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Abstract

The propagation properties of duobinary encoded optical signals are investigated.

Three variations of duobinary encoding are presented: AM-PSK, alternating-phase,
and blocked-phase. A computational model for optical transmission of duobinary

signals is developed, which gives insight into the issue of optimal filtering in duobinary

transmission systems. The main result is that the baseband electrical filters in the

transmitter and receiver should have a bandwidth at approximately 0.6 the bitrate

and have a slow roll-off. The relationship between noise and dispersion penalty in

an optically pre-amplified receiver is then discussed. It is found that the ratio of

the noise power of the marks to the spaces determines the rate at which the receiver

sensitivity degrades as the channel dispersion is increased. Next, the stimulated

Brillouin scattering threshold of duobinary signals is experimentally and theoretically

shown to increase linearly with bitrate, and compared to binary modulation format at

20 Gbit/s, a forty-fold increase in launch power is possible. Finally, the computational

model for optical transmission is used to show that duobinary format has a greater

channel efficiency than binary format. This is important for tighter channel spacing

in wavelength-division multiplexed optical channels.
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Chapter 1

Introduction

Ideas from communication theory developed originally for microwaves and electrical

signals are often applied to optical signals. Duobinary transmission is one such idea

that was developed in the early 1960's in the context of electrical signals and was

later applied to optical signals in fibers in the late 1990's.

As the demand for faster communications increases, there has been a natural

evolution towards a better usage of channel bandwidth. In the radio and microwave

domains, radios, televisions, and especially cellular phones have led to efficient usage

of the scarce and precious channel spectrum through the usage of bandwidth efficient

modulation techniques: single-sideband modulation, time division multiplexing, and

M-ary signaling schemes for example. In comparison, optical communications in

fiber has such a large usable bandwidth that efficient channel usage has not been an

issue until recently. Since spectral efficiency was previously not an issue in optical

fiber communications, binary NRZ modulation is still currently the most popular

modulation format in optical fibers due to its simplicity of implementation. One way

of achieving a more efficient use of the channel bandwidth was through innovative

coding schemes called partial response signaling (PRS). PRS is a method of encoding

or decoding a data stream in order to decrease the amount of error from intersymbol

interference (ISI). Duobinary format is a common form of partial response signaling.

A binary datastream can be encoded into a duobinary signal simply by adding the

binary data stream to a one bit delayed version of itself. The result is a three-level



signal.

Lender was one of the first to publish on duobinary signaling [24] [25]. He pointed

out that the advantage of using duobinary signaling in electrical lines is that a bit

rate of 2B can be sustained in a channel of single-sided bandwidth B with a reduced

amount of ISI and without the need for ideal low-pass rectangular baseband filters as

would be necessary to achieve the same performance using binary format.

Up until the 1990's, fiber optic communications had plenty of bandwidth. Just

as had happened in the microwave spectrum in the 1960's, bit rates and number of

channels in optical fibers started to increase and fill the 3 THz bandwidth of erbium-

doped fiber amplifiers (EDFA). Very quickly, the bandwidth of the entire amplifier was

used by densely-packed wavelength-division multiplexed (WDM) binary channels[9]

[10] [8] [11]. In these experiments, terabit per second bit rates over .100 km were

reported. The next step after filling the bandwidth of EDFAs was to increase the

spectral efficiency (the bit rate divided by the used bandwidth) by using a different

modulation format. Usage of coherent techniques with a local-oscillator proves to be

very difficult in fiber since slight perturbations in the signal's phase can easily cause

a dramatic increase in the bit error rate. Duobinary format is the natural next step

in improving the bandwidth efficiency since it has a compressed spectrum and the

receiver does not have a local-oscillator. In a fairly recent experiment using 132 20

Gbit/s duobinary modulated channels with 33.3 GHz spacing, 2.6 Tbit/s over 120 km

(corresponding to a spectral efficiency of 0.6 bit/s/Hz) was demonstrated, a factor of

two improvement over densely packed binary channels [55]. In the the 1997 Optical

Fiber Conference, the feasibility of over 1 bit/s Hz high spectral efficiency WDM with

optical duobinary coding and polarization interleave multiplexing was considered [21].

Besides a thrust toward a more efficient use of available optical bandwidth, the

recent interest in duobinary signaling in optical fibers grew from its low stimulated

Brillouin scattering (SBS) threshold and its narrow spectrum. As optical modula-

tors increase in speed from 2.5 Gbit/s to 10 Gbit/s, and now to about 40 Gbit/s,

dispersion becomes a more important issue. The spectral width of duobinary sig-

nals is about half of that of binary signals and since a narrower spectrum implies a



smaller dispersion power penalties, duobinary signals help alleviate the problem of

ever increasing modulation rates. Increased modulation rates lead to other problems

as well. A higher launch power is necessary to obtain the same BER when increasing

the modulation rate. Stimulated Brillouin backscattering (SBS) presents an upper

limit to the launch power of an NRZ signal. This upper limit is called the SBS thresh-

old. Duobinary signals have higher SBS thresholds than binary signals since binary

signals have a large spectral component at the carrier frequency, not present in the

duobinary power spectral density (psd), which efficiently scatters from acoustic waves

in the fiber at high launch powers.

The rediscovery of duobinary transmission in optical fibers has prompted a deluge

of research to use this transmission format to increase capacity of fiber while still

offering reasonable hardware (receiver and transmitter) realizations. One of the first

duobinary experiments (in 1994) was the propagation of a three-level optical duobi-

nary signal over an unrepeatered 100 km span of silica core fiber [18]. Even though

the back-to-back receiver sensitivity (at a BER of 10- 9) of the three-level duobinary

format was 3 dB lower than binary format, the receiver sensitivity after 100 km of

transmission through silica-core fiber using duobinary format was 2 dB better than

binary format. One year later (1995), a simple optical modulation scheme yielding an

AM-PSK duobinary optical signal using a lithium niobate Mach-Zender modulator

driven by an electrical three-level duobinary signal was proposed [40]. This scheme

proved to be advantageous over the previous three-level optical level scheme since

it yielded a two-level intensity signal in the fiber which allowed for direct detection

and a better back-to-back sensitivity. In the same year a 210 km repeaterless 10

Gbit/s transmission experiment through nondispersion-shifted fiber (17 ps/nm/km)

with a measured bit error ratio lower than 10-12 was performed [41]. In compari-

son, 10 Gbit/s binary transmission through nondispersion-shifted fiber achieves the

same BER at about 60-80 km of nondispersion-shifted fiber. A year later (1996),

duobinary transmission was coupled with fiber-grating based compensation and 100

km spans between EDFAs to yield 10 Gbit/s transmission over 700 km of standard

single-mode fiber, the longest distance achieved at 10 Gbit/s using a single dispersion



compensating element to that date [27].

To summarize, the four attractive features of duobinary modulation in optical

fiber transmission are: (1) it has a narrower bandwidth than binary format and hence

suffers less from dispersion, (2) it has a greater spectral efficiency than binary format

due to its narrower bandwidth and hence allows tighter packing of wavelength division

multiplexed channels, (3) it suffers less from stimulated Brillouin backscattering, the

major limiting factor in repeaterless transmission, and (4) is easy to implement since

the transmitter only requires modest changes from an externally modulated binary

transmitter and since the receiver is a direct detection receiver, the same as for binary

format.

This thesis will discuss, clarify, and raise several major issues concerning the prop-

agation properties of duobinary transmission in optical fibers. Chapter 2 introduces

duobinary signaling, the components necessary for its generation, and practical issues

and difficulties in constructing a high performance duobinary transmitter. Chapter 3

presents the model used in this thesis to simulate duobinary systems, and contains

an overview of the simulator, algorithms for calculating the BER and sensitivity of

duobinary receivers, and a clarification of confusing nomenclature. The noise terms

of an optically pre-amplified receiver are then analytically derived. Various simplifi-

cations of the noise variances are explained and justified. Chapter 4 implements the

simulator to gain insights into why duobinary signaling has better transmission prop-

erties than binary signaling. There was much confusion over this issue and several

different explanations existed [36] [52]. It is important to understand the improved

propagation properties of duobinary signaling in order to pick optimal system pa-

rameters such as the transmitter and receiver electrical filter bandwidths. The issue

of optimal filtering from a set of common filters will be discussed. RZ duobinary

signals are considered as well. Chapter 6 provides an extensive account of the stimu-

lated Brillouin scattering (SBS) of a duobinary signal. The duobinary power density

spectrum and SBS threshold are found analytically. Simulations and experimental

data agree quite well with the theoretically predicted SBS thresholds for the NRZ

duobinary formats. Chapter 7 discusses duobinary transmission in the context of



wavelength-division multiplexing. The benefit of duobinary transmission in multi-

channel systems is due to the narrow spectrum of duobinary signals and allows for

tighter packing of channels. Finally, future directions and research are presented.



Chapter 2

Duobinary Signal Format

2.1 Duobinary Signaling

Duobinary signaling codes a binary bit stream by adding the bit stream to itself shifted

by one position to the right (see figure 2-1). For example, the binary bit sequence

10110010 is encoded into a three-level duobinary sequence by delaying the binary

sequence by one bit and adding it to itself. The first three lines in figure 2-2 illustrate

duobinary encoding. The first bit of the shifted binary sequence is arbitrarily chosen

as 0.

The transfer function of the duobinary encoder in figure 2-1 is easily seen to be

H(z) = 1+ z- 1. To decode a duobinary signal, the inverse transfer function is needed

so that H(z)G(z) = 1. The duobinary decoder is G(z) = 1/(1+z - 1) and is equivalent

to subtracting a previous output from the current input to obtain the current output.

The recovered binary sequence in figure 2-2 assumes that the initial state of the

decoder is 0 which must match the arbitrarily chosen first bit of the shifted binary

sequence in the encoder.

One problem with duobinary encoding is that errors tend to propagate since the

BINARY IN DUOBINARY OUT

ONE BIT DELAY

Figure 2-1: Construction of a duobinary signal from a binary signal



I 0 I I 0 0 I 0 X ORIGINAL BINARY SEQUENCE

+ I o I I O O I O DELAYED BINARY SEQUENCE

I I I 2 1 0 I I X DUOBINARY SEQUENCE

[T] 0 I I o 0 I 0 RECOVERED BINARY SEQUENCE

Figure 2-2: Example of creating a duobinary signal from a binary signal

output of the decoder is dependent on previous, possibly fallacious, output. If the

previous output is incorrect, so will subsequent output. This problem has been solved

precoding the input binary data stream. The transfer function of the precoding is

simply P(z) = 1/(1 - z- 1) [18].

Instead of having levels at 0, 1, and 2; the levels could easily be biased so that they

are -1, 0, and 1. With the new levels, the upper and lower levels differ from each other

by a 7r-phase shift. This is called amplitude-modulated phase shift keying duobinary

modulation (or AM-PSK duobinary) where the "PSK" denotes the 7r-phase shifts.

2.2 Generation of Duobinary Signals

This section will explain how a duobinary signal is generated in the electrical and

optical domain.

A duobinary transmitter is shown in figure 2-3. A continuous wave or pulsed

lightwave generated by a laser diode is modulated by an external Mach-Zender (MZ)

modulator. The two arms of the MZ modulator are driven by two electrical signals in

push-pull fashion.1 The two electrical signals driving the MZ modulator are duobinary

encoded and filtered data bits.

2.2.1 The Optical Section of the Duobinary Transmitter

The laser diode and the Mach-Zender(MZ) modulator make up the optical section

of the duobinary transmitter. In the experiments in this thesis, laser diodes lasing

in the 1.5 pm telecommunications window were used. The Mach-Zender modulator

'Push-pull means that each arm of the MZ are driven by opposite voltages. For example, if one

arm of the modulator has voltage +V, the other arm has voltage -V. Push-pull operation avoids

chirping of the output signal.
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Figure 2-3: A duobinary transmitter.

splits an incoming light signal into two waveguide branches (see figure 2-4). The two

branches experience different optical delays, depending on the voltage applied to each

arm, and then recombine constructively or destructively. If the electric field in the

upper branch experiences a phase shift of

V1 = J-
V7

and the electric field in the lower arm experiences a phase shift of

(2.1)

(2.2)V2

then the output electric field is given by

Eout = Ein (ei1 ei 2±i 0 )Nf2-

where 4o is the phase shift due to the biasing voltage. Expressing (2.3) in terms of

voltage yields

~ (V lV2 7r Q COS cos V - V2 I0Eout = -Vf2Ein i 2 221 V J

(2.3)

(2.4)

Y ¥

I
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Figure 2-4: Mach-Zender modulator and respective E-fields.
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Figure 2-5: Transmission as a function of electrode voltage difference of the MZ

modulator

Using (2.4) and the definition AV = V - V2, the output power of the MZ can be

expressed as

Eo 2 = 2E cOS2 A (2.5)i n \2V, 2

and the chirp, which is the derivative of the phase of Eout (Sw = 27rd(t)/dt) is

Sw = (V + V2). (2.6)
2V, dt

The transmission through the MZ is sinusoidal with respect to the difference of volt-

ages applied through the electrodes, V and V2 (see equation (2.5) and figure 2-5). In

addition, to have a chirpless output (6w = 0), equation (2.6) implies V = -V 2. This

condition is the same as push-pull operation.

2.2.2 The Electrical Section of the Duobinary Transmitter

The electrical section of the duobinary transmitter consists of a data generator, a

duobinary encoder and a low-pass filter. For transmission experiments, the data

,1ei#,.+iO,
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Figure 2-6: Push-pull or AM-PSK duobinary transmitter. The delay, T, is one-bit

period.

generator is often a pseudo-random bit sequence which has properties of random

data.

Pseudo-random data generation has three properties that reflect the data's ran-

domness [16]. Firstly, the number of marks and spaces (or zeros and ones) in a se-

quence differ by at most 1. Secondly, the probability of a contiguous string of marks

or a continugous string of spaces is inversely proportional to the length of the string.

This means that among the number of runs of marks or spaces in the pseudorandom

binary sequence (PRBS), one-half the runs of each kind are of length one, one-fourth

are length two, one-eighth are length three, and so on. Finally, the autocorrelation

of the PRBS is approximately zero everywhere except at the origin. The generation

of a PRBS sequence is often implemented by using a shift register with feedback. A

good discussion of how to generate pseudorandom binary sequences can be found in

[22, p.284].

For an AM-PSK duobinary transmitter (see figure 2-6), the MZ modulator is

biased so that when AV = 0 the transfer function in figure 2-5 is at a null. The

delay-and-add element in figure 2-6 can be replaced by an analog low-pass filter (LPF)

with a cutoff at 1/4 the bitrate. This filter will also produce a three-level signal. The

electrical LPF following the delay-and-add block represents the limited bandwidth

of the driving electronics, inserted electrical filters, and electrical amplifiers. When

the cutoff of this filter is chosen correctly (namely at 6.5 the bitrate), the spectral

narrowing of the duobinary signal is actually beneficial.



IN TO V, OF MZ

TO V2 OF MZ

Figure 2-7: Alternating phase duobinary encoder.
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Figure 2-8: Blocked phase duobinary encoder.

The problem with AM-PSK duobinary modulation is that it is difficult to generate

a high-speed (>10OGbit/s) three-level electrical signal. Each MZ modulator is rated

with the voltage, V,, necessary to go from maximum to minimum transmission thru

the MZ. This voltage is often higher than what can be generated with a bit error

rate test set (BERT) and necessitates the use of electrical amplifiers. Amplification

of a three-level signal is especially troublesome since amplifiers usually operate in

saturation. This means that the middle-level, if not saturated already, will probably

lie asymmetrically between the upper and lower levels. In order to achieve a good

optical eyepattern, the electrical signal fed into the MZ modulator should have its

middle-level located half-way between the high and low electrical levels. Often this is

very difficult to achieve. A two-level scheme would be much simpler to implement for

this reason. In addition, modulation between a "-1" and "+1" requires a 2V, voltage

swing - twice as much as what is necessary for binary modulation.

There are two schemes to achieve duobinary modulation with two-level electrical

signals: alternating phase duobinary and blocked-phase duobinary modulation (see

figure 2-7 and 2-8). These schemes use a differential encoder and some delay elements.

Unfortunately, both alternating-phase duobinary modulation and blocked phase

duobinary modulation are not push-pull schemes, and hence the output from the MZ

is chirped when operating in NRZ mode. On the other hand, the chirping is not seen

when using an RZ pulse source since the chirping occurs at the transition edges of

the electrical signals. Hence, if the electrical signal is delayed relative to the optical

pulse stream so that the optical signal has zero intensity on the transition edges of
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Figure 2-9: AM-PSK duobinary encoding of 8 random bits.

the electrical signal, the output light will be chirpless. The simulated sensitivities for

RZ linear transmission systems will be discussed in chapter 4.

2.3 Binary PAM Signals Overview

In the previous section, we saw how to generate AM-PSK, alternating phase, and

blocked phase duobinary signals. This section will give a qualitative feel for how

these signals look in the time domain by illustrating several eyepatterns.

Figure 2-9, 2-10, and 2-11 show the AM-PSK, blocked phase, and alternating phase

duobinary encoding on a sample input data pattern, D, with a length of 8 bits. The

symbols V1 and V2 represent the voltages on both arms of the MZ modulator, and Eout

is the optical field output from the MZ which is simply Eout = V1 - V2 when the MZ

is biased correctly and the electronics have infinite bandwidth. AM-PSK duobinary

signals never have a transition between "-1" and "+1" levels between neighboring

bits. This means that the modulation is never driven between two extremes (AV

from 0 to 2V,)) on the AV versus MZ transmission plot in figure 2-5. This is an ad-

vantageous property of AM-PSK duobinary modulation since it requires time for the

finite bandwidth electronics to effect a large swing of 2V, volts. The longer it takes

the electronics to drive the arms on the MZ from 0 to 2V,, the more closed the trans-

mitted eye will be. Unfortunately, alternating-phase and blocked-phase duobinary

signals can have transitions between "-1" and "1" between neighboring bits.

Throughout this thesis, simulations will be used to gain insights into several issues
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concerning duobinary format. The fundamental question is whether or not these

simulations simulate reality. A simple check would be to compare simulated and

real eyepatterns for NRZ binary signals. Figure 2-12 shows just that. The left-hand

column contains eye diagrams of binary modulated signals obtained from a sampling

scope for different lengths of fiber (0 to 60 km). The right-hand column shows the

corresponding simulated eyepatterns.

The reader may be wondering how the eyepatterns of binary, AM-PSK duobi-

nary, alternating phase duobinary, and blocked phase duobinary formats compare.

Figure 2-13 shows the eyepatterns for these formats at 0 and 80 km. At 0 km, the

alternating phase duobinary format eyepattern differs from the AM-PSK and blocked

phase duobinary format eyepatterns since the electrical filter in the transmitter has

a 3-dB cutoff at the bit rate rather than at half the bit rate. As will be seen in

chapter 6, alternating phase duobinary has its first null at the bitrate whereas the

other two duobinary formats have their first null at half the bitrate. At 100 km, the

alternating phase and blocked phase duobinary formats are seriously degraded due

to the chirp on their pulse edges.

2.4 Autocorrelation and Power Spectral Densities

of Binary PAM Signals

Determination of the stimulated Brillouin backscattering threshold for binary pulse

amplitude modulated (PAM) signals in chapter 6 and interpreting the results of prop-

agation simulations in chapter 4 requires the understanding of the autocorrelation

function and power spectral densities of binary PAM signals. This section will derive

the autocorrelation function and power spectral density for NRZ Binary, NRZ AM-

PSK duobinary, NRZ alternating phase duobinary, NRZ blocked phase duobinary,

RZ Binary, RZ alternating phase duobinary, and RZ blocked phase duobinary signals

in respective order. The main results are given by equations (2.23), (2.25), (2.26),

(2.27), (2.33), (2.35), and (2.36) for the power spectral densities and (2.20), (2.24),
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Figure 2-14: An arbitrary pulse shape of a mark. Notice that the pulse is defined to
be zero outside the interval 0 < t < T.

and (2.32) for the autocorrelation functions.

2.4.1 NRZ Binary Format

Consider the random binary signal that alternates between the values +±. A signal

of this form can be represented as

X(t) = akp(t - kT) (2.7)
k

where T is the bit rate period (T = 100 ps in the case of 10 GBit/s), p(t - kT) for

0 < t < T is the pulse shape of the kth bit (see figure 2-14), and ak = ±1. For the

NRZ binary signal, the pulse shape is taken to be a perfect square of height A/2. The

autocorrelation of the stationary, ergodic NRZ binary random process is calculated

by considering two intervals: 7TI < T and J17 > T. For the case that ITI < T,

4

RxX(7 I ITI < T) = E {X(t)X(t - 7)} = E {X(t)X(t - T) I Bi} P(Bi) (2.8)
i=1

where the autocorrelation is computed by integrating over the first bit slot (0 < t < T)

and the events Bi are conditions on the adjacent pair of overlapping bits in the region

0 < t < T. These events are defined in table 2.1. Assuming that X(t) is ergodic,

(2.8) can be written as a time average:

Rz(r I 0 < T < T)



Event
B1

B 2

B 3

B 4

a(Bi)
1
1

-1
-1

ao (Bi)
1

-1
1

-1

P(B)
1/4
1/4
1/4
1/4

Table 2.1: Events corrsponding to the value of the first and second bit in the random
binary process X(t).

T ~ Xi(t)X(t - T)dtP(Bi)
i=1

4 1 T k= 00

TJ ak(Bi)p(t - kT) am(Bi)p(t -T - kT)dtP(Bi) (2.9)
i=1 k=-oo m=-oo

= T ao(Bi)p(t) [al(Bi)p(t- - + T) + ao(Bi)p(t- T)] dtP(Bi)
i=1

= 4 [F ao(Bj)a-_(Bj)p(t)p(t - T + T)dt
i=1

+ T ao(Bi)ao(Bi)p(t)p(t - T)] P(Bi) (2.10)

= - p(t)p(t - T + T)dtE {aoa_1} + - 1 p(t)p(t - T)dtE {aoao} (2.11)

1 1
= P(T) * p(-T) * 6(7 - T)E {aoa_i} + 1p(7) * p(-7)E {aoao} (2.12)

1 (T -T7)A 2

T 4

= 1 -1 ) 0 < <T (2.13)4 T

The integration in (2.9) is computed over one bit slot with pulses that are assumed

to be perfect rectangles. In step (2.11), the limits of the integral were extended from

0 to T since p(t - 7) and p(t - T + T) are zero in the extended integrated region.

Figure 2-15 shows a picture of the integration which yielded (2.13).

In (2.13), T was assumed positive. If negative 7 are considered as well, (2.11)

receives an extra term due to the expectation between the Oth and 1st bit slots.

R l(T I I7-I < T) (2.14)
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Figure 2-15: The autocorrelation of a binary signal with 0 < 7 < T. Each box

represents a bit which is either a mark or a space. The dashed boxes denote the

limits of both integrals in (2.11).

p(t)p(t - 7)dtE {aoao} (2.15)

* p(-)E {aoao}

(2.16)

(T - 7)A 2 +0

(2.17)

Next, the autocorrelation for 7I > T is considered. The event space is also given

by table 2.1 except with a-1 replaced with ai where i -0. Similar to the derivation

of the autocorrelation for 7j < T, (2.12), the autocorrelation for 7ri > T is

RX(r 7 > T)

= X(t)Xi)(t - T)dtP(Bi)
i=1

0 T

k= (p(t- T)

E ak(Bi)p(t - kT)
C=-oo

am(Bi)p(t - 7 - kT)dtP(Bi)
m=-oo

41 T
= ao(Bi)p(t) [an(Bi)p(t - r - nT)

i=1 - (

+an+l(Bi)p(t - - - (n + 1)T)] dtP(Bj)

Q-e bit slot
''T"""1
III

ao
I

I I I
I. -,, ,-

1 T 1

= f p(t)p(t - 7 + T)dtE {aoa-1} +

1 t
+To p(t)p(t - 7 - T)dtE {aoal}

To0
1 1

-= p(T) * p(--T) * 6(7 - T)E {aoa-_} + 4p(T)

+IP() p(-T) * 6(7 + T)E {aoal}
T

I .

I

10+T

A 2
= 1 -4

4 1

i=1
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Figure 2-16: Binary signal autocorrelation function.

= T  ao(Bi)an(Bip(t)(p(t - T - nT)dt

+ T ao(B)an+l(B)p(t)p(t - T - (n + 1)T)dt P(B)

= - jp(t)p(t- 7- nT)dtE { aoan}

+ Tp(t)p(t - - (n + 1)T)dtE { aoan+l} (2.18)

1
- P(7T) p(-T) * 6(T - nT)E { aoan}

+Tp(T) * p(-T) * 6(r - (n + 1)T)E { aoan+i}

0, T < (2.19)

Equations (2.17) and (2.19) can be combined to yield the autocorrelation of a binary

signal
{ A2 (1- r)  " ] -I <T

Rxx(T) = 4T T (2.20)

The autocorrelation is plotted in figure 2-16.

The power density spectrum of the random NRZ binary signal can be found by

taking the Fourier transform of the autocorrelation, Rxx. This is known as the

Wiener-Khintchine Theorem 2. Therefore the spectrum is given by

A2
= -Tsinc 2(rfT) (2.21)

4

2A nice proof of this theorem is shown in [56, p.3 6 0 ]



Figure 2-17: Analytical (smooth lines) and simulated spectra (jagged lines) of NRZ
binary modulation

In general, the power spectral density for correlated sequences with zero mean is [45,

p.101]
(f IP(f)12

(f) = P( E {aoao} + 2 [E {aoak}cos27rkfT] (2.22)
k=1

where P(f) is the Fourier transform of the pulse waveform p(t), the expectation obeys

the relation E {aoak} = E {aoa-k} and E[ak] = 0. Note that for a square pulse of

duration T and height A, P(f) = ATsincrfT.

If the constant A/2 is added to the binary signal, X(t), the offset of the NRZ

binary signal is changed so that the signal alternates between 0 and A, the new

spectral density is given by

INRZ Binary (f = (Tsinc 2( rfT) + 6(f)) (2.23)
2

where the pulse amplitude is related to the total average power by A = 21o. Half of

the power is in the carrier frequency (represented the 6(f) term). Both the analytical

and simulated spectra are shown in Figure 2-17. The simulated spectra in this section

were generated from a 2r - 1 PRBS with 32 samples per bit for a total of 4096 points.

2.4.2 NRZ AM-PSK Duobinary Format

An AM-PSK duobinary signal is the sum of a binary signal (which alternates between

the values -A/2 and A/2) with a delayed version of itself. If Y(t) represents an AM-

PSK duobinary random process, Y(t) = X(t) + X(t - T), where T is one bit period

and Y(t) has values 0 or ±A. The autocorrelation of a zero mean AM-PSK duobinary



Figure 2-18: NRZ AM-PSK duobinary power spectrum at 10 Gb/s

ao\al
-1
0

0
1/8
1/8

1/8
1/4
1/8

1/8
1/8

Table 2.2: The joint probability density function,P[ao, all, for neighboring bits in an
alternating phase sequence. These joint probabilities assume that (1) there are an
equal number of marks and spaces, (2) the number of "-1"'s equals the number of
"1"'s, and (3) cannot have two "-1"'s or two "1"'s follow each other, i.e. 101, 110,
and -10 - 1 are prohibited. The expectation value is E {aoal} = -1/4.

signal is

Ryy (T) - E{[X(t) + X(t - T)][X(t - 7) + X(t - T - T)]}

= 2Rxx(7) + Rxx(7 + T) + Rxx(7r - T) (2.24)

where Rxx is defined by (2.20). The power spectral density is found by integrating

(2.24) and is

INRZ AM-PSK Duobinary(f) = (2 + ej 2
7rft + e-j2ft) 'NRZ Binary(f)

= TIo(1 + cos 27fT)sinc2 (SrfT)

The spectrum of the duobinary format is shown in figure 2-18. The magnitude of the

pulses is related to the total average power by A = V21.

2.4.3 NRZ Alternating Phase Duobinary Format

The alternating phase duobinary electrical signal is created by correlating adjacent

(2.25)

I



ao\a2
-1
0
1

1/16
1/8

1/16

1/8
1/4

1/8

1/16
1/8

1/16

Table 2.3: The joint probability density function, P[ao, a 2], for an alternating phase
sequence. The expectation value is E {aoa 2} = 0.

Figure 2-19: Analytical and simulated spectra for NRZ alternating phase duobinary
modulation

bits of a binary signal. The result is a signal that has levels at -A, 0, and +A. The

joint probabilities for the alternating phase random process are given in [45, p.225]

and also in tables 2.2 and 2.3. The joint probabilities can be substituted into (2.22)

to obtain the spectrum of the alternating phase duobinary signal,

INRZ Alternating Phase Duobinary(f) = ATsinc2 (rfT) -(1 - cos 2-rfT)
2

lP(f)12/T Autocorrelation part

= TIosinc2 (rfT)(1 - cos 27rfT) (2.26)

where the average power of the signal is 1o = A2/2. Notice that the alternating phase

duobinary spectrum is similar to the zero mean binary signal spectrum except that

it is multiplied by a cosine term that arises from the autocorrelation. Notice that

there is no 6(f) term in this expression since the time representation of this signal

integrates to zero. Both the analytical and simulated spectra for NRZ alternating

phase duobinary signals are shown in Figure 2-19.
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2.4.4 NRZ Blocked Phase Duobinary Spectrum

The blocked phase duobinary signal is similar to alternating phase duobinary signals

since it is generated by correlating adjacent bits of a binary bit stream. To derive the

autocorrelation function, the following assumptions about the blocked phase duobi-

nary signal are used:

1. "Marks" with opposite phase can never be neighboring bits. That is, adjacent

"marks" must have the same polarity.

2. The block of "marks" has equal chance of being +A as it does -A.

3. Only neighboring bits are correlated since the blocked phase duobinary signal

is constructed by correlating neigboring bits of a binary random signal.

With these assumptions, the expectation values of the blocked phase duobinary signal

are:

1
E {aoao} = -A

2
1

E {aoal} = -A
4

E{aoa>2 } = 0

This can be substituted into (2.22) to obtain an expression for the spectrum of the

NRZ blocked-phase duobinary signal:

1
INRZ Blocked Phase Duobinary(f) = A 2Tsinc2 (fT) (1 + cos 27rfT)I () 2

Autocorrelation part

= TIosinc2(wfT)(1 + cos 2rfT) (2.27)

where Io = A 2/2. Both the analytical and simulated spectra for NRZ alternating

phase duobinary signals are shown in Figure 2-20. Notice that the power spectrum

is the same as the NRZ AM-PSK duobinary case but this does not mean that the

Fourier transforms of the signals are the same. In chapter 4, it will be shown that even



Figure 2-20: Analytical and simulated spectra for NRZ blocked phase duobinary
modulation

though the two formats have the same power spectrum, their dispersion penalties are

vastly different.

2.4.5 RZ Binary Spectrum

In the previous sections, each NRZ bit was represented by a square pulse. In this

section, return-to-zero (RZ) format with gaussian pulses will be considered. Assume

that the time domain signal, p(t) can be represented as follows:

p(t) = t 2 : 0 <t < T(2.28)[(MI (2.28)
0 : otherwise

where the average power of the signal is related to the pulse amplitude by 1o =

f2Tfo (t)2dt = 2 assuming that the pulse decays nearly to 0 at t = 0 and

t = T. An RZ binary pulse stream can be written as a summation as in (2.7) with

ak = 0 or 1. Note that this signal has a non-zero mean and therefore (2.22) cannot be

used to find the autocorrelation function of an RZ binary signal. Note that at the bit

edges, the gaussian pulse will have a non-zero amplitude (or a finite extinction ratio)

of value p(t = 0) = A exp [-a 2_1. To find the autocorrelation function, two regions

are considered: |7| < T and i j > T. For I7- < T, assuming ergodicity and using an

equation similar to the NRZ binary case (2.10), the autocorrelation function is:

Ro(T 0 < 7 < T)

= -[J ao(C)a_l(C)p(t)p(t - T + T)dt
i=1

I___
10



Event

C,
C2
03
C4

al(Cj)
1
1
0
0

ao(Ci)
1
0
1
0

P(Ci)
1/4
1/4
1/4
1/4

Table 2.4: Events corrsponding to the value of the first and second bit in the random
binary process X(t).

ao
0
0
0
0
1
1
1
1

an

1
1
0
0
1
1
0
0

an+1
1
0
1
0
1
01

0
1/

P(ao, a, a,)
1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

Table 2.5: Probabilities for the bits of an RZ binary signal for 7 > T.

+ T ao(Ci)ao(Cj)p(t)p(t - T) P(() (2.29)

A2  a2
4T (2erf (T - 7) e- 2 + er +er ) (T)2 (2.30)

where the events Ci are tabulated in table 2.4.

The autocorrelation of the RZ signal can be found for T > T by using (2.18) except

that the expectation values for the ai's are tabulated in table 2.5. The resulting

autocorrelation for the RZ gaussian binary signal is

Rxx(T) 2 (2erf ( (T - T)) e - erf ( T) e(T) 2 ) : < T

2(erf (i(T - f)) e- + erf (e9) e(T) 2 ) : T >
(2.31)

where Io is the average power and f = mod(T, T) is the remainder of 7/T. This

function is plotted in figure 2-21. Equation (2.31) can be simplified for narrow gaus-

sian pulses in which the standard deviation of the pulse is approximately less than

Eventc1
c2
c3
c4



Figure 2-21: The autocorrelation function for RZ gaussian binary modulation. In
this plot, T = 1, a = 50, and Io = 1.

Figure 2-22: Analytical and simulated spectra for RZ binary modulation

one-fifth the time of the bit slot. In this special case, the erf terms are approximately

equal to 1 and (2.31) can be written as

Ia '72 + -'(T-r)2( (2.32)
Rxx (7) = 2 (2.32)

-a (e- a 2 _c (T_- 2 "

The power density spectrum of RZ gaussian binary modulated signals can be

found by taking the Fourier transform of (2.31). Since it is not easy to take the

Fourier transform of a piecewise function that contains error functions, we take the

Fourier transform of (2.32) and realize that this is only accurate for narrow pulses

(aT 2 large),

IRz Binary(f) =0 I 1 + z (f - ) exp[-2w2 f2f/a] (2.33)

The power density spectrum of the RZ binary spectrum is plotted in figure 2-22. Half

the power of the signal is in the exponential envelope and the other half is distributed

amongst the spikes or delta functions of the power spectrum.
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Figure 2-23: Analytical and simulated spectra for RZ alternating phase duobinary
modulation

2.4.6 RZ Alternating Phase Duobinary Format

The RZ alternating phase duobinary spectrum and the RZ blocked phase duobinary

spectrum have zero means. This implies that it is possible to use (2.22) to find these

spectra. Therefore it will be handy to find the Fourier transform of (2.28):

P00 T\ 2 1
P(f) = Aexp -a(t -2

= A _e a-JirT (2.34)
a

where again it is assumed that the gaussian pulse decays to approximately zero before

the next bit slot.

The RZ alternating phase duobinary spectrum has the same correlation between

adjacent bits as does the NRZ alternating phase duobinary signal. Therefore, we can

use the autocorrelation part of (2.26) and (2.34) in (2.22) to obtain the power spectral

density

IRZ Alternating Phase Duobinary(f) (A (1 - cos 27rfT)T 2
2_2.2

=Io e- a (1 - cos 27fT) (2.35)

where this expression is more accurate for narrower pulses (aT 2 large). Both the

analytical and simulated spectra for RZ alternation phase duobinary signals are shown

in Figure 2-23.
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Figure 2-24: Analytical and simulated spectra for RZ blocked phase duobinary mod-
ulation

2.4.7 RZ Blocked Phase Duobinary Format

The blocked phase duobinary spectrum has the same correlation between adjacent

bits as does the NRZ blocked phase duobinary signal. Therefore, the autocorrelation

part of (2.27) and (2.34) can be substituted into (2.22) to obtain

IRZ Blocked Phase Duobinary (f)
(A a I _ 1

(A) (1 + cos 2 fT)
T 2

1o r - a (I + cos 27rfT)
a

where this equation is more accurate for narrower pulses. Both the analytical and

simulated spectra for RZ blocked phase duobinary signals are shown in Figure 2-24.

(2.36)



Chapter 3

Computational Model for Optical

Fiber Transmission

The simulation of binary or duobinary signals in an optical fiber involves modeling

of the generation, propagation and reception of the transmitted signal. The trade off

of any simulation is between accuracy and time. This chapter will discuss a model

for the noise and propagation for a single span transmission system. Chaotic effects

which are computationally time consuming such as stimulated Brillouin and Raman

scattering are not considered in the model. Rather, an analytic expression for the

threshold power for which these stimulated scattering processes become dominant is

considered in chapter 6. The first section of this chapter will give a brief overview of

the computational model used and the second section will focus on the derivation of

noise terms for an optically pre-amplified receiver.

3.1 The Simulator

The workings of the simulator used to predict the sensitivities of various modulation

formats and used extensively in chapter 4 is explained in this chapter.

Figure 3-1 shows an overview of the simulator from the signal generation to the

signal reception. The simulator in [52] normalized their electrical signals in the re-

ceiver so that the maximum ripple value equaled V, of the MZ modulator, that is,



they do not overdrive the modulator, but rather the underdrive it. Better sensitivities

are obtained when the average value of the ones of the electrical signal correspond to

V, since this maximizes the transmitted eye opening. The following channel or fiber

span can either be modeled with or without nonlinearities. Simulating nonlinearities

takes longer and therefore is used only when the launch powers are high enough for

nonlinearities to make a difference. When simulating a linear channel, one must check

to make sure that the nonlinear length is much less than the dispersion length, i.e.

LNL = 1/-P < LD = TO2/ 321, where y is the nonlinearity coefficient [2], and 32 is

dispersion. To speed up nonlinear simulations, a multiresolution method outlined in

appendix D was used.

The nomenclature associated with filtering can be somewhat confusing and must

be clarified before simulating any optical system. When the bandwidth of an optical

low-pass filter is specified, say 10 GHz, the number corresponds to the full width

at half-maximum bandwidth or double-sided bandwidth that spans between the two

3-dB power cutoff frequencies. For an electrical filter, the bandwidth refers to the

single-sided bandwidth. In addition, the 3-dB cutoff of an electric or optical filter

refers to the power or IH(jw) 2 and not the magnitude of the signal.

Figure 3-2 shows how the sensitivity was calculated for a receiver with a linear

channel. This figure shows the details to the highlighted box in figure 3-1. The initial

guess for the receiver sensitivity at L km, or the necessary received optical power to

achieve a 10- 9 BER, is found using a formula for the back-to-back sensitivity derived

by Riihl [44] minus the loss of L km of fiber,

1 l+r r
PAV = 2GL -r ) 36C r ± 12. 36C2(1 - r) 2 +,circ N e- L. (3.1)

2GLoLI(L--) 1 - r r)

where G is the gain of the optical preamplifier, L, and Lo are the entrance and exit

loss of the optical preamplifier, r is the extinction ratio, C is the signal-dependent

noise divided by the signal power, Idr, is the circuit noise of the receiver, and Noo is the

signal independent noise arising from the detected amplified spontaneous emission.

Successive guesses for the sensitivity are tried until the sensitivity yields a BER
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within one percent of 10- 9 . Successive guesses for the sensitivity use the fact that

the received power in watts is approximately linearly related to Q. The quality of the

received signal is defined as [1, p.165]

Q = mark - 11space (3.2)
Umark + 7space

where p denotes the mean and a denotes the standard deviation. Q is related to the

BER by

BER = -erfc (3.3)

which can be approximated by

loglo Q = loglo (1.438- ln(BER) - 1.055 - 0.376). (3.4)

Note that Q = 6 corresponds to a BER of 10- 9 . Successive guesses to the sensitivity

can be obtained by making linear interpolations using the last two values for the

receiver power (Watts) versus Q.

Figure 3-3 shows how the BER is calculated. This figure shows the details to the

highlighted box in figure 3-2. The BER is calculated by finding the decision point

(phase and voltage level) where the BER is minimized. This can be done by either

finding the minimum BER from an array of points in the eye (as shown in figure 3-3)

or by finding the point where the error of the marks equals the error of the spaces

(which is computationally faster).

3.2 Derivation of Noise Terms for an Optically Pream-

plified Receiver

This section contains the derivation of the noise variances for an optically preamplifed

receiver which are used to calculate the BER of a received signal (this is the third

step in the flow graph in figure 3-3). This derivation follows Cartledge's formulation

[4] and the underlying mathematical background for the noise statistics can be found
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Figure 3-4: The model for the optically preamplified receiver.

in [35]. The last part of this chapter explains some of the failings of this model.

3.2.1 Derivation of the Noise Terms

The goal of this section is to derive the noise variances for an optically preamplified

receiver. The model for the receiver is shown in figure 3-4. The receiver consists of

an EDFA optical preamplifier, a PIN photodiode and receiver electronics (modeled

as a LPF with an effective bandwidth, Be,). The decision of whether a received bit

is a zero or a one is decided from the value of i(t).

The optical signal incident to the EDFA can be written as s(t)ej ¢ s(t), where s(t) is

the magnitude of the optical signal and 0s(t) is its phase. The EDFA has facet losses

from imperfect coupling of LI at the input and Lo at the output. The EDFA noise

power can be modeled as additive white noise with a power spectral density of (G -

1)nsphv per polarization where G is the EDFA gain [7], and ns, is the spontaneous-

emission or population-inversion factor equal to N2/(N 2 - N1) where N1 and N2 are

the atomic populations for the ground and excited states, respectively. The optical

signal plus amplifier white noise leaves the amplifier and experiences a loss, Lo due

isolators and couplers which are part of the EDFA. The optical signal then travels

through an optical filter with bandwidth Bo that reduces the bandwidth of the white

noise but allows the signal to pass unattenuated. The optical signal before hitting

the PIN photodiode can be written as

y(t) = LIGLos(t) exp(j8s(t)) + Lon(t) (3.5)

signal noise

where n(t) is the additive white noise from the EDFA. The noise term, n(t) can be



separated into its quadrature components: n(t) = nc(t) + jn,(t). The mean and the

variances are

E[nc(t)] = E[ns(t)] = 0 (3.6)

and

E[n 2(t)] = E[n (t)] = (G - 1)hvnpBo (3.7)

which means that

E[n2 (t)] = E[nc(t)2 +n 2(t)2 +2jnc(t)ns(t)] = E[nc(t)2]+E[n,(t)2] = 2(G-1)hvnspBo.

(3.8)

Since the quadrature components are independent, their cross correlation is zero since

E[nc(t)ns(t)] = E[nc(t)]E[n(t)] = 0.

The optical power hitting the PIN photodiode in figure 3-4 is

Py(t) = y*(t)y(t) = LIGLos 2(t)

signal

+ L o (n2(t) + n (t))

spontaneous-spontaneous beat noise

+ 2Lo G Ls(t) {n,(t) cos ,(t) + n,(t) sin Os(t)} (3.9)

signal-spontaneous beat noise

At high optical preamplifier gain, G, signal-spontaneous beat noise dominates over

spontaneous-spontaneous beat noise. The opposite is also true. Spontaneous-spontaneous

beat noise dominates over signal-spontaneous beat noise at low optical preamplifier

gains.

The optical power, Py(t), is converted into an electric current by the PIN photo-

diode and can be expressed as

ip(t) = P,(t) + idark (3.10)

where q is the quantum efficiency, q is the electronic charge, and idark is the dark



current. The current from the PIN photodiode is then filtered before it is presented

to the decision circuitry. The current seen by the decision circuitry is

i(t) = hr(t) * ip(t) + ith

S q P(t) + idark + ith (3.11)

where hr(t) is the impulse response of the receiver electronics, P(t) = P,(t) * hr(t) is

the filtered signal plus beat noises, 'dark = idark * hr(t) is the filtered dark current,

and ith is the current due to thermal noise. The component of the current in (3.11)

from the PIN photodiode is the detected current, id(t), which is defined as

i(t) = UP(t) + iark (3.12)

If the arrival time of photons incident upon the PIN photodiode can be modeled

as a Poisson process, then the detected current can be represented as a sum of impulse

responses to randomly arriving electrons.

id(t) = q hr(t - tn) (3.13)
n=1

where hr(t) is the impulse response of the receiver electronics and tn is Poisson dis-

tributed. The probability that there are k incident photons in time T is given by

P[n = k] = e- A(t)T(A(t )T )k k = 01,... (314)
k!k= ,1,... (3.14)

where A(t) = is the electron arrival rate. The electron arrival rate can be re-

expressed by substituting (3.10) for ip(t) to yield

A (t) = 1P,(t) + Ao (3.15)
hv

where fl is the quantum efficiency of the PIN diode and AX is the dark current count

in electrons per second.



The second characteristic function, 'id(t)(w), of id(t) is used to find its mean and

variance. The variance is given by -a ,w=O and the mean is given by -j w=o

[35, p.158]. The first characteristic function for the Poisson process in (3.13) is [35,

p.566]

(id(')(w) = E[eJid(r )] exp [J A(t)(e qh (' r-)w _- )dt] (3.16)

Substituting (3.15) into (3.16), we obtain

i()(w) = exp [J( GLjLos2(t) + Ao) (exp(wqh (T - t)) - 1) dt

x exp () + 2 GLn(t)s(t) cos 0,(t))

-(exp(wqh,(r - t)) - 1) dt]

x exp [Jh° (n2(t) + 2 GL i(t)s(t) sin s(t))

-(exp(wqh,(T - t)) - 1) dt]. (3.17)

The next step is to assume that the ASE noise, n,(t) and n,(t), is constant over time

intervals of duration Ts = 1/Bo and independently random from interval to interval.

This assumption is good for narrow B0 since the ASE noise is not constant over a

large bandwidth. If each pulse period of duration T is divided into M subintervals of

duration Ts, then the ASE noise can be written as a Riemann sum

oo M-1

nc(t) = E E nc(k, l)p(t - kT - 1T/M) (3.18)
k=-oo 1=0

where p(t) = U(t) - U(t - T/M), U(t) is the unit step function, and n,(k, 1) are

samples of the continuous n,(t). The quadrature component of ASE noise, ns(t), can

also be expressed similarly to (3.18).

The second characteristic function of (3.13), defined by 4 id(t)(w) = In 4id(t)(w) =

In E[ej Wid(t)] can be evaluated by using (3.18) in (3.17). The result is

id(-)(w) = ( LLos2(t) + Ao)(exp(wqh,(T - t)) - 1) dt

(1 - 2PnLo a (w, k, 1)k (Lo hkc 1



p n LoLp () L(w, k, 1) + Os3(w, k, 1))
(3.19)

I - rn, hv -(w, k, L)

where the ASE noise power from the optical preamplifier incident upon the PIN

photodiode is

Pn = (G - 1)hvnp,,Bo = E[nc(t)] = E[ns(t)], (3.20)

and where

a(w, k, l) =

Op(w, k,l) =

O (, k, ) =

I(k+(+1/M))T [exp(wqhr(-- - t)) - 1] dt
(k+1/M)T

( /M) (t) cos 0,(t) [exp(wqhr(7 - t)) - 1] dt
/(k+1M)T

/(k + (l + 1/ M))T

s (t) sin ~s(t) [exp(wqhr( - t)) - 1] dt
(k+l/M)T

Finally, the variance and mean can be computed from the second characteristic func-

tion of id(7) by taking its derivatives and letting w = 0. The mean of id(7) is

Pid(7)

= qGLILo s 2 (T) * hr()
hv

signal component

spontaneous

emission

component

current

component

q / hr(t)dt

where * denotes a convolution, and the variance is

r1q 2GLjLo S 2E2(\* h2(7)
Shot Noise

Shot Noise

k I

(3.21)

(3.22)

(3.23)

29,PnLo + Ao
hvd

dark

(3.24)

o 2d (7)



+ Aoq2 h 2dt

Dark Current Noise

+2Pn 1: E Tjq 2LO (k+(+1M)) h2(T t)dt
+2P, hi(T - t)dt

k 1 h_ (k+1/M)T

Spontaneous emission shot noise

/ rqqLO (k+(l+1/M))T 
2

hv J(k+1/M)T

Spontaneous-Spontaneous Beat Noise

[+P(2 LLo j(+(+1I/M))T s(t) cos qs(t)hr( - t)dt)

+ (2L (k M))Ts(t) sin s(t)h,( - t)dthv, J(k+l/M)T

Signal-Spontaneous Beat Noise

(3.25)

The noise variance, given by (3.25), can be simplified with several assumptions. As-

suming that the dark current is negligible (i.e. Ao is small), we can ignore the contri-

bution due to the dark current. If it is assumed that the receiver filter has a perfect

rectangular shape, and that the receiver filter transfer function is normalized such

that ff_, h,(t)dt = 1 (hence ff_" h (t)dt = 2Bei), noting that the sum of integrals

involves a multiplicative factor of dt = 1/Bo, the number of polarization states de-

tected equals'2 (p = 2), and both s(t) and 0s(t) are constant over the period T/M,

then (3.25) can be simplified to:

rq2GLILos 2 (t)
Ns,s = 2 Be hS(t)hv

Nsh,sp = 2pBe1P. q2Lo
hv

Np-= 2pP2 ( 21 o)

(3.26)

(3.27)

(3.28)

N-sp = 4P, ( ) 2 GLIL 2s 2(t) (3.29)

which are the noise terms used in the simulations presented in this paper and are



equivalent to the noise expressions given in [45].

3.2.2 Failings of the Model

There are several assumptions in the derivation of (3.26)-(3.29) which oversimplify

the problem and may lead to inaccurate results. First, the noise spectrum from the

EDFA is assumed flat, whereas it is known that the noise from an EDFA consists of

two humps over a span of about 3 THz. Over narrow optical filter bandwidths (Bo < 1

nm) the noise spectrum is approximately flat, but over wider optical filter bandwidths

(Bo > 10 nm), the noise spectrum is not flat, but has significant curvature. The value

for Bo in simulations with large optical filter bandwidths is more of a fitting parameter

rather than the actual 3-dB bandwidth of the optical filter used in the receiver.

The second problem with the model for the noise terms is the assumption that the

noise probability density functions are gaussian for both the marks and the spaces.

Even though these assumptions give reasonable sensitivity estimates, in a strict sense,

the noise of the spaces is closer to a Bose-Einstein distribution convolved with a

gaussian. Even though the Bose-Einstein noise statistics of a receiver has been the-

oretically derived before [15], for the first time, experimental data has been taken

to confirm the theory[20]. Figure 3-5 shows experimental data for the probability

density function of the spaces fitted to a gaussian and figure 3-6 shows the same data

fitted to a Bose-Einstein distribution convolved with a gaussian. The Bose-Einstein

curve lies closer to the experimental data.
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Chapter 4

Optimal Filtering

Given a repeaterless duobinary transmission system, as shown in figure 4-1, it is

important to determine how to choose optimal transmitting and receiving filters. Up

until the present thesis, there has been very little reported work on how to choose

optimal filters in an optical duobinary transmission system. There have been several

observations that filtering at approximately half the bit rate of an AM-PSK duobinary

signal leads to improved propagation distances.[52] This result is somewhat intuitive

since the AM-PSK duobinary signal has its first null in its spectrum at half its bit

rate. On the other hand, it is not intuitively clear how fast the electrical filters

should roll-off, whether ripples in the filters amplitude or phase response cause serious

degradations, or how the optimal filtering varies with the channel response.

The optimization criterion that will be used in this chapter is minimizing the bit-

error rate (BER). This optimization criterion is preferable to the common method of

optimizing the filters for the lowest signal-to-noise ratio (SNR) since the lowest SNR

may not necessarily correspond to the lowest BER.

Chapter 3 developed the model for an optically pre-amplified direct-detection

receiver. The main reason why it is not possible to simply write expressions for the

optimal filters analytically is due to several nonlinearites in the transmission system.

First, the Mach-Zender external modulator (MZM) has a sinusoidal relation between

the driving electrodes and the optical output intensity. To achieve maximal eye-

opening of the transmitted signal, external modulators are always driven in a range



Figure 4-1: Simplified optical transmission system that will be discussed in this chap-
ter. The duobinary encoder (labeled Enc in the diagram) can be an AM-PSK, al-
ternating phase, or blocked phase duobinary encoder, for example. The electrical
transmitting and receiving filters are HT(w) and HT(w), respectively. The MZ box is
an external Mach-Zender modulator. The optical channel or fiber is connected to an
optically preamplified receiver and subsequently to a square-law detector (pin diode)
and finally to the receiving filter.

that cannot be approximated well with a linear function. The second difficulty with

finding an analytical expression for the optimal filter is that noise is added by the

optical pre-amplifier before a square-law detector. The detected current then contains

signal-noise beat terms, thereby making the noise signal-dependent. Finally, another

complication arises due to the fact that the signal is sampled at specified intervals,

and only these samples determine the BER.

Since there is no simple analytical expression for the optimal filter, a computer is

used to gain some insight. Butterworth, Bessel, and Chebyshev filters of various orders

(2-12) and maximum ripple (0.1, 0.5, and 1 dB) were examined. These filters represent

a wide range of properties. The Butterworth filter is known for its maximally flat

amplitude response and the Bessel filter is known for its maximally flat phase response.

The Chebyshev filter was examined to see the effects of ripple in the passband. For

reference, the amplitude responses and group delays of these filters are plotted in

appendix A.

A brief summary of the results of this chapter are

* The most sensitive filter parameters affecting the BER are the filter bandwidth

and roll-off steepness. The ripple across the passband (with 1 dB maximum

power variation) in either phase or amplitude plays a smaller role in determining

the BER.
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Figure 4-2: The power density spectrum of an AM-PSK duobinary signal. The
dashed lines represent filtering at two different bandwidths and two different roll-
offs. Intuitively, it is hard to see which filter will result in a lower BER.

* The best filtering for AM-PSK and blocked-phase duobinary format is obtained

for low-order, slow-roll-off filters. The best bandwidths are approximately 0.6B,

where B is the bitrate.

* The optimal bandwidth increases for higher-order, steeper-roll-off filters.

* Since the alternating-phase duobinary signal has a broader spectrum, broader

filters (with bandwidths of 1.1B after 80 km of propagation through SCF, for

example) lead to better bit error rates.

4.1 Filtering of AM-PSK Duobinary Signals

The "width" of the AM-PSK duobinary signal spectrum refers to the first amplitude

null which occurs at half the bit rate of the signal, 0.5B (see figure 4-2). Intuitively,

the optimal filtering bandwidth should be about 0.5B since it contains most of the

signal energy (77%). In fact, the optimal bandwidth can be between 0.6B and 1.1B

depending on the filter type, order (roll-off steepness), and total channel dispersion.

The steepness of the filter roll-off (directly related to the filter order) is a very

important filter parameter in determining the optimal filtering bandwidth. For AM-
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Figure 4-3: The receiver sensitivity is plotted against the electrical filter order. The
"o"s correspond to the back-to-back sensitivity and the "x"s correspond to the sen-
sitivity with a 80 km SCF channel. It is apparant that low-order filters, hence slower
roll-offs, have better sensitivities than high-order filters. The receiver sensitivity for
each filter order corresponds to the best filtering bandwidth. This plot was generated
by using Butterworth electrical filters with zero channel dispersion. Similar trends
are seen for different filter types and also different channel dispersions.

PSK duobinary signals, filters with slow roll-offs have better sensitivities than filters

with higher roll-offs. This is apparant from figure 4-3, which shows a plot of the

sensitivity (corresponding to the best filtering bandwidth) as a function of filter order

for a Butterworth filter with a zero dispersion channel. The 3rd order Butterworth

filter yields a 3-dB better senstivity than the 12th order Butterworth filter. The

trend seen in figure 4-3 also applies to other filter types (e.g. Chebyshev) and to

other channel dispersions.

The optimal filtering bandwidth depends on the filter roll-off. As expected, filters

with fast roll-offs have wider optimal bandwidths than filters with slow roll-offs. As

shown in figure 4-4, the optimal filtering bandwidth increases with filter order (from

0.7B to 1.1B with a 0 km channel) and decreases with increasing dispersion (by

approximately +0.1B over 80 km of propagation).

The filter bandwidth and order are the two most important parameters affecting

the BER. Of lesser importance is the passband ripple in either magnitude or phase.
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Figure 4-4: The optimal electrical bandwidth is plotted against the filter order. The
optimal bandwidth increases with filter order and decreases with increasing dispersion.
The plot was optimized over bandwidth steps of 0.1B.

Chebyshev filters with different maximum passband ripple were analyzed. The differ-

ence in receiver sensitivity between ripple magnitudes of 0.1, 0.5 and 1 dB is small,

as can be seen in figure 4-5. The sensitivity difference between the 0.1- and 1-dB

maximum ripple Chebyshev filters is approximately 1 dB, but the difference is much

smaller at the optimal filtering point.

4.2 Filtering of Alternating- and Blocked-Phase

Duobinary Signals

Alternating- and blocked-phase duobinary formats have the unfortunate property that

they are chirped with alternating signs at their pulse edges. The drastic dispersion

penalty resulting from the chirped pulses has made these formats less interesting for

non-dispersion-compensating, single-span transmission. Therefore, these formats will

not be discussed in detail in this section. The only notable aspect is that alternating-

phase duobinary signals have wider optimal filtering bandwidths than blocked-phase

duobinary signals. This should be expected since the spectrum of a alternating-phase

duobinary signal has twice the bandwidth of a blocked-phase duobinary signal. After

I- x x

0 0 0km
S x 80 km

12 I I I
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Figure 4-5: The sensitivity as a function of 2nd order Chebyshev filter bandwidths for
a AM-PSK duobinary signal. The bottom three curves correspond to a 0 km channel
and the top three curves correspond to an 80 km channel of regular silica core fiber.
At the optimal filtering bandwidth, the sensitivity difference among 0.1-, 0.5- and
1-dB maximum ripple Chebyshev filters is less than 1 dB.

80 km of propagation through SCF, the optimal filtering bandwidths are 1.1B and

0.8B for alternating- and blocked-phase duobinary formats, respectively (see figure 4-

6).

4.3 Receiving Filter Considerations

So far, the receiving electronic filter bandwidth was assumed to be the same as that

of the transmitting filter, since this usually gives the best results. Figures 4-7 and

4-8 show the receiver sensitivity of a AM-PSK duobinary transmission simulation as

a function of the transmitting and receiving electrical bandwidths of second-order

Bessel filters. Figure 4-7 shows the sensitivity at 0 km of propagation and figure 4-8

shows the sensitivity after 100 km of propagation. Although simulations show that

the best sensitivities are obtained for approximately equal transmitting and receiving

bandwidths unless the receiving filter is cutting greatly into the signal spectrum,

the BER is not a sensitive function of the receiving filter bandwidth. The choice

of the receiving filter becomes more important at high dispersion, as can be seen in
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Figure 4-6: Receiver sensitivity is plotted as a function of the electrical filter band-
width for alternating- and blocked-phase duobinary modulation formats. The channel
is 80 km of standard silica core fiber, which yields a total dispersion of 1360 ps/nm. It
can be seen that the optimal filtering bandwidths (corresponding to the minima) are
1.1B and 0.8B for alternating- and blocked-phase duobinary formats, respectively.

figure 4-8.
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Figure 4-7: Sensitivity versus transmitter and receiver electrical bandwidth for 10
Gbit/s NRZ AM-PSK duobinary format at 0 km of standard fiber. The electrical
filter in the transmitter is modeled as a 2nd order Bessel LPF. The optimal filtering is
given by a transmitter bandwidth of about 7 GHz and an infinite receiver bandwidth.
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Figure 4-8: Sensitivity versus transmitter and receiver electrical bandwidth for 10
Gbit/s NRZ AM-PSK duobinary format at 100 km of standard fiber. The
electrical filter in the transmitter is modeled as a 2nd order Bessel LPF. The optimal
filtering is given by a transmitter bandwidth of about 7 GHz and a receiver bandwidth
of about 6 GHz.
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Chapter 5

The Relationship Between Noise

and Dispersion Penalty

It has been general practice to measure the performance of a receiver in a transmis-

sion system by measuring its sensitivity when the transmitter is directly connected

to the receiver. This parameter is called the back-to-back sensitivity. Therefore, ac-

cording to this rating system, the top curve in figure 5-1 would be labeled a "poor"

receiver when compared to the bottom curve, a "good" receiver, since the sensitivity

of the "good" receiver is better than the sensitivity of the "poor" receiver at 0 km

or 0 ps/nm total channel dispersion. This rating system of receivers is problematic

when operating a transmission link with a net high total dispersion (a very common

case) since the difference between sensitivities of the two receivers can be negligable.

Therefore, classifying a receiver by its back-to-back performance is not necessarily an

accurate indicator of its performance in a true linear dispersive repeaterless transmis-

sion system. Therefore the "best" receiver is dependent on the entire transmission

system.

The reason why the sensitivities of the two receivers in figure 5-1 become compa-

rable at high dispersions can be understood by carefully considering the amount of

noise on a mark compared the amount of noise on a space, or, in other words, the

mark to space standard deviation ratio (al/co). The only difference between the two

receivers represented by the curves in figure 5-1 is the relative amount of noise on
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Figure 5-1: Sensitivity as a function of total dispersion for a "good" and "bad"
receiver. The eye diagrams show the threshold (dashed line) at different parts of the
curve. Notice that the threshold is very near the spaces for the "good" receiver at low
dispersions. This means that signal-dependent noise terms dominate at that point.

the marks and spaces. As will be shown in subsection 5.2, the high . 1/co ratios lead

to high incremental power penalties. Since the lower curve initially has a high a 1/ 0o

ratio, it experiences a larger penalty and hence the bottom curve is intially steeper

than the top curve. At higher total dispersions, the two curves have O 1/7o ratios ap-

proaching 1 and the steepness of both curves are approximately the same. Therefore,

the sensitivities of both receivers will approach each other at higher dispersion.

The next section will present simulation and experimental results that demon-

strate the dependence of the dispersion penalty on the al/ao ratio. The following

section will develop a conceptual model that explains this behavior.

5.1 Simulation and Experimental Results

To be more precise by what is meant by a "good" and "poor" receiver, a "poor"

receiver could have a higher circuit noise, higher optical band pass filter bandwidth

Bo (hence allowing more ASE power hit the detector) 1, or lower preamplifier gain,

G, than a "good" receiver. Plots of the sensitivity as a function of the total dispersion

'Recall that there is an OBPF in the optical pre-amplifier.
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Figure 5-2: Sensitivity versus dispersion [ps/nm] for several optical pre-amplifier gains
for a 10 Gbits/s binary amplitude modulated signal.

for different Bo and G are examined in this section.

Figure 5-2 and figure 5-3 show the total dispersion versus sensitivity for differ-

ent pre-amplifier gain, G, values (the receiver parameters for the simulations in this

section are tabulated in table 5.1). Figure 5-2 is plotted for binary NRZ format and

figure 5-3 is plotted for AM-PSK duobinary format. Focusing on the 0 km or 0 to-

tal dispersion points in both figures, the receivers corresponding to higher G's have

better sensitivities. Although not shown in the plots, at zero total dispersion the

al/o ratio increases for higher G. At higher total dispersions, the penalties for the

curves corresponding to the greater G's are larger. This can more easily be seen if

the penalties rather than the sensitivities are plotted. Figure 5-4 and figure 5-5 show

the penalties for binary and AM-PSK duobinary NRZ formats respectively. In these

plots, it is clear that the higher G's correspond to a greater penalty.

The "goodness" of a filter can also be varied by changing the optical bandwidth.

By changing the width of the optical band-pass filter in the optical pre-amplifier, we

can control the window in which the ASE noise is incident upon the detector. The

wider the window, the more noise is allowed through. Figure 5-6 shows the receiver

sensitivity for two different receiving optical filters. The wider 10 nm filter has a worse

sensitivity than the narrower 0.33 nm filter. The squares and triangles correspond to
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Figure 5-3: Sensitivity versus dispersion [ps/nm] for several optical pre-amplifier gains
for a 10 Gbits/s AM-PSK amplitude modulated signal.

Figure 5-4: Penalty versus dispersion [ps/nm] for several optical pre-amplifier gains
for a 10 Gbits/s binary amplitude modulated signal.
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Figure 5-5: Penalty versus dispersion [ps/nm] for several optical pre-amplifier gains
for a 10 Gbits/s AM-PSK duobinary amplitude modulated signal.

Symbol Value used Value used in Explanation
in Gain Optical Filter
Simulations Simulations

q 1.6 x 10
-

19 C 1.6 x 10
-

19 C Electron charge (positive)

p 2 2 Number of polarization states detected
Bel 6.5GHz (duobinary), 10 GHz Bandwidth of the electronics in the receiver (single-sided)

10 GHz (binary)
Bo 0.33 nm 0.33, 10nm Bandwidth of the optical filter in the receiver (double-sided)

r? 0.8 0.8 Quantum efficiency of the PIN photodiode
nsp 1.172 1.172 Amplifier spontaneous emission factor

Oth 2.99785 x 10
- 1 1 

A
2  

2.99785 x 10-11 A
2  

Thermal, Circuit, or Johnson Noise
L o  0.7943 0.7943 Output coupling loss of optical pre-amplifier (expressed as a ratio)

L I  1 1 Input coupling loss of optical pre-amplifier (expressed as a ratio)

G 1.5-301.5 dB 41.5 dB Optical pre-amplifier gain

IS Input electrical current after the PIN photodiode= -LIGLPoptical

f _nsp(G - 1)Lo

Table 5.1: Explanation of noise variable terms and values used in the simulations.

experimental data taken with a 10 Gb/s binary modulated 231 - 1 pseudo-random

bit sequence. The other lines correspond to simulated values.

All the figures in this section show that there is indeed a connection between

the dispersion penalty and the ol/uo ratio. The next section will explain why this

behavior should be expected.

5.2 A Conceptual Model

The conceptual model consists of considering four bits, perturbing the power level of

the bits, and then computing how the power penalty grows as a function of increasing
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A 0.33 nm optical filter, 27-1 PRBS
v 10 nm optical filter, 27-1 PRBS

Simulation for 0.33 nm filter, 27-1 PRBS
- - Simulation for 10 nm filter, 27-1 PRBS

Figure 5-6: Dispersion [ps/nm] versus receiver sensitivity for different receiving optical
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Consider a signal consisting of 4 bits: 2 marks and 2 spaces whose eye diagram is

plotted in figure 5-7. Each mark and space is assumed to have a gaussian distribution

characterized by a mean and a variance. Initially the marks have the mean p and

variance a,, and the spaces have zero mean and variance oo. The ratio of the mark

to space standard deviation is u71/co and the initial BER is 10- 9 (This initial con-

figuration corresponds to the first eye diagram in figure 5-7). A perturbation of the

bits' power levels (or means) due to dispersion, nonlinearities or other effects causes

an increase in the BER. More specifically, the perturbation causes a shift of the mean

of one of two marks and one of the two spaces by Ap toward the center of the eye

(see the second eye diagram in figure 5-7). The variances of the perturbed levels (see

figure 5-7) are

O1,top =- 1

O1,bot = Vk ( - Ap)+ OO

O70,top =- kAp

(0,bot - (TO

(5.1)

where k = 0 . The perturbed eye has an increased BER. To re-establish the

initial BER of 10- 9, power must be added to the marks to separate the mark and

space probability density distributions. This incremental power is A and the third

eye in figure 5-7 corresponds eye diagram with the incremental added power. The

variances of the perturbed levels after the added power are

l,to p = ( + AM) -+ a02

,bot = k(p + Ap - Ap) + 0.

(5.2)

The power penalty, Ap, can be computed as a function of the initial mark to space
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Figure 5-7: Schematic diagram of conceptual model.

standard deviation, o1/ro. Letting p = 1 and Ap = p/100, the power penalty

is computed and plotted in figure 5-8. This figure shows that the power penalty

increases with increasing oal/o.

Now it is possible to explain the behavior of the sensitivity plots in the previous

section. A "good" receiver generally has a high ai/uo value at low total dispersions.

This is another way of saying that the noise in a "good" receiver is dominated by

signal-dependent noise, since the signal-independent noise is comparatively lower. As

the received eye is increasingly perturbed by dispersion, the mark and space levels

spread. The spreading of the space levels causes the spaces to have non-zero energy.

Since the variances of the spaces are dependent on the power-level (also refered to as

the mean or first moment), the variances of the spaces start to increase and approach

the variances of the marks. This means that all/O approaches 1 and the dispersion

penalty of the "good" receiver starts to decrease relative to the "poor" receiver.
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Chapter 6

Stimulated Brillouin Scattering of

Duobinary Optical Signals

6.1 Overview

Stimulated Brillouin scattering (SBS) is the scattering (w,) of a pump or signal (wp)

from a travelling refractive index gradient in a fiber. The refractive index gradient

is induced by an acoustic wave (wA). A diagram of the three interacting k-vectors is

shown in figure 6-1. This nonlinear process is currently the greatest limiting factor

in repeaterless optical communications since SBS limits the launch power. In addi-

tion, the interaction between the pump and Stokes wave is a chaotic process that

causes variation of the transmitted bits and hence degrades the BER. The amount

of backscattering power increases quickly as the pump power increases past the SBS

I, / -

k, ,
4 .,0.

kA, o,
J P1

Figure 6-1: Schematic illustration of stimulated Brillouin scattering. The three k-
vectors correspond to the Stokes (ws), pump (w,) and acoustic (wA) waves.



threshold power. According to the conventional definition, the SBS threshold is the

input power at which the Stokes power is equal to signal power at the end of the

fiber.[47] Since the length of the fiber is arbitrary, it makes more sense to re-define

the SBS threshold as the necessary input power so that the backscattered SBS power

equals the Rayleigh backscattered power 1.

The goal is to find the SBS threshold for different modulation formats as a function

of bit rate. The power of the backscattered SBS wave grows exponentially in the

reverse direction according to I(0) = I,(L) exp(G - aL) where G is the SBS gain,

Is(L) is the initial input power at z = L, and a is the loss coefficient. The first

section will use the signal spectra derived in chapter 2 to find G. The next section

will show how to find the threshold power from G. The last section will contain both

experimental and theoretical plots of the SBS threshold power for the different signal

formats mentioned previously.

6.2 The SBS Gain Coefficients

The gain of a Stokes wave in stimulated Brillouin scattering is characterized with

the SBS gain parameter, G, and will be the single most important parameter for

determining the SBS threshold in the following section. The SBS Stokes wave's

growth is proportional to exp[G]. The SBS gain, as derived in Appendix C, is

00 Ip
Sg fLf (f df (6.1)
i-O F2 + (f - fs - fA) 2

where g is the SBS gain coefficient, F is the Brillouin linewidth, fs is the Stokes (SBS)

wave frequency, Leff is the effective length of the fiber, and fA is the acoustic wave

frequency. Equation (6.1) is a convolution of the signal spectrum, I,(f), with the

Lorentzian Brillouin gain spectrum.

Given a CW pump wave with the power spectral density I,(f) = Io(f), the

'Rayleigh scattering is the scattering from random density fluctuations in fused silica due the
imperfect manufacturing process. Rayleigh scattered light is omnidirectional and the scattering loss
varies as 1/A 4 . Therefore, Rayleigh scattering becomes a major problem at short wavelengths.



NRZ Binary[17, p.449]

NRZ AM-PSK Duobinary

NRZ Alternating Phase Duobinary

NRZ Blocked Phase Duobinary

RZ Binary

RZ Alternating Phase Duobinary

RZ Blocked Phase Duobinary

Gcw l 1 (1- e-27rBT41 -7rFBT (1 - e-4FT)

Gcw [1.- 1 (1 e- 4 rT

GcwF2B 00 sinc (rfT )(1-cos 2 rfT) df

Gcw [1 - 4 1 - e- 47rr T )]

GcwFR 7re -2Kr2B - erf (rF RA /)

1T =-oc

GcwF 2 2ir rc e-27 f/ (1-cos2 7rfT)df
Gw2V - J-o 2 r2+f

2  df
GCWr2, f I e-27r2 f 2/ (+cos27rfT)

V a f-00 r2+f f

Table 6.1: SBS Gain for several binary PAM formats

steady-state SBS gain is
gloLeff

Gcw - (6.2)
FB

and substituting this into (6.1) yields

r [00 I (f)G = Gow + (df (6.3)
_o ]- 2 + (f - fS - fA)2

As shown in (6.3), the SBS gain depends on the signal spectrum, I,(f), or, in other

words, the modulation format. The SBS gain for NRZ binary, NRZ blocked phase

duobinary, RZ alternating phase duobinary, and RZ blocked phase duobinary signals

can be found by substituting (2.23), (2.26), (2.27), (2.35), and (2.36) respectively into

(6.3). The results are tabulated in table 6.1.

6.3 The SBS Threshold Power

In this paper, the SBS threshold is defined as the necessary input power so that the

backscattered SBS power equals the backscattered Rayleigh scattered power. The

total stimulated Brillouin backscattered power at the launch end of the fiber can be

SBS gain, GSignal Format
[ f 1

V //
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Figure 6-2: Spontaneous emission occurs along the length of a fiber. Each sponta-
neously emitted photon experiences Brillouin gain in the backward direction.

SINGLE PHOTON INJECTION

LAUNCH END OF FIBER

z=O z=L

Figure 6-3: The SBS power at the launch end of the fiber can be calculated by
injecting 1 photon per mode at z = L.

found by summing all the contributions from spontaneous emission multiplied by the

gain of the Brillouin process along the fiber (see figure 6-2). Smith [47] has shown

that for purely spontaneous scattering, this summation is approximately equivalent

to the injection of a single Stokes photon per mode at the point (z = L) along the

fiber where the nonlinear gain (I(0)/I~(L)) exactly equals the loss of the fiber, a (see

figure 6-3). According to Smith, the SBS backscattered power can be written as

P(O) = dfshf , exp [-aL + G(fs)] (6.4)

where P,(0) = Is(0)Aeff is the backscattered Stokes power, hfs is the power of the

injected Stokes photon at z = L, a is the loss of the fiber, and G (a function of

fs) is the SBS gain defined by (6.1), and it is assumed that a single-mode fiber is

used. The Stokes frequency, fs, that contributes the most power to the Stokes wave

returning to the beginning of the fiber is the frequency that maximizes G. Since G is

exponentially related to backscattered power, only the fs corresponding to maximum

G will contribute significantly to the backward propagating power. Therefore, it is

reasonable to approximate (6.4) with

P,(0) = h f exp [-aL + G(f)] (6.5)



where fB is the Stokes frequency that maximizes G. Solving this equation for G yields

P,(O)G = In + aL. (6.6)
hfs

where the prime in f, has been dropped for notational convenience. Next, we can

invoke the definition of G (6.1) and write the SBS gain as

0-0 IPf) fA)Y dfG = gFLeff -F+fdf

l o Jnormalized(f)
= (Ip) gYLeff - df

I-0o ]2 + (f - f -fA)2

= (I). G (6.7)

where Ip(f) = ()In°rmalized(f) (the brackets denote a spectral average so that

f Inormalized(f)df = 1), and G is a normalized SBS gain such that it is purely a

function of the shape of the pump spectrum,

o pnormalized(f)
S= gLeff df. (6.8)

i-co r2 + (f - - fA) 2

Substituting (6.7) for G in (6.6) and solving for (Ip) yields

In P ( ) + aL
(Ip) = hf, (6.9)

The threshold power is achieved when P,(0) equals the Rayleigh backscattered power

(which is approximately 30 dB less power than the launched signal power in standard

silica core fiber). The numerator of (6.9) is equal to K at the threshold power,

(Ip=reshold = (6.10)
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Figure 6-4: The SBS gains for NRZ transmission.

which means that the threshold power is proportional to 1/G. For cw input, the

threshold power becomes (by using (6.2) and normalizing according to (6.8))

KE
(Ithreshold,c) = (6.11)IP gLeff

The threshold power can be normalized to the cw threshold power by combining

(6.10) and (6.11) and solving for K to obtain

(Ip) gLeff
(6.12)

(Ithreshold,cwj - (612)

This form of the threshold power is convenient to plot. The SBS gains are plotted in

figures 6-4, 6-5, and the normalized threshold powers are plotted in 6-6, and 6-7 for

NRZ and RZ transmission. The cw SBS threshold power was measured to be 5 mW

in our experiments with silica core fiber.

In figure 6-4, we see that for increasing bitrates, the SBS gain coefficient for



binary NRZ modulation levels off at half the value of the SBS gain coefficient for

CW light. Intuitively, this makes sense, since a binary signal contains half its energy

at the carrier frequency. At increasingly higher bitrates, the NRZ binary spectrum

flattens but the carrier frequency power remains the same. According to the SBS gain

coefficient integral, (6.3), the carrier frequency of the NRZ binary signal contributes

almost entirely to SBS at high bit rates.

It is also interesting to notice in figure 6-4 that the G of the NRZ duobinary

modulations decrease linearly. The power density spectra for these signals do not

have delta functions in their power spectra. Therefore, at a higher bitrate, the power

spectral density broadens, and the energy in the signal is spread over a larger fre-

quency range. The SBS gain coefficient is the convolution of the broad signal power

spectrum with the Lorentzian Brillouin gain spectrum. The maximum value of this

convolution decreases with increasing bit rate, or in other words, the SBS threshold

increases with increasing bit rate.

Experimentally, it was found that the threshold power of the NRZ alternating

phase duobinary signal ranges from 17.78 dBm at 1 Gb/s to 26.02 dBm at 7 Gb/s.

The threshold power of the blocked phase duobinary signal 14.7 dBm at 1 Gb/s to

21.7 dBm at 7 Gb/s. The threshold of the NRZ alternating phase duobinary signal

is about 3 dB greater than the threshold of the NRZ blocked phase duobinary signal

and the NRZ AM-PSK duobinary signal in this range. This can be explained by the

power spectral densities for these signals in figures 2-20, 2-19 and 2-18 respectively,

it is easy to see that the individual humps of the NRZ alternating phase duobinary

signal have twice the width of the blocked phase or AM-PSK duobinary signals. This

means that for the same power, the peak frequency of the alternating phase duobinary

signal should be half the height, or 3 dB lower than the blocked phase and AM-PSK

duobinary signals.

In figure 6-5 a similar picture to NRZ transmission is seen. For RZ binary modu-

lation, the SBS gain levels out at about one-tenth of the CW SBS gain. The curves

in figure 6-5 are for gaussian pulses whose FWHM occupies 16/100 of the bit slot.

This number was picked since our experiments involved 16 ps FWHM pulses at 10
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Figure 6-5: The SBS gains for RZ transmission.
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NRZ, r = 38 MHz (HWHM), Pcw,threshold = 5 mW
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Figure 6-6: The normalized threshold powers for NRZ transmission. The experimen-
tal values are given by the circle, triangles, and squares.

Gbit/s. If the FWHM of the pulses were decreased and the pulse energies were fixed,

the signal spectra would be broader, and therefore, the SBS gain should decrease.

This would correspond to a downward shift of the curves in figure 6-5. Increasing the

FWHM of the pulses would have the opposite effect.

Figures 6-6 and 6-7 show the normalized threshold powers for NRZ and RZ trans-

mission. These curves were generated by plotting 1/(G/Gcw) or the multiplica-

tive inverse of figures 6-4 and 6-5. According to these plots, the SBS threshold for

duobinary signals increases without bound as the bitrate increases, whereas the SBS

threshold for binary modulated signals levels off after about B = 10F.
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Figure 6-7: The normalized threshold powers for RZ transmission (assuming gaussian
pulses with FWHM of 16 ps if bit slot has width 100 ps).
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Figure 6-8: The experimental setup for determining the SBS threshold for various
transmission formats.

6.4 Experiment

In the last section, we saw that the SBS threshold for RZ duobinary pulses increased

without bound. This would be wonderful if it were actually true! Unfortunately, RZ

pulses are limited by stimulated Raman scattering (SRS) and not SBS.

The experimental setup for finding the SBS threshold is shown in figure 6-8. The

setup consists of a modulated laser source at 1557 pm, a high power erbium-doped

amplifier, an attenuator, a coupler, several power meters, a spectrum analyzer, and

120 km if dispersion-shifted fiber (DSF) plus 40 km of silica-core fiber (SCF). The

dispersion-shifted fiber was used to minimize dispersion, so that the modulated optical

pulses could maintain their shape throughout the fiber.

The SBS threshold data for NRZ transmission, taken previously by Thorkild

Franck [14], is plotted along with its values predicted by theory in figure 6-6. The

experimental data corresponds well with theory showing that the theory developed

in the previous section works well for NRZ transmission.

The RZ threshold experiments were slightly more complicated since the FWHM

of the pulses could not be tuned. A 16 ps pulse source was used. In order to reduce

the bitrate, rather than broadening the pulses, zeros were inserted after every digit in

the 213 - 1 pseudo-random bit sequence impressed by a Mach-Zender modulator onto

the optical pulse stream. In effect this reduced both the bit-rate and the duty-cycle

of the signal.



The backscattering threshold powers for RZ transmission (see figure 6-5) did not

correspond well to the theory developed in this chapter. The measured threshold

values were generally higher than the predicted thresholds. One hypothesis for the

discrepancy between the measured and predicted values is that the pulses experienced

a great amount of self-phase modulation (SPM) due to their high peak powers. Self-

phase modulation leads to a broadening of the pulse spectrum. A broader pulse

spectrum has a higher SBS threshold. Therefore, SPM causes an increase in the SBS

threshold power, or in other words, the solid line in figure 6-5 is pushed upwards.

Another reason for the discrepancy between the measured and predicted values is

due to stimulated Raman scattering (SRS). As measured at the end of the fiber,

the output spectrum showed that a considerable amount of the signal's energy was

converted into Stokes radiation downshifted from the signal (see figures 6-9 and 6-

10). This implies that less energy was available for the backward stimulated Brillouin

scattering process, which effectively increases the SBS threshold.
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Figure 6-9: A sample spectrum of a 213 - 1 PRBS sequence taken at the end of the
transmission fiber with a spectrum analyzer. Notice the SRS spectrum downshifted
in frequency from the pump spectrum centered at 1560 nm.
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Figure 6-10: A sample spectrum of a 213 - 1 PRBS sequence with two spaces inserted
between every bit, taken at the end of the transmission fiber with a spectrum analyzer.
The pump is at 1560 nm.
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Chapter 7

WDM of duobinary signals

Silica core fiber has an enormous usable bandwidth around the low loss 1.3 pm and 1.5

pm optical wavelengths. The approximate usable bandwidth (defined by the region

in which the silica-core-fiber loss is less than approximaely 0.3 dB/km) around 1.5

pm is approximately 25,000 GHz wide [23, p.514]. In order to take full advantage of

the 1.5 pm band with a single channel (a single laser diode), a laser diode or external

Mach-Zender modulator would have to be modulated at 25,000 Gbit/s. This speed

is impossible to obtain electronically and the current state-of-the-art modulators are

only capable of approximately 50 Gbit/s modulation. In order to take advantage of

the low loss 1.5,pm band, it is necessary to use multiple channels. Wavelength division

multiplexing (WDM) is the simultaneous broadcast of multiple independent signals

with different carrier frequencies over a single fiber. WDM has become a popular way

to expand capacity to meet the growing demand for information transfer.

Using multiple channels in a single fiber presents problems of crosstalk. Crosstalk

occurs mainly through three mechanisms: (1) Individual channels have spectral tails

that can become increasingly problematic as the channel spacing is decreased. (2)

Non-ideal filtering or selection of a single channel which leads to a leakage of energy

between neighboring channels. This interference manifests itself as high frequency

wiggles of the marks in an eye diagram of the received signal. The high frequency

wiggles arise from incompletely extinguished higher frequency neighboring channels.

(3) Four-wave mixing (FWM), a phase-matching process allowed by the nonlinearity



of the fiber, causes an interaction between neighboring channels. In the spectral

domain, the FWM spectrum centered at w4 = w1 + w2 - w3 can be thought of as a

convolution of three (possibly doubly or triply degenerate) spectra corresponding to

three channels centered at wl, w2 and w3.

As channels are packed more closely, the three aforementioned problems are exac-

erbated. As current WDM technology progresses from WDM (10 nm channel spac-

ing) to dense WDM (1 nm channel spacing) and beyond, cross-talk will become an

increasingly greater problem. One way to combat cross-talk between channels by

linear mechanisms (specifically by mechanisms (1) and (2) mentioned above) is to

increase the spectral efficiency of the modulation format by narrowing the channel

spectrum. Duobinary format accomplishes exactly this.

Yano et al. [55] demonstrated 2.6 Terabit/s (132 ch. x 20 Gbit/s) WDM duobi-

nary encoded transmission over 120 km silica-core fiber with a worst channel sensitiv-

ity of -27 dBm. The high density WDM signal had a 0.6 bit/s/Hz spectrum efficiency.

This system used an IM duobinary format: 20 Gb/s binary signals were pre-coded

and converted to three-level duobinary signals with 5 GHz 5th-order Bessel filters

in the electrical part of the transmitter. In comparison, AT&T Labs demonstrated

1 terabit/s (50 ch. x 20Gbit/s) over 55 km in dispersion shifted fiber with binary

NRZ format[8]. Fujitsu Laboratories demonstrated 1.1 Tb/s (50 ch. x 20 Gb/s)

over 150 km in silica-core fiber with NRZ binary format. Assuming that the NRZ

binary group used Erbium-doped fiber amplifiers with the same bandwidth as the

Yano group (4.3 THz bandwidth), then the NRZ binary transmission experiments

only had a spectrum efficiency of 0.25 bit/s/Hz.

Using the simulator developed in chapter 3, the sensitivities of a three channel

system were computed for binary, AM-PSK duobinary, and IM (intensity modulated)

duobinary modulation formats. Each channel was modulated at 20 Gbit/s and the

back-to-back sensitivity (the sensitivity with the transmitter directly attached to the

receiver) was computed for different channel spacings. For each modulation format,

an exponential function was fitted to the sensitivities of all three channels. The result

is plotted in figure 7-1 and the simulation parameters are tabulated in table 7.1. IM



3 x 10 Gb/s Channels

Channel Spacing (GHz)

Figure 7-1: Sensitivity as a function of channel spacing for a 3 x 20 Gb/s WDM
transmission simulation for binary, AM-PSK duobinary, and IM (intensity modu-
lated) duobinary modulation formats.

and AM-PSK duobinary formats have better sensitivities at tighter channel spacing.

Here, the tightest channel spacing, or channel efficiency, is defined to be the point

at which the sensitivities increase by 1-dB. For channel spacings tighter than this,

the sensitivity worsens very quickly. The 1-dB turning point for binary, AM-PSK

duobinary, and IM duobinary modulation formats are 34 GHz, 27 GHz, and 25.8

GHz respectively, and the corresponding channel efficiencies are 0.59, 0.74 and 0.76

bit/s/Hz. Although the simulated channel efficiency values do not correspond ex-

actly to experimental values, the relative values between modulation formats yields

the important information. The deviation from experimental values comes from an

inexact choice of parameters for the receiver, nonlinear effects in the fiber (FWM),

and more complicated experimental setups that were not modeled, such as pre- and

post-amplifiers. The important results from the simulation is that, (1) IM duobinary

and AM-PSK duobinary formats yield better channel efficiencies than binary modu-

lation format because of its narrower spectrum, and (2) IM duobinary channels can

have slightly tighter packing than AM-PSK duobinary channels.



Parameter Value
Channels 3
Bit Rate 20 Gbit/s
TX and RX electrical filters 20 GHz 2nd order Bessel LPF (for Binary modualation)

13 GHz 2nd order Bessel LPF (for AM-PSK duobinary modualation)
5 GHz 5th order Bessel LPF (for IM duobinary modualation)

PRBS 27 - 1
Samples per bit 32
Pre-amplifier gain, G 41.5 dB
Detector quantum efficiency, 7r 0.8
Receiver optical BPF bandwidth 0.3 nm
Circuit Noise 2.99785 x 10-11 AA
Pre-amplifier insertion loss 0
ns, 1.172

Table 7.1: Simulation parameters used to generate figure 7-1.



Chapter 8

Conclusion

Duobinary encoding of optical NRZ signals presents a simple method of increasing

the transmission distance over regular NRZ binary transmission without extra disper-

sion compensating devices. The only added complexity of a duobinary transmitter

are the low-pass filters and the delay-and-add circuit block. Since the information

of an optical duobinary signal is directly extracted from the signal's amplitude, the

same direct-detection receiver as in binary NRZ communications can be used. The

four reasons why duobinary encoding has become so attractive for optical transmis-

sion are: (1) it has a narrower bandwidth than binary format and hence suffers less

from dispersion, (2) it has a greater spectrum efficiency than binary format due to

its narrower bandwidth and hence allows tighter packing of wavelength division mul-

tiplexed channels, (3) it suffers less from stimulated Brillouin backscattering, the

major limiting factor in repeaterless transmission, and (4) is easy to implement since

the transmitter only requires modest changes from an externally modulated binary

transmitter and since the receiver is a direct detection receiver, the same as for binary

format.

In chapter 3, a computational model of a single-span, optically pre-amplified

transmission system was presented. The optical pre-amplifier injected noise before

a square-law detector (the pin photodiode receiver). Squaring the signal plus noise

leads to beat terms. This means that part of the noise is signal-dependent and hence

required the use of a computer to find bit-error rates. This computational model was



used in the rest of the thesis.

In chapter 4, sensitivities of Bessel, Butterworth, and Chebyshev filters of various

orders were computed to understand what baseband filter (in both the transmitter

and receiver) characteristics lead to the best BER. It was found that the most sensitive

parameters affecting the BER are the bandwidth and roll-off steepness. The ripple

across the passband in either phase or amplitude plays a smaller role in determining

the BER. The best filtering for AM-PSK duobinary format is obtained for low-order,

slow-roll-off filters with a bandwidth of approximately 0.6B, where B is the bitrate.

The optimal filtering bandwidth increases for higher-order, steeper-roll-off filters.

In chapter 5, the dispersion penalty of a receiver was shown to depend on the

ratio of the mark-to-space noise (all/co). The main result was that high aT/ao ratios

lead to high dispersion penalty. This result has significance in the characterization

of two receivers. The relative performance of two receivers with a 0 km fiber channel

does not necessarily maintain that performance difference at 100 km, for example.

In chapter 6, the SBS threshold for AM-PSK, alternating- and blocked-phase

duobinary formats were computed and experimentally verified. AM-PSK duobinary

format has approximately a 20 times higher threshold at 10 Gbit/s and 40 times

higher threshold at 20 Gbit/s than binary format (which, in our experiment, had a

threshold of 10 mW). Alternating-phase duobinary format had approximately a 3-

dB higher SBS threshold than AM-PSK and blocked-phase duobinary formats since

its spectrum is approximately twice as wide. Since duobinary format has a high

threshold, more power can be launched into a fiber than with a binary format, and

hence longer transmission distances can be achieved.

Chapter 7 considered wavelength-division multiplexing of duobinary channels. It

was shown through simulations that IM duobinary channel efficiencies of 0.76 bit/s/Hz

could be expected (experiments have shown a channel efficiency of 0.6 bit/s/Hz). This

corresponds to approximately twice the packing efficiency of binary format.

As the demand for more bandwidth increases, there will be a natural thrust to-

wards creating amplifiers with broader bandwidths and using modulation formats

that are more bandwidth efficient. Due to the excellent propagation properties of



duobinary format and the increasing interest in duobinary format in large firms such

as Lucent Technologies, British Telecom, and NEC, it seems likely that duobinary

transmission will play a larger role in future repeaterless transmission systems.



Appendix A

Filters

The squared-magnitude response, group delay, and impulse response of Butterworth,

Bessel, and Chebyshev filters are plotted in this appendix. For all plots, the 3-dB

cutoff frequency is normalized to 1.
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Figure A-3: Bessel filter time impulse response.
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Figure A-4: Butterworth filter squared-magnitude response.
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Figure A-5: Butterworth filter group delay.
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Chebyshev (0.1 dB max ripple)
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Figure A-7: Chebyshev (0.1 dB max ripple) squared magnitude response.
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Figure A-8: Chebyshev (0.1 dB max ripple) group delay.
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Chebyshev (0.1 dB max ripple)
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Figure A-9: Chebyshev (0.1 dB max ripple) time impulse response.

Chebyshev (0.5 dB max ripple)

Figure A-10: Chebyshev (0.5 dB max ripple) squared magnitude response.
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Chebyshev (0.5 dB max ripple)
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Figure A-11: Chebyshev (0.5 dB max ripple) group delay.
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Figure A-12: Chebyshev (0.5 dB max ripple) time impulse response.
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Chebyshev (1 dB max ripple)

Figure A-13: Chebyshev (1 dB max ripple) squared magnitude response.
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Figure A-14: Chebyshev (1 dB max ripple) group delay.
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Figure A-15: Chebyshev (1 dB max ripple) time impulse response.
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Appendix B

Acoustic Wave Equation Derivaton

for Acoustic Phonons

The acoustic wave equation will be important for the derivation of the gain for the

Stokes wave in stimulated Brillouin scattering.

This derivation of the acoustic wave equation will use notation from [48, p.490].

The main variables are given in table B.1.

The acoustic wave equation arises from the conservation of mass, the use of New-

ton's force law, assuming an externally applied force (the applied optical fields) and

assuming a viscous drag force.

The first step in the derivation of the acoustic wave equation is the invocation

of the conservation of mass which states that the total mass of the system does not

change with time:

dt J(t) p(, t)dv = 0 (B.1)

where the integration is over the volume under consideration, V(t). The application

P(, t) : fluid pressure

p(F, t) : fluid mass density

((F, t) : ] fluid velocity

Table B.1: Acoustic variables and units
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of the Liebnitz identity and then the use of the divergence theorem allows us to write

(B.1) as

d J)V(t)p(-, t)dv = dv + p(, t)UA( i , t) da
dt V(t) A(t)

t= +( V - (p(, t)lA,)A( ))] dv (B.2)Jv(t) at

where UA(i, t) is the velocity of the surface A(t). The Liebnitz identity simply states

that the rate of change of the quantity p(', t), contained in a moving volume V(t) is

the sum of the intrinsic rate of change of p(F, t) and the rate at which the moving

boundaries are encompassing p(rj, t).

For the sake of notational simplicity, the subscript A will be dropped from the

fluid velocity,

L(',t) =- UA(r,t)

In addition, the functional arguments will also, at times, be dropped.

By substituting (B.2) into (B.1), the following relation is revealed

(t) t + V , (t)UA(r, t) dv = 0 (B.3)

Since V(t) is an arbitrary volume, the integrand must vanish, or

ap(- (p(, t)A(, t)) = 0 (B.4)

The next step in the derivation of the acoustic wave equation is to use Newton's

Force Law (the ubiquitous F=ma) in integral form:

d 02

Fx(r, t)dv = d p(, t)Ux( t)dv + 2  dv + fxdv (B.5)
v(t) d v(t) V W Ox( )

where the left-hand-side is the total force in the x-direction (units of [N] which makes

F, have units of [N/m 3 ]), the first term of the right-hand-side (rhs) is the force from

pressure gradients in the fluid, the second term on the rhs is the force due to viscosity,

105



and the last term on the rhs is the externally applied force from optical fields. The

rhs contains the coefficient of viscosity with units of [kg/m/s] [42, p.312], which is

given by [3, p.303]
4 K
= 77 + Tb + -( - 1)

3 CP
(B.6)

where r, is the sheer velocity coefficient, rib is the bulk velocity coefficient, K is the

thermal conductivity, cp is the specific heat [J/kg/K], and y is the adiabatic index.

Liebnitz's identity can be used on (B.5) to obtain

E (pUX) +V (pUXU)] dv =
JV(t)

F( , t)dv -
082

tP x2 dv - f dv(t) x2 U V(t)
(B.7)

Again, the integrands must be equal since the volume of integration, V(t), is arbitrary.

Equating integrands yields

S(pUX) + V.
at

82UX
(pUX ) = F, - I x - f

Pressure is related to force through the relation F = -VP, or F=

simplifies (B.8) to

0 OP 2U
-(pUX) + V - (pUxU) = y - P 2 - fx

and this is also true for the other dimensions (y and z):

(B.8)

-P, andOx '

(B.9)

+ V. (pUY,O)
OP 02UY
ay y2

and
a
~(pU) + V -(pUzU)=

Adding (B.9), (B.10), and (B.11) yields

a(pu) + V (p(U) = -v- V2 U - f

where the term UU is a second rank tensor.
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Next, it is assumed that the field quantities p, P, and U can be represented as a

constant field plus a small fluctuation:

p = Po + PI(, t)

P = Po + p(, t)

U = Uo + G(F, t) (B.13)

Assume that the fluctuations in pressure and density are small so that

IP1 < Po

|p < IPol (B.14)

Assume the fluid to be, on average, at rest so that

Lo =0 (B.15)

Substituting (B.14) and (B.15) into the conservaion of mass equation (B.4) yields

p + poV - u= 0 (B.16)
at

Next, the approximations (B.14) and (B.15) are substituted into Newton's Force

Equation (B.12) to yield

atpo~u = -Vp-/[V2ft- f (B.17)

The acoustic frequency is assumed to be sufficiently high so that the heat flux in the

fiber is zero which implies that the pressure and density are related adiabaticallly by

the isentropic acoustic constitutive relation:

Op - p (B.18)
OP K
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or rearranging and substituting (B.13) gives

Pi = (B.19)

where K is the bulk modulus [N/m2]. This can be substituted into (B.16) to yield

1 dP
V -t= (B.20)

K Ot

or into (B.17) to yield

Vp = -Po + IV 2 i - J (B.21)
Oat

To find the acoustic wave equation, take the divergence of (B.21) and insert (B.20)

to get

V2P 02 pK V - V .f (B.22)
P K t2 K at

where the identity, V (V2u) = 2 (V u), was used. This equation can be rewritten

and converted from describing the pressure in the medium to describing the density

of the medium by noting that the group velocity of the acoustic wave is given by

v2 = and by using (B.19) to get
9 PO

02p 1  2 __ pl
2 P v V 2p1- =v2P1 V f (B.23)
t2  Po Ot

The external force per unit volume, f, is given by

f = - Vpst (B.24)

where

Pst= e- 2  (B.25)
4

is the contribution to the pressure of a material in the presence of an electric field [3,

p.329], and

e = p 1-p=Po (B.26)
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is the electrostrictive constant. The brackets, (.), denote a time average over the

optical period.
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Appendix C

Derivation of the gain for the

Stokes wave in stimulated Brillouin

scattering

The following derviation of the Stokes wave in stimulated Brillouin scattering follows

the development in [26] and [3], but fills in the gaps and uses MKS units.

The derivation begins by considering a fiber segment with a forward propagating

pump wave, wp, and a backward propagating stokes wave with frequency w, and a

forward propagating acoustic wave with frequency WA (see figure C-1).

According to the acoustic phonon dispersion relation:

WA = IkAIV (C.1)

where v is the velocity of sound. Conservation of energy dictates that

hw, = hW, + hWA (C.2)

Figure C-1: The pump, Stokes, and acoustic waves in a fiber segment.

110



or dividing out the h gives the relation

Conservation of momentum yields

k = ks + kA (C.4)

and considering the geometry in figure C-1 withh counter-propagating pump and

Stokes waves yields
npWp nw + WA (C.5)

C V

where the optical dispersion relation Ik| = nw/c and the acoustic phonon dispersion

relationg were used. Reorganizing (C.5) yields

WA = (Wp + s) (C.6)

which follows from assuming that n, = ns, that is, the indices of refraction fo he

pump and Stokes waves are approximately equal. Using (C.3) in (C.6) gives

2vn

WA vn
1+ C

(C.7)

Since the speed of sound is much slower than the speed of light (v < c/n), the above

simplifies to
2nv

WA Wp (C.8)

This implies that

|kAI = 2 pt

Consider the forward and backward traveling optical waves represented by

El(z, t) = Ai(z, t)eiklz- iwlt + c.c. (C.9)
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and

E 2(z, t) = A 2(z, t)eik2z- iw2t + c.c. (C.10)

where wl does not necessarily equal wp and w2 does not necessarily equal ws. Let

the frequency difference between the two oppositely traveling waves be denoted by

Q = wl - w 2 "

The acoustic field induced by the optical waves can be described as a material

density wave

p(z, t) = Po + [p(z, t)eikz-it + c.c.] (C.11)

where k = k1 + k2 r 2ki and Po is the mean density of the medium. The material

density obeys the acoustic wave equation derived in Appendix B.

a2 1 P V2P91 - V2 pi = V. f (C.12)
at2 Po at 9

where, from Appendix B,

_V Eo(IE, + E212)

22
- (AAeikzit + c.c) (C.13)

Now substitute this value and (C.11) into the wave equation (C.12) and assuming a

slowly varying envelope in space and time (0 2/&t2 -* 0, a2 /O 2 -- 0) to get

-2iQ ap1 + (w _ 2 _ i)pI - 2 ikV2 = Eok2A1Aj (C.14)at 9 a2

where WA = v9 k, and the Brillouin linewidth (FWHM)

F = k2-i) (C.15)

was used. The phonon lifetime is p7 = 1/F.

Since the phonon propagation distance is typically small compared to the distance

over which the source term on the right hand side of (C.12) varies significantly, Opl/Oz
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can be dropped for SBS. In addition, assuming steady-state conditions, Opx/Ot also

vanishes. Therefore, the steady-state acoustic amplitude is simply

1/)eok2 A1A
Pl(z, t) = 2

w - Q2 - itP
(C.16)

The evolution of the optical field is given by the electromagnetic wave equation

PNL = 0AEE

= OE Ap E

= oYe (p leikz-int

Po

02
= o -PNL

Ot2

+ c.c.) E

(C.17)

(C.18)

PNL = "O-ePI

Po
[A 2 eikl z - i wlt + Aj e - i

k2z - i
2t + c.c.]

by using (C.9) and (C.10) and choosing only the phase-matched terms.

By substituting C.19), (C.9) and (C.10) into the wave equation (C.17), and making

the slowly-varying-envelope approximation yields

2ik 1 %'eikl z - i wlt - 2ik2 AZ e - ik2z - i 2t + (2iw eiklz-iwt + 2iw2 e ik2 -i 2 )

- YeEO O [P -i k2ziwt 2+ pwA2 ikz-iwit]

(C.20)

This equation can be split into two equations by equating the exponential terms and

using the relation w/k = c/n:

1 0A1
c/n Ot

iw12n0o07oeo-- pjA2
2npo

(C.21)
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The nonlinear polarization term is given by

Since EE1 + E2,

(C.19)



and
+A2  1 &A2 = iW2IYelO 27060*A1 (C.22)

Oz c/n Ot 2npo

Substituting w = wl - w2 , assuming steady-state (a/at -- 0), and substituting (C.16)

into the previous coupled equations yields:

OA1 = iwk 27 Eo A 2 
2 A 1

Oz 4ncpo wA - 2-iQ (C)_

and
aA 2 _ iwk 2 'y2eo |A1 12 A 2

Oz 4ncpo wA - Q2  (C4)+ i

Next, the intensities can be found by using the relation

I E12 
_ 

IE 2 - nIE (C.25)
277 2 o 270o

This implies

0 n 0 (AA)I = (AA)
Oz 2qo0 az

2 2 (r/2)2eW 1112 (C.26)
nvc3por (WA - Q) 2 + (F/2)2

The relations k = k1 + k2 m 2k = 2wn/c and Q = 27rv/Aphonon = vk were used in

simplifying the above expression. With the following definitions

2 2

90 e- (C.27)
nvc3 poF

and
(1/2)2

g g/2) (C.28)
(WA - Q) 2 + (r/2)2

(C.26) becomes

1_ _9gi112 (C.29)
Oz
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Ws = W2

Wp = W 1

WA

F/2 (FWHM)
Lgo(r/2)2

to fP
to fA
to F (HWHM)
to gfLff

Table C.1: Substitutions to convert this chapter's notation to that found in chapter 6.

and, likewise, it is easy to show

012
(C.30)

with the undepleted pump approximation, or Ii(z) = constant, then

I2(z) = I2(L) exp [gi(L - z)I] (C.31)

for each pump frequency. To sum over the pump spectrum to obtain the total Stokes

intensity, the pump intensity can be integrated: (we are interested in z=0)

12(0) = I2(L) exp [J0 gLI(wi)]
(C.32)

In addition, loss in the fiber can be accounted for by adding a constant term e- L .

Hence, the above equation becomes

2(0) = I2(L) exp goL(F/2)2 S(WA O I( /dw)
0 (WA - Q) 2 + (F/ 2 ) 2dCl

Note that Q = wl - W2,

12(0) = I2(L) exp [goL(r/2)2
-oo

Ii (WO) dl
(W1 - U2 - W;A)

2 ± (p/ 2 ) 2

This equation can be converted into the notation given in chapter 6 by making the

substitutions found in table C.1.
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The last entry in table C.1 implies that

L 2X2 2 2

Leff nvc3po

1 - e - 'L
Leff=

(C.35)

(C.36)

Rewriting (C.34) with the new notation specified in table C.1 yields

gLeff - 2 + (f- fs - fA) 2 df -L

SBS Gain, G

(C.37)

This equation shows that the SBS gain in long fibers is given by the convolution

between the pump spectrum and the spontaneous Brillouin linewidth. For the case

of a CW pump wave, where I,(f) = IoS(f), the steady-state SBS gain is given by

Gcw = gIoLef f
GcW F (C.38)
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Appendix D

Multiresolution Split-step Fourier

Transform Method

The split-step Fourier transform method is useful for quickly propagating a waveform

along a fiber in optical simulations [2, p.50]. The normalized equation that governs

wave propagation in lossy fibers is [2, p.165].

(u 02U
i + + Iu12u = -iu (D.1)

The prescription for the split-step Fourier transform method is as follows: (1) divide

the optical fiber into N discrete segments (2) alternately designate the segments as

dispersive only or nonlinear only, (3) propagate the signal in each segement. The dis-

persive effects (segments) of the fiber are computed in the frequency domain whereas

the nonlinear effects (segments) are computed in the time domain. Switching from one

domain to the other is accomplished through the FFT. The computational advantage

of the Fourier transform method lies in the usage of the FFT algorithm (O(N log(N))

operations per step). One alternative to the split-step Fourier method is to do the

computation in the time domain only. This would require O(N 2) operations per

convolution, which is tremendously slower for large N.

A further improvement upon the split-step Fourier transform method is the usage

of a variable step size (i.e. multiresolution). The step size or fiber segment length is
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equal to some fraction of the minimum of the dispersion and nonlinear lengths. In

the simulations in this paper, the step was chosen according to

min(LD, LNL) (D.2)
100

where LD = TO/ /321 is the dispersion length and LNL = 1/yPo is the nonlinear length,

i.e. the length over which dispersion or nonlinearities are noticable. By adjusting the

spatial step size by monitoring the change in the nonlinear length brought about

by a change in the power of the optical signal, there is a great computational ad-

vantage when considering a signal that experiences large losses along the fiber. The

RZ duobinary nonlinear nonrepeatered transmission experiments in silica core fiber,

where the signal begins with high power and subsequently experiences large losses, is

an example of where multiresolution is advantageous.

Another reasonable alteration to the split-step algorithm is to ignore the nonlin-

earity of the fiber at the point where the nonlinear length is much greater (a factor

of 100 in the simulations used in this thesis) than the length of the remaining fiber.

Linear propagation is very fast and only requires only one Fourier transform pair.

The error of the split-step method is related to the commutation of the dispersion

and nonlinear operators, which is unfortunately unbounded. Therefore there is no

nice mathematical formula bounding the error of this method. Nevertheless, despite

this mathematical complication, this method, if used with a narrow enough grid often

subtends insightful answers. Two checks that one should use on the split-step Fourier

transform is to (1) use a smaller step size and see whether this gives a similar answer,

and (2) to check that the energy of the signal depletes by only the fiber loss.
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Appendix E

Glossary

Back-to-Back Sensitivity Sensitivity at zero dispersion. In other words, the sen-

sitivity when the transmitter is directly connected to the receiver.

BER Bit error rate.

dBm A unit of power, P(dBm) = 10 log(P(W)/lmW). Therefore -30 dBm, 0, and

10 dBm correspond to a power of 1 /W, 1 mW, and 10 mW respectively.

DCF, Dispersion Compensating Fiber Fiber that is used to compensate chan-

nel dispersion. Often refers to negative dispersion fiber which will compensate SCF.

Direct Detection Refers to a square law detector with no homo- or heterodyning.

In an optical system a direct detector is often a pin photodiode.

Dispersion Penalty or Dispersion Power Penalty The additional incremental

received power needed to attain at 10- 9 BER due to degradations from dispersion in

the fiber.

Mark Another name for a "1" in a digital communications system.

Power Penalty The additional incremental received power needed to attain at

10- 9 BER.
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SCF, Silica Core Fiber Refers to the most popular fiber that has zero dispersion

at 1.3pm but approximately 17 ps/nm/km dispersion at 1.5pm wavelengths. This

fiber is currently the lowest loss fiber with losses of 0.173 dB/km.

Sensitivity The necessary received power needed to achieve a 10-9 BER.

Space Another name for a "0" in a digital communications system.

Total Dispersion or Dispersion Often refers to the dispersion (ps/nm/km) times

the length of the fiber (km) and hence has units of (ps/nm).
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