a gravity field

govern its trajectory; these equations define a system of ordinary differential equa-

tions. When the ball hits the ground, the ball rebounds with a fraction of the vertical

speed at which it contacted the ground according to the coefficient of restitution. The

method of Park and Barton (1996) that is used to locate discontinuities during the

simulation introduces algebraic variables and equations to the model that represent

discontinuity functions. In the case of the bouncing ball, two discontinuity functions

are added to the model to identify when the ball hits the ground. The first indicates

whether the ball is touching the ground (the center of the ball with diameter .im is

touching if y < .05); the second ensures that v, < 0 (i.e., the ball is falling). The

equations representing the index 1 DAE model of the system are:

X - vx

- vy

i) + 9.81

dl + y - .05

d2 + vY

= 0 (8.27)

where x and y represent the position of the center of the ball, and vx and vy represent

the velocities in each coordinate direction. Initial conditions of vx = 1, vy = 0, x = 0,

y = 100 are specified.

This example demonstrates the advantage of determining the derivatives of the al-
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gebraic variables before starting the integration code. The optimal step size hopt (i.e.,

the step size that satisfies (8.15-8.16)) is calculated with and without the derivatives

for the algebraic variables; we denote these as hWpt and hfop respectively. When the

derivatives of the algebraic variables are not known, a zero order approximation for

the algebraic variables is employed for the predictor.

The consistent initialization calculation yields zo = [vxo, vYox, Xo , dyo, do2 ]

[1, 0, 0, 100, 99.95, 0] and [v)o, v,'o, o, ,o] = [0, -9.81, 1, 0]. The derivatives of the alge-

braic variables are determined by solving (8.5). This yields [Vio, 1 Yo, Xo, •,, dlo, d 20] =

[0, 0, 0, -9.81, 0, 9.81]. A value of hest is determined from the second derivatives of

the differential variables given absolute and relative error tolerances for the variables

of 10-5:

1 1
hest = .01435 (8.28)II[0, 0, 0, -9.81]1|BDF V1/4(9.81/.00101)2

We employ hest as the initial guess for the solution of (8.15-8.16) when calculating

both h pt and ho.

We examine the solution of (8.15-8.16) with and without the derivatives of the

algebraic variables. Both hWpt and ho solve (8.15-8.16); the values differ due to the

way that the solution is approximated at the initial time. When we include the deriva-

tives of the algebraic variables, Zo = [0, -9.81, 1, 0, 0, 9.81] and h'p t = 9.431 x 10- 3 . If

we do not employ the derivatives of the algebraic variables, Zo = [0, -9.81, 1, 0, 0, 0]
and hot = 1.248 x 10-6 . These step sizes differ by a factor of about 7500, requiring

almost 13 additional steps, doubling the step size at each step, for hot to achieve

the magnitude of hW calculated when the algebraic derivatives were provided. Since

the heuristics within DSL48S refactor the iteration matrix every time the step size is

doubled (unless the order is also increased), the cost of these additional factorizations

will be significant on large models. The cost required to determine these derivatives

is comparable to the cost of one factorization of the iteration matrix. Note that the

calculation of the algebraic derivatives also provided 5o which was used to calculate

hest, the initial guess for hopt.
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Test Number Performance Measures
Problem of Jacobian Int. Residual Convergence Error

Name Events Factorizations Steps Evals. Failures Failures
Bouncing Ball 7 203 245 388 0 6
Safety Valve 12 165 274 465 0 12
Flash 11 202 586 1304 10 28

Valve 5 52 201 396 0 6

Event/Simulate2 18 192 583 1140 0 9

Event/Simulate4 10 166 396 793 0 25

Series Reactions 1 14 73 145 0 0

Table 8.1: Performance of integration code on combined simulation test problems
using the initial step length heuristics employed by DASSL.

Results are presented to compare the performance of the initialization procedure

on a host of test problems using the default implementation contained in DASSL (see

table 8.9) and the optimal initial step length calculation proposed in this work (see

table 8.9). For each problem, the approach just presented for the selection of the

initial step size is compared with the heuristic implemented within DASSL; DASSL's

heuristic estimates the initial step length as either a fraction of the length of first

output interval or according to the inverse of the norm of the variable derivatives.

Note that the heuristics employed within DASSL permit the step size to be doubled

and the order increased at the completion of each successful step in the initial phase

of the integration. In contrast, the method used here employs the conservative step

size adjustment procedures employed throughout the code at the completion of the

initial step.

8.10 Conclusions

The statistics presented in the preceding section demonstrate that the method used

to calculate the initial step size improves both the reliability and efficiency of the BDF

integration code in the initial phase of the integration. This applies to each initial

value problem encountered during the solution of a combined simulation experiment.

The increase in the efficiency of the method stems from both the availability of the

derivatives of the algebraic variables on the first step and the simultaneous calculation
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Test Number Performance Measures
Problem of Jacobian Int. Residual Convergence Error

Name Events Factorizations Steps Evals. Failures Failures
Bouncing Ball 7 126 168 285 0 0
Safety Valve 12 132 250 404 0 0
Flash 11 195 603 1314 0 14
Valve 5 43 197 414 0 10
Event/Simulate2 18 82 470 947 0 0
Event/Simulate4 10 154 404 797 0 11
Series Reactions 1 9 67 134 0 0

Table 8.2: Performance of integration code on combined simulation test problems
using the optimal initial step length calculation.

of the variable values and the initial step length during the first integration step.

Using the derivatives of the algebraic variables at the initial time improves the

accuracy of the prediction during the first integration step. Without these deriva-

tives the initial step length will be restricted to much smaller values. In fact, if

the first order terms in the Taylor series for the algebraic variables dominate the

higher order terms, then the initial step size cannot be greater than the point at

which the norm of the first order terms exceeds the allowable error tolerance (i.e.,

h0o (ny + nx)M/(ny I I BDF)). The value ho approximates the largest step size that

could succeed on the initial step if the yo, are not determined. Since the derivatives

of the algebraic variables can be calculated inexpensively, the benefits appear clear.

Determining these values allows the size of the initial step length to be governed by

the second order terms in the Taylor series. This additional calculation improves the

performance of the integration of DAEs, distinguishing this method from those ap-

plied to ODEs. In addition, the algebraic derivative calculation provides the second

derivatives of the differential variables io which can be used to estimate the length

of the optimal initial step length.

The second derivatives of the differential variables provide information that can

be employed to estimate an initial step size that maintains the validity of the error

estimate but is on scale for the problem. The method presented establishes criteria

that define the optimal initial step length. We have demonstrated that a step satisfy-
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ing these criteria can be found by augmenting the system of equations solved during

the corrector iteration. The augmented system of equations can be solved using the

same corrector iteration matrix. Whenever a good initial estimate of the optimal

step size is calculated by our estimation procedure, the optimal initial step size can

be determined without any additional factorizations of the corrector iteration matrix.

The solution statistics for the example problems demonstrate the improvements of

the efficiency of the solution procedure. In addition, the step size selection procedure

employed during the initial phase of the integration is more conservative and leads to

fewer convergence and error test failures, yet it remains more efficient.

Since this method improves both the efficiency and reliability of the code in the

initial phase of the integration, it can provide significant benefits for the hybrid

discrete/continuous simulation of large models with frequent discontinuities. The

method is ideally implemented within combined simulation environments where the

required derivative information is available.
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Chapter 9

Mixed-Integer Dynamic

Optimization

This chapter presents some preliminary results on how the decomposition approach

for the batch process development problem introduced in chapter 2 extends to a more

general class of mixed-integer dynamic optimization problems. We define mixed-time-

invariant-integer dynamic optimization as the class of problems for which the decom-

position strategy applies, and demonstrate that simple extensions of mixed-integer

nonlinear programming (MINLP) techniques are doomed to failure on this class of

problems. On the other hand, our approach combines dynamic optimization with

insight based targeting techniques to decompose the optimization into subproblems

providing rigorous upper and lower bounds on the objective. This approach has the

potential to eliminate total enumeration of the discrete space, assures termination in

a finite number of iterations, and yields a rigorous bound on the distance between

the solution found and the global solution.

9.1 Introduction

Many problems in process design and operation require the optimal selection of

quantities that vary over time. When a mathematical model of the process is avail-

able, these quantities may be calculated using dynamic optimization; in fact, several
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researchers in the chemical engineering community have developed algorithms for

the optimization of large-scale dynamic systems (Cuthrell and Biegler, 1987; Vas-

siliadis, 1993; Feehery and Barton, 1996a). However, many problems also contain

discrete quantities or decisions that cannot be described using purely continuous

dynamic models of the system. The growing recognition of the importance of dis-

crete/continuous (or hybrid) dynamic systems to the chemical industry has recently

motivated the development of appropriate simulators (Barton and Park, 1997). Sim-

ilarly, the optimization of hybrid dynamic systems cannot always be performed using

purely continuous formulations. This motivates new algorithms capable of handling

classes of mixed-integer dynamic optimization (MIDO) problems.

Recently, dynamic optimization of large scale continuous systems has been demon-

strated (Charalambides et al., 1995b), and dynamic optimization capabilities have

even been embedded in process simulators such as ABACUSS. However, limited

progress has been made that addresses dynamic problems coupled with discrete deci-

sions. Charalambides et al. (1993) formulate 'batch process synthesis' as a multistage

mixed-integer dynamic optimization problem, but no solution procedures have been

reported. Mohideen et al. (1996) consider design and control in the presence of uncer-

tainty, formulating the problem as a stochastic mixed-integer optimal control problem.

This problem is transformed into a finite dimensional MINLP through discretization

of the time domain with orthogonal collocation on finite elements. However, the

nonconvexities inherent in this problem are not discussed, so the application of tradi-

tional MINLP algorithms to this problem is likely to reduce to an ad hoc improvement

strategy that may prune the optimal discrete alternative (Sahinidis and Grossmann,

1991; Bagajewicz and Manousiouthakis, 1991).

In contrast, we present a decomposition approach to MIDO that is capable of

providing rigorous bounds on the global solution in spite of the nonconvexities inher-

ent in the variational subproblems. In addition, this decomposition is the first that

permits either collocation or numerical integration based strategies to be used for

the variational subproblems. In the following sections, we formally define the MIDO

algorithm and the class of problems it addresses. Further, we demonstrate how the
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required subproblems can be derived and solved on a relatively simple batch process

development example.

9.2 Problem Scope

We consider the class of mixed-integer dynamic

to the following formulation:

mm I k k(Xk(t k) , Uk(t'), v, y, tf) +
u(t),v,y,tf k kmi LIC~~I VY)kk/

optimization problems that conform

f

ft Lk (xk (t), Uk(t), v,y, t)dt (9.1)
ot

Subject to:

fk (xk (t), k (t), uk(t), v, y, t) = 0

gk(k (t),k (t), Uk(t), v, y,t) < 0

h(v, y, t) < 0

akp(xk(tp)-'4 (tp), Uk(tp), V, y, tp) < 0

V k, t E [to, tf]

V k, t ([to , tf]}

V k, p E f0 nPk I}

xk E Xk C IRV

U E uk = U C_ •R

uk E Uk C un"k

VEVCRnW ye

Vk

Y= {o0,1}"

fk : Xk x Rxk x Uk x V x [0, 1]n' x R -+ Rn k

gk : Xk X Rn7 k X Uk x V X [0, 1]ny x R --ý 9gk

h: V x [0, 1]ny x R - Rflnh

okp : Xk X R••k x Uk x V x [0, 1]'' x R -4 R"kp

and Zk (t) are the continuous variables describing the state of the dynamic system k,

Uk(t) are continuous controls whose optimal time variations on the interval [to, tf] are

required, v are continuous time invariant parameters whose optimal values are also
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required, y are a special set of time invariant parameters that can only take binary

values, and tf is a special continuous time invariant parameter known as the final

time of system k. This formulation allows for nk dynamic models that are coupled

by the time invariant parameters v and y. It is the presence of the binary time

invariant parameters y that distinguishes formulation (9.1-9.5) from other recent quite

general dynamic optimization formulations (Vassiliadis et al., 1994). We conjecture

the existence of a more general class of problems that also contain binary controls

(i.e., functions whose time variation is restricted to take 0-1 values) but will only

consider the class (9.1-9.5). Hence, to coin a term, (9.1-9.5) might be called a mixed

time invariant integer dynamic optimization.

The constraints (9.2-9.5) warrant some explanation. Equations (9.2) represent

a general set of differential-algebraic equations (DAEs) describing the kth dynamic

system; each dynamic model k can only interact with another dynamic model k' = k

through the time invariant parameters. As such, (9.2) will include a lumped dynamic

model of the system in question coupled with any path equality constraints that

system k must satisfy; the number of controls that remain as decision variables in the

optimization is reduced by each path equality constraint added to the formulation.

Note that for any admissible realization of the {u(t), v, y, tf} (one that satisfies the

logical constraints (9.4) and produces a solvable DAE) the choice of which degrees

of freedom to designate as controls u(t) and the presence of path constraints may

have a profound influence on the differential index (Brenan et al., 1996) of (9.2).

For practical purposes, we will further assume that, while (9.2) may have arbitrary

index, the index is time invariant and can be correctly determined using structural

criteria. Hence, the method of dummy derivatives may be used either for numerical

solution of the initial value problems (IVPs) in (9.2) (Mattsson and S6derlind, 1993;

Feehery and Barton, 1996a), or to derive an equivalent index-1 discretization of (9.2)

via collocation (Feehery and Barton, 1995). Here, we emphasize that the differential

index of the model solved may be a function of y, but that the index must remain

time invariant for any integer realization of y. For example, the following system is
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index-2 if yl = y2 and index-1 otherwise:

i:l(t) = -x-l(t) + x 2(t)

xl(t) + (Yl - y2)x 2 (t) = u(t) (9.6)

Y1+Y2 < 1

Inequalities (9.3) represent a general set of path inequality constraints that must be

satisfied by a solution of the optimization. Feehery and Barton (1996b) discuss an

algorithmic approach to the solution of dynamic optimizations containing such path

constraints. This approach will invoke further assumptions concerning inequalities

(9.3), arising from the need to couple (9.2) with any active members of (9.3) during

the solution process. Specifically, we require that the coupled system formed when

some of the constraints (9.3) are active and some of the controls are treated as state

variables remains solvable for the selected partition of the control variables. Con-

straints placed on the dynamic model at specific times, such as initial conditions or

final time requirements, are represented by (9.5). In addition, (9.4) defines constraints

that coordinate the operation of the nk different dynamic models through the time

invariant integer (y) and continuous (v) parameters. Note that models that cannot

be decoupled through the use of time invariant parameters can be represented within

this formulation by permitting only one dynamic model (i.e., nk = 1).

9.3 Applying MINLP algorithms

The development of our approach for mixed-integer dynamic optimization proceeds

from an analogy with algorithmic approaches to MINLP. An excellent review and

discussion of MINLP algorithms is given by Floudas (1995). First, we examine the

applicability of two popular and general approaches used for MINLP problems to

the MIDO problem. We discuss both Branch and Bound approaches, analogous to

those used for MILP problems, and decomposition approaches such as the General-

ized Benders Decomposition (GBD) (Geoffrion, 1972) and the Outer Approximation
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Method (OA) (Duran and Grossmann, 1986) and its variants. The problems that

may be encountered when extending either of these techniques to the MIDO problem

are discussed, which leads us to pursue an alternative decomposition approach for

mixed integer dynamic optimization based on domain specific knowledge.

A Branch and Bound approach to MIDO requires the existence of a continuous

relaxation to problem (9.1-9.5), and the ability to solve this relaxation to global

optimality. The required relaxation poses both theoretical and practical problems.

For example, problems for which the DAE (9.2) is solvable for integral values of y but

is not solvable for one or more values of y E (0, 1) can be constructed quite easily.

The linear time varying DAE system (9.7) coupled with the logical point constraint

(9.8) serves as a pathological example:

-2yit 2yt2 1 1 0 x 0 (9.7)
+ = (9.7)

-1 2yl t 2j 0 1 x2 0

Y1+Y2 < 1 (9.8)

Brenan et al. (1996) show that the DAE (9.7) which arises when y = [.5, .5 ]T has the

solution x = q(t)[t, 1]T for any function 0(t), demonstrating that the solution is not

unique. However, (9.7) is solvable for any integer realization of y that satisfies (9.8).

In addition, (9.7) forms an index 2 system at t = 0 for certain integer realizations of

y, and is index 1 at other times; while this does not relate to the solvability of (9.7),

it may cause practical difficulties for any integration procedure.

Similarly, the index of (9.2) can vary locally for y in the interval (0, 1) even though

the index may be well defined according to structural criteria for integral values of

y; for example, see (9.6). Local variations in the index create severe problems for

current general purpose approaches to the numerical solution of high index DAEs

(Feehery and Barton, 1996a).

More importantly, even if we assume that a valid continuous relaxation exists,

any but the simplest dynamic optimization problems exhibit multiple local optima

almost pathologically, as shown by Banga and Sieder (1995). Furthermore, no current
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techniques can solve a general dynamic optimization to guaranteed global optimality

(disregarding the prohibitive computation a global optimal control would require),

and there are no indications that such a technique will be developed in the near

future. Since we cannot guarantee that a relaxation of (9.1-9.5) can be solved to

global optimality, relaxed solutions cannot serve as valid lower bounds for implicit

enumeration of the Branch and Bound tree. Therefore, a Branch and Bound approach

to MIDO is doomed to explicitly enumerate the Branch and Bound tree. In contrast,

the decomposition approach that we propose does not require a global solution of the

dynamic optimization, yet it still offers the potential to avoid total enumeration of

the discrete space.

Decomposition approaches for MINLP are based on the idea that sequences of

rigorous upper (nonincreasing) and rigorous lower (nondecreasing) bounds can be

derived that will converge within a finite number of iterations. Convergence occurs

when the upper and lower bounds approach to within the desired tolerance, or when

all the discrete alternatives lying beneath the current upper bound have been enumer-

ated. The different decomposition algorithms are distinguished by the way in which

these sequences are generated and by the properties required to ensure validity of the

bounds. For example, basic GBD places strict conditions on the functions appearing

in the MINLP in order to derive an equivalent dual representation of the problem;

relaxations of the dual are then used to generate a sequence of valid nondecreasing

lower bounds for classes of MINLPs adhering to these restrictions. For all other de-

composition approaches, similar restrictions are placed on the type of models to which

the algorithm can be applied successfully.

The upper bound in a decomposition approach is calculated in a similar manner

in all cases: the binary variables y are fixed to integer values, reducing the MINLP

to a NLP that can then be solved to yield a rigorous upper bound on the solution;

the upper bound is valid even if the global solution to the NLP is not found. When

the y are fixed to integer values, the MIDO (9.1-9.5) can be viewed as a NLP since

an equivalence can be established between the classical necessary conditions for op-

timality of a continuous dynamic optimization (Bryson and Ho, 1975) and the local
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solution of an NLP in the context of either control parameterization (Kraft, 1985)

or collocation (Logsdon and Biegler, 1989). However, in general, this NLP will not

possess the theoretical properties required for successful application of MINLP de-

composition techniques; the global optimum of the NLP must be guaranteed and the

Primal must permit the derivation of valid support constraints for the Master prob-

lem (Floudas, 1995). In particular, it is important to stress that obtaining the global

optimum of the dynamic optimization is not sufficient for the application of OA and

GBD techniques (Sahinidis and Grossmann, 1991; Bagajewicz and Manousiouthakis,

1991). These theoretical barriers have motivated this investigation of an alternative

decomposition approach that does not require that these properties are maintained

by the primal. In our approach, sequences of nonincreasing upper bounds and nonde-

creasing lower bounds are retained. In addition, we introduce the notion of a primal

bounding model to permit the method to exploit either the global solution of the

dynamic optimization problem or tighter convex underestimators of the primal than

those furnished by a screening model.

9.4 Decomposition Approach to MIDO

We propose a decomposition approach in which the lower bounding model does not

depend on the solution properties of the continuous optimization problem. In fact,

the lower bounding model is derived from domain specific knowledge gathered from

physical laws and engineering insight. The algorithm assumes the existence of the

following subproblems:

Master Problem which is the solution to a so-called screening model. This model

can be solved to guaranteed global optimality to yield a rigorous lower bound on

the solution to the MIDO. The model is derived from domain specific knowledge.

Primal Problem which is the solution of the continuous dynamic optimization re-

sulting from fixing y in (9.1-9.5) to an admissible integer realization. This yields

a rigorous upper bound on the solution to the MIDO.
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Primal Bounding Problem which provides a tighter lower bound on the solution

to the primal problem for a fixed realization of y than that provided by the

Master. Note that this subproblem, unlike the other two, is not absolutely nec-

essary, but its existence can improve our estimate of the quality of the solution

obtained.

We denote the solution of the master and primal problems at each iteration as zM and

z(' respectively, and define ZL as a lower bound on the solution of the primal at each

iteration. Obviously after every iteration of the primal subproblem z4M  - K z.

Limiting cases are observed when one of these two inequalities is always satisfied with

equality, in which case we have either found the global optimum of the primal, or we

have no tighter lower bound for the primal than the one provided by the master

problem. The following algorithm simplifies in these two limits. We also denote

the lower bound on the global solution by LBD and the upper bound on the global

solution as UBD and choose to update both at every iteration. The current solution

of the master problem is used to terminate the iteration sequence. A flowchart of the

following algorithm is shown in figure 9-1:

1. Initialize:

(a) iteration counter k = 1

(b) LBD = -oc, UBD = oo

2. Solve Master Problem.

(a) Obtain zM .

(b) LBD = mink'<k (zk , 4P)

3. Terminate if zM > UBD or if the Master Problem was infeasible.

(a) The distance from the best solution found to the global minimum is known

to be less than UBD - LBD.

(b) The global solution is described by one of the discrete alternatives that

has been examined (y E {y' : Vk' < k}).

323



4. Solve the Primal and Primal Bounding Problems.

(a) Obtain 4zP and 4. If the Primal Bounding Problem does not exist, then

the lower bound for the primal is assigned to the solution of the master:
P M

Zk - Zk

(b) UBD = min(UBD, z kP)

5. Add to the Master Problem an integer cut that excludes yk, and any constraints

that can be derived rigorously from the primal solution.

6. k = k + 1. Return to step 2.

z = UBD

z - z* = UBD - LBD

Figure 9-1: Flowchart of the MIDO decomposition algorithm.

Figure 9-2 depicts a sequence of iterates that could be achieved from the algorithm,

illustrating both the termination criterion and the bound on the distance to the global

solution. Below we prove that the optimal discrete alternative has been examined and

explain the role that the primal bounding model plays in determining the bound on

the distance from the solution obtained to the global optimum.

First, we prove that on termination the optimal discrete alternative has been ex-

amined by showing that the unexplored discrete alternatives must result in solutions
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UBD
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I Solutions
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1 2 3 kt

*Primal o Primal Bounding *Master

Figure 9-2: Sequence of subproblem solutions that could be obtained from the MIDO
decomposition algorithm.

with a higher objective value than UBD. The Master Problem is valid only if it pro-

vides a rigorous lower bound on the corresponding Primal Problem, so the following

holds:

z < zP Vk (9.9)

Introducing an integer cut at each iteration of the Master Problem generates a series

of steadily increasing solutions.

z M < zM Vk (9.10)

Upon termination of the iteration sequence, we know that the Master Problem is

either infeasible or that the solution of the Master is greater than the current up-

per bound UBD. If the Master Problem is infeasible, all of the remaining discrete

alternatives are infeasible and need not be examined. If the solution of the Master

is greater than the current upper bound, (9.9-9.10) show that any future iterations
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will result in solutions that are greater than the current upper bound. This proves

that iteration technique is capable of avoiding total enumeration of the discrete al-

ternatives, and that the discrete alternative leading to the global solution has been

investigated.

Next we verify that we have obtained a bound on the distance to the global

solution. We recognize that the global solution must be greater than the minimum of

the primal lower bounds LBD > mink .^P Note that this contrasts with conventional

MINLP algorithms in which the solution of the Master problem always provides the

lower bound. In conventional MINLP algorithms the global solution of the Primal

problem is guaranteed, so the lower bound can be updated after each solution of the

Master problem. However, for the MIDO problem the solution of the Primal is not

guaranteed to provide the global optimum, so the lower bound can only be updated if

the solution of the Master is guaranteed to be less than the global optimum of all of

the previously examined Primal problems. Since the solution of the Primal Bounding

model provides a rigorous lower bound on the solution of the Primal problem, the

lower bound can be updated after the solution of the Master problem as long as the

solution of the Master is not greater than any of the solutions of the Primal bounding

model found so far. Figure 9-2 shows that on the second iteration the lower bound

was updated after the solution of the Master problem, since zM < P. However, after

the solution of the third Master problem, LBD cannot remain at the value given

by the 4P because the possibility exists that a solution of the Primal problem with

value less than zM exists. The least upper bound is simply UBD, the infimum of the

solutions of the primal subproblems. Therefore the distance between the solution at

termination and the tightest bound we have obtained on the global solution is given

by UBD - LBD.

Since zm is forced to be nondecreasing at each step (through the introduction

of the integer cuts), and there are a finite number of integral realizations of yk, the

algorithm will terminate after a finite number of iterations. Depending on how tight

the screening model is, this property has the potential to avoid enumeration of the

entire discrete decision space.
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9.5 Casting Batch Process Development as a MIDO

This section demonstrates that the batch process development problem can be formu-

lated as a mixed time invariant integer dynamic optimization problem that conforms

to (9.1-9.5). For illustration, the batch process development example from chapter 4

is formulated according to (9.1-9.5).

The goal of the MIDO is to select the values for the time invariant parameters and

control profiles that minimize the production cost per unit mass of product P using

equipment that is available within the existing manufacturing facility. The processing

costs are evaluated assuming cyclic steady state for the duration of the campaign,

ignoring end effects. We employ simple dynamic models of both the distillation

column and the reactor for the purposes of illustration. More complicated dynamic

models can be employed within the formulation, but they would make the expression

of all the model constraints within this text far more cumbersome. In the following

model, time invariant parameters are represented by v and the controls are represented

by u. The reactor temperature, the feed rate of reagent, the column reflux ratio, and

the positions of the valves governing the flow into the accumulators are treated as the

control variables in the optimization. The superscripts on the controls and the time

invariant parameters indicate what the particular controls and parameters represent.

Note that each task is denoted by the subscript k. This differs slightly from the

notation employed in chapter 4 in which the subscript k referred to processing trains.

We consider a superstructure with two distillation and reaction tasks, and let k refer

to an element taken from the ordered set K = {R1, D1, R2, D2}, and let KR and KD

refer to the order subsets of the reaction and distillation tasks. Let inequality (e.g.,

k < k') and arithmetic operations (e.g., k - 1) refer to operations performed with

respect to the ordinality of the elements of the set.

We employ time invariant parameters to represent the state of the material en-

tering and leaving each of the tasks. These material states are represented by the

tanks surrounding each of the tasks shown in figure 9-3. The mass balance around

each of these tanks is enforced by constraints on the time invariant parameters. Fig-
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ure 9-3 denotes material transfers described by the model equations using solid lines

and transfers that occur at the beginning and end of the tasks using dotted or dashed

lines; these transfers are represented by point constraints in the formulation. Trans-

fers between these tanks are represented by point constraints in the model.

Figure 9-3: The superstructure for the MIDO formulation of the process development
example from chapter 4.

9.5.1 Distillation Column Constraints

A simple equilibrium stage model of the batch distillation is employed (Bernot et al.,

1990). The model assumes no holdup on the trays, constant pressure, and does not

enforce energy balances. All of the material in the column is contained in the liquid of

the reboiler. The Wilson activity coefficient model and the extended Antoine vapor

pressure model are used to determine the vapor-liquid equilibrium, but have simply
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been represented below using fVLE which defines the relationship between liquid and

vapor composition, pressure, and temperature. We ignore utility costs in this example

in order to simplify the distillation model.

The model of the distillation column contains NS equilibrium stages in the tray

section, resulting in NS + 1 stages. The first stage corresponds to the reboiler. 1 The

model of the distillation accounts for multiple columns of the same type operating

in exactly the same fashion. This permits the columns to be modeled as one larger

column operating at a vapor rate that represents the sum of the individual rates.

Reboiler:

dMek k vV Da D
= '--- xeZkYkDdt uR +

Motal M= ek
e

Mek t= otal Xeks

Vkmol = fVol(Xks, Tks, Pk)

Ve, k E KD

Vk e KD

Ve, k E KD, s = 1

V k E KD, = 1

E quilibrium Stages:

fVLE (Xks, Yks, Tks, Pk) = 0

E Yeks = 1
e

Operating Line:

S ks- ( + 1) -
XksUk = Yk,s-I (U + -+ Xk

V k E KD, s = 1, ns + 1

V k E KD, s = 1,ns+ 1

V k E KD, s = 2, ns + 1

1Although this goes against the usual numbering convention, we have found that treating the
reboiler as the first stage makes it considerably easier to provide a guess for the initial column
profile, since the initial profile from a column with fewer stages can be used as the initial guess for
the column with more stages.
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(9.16)

(9.17)



Condenser:

D
Xk Yks

dMek

Dek =
dt

nc-1

Y ("Sut + U = 1
c=1

dMt = DekUtc
dt Mof ecff

dt= Dek Uck

V k c KD, s = ns + 1

V e, k E KD

Vk E KD

Vc = 1, nc- 1, e,k E KD

Vc = 1, nc- 1, e,k c KD

Note that the fraction of the distillate fed to each of the cut and off cut accumulators

of the distillation column is specified by the control variables uc"ut and u so . Since all

of the distillate must be sent to the accumulators, (9.20) requires that these controls

sum to one. The fraction of the distillate flow reaching the the splitter above each

of the accumulators that is sent to the accumulator can be defined as follows for the

cuts and off cuts respectively:

Split Fraction for Cut ck =

Split Fraction for Off Cut ck =

Scut
Uck

C -I1  U Sct + Soff

Soff
Uck

1- ' Scut c-1 Soff
-- 'ttck Ec'=l ellk

The split fractions for each of the splitters (or the position of the valves directing the

flow into the accumulator) are not included as controls in the problem, but can be

calculated from uscut and u soff easily.

The operation of the column requires specification of the initial conditions and any

requirements that are placed on the final state of the operation. These constraints

follow.
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Inequality Path Constraints:

Vk E KD
Ni

Yiknn
iEID n=l

0 < uSc" < 1- ck -

o < USOff • 11.5< u•c 15

1.5 < uR 15

Vk E KD, c = 1, nc - 1

Vk e KD, c = 1, nc - 1

Vk E KD

Final Time Constraints:

SM/cut Mcut7, cek = Vcck
e

McCUt Mcut XCUt

cek -- ck Vcek

M':Oe Moff
ce Vck

VMO• M °f X O
-M-e = ck Vcek

SMek = V cut

-e Mcut X cutMek = Vck Vcek

V c = 1, nc- 1, k E KD

Vc = 1, nc- 1, e, k E KD

Vc = 1, nc- 1, k E KD

Vc = 1, nc- 1, e, k E KD

V c = nc, k e KD

V c = nc, e, k E KD

Initial Time Constraints:

Mek = Mmix Xmix
Mek Vk Vek

Mccut =0

MIef = 0

V e,k E KD

Vc = 1, nc- 1, e, k E KD

Vc = 1, nc- 1, e, k E KD

9.5.2 Reaction Constraints

The reaction step comprises the set of competing reactions shown below.

(9.33)

(9.34)

(9.35)

All of the

reactions are first order under the conditions in which the process may be operated;
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(9.23)

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)

(9.30)

(9.31)

(9.32)

DTkmolMktotal <Yk vi Ik



reactions 1 and 2 are first order in A.

1 3A+B --+ I --+ P

12 t4

W1 W2

The relative rates of the reactions have been chosen so that they agree with an early

study of reaction temperature optimization (Denbigh, 1958) following Arrhenius rate

expressions given by the constants in table 4.1.

A simple dynamic model of the reactor is employed. Both the temperature and

the rate at which material is charged to the reactor are treated as controls. At the

completion of the reaction task the impeller is stopped, and the catalyst settles to the

bottom. We assume that the reactions stop at this point. Note that the model of the

standard reaction task has been augmented to include the equality path constraints

defining the amount of material charged from each of the feed tanks. Several design

constraints restrict the operation of the reactor. A molar ratio of solvent to A of

at least 15 is required; the components B, W1 , and W2 all can act as the solvent,

and all of the solvent must be charged initially. An excess of B (two times A) is also

required. We assume that parallel reactors operate in phase. In this model we assume

that reactors only differ in size, so multiple reactors in parallel can be modeled as one

larger reactor, simplifying the model of the reaction task.

DAE model of reaction task:

dMR, 
R

d = uck k  V c, k e KR, k' e KD (9.36)
dt s
dt = si Ve E ERk E KR (9.37)
dt Uek

dMek = : YRxn ratekrvekr + USi

rERk
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+ u S inkV iRin

c k'

Mek = MtotalXeks

E Xek 1
e

Tk =

Vkmol _ fVol(Xk, Tk Pk)

Vkm o l M o t a l = Vk
X•k -Vk

CekVk = Mek
-EA

ratekr = CA,kKre RT

-EAr

ratekr = CI,kKre RT

Inequality Path Constraints:

310 < ·uT < 450

vRxnk ---. R 1Vol
A Vk < YiknVi

i n

2MAk <_ MB,k

Ve k E KR

Ve, k E KR

Vk E KR

Vk E KR

V k E KR

Vk E KR

Ve, k E KR

V k KR, r = 1, 2

V k E KR, r = 3, 4

Vk E KR

Vk E KR

V k E KR

Initial Time Constraints:

M, Rin'lit~ci XRin Sinit
Mek =U ik cek + " iek

c k'

Ri" cRi t
kM = Vck k

Final Time n Sinit

Final Time Constraints:

Mek = MRout
Vk

Mek = VMRout XRout
-Vk Vek

Ve, k E KR

V c, k E KR, k' E KD

V e, k c KR

V k E KR

V e,k E KR
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(9.39)

(9.40)

(9.41)

(9.42)

(9.43)

(9.44)

(9.45)

(9.46)

(9.47)

(9.48)

(9.49)

(9.50)

(9.51)

(9.52)

(9.53)
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MRin - Rin
Vckek = ck'k

S - S
in

Vek Mek

V c, k e KR, k' E KD

V e, k E KR

The design constraint on the solvent to reactant ratio can be expressed using the

following point constraint for each of the reaction tasks.

15 V
R i nit V X R i n

c(k celk -k

c eE{A,I} k'EKD

(p ceE{B,W1,W 2 }

ek Sinit <

eG{A}

ERini t XRin

k'cKD

evSinite "ek

eEIB
V k E KR (9.57)

We employ constraints expressed in terms of the integer time invariant parameters to

define the process structure and a feasible allocation of equipment.

Point Constraints:

5 Yikn = yD
iElD n

N,

z, =R ykYRX

iEIR n

Vkvapor C2 C n vapor

iEID n

Vtycle t YD (tfill + tempty + treflux)

tmerged f M tmerged
vk = tk + Yk-1Vk-2

vtcyc'e > tmerged + tfill tempty
-- k

Ni

yD < z R
k E Zikn

iEIR n=1

R = R M R
Zikn i,k-2,nYk-1 + Yikn

M < yD

Vk E KD

Vk e KD

Vk E KD

Vk E KD

Vk E KR

V k E KR

V k e KR

V i IR, k KR

V k E KR
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(9.62)
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V i E IR, k > 1 E KfR

Note that (9.62) assumes that the tasks are ordered R1, D1, R2, D2, etc. In this

example the set K contains only two reaction and distillation tasks, so the subscript

k - 2 refers for k E KR refers to the previous reaction task and k - 1 refers to the

previous distillation. Mass balances are enforced around each of the tanks used to

represent the material that is transferred from one task to another, and (9.69) ensures

that a fraction of all recycled material is purged.

Mcut - MRin \ c M + CP CWVck L.E Vckk, + E Vckk, + Vck + Vck
k'cKR k'EKD

vCP + CW > Xpurge E MRin+ v

kk'eKR:k'<k k'EKD:k'<k

XRin Xcut

Vcekl= - Vcek

M mix = ek + zVMRout
eEER e

+ E VMOf + V C

c c k'EKD

Mmix X m i
x S MRout XRout

k ek = ek + Vk- 1 Vk-l,e

Z M off Xoff + VCM VXcut
S Vck Vcek VckkVcek

c c k'EKD

vek = 0

V c, k e KD

V c, k EKD

V c, e, k E KD, k'

V kE KD

V e, k E KD

Ve V ER, k

The required product purity is enforced using the following constraint:

Xproduct Mcut VX cut MWe VMcut 5V cut MWe

kEKD c e kEKD c eE{P}

(9.68)

(9.69)

E KR

(9.70)

(9.71)

(9.72)

(9.73)

(9.74)

The itemized production costs can be calculated and assigned to time invariant pa-
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rameters.

Raw = • k VC vaWMWe (9.75)
k eEER

v aste 7 VCW CewasteMWe (9.76)
kEKD c e

Z R Equip + 5 n (9.77)v Equip itcycle YiFn i Yikn
k iEIR n iEID n

The constraints defined by (9.11-9.77) must be satisfied. The objective is listed below;

it defines the manufacturing cost per unit mass of final product.

VR aw + VW a st e + vEquip

= CP X t  (9.78)
EkeKD Zc Ze ckc MWe

9.6 Application of the MIDO Decomposition Al-

gorithm

The Master Problem for this example is the MILP screening model for the batch

process development problem presented in chapter 4. The screening model determines

a feasible equipment allocation and provides initial guesses of the amounts of material

held in each of the tanks described by the time invariant parameters of the dynamic

optimization.

The Primal Problem defines a dynamic optimization that considers the reaction

and distillation tasks and their recycles simultaneously. This dynamic optimization

problem is obtained by simply fixing the integer parameters in the above formulation

at the value determined by the solution of the corresponding Master Problem. The

time invariant parameters and controls are selected to minimize the production cost

per unit mass of product.

We highlight several features of this problem that impact the use of dynamic opti-

mization and the application of the proposed iteration technique. First, the structure

of the process considered during dynamic optimization can change depending on the
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values of the discrete variables chosen by the Master Problem. We can simplify the

process structure before solving the dynamic optimization subproblem based on the

solution of the Master problem. For instance, some of the processing tasks may not

exist within the current process structure. In addition, we may want to consider re-

ducing the number of distillation cuts permitted within the current process structure

based on the solution of the screening model. Note that the superstructure defined

here permits for 5 overhead cuts, but neither solution of the screening model given in

chapter 4 required so many. The qualitative behavior of the distillation may change

with small changes in the optimization parameters; for instance, a small change in

the feed composition to a distillation task may move the feed into a new batch dis-

tillation region. For this reason, we treat the active batch distillation as one of the

discrete variables characterizing the process structure; this allows us to address some

of the behavior known to lead to multimodality in the dynamic optimization during

the solution of the Master Problem.

We note two applications for the Primal Bounding Model incorporated within our

algorithm. First, the Primal Bounding Model provides us with a formal strategy for

employing the solutions from the global optimization of the nonconvex Primal sub-

problems whenever such techniques are developed.2 Second, the Primal Bounding

Model provides a convenient and efficient way in which to employ a screening model

that is posed as a convex MINLP. The solution of a convex MINLP screening model

using traditional decomposition approaches such as GBD (Geoffrion, 1972) or OA

(Duran and Grossmann, 1986) results in an iteration strategy like the one shown in

figure 9-4. Rather than solving the MINLP screening model to completion on each

iteration, we can simply employ the NLP used as the Primal subproblem in the de-

composition of the MINLP screening model as as the Primal Bounding model. Using

this strategy, shown in figure 9-5, the Master problem of the MIDO decomposition is

the same as the Relaxed Master problem used to solve the convex MINLP screening

model, the Primal Bounding Model is the convex NLP corresponding to the Primal

2It should be noted again that the global solutions to the Primal problem may not be used to
construct valid support functions.
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problem used to solve the MINLP screening model, and the Primal problem is the

dynamic optimization corresponding to the values of the y determined by the solution

of the Master problem. At each iteration, the Master problem is augmented with the

support functions obtained from the solution of the Primal Bounding model; we can

continue to add constraints to the Master problem until the solution of the Master

problem rises above that of the Primal Bounding problem (e.g., the solution of the

screening model has been determined). Using this strategy, the MINLP screening

model does not need to be solved to convergence at every iteration.

k=k + 1

k=1

LBD = -oc

UBD = oo

.4

Primal
Solve for z/

UBD = min (UBD, z i4)

z = z* = UBD

Figure 9-4: Decomposition algorithm employed for MINLP problems.

9.7 Summary

This chapter has defined the class of problems termed mixed time invariant integer

dynamic optimization problems. We demonstrated that simple extensions of tradi-

tional MINLP algorithms are doomed to failure on this class of problems. Instead,

we have developed a decomposition algorithm for this class of problems that gen-

eralizes the decomposition algorithm employed for batch process development to a
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Augment Master
Support functions
Integer cut

Relaxed Master
Solve for z4
Update lower bound
LBD = zk

I

ZM > UBD
or

infeasible?



z - z* = UBD - LBD

Figure 9-5: MIDO decomposition algorithm when a convex MINLP screening model
is employed.

broader class of problems. The algorithm defines a rigorous iteration procedure that

guarantees improvement of the solution and potentially avoids explicit enumeration

of the entire discrete decision space. The key to the application of this algorithm is

the ability to derive a screening model for the particular problem in which we are

interested.

We have demonstrated that the batch process development can be formulated as a

MIDO problem, and derived the MIDO formulation for the batch process development

example of chapter 4.

9.8 Notation

9.8.1 Indexed Sets

C The set of distillation cuts, c = 1,... NC

E The set of pure components in the system, e = 1,... NC
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ER The set of pure components regarded as raw material that may be supplied

I The set of equipment available in the manufacturing facility

ID Equipment suitable for distillation tasks ID C I

IR Set of equipment suitable for reaction tasks IR C I

K The set of processing tasks in the superstructure

KD The set of distillation tasks in the superstructure KD C K

KR The set of reaction tasks in the superstructure KR C K

Rk set of reactions occurring in the reaction task in processing train k. In this

example, r = 1,... 4

S The set of defining the equilibrium stages in the column s = 1... NS

9.8.2 Variables

Cek concentration of component e in the reaction task k

Dek molar flow of component e in the distillate of k

Mek molar holdup of component e in task k

MccI molar holdup of component e accumulated in cut c of task k

M,"f molar holdup of component e accumulated in the off cut following cut c

of task k

M total total molar holdup in task k

MI,n k feed to reactor k from cut c in of distillation k'

MeSn supply to reactor k of raw material e

ratekr rate of reaction r in task k

Vk total volume of material in task k

Vkmol molar volume of material in task k

VkvaPor effective vapor rate of the columns assigned to distillation task k

Xek, 7eks mole fraction of component e in the reactor k, mole fraction of component

e in the liquid phase of stage s in distillation k

x D mole fraction of component e in the distillate of task k
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Ye mole fraction of component e in the vapor phase

zi n, n reactors of type i are assigned to reaction task k

9.8.3 Time Invariant Integer Optimization Parameters

Yikn n columns of type i are assigned to distillation task k

yi n reactors of type i begin processing reaction task k. If tasks are merged,

they may also process reaction task k + 2.

yR," indicates whether reaction task k is performed

yD indicates whether distillation k is performed

yM indicates whether reaction task k is merged with reaction task k + 2

9.8.4 Control Variables
UScut fraction of the distillate of distillation k that is sent to the accumulator for
ck

cut c

uRi flow rate into reaction task k from the feed tank fed by cut c of distillation

task k'

Sui flow rate into reaction task k from the supply tank containing raw material

e

Soff fraction of the distillate of distillation k that is sent to the accumulator for

off cut c

UR reflux ratio of distillation task

UT temperature profile for reaction task k

9.8.5 Time Invariant Continuous Optimization Parameters

t( the final time (e.g., length of operation) of task k

CM the total molar flow from cut c of distillation k to the mixer tank that

feeds distillation k'

v CP the total molar flow from cut c of distillation k in the product stream
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vCW  the total molar flow from cut c of distillation k in the waste stream

vEquip cost per batch of equipment

vc"t the total accumulation in cut c of distillation k

vce k t the mole fraction of component e in cut c of distillation k

vcoff the total accumulation in off cut c of distillation k

v1 m ix the total molar charge to the mixer tank feeding distillation k

vj,'" the total molar charge to the feed tank of reaction task k taken from cut

c of distillation task k'

vM R
o
ut  the total molar holdup in the tank containing the effluent of reaction task

k

vse the total molar charge raw material e fed to reaction task k

vRaw cost per batch of raw material

v,"iit the initial charge to reaction task k taken from the feed tank fed by cut c

of distillation k'

v2nit the initial charge to reaction task k from raw material supply tank e

v t cye ° the cycle time for process operating at cyclic steady state and employing

no intermediate storage
vmerged the processing time for the potentially merged set of reaction tasks ending

with reaction task k

vRaw cost per batch of waste disposal

vm1x the mole fraction of component e in mixer feeding distillation k

ve ko the mole fraction of component e in off cut c of distillation k

vX,1i the mole fraction of component e in feed tank of reaction task k fed by

cut c of distillation k'

ve Rout the mole fraction of component e in tank containing the effluent of reaction

task k

9.8.6 Parameters

MWe molecular weight component e
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Ni number of equipment units i in the manufacturing facility

tfia time required to charge one batch of material to an equipment unit

tempty time required to empty one batch of material from an equipment unit

treflux time required to bring a column to total reflux

Vi processing volume of equipment unit i

ivapor maximum vapor rate for distillation column i E ID

Vekr the stoichiometric coefficient for component e in reaction r of task k
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Chapter 10

Conclusions and Recommendations

This thesis has argued the importance of batch process development to the specialty

chemical and synthetic pharmaceutical industries. To be effective, manufacturers

must rapidly develop efficient processes. The goals of rapid and efficient development

are not necessarily mutually exclusive, and we feel that the application of state of

the art process modeling technology can reap benefits on these types of problems

in spite of the fact that little has been published demonstrating the benefits that

can be achieved through the application of detailed process models. This thesis has

addressed two of the hurdles to routine application of process modeling technology

to batch process development. First, a systematic and rigorous design procedure has

been derived that starts with the information provided by the laboratory synthesis

of a new product and employs models of the process at two levels of detail. Second,

the numerical solution procedures required for the subproblems inside our framework

have been improved, making them more robust and efficient.

10.1 Screening Models for Batch Process Devel-

opment

This thesis has demonstrated that detailed discrete/continuous dynamic models can

be employed within a systematic methodology for the design of batch processes. For
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an effective yet practical approach, the detailed dynamic models should be used in

conjunction with simpler models capable of yielding rigorous lower bounds on the cost

of the resulting process that serve as design targets. These bounding models have

been termed screening models since their solution can be used to prune or screen

discrete design alternatives that cannot lead to an optimal solution. These models

address the discrete design decisions directly and replace the detailed dynamic models

with algebraic constraints that bound the dynamic performance. The derivation of

these models was discussed in detail in chapter 3 and the models were demonstrated

on process development examples in chapters 4 and 5.

Since screening models provide rigorous bounds on the manufacturing cost, they

also permit the derivation of the first rigorous iteration strategy for the improvement

of the design as discussed in section 2.4. The iteration strategy involves the solution of

the screening model followed by the dynamic optimization of the discrete/continuous

dynamic process model for the fixed values of the discrete decisions defined by the

solution of the screening model. The solution of the screening model provides a

target for the dynamic optimization, and the solution of the dynamic optimization

(if feasible) defines a process design alternative in detail. An integer cut is then

added to the screening model and the procedure is repeated. Since the objective

value of every solution to the dynamic optimization must be greater than that of

the corresponding screening model, the iteration can be terminated once the current

screening model solution increases above the minimum of the previous solutions to

the dynamic optimization. It is important to note that this algorithm generalizes to

a class of mixed-integer dynamic optimization problems, provided that appropriate

screening models can be constructed. In chapter 9, we also showed that this approach

provides the first rigorous method to address mixed-integer dynamic optimization

problems using control vector parameterization for the variational subproblem.

Screening models also have the ability to address some of the synthesis decisions

involved in process design. The ability to determine the best processing structure was

demonstrated by the case studies. Both case studies demonstrate that the screening

models can quickly identify potentially favorable processing structures, so that de-
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tailed design efforts can be focused on the most promising alternatives first. In fact,

a large number of potential configurations may be eliminated through the use of

the screening models. The screening models should capture the dominant operating

tradeoffs and design constraints in order to provide useful information, but they need

not embed all the tradeoffs in the problem in order to provide useful information.

These models provide a convenient framework in which to apply limited information

about the process and automatically generate potentially beneficial process alterna-

tives that may not have been intuitively obvious to the engineer. More importantly,

they provide a good starting point for detailed design and a metric against which

existing designs can be measured. In fact, the information provided by the screen-

ing model may be all that is required to demonstrate that further design efforts are

unwarranted.

10.2 Numerical Issues in the Simulation and Opti-

mization of Hybrid Discrete/Continuous Dy-

namic Systems

State-of-the-art process modeling environments place extremely high expectations on

the efficiency and robustness of the numerical solution procedures. This research

has improved both the robustness and efficiency of the integration techniques em-

ployed during the simulation and optimization of hybrid discrete/continuous dynamic

systems. These improvements have been incorporated within DSL48S, a version of

DASSL (Petzold, 1982a) for large sparse unstructured systems of DAEs, which was de-

veloped as part of this research. The code employs the MA48 linear algebra routines,

works with a combined analytic and numerical Jacobian matrix, and has incorpo-

rated the automated scaling and efficient initialization techniques described within

this thesis. The code also contains an efficient method for sensitivity analysis that

was developed by Feehery and Barton (1997). The code has been implemented within

ABACUSS and is substantially more robust and efficient than the version of DASOLV
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(Jarvis and Pantelides, 1992) employed within ABACUSS on the wide range of sim-

ulations on which it has been tested.

Simulations of the batch distillation of wide-boiling azeotropic mixtures uncovered

some of these numerical difficulties. Our investigation determined that the observed

problems were caused by an ill-conditioned corrector iteration matrix. We found that

scaling of these models, even simply changing the units of the model variables, helped

the integration procedures substantially. This motivated us to pursue automatic

scaling techniques to improve the solution procedure. We demonstrated that the

desired variable scaling is dictated by the user defined error tolerances, and proved

that the implemented row scaling brings the two norm condition number of the scaled

iteration matrix to within a factor of 2./F of the minimum possible, where q represents

the maximum number of nonzero entries in any column of the matrix. The automated

scaling techniques make the model better scaled than any user implemented scaling

resulting from the selection of appropriate units of measurement. In addition, the

scaling can automatically adapt to variable values changing over many orders of

magnitude during a simulation - a typical occurrence during the simulation of batch

processes. The scaling also permits the code to automatically determine whether

the potential exists for the truncation error control within the integration method to

break down.

Hybrid discrete/continuous dynamic simulation and dynamic optimization re-

quires the integration code embedded within a simulation environment (e.g., ABA-

CUSS) to be started many times during a particular simulation or optimization cal-

culation. On these types of problems, the performance of the integration code during

the initial phase of the integration becomes more important. Chapter 8 describes the

initialization procedure developed within this thesis. Before the first integration step

is taken, the derivatives of the algebraic variables are determined along with the sec-

ond derivatives of the differential variables. This enables us to generate a reasonable

approximation of the step size that approaches the desired truncation error tolerance.

We establish criteria that define the optimal initial step length for a first order BDF

method, and we demonstrate that the length of a step that satisfies these criteria can
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be determined by augmenting the system of equations solved during the corrector

iteration on the first integration step. The implementation of this procedure does not

require any assumptions about the stability of the method at these step lengths, and

it permits the same method for the detection of implicit state events to be employed

throughout the integration. Application of this method to hybrid discrete/continuous

simulation problems has demonstrated that it reduces the number of Jacobian fac-

torizations required, increasing the efficiency of the integration code. Moreover, it

reduces the number of truncation error and convergence failures that are observed.

The screening models derived within this research coupled with the advances in

the numerical capabilities of the solution procedures provide the engineer facing the

batch process development problem with a new and powerful approach, along with

the tools required to implement it.

10.3 Recommendations for Future Research

Detailed hybrid discrete/continuous dynamic models of batch processes require an

accurate representation of the phenomena of interest. For networks of reaction and

distillation tasks, this requires a large amount of data to represent the physical prop-

erties and vapor liquid equilibrium for the system components, and to describe the

kinetics of the reactions occurring within the process. Since these processes typically

involve some chemical species for which little information may be available within

existing databases, techniques to gather this data efficiently or to estimate the key

properties are required. In addition, the sensitivity of the resulting design to uncer-

tainty in this data must be analyzed. The sensitivity of the resulting design with

respect to these parameters can easily be performed within simulation environments

such as ABACUSS which can calculate parametric sensitivities. These sensitivities

can be used to identify the parameters with the biggest impact on the process design

and to direct experimental efforts to reduce the uncertainty in the most influential pa-

rameters. The benefits that can be obtained through the use of process models provide

a motivation for obtaining this data. Some of the chemical species, such as solvents
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and familiar reagents may be common to many processes, so their properties may be

well understood. However, the reaction kinetics and VLE data are required for the

new components. The application of both computational chemistry (Bruneton et al.,

1997) and dynamic optimization will enable reaction kinetics to be determined from

calorimetric data in a routine fashion. Similarly, advances in calorimeter technology

coupled with the increased use of in situ infrared spectroscopy have greatly reduced

the experimental effort required to obtain this data. Computational chemistry can

be employed to screen potential reaction mechanisms, and dynamic optimization can

be employed to perform the parameter estimation. In addition, it may be possible to

regress or refine binary VLE parameters from data obtained from laboratory batch

distillation columns using dynamic parameter estimation. For modeling to be rou-

tinely applied to new processes, efficient methods are required to obtain data. These

techniques should be investigated further, now that methods that require the data

are available as process design tools.

The screening models that have been developed within this research address pro-

cesses comprised of only reaction and distillation tasks. However, many specialty

chemical and synthetic pharmaceutical processes contain other unit operations, such

as crystallization, extraction, filtration, solvent switch, fermentation, and drying.

Routine application of detailed dynamic simulation and optimization to batch pro-

cesses requires development of model libraries for these common batch processing

operations. In addition, to increase the applicability of the screening models, suitable

models that bound the dynamics of these operations should be developed. Further-

more, to deal with the detailed modeling of operations such as crystallization, im-

provements to hybrid modeling environments are required to handle the distribution

of the particle sizes. More importantly, the separation targets only consider homoge-

neous mixtures, yet many specialty chemical processes contain heterogeneous (LLE or

VLLE) mixtures. To extend the modeling approach to such systems, the batch distil-

lation targeting theory must be extended to heterogeneous systems, and capabilities

for discrete/continuous dynamic models to detect the appearance and disappearance

of liquid phases and to change the model appropriately during the dynamic simulation
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are required. Both are active research topics.

A systematic or automated methodology to derive targets for the reaction tasks

is also desired. Currently the targets are developed on a case by case basis by iden-

tifying key operating tradeoffs and capturing these within the screening models (see

chapters 4 and 5). Reactor targeting techniques have been developed to define the

attainable region that can be achieved by different continuous reactor configurations

(PFRs and CSTRs), but this research relies on geometric arguments and has only

been able to consider two and three dimensional (component) systems (Hildebrandt

and Glasser, 1990; Hildebrandt et al., 1990; Glasser et al., 1992; Hildebrandt and

Biegler, 1995). Other research has examined defining the reactor targets via the so-

lution of a dynamic optimization problem (Hatipoglu and Rippin, 1984; Balakrishna

and Biegler, 1992a; Balakrishna and Biegler, 1992b; Balakrishna and Biegler, 1993;

Sund and Lien, 1996). However, the inherently nonconvex nature of the dynamic

optimization presents a major problem if the desired rigorous bounding properties

are to be guaranteed. Extensions of the geometric approaches to handle higher di-

mensional systems and to account for optimal temperature profiles and feed addition

rates for fed batch reactors may permit a systematic methodology to develop targets

for the reactors. A key to this development is the extension of current geometric tech-

niques to capture the time/temperature tradeoffs in conjunction with the conversions

between competing reactions.

The fact that screening models enable a rigorous iteration procedure for mixed

integer dynamic optimization (MIDO) problems opens up the possibility of deriving

screening models to address other classes of MIDO problems such as the synthesis of

operating procedures (Rivas and Rudd, 1974). The goal in the synthesis of operating

procedures is to define a cost effective, safe, and operationally feasible way to move

the process from one operating state to another. This requires sequences of valve

and pump operations to transfer material between the equipment items allocated to

processing tasks through complex piping networks (Foulkes et al., 1988), and the ma-

nipulation of control profiles for the processing units. Synthesizing such sequences

can be a difficult task where the associated risks are high; products or valuable inter-
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mediates may be contaminated by incorrect operations, or extremely dangerous situ-

ations might be created from accidentally mixing chemicals that should be kept apart

(Lakshmanan and Stephanopoulos, 1990). In batch plants, it requires procedures

to ensure the safety of operations such as the startup of batch distillation columns

and the charging of reactants given the control system implemented in the plant.

Validation alone requires detailed hybrid simulation of the entire process (Crooks

and Macchietto, 1992). Simulation provides the means to evaluate the feasibility of

proposed procedures, but the synthesis of these procedures defines a dynamic opti-

mization problem in terms of both discrete and continuous decisions. The continuous

decisions relate to the set points for controllers, the flows of steam and cooling water

(or the settings for the control valves) to different equipment units, and the definition

of control profiles for all of the units within the facility. Discrete decisions relate to

valves that are either open or closed, pumps and other equipment that is either on

or off, control systems that are either in manual or automatic mode, and whether

specific units are used or idle. These problems remain very difficult, but the recent

results can yield parametric sensitivities for hybrid discrete/continuous dynamic sys-

tems (Barton, 1996). Coupling these sensitivities with screening models may enable

these problems to be investigated within a MIDO framework.

Batch process development also requires a large quantity of data to describe the

equipment within the processing facility, to describe the processing operations, to

define the operating policies, and to define the schedule for the manufacturing facil-

ities equipment. The ability to manage this data is a difficult task, and a software

environment both to manage the data and access the appropriate numerical tools is

required. The environment must have facilities to specify the process models, access

the numerical tools, and analyze the results.

A central feature of such an environment is the representation of the batch process

and the batch plant. The tools incorporated within the environment will rely upon

seamless communication with the information stored in these models. The plant can

be represented by a graph where the nodes represent physical items of equipment

(including reactors, distillation columns, valves, pumps, sections of pipe, etc.). The
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arcs of the graph represent the connections between these items. The graph should

contain the information typically found in a process and instrumentation diagram.

The process can also be represented by a graph; a hierarchical state task network

(STN) can be used to describe the process at multiple levels of detail (Allgor et al.,

1996). Processing tasks will require models, possibly several models at different levels

of detail, to describe the physical and chemical transformations that can occur within

the task.

Since both the plant and the process will be described by graphs, it is natural to

build these models using graphical methods. Furthermore, high level communication

between the engineer and the software is essential for the development environment

to speed the engineer's design procedure. Earlier in this research we investigated a

framework with which to represent the processing facility. We developed the notion

of an equipment class. Each item of equipment within the processing facility is

described as an instance of a particular equipment class. The equipment classes

can be constructed in a hierarchical fashion. Each equipment class is specifies the

class that it inherits from, new attributes for the class, and the instances of contained

classes and their interconnections. The plant was described as an instance of an

equipment class. We developed a graphical environment within which the equipment

classes could be constructed, but this area of the research was not pursued further.

For many specialty chemical and synthetic pharmaceutical processes the manage-

ment of the data representing the process is a major concern. Creating an environment

that provides a framework to capture and store the knowledge about the process and

the current process design is essential. The model would then provide a unified frame-

work in which to represent the process over the entire lifetime of the process. This

environment can then generate descriptions of the process recipe in the form required

for the individuals working on the process, and maintain versions of the process that

are constructed as the design procedure continues. Process design tools for batch

processes have recently been developed such as the BatchDesign-Kit (Linninger et

al., 1996a; Linninger et al., 1996b) and BATCH PLUSTM (Aspen Technology, Inc.,

1997), but they need to evolve to a state that permits the seamless integration of
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process models at several levels of detail and permits access to both sophisticated

scheduling algorithms and detailed dynamic simulation and optimization.
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Appendix A

Matrix and Vector Norm Proofs

This chapter contains proves some vector and norm properties that are exploited

within the thesis. These theorems are not new, but the proofs have been provided to

aid the reader in understanding the proofs contained in the body of the thesis.

Theorem A.1. For D E Dn, x E X, and I"| an absolute (Bauer et al., 1961)

vector norm, then the following holds:

min Idjj I JIxi < IIDx|I max Id,3 |I |x|
i J

(A.1)

Proof. Define the vectors z = mini Idjjlx and z = max, Idjjlx. For every component

i of Dx, the following hold.

min Idjjllx, I
3

< (Dx)i; max Id |x•Il (A.2)
(A.3)

Since the norm is absolute, (A.3) shows that x|II • IIDx<II < 11.

Note that all of the Holder p-norms are absolute, so this holds for the norms in which

we are interested.

Theorem A.2. maxj II(AH)j 12 - I A112
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Proof. Let ej represent the jth column of the identity matrix.

IIA112 = IIAH 2 (Bauer et al., 1961).

max I(AH)j312 = max AHej 112
ImAHll,

- max
xE{e,: j=1,2,...m} IIXI2

< sup
xCX IIXII2

-IIAHI2

We also know that

(A.4)

(A.5)

(A.6)

(A.7)

Theorem A.3. |AI 2 • I• (AH)j 1 2

Proof. We use the relationship between the two norm and the Froebenius norm

(Golub and Van Loan, 1989).

HIAll, • IAIIF
j

= V/II(AH)1|2 + |(AH) 2 112+... + I(AH)mlI 1< Fi.mAxj I I(AH)jlI•
\ mmax (AH)jH|

= mxmm ax (AH)j 23

The following theorem is used to avoid the square root operation when calculat-

ing the two norm of the rows of the iteration matrix during the automated scaling

algorithm.

Theorem A.4. Define Z as the set of integers. Let p, q C Z and x, r, E C R where

0 < e < 1 and q > 0. We define p = L[xJ and e, so x = LxJ + E = p + .

r = p/q - [p/qJ 5 (q - 1)/q. The following holds for all q > 0:

Xq qLX IJ
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(A.9)

(A.10)

(A.11)

We define
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Proof. Expand the right hand side and use the relationship that for a E Z and y IR,

La + yJ = LaJ + LyJ

L- = [ c (A.13)

= + + (A.14)

< [[p] + q (A.15)

[pJ= [-~J+J (A.16)

J=L 1  (A.17)
However, by definition [x/qJ 2 [L[xJ /qJ, so equality must hold. O

A.1 Comments on condition numbers, inf, sup,

and rectangular matrices

The ratio super(A)/inf~p(A) can be defined for any matrix A. When A is square

and invertible, we can define A - 1. Let v = Ax and we have infllAxll/ Ix| =

inf |Iv| / IIA-1lv . This can be rewritten as sup IIA-1 v|| / lvii = IIA- 11. For the two

norm this quantity takes on the familiar form IIA 2 IIA- 1 112, and we can see that the

condition number is the ratio of the largest to smallest singular values. We define

IIA- 1112 = oo for singular A, which makes sense when we examine the the SVD of A.

The same definition is employed for other norms, knowing that consistent norms are

related (Golub and Van Loan, 1989). The condition number defined on the two norm

has useful properties since it relates to the diagonal form of the matrix.
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Appendix B

Solution of an augmented system

of linear equations

Consider the following linear system of equations:

A c z b

where A E REn x , c, z, z, b E R, and f, h, e E 1 . Assume that A is nonsingular and

that it has been factored, so that linear systems of the form Az = b can be solved

efficiently. This implies that (B.1) can be solved without factoring the entire matrix.

The first n rows of (B.1) can be expressed as follows:

z = A- 1 (b - hc) (B.2)

Substituting the expression for x from (B.2) into the last row of (B.1) yields the

following:

h(e - rTA-lc) + rTA-'b = f (B.3)
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which can be rearranged to solve for y:

rTA-1 b _ fh rTA=-l- (B.4)rTA-1c - e

Thus, the solution (B.1) is given by (B.2) and (B.4). Calculating the answer requires

the forward and back substitution of two factored linear systems (Avi = b and Av 2 =

c), two dot products, and one saxpy call (Golub and Van Loan, 1989).
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Appendix C

Time derivatives of the algebraic

sensitivity variables

The linear system that defines the time derivatives of the algebraic sensitivity variables

differs from (8.7) in only the right hand side vector.

The sensitivity equations corresponding to the parameter p are defined by taking

the differential of the DAE model with respect to p as follows (since Ou/Op = 0):

Of 80:a.,ý apOf Ox
Ox Op

Of Oy Of
+ +

Oy 0o 0p
(C.1)

The values Ox/Op and Oy/Op are referred to as the differential and algebraic sensitivity

variables for the parameter p. Differentiating (C.1) with respect to time yields the

following:

02f 0±
O±Ot Op

Of O±p(9., ap
02 f OX
+Oxt Op

Of a0 02 f Oy
+ +

Ox 0p Oyat 0p
+ a

ay op
02 fopot (C.2)

which can be evaluated at to to define the derivatives of the algebraic sensitivity

variables as shown below:
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Of tI, O t ay+ " ) t1to a.p t=to-F -t o t=to1

02f Ox 02 f _ 2 f (C.3)OxOt t=to at t=to OyOt t=to ap t=to OpOt t=to

The right hand side of (C.3) needs to be provided to the integration code in order to

solve for the derivatives of the algebraic sensitivity variables. Although this requires

the second order derivatives of the DAE equations, only equations in which time

appears explicitly can contribute to the right hand side (i.e., those containing controls

or time). Since time often does not appear explicitly, or may only appear in a few

equations, the right hand side vector may be easily calculated in many cases. If time

appears explicitly in many equations, the effort required to evaluate the right hand

side may not be worth the benefits that are obtained by calculating the derivatives

of the algebraic sensitivity variables.

If a routine is provided to calculate the right hand side of (C.3), DSL48S will

determine the derivatives of the algebraic sensitivities.
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Appendix D

Review of Batch Plant Design

Literature

What is commonly referred to as the "Batch Plant Design Problem" is the problem of

minimizing the investment cost required to purchase a set of equipment items in order

to meet a fixed set of production requirements. This deterministic design problem

was first addressed by Ketner (1960) and later by Loonkar and Robinson (1970;

1972). Their original formulations of the batch plant design problem were fairly

restrictive with respect to the types of operating alternatives that were considered;

they considered only simple processing scenarios. Subsequent research has focused

on considering more sophisticated operating strategies during the plant design. The

progress on this problem has recently been reviewed by Rippin (1993) and Reklaitis

(1989). The growth in the list of publications in this area since Rippin's previous

review (1983a) demonstrates that a significant amount of research has been conducted

over the last ten years. However, progress in these areas has been incremental, and

to this date a rigorous formulation of the problem that accounts for all possible

alternatives has not been found.

The objective in the plant design problem is typically stated as the minimization

of investment cost which consists of the costs to install the batch, semicontinuous,

and continuous equipment in the processing facility; detailed aspects of the design

such as the instrumentation, and the connecting pipes and valves are typically ig-
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nored. Recently, however, systematic approaches to determine the optimal layout

of the processing equipment has been considered (Jayakumar and Reklaitis, 1994;

Jayakumar and Reklaitis, 1996). This objective is minimized subject to production

and operating constraints. The production constraints usually specify the amount of

each product required within a given time horizon, and the operating constraints are

used to insure the feasible operation of the proposed design. The engineer is faced

with the task of determining a way to minimize the objective within the operating and

production constraints imposed on the system. These engineering decisions have been

decomposed by Reklaitis (1989) into the following hierarchy of design subproblems:

1. Determine the recipe task network.

2. Select the best operating strategy (single product, multiproduct, or multipur-

pose).

3. Create the equipment configuration (storage locations, parallel units, and the

assignment of units to processing stages).

4. Size equipment and determine the cost of the design.

When analyzing the progress that has been achieved on the batch plant design prob-

lem, it may be useful to examine the improvements made to each of the subproblems

defined above. This view of the design problem is useful when analyzing the way

in which particular instances of the design problem are solved. In fact, many of the

heuristic solution methodologies applied to this problem utilize a similar decomposi-

tion of the decision tasks.

Rippin (1983a) has proposed a different way to classify batch processing problems

that focuses on what facets of the batch process design is to be addressed. The

components of the problem statement dictate what decisions and/or assumptions

the engineer must make. The components of the problem considered by Rippin are

organized into the following classes:

product requirements Requirements for products are specified in quantity and

time. Time horizons for products may be given, or the production may have
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to meet a set of delivery dates. In some cases the demand may be uncertain

requiring added flexibility in the design.

process tasks These are identifiable operations carried out on the system compo-

nents. The mode of execution (i.e., batch) must be given along with the se-

quence of tasks to be carried out. The performance of each task (i.e., operating

conditions) must also be determined. Often times these items are given as a

product "recipe" and assumed fixed during the design procedure.

system structure The types, sizes, and number of equipment items must be de-

termined. Tasks must be assigned to equipment items or groups. Constraints

on the sequencing of tasks must be enforced. Product campaigns or a detailed

production plan is required. The role of intermediate storage must also be

considered.

design objective The cost objective must be formulated.

solution methods Exact and heuristic methods are considered. The tradeoffs be-

tween efficiency and accuracy must be balanced.

Rippin partitions each of these categories into its essential elements, and examines the

way in which each of the elements is fulfilled. The variation in the way these elements

are fulfilled describes the different design problems that have been addressed. Rip-

pin's method of classification is useful for analyzing which design problems have been

studied; it demonstrates that improvements to the original "batch design" problem

have focused primarily on the following areas:

* Considering multiple products.

* Including the cost of semicontinuous units.

* Using parallel units both in-phase and out-of-phase.

* Utilizing multipurpose operating procedures.

* Varying the task to stage assignment.

* Accounting for discrete equipment sizes.
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e Incorporating intermediate storage and accounting for its cost.

* Planning for uncertainty in the design.

* Varying the solution methods used.

The impact each of these items has had on the formulation and solution of the "batch

plant design problem" will be covered in the rest of this section.

D.1 Multiple Products

The first attempt at systematically minimizing the capital investment for a batch

process was undertaken by Loonkar and Robinson (1970). They considered the capital

cost of the batch and semicontinuous equipment for a single product plant. Given a

"recipe" for the product consisting of a sequence of operations and processing times,

the challenge was to find the equipment sizes which minimize the cost of the plant.

The optimal cost was determined using calculus to derive the first order necessary

conditions for optimality; the resulting set of equations was then solved to obtain an

optimum of the convex programming problem. The authors extended this idea to

multiproduct plants producing products in single product campaigns (Robinson and

Loonkar, 1972). All the products manufactured must follow the same sequence of

processing steps, but some of the products may not require certain processing stages.

A multivariable direct search was used to solve for the optimum value of the objective

function. In both of these formulations it was assumed that the equipment is available

in a continuous range of sizes.

With few exceptions, the batch process design problems addressed after 1972 have

dealt exclusively with multiproduct and multipurpose plants. One notable exception

is the work of Yeh and Reklaitis (1987). In their work the authors focused on issues

relating to the synthesis of the process structure, so they chose a single product plant

to eliminate many of the production planning aspects which complicate the problem.
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D.2 Semicontinuous units

The initial work on the batch process design problem considered the cost of semicon-

tinuous equipment in the objective function (Ketner, 1960; Loonkar and Robinson,

1970; Robinson and Loonkar, 1972). Most of the recent work addressing this problem

has ignored the costing and sizing of the semicontinuous units based on the following

three assumptions:

1. The cost of semicontinuous equipment is negligible compared to the cost of the

batch units (Suhami and Mah, 1982).

2. The cost of the semicontinuous equipment is relatively constant over the range

of plant configurations being considered in the design problem; therefore, it can

be removed from the objective function (Vaselenak et al., 1987).

3. The semicontinuous units will usually be selected based on criteria other than

cost such as safety or prior experience (Sparrow et al., 1975).

The cost of batch equipment is typically a function of equipment type and volume and

the cost of semicontinuous equipment is expressed as a function of processing rate.

In the work of Loonkar and Robinson (1970; 1972) the inclusion of semicontinuous

units was necessary to facilitate their solution procedure. Since the operation times

of the semicontinuous equipment items are a function of the processing rate, they

treated the processing rates of the semicontinuous units as the decision variables of

the problem.

In contrast to this, Sparrow et al. (1975) chose to ignore the costing and sizing of

the semicontinuous units. They state that these units will be chosen on the basis of

safety or past experience, and their selection will not in general be dictated by cost.

Even though the size of the semicontinuous units will determine the time required

to transfer material to and from the vessels, most recent formulations have assumed

that the emptying and filling times are fixed and are not functions of the volume of

material processed. The processing rate of the equipment can be selected to meet

the assumed filling and emptying times without significant changes to the cost of the

semicontinuous units that need to be purchased.
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One exception to the trend of ignoring the semicontinuous units is the work of

Knopf et al. (1982). They consider the design of a cottage cheese process in which the

cost of operating the semicontinuous units (separator-homogenizer-pasteurizer units)

is substantial. The operating and investment costs for these units are considered in

the objective function, and these costs drive the design decisions.

More recently, Yeh and Reklaitis (1987) have incorporated the cost and sizing of

the semicontinuous units in order to calculate the cycle times of stages of the process-

ing. Their research focused on the synthesis of a superstructure for the batch process,

where the selection of the task to stage assignments may have a significant affect on

the number of semicontinuous units, such as pumps, which are required. However,

they drew no conclusions about the need to accurately express the costing and sizing

of the semicontinuous units, although it is clear that the appropriate merging of tasks

may eliminate some of the semicontinuous units from the process structure (Patel

et al., 1991). Similarly, Modi and Karimi (1989) include semicontinuous units when

considering finite intermediate storage. They account for the costing and sizing of

the semicontinuous units, but the heuristic procedure which they use to optimize the

design is based partly on the assumption that the cost of a semicontinuous unit is far

less than that of a batch unit.

While the assumptions regarding the relative costs of the semicontinuous units

may be valid under certain circumstances, the treatment of the issue points out that

the plant design problem will need to be evaluated for the specific case at hand, and

solution procedures should only be applied where they are applicable. The important

costs of any design problem will most likely need to be considered on a case to case

basis.

D.3 Parallel Units

The processing tasks for a particular product are executed in one or more of the

equipment items existing in the plant. Typically, a task or group of tasks is assigned

to a processing stage, and then one or more equipment items is assigned to this
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processing stage for a particular product.

Every processing stage must be assigned an item or group of items in which the

processing tasks will be carried out. If one equipment item is assigned to a particular

stage, the only design decisions required are the selection of the size and type of unit

assigned. However, if more than one unit is assigned in parallel, several decisions

must be made.

* How many items in parallel are to be used?

* Are the units to be operated in-phase or out-of-phase?

* Should the units in parallel be of the same size?

Considering parallel units in the process structure increases the combinatorial com-

plexity of the design problem and may require the use of tailored optimization proce-

dures. Since the complexity typically governs the performance of the solution proce-

dures, problem simplifications that reduce the complexity, or tailored solution algo-

rithms are often required. If the type of parallel units considered is limited in some

way, then the complexity is reduced and solution methods that take advantage of this

simplification may be employed. For this reason, the type of parallel units considered

has been limited in much of the research that has been conducted so far.

The first paper to address the use of parallel units was written by Sparrow et al.

(1975). The authors extended the formulation of Robinson and Loonkar (1972) by

considering the addition of identical parallel units at each stage operating out of phase.

Units used in this fashion serve to reduce the cycle time of a particular processing

stage and have been studied by many other authors (Grossmann and Sargent, 1979;

Knopf et al., 1982; Suhami and Mah, 1982; Yeh and Reklaitis, 1987; Vaselenak et al.,

1987; Faqir and Karimi, 1989).

The use of parallel units operating in phase has been considered by relatively

few studies. Flatz (1980; 1981) mentions the use of in phase parallel units, but his

evolutionary design procedure does not systematically attempt to account for their

use. Yeh (1987) demonstrates that there is no incentive to use in phase parallel units

or units of different size operating in parallel for the design of single product plants.
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Papegeorgaki and Reklaitis (1990a; 1990b) are the first to include the use of in

phase parallel units in a systematic fashion; their formulation of the multipurpose

design problem accounts for the use of in phase parallel units which may differ in

size. They formulate the problem as an MINLP with integer variables representing

the use of a particular unit for a given task. In phase parallel units are included

by forming product groups which can contain units of different sizes. These prod-

uct groups are then assigned to particular tasks with groups assigned to the same

task operating out of phase. However, incorporating this flexibility through the use

of integer variables rapidly increases the combinatorial complexity of the problem,

rendering current MINLP solution procedures ineffective in the problem solution. In

addition to the added complexity, the structure of the constraints yields a problem

with a considerable amount of degeneracy which places an additional burden on the

solution technique. To avoid some of the degeneracy, additional constraints are added

to the formulation. Papageorgaki details an approximate solution procedure designed

specifically for this problem (Papageorgaki and Reklaitis, 1990b).

D.4 Multipurpose Plants

The extension of the design problem to multipurpose plants requires fairly detailed

aspects of the production planning problem be solved at the design stage, simul-

taneously with the sizing and structural aspects of the design. The definition of a

multipurpose plant has not been agreed upon by all researchers in the field. A mul-

tipurpose plant will provide the most flexible plant designs where different batches

of the same product may follow different routes through the plant. The following

definitions will be used in an attempt to avoid confusion with the use of these terms:

Multiproduct Plant A plant producing more than one product in the form of single

product campaigns. Every batch of a given product follows the same route

through the plant.

Multipurpose Plant with Single Production Routes The plant consists of many

processing stages each having multiple identical batch units each operating in
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parallel, out of phase. Every product passes through a fixed subset of these

stages; thus, each product follows only one production route and every batch of

a given product has the same size (Faqir and Karimi, 1989).

Multipurpose Plant with Multiple Production Routes In this case each prod-

uct may have follow multiple routes through the process. A given product may

have multiple batch sizes corresponding to different processing routes (Faqir

and Karimi, 1990).

Multi-plant Plant A plant where the equipment items are permanently partitioned

into parallel processing trains.

Multipurpose Plant The most general form of processing. A given product need

not follow the same processing path from one batch to the next. The same

equipment may be reused for different tasks of the same product. Equipment

items may be shared between products during the same production campaign.

The initial work attempting to address multipurpose plants was performed by

Suhami and Mah (1982). They proposed a design formulation for a multipurpose

plant with single production routes; they only considered multiple products within a

campaign if they could be processed via parallel production routes. They developed

a heuristic procedure to generate sets of "compatible" products, those which do not

share any equipment items, to be processed in each campaign. Groups of these com-

patible product sets were formed such that each group covered all of the products

to be produced. For each group of product sets, the appropriate horizon constraints

were developed according to some heuristic rules. The resulting MINLP was then

solved for each product group. The lowest cost solution was considered the optimum.

Several years later, Imai and Nishida (1984) presented a way to systematically deter-

mine the best group of product sets. They determined the best group of product sets

by solving a set partitioning problem. They generated the horizon time constraints

from this set, but did not detail the method used to derive the constraints.

Vaselenak et al. (1987) extended the previous work by developing a multiperiod

formulation which uses a superstructure to embed all of the possible product configu-
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rations. They employ a systematic procedure to derive the maximal set of compatible

products which is used to generate the horizon constraints based on the available pro-

duction time for each equipment unit. These constraints are then "merged" to form

an equivalent set of constraints that treats the portion of the horizon time allotted

to each product as the independent variables. The resulting superstructure creates a

single MINLP which can be solved for the optimum. The authors realize that only

in some cases, the "fully merged" case, will the derived horizon constraints result in

a relaxed NLP which is convex. Thus, in many of the cases, they cannot guarantee

optimality of their solution.

Faqir and Karimi (1989) attack the work of Vaselenak. These authors formulate a

programming problem to address the same problem as that of Vaselenak. Their for-

mulation results in a single MINLP, and the formulation does not depend on whether

the horizon constraints can be "fully merged" (Vaselenak et al., 1987). This proce-

dure involves fewer variables and constraints than the method of Vaselenak, and the

equivalence of their resulting formulation and the original one based on the horizon

times of each equipment item can be formally proven. However, the relaxed NLP

may not be convex, so this method also cannot guarantee a globally optimal solution.

Thus, it can be seen that even for the relatively simple case of single production route

multipurpose plants, a globally optimal solution cannot be guaranteed.

Later, Faqir and Karimi (1990) extend this idea to plants with multiple production

routes; they consider all of the possible routes that a each product can follow through

the plant and group these into sets of compatible production routes. A similar method

for deriving the horizon constraints and solving the resulting problem is employed.

The resulting problem is more complex, and once again a globally optimal solution

cannot be guaranteed. Kiraly et al. (1989) address a very similar problem, but they

employ a two-step decomposition strategy to arrive at the optimal investment cost.

The aforementioned formulations can only handle situations where the equipment

items can be allocated to parallel processing trains, each representing a particular

production route, in every campaign considered.
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D.5 Varying the Task to Stage Assignment

One aspect of batch processes which makes them particularly flexible is the distinction

between the plant and the process. A manufacturing process is free utilize the plant in

the most appropriate way for every product it produces. While the processing tasks

are defined for each product, the way in which to implement them on the plant is

not. A processing stage may be assigned single or multiple processing tasks. Yeh and

Reklaitis (1987) showed that selecting the optimal task to stage assignment enables

more efficient use of the processing equipment, but adds complexity to the design

decisions. Even though the optimal assignment may greatly improve the efficiency of

a design, the task to stage assignment problem has been overlooked in most of the

batch plant design literature.

Papageorgaki and Reklaitis (1990a) are the first to consider the task to stage

assignment within the plant design of multipurpose plants. In fact, they are the first

to formulate the design for a plant operating in true multipurpose fashion. They

account for multiple production routes, the use of an equipment item for different

tasks within the same production campaign, and for the use of in phase and out

of phase parallel items of equipment at each processing stage. Their formulation

seems superior to any others proposed thus far, but the number of integer variables is

excessive. They have found that standard MINLP solution techniques fail miserably

when applied to this problem, usually yielding solutions which are inferior to those

determined by much simpler formulations of the design problem. Since the problem is

so difficult to solve, the added flexibility within this formulation cannot be exploited.

The authors address this problem by proposing a method to decompose and solve

the MINLP to near optimality in a companion paper (Papageorgaki and Reklaitis,

1990b).

373



D.6 Discrete Equipment Sizes

Much of the equipment purchased for a new batch plant will be chosen from a set

of standard equipment sizes. However, in many of the programming formulations of

the batch plant design problem, standard equipment sizes have been overlooked in

order to facilitate the solution of the problem. In fact, the size of the equipment to be

purchased in a batch plant has been considered a continuous variable in many of the

formulations of the batch design problem (Robinson and Loonkar, 1972; Grossmann

and Sargent, 1979; Suhami and Mah, 1982; Birewar and Grossmann, 1989). These

authors usually state that the equipment can be rounded up to the next standard

size to produce a realistic feasible design.

On the other hand, some authors have demonstrated that simply rounding the

optimal equipment sizes found in a continuous solution up to the next standard size

will not necessarily produce an optimal design. In order to account for this, these

authors have explicitly considered the discrete equipment sizes in their problem for-

mulations (Sparrow et al., 1975; Flatz, 1980; Faqir and Karimi, 1989). Incorporating

the standard equipment sizes explicitly in the problem formulation adds combinatorial

complexity to the problem which usually increases the solution time.

Recently, however, the initial justification for incorporating standard equipment

sizes, to make the problem more realistic, seems to have given way. Grossmann et

al. (1992) have shown that many design problems which involve nonlinear separable

objective functions and bilinear constraints can be reformulated. The formulations of

Voudouris and Grossmann (1992a; 1992b) take advantage of the discrete equipment

sizes to transform the NLP (Grossmann and Sargent, 1979) or MINLP (Birewar and

Grossmann, 1989) formulations into a mixed integer linear programming problems

(MILP). The MILP formulations have the advantage that they can be solved to

global optimality. Also, the methods used to solve these problems are more robust

than those that attempt to cope with non-convex NLPs.

In many cases the MILP problem contains no more variables than the original

problem and can be efficiently solved by taking advantage of the special structure
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of the design problem. In other cases, such as the formulation of Faqir and Karimi

(1989), converting the bilinear constraints into an equivalent set of linear ones re-

quires the addition of many variables. In these situations, the MILP which must be

solved is considerably larger than the original MINLP, and the benefits of the trans-

formation are not quite as clear, although global optimality of the solution can still

be guaranteed.

D.7 Intermediate Storage

Intermediate storage is often used in batch processes to reduce the amount of idle

time processing stages by partitioning the plant into two or more processing trains,

each with its own batch size and cycle time. The processing rate of each of the trains

must be equal to insure that the size of the intermediate storage remains finite. In

order to employ intermediate storage, two basic decisions need to be made:

1. Determine the location of the intermediate storage.

2. Determine the size of intermediate storage required at each location.

In many design problems the cost of intermediate storage is ignored, and the

storage is located according to several scenarios - unlimited intermediate storage

(UIS), no intermediate storage (NIS), or zero wait (ZW). In such cases the size and

cost of the required storage is not of primary concern and is not considered when

choosing between design alternatives.

Takamatsu et al. (1982) first addressed the problem of determining the amount of

storage required to decouple two processing trains. They demonstrated that the min-

imum required storage is a function of the batch sizes and cycle times of the upstream

and downstream units, the initial holdup in the tank, the filling and emptying rates of

the storage vessel, and the lag time between the two batch units. They showed that

the optimal storage cost is a discontinuous function of the batch sizes and calculated

the optimal storage size when the filling and emptying rates of the storage tank are

equivalent. The minimum storage size was given as a function of the greatest com-
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mon measure of the batch sizes and the lag time between units. Karimi and Reklaitis

(1983) considered a similar case where the filling and emptying rates of the tank are

not equal. They determined the minimum storage requirement by first deriving an

analytical solution to the differential equation describing the tank holdup via Fourier

series analysis, ignoring any changes in volume upon mixing. With this solution, they

determined the minimum and maximum values of the holdup. Karimi and Reklaitis

(1985) built upon this work by determining the minimum volume requirement for a

processing network in which the number of parallel units both upstream and down-

stream of the storage may vary. They calculated the lag time policy which minimizes

the storage requirement. More importantly, they generated a simple upper bound, in-

dependent of the lag time policy employed, for quickly estimating the storage volume

requirements.

The optimal sizing of intermediate storage within a multiproduct plant has been

addressed by Modi and Karimi (1989). The authors developed a method which con-

siders the cost and sizing of intermediate storage during the design stage of a multi-

product plant. The heuristic procedure used is based on deriving an initial design and

then improving on it by adjusting the processing rates of the semicontinuous units,

the number of batch units at each stage, and by varying the allocation of the total

production time allotted to each product. However, this method does not explicitly

address the location of the storage within the process. The method must be run

repeatedly, with storage at different locations, in order to determine the best location

for the storage.

Yeh and Reklaitis (1987) addressed the issue of storage location for a single prod-

uct plant. Heuristic rules to identify the best locations for additional intermediate

storage are defined; intermediate storage is located in order to maximize the equip-

ment savings for the processing train not containing the time limiting stage. The

sizing procedures for the storage are not detailed, but the bound presented by Karimi

and Reklaitis (1985) can be employed.

An interesting use of intermediate storage was considered by Shah and Pantelides

(1991). They note that multiproduct plants operating in campaign mode often con-

376



tain products with stable intermediates. If long-term storage is available, as it is for

the products, then these intermediates may be produced as the product of a given

campaign. When these intermediates are used in the production of several products,

the value of producing them in their own campaign is obvious. They demonstrate

that even in the cases where the intermediate is only used by one product, producing

it in a campaign is often beneficial because it may allow other intermediates to be pro-

duced at the same time. However, the MINLP programming formulation presented

only considers such processing structures for single product plants.

Another benefit of intermediate storage is its ability to balance the effects of

process fluctuations. Takamatsu et al. (1984) considered using intermediate storage

to adjust for uncertainties in the processing times and batch sizes of the upstream

and downstream units. They allowed for variations within a set of predetermined

limits and determined the storage required to ensure smooth operation of the batch

process.

In general, the use of intermediate storage has not been studied in a very compre-

hensive way in the current literature. For example, a method to locate intermediate

storage in a multipurpose plant has not yet been addressed. More complicated and

subjective issues such as the cost of inventory, the maintenance and clean out costs for

the storage vessels, the labor costs associated with transferring material to and from

the vessels, material contamination, processing delays, and the loss of batch identity

have been identified but have not been dealt with in any sort of systematic fashion.

D.8 Design Under Uncertainty

The uncertainties encountered in batch process design problems can be classified into

two broad categories (Johns et al., 1978):

Short term Batch to batch variations. These include uncertainties in processing

times, batch sizes, size factors, and equipment availability.

Long term Variations with time scales on the order of months or years. These

include available production time, production amounts, and the composition of
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the product slate.

These two types of variations may be handled differently in the design procedure.

Short term variations may be absorbed by the overdesign of individual units or storage

tanks (Takamatsu et al., 1984) or through the manipulation of operating conditions.

Long term uncertainty is typically handled at the design stage when the engineers are

faced with the decision of whether to build in the face of uncertainty or whether to

wait until some uncertainty is resolved before making the decision to build or expand

(Johns et al., 1978).

The work of Johns et al. (1978) has shown that alternative design procedures

should be compared based on the evaluation of objective criteria over the entire life

of the plant. They noted that it is best to evaluate risk through a confidence level

criterion, putting a bound on the acceptable level of risk, rather than artificially

attempting to incorporate the acceptable risk level by demanding an inflated internal

rate of return for the project.

Studies specifically addressing the design of a batch plants have focused on both

technical and commercial uncertainty (Wellons and Reklaitis, 1989; Reinhart and

Rippin, 1987; Shah and Pantelides, 1992). Wellons and Reklaitis consider uncertain-

ties in both the design parameters and in the production quantities. To account for

both types of uncertainties they partition the constraints into two sets.

hard constraints The constraints that must always be satisfied. These include mass

and energy balance constraints.

soft constraints The constraints that may be violated, but the violation of these

constraints would be subject to a penalty. These include ability to meet the

production quantity and horizon time constraints.

The authors propose a design formulation where they insert the upper/lower bound

values of the uncertain parameters into the hard constraints to insure that they are

satisfied. Penalty terms are then assigned to the violation of the soft constraints.

The design problem, allowing for staged expansion, is formulated as an MINLP. The

authors conclusions follow those of Johns et al. that demonstrate it is often best to
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design for a planned plant expansion. In contrast to this approach, Shah and Pan-

telides (1992) address a set of possible production scenarios by solving a multiperiod

deterministic design problem. They minimize the capital investment required to in-

sure that the production requirements can be met for each possible set of product

requirements. They employ the method of Shah and Pantelides (1991) to solve the

deterministic design problem.

Short term variations and the stochastic variability have not typically been han-

dled at the design stage. However, procedures to size intermediate storage to insure

smooth operation of the plant even while batch sizes and cycle times may vary within

some predetermined bounds have been addressed (Takamatsu et al., 1984). How-

ever, systematic methods to account for the stochastic variation of task timings and

batch size variations have not been addressed at the design stage. Felder and others

have shown that the performance of a given plant subject to stochastic variations,

such as uncertain processing times and equipment downtime, can be quantified by

discrete event simulation (Felder, 1983; Morris, 1983; Felder et al., 1985). These

studies demonstrate that these variations cause the plant to perform differently from

its planned mode of operation.

D.9 Solution Methods

The methods which are applicable to the batch design problem are those that can

handle the optimization of both discrete and continuous variables. Most of the design

problems can be formulated as a mixed integer nonlinear program (MINLP), repre-

senting the discrete decisions with integer variables. To date, no methods are available

which can provide efficient solutions to such problems. In fact, in many of the cases

the relaxed nonlinear program (NLP) derived from the MINLP is non-convex, so a

globally optimal solution cannot be guaranteed.

Due to difficulty in solving many of the problems that might be imagined, many

researchers have restricted the type of design problem that they consider. Often they

choose a problem formulation that fits within the solution framework that they intend
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to use to solve the problem. While this technique may allow solution of the problems

considered in a reasonable amount of time, these researchers may be ignoring impor-

tant plant configurations which may lead to lower costs. In addition, the demands on

the process may be uncertain, so obtaining the globally optimal solution to a problem

that is at best an approximation is probably not all that relevant. For these reasons,

it is important to consider several questions when choosing an optimization method:

* What type of problem can we formulate? How much freedom do we have in the

formulation of the objective function and the constraints?

* How large a problem can we solve in a "reasonable" amount of time?

* Can we guarantee the optimality of our solution?

* How robust is our algorithm?

* How important is obtaining the optimum? Will near optimal solutions do?

* What is a "reasonable" amount of time for the problem we wish to solve?

* How easy is it to formulate the desired problem within the solution framework?

Answers to these questions should aid in the selection of an appropriate solution

method for a specific problem. Some of the techniques that have been applied to the

design problem will be mentioned, along with some of the advantages and disadvan-

tages of these methods.

Sparrow et al. (1975) consider both heuristic procedures and branch and bound

techniques to handle the discrete decisions involved in their formulation of the batch

plant design. Their research demonstrated that heuristic procedures could be very

effective in handling the solution of the design problem they considered. Their heuris-

tics provided good solutions, usually optimal, in a much shorter amount of time than

the branch and bound procedure. In fact, they used their heuristics to generate a fea-

sible solution to the problem to provide a bound for the branch and bound algorithms

pruning procedure.

Grossmann and Sargent (1979) show that the plant design can be formulated

as an mixed integer nonlinear programming problem. Much of the research that
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followed considered modifications to their formulation of the problem and similar

solution techniques (Suhami and Mah, 1982; Vaselenak et al., 1987; Faqir and Karimi,

1989). Grossmann and Sargent, as well as others, employ variable transformations

to convexify the NLP. When the relaxed NLP is convex, these methods will provide

a global optimum. However, it is often difficult to derive the constraint equations

to represent the process feasibility. This has been demonstrated by the difficulty in

formulating the horizon time constraints for the case of the single production route

multiproduct plants (Suhami and Mah, 1982; Imai and Nishida, 1984; Vaselenak et

al., 1987; Faqir and Karimi, 1989). These MINLP problems have been solved using

both the Outer Approximation/Equality Relaxation method (Duran and Grossmann,

1986) and the Generalized Benders Decomposition (Benders, 1962; Geoffrion, 1972).

Voudouris and Grossmann (1992a) employed a different approach to attack the

combinatorial nature of the design problem. They showed that some of the MINLP

formulations (Grossmann and Sargent, 1979; Vaselenak et al., 1987; Faqir and Karimi,

1989) can be reformulated as MILP problems. This reformulation has the advan-

tage of being easier to solve since the relaxed problem is an LP for which efficient

programming algorithms are available. In addition, the MILP algorithms are more

robust. These problems can be solved more efficiently, but the objective function

and constraints are fairly restrictive with respect to the type of problem that may be

formulated.

An approach which circumvents restrictions on the way in which the problem is

formulated was presented by Patel et al. (1991). They employ a simulated annealing

algorithm, a type of local search technique, that enables great flexibility in the way

in which they can formulate the objective function. Although they cannot guarantee

optimal solutions, their method performed very well. In fact, in several example

problems they obtained better solutions than were found using MINLP techniques.

They were able to obtain better solutions because they could consider more complex

equipment configurations than were considered in the cases solved by the MINLP

methods.
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D.10 Conclusions

The batch plant design problems that have been considered thus far have merely

been extensions to the original work of Loonkar and Robinson (1970; 1972) and

Sparrow (1975). All of the work has focused on extending the original formulations to

incorporate more complex equipment superstructures and operating procedures. No

attempt has been made to introduce a comprehensive reformulation of the problem,

or to seriously question the assumptions inherent in the existing formulations. Hence,

in his 1993 review, Rippin characterized the progress in this research as "filling in the

holes."

One aspect of these formulations which needs serious consideration is the way in

which restrictions and more complicated operating procedures may be considered.

One step in this direction has been made by Patel et al. (1991) by using a simulated

annealing technique. Their formulation was the first to consider parallel units of

different size in a systematic procedure. The importance of allowing such operating

configurations was emphasized by Flatz (1981); he considered such options when

describing how a batch plant design may be improved in an evolutionary fashion.

People will not be able to take advantage of these algorithms until it becomes easier

to adapt these programming techniques to the real life problem facing the engineer.

The automated programming formulations for the "plant design problem" should

coincide with the problem actually faced by an organization considering investment

in a new manufacturing facility. Therefore, the assumptions on which these problem

formulations rely need to be considered on a case by case basis. The fact that most of

the solution procedures depend upon certain assumptions renders them inapplicable

to many real life problems. Some aspects which deserve consideration are the cost

of semicontinuous units, the cost of intermediate storage, and the cost of inventory.

All of these costs have been shown to be significant in certain cases (Knopf et al.,

1982; Cohen and Zeftel, 1980). Although the cost associated with inventory is often

difficult to assess, its cost should not be dismissed if it happens to be an important

component of the total design cost. The solution methods and problem formulations
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must be tailored to the problem at hand, rather than attempting to tailor the problem

to the desired solution method.

Finally, the fundamental premises upon which these formulations are based

fixed demand and known operating conditions - should be evaluated for their va-

lidity. We know that the life-cycle of the products is much shorter than the lifetime

of the plant, so in how many cases are the demands that will be placed on the plant

known with any certainty? Although a significant amount of progress has been made

in addressing the design under uncertainty, the current formulations are still far from

meeting the practical requirements. If the future requirements of the plant are un-

known, is it worth attempting to find an optimal solution to a problem which is at

best approximate and at worst irrelevant? If finding an optimal solution is worth-

while, then the most optimal operating procedures should certainly be considered

at the design stage. This will add a layer of complexity and a need for advanced

simulation tools, but it will create the opportunity to produce more efficient designs.

In conclusion it seems apparent that most real life batch plants are not designed

in this fashion, except in the rare cases that the product demands are known within

a reasonable degree of certainty. Due to the uncertainty in the demands, the abil-

ity to consider more complex operating procedures and equipment configurations is

probably not the most pressing need in the area of batch design. We feel it is more

appropriate to consider optimizing the design of the batch processes rather than that

of the batch plants. The work on the plant design has made some progress in the

area of the process design, but batch process design has been considered infrequently

and is a wide open area for research.
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