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ABSTRACT

The purpose of this thesis is to present two ways of determining the
position of underwater tethers, mathematical tether modeling and sensor
system measurement. Though the ideal solution may be a combination of
both modeling and measurements, this thesis only covers modeling and
measurements individually. The tether model is designed to be placed in a
virtual environment (VE) simulator in order help train ROV pilots on tether
awareness. The model assumes that the tether will follow the equation of a
scaled and shifted catenary. The solution can be found in three dimensions
within roughly 4n operations, where n is the number of tether segments
making up the catenary. The sensor measurement system uses strain gauges
to measure the bending and torsional strains in the tether in order to obtain
the position of the tether underwater.
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1.0 Introduction

Determining the position of deployed tethers is of great importance in

many scientific applications. NASA scientists are currently attempting to use

tethers for a variety of space applications, such as power generation for satellites

and "elevator-like" earth-to-space transportation. Underwater tether applications

are even more common including towed measurement systems, underwater cable

deployment, and tethered underwater remotely operated vehicles (ROV). The

research in this paper will be mostly concerned with the use of underwater tethers

in ROV operations. However, the results of this project will certainly pertain to

any operation where the position of a deployed cable or tether is needed.

One of the main problems in the use of tethered underwater vehicles is the

entanglement of the tether with itself and other objects in the area it is exploring.

Currently, the ROV pilot has to create a mental model of the position and shape of

the tether given its length, the ROV's position, the vehicle's path in time, the

direction and magnitude of the current, and the buoyancy of the tether. Along

with everything else that the pilot has to keep track of, this can be a very difficult

task. A simple display of the location of the tether would be a tremendous aid.

There are two applications of this display that would be most useful, a

performance aid for ROV pilots in the field and an educational tool to help train

ROV pilots in a virtual environment (VE) simulator. Each application has its own

requirements and appropriate solutions. Section 1.1 discusses the creation of a

tether model to be placed in a VE trainer. Section 1.2 presents the need for a

measurement system in order to make an accurate performance aid. Section 1.3

provides the layout of the rest of the research.



1.1 Virtual Environment Simulators

The purpose of creating a VE simulator would be to place an ROV pilot

into several simulated situations where the awareness of the tether is needed.

Each situation could have its own performance criteria and set of goals. For

instance, one goal may be to teach a pilot to return along the same path that he/she

came from. This practice avoids the problem of wrapping the tether around an

obstacle. Another goal may be to keep the pilot from letting out too much tether

so that there is a smaller chance of the tether getting caught.

In order to implement any of these goals a model of the tether in open

water is needed. The largest concern in selecting a model will be its computation

time since this is directly related to its cost of implementation. If a tether model

requires many operations to compute a solution, then it will require a very fast

and expensive computer for it to run in real time. This cost constraint requires

some trade-off between the complexity and accuracy of the model for its speed of

computation.

In the VE simulator there will be considerable room to exchange accuracy

for speed. As long as the overall goals of the training are kept in mind, the exact

location of the tether will not matter. Though the amount of accuracy that can be

sacrificed will depend upon the type of mission, in most cases the room for error

is quite large.

1.2 Performance Aids

The first attempt at creating a performance aid is through the use of the

physical modeling techniques described in Section 1.1. The main advantage of

using physical models to determine the position of an underwater tether is its ease

of implementation. Once the model is developed and encoded it is quite easy,



outside of cost constraints, to supply a processor to run the model and a monitor

to display the tether's position.

However, there are many limitations in using only a tether model to create

a performance aid. In order to create this aid for pilots in the field, it would be

necessary to accurately model a real tether in the water. A real deployed tether

can have many "kinks" and twists due to the very high spatial frequencies along

its length. For instance, actual tethers may have significant bending biases, primarily

due to drum storage. Tethers can also experience creep as well, meaning that the

bending bias is a function of both loading and time. These biases, which are very

difficult to model, help determine the real configuration of the tether and need to

be included if a real tether is to be modeled. No existing physical model incorporates

any of the higher order effects of bending biases or creep [1]. Even if a system

did try to model these higher order effects, the environment could always introduce

some unexpected results that the model could not take into account.

Using sensors to take measurements along the cable is a way to alleviate

this problem. As long as the tether's shape was within certain limits, a sensor

system could be designed to measure it directly. Since there would be few

assumptions used, a sensor system could obtain accurate results given nearly any

situation.

However, there are concerns of relying entirely on a measurement system.

The accuracy of the system is directly related to the density of the sensors, the

quality of the sensors, and therefore the cost of the sensor system. In order to

obtain reasonably accurate results using sensors alone, a very expensive system

would be needed. Since cost is always an issue, this option by itself may not be

the best alternative.

The ideal solution may be to incorporate both modeling and measurements



into a combined information system. This system would use some key measurements

along the tether's length and input these into a simple, physical model. In this

system, many of the higher order and unexpected effects of the environment could

be included without greatly increasing the cost. However, due to the lack of time,

this thesis covers the model and sensor systems individually but, not together.

1.3 Thesis Scope

Chapter 2 presents a number of tether models, each with its own set of

assumptions on the environment that the tether is placed in. These assumptions

will lead to particular computation time and level of accuracy based on the actual

conditions of the environment.

Chapter 3 presents the design for a sensor measurement system composed

of strain gauges placed along the length of the tether. Many of the advantages and

disadvantages of this system will be presented as well as the possibilities of other

types of sensor systems.

Chapter 4 discusses the overall conclusions that can be gained from this

research.

The Appendix includes the derivations mentioned in Chapter 2.



2.0 Implementation of Mathematical Tether Models

As mentioned in Section 1.1, the greatest use of tether models is in virtual

reality simulators used for training ROV pilots. This chapter will discuss the

selection and implementation of a mathematical tether model that will be placed

in a training simulator. The main goal of this simulator will be to make pilots

more aware of tether related issues. Section 2.1 describes the simulation

environment, including what inputs are available to our model and what outputs

are needed. Sections 2.2 and 2.3 present two ways of modeling the tether in two

dimensions, dynamic and static modeling. A static model is one where the tether

is assumed to have come to rest. In a dynamic model the tether is allowed to

move. Sections 2.4, 2.5, and 2.6 describes the specific efforts to implement a

static model of the tether. Section 2.4 presents a process that can extend the

two-dimensional models to three dimensions. Section 2.5 introduces a way of

approximating some of the higher order effects on the cable due to the bending

biases of tether storage. Section 2.6 shows how the forces on the ROV can be

calculated due to a stationary tether. Section 2.7 discusses some conclusions

made from the modeling portion of this research.

2.1 Description of the Virtual Environment

Before discussing the different types of tether models that could be used, it

is important to examine what the virtual environment will look like and what is

required of any model that will be placed in it. The simulator we will be using is

in three dimensions and has obstacles placed throughout the environment. The

current is assumed to be uniform in one direction, though it can change during a

given scenario. The effects of the environment on the ROV itself are already well



modeled. What is needed is a good model of how the environment is affecting the

tether and how the tether acts upon the ROV.

Any model that we use must meet certain requirements. Namely, it must

produce as an output the position of the tether, which may consist of a number of

connected links, and the magnitude and direction of the force applied by the tether

on the ROV. The simulation environment will provide a wide range of inputs that

can be used by our model. These include the tether's endpoints, the direction and

magnitude of the current, the direction and magnitude of the ROV's velocity, the

length of tether deployed, and certain properties of the tether. The properties of

the tether needed by the models we will be examining are the diameter of the

tether, its weight or lift underwater, its drag coefficients with the flow of water, its

modulus of elasticity, and the bending radius it is stored at.

2.2 Two-Dimensional Dynamic Tether Models

Dynamic tether models include the effects of the movement of the ROV

and the tether when finding the tether's current position. This addition makes

these models very complex since the velocity of the tether along its length must

be found in addition to its position and tension.

These models make very few assumptions about the tether environment.

All existing models neglect the effect of bending biases. In addition, they assume

that the tether is relatively uniform in diameter and the current effects are well-

behaved, having no waves or vortexes. Each model below will also have its own

additional assumptions.

The general method of solution for these models is to balance all of the

forces acting at discrete points, connected by stiff links, along the cable. The

general equations used for these models are derived in a PhD thesis by Bliek [2].



The forces acting on the tether that are included in all of the dynamic models we

examined are the weight or buoyancy of the tether, a fluid inertial force, the drag

force due to the current flow, and the tension force in the cable. These forces are

set equal to the mass of the cable times the acceleration in the different coordinate

directions. Each dynamic model may include or neglect additional interactions

however, all of the dynamic models mentioned below use the interactions included

in Bliek [2]. All of the dynamic models below place the tether in natural coordinates,

which means that the coordinate system is centered around each individual segment

of tether. This allows for an easy representation of the forces acting on the tether.

All of the models use finite difference schemes to obtain a solution. The

variables solved for in these models are the tension in the tether, the magnitude

and direction of the velocity of the tether, and the angle between the links at each

discrete point.

2.2.1 Ablow and Schecter's High Tension Model [3]

The first dynamic model examined was done by Ablow and Schecter in

1983. This model was mainly used to model the motion of instrumented cables

that were towed behind surface ships and submarines. In these situations, the

towed vehicles did not move under their own power which lead to significant

tension in the cables and the possibility of stretching.

These conditions lead directly to the additional assumptions made in this

model. The tension is assumed to be high along the entire length of the cable and

should not vanish at any time. This model assumes that stretching should occur in

the cable and that the current is relatively high at all times.

Though this model is well designed for high tension problems, it fails to

come up with a solution whenever the tension is zero anywhere along the tether



due to a singularity in the solution matrix. This situation can occur with ROV's

when the current is low or the tether is close to being neutrally buoyant.

2.2.2 Howell's Low Tension Model [4, 5]

This model tries to compute the position of a tether in low tension, as in

many ROV applications. Since the tension is assumed to be low throughout the

cable, this model neglects any stretching in the cable, however, it does include a

bending stiffness term. When the tension in the cable becomes very low, this

bending stiffness term dominates the equation and a solution can be found.

The only problem with this model arises in the time needed to solve the

equations. For a tether with 101 nodes and a time step of .025s, this model

provided results in roughly three times real time on a Silicon Graphics IRIS 4D.

Though the time steps and the number of nodes are conservative, it would be

difficult to make an argument for purchasing an SGI workstation solely to determine

the tether's position. Since the training simulator must deal with many other

operations, this model, though very accurate in most cases, would take too much

time to compute a solution.

2.2.3 Hover's Massless Model [2]

This model tries to speed up the computation time associated with most

dynamic tether models by assuming that the tether is massless and using a quaternion

representation of the coordinate transformations instead of the usual euler's angle

representation. This model contains both low and high tension effects on the

tether by including both stretching and bending stiffness. Including both high and

low tension effects makes this model useful for almost all ROV applications.

Though the massless assumption greatly simplifies the equations it has not



been determined exactly how fast the model runs since, due to a lack of time, it

has not been implemented. The accuracy of the massless approximation is also a

concern for this model that needs to be examined.

2.2.4 Two-Dimensional Dynamic Model Results

These models have several advantages. Their solutions include transient

motions of the tether caused by the ROV's movements that are not included in the

static models. Dependent upon the situation this could be a significant difference.

Another advantage is that the dynamic models do not have as much error in low

currents, if the models can obtain a solution. This allows these models to be used

in a much wider variety of situations.

Though these models are very accurate, the time needed to compute their

solutions is too great. As mentioned in Sub-Section 2.2.2, in reference to Howell's

model, the training simulator needs to keep track of many other operations; it

cannot afford to spend much of its time determining the position of the tether.

Since some error in tether display is allowed, this constraint in computation time

requires the use of static tether models, which can be computed much faster.

2.3 Two-Dimensional Static Tether Models

A static tether model is one where the velocities of the ROV and the tether

are assumed to be much less than the current and are neglected in determining the

position of the tether. This assumption greatly simplifies the equations governing

the tether and allows it to be defined entirely by its position in a coordinate

system and the tension along its length. In many cases this assumption is valid,

since the ROV velocity is usually quite small compared to the current. In addition,

if the ROV is stationary for a period of time, the actual solution should converge



to the solution obtained through the static model.

The greatest amount of inaccuracy, however, is dependent upon the type

of operation being simulated. If 1000 meters of tether is deployed, as in some

deep ocean missions, and the area that the ROV is operating in is small, then the

effects of the movement of the ROV will be minimal. However, if the site of

exploration is a small bay and only 50-100 meters of tether is deployed then the

velocity of the ROV may begin to have some effects. This should be taken into

consideration when planning specific missions and determining appropriate training

behaviors.

There are a few other assumptions that our static models will make as

well. They will assume that the tether is relatively uniform in diameter and the

current effects are well-behaved, no waves or vortexes. Any bending stiffness or

stretching of the tether will also be neglected. Though this model will neglect the

effect of bending biases for now, this assumption will be discussed further in

Section 2.5.

2.3.1 Finite Element Model

The first static model that has been examined was designed by Dana

Yoerger, a researcher at Woods Hole Oceanographic Institute. This model uses

finite element analysis in order to determine the position of the tether and the

tension along its length. The program running this model computes a numerical

solution by trying a variety of forces until it finds a set that brings the cable to the

desired position. A Nelder-Mead simplex method is used to solve the equations.

From a given starting force, the Nelder-Mead simplex method systematically

alters the force to move the cable from the starting position corresponding to the

starting force toward the desired position.



After the solution has been reached, the solution for the next simulation

step is started with the force from the previous step. This saves some computation

time since the tether position in the next step should be close to the position in the

previous step. This leaves the problem of how to start initially. To do this, the

cable is modeled as a stiff rod directly connecting the base point to the vehicle

termination point. The tangential and normal forces for this rod are used to start

the approximation procedure.

There is mainly one result of this model that is important to note, its

computation time. Each solution takes on average about 100 operations for each

tether segment that is used to define the entire tether. This results in a long

computation time in order to obtain a given level of accuracy. This model is only

included as a comparison to the other static models since the static assumptions

embodied in it do not lead to very significant decreases in computation time.

2.3.2 Assumed-Equation Model [6,7]

This static model assumes that the tether's shape can be defined by a

shifted and scaled version of a simple equation. This assumption greatly decreases

the amount of computation since the model only needs to solve for the parameters

of a single equation. In this research, three different equations were examined for

accuracy and speed of computation - a hyperbolic cosine (catenary), a parabola,

and two jointed line segments. If the tangential drag force due to a uniform

velocity current flow can be neglected, the catenary equation is the exact solution.

The derivation of this statement is found in Appendix A. The parabola and line

segment models were chosen in an attempt to lessen the computation time.

In order to eliminate the effects of current in the solution procedure, the

two tether endpoints are first rotated into the current. This reference frame defines



the current as going in the negative y-direction. Using the boundary endpoint

conditions (Equation 1 and 2) and the length constraint (Equation 3) we have

yo = f(xo)

Y, = f(x,)

(Equation 1)

(Equation 2)

(Equation 3)s + (df(x) 2 dx
xo

where (x,o y) and (x, y,) are the endpoints of the tether, f(x) is the equation of

the tether, and s is the length of the tether. The next step is to solve the equations

directly, if possible, or by numerical methods. Once the solution is found, a

number of points along the tether are selected and rotated back to the original

reference frame defined by the direction of current.

Catenary Assumed-Equation Model

If xs and ys are the x and y shifts respectively and A is the scaling term,

the form of the catenary equation is

f(x) = A cosh(X AXS + ys (Equation 4)

The three governing equations (Equations 1, 2, and 3 above) give

yo = Acosh Xo s+ ys
A

YI = A cosh( x Axs + y s

(Equation 4a)

(Equation 4b)



Using df(x) = sinh(x), 1+ sinh2(x) = cosh2(x), and fcosh(x)dx = sinh(x) + C

gives

s=A sinhX A -XS sinh(XSA (Equation 4c)

Since one of the parameters of the catenary equation, the scaling term A,

is both inside and outside the transcendental function sinh(x) in Equation 4c, its

solution cannot be solved for directly. Some form of numerical solution is needed.

We used a minimization procedure to minimize the error until a solution was

found.

The comparison of the catenary model and the finite element model described

in section 2.2.1 is shown in Figure 1 for a number of given endpoints. It is easy to

see that the solutions of the two models are almost identical.

0.5

-1.5
-1.i5 -1 -0.5 0 0.5 1 1.5

Figure 1. Comparison of Finite Element and Catenary Models
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These results make sense. The normal drag coefficient of the tether in the

finite element model was 1.5 while the tangential drag coefficient was only 0.003.

This vast difference allows us to neglect the tangential drag force, the major

assumption of the catenary model. Therefore, whenever the difference in drag

coefficients is as great, the catenary model is nearly identical to the finite element

model. It should be noted that the values of the coefficients used in the finite

element model are typical of most uniform ROV tethers.

Though the general method of solution for the catenary, assumed-equation

model is quite fast, improvements can still be made. If the number of tether

segments needed for the simulation is low (-10), then coming up with a numerical

solution takes up most of the program's computation time. In order to reduce the

computation time for a normal numerical solution we tried two common techniques.

The first attempt is an interpolation table. This three-dimensional structure

has the solution for the catenary equation given the x and y values of a tether

endpoint, assuming the other endpoint is at the origin, and the length of the tether.

This table is made once and does not need to be made again while the program is

running. The program will search for the nearest points in the table and interpolate

a solution. It is about 4x as fast as the regular minimization procedure but,

sometimes returns inconsistent results. This happens especially when the two

tether endpoints are near each other and there is sufficient slack in the tether. If

more solution points are added to the interpolation table near the origin, the

number of inconsistent results can be minimized but, not removed entirely.

The other method of reducing the computation time is to use the previous

solution as an initial guess for the numerical method. In the normal minimization

procedure, a set value is used as the initial guess. Since our model already

assumes that the ROV will not move very fast the previous solution should be



very close to the current solution. In our program if we moved the ROV at a

maximum of 10% of its distance from the base point, the previous solution method

was about 3x as fast. This method is preferred since the speed increase is comparable

to the interpolation table and does not introduce any irregularities.

Parabola Assumed-Equation Model

The form of the parabola equations using A, xs, and ys is

f(x) = A(x - xs)2 + ys (Equation 5)

The three governing equations (Equations 1, 2, and 3 above) give

Yo = A(xo - xs) 2 + ys

Y1 = A(x, - xs) 2 + ys

(Equation 5a)

(Equation 5b)

Using u2+a du= u 2+a2+ 1 In u + u2 + C
2 2

df(x)u = - 2A(x - xs) gives
dx

and

s= u2++ 1-Inu+ u2+1
4A 4A

(Equation 5c)

Like the catenary equation, the parabola equation cannot be solved for

directly. This makes the parabola model just as slow as the catenary model. Since

the catenary is the exact solution and the parabola was only to be used as an

approximation, the parabola model will not be used. It is presented here only for

completeness.



Straight Line Segment Assumed-Equation Model

The form of the line segment equation using A, xs, and ys is

f(x) = AIx - xsl + ys (Equation 6)

The three governing equations (Equations 1, 2, and 3 above) give

yo = -A(xo - xs) + ys (Equation 6a)

y, = A(x, - xs)+ ys (Equation 6b)

and since df = ( A =constant
dx

s = 1+A 2 (x - x0) (Equation 6c)

Unlike the previous two models, the line segment model can be solved for

directly. Since the solution can be computed in a few simple operations this

model is very fast compared to the catenary and parabola models.

Two-Dimensional Assumed Equation Model Results

Figure 2 below shows the results of the three assumed equation models.

As can be seen all three models have the same general appearance. The number

of operations needed for these two dimensional models is approximately In + Ts ,

where n is the number of tether segments and Ts is the time for the numerical

solution.



Figure 2. Comparison of 2D Tether Models

The choice of model will depend mainly on the type of mission and

training exercise. In some cases, the line segment model may be enough but, in

others the catenary would probably be needed. The rest of this chapter will

assume that two-dimensional model will be the static catenary assumed equation

model.

2.4 Three-Dimensional Static Tether Model

Since the simulation environment and most of the tether problems are in

three dimensions, a three-dimensional tether model needs to be designed. This

section describes a procedure of converting our two-dimensional assumed equation

model into three dimensions. In this way our two-dimensional methods of solution

described in Section 2.3 will still be valid.

2.4.1 Neutrally Buoyant Tether

If the tether is neutrally buoyant, it will still be in a two-dimensional plane

but, somewhat transformed due to the z-component of the ROV's position. There

23



are two ways of visualizing this transformation. The first is that the normal vector

to the plane that the catenary is in is the cross product of the current flow vector

and the ROV's position vector. This can be seen in Figure 3. Another way of

visualizing this transformation is by a simple rotation. If the starting point of the

tether is at the origin (0,0,0), the plane that the catenary is in can also be obtained

by a rotation about the x-y axis or in the x-z plane.

Therefore, the method of solution is to first rotate the tether's endpoints

onto the x-y plane and then solve for the two-dimensional catenary solution. Once

this is found, the tether segments making up this solution can be rotated back to

the catenary plane.

Figure 3. Example of 2D to 3D Conversion for a Neutrally Buoyant Tether

2.4.2 Heavy or Buoyant Tether

If the tether has some amount of weight or lift, the procedure above needs

to augmented. Again this procedure can be thought of in two ways. One way is

to alter the current vector by the weight force Fw. This is a little difficult since



the current vector is a velocity and the weight vector is a force per unit length of

tether. However, the magnitude of the drag force per unit length IFI, acting upon

the tether is IFDo = KD IU2, where KD is a normal drag force coefficient defined by

properties of the tether and U is the velocity of the current. This allows the

resultant force to be the addition of F and Fw . This resultant force would be

called the applied force vector. The normal vector of the catenary plane is now

the cross product of this new applied force vector and the position vector. As in

the neutrally buoyant case, this addition of the weight of the tether can also be

thought of as a new rotation, this time about the x-axis or in the y-z plane.

2.4.3 Three-Dimensional Static Model Results

The computation cost for the 2D to 3D conversion is very small. It only

takes 1 or 2 more operations per segment beyond the two-dimensional model.

The overall number of operations is now approximately (2 or 3)n + Ts , depending

on whether or not the tether is neutrally buoyant.

One additional advantage is that the model now comes up with a solution

when the magnitude of the current goes to zero. The weight force will then

determine the shape of the catenary. Normally, in the two-dimensional case, if

the magnitude of the current was zero, there would be no solution. In the no

current case our assumption about neglecting the ROV velocity may not be as

valid but, at least a solution can be found.

One other comment that needs to be made is that the addition of a weight

per unit length of the tether does not exactly equate to a rotation in the y-z plane.

The procedure stated in Sub-Section 2.4.2 is only an approximation. The real

solution would actually be a combination of two catenaries, one caused by the

current, the flow catenary, and another perturbing the flow catenary in the z



direction. However, the effects of this difference are minimal and in the limits of

the current going to zero and the weight going to zero, the solutions are the same.

2.5 Bending Biases Model

In this section we will try to add a higher order effect on to our three-

dimensional model of the tether, bending biases. As mentioned before, bending

biases are introduced in the tether after it has been stored on a drum for a long

period of time. When the tether is deployed it will look like a coil. To physically

model this phenomenon would be very difficult since the shape can change as a

function of both the tension in the tether and time. Following along the lines of

the assumed equation model presented in Sub-Section 2.3.2, we will try to

approximate the bending bias in the tether as an equation and then examine our

results.

2.5.1 Helix Equation

The equation we will use is the constant radius helix. The three-dimensional

function is defined by

x = Rcos ( z (Equation 7a)

y = Rsin(2 z) (Equation 7b)

where R is the radius and T is the period of the helix. Figure 4 shows the helix.



Figure 4. A 3D Helix

Using the length of a curve equation, s = 1+ df(x) dx (Equation

3), we can obtain the length of the helix between any two z coordinates, z, and zo,

where z, 2 zo and the height H of the helix is H = z - zo,

L =(z - zo) + 1 = H + 1 (Equation 8)

2.5.2 Helix Model

To complete this model the helix must now be placed along the three-

dimensional model of Section 2.4. The result is displayed in Figure 5. The dotted

line represents the catenary previously solved for and the swirls around it are due

to the helix equation. This solution is obtained by rotating and shifting a piece of

the helix to each segment of the catenary model.

i
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Figure 5. 3D Helix Tether Model

The complexity in this model lies in finding the length of the catenary that

the helix will be placed around and the radius, period, and height of the helix.

Using Equation 8, with L being the overall length of the tether and h being the

height of the helix and the length of the catenary we are solving for we obtain

L 27tr
h t

(Equation 9)

where r is the radius and t is the period of the helix we are solving for. IfD is

the distance between the two endpoints, at D = L the radius r will go to 0 and at

D = 0 the radius r will go to the radius of the drum that the tether is stored on, RD.

By linearly approximating this relationship we obtain the following relation

r= -()D+ R
L Y ~

(Equation 10)

where both D and L are known as inputs to the model. Now, in Equation 9, we

are just left with two unknowns, h and t. Using the same logic in the formulation

of Equation 10, we can say that at D = L the period of the helix t will go to

28



2RD, the circumference of the stored tether. At D= 0 the period t will go to

zero. Again by linear approximations we obtain

t = D (Equation 11)
L

By combining Equations 9, 10, and 11 we can obtain an equation for h in terms

of L and D, both known values.

h = 2 (Equation 12)
L
D 1 +1

2.5.3 Bending Biases Model Results

The computation cost of adding in bending biases is not very high. For

each catenary segment there will be a rotation and a shift of the helix. It may also

be necessary to find the magnitude of each catenary segment if they are not all the

same length. The amount of operations for the entire solution will be (5 or 6)n + Ts .

Though this figure is low, there may be an additional cost of modeling the bending

biases of the tether. If a good visual representation of the tether is desired, many

more tether segments will be needed for the bending biases case as opposed to the

non-bending biases case. For a normal catenary, 20 segments is more than enough

for a good visual representation. With bending biases, 100 or more segments

would be required.

The only major questions of accuracy in this model are the linear relationships

of radius r and period t of the helix with the distance D of the endpoints. In

reality these parameters are probably more linearly related to the tension in the

tether but, we feel that this relationship should give good enough results for the

simulation.



2.6 Forces Model [8,9]

To determine the forces acting on the ROV in the static case, this section

calls on the equations obtained the Appendix A and B, specifically Equations A19

and A26. The constant tension To induced in a tether due to a current flow can be

solved from the transcendental equation

S = T sinh L (Equation 13)
K TD)

where S is the length of the tether from the minimum point to the ROV, K is the

overall drag coefficient defined in Appendix A, and L is the span in x-axis from

the minimum point to the ROV. The tension Tw induced at the ROV attachment

point caused by the tether's weight is

T, = gy (Equation 14)

where pi is the weight per unit length of the tether and y is the span in the y-axis

from the minimum point of the tether to the ROV. The total tension in the tether

at the ROV attachment point will be the addition of these two tensions. It should

be noted that as the weight in the tether goes to zero the tension will be that found

in Equation 13 and as the current goes to zero the tension will be that found in

Equation 14.

The procedure of solution is very similar to the three-dimensional procedure

stated in Section 2.4. First the catenary plane is rotated to the x-y plane. Then the

tension at the ROV is found in this two-dimensional reference frame. This is

accomplished by using the parameters of the two-dimensional rotated catenary to

solve Equations 13 and 14. Just as the segments of the catenary are rotated back



to the catenary plane, so will the tension vectors. These rotated tension vectors

will be the forces acting on the ROV.

One might expect that since the position of the tether segments is known

that balancing the forces would be a quicker way to solve for the forces acting on

the ROV. However, if there is a weight or lift in the tether, the three-dimensional

shape of the tether may not be exactly correct, as stated in Sub-Section 2.4.3, and

a balance of forces would not result in the correct forces on the ROV.

Essentially, using Equation 13 and Equation 14 finds the tension as if the

tether was in the exactly correct position. Since the variable To in Equation 13 is

on the inside and outside of the transcendental function, the model will need to

compute a numerical solution to obtain this tension. An interpolation table could

be used to help speed up the computation since it would only be a linear array

based on one variable.

2.7 Tether Modeling Results

Overall the Catenary Assumed Equation Model presents a reasonably

accurate model of the tether that can be computed very quickly. The approximations

are well-founded and lead to a great reduction in computation time compared to

the dynamic physical models and the finite element model discussed in Section

2.2 and Sub-Section 2.3.1, respectively.

There are limitations, however, and they have been stated throughout this

chapter. The selection of a tether model to use in a simulation should be based on

a combination of the type of mission, its training objectives, and the speed of the

computer used. In most cases the Catenary Model with the additions described in

Sections 2.4, 2.5, and 2.6 should be sufficient. However, if a dynamic analysis is

needed to teach a specific type of goal then it would be necessary to implement a



tether model that incorporates the motions of the ROV and purchase a very fast

processor. Another possibility in this case is to teach those goals to the pilots in

the field and not in simulation.



3.0 Design of Sensor System for Tether Measurement

This chapter describes a possible sensor system using strain gauges to

determine the position of the tether. Section 3.1 discusses the background of the

strain gauge technology that we plan to use and how these measurements will

produce a three-dimensional shape. Section 3.2 discusses the results expected

from this application, including the density of sensors needed, their accuracy, and

cost. Section 3.3 examines the possibility of alternative technologies. Section 3.4

describes future research that could further develop the work presented in this

chapter.

3.1 Strain Gauges [10]

Strain itself is defined as the ratio of the change in length of a material to

its initial unstressed length. For any structure there are three types of strain that

we will be concerned with, axial, bending, and torsional. These strains will be

most easily described in reference to the tether.

a)

b)

c)

Figure 6. Types of Strain: a) Axial b) Bending c) Rotational

Axial strain is induced when two ends of the tether are pulled apart as
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demonstrated in Figure 6a. This change in shape is due to the tension in the

tether. Since we do not want this type of strain to enter into our measurements,

our positioning of sensors will have to compensate for this. Compensation techniques

are discussed later.

Bending strain occurs in the tether when the tether is forced to a particular

angle or radius of curvature such as in Figure 6b. The top side of the tether, as

shown in the figure, would experience an elongation and the bottom side of the

tether would experience a compression. It is this differential in strains that will be

measured.

Torsional strain occurs when the tether is twisted about its longitudinal

axis, as shown in Figure 6c. Measurements of this type of strain are needed since

they will affect how the sensors are orientated in the global coordinate frame.

Strain gauges are able to make these measurements since the electrical

resistance of the gauge is proportional to the amount of strain acting on it. This is

similar to any wire; when it is stretched its cross sectional area decreases, therefore

its resistance increases. In order to measure small amounts of strain and accordingly

small changes in resistance, the usual electrical configuration, the Wheatstone

Bridge, shown in Figure 7, is used. Note the signs associated with each gauge

numbered 1 through 4. The total strain is always the sum of the four strains.

ET = E1 - E2 + E3 - E4 (Equation 15)

The total strain is represented by a change in Vout. If each gauge had the

same positive strain, the total would be zero and Vout would remain unchanged,

one-half of the regulated DC voltage. If the strain on gauges 1 and 3 is the

negative value of the strain on gauges 2 and 4, the total strain would be 4 times



the strain on any one of the gauges. This situation corresponds to a larger output

voltage. Therefore the bridge network gives the sensor system greater sensitivity

and resolution than using a single strain gauge would.

Figure 7. Wheatstone Bridge Network

However, not all four gauges are needed. Due to the small size of the

tether and cost constraints, the rest of this chapter will assume that only gauges 1

and 2 will be used, with gauges 3 and 4 being omitted and Vout(-) being tied to

ground. The effect of having only two gauges will be dependent on the level of

noise in the electrical components connecting the sensors and the amount of

sensitivity desired. The amount of electrical noise inherent in the sensor system

needs to be found through experimentation and the achievable sensitivity will be

discussed more in Section 3.3.

There are several reasons for choosing strain gauges to measure the position

of the tether. One reason is because strain gauges can be used for measuring both

the bending and twisting of the tether. This is a simple first step since only one

type of sensor needs to be understood. At a later stage other possible technologies

can be examined and combined to form another sensor system.
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A practical advantage of using strain gauges is the low number of electrical

lines needed for communication and power. Integrated circuits are available (of

Maxim Integrated Products, Inc., MAX 110/MAX 111 and MAX 1246) which

incorporate analog to digital conversion with on-chip serially-based communication

protocols, allowing the analog outputs of a long line of sensors to be individually

selected [ 11]. Therefore only a few electrical wires are needed to run down the

length of the cable; each sensor does not need its own communication line. It

may be possible to use other types of sensors in this way but, development of

alternative systems would require a significant amount of research.

Though strain gauges are usually used to measure the strain on very stiff

pieces of metal, their specifications still meet the requirements of a thin and

highly bendable cable. One type of strain gauge, made from etched foil encapsulated

in a polyimid film by Omega Engineering, Inc., has a minimum bend radius of .3

mm, a maximum elongation/compression of 5%, and dimension of 10.9 mm by

5.9 mm [10].

The minimum bend radius needed is determined by the radius of the

tether. Since most tethers have a radius of at least 1 cm, the specification of .3

mm for the minimum bend radius will be more than enough. The maximum

elongation or compression for tethers with copper wire (the limiting factor) is

about .5%, a magnitude below the specification for the strain gauges [12]. Since

most tethers use copper wire, we will assume that the maximum elongation of

.5% is normal for almost all tethers. Since the circumference of a tether with a

radius of 1 cm is a little greater than 6 cm, it is feasible to place a few .6 cm strain

gauges on its exterior.



3.1.1 Bend Measurements [10, 13]

The layout of the sensors to measure the amount of bending strain is

shown in Figure 8. The numbers of the strain gauges, 1 and 2, correspond to their

position in the bridge network in Figure 7, omitting strain gauges 3 and 4. The

arrangement, as shown in Figure 8, will only measure the bending strain in the

vertical plane. Another set of sensors will need to be place on the sides of the

tether in order to measure the bending strain in the horizontal plane.

Figure 8. Location of Bend Sensors

If the ends of the structure in Figure 8 are bent downwards, Strain Gauge 1

(SG1) will be elongated and Strain Gauge 2 (SG2) will be compressed. Therefore

the resistance of SG1 will decrease and the resistance of SG2 will increase. This

will cause an increase in Vout above its normal level, one-half of the regulated

voltage. If the ends of the structure are bent upwards, Vout will decrease.

This arrangement also compensates for any axial strain that may be present

in the tether. Any axial strain pulling the tether apart will cause both SG1 and

SG2 to elongate. Though their resistances will be different than their reference

resistance, the resistance of SG1 will equal that of SG2 and Vout will remain at

one-half of the regulated voltage.

1-161-



The next step in finding the position of the tether segment is to use the

measurement of bending strain to find the radius of curvature of the tether segment.

Consider the tether segment bent around the point A, as shown in Figure 9. The

neutral surface is defined as the surface of the material that is not stretched or

compressed. The radius of curvature R is the measured distance between the

neutral surface and the point A. If 0 is the angle in radians between the ends of

the tether segment, then the length of the neutral surface I, is

1, = RO (Equation 16)

if the radius of the tether is y, the length of

of the compressed surface 1, are as follows

le = (R + y)O

and

Ic = (R- y)O

the elongated surface le and the length

(Equation 17)

(Equation 18)

Elongated Surface

Compressed
Surface

Figure 9. Diagram of Bent Tether
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since the length of the neutral surface is the same as the length of the original

unbent tether segment the strains at the elongated surface ee and the compressed

surface ec are

, - I _ (R + y)O - R8 y

1n RO R
(Equation 19)

and

I- , _ (R- y)O- RO y

ln RO R
(Equation 20)

From Equation 15 the total measured strain is the difference of the two

strains. This allows us to obtain an equation for the radius of curvature of the

tether segment

-ec = 2 y  2 y

R ET

(Rh,I

(Equation 21)

(O,Rv)

Figure 10. Determining the Resultant Radius of Curvature

39

I



As stated above this method is only for determining the bend in the vertical

plane. The method will be the same for the bend in the horizontal plane. Figure

10 illustrates the combination of the two radius of curvatures into one resultant

radius of curvature. If the vertical radius of curvature R, and the horizontal radius

of curvature Rh are known then the resultant radius of curvature R, comes simply

from the right triangles formed

R, = R+ Rh2  (Equation 22)

and the angle of elevation 0 is simply the tangent of the magnitudes of the radii

of curvatures, disregarding the effects of the torsional strain on the tether,

06= tan( R  (Equation 23)

For this sensor system the distance between the sensor nodes will be the

length of the tether segment. The entire segment will be assumed to have the

same radius of curvature as measured at the sensor node. Since the relative

position of the tether segment is known, it can be attached to the end of the

previous segment location. Thus given a particular starting point and the bending

strain in the horizontal and vertical directions of each tether segment, the overall

position of the tether can be found. It should be noted that this formulation of the

tether's position assumes that the tether will not be twisted. The measurement

and effects of torsional strain are examined in the next section.



3.1.2 Torsional Measurements [10, 13]

The layout of the sensors to measure the amount of torsional strain is

shown in Figure 11. The numbers of the strain gauges, 1 and 2, correspond to

their position in the bridge network in Figure 7, omitting 3 and 4. The strain

gauges depicted in Figure 11 are rotated by 45" from the horizontal to enable them

to measure the torsional strain and not include any effects from the axial or

bending strains. However, this orientation will cause the output of each of the

strain gauges to be one-half that of an on-axis strain gauge.

11

Figure 11. Location of Torsional Sensors

If the left side of the tether is held and the right side is twisted clockwise,

Strain gauge 1 (SG1) will be compressed and Strain gauge 2 (SG2) will be

elongated. This will cause the resistance of SG1 to increase and the resistance of

SG2 to decrease. Therefore, the value of Vout will decrease. If the right side of

the tether is twisted counter-clockwise, the value of Vout will increase.

This arrangement of sensors compensates for both axial strains and bending

strains. If the segment of tether is either pulled or bent, the resistance of the strain

gauges will change by the same amount and Vout will remain unchanged.

A twisted tether segment is illustrated in Figure 12. The torsional strain

measured by the sensor arrangement in Figure 11 is defined as the angle of

I\ 1



deformation BAB' in radians, or angle 0. The angle BOB' is the angle of twist 0

of the length of AB. The angle of deformation can be described by the equation

BB' RO
tan =

AB L
(Equation 23)

since BB '= RO, and AB = length of segment L. Therefore the angle of twist 0 is

L
0= -tan

R
(Equation 24)

Figure 12. Diagram of Twisted Tether

In Sub-Section 3.1.1 the orientation and position of the tether segment was

solely determined by the direction and magnitude of the resultant radius of curvature.

The effects of torsional strain were not included. The calculation of the resultant

radius of curvature, presented in Sub-Section 3.1.1., will still hold since the two

pairs of bend sensing strain gauges are still orthogonal. However, the inclusion

of torsional strain will cause an additional rotation of the coordinate system. The

angle of rotation for a given tether segment will be the rotation of the previous

segment plus the angle of twist 0, determined by Equation 24, for the current

tether segment. Therefore both the position and orientation of the tether segment

will be dependent upon the previous segment's position and orientation.



It is likely that the spacing of the bend sensor nodes and the torsional

sensor nodes will be different. In this case the angle of twist for the bend sensing

node will have to be interpolated from the two nearest torsional sensors.

3.2 Expected Results of Strain Gauge Measurements

This section discusses the expected results from using strain gauges to

measure the position of an underwater tether, as presented in Section 3.1. Sub-

Section 3.2.1 discusses the recommended density of the sensor nodes. Sub-Section

3.2.2 raises issues of the accuracy of the system. Sub-Section 3.2.3 discusses

issues of cost.

3.2.1 Density of Sensors

The required density of sensor nodes is very tether specific. Mainly

what is needed to determine the density of sensors is the flexibility of the tether

and how well the bends and twists are distributed along the tether's length. At

this stage of research, some of these values are not well known and this discussion

will be somewhat qualitative.

First we will discuss the bend sensor nodes. The one measurement that is

required to calculate the needed density of the bend sensors is the maximum rate

of change of the radius of curvature. Each tether segment is assumed to have a

constant radius of curvature along its length. In order to determine the number of

segments needed for a given length, the maximum amount of change in the radius

of curvature is needed. This measurement is difficult to quantify and has not yet

been made.

An approximation for the density of the bend sensor nodes can be found in

another way. The minimum radius of curvature for a tether is a measurement that



is known. For some highly flexible tethers, the minimum radius of curvature is

about .25 meters [12]. A coil of tether wrapped at this radius would complete a

circle in about 1.6 meters of tether. It would seem reasonable that it would

require 3 or 4 arcs of constant curvature to approximate one coil of tether. This

would make the distance between the bend sensors about .4-.5 meters. We will

use .5 meters throughout the rest of this chapter for ease of computation.

Determining the density of rotational sensors raises a similar problem.

The measurement that is needed is the rate of change of the angle of deformation,

or rotational strain, as defined in Sub-Section 3.1.2. As an approximation we will

assume that the twists in the tether are well distributed along its length. Therefore

the rotational strain will be relatively constant along the tether.

In order to obtain an acceptable level of accuracy, it would seem reasonable

to find the rotational strain every 1-2 meters. For the calculations in the rest of

this chapter, the spacing between the rotational sensor nodes will be assumed to

be 1 meter.

3.2.2 Accuracy of Sensors

There are a number of sources of error that may arise in this measurement

system. Some sources of error are found in almost any strain gauge measurement.

These include misalignment of the gauges, voltage drops in the regulating voltage

due to long lead wires, changes in temperature, and the tolerances for certain

properties of the strain gauges.

The tolerances of the strain gauges will come into effect if the exact values

are not experimentally measured and taken into consideration during the sensor

system's operation. The two main measurements of a strain gauge are its nominal

resistance and its gauge factor. The nominal resistance is the resistance of the



strain gauge when it is not under any strain. The gauge factor is the proportionality

factor between the strain and the change of resistance for a given gauge. Changes

in both of these values can directly affect the accuracy of the output voltage.

If the values of each gauge is measured individually and taken into

consideration when measuring the strain in the tether, the variances between strain

gauges will be insignificant. However if the gauge factor and the nominal resistance

of the strain gauge are not measured and are assumed to be the quoted value,

significant error may arise.

The tolerance for the gauge factor of a strain gauge, and therefore the error

in the output voltage, is +1% [10]. The tolerance for the nominal resistance is

under ±.4% [10]. This tolerance could lead to a significant amount of error in the

output signal, dependent upon its size. The worst case would be to have one

resistance be 1.004 the quoted value and the other resistance be .996 the quoted

value. If the regulated voltage was 10 V, the differences in resistance would lead

to a change in the output voltage by 2 mV. Though this may seem quite small, it

could be a large percentage of some smaller signals.

Temperature changes can also have an effect on the operation of the strain

gauges. The representation of the apparent strain as a function of temperature is

called the temperature characteristic. For typical strain gauges, this measurement

ranges from about lxl'05 to 7x105 (1/C) [10]. This means that if the temperature

is only known within ±100 C, the error of the output signal will be within +1%.

If a guess can be made within ±10' C, the error will be within ±. 1%.

If further decreases are needed some temperature circuits could be

constructed to determine the temperature within a few degrees ("C). Then the

only error would arise from the tolerance of the temperature characteristic, which

is about 1xl06 [10]. This would correspond to an error well within .01%.



If the tether is very long, then the resistance of the lead wires connecting

the strain gauges to the regulated DC voltage could lead to a significant drop in

the voltage across the strain gauges. The amount of the drop can be calculated

and be accounted for in the operation of the sensor system since the resistances of

the wire and the sensors are readily available. The size of the drop can be

minimized by either using very thick wire with low resistance or using higher

resistance strain gauges. The use of local voltage regulation at each node could

also alleviate this problem.

Misalignment of the strain gauges is also a large source of error. If both

sensors in a pair are misaligned by only 1 or 2 degrees, the error in the output

signal could be a few percent [14]. Since there is no way of knowing how much a

sensor is misaligned once the system is constructed, this error cannot be solved

and accounted for. Careful application of the strain gauges and the use of larger

strain gauges are the best strategies to minimize this source of error.

3.2.3 Cost of Sensors

The cost of this sensors system is divided into the following three parts:

the cost per sensor node, the cost of the hardware at the computer terminal, and

the cost of constructing the sensor system. The cost per sensor node is the cost of

the strain gauges plus the communication ICs mentioned in Section 3.1. Each

strain gauge costs around 5 dollars [10]. The ICs for each node would also be

around 5 dollars [ 11]. Given that the suggested spacings of the bend and torsional

sensors are .5 meters and 1 meter, respectively, and that there are two strain

gauges per node, the total additional cost per meter is around sixty-five (65)

dollars. For reference, the cost of most tethers are around thirty (30) dollars per

meter [12].



The cost of the hardware will include the serial communication board

mentioned in Section 3.1, which is a few hundred dollars, and a computer to

determine and display the tether's position using the strain gauge measurements.

The biggest expense of the measurement system may be in its construction. Since

the placement of the strain gauges need to be very exact, it may require custom

design and construction. The relatively high costs and the difficulty to manufacture

suggests that the current design of the sensor system will only be used for

experimental purposes. Many changes will be needed before this could be available

commercially.

3.3 Alternative Technologies

There are several other technologies that may lead to improvements in the

current system. Some preliminary research has been conducted in these areas but,

more extensive studies are needed to understand the feasibility of them all.

3.3.1 Fiber Optics

Fiber optics is one possible alternative. Using a fiber optic cable as a

transmission line, it may be possible to measure the bend of the cable by examining

the reflections of an optical pulse sent down the line. Placing fiber optic sensors

along the cable may cost less since there would be fewer parts to add to the tether.

The main concern with fiber optics is that this approach may require a separate

line for each sensor. However, there has been some research in methods of

communicating with many fiber optical sensors on one line [15].

3.3.2 Magnetic Sensors

The application of magnetic sensors should also be examined. In the



current design, the orientation of each tether segment is found by a relative

measurement of the angle of twist in the cable. Using the earth's magnetic field,

magnetic sensors can determine the direction of magnetic north. Combining this

information with one other measurement, such as the direction of the earth's

gravity, the exact orientation of an object could be determined. Therefore the

error in this measurement would be based only on the accuracy of the individual

sensors and not on all of the previous orientation sensors. Honeywell, Inc.,

currently makes some integrated circuits (ICs) that will determine the orientation

of an object. There are concerns of cost and size. It is doubtful that a number of

ICs will fit on the limited space of an underwater tether and be cheaper than a

strain gauge node.

3.3.3 Strain Gauge Rosettes

Another option, though not really a different technology, would be to use a

particular arrangement of strain gauges, called a rosette. Rosettes are usually used

when the axis of strain is not known. In this case, one rosette could be used to

measure both the bend and torsional strains in the tether. If the density of the

bend sensors is approximately the same as the density of torsional sensors then it

may be better to use a single rosette as opposed to two types of strain gauge

orientations. However, if the spacings of the bend and rotational sensors are quite

different it would probably cost more to use rosettes since they are much more

expensive than normal strain gauges.

3.4 Future Research

There are many areas of future research related to the work presented in

this chapter. The eventual goal of this all of this research would be to create a



working sensor system that is reasonably priced and durable. The first step

towards that goal would be to investigate the alternative technologies presented in

Section 3.3.

Beyond examining new technologies, another area of research would be to

obtain a better understanding of the required densities of the relative sensors and

how the errors of each segment propagate along the tether. This process would

probably need to be done both in experimentation and analysis. As mentioned in

Sub-Section 3.2.1 there are some measurements that should be made in order to

accurately determine the accuracy given a particular density of sensors, namely

the rate of change of the radius of curvature. During this process, it would also be

important to examine the possibility of combining the sensor system with a tether

model. As mentioned in the introduction, this combination could greatly decrease

the system's cost.

Before building a large scale production of the sensor system, the next

step would be to build a sensor system for a short piece of tether. The lessons

learned in this phase, especially in the construction of the sensor system, are

necessary before any final product can be designed. In addition, many tests can

be taken on this smaller prototype, such as accuracy and durability.

The final step, if deemed possible by the previous research would be to

build a large scale test of the sensor system. Even if this system is not practical

enough to be sold commercially, tests on the actual behavior of the underwater

tether would be valuable in evaluating and designing physical models of the

tether.



4.0 Conclusions

Solving the problem of tether entanglement in underwater remotely operated

vehicles is a very complex problem. This thesis presents two attempts at trying to

determine the position of the tether. One attempt is through tether modeling.

Previous efforts in this area tried to model as many different aspects of the

tether's behavior as possible. However, these models are not able to include the

higher order effects of bending biases and creep. Essentially this limits the use of

using only tether models to simulators and training tools.

Chapter 2 discusses the formulation of a simple tether model that can

easily be placed into a virtual reality simulator. For this purpose, the model's

speed of computation is more important than the absolute accuracy. The catenary

assumed-equation model is a good trade off between computation time and accuracy.

It can be computed very quickly and in certain conditions this model is very close

to the real solution.

The other attempt to determine the position of an underwater tether is

through measuring it directly. Chapter 3 presents a general design for a possible

sensor system using strain gauges. Though further research is needed to actually

construct the sensor system, this thesis examines the feasibility of this system and

some of the expected problems that may arise. The idea of combining tether

modeling and sensor measurements has only been mentioned and still requires

further research.



Derivation of the Flow Catenary [8]

This derivation will show that the equilibrium shape of a inextensible and

neutrally buoyant cable immersed in water with a uniform velocity V is in fact a

catenary, f(x) = acosh(x/a). Figures Al and A2 below show the coordinate

system and the symbol definitions with the following equilibrium equations:

(Tx')'+F = 0 (Equation Al)

(Ty' )' +. = 0 (Equation A2)

subject to

(x')2 +(y) 2 = 1 (Equation A3)

where T is the tension in the cable and F and F, are the normal drag forces per

unit length of tether due to the current.

L

T

F r

Y S

X
Figure Al. Tether diagram
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Figure A2. Forces acting on Tether element of length ds

If the fluid density is p, the diameter of the chain is c (where c is assumed

constant), and CD is the normal flow coefficient of the cable, then according to

the cross-flow principle

F = pcCD V2 sinn (Equation A4)

and

F. = - pcCDV2 cosQ (Equation A5)

where Fx and F,. are the forces per unit length of cable in the x and y directions

and Q is the local angle at a given length s. Essentially, the cross-flow principle

assumes that the force component along the axis of the chain is only due to skin

friction. If the diameter of the chain is fairly uniform along the length then this

tangential force component can be neglected and the resultant force is entirely

defined by the current normal to the chain. This principle would clearly break

down if the variation of c with s were 'strong.' Indeed, while there are many

other structures on this principle, it has found wide application and will be adhered

to here for simplicity. Since V, = VcosQ, the above equations become
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Fx = PV2 DcC cos2 sinQ

and

F, = -2 pV2 cCD COs 3 0

Clearly, cosQ = x' and sinQ = y'.

equilibrium become

(Equation A7)

Writing K = (1/ 2)pV2cCD, the equations of

(Tx')' +K(x' )2y' = 0

and

(Ty' )' -K(x' )' =0

(Equation A8)

(Equation A9)

Pulling out the differentiation of the first terms of the equations leaves

Tx" +T'x' +K(x' )2y'= O

and

Ty"+T y' -K(x') 3 = 0

(Equation A 10)

(Equation All)

Multiplying (A10) by x' and (Al 1) by y' and adding it is seen that

T + T(x' x" +y' y')= 0 (Equation A 12)

and noting that x' x" +y' y"= 0,on differentiation of (A3), it follows that

T = 0 - T = constant. (Equation A13)

This is not a surprising result since the cross-flow principle is based upon the

assumption of zero force along the chain. Again, multiplication of (A10) by y'

and (All) by x' followed by subtraction yields
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(Equation A6)



(dy
Ydx)

K
- = constant.
T

(Equation A14)

(Equation A15)

d dy K ds

dx dx ) T dx
=K +(dy

-T dx
(Equation A16)

which on integration yields

= sinh x + C
(T )

where C=O since(dy/dx)=O at x=O.

(Equation A17)

A further integration using y = 0 at

x = 0 yields

T K y - cosh -x 1 (Equation A18)

Surprisingly, therefore, the equilibrium shape is a simple catenary. If the length

of the chain is S, the tension T may be obtained from the transcendental equation

TS K
S = -sinh KL

K T
(Equation A19)

where L is the x-distance between the two endpoints.

T(x" y'-y" x') + K(x' )2 = 0

That is

dy

dx

T(y' / x')'= K =-



Derivation of the Weight Catenary [9]

This derivation will show that the equilibrium shape of a flexible cable

hanging from its ends (and supporting no other weight but its own) is a catenary,

f(x)= acosh(x/a). Figure A3 shows a cable hanging from a horizontal beam.

The lowest point of the cable is a (O,a), where a is a constant that will be

determined later. The point (x,y) is a point somewhere on the cable, and can be

found by the relation y = f(x). It will be shown that f(x) = a cosh(x / a).

The cable will be assumed to have a uniform density p. For instance, the

cable could weigh p Newtons per meter. If sis the length of cable between

points (0, a) and (x,y) then the weight of that potion is p s. This force will act

downward on point (x,y) as shown in Figure A3. Since the forces acting on the

cable are in equilibrium, the upward force of the tension T must balance this

weight force.

S= f(x)

TsinO

TcosQ

Figure A3. Diagram of a cable hanging under its own weight
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The tension T at (x,y) has horizontal and vertical components Tcos)0 and

TsinKI, respectively, whereas the tension H at (0,a) is entirely horizontal. The

upward force balancing F is therefore Tsin Q, while the horizontal forces H and

TcosQ must cancel each other's effect. In other words, F= Tsinfn and

H = TcosQ. Since T is unknown, we will try to eliminate it by using the slope

m at (x,y)

sinQ FIT F = (1sm= tan2= = - s
cos H/T H HJ

(Equation A20)

Let k = p /H(constant because the density u and the tension H at the lowest

point of the cable are constant). Then m = ks. Since m = dy / dx, this is a differential

equation involving out unknown function y = f(x), which on integration yields

dy = sinh(kx) + C
dx

(Equation A21)

where C = 0 since m = dy / dx = 0 at x = 0. Hence, a further integration using

y = a at x =0 yields

1 k )
y = -cosh(kx) + a--

k k
(Equation A22)

conveniently choosing a = 1/ k reduces the equation to

y = acosh(x/a) (Equation A23)

which is the equation that we were trying to derive, the catenary. An interesting

problem is now to solve for the tension T at a given point (x,y). From Equation

A20 and A21 we note that

(Equation A24)ks = sinh(kx)



differentiating both sides with respect to x and noting that cos Q = dx / ds leads to

sec 9 = cosh(kx) (Equation A25)

using the relations given in the text above, H = TcosQ and H = u/k,

T = a cosh = py
(a)=

(Equation A26)

Thus the tension on the point (x,y) is simply the density p times the height, or

y-value, of the point.
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