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ABSTRACT

Over the past ten years, many designs for electrostatic micromotors have emerged. Recently, a

new linear electrostatic micromotor has been designed which, unlike most micromotors, is

purposefully actuated by both in-plane and out-of-plane forces. However, using repulsive out-of-

plane forces introduces an instability into the motor. This instability must be corrected using

closed-loop control, which becomes an essential part of the design. In this thesis, a milli-scale

model of the new micromotor is built to test the design in a low-cost manner. All electronics for

the model are also designed and built, including high-voltage drive circuitry, position-sensing

circuitry, and an RC network to interface the electronics to the motor itself. Using the position-

sensing circuitry and the milli-scale motor, a capacitive position-sensing scheme is

experimentally demonstrated for detecting the motor position in two directions: in-plane and out-

of-plane. The in-plane position measurement accuracy is roughly 0.06 mm.

Thesis Supervisors: Carl Taussig, Hewlett-Packard Research Laboratories
Jeff Lang, Associate Director of MIT LEES
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1.0 Introduction

The idea of making micron-scale electrostatic motors using integrated circuit fabrication

technology has existed for over a decade. In that time, many different micromotor designs have

emerged. [1-2] This thesis explores a new linear electrostatic micromotor purposefully actuated

by both in-plane and out-of-plane forces. Two main parts, a movable rotor and a fixed stator,

constitute the motor. The rotor and stator are parallel, insulating plates on which metal electrodes

have been printed. When these electrodes are set at certain voltages, electrostatic forces are

created in two orthogonal directions, moving the rotor. Although this motor design incorporates

concepts from past designs, it is unique because it combines electrostatic repulsion, closed-loop

control, and position-sensing in a new way.

One advantage of this design is that it uses repulsive out-of-plane forces to help prevent

the rotor from crashing into the stator. However, when the repulsive forces are used, an instability

in the rotor's in-plane equilibrium is created. To counteract this instability, an active control

system must be implemented. In its final incarnation, the motor is meant to be fabricated on

micron scale. However, to test the design at low cost, large-scale prototypes. All experiments in

this thesis deal with one of these millimeter scale models.

Prior to this thesis, the motor was designed by Carl Taussig of Hewlett-Packard Research

Labs, who also performed preliminary force and position-sensing measurements on a first-

generation milli-scale motor prototype. Taussig also designed the motor prototype and

mechanical setup used during this thesis project. The motor prototype is shown at the far right in

Figure 1.1, which depicts a block diagram of the motor and its control system .

Figure 1.1: Block diagram of control system; thesis work in gray

The gray blocks of Figure 1.1 represent hardware that was designed and built during this thesis.
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They show the electronics that were designed for the motor: 1) position-sensing circuitry to

condition the feedback signal, 2) high-voltage amplifiers to drive the motor, and 3) an RC

crossover network to connect the position-sensing circuitry and the high-voltage amplifiers to the

motor itself. In addition, a DSP (digital signal processor) would be needed to perform the actual

control algorithm to determine the stator voltages. Using the position-sensing circuitry and the

mini-scale motor, a capacitive position-sensing scheme was experimentally demonstrated for

detecting the motor position in two directions: in-plane and out-of-plane.

This thesis is organized as follows. Chapter 2 describes the general motor design,

principles of operation, and related research. Chapter 3 describes the specific motor

implementation (milli-scale model) that was used during this project. The position-sensing

circuitry, high-voltage circuitry, and RC network are discussed in Chapters 4, 5, and 6,

respectively. Finally, Chapter 7 concludes with a summary and suggestions for future work.
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2.0 Background

2.1 Previous work on this design

The micromotor design explored in this thesis was created by Carl Taussig of Hewlett-

Packard Research Laboratories [3] and is described below. To test the motor's principles of

operation, Taussig also performed several experiments, described in Section 2.1.3. This thesis

differs from those experiments because it is a step toward a complete, integrated prototype, going

beyond testing isolated concepts.

2.1.1 Motor's physical description

The motor is composed of two main pieces, a rotor and stator, shown below in Figure 2.1.

Y 4-t~ -plane motion

% Xout-of-plane

staor (trede

drtve electrodes

Figure 2.1: Basic motor

Physically, both pieces are similar, however they differ in function. Each piece is a flat insulating

plate with parallel conducting strips (drive electrodes) on one face and a ground plane on the

opposite face. The rotor and stator are placed so their planes are parallel and their electrodes are

facing each other (thus, the rotor electrodes cannot be seen in the figure). During operation, the

stator remains fixed in place, while the rotor moves in a straight line, as shown in Figure 2.1. The

out-of-plane distance between the rotor and stator is called the rotor-stator gap.

Because Figure 2.1 is merely a sketch, it leaves out some details. First, the rotor does not

levitate in mid-air, as shown in the figure. The rotor must be suspended by supports which are

very flexible in the in-plane direction. The characteristics of these supports are important for

determining how gravity affects the rotor. Second, although Figure 2.1 shows the rotor and stator

as being the same size, the stator is actually larger and has a greater area covered by electrodes.

This allows all of the rotor electrodes to be useful throughout a range of in-plane motion.
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'The drive electrodes are each assigned to a group in a periodic fashion, shown in Figure

2.2. In this thesis, the electrodes have been divided into groups of four. All electrodes of the same

group are electrically connected. These groups are called the phases of the motor. The electrode

width and spacing are the same for both rotor and stator. The motor's phases are depicted in

Figure 2.2, which shows an 8-electrode-wide piece of the motor's cross-section.

Y

tx mo (ud plan)

rotor 1 . --- kulator
E F G H E F G H

stator +-f' -  rs-- tor

met(- ( Plane)
Al electrodes with the same label are
electricaly connected,

Figure 2.2: Motor phases: electrode grouping

2.1.2 Motor function

There are a few aspects of the motor's functioning which, when combined, make it a

unique design. First, the motor can generate both in-plane and out-of-plane forces. Second, the

motor uses closed-loop control to take advantage of the repulsive out-of-plane forces. Third, the

motor uses a position-sensing scheme in which the drive-electrodes are used as position-

dependent capacitors. The rotor's position can be measured by sensing changes in capacitance.

Electrostatic forces

To actuate the motor, certain patterns of voltage must be applied to the rotor and stator

phases. These voltage patterns cause electric fields to take a certain shape, in turn causing forces

on the rotor in the x (in-plane) and y (out-of-plane) directions. For example, if voltages are

applied to the rotor and stator as shown in Figure 2.3a, the forces in the x and y directions which

Chapter 2: Background



result are those shown as a function of rotor displacement in Figure 2.3b.

S-2d

rotor
V V 0 0 V V 0

Y x-force on rotor

' d x-lsplacement

%I % n n \/ \/ n y-force on rotor
V V J J v V

stator -
-2d

Motor shown at x-displacement=O
V=non-zero voltage

x-displacement

O=ground

Figure 2.3a: Example voltage pattern Figure 2.3b: Rough sketch of corresponding
electrostatic forces

By judiciously choosing the voltages on the motor phases, the forces on the rotor can be

controlled. From Figure 2.3b we see that there is a region where the y-force is positive, repulsing

the rotor away from the stator. This design feature is advantageous, because a repulsive force may

prevent the rotor from sticking down onto the stator, as may happen in other micromotors where

such control over the y-forces does not exist.

However, we also see from Figure 2.3b that when the y-force is repulsive, the x

equilibrium position is unstable. Because of this, the motor must be controlled using a closed

loop to stabilize the x-position while maintaining a repulsive out-of-plane force.

To estimate the forces, rough calculations were performed. To simplify the calculations,

the voltages on the rotor and stator were assumed to be sinusoidal in space, with amplitudes of V0.

These calculations are worked out in Appendices A and B, and the results are shown below

2 2
max(F) E 1 - tanh2 )) (2- 1)

2 4d

7E V o
max(F x ) = (2-2)

16d 2 sinh 79
2d

where d= 1/4 spatial period (as shown in Figure 2.3b)
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g= out-of-plane gap between rotor and stator

These force equations can be used to estimate the forces per area for a given motor size,

voltage, and configuration. Typical force densities for the motor Taussig used (parameters given

in Section 2.1.3) were estimated to be 1.9 N/m2 out-of-plane and 1.46 N/m 2 in-plane. Typical

force densities for the motor used in this thesis (parameters given in Section 3.1) were estimated

to be roughly 4.2 N/m 2 out-of-plane and 0.8 N/m2 in-plane for g-0.015" and for V0=400 V.

Position-sensing

In order to perform closed-loop control, a feedback position signal is necessary. The

position-sensing method outlined below was developed by Carl Taussig, and the testing of the

method forms the core of the thesis. In this design, the motor drive electrodes perform double-

duty. Not only are they used to actuate the motor, but they are also used to detect the rotor's

position, since the rotor-stator capacitance is position-dependent. The capacitance can be

detected by superimposing high-frequency, low-voltage signals (dither signals) onto the rotor and

measuring how much of these signals gets capacitively coupled to the stator phases. For a four-

phase motor, two frequencies are sufficient to uniquely distinguish rotor positions throughout

translation in y and throughout one spatial period in x. In this situation, eight signals are

produced, each signal indicating how much of each frequency is coupled into each stator phase.

Suppose the stator phases are labeled A, B, C, and D, and the two dither frequencies, fl

and f2, have been superimposed on the rotor electrodes as shown in Figure 2.4 below. Then define

Vxi as the amplitude of the dither signal of frequency fi measured from stator phase x. The eight

"raw" position signals produced can be labeled VAI, VA2, VB1, VB2, VC1, VC2, VDI, and VD2.

Taussig has shown that these eight signals can be combined to form two in-plane position error

signals: a direct signal (Ed) and a quadrature signal (Eq).

Ed = (VAI + VC2)-(VA2 + VCI) (2-3)

Eq = (VB 2 + VDI)-(VBI + VD 2 ) (2-4)

When normalized, these two signals uniquely identify the in-plane position of the rotor within one
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spatial period.

ERected, normalized Ed' Eq

Y

L.x

rotor
f, f, f, t2 1 fl 12

ABCDABC
stator

Motor shown at x-dlspolaement=0O
(x origin different from previous figure) Normaled x-dpacemer

Figure 2.4: Normalized in-plane and quadrature position-error signals

To see how Equations 2-3 and 2-4 work, we need to look at the forms of the Vxi signals. For the

setup of Figure 2.4, the Vxi signals can be approximately described as follows:

VAI = AAlcoskx+ BAl

VC 2 = AC 2 coskx + BC2

VB 2 = -AB 2 sinkx + BB2

VDI = -ADlsinkx + BDI

VA 2 = -AA 2 coskx+ BA 2

Vc] = -AcIcoskx+ Bc 1

VBI = ABIsinkx+BBI

VD 2 = AD 2 sinkx + BD2

where t/k=2d in Figure 2.4

x=relative in-plane displacement between rotor and stator, as in Figure 2.4

Axi, Bxi=constant coefficients

These equations only approximately describe the Vxi signals, which actually contain higher

harmonics. Substituting Equations 2-5 through 2-8 into Equations 2-3 and 2-4 yields

Ed = (AAI +AA2 + ACI +AC 2 )coskx + [(BAl +BC2)-(BA2 +BCl)]

Eq = -(ABI + AB 2 + ADI + AD 2 )sinkx + [(BB2 + BD1) - (BBI + BD2)]

(2-9)

(2-10)

Figure 2.4 also shows the correspondence between normalized Ed and Eq signals and the rotor's

position relative to the stator. The normalization factor used is

Enorm = d (2-11)

Chapter 2: Background
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When scaled by Enorm, the direct and quadrature signals are independent of rotor-stator gap under

normal motor operation. This normalization factor works under the assumption that Ed and Eq

have roughly the same magnitudes (the Axi are roughly equal and the Bxi are roughly equal) and

on the assumption that Ed and Eq are harmonically pure (well modeled by sin waves). Ed/Enorm

and Eq/Enorm are the actual in-plane position signals, not Ed and Eq alone. The normalized

signals are independent of gap up to a point. If the gap were very large, these signals would not

provide useful position information. However, the motor would not work in this case.

The eight Vxi signals can also be used to calculate a gap width signal that is independent

of the in-plane position. A gap-width signal, Egap, is obtained by summing the eight initial Vxi

signals, creating an overall "parallel-plate" capacitance measurement which is inversely

proportional to gap.

Egap = VAl + VA 2 + VB1 + VB 2 + VC1 + VC2 + VD1 + VD 2  (2-12)

Going back to the example, if Vxi are given by Equations 2-5 through 2-8, the Egap signal

will be

Egap = (AAI-AA2 +AC 2 -Acl)coskx+(ABl-AB 2 +AC 2 -Acl)sinkx+ Bxi (2-13)

Assuming that the Axi's are approximately equal, Egap is approximately equal to the sum of the

Bxi terms. In this way, the in-plane spatial information in the sinusoidal terms has been excluded.

The above method for finding in-plane position and gap width is not the only way; other

schemes could involve using more dither frequencies and combining the raw signals in a different

way in order to generate a sufficient position signal. However, the above method does minimize

the number of high-frequency dither signals which must be superimposed onto the rotor, thus

minimizing connections to the rotor. Also, this method provides robustness, because Ed/Enorm

and Eq/Enorm are not dependent on the absolute magnitudes of VA1, VA2, etc., but on their

differences. If VAI, VA2...VD2 were each multiplied by slightly different coefficients (for example

VAI * 1.02 , VA2*1.01, VC1 *0.99, etc.), the form of the Ed and Eq signals in Equations 2-9 and 2-10
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helps to average out these differences. This is also true for the Egap signal. In addition, once Ed

and Eq are divided by the normalizing factor, Enorm (Equation 2-11), the effect of the coefficients

Axi is further reduced, because they are divided out.

2.1.3 Preliminary experiments

To verify the concepts on which the design is based, Taussig performed several

experiments using a dynamometer integrated with a mini-scale model of the electrostatic

micromotor. This setup could measure the forces in the x- and y- directions between rotor and

stator as a function of the xy position. The forces could be measured with a resolution of

approximately 50 gN. In these experiments, the rotor and stator plates used were larger than

those in the current project. The width of the electrode lines and spaces was approximately

0.010", and the rotor and stator plates were each 3.125" x 4.5". When the rotor-stator gap was

approximately 0.02" and the applied voltage was 400 V, in-plane forces of +/- 5x10-3 N and out-

of-plane forces of 3.5x10 -3 to 8.0x10 -3 N were measured. These force magnitudes are slightly

smaller than expected from Equations 2-1 and 2-2, but they are in the right range. The

experiments confirmed the shape of the force curves shown in Figure 2.4. Taussig also used the

same setup to perform preliminary position-sensing tests. Oscilloscopes were used to extract the

V,xi signals from the stator phases, successfully producing the position signals Ed/Enorm and Eq/

Enorm. The gap signal was also successfully calculated from these signals. Finally, experiments

were done to control the out-of-plane force independently of the in-plane force. This thesis has

further confirmed the design by testing the position-sensing scheme on a milli-scale model of the

motor using specially-designed electronics. All other electronics required for motor operation

have also been designed and tested, however all of the electronics designed here could be much

improved. Suggestions for improvements are given in Chapter 7.

2.2 Other related work

Several researchers have developed motors with similar design components, however, no

one seems to have used the parts of the design together in the way described above.

2.2.1 DEMED linear motor
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Niino, Higuchi, and Egawa have designed a motor which they have named DEMED (Dual

Excitation Multiphase Electrostatic Drive) [4]. This motor is also a linear motor with a similar

rotor and stator. It is also actuated by applying varying voltages to the rotor and stator phases. In

addition, the "dual excitation" means that the DEMED also displays forces in the out-of-plane

direction. So far, this motor sounds quite similar to Taussig's design. However, there are a few

key differences. The DEMED makes no use of closed-loop control. It is driven instead by an

open-loop AC power source. Therefore, it cannot take full advantage of the repulsive y-force.

Also, having no closed-loop control, the DEMED does not use the rotor or stator phases as

capacitive position sensors.

2.2.2 Closed-loop control for micromotors

Few people have tried to perform closed-loop control on micromotors. Researchers at

Case Western Reserve University have developed a circuit, called the Micromotor Control

Integrated Circuit (MCIC) [5], to perform closed-loop control for a rotational micromotor.

However, their motor does not use repulsive out-of-plane forces, so their control system is

different from one that would be needed to control Taussig's motor.

2.2.3 Capacitive position-sensing

Similar position-sensing schemes have been used in the past. In particular, the designers

of the MCIC used the same technique of detecting in-plane position by sensing rotor/stator

capacitance changes. Taussig's scheme detects position in two orthogonal directions, out-of-

plane and in-plane, each independent of the other. Many other researchers have worked on

capacitive position-sensing for micromotors. David Leip has done work on detecting very small

micromotor capacitances in the presence of much larger parasitic capacitances. [6]

Chapter 2: Background



3.0 Experimental Motor

This chapter describes the specific motor implementation used in this thesis. The actual

rotor and stator models and the mechanical mounts for them were designed and built by Carl

Taussig. These are described in Sections 3.1 and 3.2.

3.1 Motor dimensions, materials, and electrical connections

The rotor and stator used here were made in the same manner as printed circuit boards.

The insulating plate of each piece was made of Fr4 (a fiberglass composite with a dielectric

permittivity of 4E0), and the metal traces and ground plane for the stator were made of copper.

The active surfaces of the rotor and stator are shown below in Figure 3.1.

Rotor

Drive -
eecfro

Algnment marks

Figure 3.1: Rotor and Stator active surfaces

The drive electrode pattern covered an area of 2.1" x 2.8" on the rotor, and 2.2" x 3.35" on the

stator. The electrode lines and spaces were 0.005" wide and are shown magnified in Figure 3.1.

On the back side of the stator was a continuous metal ground plane. The total thicknesses

(including metal traces) of the stator and rotor plates were 0.014" and 0.011", respectively. The

alignment marks shown on the stator were also 0.005" wide lines and spaces. These were used

for visually aligning the rotor to the stator. Typical rotor-stator gaps for the motor in this thesis

Ch~usw 3.' E~p~ ic~u l&A t
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were about 0.01" to 0.015".

Y

x
rotor > 11 1 1

A BC D A B C D
stator i 7TT T

All electrodes wfth the same label are
electrically connected.

Figure 3.2: Electrical connections to rotor and stator

Figure 3.2 shows how the stator and rotor electrodes were electrically connected. All connections

to individual electrodes were incorporated into the printed circuit design and were not hand-

wired. The entire motor was designed to be four-phase, like the motor shown in Figure 2.2 and

described in Chapter 2. Because the rotor was a moving part, the electrical connections to the

rotor were made as simple as possible. For simplicity, it was decided that the rotor would have

constant drive voltages (with super-imposed high-frequency, low-voltage signals for position-

sensing), so that only the stator voltages would be actively controlled. The rotor voltage pattern

shown in Figure 3.2 was chosen based on Taussig's previous work. This voltage pattern allowed

the rotor to have only two electrically separate traces, one trace at high voltage (H) and one at low

voltage (L). The stator's electrodes were grouped into four phases, also shown in Figure 3.2.

Including the ground plane, the stator had five electrically separate traces.

This motor was smaller than the motor used in Taussig's previous experiments. The

previous motor had 0.01" lines and spaces, twice as wide as those of the current motor. Also,

Taussig's previous rotor and stator plates were larger in area and made using thicker insulating

plates. Typical gaps for Taussig's motor were 0.02".

3.2 Motor mount

The mechanical mount for the rotor and stator was designed by Taussig and is shown in
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Figure 3.3.

T-shaped piece

Fr4
vertical-
slab

Al base- T-shaped
piece

rotor and stator

Figure 3.3: Motor mount: side view (left), overhead view (right)

The rotor and stator plates were mounted vertically, like two opposite walls of a room. Because of

the vertical mount, the effect of gravity on the motor was like the effect on a pendulum. The stator

was attached by adhesive to a thick vertical insulating slab of G-10 (9.15"x8"x 1"), which rested on

a heavy horizontal aluminum base (6"x8"xl"). The rotor was first attached to a light aluminum

mounting frame by adhesive, then suspended from a T-shaped aluminum piece by two stainless

steel leaf springs, designed to allow in-plane motion as shown in Figure 3.4. The springs were

designed to be very flexible in the in-plane direction, so they would not exert much force on the

motor--the primary external force on the rotor was gravity. In the first half of the project, 0.002"

thick springs were used. However, these were so easily bent out of shape that it was difficult to

align the rotor. Later, 0.004" thick springs were found to be superior. Their greater stiffness made

it easier for the rotor to be positioned very close to the stator. The T-shaped aluminum piece was

supported using a kinematic mount with four degrees of freedom controlled by micrometers. By

positioning the T-shaped piece, the rotor could also be positioned. Additionally, a micrometer was
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mounted to control the in-plane motion of the rotor and is shown in Figure 3.4.

T-shaped piece
rotor on
aluminum frame leaf spring

rotor and stdtor

Figure 3.4: Front view of motor mount (left), Close-up of rotor/stator (right)

As mentioned above, the electrical connections to the rotor were minimized to reduce

unnecessary mechanical influences. Two thin, 0.008" diameter wires were connected to the rotor

and fastened to the heavy base for strain relief. The wires were allowed plenty of extra length to

minimize their mechanical effect on the rotor. The rotor, its aluminum mounting frame, and the

tape used to bind the rotor to the frame weighed 8.9 g.

Both the heavy metal base and the T-shaped aluminum piece were grounded. The

aluminum frame, which was shorted to the T-shaped piece via the springs, thus formed the ground

plane for the rotor. The entire setup was placed on a regular tabletop.

3.3 Rotor alignment

It was important for the rotor to be positioned parallel to the stator so that 1) the two plates

were parallel to each other with a uniform gap and 2) the electrodes on those plates were parallel.

A small rotor-stator gap was desirable, because it would increase the rotor-stator capacitances,

producing greater forces and larger position signals. However, contact between the rotor and

stator was undesirable because it would cause mechanical friction and electrical shorting. The

rotor was positioned using micrometers to control the kinematic mount described above.
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Two methods were used to gauge the uniformity of the rotor-stator gap: 1) visual

inspection by shining a light through the gap and observing how much light emerged from the slit

and 2) observing the amount of mechanical damping caused by friction between the plates (any

observable damping indicated contact between the plates). Using these two methods, the rotor

was brought as close and as parallel to the stator as possible without touching it. The micrometers

were then adjusted by a known amount to change the gap. After the gap was made as uniform as

possible, the lower edge of the rotor was aligned to the visual alignment marks shown in Figure

3.1. This ensured that the rotor and stator electrodes were parallel.

The shape of the rotor and stator plates affected the alignment. Ideally, the rotor and stator

planes would have been perfectly flat. Initially, there were some problems, because both the rotor

and stator were actually slightly concave. This happened because the glue (photo mount spray

adhesive) holding the rotor and stator to their mounts was not strong enough, so the edges peeled

away slightly. The peeling was most noticeable along the upper and lower edges of the stator and

rotor. Because of this warping, the perimeters of the rotor and stator were closer together than the

centers. This restricted how close the rotor and stator could be aligned without touching.

However, later the rotor and stator were both remounted using doubled-sided masking tape, which

improved the flatness. The glue probably didn't work because it was too old, not because the type

of glue was inherently weak. Taussig had previously used the glue successfully on an earlier

generation of the motor model. In addition, the aluminum frame that the rotor was mounted on

was not perfectly flat, also affecting the rotor flatness.

3.4 Measuring the rotor-stator gap

Since the rotor and stator were not perfectly aligned, no single number could represent the

gap, which varied across the plane. Also, in this motor setup, there was no good way of finding an

absolute average gap measurement. The absolute gap was roughly estimated by sliding a piece of

shim stock of known thickness into the gap without disturbing the rotor. Using this method, the

smallest gap achieved without contact was roughly 0.005". However, this method only estimated

the gap around the upper and lower edges of the rotor. During initial experiments, when both

rotor and stator were concave, the center gap was roughly 0.012", even though the gap around the

perimeter was around 0.005". Later, when a flatter rotor and stator were achieved, the overall gap

was more uniform.

Chapter 3: Experimental Actuator



Although the absolute gap could not be measured accurately, the relative gap was easily

measured. The gap measurements that follow refer to a relative gap setting, using an initial gap

position as a reference. Because the stator was fixed, measuring the relative gap was equivalent to

measuring the rotor position. As mentioned earlier, gap settings could be dialed into the

micrometers of the rotor mount. To test the accuracy of these dialed-in gap settings, a beam-

interrupt device was used to measure the position of the rotor. Figure 3.5 shows the setup of the

device.

beam is sttor
interrupted e
her(

L

Figure 3.5: Beam-interrupt device setup

The device worked by emitting a laser beam, then measuring how much of this beam was

interrupted by an object in its path. The change in the beam's area corresponded to a change in

position of the object. In this case, the beam was interrupted by a piece of metal on the rotor's

aluminum frame. This metal piece was orthogonal to the beam and to the plane of the rotor, as

shown in Figure 3.5. The dotted line in the figure represents the laser beam. As the gap

increased, the rotor moved out-of-plane, and more of the beam was blocked. Using this beam-

interrupt device, an experiment was performed to test the accuracy of the dialed-in gap settings.

During this experiment, the rotor was allowed to hang freely from the springs, without touching

any other object. The dialed-in gap settings were changed and the change in rotor position was
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measured using the beam-interrupt device. The results are shown in Figure 3.6
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Figure 3.6: Rotor's actual out-of-plane position compared to dialed-in setting

The two measurements should have yielded the same results, leading to a unity slope in

Figure 3.6. However, Figure 3.6 shows that the beam-interrupt measurements were smaller than

expected from the dialed-in settings. One reason for the discrepancy may be that the beam-

interrupt device was not calibrated properly. Also, the rotor was connected to the micrometers by

thin leaf springs which were not perfectly rigid, and the rotor's position may not have exactly

copied the micrometer adjustments.

3.5 High-voltage tests

Although no high-voltage actuation experiments were conducted during this thesis, initial

high-voltage tests were performed to make sure the motor parts could withstand the high voltages

necessary to move them.

The rotor and stator were tested separately. To test the rotor, one trace pattern was

grounded, while the other pattern was slowly raised to 475 V using a high-voltage power supply.

The power supply was used in its constant current mode, with the current limit set as low as

possible (10 mA). The stator was tested in a similar fashion: four of the five stator conductors

were grounded while the remaining conductor (either an electrode pattern or the ground plane)
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was slowly raised to 475 V. This was repeated for all five separate conductors on the stator.

Figure 3.7a shows the initial test setup.

HOh voNage High votage

I I
one pIase I o-re Phow

Figure 3.7a: Initial high-voltage test Figure 3.7b: Revised high-voltage test

In these tests, several stator boards were destroyed when shorting occurred between the drive

electrodes. The shorting usually occurred around 200-300 V. Figure 3.8 shows a close-up of the

damage to one of the stator boards. The area shown in the figure is roughly 0.020"x0.025". The

traces near the short had evaporated or melted away! It is likely that the power supply was not

able to limit the current quickly enough, so the damage occurred.

These failures suggested that the stator and rotor might have been dirty. Both the stator

and rotor were then cleaned in an ultrasonic acetone bath for about fifteen minutes and dried with

compressed air. Then they were retested with a revised procedure, depicted in Figure 3.7b. A 43

MO + 1 MO resistor was placed in series to prevent further damage. The current was monitored

with an ammeter as the voltage was slowly raised to 475 V. If shorting had occurred, there would

have been a noticeable increase in current, but no such jump was observed. Both the stator and

rotor passed this high-voltage test after they had been cleaned. Also, another test was run with

only the 1 MR resistor in series. The rotor and stator were also able to withstand high voltages
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under these conditions.

Figure 3.8: Close-up of melted traces on stator during high-voltage testing

All of these tests were performed on the rotor and stator when they were unmounted.

Because of the particular mechanical setup, gaps less than 0.005" would be difficult to achieve

without having some contact between rotor and stator. Smaller gaps (< 0.005") would be risky,

because contact could easily occur if the setup were jostled, and because 400 V applied across

0.005" is already past the breakdown voltage of air (-3x10 6 V/m). For 400 V, the distance at

which breakdown occurs is 0.00525". In this thesis, the motor was not actually run at high

voltages, but for high voltage operation, gaps should be kept around 0.01" or larger, to avoid air

breakdown.
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4.0 Position-sensing circuitry

4.1 Overview

Electronics were designed and built to implement the position-sensing method described

earlier in Section 2.1.2. The electronics are shown as part of the system diagram in Figure 4.1. In

Figure 4.1: System block diagram; position-sensing circuitry shaded

this position-sensing method, the position information is encoded using AM modulation as the

amplitude of a carrier (dither) wave. In order to use the Ed/Enorm and Eq/Enorm formulas

(Equations 2-3, 2-4, 2-11), the Vxi signals must be found by demodulating the raw stator output

(Vx). One way to extract the Vxi signals is depicted in Figure 4.2.

^ _

Inpu

Vx

utput

Vxi

Pre-amp Bandpass Rectifier Lowpass Post-amp
filter filter

Figure 4.2: Demodulation scheme

In Figure 4.2, one demodulation channel is shown. Since the motor had four stator phases,

each of which had to be demodulated for two frequencies, a total of eight demodulation channels

were needed, one for each Vxi signal (x=A,B,C, or D; i=l or 2). Four channels were designed to

handle one dither frequency, and the other four channels handled the remaining dither frequency.

These were assembled on a protoboard using Wire-Wrap. The schematic diagrams for the

demodulation circuitry are shown in Appendix C.

Section 4.2 describes how the dither frequencies were chosen. Sections 4.3, 4.4, and 4.5,
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discuss the bandpass filter, rectifier, and lowpass filter respectively. Finally, Section 4.6 evaluates

the overall demodulator performance.

4.2 Choosing dither frequencies

Three criteria were used to choose the two dither frequencies:

1) the frequencies had to be high enough to resolve the motor's motion in time,

2) the frequencies had to be sufficiently far apart so that the bandpass filter could

distinguish them, and

3) the bandpass filter and other demodulators components had to be able to work at those

frequencies.

The DSP that would perform the control algorithm was capable of sampling the position

information at up to 10 kHz. Following a rule of thumb for a noise-limited digital servo, the

control loop was estimated to have bandwidth around 1 kHz, and the motor's motion would fall

within this bandwidth. Since the dither frequencies control the time-resolution of the position

signal, they had to be much higher than 10 kHz, the sampling rate. The higher the dither

frequencies, the greater the time-resolution of the signal.

However, the choice of dither frequency was also limited by the decision to use switched-

capacitor bandpass filters in the first stage. The best filter readily available had a maximum center

frequency around 100 kHz while maintaining a Q-20.

Finally, if the dither frequencies were too close together, the bandpass filters would not be

able to select a single frequency--information about both frequencies would overlap into all

demodulation channels.

Based on these criteria, dither frequencies f1=70 kHz and f2=95 kHz were chosen. In

addition, these were close to the frequencies used by Taussig in his initial, successful experiments

with this position-sensing technique.

4.3 Bandpass filter

4.3.1 Design criteria

The ideal bandpass filter for this application would have had a perfectly flat passband,

centered about one of the dither frequencies. More design criteria can be uncovered by examining
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a hypothetical input to the bandpass filter:

A A

= [sin(oclt) + M cos(Wcl - m)t - 2cos(cl + 0m)t

A . M M.
+ [sin L(Oc2t) + sin (Oc2 Om)t + sin (c2 + Om)t

where Vx=signal from single stator phase x

oci=dither frequencies (oci/2n - 70-100 kHz)

i=dither frequency index (i=1 or 2)

(Om=modulation envelope (position signal) frequency (Om/2 t < 1 kHz)

A=amplitude

M=percent modulation (0o M < 1, corresponding to a range of 0% to 100%)

Suppose we want to pass the terms dealing with dither frequency 1. The bandpass filter

must have a wide enough passband to pass cos( cl +/- om), while still attenuating the signal

components from the other dither frequency. However, since no filter will be perfectly flat, it is

also important for the bandpass filter to be symmetrical about the center frequency. A fast transient

response is also desirable. Since the design is for a maximum modulation frequency of 1 kHz, the

maximum motor speed the circuit can handle is (1 kHz)(0.040")- 1 m/s. If the motor were to move

faster than 1 m/s, the motion would be beyond the bandwidth of the circuit.

4.3.2 Bandpass implementation: LMF100

Initially, a Sallen-Key design was investigated for the bandpass filter, but a switched-

capacitor filter was later chosen because of time constraints on the thesis. The advantages of a

switched-capacitor filter are that the bandpass center frequency can be easily changed by altering

the clock frequency, and that the filter is easy to use. However, this type of filter does have clock

noise which would not exist in a Sallen-Key design. [7] Many types of switched-capacitor filters

were reviewed, but the LMF100 was chosen because it could realize filters with high center

frequencies (- 100 kHz) and relatively high Q's compared with other switched-capacitor filters. In

general, a high Q was desired, because the higher the Q, the more the bandpass filter would be able
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to selectively pass a single dither frequency with minimal overlap from the neighboring dither

signal. However, if the passband region were too narrow (< 20m), the gain at frequencies Oci +/-

(0 m might be too low.

4.3.3 Type of filter: Butterworth

Once the LMF 100 was chosen and passed preliminary tests, the type of bandpass filter was

chosen. The LMF100 is capable of implementing Butterworth, Chebyshev, Bessel, and other

classical filters. Although a Chebyshev filter was considered, the Butterworth design was used

because it was simpler to implement and did not have passband ripples (which might distort the

modulation envelope). Although the Butterworth filter had a slower time-domain response than

the Chebyshev, it was still faster than the Bessel filter and so provided a compromise between the

Chebyshev and Bessel. The bandpass filter is shown below as it was used during experiments.

R1B

lu -- -------- -- -- -----R3A A A,,
R3A LPa LPb 0 'R3BBPa BPb --- out

From N/APiHPa NAP!HPb i vR2B[,Frm -INVa INVb
pre-amplifier RV1 Sla Sib1

SSa/b AGND
+8V-- VA+ VA- - - 8V

SVD+ VD-4
S- - -  Sh 50!100 T---: Cb

CLKa CLKbf- 4
0 LMF100 0

DSTM1
4 -4 ---- ----- --- - ---- _ -- --------- ---------

---------------------------------------------------------------------- -----------.

Figure 4.3: Bandpass filter: implemented circuit

The LMF100 was used in mode lb to create two cascaded 2nd-order Butterworth bandpass

filters having the following total transfer function:

-(-R3a)(O)i) (-R3b) rOi)
H(s) = a a Rb Qb (4 - 2)

S2 +02 S2+ (2Oi S+0)2

0oi = 2rf 0oi = 27CfCLK_i 5 (4-3)
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fol R
foi R3(a b)2 (4-4)Qa, b (-3 dB bandwidth of output) R2(a, b)

where Rla, R2a, R3a=external resistors for 1st stage (2nd-order Butterworth filter)

Rib, R2b, R3b=external resistors for 2nd stage (2nd-order Butterworth filter)

Qa=Quality factor for 1st filter stage

Qb=Quality factor for 2nd filter stage

ooi=2itfi=bandpass center frequency (same for both stages)

fclk_i=clock frequency input to LMF100 (same for both stages)

i=dither frequency index

This filter could have been improved. It was later realized that the LMF100 could have

been used in mode 3, which would have allowed two internal clock signals to be created from one

external clock signal, using a few additional external components. However, this option was not

pursued at the time of design. Using mode 3 would have been better, because it would have easily

allowed a 4th-order Butterworth filter to be implemented without extra equipment. A 4th-order

filter would have had a flatter passband and steeper transition region. However, since the

Butterworth filter has a maximally flat passband in any case, this improvement may not be

significant.

4.3.4 Clock and dither signal sources

Including the two dither signals (mci) and two LMF 100 clock signals (fclk_i), four separate

periodic signals had to be generated. However, only two signal generators were required to

produce all four signals. This was possible because each clock frequency is related to its

corresponding bandpass center frequency by a factor of -35.4 (Equation 4-3). To take advantage

of this, an Altera EPLD (Erasable Programmable Logic Device) was programmed to perform a

divide-by-35.3 function. If the EPLD received an input square-wave of frequency f, it would

output two square-waves at frequencies: f/212 and f/6. The program for the EPLD was written by
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Carl Taussig and is listed in Appendix D. Two such EPLD's were used, one for each dither

frequency. In summary, two signal generators fed a high frequency signal to two EPLD's, each of

which produced a dither and clock signal. The signals produced by the EPLD's were square waves.

Problems with the clock and dither signal sources

Ideally, the dither signal frequency (Oci) and bandpass center frequency (oOi) should have

been exactly the same. In reality, there were several issues involving the clock signals which

affected the bandpass center frequency. These problems suggest the dangers of having a passband

that is too narrow--it is too difficult to align the bandpass center frequency and dither frequency.

First, since 212/6-35.3, this was an approximation to 35.4 and would result in some error:

the dither signal frequency and bandpass center frequency might not be the same.

Second, it was also found that the dither frequency and bandpass center frequency might

differ by several kHz, depending on the external components to the LMF100. These components

were chosen to minimize the difference between the dither frequency generated by the EPLD and

the center of the bandpass.

Third, the fclk_i/f 0 i ratio shown in Equation 4-3 was slightly different, depending on fclk_i.

In the LMF100 data sheets, a graph is given showing the ratio's dependence. In early experiments,

it was determined that for f02=95 kHz, it would be better to use a ratio of 36 instead of 35.3, which

agreed with the information in the LMF 100 data sheet, which is shown in Appendix E. However,

later in the thesis, measurements were taken which showed that a ratio of 35.3 was better for

producing a bandpass center frequency of 95 kHz. This issue remains unresolved.

Fourth, although each chip was slightly different, with a slightly different fclk/f0i ratio, all

four 70 kHz LMF100 filters received the same fclk_1, and all four 95 kHz filters received fclk_2*

This was another reason that the bandpass center frequencies were not precisely aligned to the

dither frequencies.

The above difficulties show why it is dangerous to have a bandpass filter with too narrow

a passband. It is difficult to precisely place each filter's f0i exactly at the same frequency as the

corresponding dither signal. A narrow passband which is not at the exactly same frequency as the

dither signal may miss the signal entirely and attenuate it instead.
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4.3.5 Filter parameters and performance

After some experimentation, the following values were chosen to yield two cascaded 2nd-

order filters, each with a Q of 10. The overall passband gain was 1 dB and overall Q was about 17.

The components in Table 1 refer to Figure 4.2 and Equations 4-2 through 4-4.

Table 1: Component values for LMF100 bandpass filter

Component fc Resistance
Name [kHz] [kW]

Ria 70 34.8

Ria 95 42.2

Rlb 70; 95 50 (variable)

R 2 a 70; 95 8.25

R2b 70; 95 8.25

R3a 70; 95 61.9

R3b 70; 95 61.9

In initial experiments, it was found that when the same filter IC was operated at different

clock frequencies (all other parameters held constant), different gains resulted. For this reason, the

Ria resistors had different values, depending on fc. A variable resistor was used for Rib to adjust

for differences between chips. Figure 4.4 below shows the experimentally measured transfer

functions for two different bandpass filters, one with fcl= 67 kHz, and one with fc2=95 kHz. 67

kHz was used instead of 70 kHz because of a restriction on fcnk_1 due to equipment. Rlb= 39.4 kW

was used for the filter at fc1=67 kHz, and Rib = 35.0 kM was used for the filter at fc2=95 kHz.

Using these components, the expected transfer functions from Equations 4-2 through 4-4 were
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calculated and are shown in Figure 4.5.
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Figure 4.4a: Experimental bandpass transfer
function with fc=67 kHz

2 cascaded 2-pole Butterworth using LMF100: 67 kHz
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Figure 4.5a: Expected bandpass transfer
function with fc=67 kHz

Figure 4.4b: Experimental bandpass transfer
function with fc=95 kHz

2 cascaded 2-pole Butterworth using LM F100: 95 kHz
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Figure 4.5b: Expected bandpass transfer
function with f,=95 kHz

As can be seen from the figures, experimental gain and peak sharpness were lower than

expected. For both experimental filters, the peak gain was roughly 5 dB greater than the gain at

the non-peak dither frequency.

Figure 4.6 shows close-ups of the passband peaks for the experimental filters. (Note that

the horizontal axes are on different scales.) Unfortunately, these passband regions were not very

Chapter 4: Position-sensing circuitry

414 doAIl.l,WVIO

PrMQ10.0

10.0/Div0

I I i iiiS I 1 I il

o-70.

Fxd Y 1k

I

!
i
i

i

-- , .. .. . . . - _ _ .° " . . .. - -A- ;.. tO1 Sk



flat. For both filters, the passband is only flat for about 2 kHz.
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In future, a 4th-order filter should be implemented in mode 3, because only a few more

external components would be needed to implement it, and it would improve performance. Using

a 4th-order Butterworth filter would increase the passband flatness and transition-region steepness

slightly, coming closer to the ideal filter. From Figure 4.5, the cascaded 2nd order filters yield a 3

dB passband of roughly 4 kHz.

Finally, offset voltage was another important element of the bandpass filter. Ideally, the

output of the bandpass filter would have no DC component, however, in reality the output was

offset by around -0.1 V. This output offset was independent of the input offset or input amplitude.

Since the signal range was expected to have an amplitude of around 2 V, the offset from the

bandpass filter was not expected to cause problems.

4.4 Absolute value circuit: implemented using multiplier

Initially, a standard full-wave rectifier, using three diodes and an op-amp, was considered.

However, for convenience, a multiplier IC (AD734) was used instead, shown below in Figure 4.6.

Using the multiplier, the function X2/D was implemented. Although this was not an absolute value

function, it did ensure that the signal became positive, so that the position signal would be

preserved after going through the lowpass filter. The value of the denominator, D, was controlled

by external resistors. The multiplier chip was tested by feeding it a +/- 4V square wave, which was

transformed into a single DC voltage -7V. Thus, the experimental value of D was -2.8, which was

close to the expected value of D=3 that the external resistors had been chosen to create. D was
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maintained at this value through the rest of the project. There were some periodic spikes in the

output, but for the most part it performed adequately. This experiment was tried at various

frequencies (5 kHz, 100 kHz) and seemed to work just as well at either frequency.

in

0

Ri

out

Figure 4.7: Multiplier circuit diagram

4.5 Lowpass filter

The criteria for the lowpass filter were less stringent than those for the bandpass filter. The

lowpass filter needed to preserve low-frequency (< 5 kHz) signals while attenuating the high-

frequency dither signals (70-95 kHz). However, it was also important for the passband to be flat

in the region where the position signal would be expected (< 1 kHz).

A switched-capacitor filter was also used to implement the lowpass filter. The LMF40, a

4th-order Butterworth lowpass filter, was chosen for ease of use. An advantage of this IC was that

no external clock signal was needed to set the lowpass filter's cutoff frequency. Instead, external

components could be used to set an internal clock frequency. There was no way to control the

gain on the LMF40, so a standard non-inverting op-amp was placed after the lowpass filter in each

demodulation channel to control the gain.

External components (R=2.61 k4 C=680 pF) were chosen to yield an expected cutoff

frequency of 8.2 kHz, since the experimental cutoff frequency was found to be lower than
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expected. Figure 4.8 shows a typical lowpass transfer function.
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Figure 4.8: Experimental lowpass transfer function

This figure shows that the passband region is not flat. Around 200 Hz - 1100 Hz, there is a

5 dB dip before the main knee around 5 kHz. This is bad, because it means that the output

amplitude depends on the frequency of the position signal, possibly distorting the position signal.

In future, this might be improved by moving the cutoff frequency up by 15 or 20 kHz or by using

a different kind of lowpass filter.

4.6 Overall demodulator performance

Despite the fact that the demodulator was not optimized, it still performed its basic

function. A few experiments were performed on the overall demodulator to explore its

characteristics. In particular, the dependence of the output on the input amplitude, frequency, and

percent modulation were investigated. Also, frequency spectra were taken at various stages as a

known signal passed through the demodulator, giving noise information.

Theoretically, if the input signal is as follows:

V V
V(t) = PP[1 + Msin(omt)]sin (Ocit) + -[1 + Mcos(Omt)]sin(Oc2 t) (4-5)

2 M2f(~tIS~lCct
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then the final demodulator output signal should be

K + Msin(cit) if i=1

Vxi(t) = (4-6)

K [+ Mcos(Oc2 t)] if i=2

where i=dither frequency index

x=stator phase index

K=constant gain (depends on gain of each stage)

Vpp=input amplitude

M=percent modulation (o s M 1 , which corresponds to a range of 0% to 100%)

1ci=2fi=dither frequency (70-95 kHz)

oam=2nfm=modulation frequency (< 1 kHz)

The theoretical output (Equation 4-6) takes into account the X2/D function, but assumes a

perfect bandpass and perfect lowpass filter. In Equation 4-6, the value of i depends on which

dither signal the demodulation channel is tuned for, fl or f2 . Experimentally, the output was

different from Equation 4-6 because of noise, saturation at various stages, and imperfect filters. In

addition, Equation 4-5 only represents a hypothetical input, with asinusoidal modulation and

sinusoidal dither signal.

4.6.1 Varying the input amplitude

In this experiment, an unmodulated (M=O) 95 kHz square wave with no offset was fed to

the demodulator, producing a DC value at the output. A square wave was chosen, because the

dither signals produced by the Altera EPLD were square waves. The output level was observed as

the input peak-to-peak amplitude (Vpp=Vmax-Vmin) was varied. From Equations 4-5 and 4-6, we

would expect a graph of the output level to input amplitude to resemble an Vpp2 function. Figure
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4.9 shows the relationship between input peak-to-peak amplitude and output level.
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Figure 4.9 Varying the input amplitude to the demodulator

When the peak-to-peak input amplitude nears 10 V, the output starts leveling off. This

was probably due to saturation of the signal at some stage of the demodulator, most likely the

multiplier. Each stage was powered by +/- 8V power supplies and could only handle signals

within this range. For example, when an input signal with Vpp=10 V passes through the

multiplier, the maximum predicted voltage is roughly 52/2.8 - 8.9 V. This is higher than the

multiplier can handle, so it saturates, and the signal is deformed.

4.6.2 Varying the input modulation frequency

Ideally, the output should not depend on the input modulation frequency, as long as this

frequency is within a reasonable range (< 5 kHz). In this experiment, the input modulation

frequency ((om) was changed while all other input parameters were held constant. Referring back

to Equation 4-5, the input signal was a modulated 98 kHz sine wave with M-1, Vpp=8 V. The

following graph shows the dependence of the output amplitude on the input modulation
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frequency.

E
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o 1 2 3 4 5 6
fm=lnput modulation frequency [kHz]

Figure 4.10: Varying the input modulation frequency to the demodulator

The output amplitude stays roughly constant around 5.4 V for frequencies between 0.2

kHz and 2.8 kHz. This is lower than the expected output of about 7.16 V, but it is possible that the

lowpass stage or post-amp may have attenuated the signal slightly; the individual lowpass gain

was not measured in this experiment. After 2.8 kHz, the output amplitude decreases sharply for

frequencies above 2.9 kHz. It is possible that the dependence of the output on the input

modulation frequency is due to the lowpass filter. However, according to Figure 4.8, the lowpass

filter's sharp drop occurs between 4-5 kHz, not around 3 kHz. This experiment was done on a

demodulation channel containing a different lowpass filter than the one whose transfer function is

shown in Figure 4.8, which may explain why the lowpass transfer function and Figure 4.10 do not

match. So it is still possible that the curve in Figure 4.10 could be explained by the lowpass filter.

The shape of Figure 4.10 is probably not due to the multiplier, which has a bandwidth in the MHz

range.

In any case, further tests should be done on modulation frequencies between 0-1 kHz,

since this is the expected range for the motion of the motor. It would be bad if the output

amplitude varied significantly for frequencies less than 1 kHz, because the demodulator output

might be distorted.

4.6.3 Varying the input percent modulation

In another experiment to test the demodulator, the input percent modulation (M in

Equations 4-5 and 4-6) was varied while all other parameters except amplitude (Vpp) were held
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constant. Two values were tried for M, 0.5 and 1. In both cases, the input signal was a 95 kHz

square-wave modulated with a 1.7 kHz sine wave. The results of the test are shown in Figure

4.11.

•45 K, .
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0.5
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V . Input ampagude MV]

Figure 4.11: Varying the input amplitude and percent modulation to the demodulator

As expected from Equations 4-5 and 4-6, the output/input amplitude ratio is higher for

higher values of M. At the time of this experiment, it was not known what percent modulation

might be detectable when the motor was actually hooked up to the demodulation circuit. The

lowest detectable percent modulation was limited by the amplitude of the noise introduced

through the demodulator. Later it was found that percent demodulation values of M-0. 1 - 0.2

were detectable if the motor was aligned well and hooked directly to the demodulator circuit.

4.6.4 Spectra at various stages

To get some idea of the noise present in the demodulator, a frequency spectrum of a

known input signal was measured at various stages as the signal traveled through the demodulator.

An input 70 kHz sine wave was modulated by a 0.8 kHz sine wave. The resulting spectra are

shown in Figures 4.12-4.15. The spectra on the left of each figure range from 0 Hz to 15 kHz, and

the spectra on the right of each figure range from 0 Hz to 500 kHz. The vertical axes are on scales
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Figure 4.15: Final output: Output of lowpass filter

The input signal in Figure 4.12 has peaks at 0.8 kHz, 70 kHz, and harmonics of 70 kHz as

expected.

After the signal goes through the bandpass filter, Figure 4.13 results. The 70 kHz peak is

about 60 dB above the noise. Next, the signal passes through the multiplier, where the carrier

(dither) frequency gets doubled and higher frequencies are produced, as shown in Figure 4.14. In

addition, the position information at 0.8 kHz is extracted.

Finally, Figure 4.15 shows the final output of the demodulator, the lowpass output. The

main signal at 0.8 kHz is at least 30 dB above the clock noise of the lowpass filter which is around

300 kHz.

From these spectra we see that there is some noise contamination from the clock signal in

the lowpass filter, but no overwhelming noise that competes directly with the signal level.

4.6.5 Summary of demodulator tests

In summary, the demodulator performed roughly as expected. In the input amplitude test,

the shape of the curve was as expected. The modulation frequency test should have been

performed with more data points between 0 kHz and 1 kHz, the actual region of interest over

which the curve in Figure 4.10 should have been flat. The demodulator circuit could detect

percent modulation values down to 0.1-0.2. However, it was not known what the actual percent

modulation values were for the motor. Finally, spectra were taken at each stage of the

demodulator to monitor noise.
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4.7 Calibrating the position signal

After all eight demodulation channels were assembled and tested, the next step was to see

if they would be able to extract a meaningful position signal when connected to the motor. For

simplicity, this task was broken into three phases: 1) preliminary experiments getting position

signals from the motor without using the demodulator circuit, 2) getting position signals with the

demodulator hooked directly to the stator phases, and 3) getting position signals using the RC

network as an interface between the stator phases and the demodulator. Phase 1 allowed the

motor model and setup to be tested alone, without the added complications of the demodulator

circuit. Once the mechanical setup was investigated, phase 2 allowed the demodulator circuit to

be tested without involving the complications of the RC network. Unfortunately, phase 3 could

not be completed in the given time. The RC network is important, because it is needed to protect

the position-sensing circuitry while the motor is being driven by high (-400 V) voltages.

4.7.1 Preliminary experiments without the demodulator circuit

Many of the experiments here repeated Taussig's position-sensing experiments described

in Section 2.1.3. Like Taussig's experiments, these involved using the FFT functions on

oscilloscopes to perform the same functions the demodulator would to extract the position signal.

Signal generators were used to create the 70.0 kH-z and 95.1 kHz sine wave dither signals with

peak-to-peak amplitude of Vpp- 19.7 V, which were connected directly to the rotor electrodes.

The stator phases were directly connected to oscilloscope channels. Two digital oscilloscopes

were used, an HP54601A and an HP54602A, to perform the same function--an FFT. One

oscilloscope was connected to stator phases A and C, and the other oscilloscope was connected to

stator phases B and D. Each scope performed an FFT on each Vx signal. For each of the four

FFTs, the peak heights at 70 kHz and 95 kHz were measured visually and recorded by hand. In

this way, the eight "raw" Vxi position signals were measured. The rotor's position was controlled

by the various micrometers described in Section 3.2. As the motor was moved, the position

signals were recorded.

In-plane signals using oscilloscopes

As was described in Section 2.1.2, the eight "raw" stator signals, Vxi, can be combined to
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form two signals which uniquely determine the rotor's in-plane position within one spatial period.

These signals are

E i = (VAl + VC2)-(VA 2 + Vc1)

Eq = (VB 2 + VD)- (VBI + VD2)

(4-7)

(4-8)

To get basic in-plane position signals, the rotor was moved in-plane in known increments

using a micrometer. As it was moved, the amplitudes of the dither signals (Vxi) were measured.

This was done over a range of 1 mm, which was close to 0.04", the spatial period. The Vxi signals

from one of these measurements and resulting in-plane signals are shown in Figures 4.16-4.18.

- Al
-A2

SC1

S D21

0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1

In-plane position of rotor [mm]

Figure 4.16: Vi signals from oscilloscopes
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Figure 4.17:

In-Dlane oosition of rotor Imml

In-plane position signals (oscilloscope measurement)

As can be seen from Figure 4.16, the raw signals had various offsets, but roughly similar

amplitudes. Because of the structure of Equations 4-7 and 4-8, the important thing was the

differences between Vxl and V, 2 , not their absolute magnitudes. Figure 4.18 shows the signals of

Figure 4.17 normalized by a factor of Enorm = Ed+ Eq, which is also plotted.
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Figure 4.18:
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Normalized in-plane position signals (oscilloscope measurement)

The general shape of these curves was similar to those measured by Taussig in previous

experiments, and agree with what one would expect. An interesting thing is that the normalizing

factor gets smaller as the displacement gets closer to 1 mm. This happened regularly for many
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measurements, because the gap changed slightly as the rotor was moved in-plane. This out-of-

plane motion was unintentional and occurred because of twisting in the leaf springs suspending

the rotor, and is explained more in the discussion on obtaining the gap signal. The next figure

shows the fourier transform for the normalized Ed and Eq signals above. We can see that the

signals are close to being pure sine waves, but are not perfectly pure. Given the near perfection,

the inverse tangent function might be a good means of determining rotor position from the two

signals..

Magnitude of FFT of direct signal (Ed)

Spatial frequency [1/mm]

Magnitude of FFT of quadrature signal (Eq)

Spatial frequency [1l/mm]

Figure 19: Fourier transforms of normalized Ed and Eq

The in-plane position-signal measurement was taken at a few different rotor gaps as

follows:

1. The rotor-stator gap was set

2. In-plane positions were measured from 0 - 1 mm

3. The gap was changed.

4. In-plane measurements were repeated.

The results of these experiments show that the normalized Ed and Eq signals are indeed

independent of gap. In Figure 4.20, we see that the in-plane position signals look the same
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although they have been taken for three gaps.
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0 0.2 U.4 U.t V. I
In-plane position of rotor [mm]

Figure 4.20: The in-plane position signals are independent of gap (oscilloscope measurement)

The gaps, numbered 1-3 from smallest to largest, were set to be roughly 0.010", 0.012", and

0.014". However, because of a flaw in the experiment the actual gaps were probably only 0.010",

0.011", and 0.012" respectively. This flaw was that the in-plane micrometer was allowed to touch

the rotor, even when the gap was being changed (unlike the experiments of Section 3.4). Because

of the added friction between the in-plane micrometer and rotor, the gap changed only about half

the amount it should have changed according to the micrometer settings.

Gap signal using oscilloscopes

The out-of-plane rotor position signal, also known as the gap signal, was calculated by the

method given in Section 2.1.2, described in the following equation:

Egap = VAl + VA 2 + VB + VB 2 + Vc + VC2 + VDI + VD 2  (4-9)

Assuming that the gap was constant over varying in-plane positions, measurements of the

gap for various in-plane positions were made. These measurements are shown below in Figure

47
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4.21.

Gap measurement for various x positions
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o
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Gap [10-3 inches]

Figure 4.21: Gap signal using oscilloscopes

Again, the same flaw in the experiment occurred for the data in Figure 4.21 as for the data in

Figure 4.20. Although the gaps were set to be 0.010", 0.012", and 0.014" (and are shown that

way on the horizontal axis), in actuality they were probably only about 0.010", 0.011", and 0.012"

respectively. Despite this problem, the graph clearly shows that the gap measurement is

dependent on the in-plane position. In theory, this should not occur.

To see whether or not the gap really was dependent on the in-plane position, an

independent method was used to measure the gap. The same beam-interrupt device used in

Section 3.4 was again used to measure the rotor's out-of-plane position. In this experiment, the

rotor was moved in-plane (with a constant gap setting). Two methods were employed to measure

the gap: the beam-interrupt method (see Section 3.4) and the capacitive method based on
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Equation 4-9. Figure 4.22 shows the results:

Capacitive and beam-interrupt position signals

Figure 4.22:

Rotor in-plane position [mm]

Gap's dependence on in-plane position

In Figure 4.22, both signals show a dependence of the gap on the in-plane position. Also,

both signals have similar fine structure, which implies that the capacitive gap measurement is

sensitive to small changes in gap and is reasonably accurate. This experiment confirmed that the

gap really was changing with the in-plane position. The dependence probably occurred because

the leaf springs were twisting as the rotor was moved by the in-plane micrometer.

Finally, an experiment was done to discover the stator voltages' dependence on gap. Half

of the rotor electrodes were set to a periodic signal at 70 kHz, while the remaining rotor electrodes

were grounded. Then, the peak-to-peak amplitude of the voltage on one stator phase (which was

also at 70 kHz) was measured for various gaps. The results are shown below in Figure 4.23
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Figure 4.23: Direct stator signal amplitude as a function of gap

The shape of the curve is roughly a 1/x function, which is reasonable since the rotor-stator
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capacitance is inversely proportional to the gap.

4.7.2 Position signals using the demodulator circuit

The next step was to connect the demodulator circuit directly to the stator phases, without

using the RC crossover network as a go-between. Initially there was much difficulty in obtaining

a good capacitive position signal. This was probably due to poor alignment of the rotor and stator.

After changing the springs (from a thickness of 0.002" to 0.004"), changing the adhesive holding

the rotor and stator to their mounts (from glue to tape), and realigning the rotor to the stator (so

the gap was roughly 0.01"-0.015"), better signals were obtained. In addition to mechanical

changes, minor electrical changes were made--the variable resistors for the bandpass filters were

replaced with fixed resistors, making the gains of each channel slightly different. The resulting

position signals are shown in Figure 4.24.

Demodulator Gap-independent Ed, Eq signals
D dI ,l te. R"au Sinals=

78
C
,'

Al C
wg- 2 2.
0

0-0 B2 C.

D+ 1 'C
D2 C1C

ca00.

0 0.2 0.4 0.6 0.8 1 0 0.5 1
In-plane position of rotor [mm] In-lDane Dosition of rotor Imml

Figure 4.24: In-plane signals using demodulator circuit

The "raw" demodulator output signals shown in Figure 4.24 were the average values of

the voltages on each demodulation channel as the rotor was moved in-plane. What is not shown

in the figure is the noise on the output of each of these channels. This noise was roughly 0.2 V in

amplitude. When compared with the roughly 1.5 V peak-to-peak amplitude of the "raw"

demodulator output signals, this noise seemed acceptable. Minimizing the noise was important,

because the signal would be sampled by the DSP and converted to a digital signal.

Although the signals of Figure 4.24 looked reasonable, they were somewhat distorted

compared to the signals obtained when the oscilloscopes were used instead of the demodulator

circuit. The reason for this was not clear, although it could have been because of saturation in

some of the channels or slightly mismatched frequencies. Figure 4.25 shows the fourier
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transform of the normalized Ed and Eq signals.

Magnitude of FFT of direct signal

Spatial frequency [1/mm]

Magnitude of FFT of quadrature signal

Spatial frequency [1/mm]

4.25: Fourier transform of normalized Ed, Eq signals
measured using the demodulator.

One concern was that different gains on the eight different demodulation channels would

cause a distorted signal. However, differing channel gains do not actually cause distortion of the

Ed/Enorm and Eq/Enorm signal shapes. Instead, the method used to calculate Ed/Enorm and Eq/

Enorm actually helps average and divide out the gains of the channels, as seen from Equations 2-9,

2-10, and 2-11.

4.7.3 Estimating the accuracy of the position measurement

So far, Ed/Enorm and Eq/Enorm have been used to describe the in-plane rotor displacement.

However, these two signals must still be translated into an actual displacement. There are a few

ways this could be done. One way involves creating a lookup table and assigning a displacement

to each Ed/Enorm and Eq/Enorm combination. Another method involves taking the inverse tangent
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of arctan(Eq/Ed). When this is done using the data of Figure 4.24, the following figure results:

W

L0

CU

0

Figure 4.26:

0.2 0.4 0.6 0.8 1
Micrometer disolacement Imml

Arctan of Eq and Ed, without noise

Ideally, the plot in Figure 4.26 should be a perfectly straight line. However, most likely

because of measurement system error, the line is curved. When a least-squares-fit straight line is

subtracted from the curve in Figure 4.26, the least-squares error remains and is shown in Figure

4.27.

Micrometer displacement [mm]

Figure 4.27: Least-squares error of position measurement

From Figure 4.27, the maximum error in the measurement is approximately 0.4 radians, which

corresponds to about 0.06 mm or 6%.

In summary, the demodulator circuit was hooked directly to the motor, and an in-plane

position signal was successfully read. Although out-of-plane signals were not measured, it is

likely that the gap signal could also be measured in this setup, since the basic in-plane signal was
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successful, and the out-of-plane signal is calculated from the same Vxi components. The next step

would be to hook the demodulator circuit to the RC crossover network, which would be needed

during actual motor operation to protect the demodulator from the motor's high voltages. This

step has not yet been performed due to time constraints. The RC crossover network is discussed

in Chapter 6.
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5.0 Driving the motor: High-voltage circuitry

5.1 Purpose of high-voltage circuitry

This chapter describes the motor's high-voltage drive circuitry, shaded gray in the

following diagram.

Figure 5.1: System block diagram; high-voltage circuitry is shaded

The purpose of these amplifiers was to generate the motor's drive voltages (-400 V) from

low-voltage (0 - 10 V) input signals. For the stator, the low-voltage signals would come from the

DSP, as shown in Figure 5.1 For the rotor, the low-voltage signals would be a constant DC

voltage plus a high-frequency dither (carrier) signal.

5.2 Design

The following diagram shows the basic design of the high-voltage amplifier.

Command
voltage Drive

Low-voltage stage High-voltage stage

Figure 5.2 High-voltage inverting amplifier

The figure shows the amplifier for the rotor. The amplifier for the stator is the same, but with

R3=infinity --there is no dither signal on the stator. The amplifier consists of two stages: 1) a unit-
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gain low-voltage inverting amplifier and 2) a high gain, high-voltage inverting amplifier. The

inverting design for the high-voltage amplifier was chosen because it provided better performance

during experimental tests. Six separate amplifiers were needed: one for each of the four stator

phases, and one for each of the two separate rotor traces. Each of the amplifiers for the stator had

a single input which was to come from the DSP. Each of the amplifiers for the rotor had two

inputs (dither frequency signal for position-sensing, as well as a constant DC voltage for the

drive) and summed them.

5.3 Experimental details

5.3.1 Parts and construction

A more detailed schematic diagram than Figure 5.2 is shown in Appendix C.

First stage: inversion of input signal

AD711 low-voltage op-amps were used to invert the incoming signal.

Second stage: high-voltage amplification

Apex PA85 power op-amps were used to perform the high-voltage amplification. They

were MOSFET op-amps used with a single-sided power supply (0 to 400 V). Because they were

high-power devices, the amplifiers had to be mounted on large heatsinks, which were mounted to

a large aluminum plate. The PA85 op-amps required a few external resistors and capacitors for

phase compensation. In addition, bypass capacitors were used on the power-supply pins. High-

voltage resistors and capacitors were used for these external components, which were soldered to

the pins of each PA85 op-amp.

The components used in the PA85 op-amp stage are listed in Tables 2 and 3.:

Table 2: External components directly soldered to PA85

Component Value Purpose
Name

Rc 196 k2 phase compensation

CC 3.3 pF phase compensation

RL 28.7 92 current-limiting resistor

Cg 100,000 pF bypass capacitor
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Table 2: External components directly soldered to PA85

Component Value Purpose
Name

CB 100,000 pF bypass capacitor

Table 3: Components used for high-voltage inverting setup

Component Resistance Signal being
Name [kW] amplified

R1 2.51 Stator

R2  100 Stator

R3  infinity (no dither) Stator

RI 2.51 Rotor

R2  100 Rotor

R3 26.8 Rotor

The high-voltage inverting stage was designed to have a gain - 40. From this, the phase

compensation capacitor and resistor (CC and Rc) were chosen roughly according to guides in the

part specifications. The slew rate, which relies on CC, was expected to be roughly 700 V/gs,

much faster than needed for this application. RL, the current-limiting resistor, was chosen so that

the current would be limited as much as possible (0.04 A).

The additional wiring and components needed to form the inverting configuration were

initially built onto a single board, but the amplifiers were unreliable in this setup. The circuit was

not stable and was sensitive to wires being touched or moved. Later, the wiring for each amplifier

was done on separate boards, one for each amplifier. Each small board was mounted very close to

its corresponding PA85 op-amp. This made the circuit more robust and less prone to change if the

setup was jostled. Stability was improved since the bypass capacitors were plugged into the

boards, and these capacitors had to be physically close to the op-amps in order to be helpful.

5.3.2 Testing
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Some preliminary tests were done, only at low voltages. All six amplifiers were tested.

Test inputs were connected directly to the PA85 amplifier stages. The amplifiers intended for the

stator were fed 1 kHz signals, while the amplifiers for rotor were fed signals at 70 kHz and 95

kHz. The gain at DC was not measured for either the stator or the rotor. The gain for the stator

amplifiers was around 33 instead of the expected 38. The gain for the rotor amplifiers was around

5 instead of the expected 4. So, the amplifiers roughly worked as expected, but further testing

should be done at DC input voltages and at higher voltages.

During testing, it was also found that the PA85 op-amp performance was dependent on the

bypass capacitor values. When alternate bypass capacitors were substituted, oscillations occurred

even though Rc and Cc were used for phase compensation.
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6.0 RC crossover network

In this chapter, the RC crossover network (shaded below) is discussed.

SRotor
1PC Hi h l

-I 1W 1""AvR u
Stator

Posonensrng
circuitry

Figure 6.1: System block diagram; RC network is shaded

The chapter first describes the circuit's purpose and design criteria. It continues by

describing the basic circuit, modeling, and some experimental testing. Finally, improvements and

revisions to the circuit are suggested.

6.1 Purpose

Each block in Figure 6.1 works within a certain voltage range. The high-voltage

amplifiers put out voltages around 400 V, while the position-sensing circuitry operates at low

voltages, less than 20 V. Both of these blocks must be connected to the stator electrodes.

However, there are two reasons why the high-voltage and position-'sensing circuitry should not be

connected directly to the stator electrodes. First, if the high-voltage amplifiers were directly

connected, the stator electrodes would not be free to pick up the high-frequency carrier waves on

the rotor that are necessary for this position-sensing scheme. In short, the position-sensing

scheme would not work. Second, if the high-voltage and position-sensing circuitry were both

directly connected to the electrodes, it is possible that a high current could flow from the high-

voltage section to the position-sensing circuitry, damaging the latter.

In order to avoid these problems, a go-between circuit must be placed between the high-

voltage amplifiers, the position-sensing circuitry, and the stator itself. The RC crossover network

is only one possible implementation of this circuit. Other designs, perhaps involving active

elements, may perform better. The RC network design was explored here partly because of its

simplicity -- it only contains passive resistors and capacitors. In addition, this simplicity may add
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robustness, because there are fewer parts that can fail.

6.2 Design and testing

6.2.1 Design criteria

Ideally, the RC crossover network would perfectly meet the following criteria:

1) Allow the low-frequency, high-voltage drive signal to reach the stator electrodes

unattenuated.

2) Allow the high-frequency, low-voltage position signals detected by the stator to reach

the position-sensing circuitry unattenuated.

3) Prevent the high-voltage stator drive voltages from reaching the position-sensing

circuitry, to prevent damage.

In addition, each of these three descriptive criteria have corresponding quantitative

requirements. The low frequencies correspond to the drive signals, and are less than 1 kHz. The

high frequencies correspond to the dither signals and are around 70-100 kHz. In reality there is

likely to be some unwanted attenuation in Criteria 1 and 2, and some transmission of the drive

signals to the position-sensing circuitry. In Criterion 1, the amount of attenuation will limit the

maximum motor forces. In Criterion 2, the amount of allowable attenuation is dictated by two

things: 1) the maximum allowable amplitude for the position signals and 2) the minimum signal

detectable by the position-sensing circuitry. Finally, in Criterion 3, the position-sensing circuitry

should be fine if the drive signals are reduced to the voltage range of the position signal, and if the

drive signal does not have a high current.

6.2.2 Initial design

The following circuit is based on a design by Taussig, except the capacitance Cb has been

added. In the diagram, Rb and Cb are not actual circuit elements, but models of the next stage in

the signal path. However, R and C do represent actual, discrete components used in the circuit
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that was built.

Rb

Figure 6.2: Initial RC circuit

where Vr = voltage on rotor

Vs = drive voltage "command" to stator (from high-voltage amplifiers)

V = actual voltage on stator

Vo = voltage going to position-sensing circuitry

Cg = gap capacitance between one stator phase and one rotor phase

Cb = model of input capacitance of next stage (position-sensing circuitry)

Rb = model of input resistance of next stage (position-sensing circuitry)

C = capacitor in RC network

R = resistor in RC network

An initial glance at the circuit in Figure 6.2 tells how the circuit works. The low-

frequency signals of Vs get transmitted to V (the stator), but less to Vo (position-sensing circuitry).

The high-frequency signals on Vr get transmitted to V0 . Of the resistors and capacitors listed

above, we have some control over Rb and Cb, but the main design parameters are R and C. Cg is

the gap capacitance of the motor, which varies for different rotor positions.

6.2.3 Choosing component values: intuitive approach

In terms of the criteria of Section 6.2.1:

1) VNVs must be a lowpass filter (needed for good actuation);

2) Vo/Vr must be a highpass filter (needed for good sensing);

3) VoVs must have attenuation at low frequencies (needed to protect sensing equipment).
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For each filter, the cutoff frequency should be above the drive frequency (fm), yet smaller

than the dither frequency (fl, f2). How do these criteria affect our choice of R and C, assuming

that Rb, Cb, and Cg are given? It is possible to calculate complete transfer functions (see Section

6.2.4). However, because these expressions are large, it is difficult to gain intuition from them.

Instead, we will first look at simplified approximate transfer functions.

Examining VIV s

The high-voltage, low-frequency drive signal on Vs must be transmitted to V with little

attenuation to support good actuation. Assuming that l/joCg is large, the circuit can be viewed as

follows:

Z1

ZI= R

1 Rb
2 jWC I + joRb bZ22 - jC +jRbCb

.2

Figure 6.3: Simplified circuit for transfer function V/V s

Since IV/VsI=IZ 2/(ZI+Z2)1, we want 1Z21 > IZ1I at low frequencies. Assuming that Rb and

Cb are fixed, 1/oC should therefore be small compared with R.

Examining Vo/Vr

IVo/Vrl should be as high as possible at high frequencies (dither frequencies fl, f2) to

support good position-sensing. Assuming that R is large, the following approximate circuit can
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be drawn:

Z1 1 1z - + jCg
joC joCg

RbZ=2 1 + jORbCb

Rb Z2

Figure 6.4: Simplified circuit for transfer function Vo/Vr

We want 1221 > 1211 at high frequencies to maximize IVo/VrI=IZ 2/(Zi+Z 2)I at high frequencies.

Assuming that Rb, Cb, and Cg are fixed, a large coC should be chosen to minimize Z1. However,

because C and Cg are in series, Z1 will ultimately have the impedance of Cg, no matter how large

C is.

Examining VoVs

Finally, the high-voltage, low-frequency voltage Vs should not be transmitted to Vo, in

order to protect the position-sensing circuitry. Again assuming the impedance of Cg is large at

low frequencies, the circuit can be viewed as follows:

r --------- :I R

V V Z C-------
10V RZ

1
Z =R+

1 joC

Rb
2 1 + jORbCb

Figure 6.5: Simplified circuit for transfer function VoNs/V

In this case, IVo/Vsl should be small for low frequencies. To achieve this, IZll > 1Z21. R should be
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large, and toC small.

Summary

In summary, at low frequencies, it is desirable to have R large and coC small. At high

frequencies, oC should be large. Fortunately, it happens that these requirements are

simultaneously achievable.

6.2.4 Complete transfer functions

The transfer functions V/V s, Vo/V s, and V/Vr can be calculated as follows:

V = Hs(jo)V s + Hr(jo()Vr (6-1)

where Hs, Hr are

Rb(C b + C)jO + 1
Hs(jo) = 2

-RbR[CgC+ Cb(C+ Cg)] + [Rb(C +Cb) + R(C + Cg) jo

-RbRC (C + Cb) 2 + RCgjIO
Hr(j+C)  2

1-RbR[CgC+ Cb(C+ Cg)] 2 + [Rb(C+ Cb) + R(C + Cg)] jO

(6-2)

(6-3)

Also,

Vo = H(jw)V = H(jow)[Hs(jwo)Vs+Hr(j(O)Vr] (6-4)

where

RbCjoa
H(jo) =

1 + Rb(C + Cb)jO
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Therefore, the three transfer functions of interest are

V
= Hs(j )

V = H(jo)Hs(j(O)

V = H(jo)Hr(jo)

(6-6)

(6-7)

(6-8)

Finally, the magnitudes of these transfer functions are shown below.

I S =

/[Rb(Cb + C)0]2 + 1

1-RbR[CgC + Cb(C + Cg)]O)2 2 + { [Rb(C + C)+R(C+Cg)]o}2

22 2
[RbRCg(C+Cb)O ] +(RCgO) 2

{ 2 C
1-RbR[CgC+ Cb(C+ Cg)]0 2 + {[Rb(C+ Cb)+R(C+ Cg)]0} 2

(RbC) 2

1 + [(Rb(C+ Cb)0)12

(6-10)

(Rb C) 2

1 + [(Rb(C+ Cb)O))] 2

(6-11)

The above expressions are unwieldy, and it is difficult to obtain any design intuition from them as

was gained in the previous section. However, these formulas are useful for simulating the transfer

functions and seeing how well the model fits with the experiment, discussed next.

6.2.5 Comparison between model and experiment

To see how closely the equations of 6.2.4 describe reality, the circuit of Figure 6.2 was

built with components shown in Figure 6.3. Using this circuit, the magnitudes of the transfer

functions H(jo), Hs(jo), and Hr(jo) were measured and compared against the expected values.

The general shapes of Hr (highpass), Hs (lowpass), and H (highpass) can be predicted intuitively
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from the design criteria.

Vr
T in nP

Figure 6.6: Experimental RC circuit

Figure 6.6 shows the circuit that was built. The components with actual values represent

physical parts that were used. Rb, Cb, and the ideal buffer represent an op-amp follower which

was the next stage in the signal path. The next few sections explain how the components for the

experiments were chosen, and how Rb and Cb were estimated or measured.

Estimating values of 'fixed" components Rb, Cb, Cg

Initially, the 100kK2 resistor shown in the diagram was not included, and Rb was the input

resistance of the op-amp follower. However, in this configuration, Rb was estimated to be huge

(>>10 12 ) from op-amp data sheets. This was bad, because we can see from Figure 6.2 that Rb,

Cb, and C create a voltage division between Vo and V. Examine Equation 6-5. Suppose

Rb(C+Cb)>>1. In that case, H(jo)-C/(C+Cb). This is undesirable, because H(jo) must be a high-

pass function, to protect the position-sensing circuitry from the high drive voltages. To correct

this, a lower value of Rb was chosen by inserting the 100 k resistor shown in Figure 6.6

Cg was estimated to be around 10 pF from the dimensions of the motor as described in

Section 3.1.

Cb was estimated to be roughly 20 pF from preliminary measurements, described below.
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Measuring Cb

Cb was measured by hooking the op-amp to a simplified circuit containing only a known

C, shown below in Figure 6.7. The input/output transfer function is

V _ RbCjo (6-12)
Vi 1 + Rb(C + Cb)jO

The transfer function was measured. For high frequencies, Vo/V i approaches a constant:

C/(C+Cb). This constant was measured, and Cb was extracted.

V
ViVi

,._2i
C

+ V0
Vr
r

Figure 6.7: Simplified circuit for measuring Cb-
Actual circuit (left); circuit with Cb, Rb explicitly shown (right)

Experimental Results

After measuring Cb, values for R and C were chosen to create the desired filters, but they

may not have been the optimum values. The component values were chosen as shown in Figure

6.6. A 10 pF capacitor was used for Cg instead of the actual rotor/stator capacitance, because the

motor was not set up at the time the test was done.

Then H(jw), Hs(jo), and Hr(jO) were calculated and compared against experimentally

measured data. The following three graphs compare the analytical calculations with
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experimental results.

RC Fitr Tranuwtnctior VN,
1.4
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Figure 6.8: Measured vs. expected IHrl, IHsI

Figure 6.8 shows the measured and expected transfer functions between the stator node

(V) and the rotor input (Vr) and stator input (Vs). The experimental points for this graph was not

directly measured, but was calculated from direct measurements in Figures 6.9 and 6.10. We can

see that the experimental curves are similar but not the same as the expected curves. In particular,

the experimental value of IHsl deviates sharply from the expectation at the lowest measured

frequency (located at f-200 Hz, Voltage ratio-0.65). Although this point on the graph may look

like an error, it was repeatedly found on graphs of similar data sets. Since the experimental points

of Figure 6.8 were not measured directly, it is possible that this outlying point is due to error. To

investigate further, direct measurements of IHrl and IHsl should be taken. If the outlying point

remains, this implies there is some behavior at low frequencies which the model does not account

for, a serious problem which needs to be addressed However, for drive frequencies between 400-

1000 Hz, the performance is quite good with a gain of nearly 1. The overall rotor transfer

function seems to have roughly the right shape, but the gain is lower than expected, and the
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measured values are higher than expected at low frequencies.
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Figure 6.9: Measured vs. expected IHI

The measured values fall mostly on the expected curve in Figure 6.9. The next figure

shows the transfer functions between the output and the stator drive and rotor dither inputs..

0.

0.1

0O0

2

56

a

RC FPr tungr funotns: VN,, VAV,

10
FQm-y [IMl

Figure 6.10: Measured vs. expected IVo/VsI, IVoVI.

Are the results in Figure 6.10 acceptable or poor?

First consider IVo/Vsl. IVo/Vsl<0.014 for o<l kHz (from data in Figure 6.7). If IVsl=400

V, then IVol<5.6 V, an acceptable voltage to put on the input of the position-sensing circuitry.
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Next consider IVVrlI. If the dither signals used are at 70 kHz and 100 kHz, IVo/VrI=

0.1346 at 70 kHz and IVoVrl=0. 1465 at 100 kHz. Consider the worst case at 70 kHz, where the

attenuation is greater. In order to judge whether these gains are acceptable or not, two quantities

must be estimated: the largest allowable dither voltage amplitude and the smallest detectable

position-signal amplitude. From Section 2.1.2, the motor forces scale as the square of the

maximum drive voltage. Therefore, if the maximum drive voltage is 400 V, a 20 V dither signal

will only alter the forces by 0.25%. A 40 V dither signal will only alter the forces by 1%. Say a

dither signal of amplitude 20 V is chosen. In this case, a dither signal of amplitude 2.69 V would

be input to the demodulator. We know from Section 4.7.2 that the demodulator has a noise

amplitude at the output of 0.2 V, so it should be able to detect input signals 2.69 V in amplitude.

From this analysis, the RC crossover network does perform adequately for this system in terms of

position-sensing. However, in terms of driving the stator, the circuit only performs well for drive

frequencies above 200 kHz according to the data in Figure 6.8.

Finally, it should be noted that the circuit design and components in this example have not

been formally optimized, so it possible that better performance could be achieved. Other circuit

designs were not explored because of time constraints. Sections 6.2.7 and 6.2.8 discuss minor

revisions to the circuit and model.

6.2.6 Dependence on Cg

So far we have considered Cg to be a constant, roughly equal to 10 pF. However, the goal

of the position-sensing method is to detect changes in Cg. How do the RC crossover network

functions depend on Cg? The next graph shows the gain, IVJVrl, evaluated at two frequencies

(fl=70 kHz and f2=95 kHz) and IVVslI evaluated at the frequency fm=1 kHz. The values shown

in the graph are calculations, not measurements. These calculations were made using the same
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component values used in the previous section.

0.2,
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RC pass characteristics for variable Cg at key frequencies
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Figure 6.11: Expected dependence of crossover network characteristics on Cg

We can see that, for a given capacitance, the gain IVoVNrl evaluated at f2 will always be

higher than that evaluated at fl. (This could also be seen from Figures 6.8-10.) Figure 6.11 also

tells us how much IVoVrl changes as Cg changes. In order for either in-plane or out-of-plane

position-sensing to occur, the IVoNVrl curves of Figure 6.11 must have a non-zero slope, and

preferably a large slope. Without a non-zero slope, the system will not be able to distinguish

between different gap capacitances, and position-sensing will fail. This is because all the position

information is embodied in Cg, which depends on both the in-plane and out-of-plane separation

between the rotor and stator.

6.2.7 Revising the model: accounting for a ground plane

Once the motor was assembled, it was realized that there was a capacitance between the

stator electrodes and the stator ground plane which was not accounted for in the model. (The

similar rotor ground-plane capacitance doesn't affect this circuit model.) To account for this
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ground-plane capacitance Cgp, the model was modified as shown below.

Cgp

Figure 6.12: Revised RC circuit with ground-plane capacitance

The transfer functions of Equations 6-2 and 6-3 were also modified. In the denominators

of each transfer function, Cg was replaced with Cg+Cgp. The effect of including Cgp is that the

overall transfer function VN r is smaller in magnitude (because of the role of Cgp in the voltage

divider). In other words, the performance of the circuit worsens slightly, but the overall shape of

the filters remains the same.

6.2.8 Revising the circuit: protection against shorting and voltage spikes

Finally, some thought was given to the problem of shorting between electrodes (both on

the rotor and stator) and of providing more protection for the position-sensing circuitry from high

currents due to the high-voltage section. Note that there are a few different ways the electrodes

could short (stator-stator, rotor-rotor, rotor-stator). This type of shorting is a definite danger with

the current setup, because of the exposed metal electrodes and sensitive mechanical setup.

Possible solutions include 1) limiting the current coming out of the high-voltage power

supply before it ever reaches the drive circuitry (this could be done with a resistor or something

fancier) and 2) inserting a resistor in the RC circuit connected to the Vo node and in series with a

inverting amplifier that leads to the position-sensing circuitry. Voltage-clamps involving diodes

were also considered.

However, none of these options was explored in detail, and more work must be done. In

addition, no position measurements were made with the RC crossover network inserted into the

system. As mentioned at the beginning of Section 4.7, this next step did not occur because of
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limited time. Performing this step would likely introduce more modifications to the circuit.
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7.0 Summary, conclusions, and suggestions for future work

7.1 Summary

A design by Carl Taussig for a linear electrostatic micromotor with forces in both the in-

plane and out-of-plane directions was described in Section 2.1. In addition, a method for

detecting the motor's position by measuring capacitance was also explained in Section 2.1. In

Chapter 3, the experimental setup for this thesis was described. A scaled-up prototype of the

motor was built, and the electronics necessary for driving the motor and extracting a feedback

signal were designed and built. These electronics fell into three parts: a demodulator for the

position signal, drive amplifiers, and an RC crossover network to interface the other two parts to

the motor and were described in Chapters 4, 5, and 6 respectively. The demodulator was used to

successfully measure a position signal from the motor model in Section 4.7.2.

7.2 Conclusions

The main result of the thesis is the demonstration of the basic position-sensing scheme

with an in-plane measurement accuracy of about 6%, or 0.06 mm using the demodulation

circuitry connected directly to the stator electrodes. The demodulation circuitry was tested and

behaved as expected, but could be optimized further.

The high-voltage drive amplifiers were stable and gains were as expected during low-

voltage tests.

The RC crossover network provided adequate performance for the design requirements for

drive frequencies greater than 400 Hz only. Specifically, the drive signal was transmitted from the

stator drive input to the stator with an attenuation of 0.65 for a 200 Hz drive signal, according to

measurements in Figure 6.8. This was not acceptable performance, and more measurements

should be taken, including direct measurements of the transfer function between the stator

electrode and the drive input to the stator. However, for drive signals between 400-1000 Hz, the

gain was excellent (between 0.98 and 1.00). The drive signal was adequately attenuated by a

factor of 0.014 or less, which was enough to protect the position-sensing circuitry from high

voltages. Finally, the position signal from the rotor was attenuated by a factor of about 0.15 in the

worst case, which still left a large enough signal for the position-sensing circuitry to detect.

Overall, the RC crossover network worked well except for low drive frequencies around 200 Hz.
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Overall, information was gained on how to improve the electronics for the scaled-up

motor model. These findings may or may not be directly applicable to the electronics for an

actual-size micromotor. In particular, the measurement of the capacitance may become a much

trickier issue when dealing with tiny micromotor capacitances. However, the goal of the current

project was not to build an electronics system exactly like the one to be used for the micromotor.

Instead, the goal of the current project was to create electronics for a scaled-up model, so that

further work can be done on investigating motor control issues.

7.3 Suggestions for future work

Looking at the big picture, this project is a step toward reaching the goal of a fully-

working motor prototype. However, to reach that goal, these further steps must be completed:

- Improvement of electronics

- Integration of electronics with DSP control

- Development of control algorithms

Specific suggestions on improving the electronics have been interspersed throughout the

text. In particular, the bandpass filter of the demodulator should be upgraded to a higher-order

filter. The high-voltage drive circuitry should be tested at high voltages, and the 0 dB gain should

be measured. If the current RC crossover circuit cannot achieve acceptable performance for low

frequency drive signals, alternate circuit designs to the RC crossover network should be

investigated. Finally, more consideration and experimentation should be given to the problem of

high voltage shorting between electrodes and of how to protect the position-sensing circuitry from

high currents. In general, all circuits should be experimented with further, and the designs should

be improved if necessary.

One improvement to the motor design which was not mentioned in the text involves

changing the layout of the electrodes on the rotor or stator. The rotor or stator plane could be

divided into quadrants, with the electrodes on each quadrant electrically separate from those on

the other quadrants. (Actually, the pattern might be a little more complicated, but this is the basic

idea.) All electrodes would still look like long, skinny lines and would be connected in the four-

phase periodic manner. This configuration would give greater precision in position-sensing,

because it would also tell how parallel the rotor and stator planes are by providing four separate

gap-distance signals. This electrode grouping would increase the number of position signals,
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increasing the complexity of the design. However, it might be beneficial, because it would be

easier to align the rotor to the stator and ensure the planes were parallel.
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Appendix A: Calculating the out-of-plane repulsive force
density

This calculation was done by Carl Taussig to estimate the out-of-plane repulsive force

density. It calculates force per area, and it is referred to in the text in Section 2.1.2, p. 5.
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Figure A. 1: Region considered in the calculation

Consider the rectangular region bounded by x=+/-t/k and y=+/- g/2 as shown above.

(it/k=2d from Figure 2.3.) This box represents one spatial period of the motor. The dark lines

represent the rotor and stator. To find the overall force density, we will first calculate the force

(per length in the z direction) on the rotor generate by the fields within this box. Then, if we

divide this by 4d=2t/k, the spatial period, we will have the repulsive out-of-plane force density

for the motor.

Boundary conditions

Assume that identical sine wave potential functions are imposed on both the rotor and

stator. When the rotor and stator are aligned so their potentials are in phase, the maximum

repulsive force is produced. This boundary condition is specified below.

Set t = Vsin(kx) at y=+g/2, -g/2 (A-l)

Find O(x,y) and E

Since there is no charge between the plates, we know the potential 0 must obey Laplace's

equation. Therefore,

O=A sin(kx) cosh(ky), where A=V/cosh(kg/2) (A-2)

E=-Ak[cos(kx)cosh(ky)i x + sin(kx)sinh(ky)iy] (A-3)
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Calculate the energy in the electric field in the box

(A-4)a2k2 g -k
U k ( c o s2 k x c os h 2 k y + sin2kxcosh2ky)dxdy

2 g
2

A 2 k2, g
= 02 fk (cos2kx + cosh2ky)dxdy

A- sinhkg
2

sinh k g

2
= V2 xe 2

cosh k

2

Calculate the force at constant V in the gap direction (y-direction) per length in z

_ dUY-
Ste 0 V 2k 2 k

2 -t anh2)

2 2

t 0 ,1 - tanh 2  4d
4d 4d

(A-5)

where nt/k=2d.

Calculate the force density

(A-6)F = 4d
y 4d

2 2
1T6d2

- tanh2( g
(4d)

Appendix A: Calculating the out-of-plane repulsive force density

v



Appendix B: Calculating the in-plane force density

This calculation was based on the calculation in Appendix A, except this calculation finds the in-

plane force density. It calculates force per area, and it is referred to in the text in Section 2.1.2, p.

5.
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Figure A. 1: Region considered in the calculation

Consider the rectangular region bounded by x=+/-t/k and y=+/- g/2 as shown above.

(n/k=2d from Figure 2.3.) This box represents one spatial period of the motor. The dark lines

represent the rotor and stator. To find the overall force density, we will first calculate the force

(per length in the z direction) on the rotor generate by the fields within this box. Then, if we

divide this by 4d=2t/k, the spatial period, we will have the repulsive out-of-plane force density

for the motor.

Boundary conditions

Assume that identical sine wave potential functions are imposed on both the rotor and

stator.

Set 4 = Vsin(kx) at y=-g/2 (B-1)

= Vsin(k(x-s)) at y=+g/2 (B-2)

Find (xy) and E

Since there is no charge between the plates, we know the potential 4 must obey Laplace's

equation. Therefore,

4=A[sin(kx)sinh(k(y-g/2)) - sin(k(x-s))sinh(k(y+d/2)], where A=V/sin(kg) (B-2)

E=Ak[cos(kx)sinh(k(y-g/2)) - cos(k(x-s))sinh(k(y+g/2))]ix

+ Ak[sin(kx)cosh(k(y-g/2) - sin(k(x-s)cosh(k(y+g/2)]iy] (B-3)
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Calculate the energy in the electric field in the box

(B-4)U = Of E2dxdy
2 k
7-

= [cosks sinhkd + 2kc
2 K 2

Calculate the force at constant V in the in-plane direction (x-direction) per length in z

dU

eo0( VA) 2 k
= sinhkdsinks

2
2 2
I EoVo . Is

Ssin-
4d sinh 2

2d

(B-5)

where n/k=2d.

Calculate the force density

fxF =
x 4d

2 2
OVO . sS

si sin
16d2sinh 2d

2d

(B-6)
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Appendix C: Circuit diagrams

This appendix contains all of the diagrams for the circuits that were built during the thesis. This

includes the demodulator, the high-voltage circuitry, and the RC crossover network, which were

discussed in Chapters 4, 5 and 6 respectively.
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Appendix D: Frequency-division program for Altera EPLD

This appendix contains the frequency-division program for the Altera part referred to in Section
4.3.4.

Clk_div.tdf

INCLUDE "lpm_counter.inc";
INCLUDE "lpm_compare";

% This file generates two different chips, depending on which constants are chosen%
%for NUM_DITHER_CYCLES AND NUM_FLTER_CYCLES. To choose an option,
uncomment %
% appropriate lines %

%* Option 1 *%
*********************%

% This chip takes an input clock and divides it by 72 to approximate 102/(sqrt(2)) %
% this is the dither frequency output. the same clock is divided by 2 to provide the %
% clock for the maxim bandpass switched capacitor filter %

CONSTANT NUM_DITHER_CYCLES = H"48";
CONSTANT NUM_FILTER_CYCLES = H"2";

%* Option 2 *%

% This chip takes an input clock divides it by 212 to approximate 300/(sqrt(2)) %
% this is dither frequency output. The same clock is divided by 6 to provide the %
% clock for the maxim bandpass switched capacitor filter %

%CONSTANT NUM_DITHER_CYCLES = H"6A"; %
%CONSTANT NUM_FILTER_CYCLES = H"3";%

% These constants are half the total division because the last divide-by-2 is done by %
% the dff which restores the duty cycle to 50%

SUBDESIGN clk_div

clk_in :INPUT;
clk_filterout[2..0] :OUTPUT;
clk_ditherout[6..0] :OUTPUT;
clkdiv6 :OUTPUT;
clkdiv212 :OUTPUT;

Appendix D: Frequency-division program for Altera EPLD



VARIABLE
3bitcounter : lpm_counter WITH (LPM_WIDTH=3);
7bitcounter: lpm_counter WITH (LPM_WIDTH=7);
clk_dithercomp : pm_compare WITH (LPM_WIDTH=7,

LPM_PIPELINE= 1,
ONE_INPUT_IS_CONSTANT="YES");

clk_filtercomp:lpm_compare WITH (LPM_WIDTH=3, LPM_PIPELINE=1,
ONE_INPUT_IS_CONSTANT="YES");

clkdithereven :dff;
clkfiltereven :dff;

BEGIN
7bitcounter.clock=clk_in;
clk_ditherout[] = 7bitcounter.q[];
clk_dither_comp.clock=clk_in;
clk_dither_comp.dataa[]=NUM_DITHER_CYCLES;
clk_dithercomp.datab[]=clk_dither_out[6..O];
7bitcounter.sload=clk_dithercomp.aeb;
7bitcounter.data[]=H"02"; % this takes care of 2 extra clock cycles it takes to reload %

clk_dither_even.d = not clk_dither.even.q;
clk_dither_even.clk = clk_dithercomp.aeb;
clkdiv212= clk_dither_even.q;
3bitcounter.sload = clk_in;
clk_filter_out[]=3bitcounter.q[];
clk_filter_comp.clock=clk_in;
clk_filterscomp.dataa[]=NUM_FILTER_CYCLES;
clk_filtercomp.datab[]=clk_filter_out[2..0]
3bitcounter.sload=clk_filter_comp.aeb;
3bitcounter.data[]=H"02"; % this takes care of 2 extra clock cycles it takes to reload %

clkfiltereven.d = not clk_filter_even.q;
clk_filter_even.clk = clk_filter_comp.aeb;
clkdiv6=clk_filter_even.q;

END;
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Appendix E: Excerpt from LMF100 data sheet

The following graph is from the data sheet for the LMF100 High Performance Dual
Switched Capacitor Filter, made by National Semiconductor (1995). The graph shows the
dependence of fck/f 0on fclk, and is referred to in Section 4.3.3 of the text.
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