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Abstract

Symmetric systems comprise identical subsystems coupled identically to each other. In most

applications, these open-loop symmetrically-coupled subsystems have common feeds into other

systems and feedback from other systems. Subsystems are often coupled symmetrically to

achieve a large system rating as well as to improve reliability of the overall system through
redundancy. Even if the individual subsystems are stable, when they are interconnected via

linear or nonlinear mutual coupling, the overall system may not be stable. If the coupling is

nonlinear, it becomes extremely difficult to set criteria that ensure the overall stability of the

system, particularly if the nonlinearities involve non-differentiable functions such as max(.,.).
Furthermore, such systems are also difficult to analyze due to their high order.

This thesis explores two avenues to assess the stability of open- and closed-loop symmetrically-

coupled nonlinear systems. The first involves reducing the stability analysis of the overall

symmetric nonlinear system to that of lower-order linear and nonlinear systems. The stability of

these reduced-order subsystems can then be used to guarantee stability of the overall system. The

second involves partitioning the state-space of a nonlinear system with piecewise affine

dynamics into a number of closed cells, and then searching for a piecewise continuous Lyapunov

function for the system.

The major physical model analyzed in this thesis is that of paralleled current-mode-controlled

power converters with nonlinear couplings for realizing current sharing control. We will

primarily consider current sharing schemes that employ the maximum of the individual cell

currents as the coupling function.
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Introduction

Symmetric systems comprise identical subsystems coupled identically to each other. In most

applications, these open-loop symmetrically-coupled subsystems have common feeds into other

systems and common feedback from other systems. Subsystems are often coupled symmetrically

to reduce the stress on individual subsystems as well as to improve reliability of the overall

system through redundancy. Even if the individual subsystems are stable, when they are

interconnected via linear or nonlinear mutual coupling, the overall system may not be stable. If

the coupling is nonlinear, it becomes extremely difficult to set criteria that ensure the overall

stability of the system, particularly if the nonlinearities involve non-differentiable functions such

as max(.,.).

Analysis and control of large-scale symmetric systems with feedback is challenging due to both

the size and the nature of the coupling present between subsystems. Some research into stability

analysis for such symmetric systems has been directed toward systems with linear mutual

coupling [1,12-15]. For nonlinear mutual couplings, the system may sometimes be linearized

about a fixed operating point to perform a small-signal analysis in order to gauge stability [5,7].

Often, though, this is not possible if the coupling function is not differentiable, as is true in the

case where the maximum of individual subsystem variables is used as the coupling function, for

example. Piecewise or hybrid coupling feedback, as with the 'max' coupling, also often leads to

a system that cannot be analyzed by linearization.

1.1 Overview

In this thesis, we will explore two main avenues to assess the stability of open- and closed-loop

symmetrically-coupled nonlinear systems. For a system with a large number of coupled

subsystems, it is first desirable to reduce the order of the system to make analysis and control

tractable. A finite-order open-loop symmetrically-coupled system can be described by the state-

space model
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A, A 2  ... A2

A 2  A, ... A2

A2 A2 ... A,

X
1

x
2

XN

+ diag(B)u, (1.1a)

(1.1b)y= diag(C)x

where xi represents the state variables for the ith subsystem, and there are N symmetrically-

coupled subsystems. Lunze uses linear transformations to reduce the stability analysis of a linear

symmetric system consisting of N subsystems to that of a model of order twice that of the

subsystem order [1]. Model-order reduction techniques have been developed in the context of

specific applications as well [12].

Although Lunze's analysis addresses only open-loop symmetrically-coupled systems, many cases

of interest comprise symmetrically-coupled systems with common connections to other systems.

Assuming that these feedback systems are represented by state variable vector w, the state

equation in (1.1) now modifies to

A A2

A2 A,

HC HC ... HC

BG7

BG

BG

X1

X 2

XN

W

(1.2)

This thesis will show that model-order reductions, using techniques based upon those used by

Lunze, are also possible for such closed-loop symmetric systems. We will extend our analysis

further to include certain nonlinear couplings; specifically, it will be shown that it is possible to

reduce the stability analysis of a class of symmetric nonlinear systems to that of lower-order

linear and nonlinear systems; the stability of these reduced-order subsystems can be used to
guarantee stability of the overall system.

X1

x 2

XN .

x,

XN

WV



1.2 Thesis Contributions and Organization

The second avenue for stability assessment of symmetric systems, proposed by Johansson and

Rantzer [2] for more general (hybrid) systems, involves partitioning the state-space of a nonlinear

system with piecewise affine dynamics into a number of closed cells, and then searching for a

piecewise continuous Lyapunov function to guarantee the stability of the overall system.

Systems amenable to the treatment in [2] exist naturally as hybrid control systems and as

approximations to other nonlinear systems, to cite only two examples.

The main physical model analyzed as an example throughout this thesis is that of paralleled

current-mode-controlled power converters. In such a system, the paralleled power converter cells

represent the symmetrically-coupled subsystems, and the load represents the feedback system.

When paralleling converters, an additional control system is often implemented to ensure that the

individual converters share the load current equally. The control system used for demonstration

purposes in this thesis is based on each converter comparing its own current to the maximum of

all currents. Such approaches are very popular in industry today, due to their ease of

implementation and the availability of monolithic control circuits for this purpose [6]. Note that

this 'max' current sharing scheme is merely one example of the possible nonlinear couplings that

can be analyzed using the methods proposed in this thesis.

1.2 Thesis Contributions and Organization

As mentioned earlier, this thesis will explore several avenues to assess the stability of a

symmetrically-coupled nonlinear system. In Chapter 2, we lay the groundwork for a system

consisting of parallel current-mode-controlled converters with a 'max' current sharing scheme.

This system provides the physical model that is analyzed throughout the thesis.

Chapters 3 and 4 show that the similarity transformation proposed in [1] to reduce the order of

linearly coupled open-loop symmetric composite systems can be extended to symmetric systems

with feedback and with nonlinear couplings. The similarity transformation will be applied to our

nonlinear 'max' system to reduce the order of the system as well as assess its stability.

Chapter 5 will first cover the theory behind the method used by Johansson and Rantzer to find

piecewise Lyapunov functions for hybrid systems [2]. We then attempt to find a piecewise

quadratic Lyapunov function for the paralleled current-mode-controlled power converter example

introduced in earlier chapters. Some limitations of the techniques developed by Johansson and

Rantzer are exposed in this process.





2 Paralleled Power Converters

The physical model analyzed as an example throughout this thesis is that of paralleled power

converters. Power converters are often paralleled to achieve a large system rating, to reduce the

converter stresses, and to improve overall system reliability through redundancy. When

paralleling converters, an additional control system is often implemented to ensure that the

individual converters share the load current equally while maintaining stability and good

regulation of the output voltage. Thus, it is important to be able to accurately predict the

dynamics of a paralleled power converter system, including output voltage and load sharing

control.

2.1 General Converter Model

Consider the averaged model for a current-mode-controlled power converter (Figure 2.1). The

output voltage vou, of the converter is compared to a reference voltage vrf, and the error between

the two is used by the voltage control compensator to generate a reference current iref for the

converter. Based upon this current reference, the current-mode-controlled power stage generates

an average output current iout into the load/filter combination.

If a voltage control loop compensator Gc (s) of the form

G, (s) C - (2.1)

is used, and we assume that the power stage gain may be well approximated as H(s) = 1, then we

can form a circuit representation of the averaged model as shown in Figure 2.2, where L = r, / c

and R = 1/icc. This makes physical sense since the series combination of R and L represents the

output impedance of the converter, and the output current iout of the converter is delivered to the

load/filter combination represented by the parallel combination of Ro and Co. In an averaged
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Vref
Vout

Figure 2.1: Averaged converter model.

sense, the converter appears as a voltage source with an output impedance. The output voltage

regulation of the converter and its control bandwidth are dependent on the output impedance of

the converter, and, in turn, on the compensator parameters r and rz. In the general case, the

actual form of the output impedance is determined by the feedback compensator Gc (s) in the

converter and the power-stage dynamics. Simple circuit analysis reveals the stability of this

single converter.

2.2 Dual Converter Model

Suppose now that instead of just one current-mode-controlled converter supplying the parallel Ro,
Co load/filter combination, there are two, as shown in the averaged-model circuit representation

of Figure 2.3.

As is obvious from this figure, if the real parts of the cell output impedances are zero, the

paralleled converter system is unstable when the reference voltages are not equal. Even in the

presence of output resistance, however, this system will not share current equally if the reference

voltages are different. Furthermore, because the desire for good output voltage regulation

generally causes the converter output resistances to be kept small, even small differences in the

reference voltages will create large current imbalances.

These problems create the need for a current sharing control loop that modifies the reference
voltages to attain equal current sharing and stability in this paralleled system. One popular way
to implement such a control loop is the average current method, in which each power converter
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Figure 2.2: Averaged circuit model of a current-mode-controlled converter.

Figure 2.3: Initial averaged circuit model of a dual-cell converter system.

has a compensator that senses any imbalance between the average converter current and its own

output current. When such an imbalance is detected, this compensator adjusts the local voltage

reference until load sharing is achieved. The average current signal is generated on a common

"share bus" by having each converter drive the bus through a resistor with a voltage proportional

to its own output current.

Another possible method involves using the maximum converter current as a basis for

implementing current sharing. In this case, each paralleled power converter has a compensator

that senses any imbalance between the maximum converter current and its own output current.

Again, when an imbalance is detected, the compensator adjusts the reference of the voltage

amplifier until load sharing is achieved. The maximum current signal is also generated on a

common "share bus", but this time each converter drives the bus, with a voltage proportional to

its own output current, through a diode, instead of a resistor.

R L

Vref

I P

Vref2Vrefl 1

j I
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Thus, the control system used to achieve current sharing and stability can be linear or nonlinear

in nature. As discussed in [12-15], some linear feedback control methods involve the feedback

of the average current output of all the cells, as discussed earlier, or the current of a

predetermined "master" cell. Although these are important control methods, many others exist

that are based upon the feedback of quantities with inherently nonlinear dynamics, as introduced

in [6-11]. These nonlinearities make it extremely difficult to set criteria that ensure the overall

stability of the system, particularly if they involve non-differentiable functions such as max(.,.).

It is precisely this nonlinear coupling that is analyzed as an example in this thesis.

2.2.1 'Max' Current Sharing Scheme

The averaged model for the dual-cell converter system under consideration is given in Figure 2.4.

In this model,

Vrefi =" Vbasei + AVrefi , (2.2)

i.e., we include the reference adjustments Avrefi along with constant nominal base reference

voltages Vbasei. These non-identical base reference values allow us to account for the reality that

no two converters will be absolutely identical.

To achieve current sharing, we can adjust the reference voltages via the state equations

dAVref 1
dt = k [i nim - ioutl - k 2AVref I (2.3a)

dAr
dt - k [imax - i u

t2]- k 2 AVref 2  (2.3b)

in which k, and k2 are strictly greater than zero. The k, terms adjust the references for current
sharing while the k2 decay terms keep the reference voltages from wandering away from their
base values.
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Figure 2.4: Averaged circuit model of a dual-cell converter system.

Based on the circuit model of Figure 2.4, the state equations for the converter output currents are

given by

diouti_ Avrefi + Vbasei -v 0 - utiR (2.4)
dt L

for i = 1,2, and the evolution of the output voltage is governed by

dvo iol +i ou2 o/(V Ro)d _ iutl +i 2 -(v°/R°) (2.5)
dt CO

Note that the state equations and circuit models presented in this section for a dual-cell paralleled

power converter system can be easily extended to suit a system with N cells in parallel.

2.2.2 'Max' Current Sharing Scheme using Unitrode's UC3907 IC

A similar 'max' current sharing control scheme is implemented in Unitrode's UC3907 current

sharing IC. The averaged circuit model for this configuration is identical to that presented

previously in Figure 2.4, where once again

Vrefi = Vbasei + Av refi (2.6)
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where Avrf, 2 0, i = 1,2, and the constants Vbasel and Vbase2 are the base values of vre], and Vref2

respectively.

The only difference between the two 'max' current sharing schemes is in the state equations for

the reference adjustment. In this version, instead of decay terms, there are hard limits on the

reference adjustment ranges, i.e. Avrei is now variable only within a saturation limit Vsti. Also,

offset currents AI are used to drive the reference voltages towards their base value. The state

equations for Avrel and AVrej 2 , with kl strictly greater than zero, are

dmVrefi k[ - l]
dtv

Smax oIn

(2.7)

a1

for i = 1,2. Both these equations hold true only within the base and saturation bounds. Thus, the

equations for the reference voltages can also be expressed as

klai,

0,

for Av ref: 0

dAvref

dt

0,
dAvreffi I,

dt Ski a,,kp, O~

for 0 < Avrefi V ,,

for Avref, i Vati,,

for Avrei < 0

for 0< Avre fi Vati

for Avr, >_ Vrati

The block diagram for this system is shown in Figure 2.5.
lower saturation limit of zero. The configuration used for the

to that used by Unitrode's UC3907 Load Share Controller IC.

The saturating integrators have a

current sharing scheme is identical

fora, >0 (2.8a)

fora, <0 (2.8b)
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I0C
(From

(From
(From

Figure 2.5: Nonlinear dual-cell converter system.

The AI term in (2.7) is introduced due to practical considerations. Without the Ah term, there is

no signal driving the reference voltage adjustment of the highest current cell. Noise terms can

therefore cause this reference voltage to drift to its maximum value. Because the adjustment

ranges of the reference voltages are not identical, cells with a lower maximum adjustment value

will not be able to adjust their references to achieve current sharing. The Al term forces the

highest current cell reference voltage towards its base value. This guarantees that the cell with

the highest base reference will soon become the master, and that the other cells will be able to

adjust themselves to achieve current sharing. Since all cells will adjust their currents to be Al

below that of the master, the Al term also serves the secondary function of keeping the master

status from chattering among cells in steady state. It follows then that Al must be small

compared to iouti, but large compared to the noise at the input of the reference adjustment

Vout
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amplifiers of the individual cells. Note that the functionality of the Al term is similar to that of

the proportional decay term introduced in the previous section.

With the current-sharing control in place, the state equations for the output currents and the

output voltage are still given by (2.4) and (2.5) respectively.

2.2.3 Simplified Model without Load Dynamics

In order to simplify the analysis, the setup that will be studied in parts of later chapters is that of

the dual-cell converter system without load dynamics. As shown in Figure 2.6, the load in this

case can be modeled as a constant current source Iout. For convenience, we let lout = 0, i.e.

iout2 = -loutl . In this case, the converter with the maximum current is the one carrying a positive

output current. Note that a constant output current of zero does not affect the transient response

of this system. If this current was some nonzero constant value, it would merely introduce an

offset into the analysis.

Figure 2.6: Load modeled as a constant current source.

L R

AVrefl

Vbasel



3 Symmetric Systems with Nonlinear Couplings

For a system with a large number of coupled subsystems, it is desirable to reduce the order of the

system. Lunze uses linear transformations to reduce the stability analysis of a linear symmetric

system consisting of N subsystems to that of a model of order twice that of the subsystem order

[1]. Lunze's analysis addresses only open-loop symmetrically-coupled systems, and not the

closed-loop case. A simple example of a closed-loop symmetric system involves a paralleled

dual-cell power converter with a load. In such a case the two power converter cells represent the

two symmetrically-coupled subsystems and the load represents the feedback system. In this

chapter, we will first extend Lunze's analysis to incorporate symmetric systems with common

feedback through other systems, and then extend the analysis even further to include nonlinear

coupling functions. It will be shown that it is often possible to reduce the stability analysis of a

symmetric system with nonlinear couplings to that of lower-order linear and nonlinear systems;

the stability of these reduced-order subsystems can be used to guarantee stability of the overall

system.

3.1 Lunze's Analysis

In Chapter 12 of his book [1], Lunze uses linear transformations to reduce the stability analysis

of a linear symmetric system consisting of N identical subsystems to that of a model of order

twice that of the subsystem order n. The N subsystems of the plant are each described by

Ici = ALoX i + Bui + Es,, x, (O) = Xio (3.1a)

Yi = Cxi (3.lb)

zi = CZx, (i = 1,2,..., N) (3.1c)

with identical matrices for all subsystems. The interconnections are described by



Symmetric Systems with Nonlinear Couplings

s= Lz,

where the block 'symmetric' interconnection matrix L is given by

Ld Lq

L Ld

L L

... Lq

.." Lq

. L d

and where s and z denote the vectors obtained by stacking the si

equations reflect the identical nature of the subsystems and the

interconnections. The overall system description is given by

and zi respectively. These

symmetric nature of their

ALorig + ELdCz

ELqCz

ELqCz

EL Cz

ALorig + ELdCz

ELqC,

ELq Cz

ELq Cz

ALorig + ELdCz J
x + diag(B)u

y = diag(C)x (3.4b)

where x = [x 1i ... XN ]T , and similarity for u and y. The length of x is Nn, where n is the

order of each individual subsystem.

Using the linear transformation

3= T x

with

(3.2)

(3.3)

(3.4a)

- 1

(3.5)
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1
TL N

and its inverse

the AL matrix transforms to

AL = TLALTL- =

0 0 ... Ad

0 0

Ad = AL + E(Ld - Lq)Cz,

Ac = ALo + E[Ld+(N-1)Lq]Cz.

(3.8a)

(3.8b)

Lunze thereby reduces the stability analysis of this nNth-order overall system to that of two nth-

order matrices Ad and A. Note from (3.5) and (3.6) that 2N is the average value of the original

state variables xi, and 2i for i = 1,2,.., (N - 1) is the deviation of xi from the average. Following

the notation used by Thottuvelil and Verghese [12], we will refer to the (N - 1) subsystems

(N-1)I

-1

-I

(N-1)I

-I

-I
-I

- (N-l)I

-I

-I

-I

(3.6a)

TL- 1 =

0

I

-I -I -I

(3.6b)

where

(3.7)
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described by Ad as the differential-mode configurations, and the one subsystem described by Ac

as the common-mode configuration. Thus, the stability of the overall system depends only upon

the stability of one differential-mode and one common-mode system, each of order n [1]. In

Appendix A, we show that it is possible to determine the form of the Lyapunov function for the

original system, assuming ones exist for the reduced-order systems.

3.2 Symmetric Systems with Feedback

Lunze's analysis addresses only open-loop symmetrically-coupled systems, and not

symmetrically-coupled systems with feedback. A simple example of a feedback case involves a

paralleled dual-cell power converter system with a load. In such a case the two converter cells

represent the two symmetrically-coupled subsystems, and the load represents the feedback

system. Thottuvelil and Verghese [12] assess the small-signal stability of such paralleled

converter systems feeding a common load.

Recall that there are N symmetrically-coupled subsystems,
interconnected system is governed by (3.4). We now introduce

symmetric system, using an mth order system with

resulting closed-loop system is described as follows:

each of order n, and the

common feedback around the

state vector w in the feedback path. The

ALo + ELd Cz

ELqCz

ELq Cz

HC

ELqCz

AL + ELd Cz

ELqCz

HC

ELq Cz

... ELq Cz

. ALO +ELdCz

•.. HC

The matrix G describes the identical influence of the feedback system's state vector on each
subsystem, whereas the matrix H describes the influence of the sum of subsystem outputs on the
feedback system. The matrix J governs the evolution of the isolated system in the feedback path.

We now modify the similarity transformation TL used by Lunze to accommodate the feedback
system. The similarity transformation TL is still necessary to transform the N state variables xi

xK
= _

BG

BG

BG

x
w

(3.9)

--
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associated with the symmetrically-coupled subsystems. The state vector w associated with the

feedback system should not be affected by this transformation, however. Thus, we want a new

transformation matrix T such that

xx
]T[]w W

(3.10)

Under these conditions, T must be defined as

T=[ A
-0I1

(3.11a)

where I is simply the identity matrix. Then,

(3.11b)

Through T, our overall system matrix A now transforms to

A = TAT-' =

Ad 0 0

0 Ad ... 0

0 0 ." Ad

O 0

0 0

diag(Ad) 0

0 Acc.,
(3.12)

where again

Ad = AL + E(Ld -L)Cz,

A = A, + E[Ld + (N - 1)L]Cz

0 0

0 0

0 0

Ac  BG

NHC J

(3.13a)

(3.13b)

T- OI
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and we define Acc such that

Ac  BG
Ac = NHC J (3.13c)

The upper diagonal block consisting of Ad matrices in (3.12) once again represents the

differential-mode configurations for the transformed system. The lower diagonal block

represented by Acc is now the common-mode configuration for the closed-loop system. Note that

only the common-mode part of the open-loop system engages the feedback system, because we

are feeding back the sum of the individual outputs. The differential-modes turn out to be

unobservable and uncontrollable. Once again we have reduced the stability analysis of the

overall system to the stability analysis of one differential-mode and one common-mode system,
except now the order of the common-mode circuit is not n, but n + m instead.

Before we continue, note that the state variables associated with the (N - 1) differential-mode

subsystems, each described by the matrix Ad, are i1 through 2, _, . The state variables associated

with the common-mode system, described by A,,, are N and w. In order to simplify future

discussion, let us introduce the vector z to represent all the state variables associated with the

common-mode configuration, i.e. z = [NT wT ]T.

3.3 Nonlinear Couplings

It is possible to reduce the order of an open- or closed-loop symmetrically-coupled system with

nonlinear couplings by taking advantage of its symmetry in a manner identical to the method

outlined in the previous section to reduce the order of a linear symmetrically-coupled system.
The stability of the overall nonlinear system can then be assessed through the stability of the
reduced order linear and nonlinear systems.

Suppose we had a linear system described by

x = Ax. (3.14a)
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If we wished to introduce nonlinearity into this system, we would simply introduce a nonlinear

function f(x) into our system description as shown below:

x = Ax + f(x). (3.14b)

Now that we have the general form of a nonlinear system, let us return to the symmetrically-

coupled system with feedback as introduced in the previous section. We will start with a "pre-

transformed" system and work backwards. Recall the transformed system

X 1

X
2

XN-l

Z

S" 0

A,

0 ".. Ad

0 0 0 Acc

X 1

x
2

XN-

Z

(3.15)

A

If the upper or lower triangle of this matrix A had nonzero entries, its stability would still

depend only upon the stability of matrices Ad and Acc. Adding entries in either triangle would

add linear couplings to our system. If we wish to add nonlinear couplings, we will have to add a

vector of nonlinearities, as shown below:

XNX1

X2

Z

Ad 0 * 0

0 Ad ... 0

S 0 ... Ad

0 0

1 0

S0

N-1

Z

f,

f2

fN-l

fN

(3.16)

Note that fi through fN-1 are vectors

by fN =[fN,, fN 2 T]T .

of length n, while fN is a vector of length n + m described

j
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It is now possible to gauge the stability of the system (3.16) based merely on two linear systems

described by Ad and Acc, as before, as long as the nonlinear coupling for each block is well-

behaved and dependent only upon the parameters in the blocks preceding it, i.e.

Xi = Ad .i + fi (l, '2...,i-),  (3.17a)

Z = Acc Z + fN ( 2 ... N_- ) (3.17b)

for i = 1,2,.., (N - 1) . From (3.17a), the state-evolution equations for Xi and x2 with are

1, = Ad I, (3.18a)

2 = Ad. 2 + f 2 ( 1). (3.18b)

If Ad is stable, we know that i, decays exponentially to zero. Now, assume that the nonlinear

function f 2(~1 ) is Lipschitz about the origin, i.e.

fA(1)I Mi I, (3.19)

Because 1 decays exponentially to zero, Mj14 also decays exponentially to zero.

Consequently, from (3.19), f 2(X1) decays exponentially to zero. The solution to (3.18b) is given

by

2 =eAdt 2 (0) + f e f 2 ( (r)) dr (3.20)

Taking norms on both sides of (3.20) and using norm inequalities reveal that for an exponentially

stable system Ad with an exponentially bounded input f 2 (1) as given in (3.18b), the state vector

x2 decays exponentially as well. This argument can be similarly extended to show that, in

general, if the functions fi are Lipschitz, they will tend to zero exponentially as the 2j tend to

zero exponentially, for j = 1,2,..,(i -1), and thus for stable Ad and Ac, the system (3.16) is

stable.
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Note that the coupling in (3.17) reduces in the linear case to a lower triangular perturbation of A

in (3.15). One could also consider a nonlinear coupling that reduces to an upper triangular

perturbation of A in the linear case. Taking these nonlinear couplings back through the

similarity transformation will provide us with a special class of nonlinear systems that can be

easily analyzed via the transformation.

For an N-cell

coupling terms

symmetrically-coupled

is represented by

system with feedback, the introduction of nonlinear

0 Ad

0 0 ... Ad

0 0

x,

Z.

Remembering that

X xn

and A = TAT-', we can rewrite our transformed system as

N-I

i

= (TAT-')T
XN-1

z

Reversing the similarity transformation then results in

x1

x2

XN-l

.Z

O
f2 21

I f x , x I (3.21)

(3.22)

(3.23)

[fN(31 X2 3 N-I
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XN-1

i

Thus, remembering that z =

represented by
[XNT wT]T and fN =[fNI fN 2 ]T, the original system is now

(3.25)

N-I

NI( , .. N-1)- i ( 2, .. i_
i=,

fN2~. 1 2"'' N-1
F

where

= x1 =1
(3.26)

for i= 1,2,..,(N -1)

Thus, when the similarity transformation is reversed, the nonlinear couplings
that were introduced into the reduced-order system become functions of very special linear
combinations of all the original state variables of the symmetrically-coupled systems. Note that
the nonlinear couplings are not functions of any of the state variables associated with the
feedback systems.

x,

XXN-
(3.24)

x,

N-

XN

W

XN-1

xN

wi
°
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3.4 A Special Class of Nonlinear Couplings

Let us examine a special class of nonlinear couplings which can be applied to a system in a

manner consistent with the previous section. A general system without nonlinearities is

represented by

1= A[]
WW

(3.27)

where x = [x
T XN represents the state variables for the symmetrically-coupled

subsystems, each of order n, and w represents the state vector for the feedback system.

Now, let's add some nonlinear couplings to this simple system. Assume that all subsystems have

identical nonlinear couplings g(x) and there are no nonlinear couplings present in the feedback

systems. Our system can now be modified to include g(x), as shown below:

SV

XN

II;

g(x)

g(x)

0

(3.28)

Applying the similarity transformation T defined in (3.11) to our system yields

x 1

XN-1

XN

.i

Xl

XN

w,

+T

g(x)

g(x)

g(x)

0

= TAT - '

X1

XN_
1

XN

W

g(x)

0

(3.29)

Recall that the structure of the transformed A matrix, or TAT-', is block diagonal, i.e.
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k diag( Ad ) 0
= TAT -'=d A) (3.30)

Here, the differential-mode is represented by the block diagonal matrix diag(Ad) and

corresponding state variables i, through iN-l; the common-mode is represented by matrix Ac

and corresponding state variables -N and w. As expected, the transformation T isolates the

nonlinearity g(x) of the original system into the common-mode subsystem. The differential-

mode subsystems are now linear, and their stability can be assessed from the stability of Ad.

Thus, we have isolated the nonlinearity to a single subsystem with the transformation T, thereby

significantly simplifying our original problem.

Note that if g(x) is only a function of the state variables , through jx_-, and it exponentially

decays to zero as these state variables exponentially decay to zero, the stability of the common-

mode configuration can be assessed simply from the stability of A,. As discussed in the

previous section, it is guaranteed that g(, 2,..,'**N-x ) will decay to zero as xl through x,_1

decay to zero if g(3 , 2,.., 3_N- ) is Lipschitz at the origin.

These cases represent one of the many classes of nonlinear couplings which can be handled by

the analysis performed in this chapter. Note that our transformation T will remain valid even if

g(x) does not adhere to the above mentioned constraints. Similarly, along with symmetrical

nonlinear couplings g(x) in the subsystems, we could also introduce nonzero nonlinear

couplings in the feedback systems. These would simply introduce nonlinearities in the common-

mode configuration of the transformed system. The differential-mode system would still remain
linear.

3.5 Further Extensions

Let us now briefly examine the case where nonlinear couplings are introduced in both the
symmetrically-coupled subsystems as well as the feedback systems. Now, we lift all constraints

initially placed upon these couplings. Recall that x = [xT ... xT ]T represents the state
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variables for the symmetrically-coupled subsystems, each of order n, and w represents the state

vector for the feedback system.

As an example, we will examine the simple setup shown in Figure 3.1. Here we have two

subsystems in parallel with one feedback system and an input k. Each subsystem is described by

a plant P and controller C, and the common feedback system, or load, is described by Z. The

nonlinearity in this system is introduced when the maximum of the outputs from the two plants is

fed back into each individual plant P as well as into the common load Z.

With the notation used throughout this chapter, xi represents the state variables of the ith

subsystem (for i = 1,2 ), including both the plant and the controller of the subsystem in question.

Similarly, w represents the state vector for the common load. This system can then also be

described using the following state-space setup:

X, A, O BG x, B, f(x)

2J= 0 Ad  BG + 2 k + f (x)B (3.31)
S _0 0 J _w B fL (x)

where f,(x) and fL(x) include the nonlinearity max(x,,x 2), and Ad is dependent only upon the

dynamics of the plant P and controller C.

The system matrix for this system is similar to that analyzed throughout this chapter. Recall the

general setup of a system with two subsystems and one common load, ignoring input and

nonlinear couplings:

1 A + ELdC ELC, BG x

i2 ELqC z  ALo + ELdCz BG x, (3.32)

HC HC J w

A
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Figure 3.1: Example system with nonlinearity in the load.

Thus, in our case, Ad = AL,, + ELdCz, ELqCz = 0, and H = 0. Also, as before, G represents the

linear symmetrical influence of the common load Z on the two subsystems. Now, however, there

are no linear influences from the two subsystems on the load, and thus H = 0. Applying the

transformation T to our system yields

0J A 0 0 2 0 0

2 i Ad BG +2 B, k+ ( ) (3.33)

0 0 J Lw BL L()

The matrices are now divided to show the differential- and common-mode configurations. The

differential-mode is simply a linear system represented by the controller C in feedback with the

plant P, as described by Ad. The common-mode is now a nonlinear system as the transformed

nonlinear couplings f(V) and f7L(2) are functions of both the transformed state variables i,
and 22 . It is due to this nonlinearity that the stability of the common-mode system cannot be

judged simply by assessing the stability of Ad and J. Nonlinear analysis techniques must be
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employed to assess the stability of such systems. In some cases, it may be possible to find

Lyapunov functions to guarantee the stability of such nonlinear common-mode systems.





4 Stability Analysis of Paralleled Converter Systems

As discussed in the previous chapter, Lunze [1] uses linear transformations to reduce the stability

analysis of a linear symmetric system consisting of N subsystems to that of a model of order

twice that of the subsystem order n. We extended his analysis to include systems comprising N

symmetric systems with feedback and nonlinear couplings. It was then shown that it is possible,

under appropriate conditions, to reduce the stability analysis of a such a symmetric nonlinear

system to that of lower-order linear and nonlinear systems; the stability of these reduced-order

subsystems can be used to guarantee stability of the overall system.

As an example, we shall analyze the paralleled current-controlled converter system introduced in

Chapter 2 using our extension of Lunze's analysis. A three-cell system is first analyzed and

simulated, and the results for this paralleled converter system are then generalized to the N-cell

case. A candidate Lyapunov function is also found.

4.1 Three-Cell Paralleled Converter System

Consider a three-cell paralleled power converter system of the type introduced in Chapter 2. The

averaged circuit model for this system is shown in Figure 4.1. This system consists of three

subsystems in parallel feeding into one common load.
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Figure 4.1: Paralleled three-cell converter system.

Recall from Chapter 2 that the state equations for the output currents, reference adjustments, and

output voltage are

diouti AVr + Vbasei- o - ioti R

dAvreji k [max
dt k ,[ im
dt mx

- ioti I- k 2 AVreit

dvo ioutl + iout 2 + out3 -(vo /Ro)

(4.1a)

(4.1b)

(4. c)

for i = 1,2,3. Thus, each subsystem has two state variables, iouti and Avreji. The feedback system

has one state variable vo. Thus, z = [x3T

R L

AVref 1

Vbasel

AVref2

AVref3

Vbase3

Vbase2

I

T and w=v
aVref!] and w = vo.

wr]T where xi =[iouti
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4.1.1 Analysis

The transformation T for such a system with N = 3, n = 2, and m = 1 is

1
T- (4.2)

where the identity matrices I are 2 x 2. Thus, our new state variables are defined as

1outl + tout2 + iout3

y 3

AVref + Avref2 - Avref 3

Y

2ioutl - out2 - out3

vx 1 =
2Av re - Av ref 2 - AVref 3

i - iutl +2iout2 - out3
l

x2

x 2 =

- Avref I + 2Avref2 - Avref3

V O = 0

The state evolution equations are now given by

3vx, + (2Vbasel - Vbase2 - Vbase3) - 3ix R

3vx2 +- Vbsel + 2 Vase2 - Vbase3) - 3ix2R

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

(4.3f)

(4.3g)

dix,

dt

dvxld = -kix - k 2v x ldt

dix2
dt

(4.4a)

(4.4b)

(4.4c)

" -
V
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dvx2
- -kix2 - k2vx2 (4.4d)

dt 2

di, 3v + (Vbasel + Vbase2 + Vbase3) - 3v o - 3iR (4.4e)(4.4e)
dt 3L

dvy= ki(imax iy) k 2 y (4.4f)
dt

f

dvo  3i - (v/R) 
(4.4g)(4.4g)

dt CO

The transformed function f can be defined as

if i= = iou,

if imax =  out.2 (4.5)

if imax = iout3

These equations can be physically represented by the circuits shown in Figure 4.2 and Figure 4.3.

In these figures, f is as defined above, and

1 k
C, = C = and R = R =---

For stability analysis, it is only necessary to assess the stability of one of the (identical)

differential-mode circuits, along with the common-mode circuit. The differential-mode circuits

are linear, and the nonlinearity of the system is simply captured in the current source of the

common-mode circuit. The load appears only in the common-mode configuration as well. The

beauty of this transformation is the fact that the common-mode circuit variables do not feed back
into the differential-mode circuits. Because we know that the differential-mode circuits are

stable, we know that ixl and ix2 decay exponentially to their respective operating points. Thus,
the common-mode circuit is stable as well. Since the circuit models of Figure 4.2 and Figure 4.3

f
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Figure 4.2: Differential-mode circuit configurations of a three-cell system.

R L

Figure 4.3: Common-mode circuit configuration of a three-cell system.

are stable, the original paralleled three-cell current-mode-controlled power converter system is

also stable .

Note also that a Lyapunov function for this system can be chosen as the energy in the active

elements in the common- and differential-mode configurations.

This circuit-based analysis is due to Dr. David Perreault, and significantly helped our understanding of the

implications of transformation to differential- and common-mode subsystems.

Ryf_tilda

I

i

3Ro
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4.1.2 Simulation

Consider the simulation of this three-cell paralleled converter system. We will assume that the

control gains on Avrei are given by k, = 5, k2 = 2, the output impedance of each converter is

given by L = 0.03H, R = 42, and the load is given by CO = 0.05F, Ro = 10i. Also, we will

assume that Vba,,el = 0 V, Vb,,~2 = 0.1 V, and Vb,,s,3 = 0.05V, and that the initial conditions on the

reference voltages Avrefi, for i = 1,2,3, are given by 0.5, 0.2 and 0 volts respectively. The

simulated response of the three-cell system for the specified parameters and initial conditions is

given in Figure 4.4.

The switching action of the nonlinear 'max' coupling can be seen at time 0.45, where the current

of the second converter overtakes that of the first converter. Note that in steady state, iout2 is

maximum, and thus the steady state value of Vrej2 is zero. The other reference voltages settle out

to their respective operating points as t --> .

Now, we would like to piece together these waveforms from the differential- and common-mode

configurations obtained by applying the similarity transformation T. The circuit diagrams for

these two configurations are shown in Figure 4.2 and Figure 4.3, and their corresponding

simulation setups are shown in Figure 4.5 and Figure 4.6. In the differential-mode simulation

setup,

Vbavex] -
2 Vbasel - Vbase2 - Vbase3 = -0.05 V and Vbx2 - - Vbasel + 2 Vbase2 - Vbase3 = 0.05 V.

3 3

Similarly for the common-mode, the reference base voltage Vbasey is the average of the three

reference base voltages, or 0.05 volts. The initial conditions on the integrators are determined in

an identical fashion. Thus, for the two differential-modes, the initial conditions are 0.2667 and

-0.0333 volts respectively. For the common-mode, the initial condition on the integrator is the
average of the original three initial conditions, or 0.2333 volts. Also, the load in the common-

mode configuration is given by a resistance of 3Ro in parallel with a capacitance of CO/3. Note

that the input f in the common-mode is a function of the differential-mode currents ix, and ix2,

as defined in the previous section.



4.1 Three-Cell Paralleled Converter System

It is now possible to piece together the waveforms of our original system from the waveforms

obtained from the differential- and common-mode systems. For example, from the definitions of

iy, ixt, Vy and vx2, we know that i, + ix, = io,,u and v, + x 2 = Vref 2 . Also, we know that the output

voltage v, of our original system should equal the output voltage voy obtained from the common-

mode system. These three waveforms are shown in Figure 4.7. All other output current and

reference voltage waveforms can be obtained through similar linear combinations of the

differential- and common-mode variables. These simulations confirm our theoretical results.

0.05

05
0 0

0.5 1 1.5 2

0
c 0.4

c 0.2

I

0.5 1 1.5

0

0.05
CL
5
0

0
0.5 1 1.5 2

Time

Figure 4.4: Paralleled three-cell converter system simulation.
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Figure 4.5: Differential-mode simulation setup of a three-cell converter system.

f_tilda

Figure 4.6: Common-mode simulation setup of a three-cell converter system
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0.5 1 1.5

0.5 1 1.5

Figure 4.7: Responses from the original system and as reconstructed from

system for a three-cell converter system.
the transformed
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4.2 N-cell Paralleled Converter System

Now let's consider an N-cell paralleled converter system of this type. For the N-cell system, the

state equations can be generalized to

m refi + Vbasei- Vo - iouti R

dAvref = k (i -i - k2 Av f
dt max ouli re

dv 1 . v

dt C, j=, loug - R,,

(4.6a)

(4.6b)

(4.6c)

for i = 1,2,.., N.

form as follows:

where

Letting x, =

- I

X 2

XN

i N

w

[iouti
T

Avrey, and

0

0 Ad

0 0

HC HC HC

w = v,, we rewrite the state equations in matrix

BG7

BG

BG XN

W

BN

0

(4.7)

Ad - k, - k2 j

-1
R0gI~

BG = , CH = 1/C
0

max(ioutj)f =k

The transformation T for this system, as introduced in the previous chapter, is

B= [Vbsei /L
'0

I
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1
T

N

(N - 1)I -I

-I (N-1)I

-I -I

I

- -I -I

I -I

• (N-1)I -I

S I I

0 0

Using this transformation, we arrive at our new state variable block vector as shown below:

1-1)1 -I

-I (N - 1)I

-I

I

-I

-I -I

-I -I

... (N-l)I

where xi = ixi and w= vo ,

The overall transformed system is then defined by

0 Ad

0 0

HCHC 
HC

for i= 1,2,..,(N-1).

(4.8)

(N

x
T -

wJ

1

x1

x
2

XN-1

XN

w

X1

X
2

XN_

XN

W

[x

w

I I

(4.9)

0 0

SN = i, v,

BG

BG

BG

Xl

X2

XN

w

B
2

BN

0

j

j

HCHC HC
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S"* 0 0

***0 0

0 0 ... Ad

0 0

0 0

... 0 Ac

0 NHC

where, as defined earlier,

Ad =- k

1/L1

- k2j
BG= CH = 1/C"

-1
0], and J -

ROCO

Also, for i = 1,2,..,(N - 1),

N 1
- 1)Vbasei - Vbasej n

j=1 and BN
j0i

0j

N

E Vbasej
" j=l1
L.o j

The question now arises as to the values of Ac and f . Before we address this issue, however,

recall that the matrix Ad represents the (N - 1) identical differential-mode configurations of the

system, and the matrix Acc represents the common-mode configuration, where

Ac= HA BG

HC J
(4.11)

The transformation T transforms and isolates the nonlinearity f of the original system into the

common-mode configuration. The stability of the system rests upon the stability of the

differential- and common-mode configurations.

Ad 0

0 Ad

Xi

X 2

XN-l

XN

W

0

BG

(4.10)
N-1

0

S= 1[(N

i NL

i
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Now, there are many possibilities for representing the values of Ac and f, of which we will

consider two. These are discussed in the following subsections.

4.2.1 Isolating The 'Max' Nonlinearity

The first possibility for Ac and f , which falls directly out of the transformation T, is

Ac = Ad- - k - k21
(4.12)

and

(4.13)

where the 'max' nonlinearity is expressed as a function of the original state variables. This form

reveals the effectiveness of the similarity transformation T in isolating the 'max' nonlinearity to

the common-mode configuration.

Let us check our results for the N-cell paralleled power converter example from the general

results discussed in the previous chapter. Recall the form of the nonlinearity vector F for the

original system with feedback:

ki, m mx(i,,.,)
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I N- 1X2"X N-2
N-1

(4.14)

Note that fNi is not only a function of the transformed state variables 5, through _N-,, but of VN
as well. Thus, the common-mode configuration of this system will be a nonlinear system, as
discussed at the end of the previous chapter.

The nonlinearity vector for our example before the transformation

f f ... f I ff 0]. Comparing these two forms reveals that, for

(4.15a)

(4.15b)

(4.15c)fNI(.I, 1,,..,N)=f= ,imax

As expected, the transformation T transforms and isolates the nonlinearityf of the original system
into the common-mode configuration.

4.2.2 Stability Analysis

In order to further simplify the analysis required to assess the stability of the nonlinear common-
mode system, we can adjust the description of the nonlinear common-mode system. We now
express Ac as

fNJXJI 21-13 N)

fN2 ' V2,- N) = 0



- R/L 1/L1Ac= 0 -k2"

In this case, as in the three-cell case, the nonlinearity becomes

0
f max(ioi) - ly

Simplifying, we can express

currents ixi, i.e.

f as rectified versions of the combinations of the differential-mode

if max(iouj)= io,,, for i=1,2,..,(N-1)
j

0

[I = .O .

N-1

Yix i

if max (i.,)=
i

This form is more convenient from a stability standpoint because it not only restricts the

nonlinearity to the common-mode subsystem, but also destroys any feedback from the common-

mode subsystem to the differential-mode subsystems.

This form also allows us to easily express the transformed system in terms of circuit diagrams.

The setup results in (N - 1) differential-mode circuits, of which only one needs to be analyzed to

assess stability, and a common-mode circuit (Figure 4.8 and Figure 4.9). In these figures,

, = C = Rx = R- , and Vbserefs , (N - 1)Vbasei - aseJ
jei

for i = 1,2,.., (N - 1) . In this case, the linear differential-mode circuit is obviously stable, and

thus the switching current source on the common-mode circuit decays exponentially to a constant

value, making the common-mode circuits stable as well. Thus, the overall system is stable.

4.2 N-cell Paralleled Converter System

(4.16)

(4.17a)

(4.17b)
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Figure 4.8: Differential-mode circuit configuration of an N-cell system.

R L

f tilda(2) Vy Cy RyY y 0 NRo

(V basel+...+VbaseN)/N

Figure 4.9: Common-mode circuit configuration of an N-cell system.

Note that one Lyapunov function V for the N-cell system with load dynamics is simply the energy

stored in the active elements of the differential- and common-mode circuit configurations. Thus,

1 1 1 1 1 2
V Cv2 2 2 Li2 o , (4.18)

for i = 1,2,.., (N - 1) , and Cx = C, = 1/k, . Of course, this Lyapunov function V can be written in

terms of the reference voltages and the output currents by making a simple substitution as
dictated by the similarity transformation T. This Lyapunov function guarantees the decay of the
state variables to their respective operating points.

R

Vxi

Vbaserefs

L

I I



5 Piecewise Quadratic Lyapunov Functions

Some symmetrically-coupled systems with nonlinear feedback can be modeled as hybrid

systems, and thus tools developed to examine such systems can be employed. The paralleled

current-mode-controlled power converters with 'max' current sharing controls, discussed in

Chapter 2, are merely two examples of nonlinear feedback systems that can be modeled in this

fashion. One method of examining such hybrid systems is given by Johansson and Rantzer [2].

In this chapter, we will employ their approach to analyze the two paralleled converter models of

Chapter 2. This will allow us to assess the strengths and weaknesses of the approach in a

practical context.

5.1 Background

Johansson and Rantzer provide insight into finding Lyapunov functions to guarantee the stability

of nonlinear systems that have piecewise affine dynamics [2]. Such systems exist naturally as

hybrid control systems and as approximations to other nonlinear systems, to cite only two

examples. They first partition the state-space of a piecewise affine system into a number of

closed cells, and then search for a piecewise continuous Lyapunov function for the system. The

piecewise system analysis described by Johansson and Rantzer is employed below.

5.1.1 System Setup

Consider the analysis of a piecewise affine system defined by

x = Ax + ai  (5.1)

for x c Xi and i E I, where Xi is the partition of the state-space into a number of polytopic cells.

For notational convenience, we first introduce
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Ai = i aiAi001 ie I.

We now construct matrices E = [Ei

E 1 10,L'[IJ

e ] such that the ith cell is characterized by

x C Xi, i :I,

where the vector inequality is to be interpreted component-wise. We also construct matrices

F = [F fi ] such that the behavior in the boundary between cells i and j is characterized by

-X X
xxIF~ 1 x e X, and Xi i,j CeI. (5.4)

As will be shown below, the matrices F, are used to ensure continuity of the Lyapunov function

across cell boundaries [2].

5.1.2 S-Procedure

The established approach [5] of finding a global quadratic Lyapunov function

V(x) = x'Px, (5.5)

for piecewise affine systems is possible if there exists a common symmetric, positive definite
matrix P obtained by simultaneously solving the matrix inequalities

A,iP + PA, < 0, for i e I, (5.6)

where the inequality is now in the sense of positive definiteness. This method fails for many
cases, however, because it is unnecessarily conservative. Because the dynamics of Ai only apply

within cell Xi for a piecewise affine system, we need only require that

(5.2)

(5.3)
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xT(A TP+PA )x <0, for E X,. (5.7)

We now introduce symmetric matrices Si such that XTSiX 2 0 for x e X, to obtain the relaxed

stability conditions

ATP + PA, + Si < 0. (5.8)

This method of introducing flexibility into the stability conditions is called the S-procedure [2].

From the description given previously for the piecewise affine system, it is simple to construct

matrices for use in the S-procedure. If U is a symmetric matrix with non-negative entries, then

x i >0, x X i[ T1 1 -
Si

i I. (5.9)

5.1.3 Johansson and Rantzer's Theorem for Piecewise Quadratic Stability

It follows that for the stability of general piecewise affine systems, we can search for Lyapunov

functions of the form

V(x) = [
Ix 

x

xE X,, iE I. (5.10)

Note that this Lyapunov function is required to be continuous across cell boundaries. Sufficient

conditions for the existence of such a piecewise quadratic Lyapunov function are described

below.

Consider symmetric matrices T, U and W, where i e I, and Ui and Wi have non-negative entries.

If there exist matrices

(5.11)Pi = F'TF
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such that

0>AP + i + EUE, (5.12a)

0 < P - E, WE, (5.12b)

then x(t) tends to zero exponentially [2].

5.2 Analysis of Paralleled Power Converters

In order to simplify the analysis, the models that will be studied are those of the dual-cell

converter systems discussed in Chapter 2 with load dynamics eliminated. Recall that in this case,

the load can be modeled as a constant current source lout. For convenience, we let IoU, = 0, i.e.

iout2 = -ioutl, and thus the maximum current can be represented by the absolute value of output

current of either converter. Recall also that a constant output current of zero does not affect the

transient response of this system. If this current was some nonzero constant value, it would

merely introduce an offset into the analysis.

A Piecewise Linear (PWL) Toolbox, written by Johansson and Rantzer, was obtained to perform

all the simulations in the following sections [3]. The PWL toolbox is an interface to the

Linear Matrix Inequality (LMI) Control Toolbox in MATLAB [4]. The

modifications made to the PWL Toolbox and samples of the code used to obtain the various

results for this chapter are given in Appendix B.

5.2.1 Analysis of Dual-Cell Converter Model

Recall the setup for the paralleled dual-cell current-mode-controlled power converter system as
introduced in Chapter 2, repeated here as Figure 5.1. Including both offsets and proportional
decay terms, the state equations for the converter output currents and reference voltages are
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Figure 5.1: Averaged circuit model of a dual-cell converter system.

ref + Vbasei - o - iouti

d-A = k l [i max
- ioun ]- k 2 AVrefi

for i = 1,2. In the absence of load dynamics, i.e. where iout2 = -iout, it is unnecessary to keep

both the output currents as our state variables. Thus, we introduce the difference of the two

output currents as a new state variable id, i.e. id = ioutl - iout2. Then

2(Av,,e - Avref 2) +2(Vbasel - Vbase2 ) -d Req
(5.14)

where Leq = 2L, and Req = 2R.

voltages as follows:

Also, we can rewrite the state equations for the reference

for imax = iout,' id > 0

L R

AVrefl

Vbasel

di outi

dt
(5.13a)

(5.13b)

did

dt

dAvref I
dt k2AVrefl

dAVref 2

dt --~ki - k2Aref 2

(5.15a)
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dAv -
dt -kid - k2AVref

dAvre f 2

dt - k2 ref 2

Sfor imax = iout2 ' < 0

The division in state-space for this system is thus based upon the sign of id ; the two regions in

our state-space are given by id > 0 and id < 0.

Because this system has a nonzero operating point, and the theorem by Johansson and Rantzer

assumes that the equilibrium point occurs where all the state variables are zero, we redefine our

state variables from id, Avrefl and Avref2 to

Id

A ref ILA~re]2

where the operating point, found by simply setting all derivatives to zero, is given by

(5.16)

There is a similar operating point for the case where Vbase2 > VbaseI.

state equations for our system now become

2( Av, + Vre, - Aref 2 - Vref 2 )+2(Vbase - Vbe 2 (d Id )Req

(5.15b)

Vref I = 0,

- 2k, (Vbasel - Vbase2)
ref 2 =  2k, + k 2Req

k 2Vref 2
Id 2k

2k,

for Vbasel > Vbase2 .

(5.17a)

(5.17b)

(5.17c)

The new

did
dt

(5.18a)
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dArefl = -k
2 (A ref l + Vrel)

dt

dt~ = - k, ( d + I)- k2 ref l + Vref I
dt

dt ef - _k 2 (ref 2 +Vref 2

for imax = iout ~ id Id > 0 (5.18b)

for imax = iout2 d I < 0 (5.18c)

The divisions in our state-space are now determined by the value of id . Using the notation

x = Aix + a,

and constructing matrices E, and F such that

Ei 1 0 for 3 E Region i,

F, 1 F2 ] for 3 e Region 1 and Region 2

(5.20a)

(5.20b)

for i = 1,2, we arrive at the region specifications given in Table 5.1.

The code noload.m used to set up and simulate this system using the modified PWL software [3]

is given in Appendix B. Despite the fact that we found a quadratic Lyapunov function to

guarantee stability of this system in the previous chapter, the software does not find a piecewise

quadratic Lyapunov function for this case.

(5.19)
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Table 5.1: State-space description for the dual-cell converter model

Region 1: >-I, Region 2: i <-I

-Req 2 -2 -Req 2 -2

L,q Leq Leq Leq Leq Leq

Al = 0 - k 2  0 A2 = -k - k2  0

ki 0 -k2  0 0 -k2

[2(Vle - Vbase2 )+Ref2 eq d eq [2(Vbasel - Vbase2 ) + 2Vrefl - 2Vef2 - Req Id Leq

a, = -k 2Vr a2 = - kld - k 2VrefI

k Id - k2V 2  L- k2 Vref 2

E = [1 0 0 Id E2 [-1 0 0 -Id1
1 0 0 Id  0 0 0 0

0 0 0 0 - 1 0 0 -Id
= 1 00 0 = 1 0 0 0

0 0 0 0 0 0 0 0

The reason for this lies in the construction of the P5 matrices.

defined such that

Recall that these matrices were

(5.21)

where T is a full symmetric matrix. As a simple example, let us take

a ll  a12
and T =

[al 2 a 22

for i = 1. Then,

(al, +2a2 +a 22) (a11 +2a 2 +a 22)1
P (a, +2a 2 +a 22) (a1 +2a2 +a22

(5.22)

P = Fj TF,,
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Thus, a particular entry in T, can take on any value depending on the entries in T, but the

structure of the P1 matrix, determined by F, is restricted such that all its entries are equal.

It turns out that it is only when the F1 matrices possess full column rank that the P matrices are

allowed to take on any structure2 . Otherwise, their structure is predetermined, as is the case for

the system under consideration and the example shown above. Thus, even though a quadratic

Lyapunov function does exist, a piecewise quadratic Lyapunov function is not found by solving

the linear matrix inequalities developed in the theorem.

5.2.2 Analysis of Dual-Cell Converter Model using UC3907

Let us now try to apply the approach of [2] to the current-sharing scheme used in Unitrode's

UC3907 current sharing IC. As described in Chapter 2, this approach employs boundary

constraints on the reference voltages. The base and saturation constraints on these voltages will

produce divisions in state-space for the reference voltage state variables as well, and thus may

meet the criterion of full rank F matrices that was not met in the previous system.

Recall the following state equations for the model of the paralleled dual-cell converter system

using the UC3907 for i = 1,2:

diouti Avreft + V - v ° - ioutiR

dt max
ai

where the state equations for the reference voltages are only valid within the base and saturation

bounds. In other words,

2 The Fi matrices for all the examples found in [2] have full column rank.
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klai,
dAVreji k

d - k a i,

0,

0,
dAvrefi

dtv

klai,

for Avret < 0

for 0 < Avref < t

for Avref, >  ,i

for Avreft 0

for 0 Avrvfi 5 Vati

for Avre f V>ati

The analysis performed in this chapter will also be for the simplified case without load dynamics.

Again, it is unnecessary to keep both output currents as our state variables. This time, however,
we need to let our new state variable be id = ol out2 - AI. The introduction of the AI term

into the new state variable is necessary because the difference between iou,, and iout2 decays to AI,

not zero if this system is stable; recall that the methods used by Johansson and Rantzer assume

that the equilibrium state is at zero. The state evolution of id is thus given by

did

dt

2(Avre,, - Avref 2) +2(Vbase - Vbase2) -(id + AI)Req
(5.25)

where again Le, = 2L, and Req = 2R.

Keeping in mind that there are base and saturation limits on the reference voltages, the evolution

of the reference voltages can be broken down subject to the value of id, as shown below:

id > 0 = i
outl = imax

dAv

dt -k2

dAr <max

dt - k
2

z d > 0

* - I < id < -0 -' io,,, = imax

SAvref, driven downward unless at zero

SAvref 2 driven upward unless at saturation

fora, >0 (5.24a)

for a, <0 (5.24b)

(5.26a)
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dAvdre -k2A < 0
dt

dAv dA2  k 2id < 0
dt

- 2AI < id < -AI out2 = max

dAV k2 ( - i
d - 2A) < 0

dt
dAvr -k 2  < 0

dt

* id <-2AI iout2 =imax

dAvrefl - k2 (- d - 2A) > 0
dt

dAvref
2  -kM < 0

dt

SAv,, driven downward unless at zero

SAvref2 driven downward unless at zero

S Avrev driven downward unless at zero

SAvre2 driven downward unless at zero

S Avr,,I driven upward unless at saturation

SAVref 2 driven downward unless at zero

Thus, the possible regions for the three state variables are as shown in Table 5.2. Accounting for

all possibilities, 4 x 3 x 3 = 36 is the total number of piecewise affine regions that represent the

nonlinear dynamics of this system. Appendix C uses state equations for id, Vrejl and Avref2, as

well as the boundary conditions on each region to arrive at the linear dynamics of the system in

each of these 36 regions.

Finding a Lyapunov function for the system composed of these piecewise affine subsystems

involves solving Linear Matrix Inequalities (LMIs) using optimization routines, as described in

the theorem for piecewise quadratic stability by Johansson and Rantzer [2]. Appendix C

provides the information needed to arrive at the matrices necessary to apply this theorem.

(5.26b)

(5.26c)

(5.26d)
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Table 5.2: State-space regions for the dual-cell converter model using UC3907

4 Possible Regions for id 3 Possible Regions for Avrefl 3 Possible Regions for Avref2

id > 0 Avre ,I 0 Avref 2 0

-A < i < 0 0 < vre < Vat 0 < Avref2 
< 

Vsat 2

- 2AI < id < - AVref I VYal Avref 2 > Vsat 2

id < -2AI

Even in the simple case of two converters in parallel with no load dynamics, the number of

variables in our LMI system is extremely large. The T matrix is size 10 x 10, and each of the 36

Ui and Wi matrices is 7 x 7. The problem arises when we realize that each coefficient in the

matrices Ui and Wi is required to be non-negative, and thus, in accordance with available LMI

software, must be considered an LMI variable. Keeping in mind that these matrices are all

symmetric, the number of LMI variables in our setup is a little under 1800! This is extremely

large, considering not only the simplicity of our system, but also the lack of software available to

handle an LMI problem of this magnitude. The LMI Control Toolbox in MATLAB is

designed to handle up to 1000 variables, and other available LMI tools can only handle a similar

number of variables.

5.3 Summary

As seen in the previous sections, the structure of the theorem introduced by Johansson and

Rantzer [2], although mathematically attractive, has certain limitations. First, the structure of the

I matrices is determined by the structure of the F, matrices, which is fixed in turn by the

boundary conditions arising from the divisions in state-space. Even if the PI matrices have full

rank, however, a simple system analyzed by this theorem can produce a large number of
variables beyond the capabilities of available software. Also, the implementation of the LMI
software in MATLAB does not allow the U and W, matrices to have zero entries, unless forced by

the user. Thus, if P matrices could be found by allowing some entries of these matrices to be

zero, the software will not find them, unless the user has prior information and forces these
entries to zero. These factors, introduced by both the theorem and available software, severely
limit the types of systems that can be successfully analyzed through the method presented in [2].



6 Concluding Remarks

This thesis explored several avenues to assess the stability of open- or closed-loop

symmetrically-coupled nonlinear systems. For systems with large numbers of coupled

subsystems, it is first desirable to reduce the order of the system to make analysis and control

tractable. Lunze used linear transformations to reduce the stability analysis of a linear open-loop

symmetric system consisting of N subsystems to that of a model of order twice that of the

subsystem order [1]. We first extended Lunze's analysis to feedback systems, and then further

extended it to include nonlinear couplings.

The similarity transformation used to dissect nonlinear systems of this type is successful not only

in transforming the system into reduced order differential- and common-mode configurations, but

also in confining the nonlinearity present to the common-mode configuration of the transformed

system. Furthermore, there were no state-variables that were fed back from the common to the

differential-mode circuits, and thus the stability of the reduced-order nonlinear system was easy

to establish. The stability of these reduced-order subsystems was then used to guarantee stability

of the overall system. It was determined that this analysis could be applied to a wide variety of

nonlinear couplings that met certain constraints.

As an example, we analyzed a paralleled current-mode-controlled converter system using the

same similarity transformation. A three-cell system was first analyzed and simulated, and the

results for this paralleled converter system were then generalized to the N-cell case. As expected,

the original nonlinear system is transformed into differential- and common-mode subsystems.

The nonlinearity is restricted once again to the common-mode configuration, as is the load.

Circuit-based analysis was used to gauge stability of this system; for stability analysis, it is only

necessary to assess the stability of one of the (identical) differential-mode circuits, along with the

common-mode circuit. The differential-mode circuits are linear, and the nonlinearity of the

system is simply captured in the current source of the common-mode circuit. A candidate

Lyapunov function, based upon the energy in the active elements in the common- and



Concluding Remarks

differential-mode configurations, is also found to guarantee the stability of this N-cell paralleled

current-mode-controlled converter system.

Because some symmetrically-coupled systems with nonlinear feedback can be modeled as hybrid

systems, tools developed to examine such systems were also examined. Johansson and Rantzer

[2] proposed partitioning the state-space of a nonlinear system with piecewise affine dynamics

into a number of closed cells, and then searching for a piecewise continuous Lyapunov function

to guarantee the stability of the overall system, using methods from the Linear Matrix Inequality

(LMI) framework. This proposed method was used to analyze a specific system involving

paralleled current-mode-controlled power converters. The control systems used for

demonstration purposes were based on each converter comparing its own current to the

maximum of all currents. The analysis of this example brought to light some constraints and

limitations of the theorem in [2] and of available LMI software.



Verification of Lyapunov Function

Lunze reduces the stability analysis of the nNth-order matrix A that governs a symmetric system

to that of two nth-order matrices Ad and Ac [1]. If we have Lyapunov functions for both Ad and

Ac, what will be the Lyapunov function for the overall system? In order to arrive at this answer,

we must work back through the similarity transformation T.

Let's assume that the two matrices, Ad and Ac, are stable. Then

system described by these matrices exist, and are defined by

V, = X dxi N

Vc = -- XN PX

for i= 1,2,..,(N - 1),

Lyapunov functions for the

(A.la)

(A.lb)

AdTPd + dAd =-Qd for Qd 0O,

AC p + pCAc= -Q for Qc20.

Thus, the Lyapunov function V of the transformed system is given by

0 o 0

0 Pd

0 0 ... Pd

0 0 ... 0

0

Pc

X .

where

(A.2a)

(A.2b)

V= T (A.3)

PCp
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Note that when simplified

N-1 N-I

V xi Pd +i xN Pc xN = Vdi + Vc. (A.4)
i=1 i=1

This Lyapunov function for the transformed system can be rewritten as a function of the variables

xl through XN to arrive at the Lyapunov function for the original dual-cell converter system.



B LMI Software

The Piecewise Linear Toolbox (PWL), obtained from M. Johansson at the Lund Institute of

Technology, interfaces to the LMI Control Toolbox in MATLAB. This toolbox was designed to

handle Pi matrices of size 2 x 2 or 3 x 3 only. Furthermore, it was designed to fix the structure

of matrices Ui and Wi by forcing their diagonal entries to zero; this was not only sufficient for

the examples used by Johansson and Rantzer [2,3], but perhaps also necessary. Recall that the

piecewise quadratic stability theorem requires non-negative entries in these matrices. The LMI

Control Toolbox, however, allows these entries to be defined as LMI variables that are restricted

to being positive, but not zero. Thus, if a Lyapunov function can be found only if some of the

coefficients in Ui and Wi are zero, the software will fail in finding one because the LMI software

being used will not consider this case.

The PWL toolbox was thus modified to handle the problems we wished to address. The

modified toolbox is capable of handling Pi matrices of any reasonable size. The Ui and Wi

matrices in our system do not necessary have zero entries on their diagonals, and thus they were

redefined as full symmetric matrices. As stated earlier, this does not allow any zero entries.

Both the original and the modified versions of the PWL toolbox require that the A, E,, and F

matrices be defined such that their dimensions are compatible, as dictated by the piecewise

quadratic stability theorem.

B.1 Modified Toolbox Files

Two files were modified to accommodate the changes mentioned above. They are included

below. In the first file, addynamics.m, a couple lines of code were added as indicated. The

second file, lyap.m, is a revision of the original file pqstab.m.
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B.1.1 Addynamics.m

% dyn = addynamics(A, a, B, C, c, D)

% Adds a new dynamics specification to the
% piecewise linear system currently described.
% A label can be optionally attached to this
% specification to facilitate future reference to it.
%

% Input:
% A, a, B,
% C, c, D
% Data describing the dynamics

% Output:
% DYN A label for future reference to the dynamics
%

function dyn = addynamics(A, a, B, C, c, D)

global GLF_REG GLF_DYN GLF_NREG GLF_NDYN GLF_N

ni = nargin;

% Added Code
global NO_a
if (ni<2)

NO_a = 1;
else

NO_a = isempty(a);
end
% End of Added Code

if (ni < 1) (ni > 6)
error('Wrong number of function input arguments');

end

n = size(A,1);
if GLFNDYN == 0

GLFN = n;
end

NoInp = 1;
NoOutp = 1;

if ni >= 3
if -(isempty(B))

NoInp = size(B,2);
end

end

if ni >= 4
NoOutp = size(C,1);

end
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if ni < 6
D = zeros(NoOutp, NoInp);
if ni < 5

c = zeros(NoOutp, 1);
if ni < 4

C = zeros(NoOutp, n);
if ni < 3

B = zeros(n, NoInp);
if ni < 2

a = zeros(n, 1);
end

end
end

end
end

if isempty(a)
a = zeros(n,l);

end

if isempty(B)
B = zeros(n, NoInp);

end

if isempty(C)
C = zeros(NoOutp, n);

end

if isempty(c)
c = zeros(NoOutp, 1);

end

if isempty(D)
D = zeros(NoOutp, NoInp);

end

global GLF_REG GLF_DYN GLF_NREG GLF_NDYN

if (isempty(GLF_NDYN))
error('Use SETPWL to initialize the piecewise linear system');

end

GLF_NDYN = GLF_NDYN + 1;
GLF_DYN(GLFNDYN).a = a;
GLF_DYN(GLF_NDYN).A = A;
GLF_DYN(GLF_NDYN).B = B;
GLFDYN(GLF_NDYN).C = C;
GLF_DYN(GLF_NDYN).D = D;
GLF_DYN(GLF_NDYN).c = c;
dyn = GLF_NDYN;

B.1.2 Lyap.m
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% [P, NoLMIs, NoVars] = lyap(pwlsys, options)

% MODIFIED COPY OF PQSTAB.M

% Search for a piecewise quadratic Lyapunov function to verify
% stability of a piecewise linear system.
%

% Input:
% PWLSYS Piecewise linear system.
% OPTIONS Options used by LMI-Lab.

% Output:
% P If there exist a piecewise quadratic Lyapunov function, V,
% then P is a n-dimensional array arranged such that
% [x; l]'*P(:,:,i)*[x; 1] describes the Lyapunov function
% corresponding to region number i. If no piecewise
% quadratic Lyapunov function exist, the function will
% return an empty array, P = [].
% NoLMIs Number of LMIs needed to solve the problem
% NoVars Number of decision variables needed for the LMIs
%

function [P, NoLMIs, NoVars] = lyap(pwl, options)

% Added variable
global NO_a

ni = nargin;
if ni == 1

options = [];
end;

NoE = size(pwl.Region,2);
dimn = size(pwl.Dynamics(l).A, 1);
dimf = size(pwl.Region(l).F, 1);

setlmis([]);

[Tt,n,Ttdec] = imivar(l,[dimf 1]); % imivar T

Itcount = 0;
UWcnt = 0;

for ip = 1:NoE
co = pwl.Region(lp).co;
Ei = pwl.Region(lp).E;

Fi = pwl.Region(lp).F;
Idx = pwl.Region(lp).Idx;
dimp = size(Ei, 1);

for lp4 = l:length(Idx)
UWcnt = UWcnt + 1;
Ai = pwl.Dynamics(Idx(1p4)).A;



B.1 Modified Toolbox Files

if (-NO_a) % Added => Originally = if(-co)
ai = pwl.Dynamics(Idx(1p4)).a;
Ai = [Ai, ai; zeros(l, dimn+l)];

zeros
zeros
lp2 =

for

(dimp);
(dimp);
1:dimp-1
1p3 = 1:(dimp-lp2)
[tmpU, n, U(dimp+l-lp2,1p3)]
% Imivar Uijk

= lmivar(1,[1 11);

itcount = Itcount + 1; % force Uijk > 0

Imiterm([-ltcount 1 1 tmpU],1,1);

[tmpW, n, W(dimp+l-lp2,1p3)
%lmivar Wijk

] = imivar(l,[1 1]);

itcount = Itcount + 1; % force Wijk > 0

lmiterm([-ltcount 1 1 tmpW],1,1);

% Added to allow the diagonals of U,W
UWdiag = 1;
Ul = U;
W1 = W;
if(UWdiag)

for 1p5 = 1: dimp
[tmpU, n, U(1p5,1p5)] = Imi
Itcount = Itcount + 1;
imiterm([-ltcount 1 1 tmpU]
[tmpW, n, W(1p5,1p5)] = imi
Itcount = Itcount + 1;
lmiterm([-ltcount 1 1 tmpW]

end
end

Iv(UWcnt) .U = imivar(3,
lv(UWcnt).W = imivar(3,

Itcount = Itcount + 1;

matrices be nonzero

var(l,[1 11);

,1,1);
var(l,1 1]);

,1,1);

U+U1');
W+W1 ');

% 0 > Ai'Pi+PiAi+Ei'UiEi

imiterm([1tcount 1 1 Tt],Fi' , F i * A i , 's');

if -isempty(lv(UWcnt) .U)
imiterm([ltcount 1 1 Iv(UWcnt).U],Ei',Ei);

end

itcount = Itcount + 1; % 0 < Pi-Ei'WiEi
imiterm([-ltcount 1 1 Tt],Fil,Fi);
if -isempty(lv(UWcnt).W)

imiterm([itcount 1 1 Iv(UWcnt).W],Ei',Ei);
end

end
U =
W =
for

end
end

end
end
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imisyst = getlmis;
NoLMIs = Itcount;
NoVars = decnbr(lmisyst);

[tmin,lmisystfeas] = feasp(lmisyst, options);
if (tmin < 0)

T = dec2mat(lmisyst, lmisystfeas, Tt);

if -isempty(lv(UWcnt).U)
U = dec2mat(lmisyst, imisystfeas, iv(UWcnt).U);

end

if -isempty(lv(UWcnt).W)
W = dec2mat(lmisyst, Imisystfeas, Iv(UWcnt).W);

end

dimP = size(pwl.Region(1).F,2);
P = zeros(dimP,dimP,NoE);

for ip = I:NoE
Fi = pwl.Region(lp).F;
tdi = size(Fi,2);
P(l:tdi,l:tdi,lp) = Fi'*T*Fi;

end

else
P = [];

end

B.2 Sample Code NoLoad.m

% PWL Toolbox Code
% This is the system with two converters with no load dynamics.
% Both base & saturation constraints on vrefi's have been eliminated.
% Also Delta I on id has been eliminated.
%

% Offsets Vol & Vo2 have been added to each vrefi.
% There are only two regions now => id > 0 and id < 0.
% Our state variables, however, are now the perturbed variables =>
% id = Id + id tild where id tild is one of our new state variables.
% vrefl tild and vref2_tild are the other two.

function noload;

% Constants...
kl = 5;
k2 = 10;
Req = 2;
Leq = 0.1;

% Vol > Vo2 for the Operating Point to be Valid
Vol = 0.01;



B.2 Sample Code NoLoad.m

Vo2 = 0;
Vodiff = Vol-Vo2;

optns = [0 0 0 0 1];

% Computing Operating Point...
VREF1 = 0;
VREF2 = (2*kl*Vodiff)/(2*kl + Req*k2);
ID = 2*(VREF2*k2)/(2*kl);

% Dynamics & Trajectories
% Region I => id > 0 OR id_tild > -ID;
% Region II => id < 0 OR id_tild < -ID;
Al = [-Req/Leq 2/Leq -2/Leq; 0 -k2 0; k1 0 -k2];
A2 = [-Req/Leq 2/Leq -2/Leq; -kl -k2 0; 0 0 -k2];

a = zeros(3,2);
for i=1:2,

a(l,i) = 2*[Vodiff + VREF1 - VREF2 -
a(2,i) = -kl*ID*(i==2) - k2*VREF1;
a(3,i) = kl*ID*(i==l) - k2*VREF2;

end

(Req*ID/2) ]/Leq;

El = [1 0 0 ID];
E2 = [-1 0 0 -ID];

F1 = [1 0 0 ID;
o 0 0 0;
1 0 0 0;
0 0 0 0];

F2 = [0 0 0 0;
-1 0 0 -ID;
1 0 0 0;
0 0 0 0];

% Initialize &
setpwl([]);

Setup System

dynl = addynamics(Al,a(:,l));
dyn2 = addynamics(A2,a(:,2));

addregion(El,
addregion(E2,

Fl, dynl);
F2, dyn2);

pwlsyst = getpwl;

% Simulate System
disp('Simulating the system...');
[t, xv, te, region] = pwlsim(pwlsyst,
disp('Done!');

[0 0.01 -0.01]',

% Compute Global Lyapunov Function
disp('Computing global quadratic Lyapunov function...')
P = qstab(pwlsyst, optns);

(0 10]);
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if -isempty(P)
P = P
eigen_P = zeros(3,1);
eigen_P = eig(P)

% Plot Lyapunov function
V = zeros(size(t));
for i=l:size(t),
vec = [xv(i,l) xv(i,2) xv(i,3)]';
V(i) = vec'*P*vec;
eplot(t,xv(:,l),xv(:,2),xv(:,3),V,2);

else

end

disp('Unable to find one!');

% Computer Piecewise Lyapunov Function
disp('Computing piecewise quadratic Lyapunov function...');
[P, NoL, NoV] = lyap(pwlsyst, optns);

if -isempty(P)
fprintf('Solution found using %d LMIs and %d

variables.\n\n',NoL,NoV);
else

end
disp('Unable to find one!');



C Divisions of State-Space of the Dual-Cell
Paralleled Power Converter Model

The tables listed in the following pages of this appendix segment the non-linear dynamics of the

dual-cell paralleled power converter model using UC3907 in the absence of load dynamics into

36 linear state-space regions. Each region is represented by X p, closed subsets of 9 3 . The

subscript a represents the state of id, fl represents the state of Avrefl and y represents the state of

AVre2.

In these tables

1 d
A refl = Aapy AVref + Bapy

AVref 2  LAVref 2
x x

and Vbasediff = Vbasel - Vbase2

Matrices for use in the theorem by Johansson and Rantzer are defined as follows:

(C.1)

Di , andF[i Di] (C.2)-i = B i = [C i
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Table C.1: Apy and Bpy for Regions where id > 0.



Table C.2: Cpyand Dgpyfor Regions where id >0.

Avref, 0 0 < Avref <Vsatl AVrefl Vsati

1 0 O" 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0
Cl = 0 -1 0 C = - C131 -

S -1 0' 12 1  -1 0' 131 0 0 0 '

0 0 0 0 0 0 0 0 0

0 0 -1 0 0 -1 0 0 -1

Avref 2 0 0 0 0

0 0 0

0 0 -Vs,,Dill = 0 DI21 atl D131 0

0 0 0

L0-1 0 0

1 0 01 0 0 1 00

0 0 0 0 0 0 0 0

0 0 00 1 0 0 1 0

12 0 1 0 122  0 -1 0 C132  0 0 0

0 0 1 0 0 1 0 0 1

0 0 -1 0 0 -1 0 0 -1

0 < Avref 2 
< Vsat 2  0 0 0

0 0 - Vs.,
D2 0 D V22 atl 32 0

0 0 0

sat2 sat2 .Vsat 2

1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 000

0 0 0 0 1 0 0 1 0
13 0 -1 0 C123 0 -1 0 C33 0 0

0 01 0 0 1 0 0 1

000 0 00 0 00

0 0 0

Avref2 Vsat2 0 0 0

0 V - Vat
Dll3 = 0 123 Vstl =  

0

- V., 2  - Vsat2 -V.t2

0 0 0
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Table C.3: Aapy and Bpy for Regions where (- AI) < id < 0.



Table C.4: Cpr and Dar for Regions where (- AI) < id < 0 .

AVrefl < 0 0 < AVrefl <Vsatl AVrefl Vsatl

1 0 0 1 0 0 1 0 0

-1 0 0 -1 0 0 -1 0 0

0 0 0 0 1 0 0 1 0
C211 0 -1 0 C221 = 0 1 0 C231 0 0 0

0 0 0 0 0 0 0 0 0

0 0 -1 0 0 -1 0 0 -1

Avref 2 <0 M A Al

0 0 0

0 0 - Vs,
D211 0 D 221  V D 231 

=  
0

0 Vsatl 0

0 0 0

0 0 0

1 0 0 1 0 0 1 0 0

-1 0 0 -1 0 0 -1 0 0

0 0 0 0 1 0 0 1 0
C C=, C232 -

212 0 -1 0 C222 0 -1 0 ' 0 0 0

0 0 1 0 0 1 0 0 1

0 0 -1 0 0 -1 0 0 -1

0 < Avrej2 Vut2 A" Al AI

0 0 0

0 0 - ,,
D212 0 D222 Vsa D 232 = 0t

0 IU 0

0 0 0

Vsat2 . Vsat2 . . Vsat2

1 0 0 1 00 1 o 0

-1 0 0 -1 0 0 -1 0

0 0 0 0 1 0 0 1 0
C213 0 1 0 C223 0 -1 0 C233 0 0 0'

0 0 1 0 0 1 0 01

0 0 0 0 0 0 0 0 0

AVref 2 Vat2 w - Al

0 0 0

0 0 -VS.,,
D 213  0 D 223  V D 233  0

0 V0 - 0
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Table C.5: Apy and B,.y for Regions where (- 2AI) < id < -AI.



Table C.6: Cpy and Dgy for Regions where (- 2AI) < id < -I.

Avref, 5 0 0 < Avref < Vsatl Arefl Vsatl

1 0 0 10 0 1 0 0

-1 0 0 -1 0 0 -1 00

0 0 0 0 1 0 0 1 0

C 0 -1 0' 321- 0 -1 0 C331 0 0 0

0 0 0 0 0 0 000

0 0 -1 0 0 -1 0 0 -1

AVref 2  0 2MA 2A" 2M

- A - Al -Al

0 0 - Vsa l
D311 0 D 321  V D331 0

0 V0a 0

0 0 0

0 0 0 J

1 00 1 0 0 1 00

-1 0 0 -1 0 0 -1 0 0

0 0 0 0 1 0 0 1 0
C312 0 -1 0' C22 0 -1 0 C332 0 0 0

0 0 1 0 0 1 0 0 1

0 0 -1 0 0 -1 0 0 -1

2A/ 2A/ 2A/

0 < Avref < Vsat2

0 0 - V. a
D312 0 D322  V D332 = 0

Vsatl 0

0 0 0

Vsat2 .Vsat2_ . Vsat2 j

1 00 1 00 100

-1 0 0 -1 0 0 -1 0 0

0 0 0 1 0 0 1 0
C313 0 -1 0' C323  0 -1 0 C333 0 0 0'

0 0 1 0 0 1 0 0 1

0 00 0 0 -0 0 0

2MA 2AM 2AM

Avref2 2 sat2 A Al -Al

0 0 - Vsai
313 0 323  VD 333  0

-- sat2 Vsa2 -
V s a t 2

0 0 0
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Table C.7: A py and Bary for Regions where id < -2AI .



Table C.8: Cary and Day for Regions where id < -2A1.

AVref 5 0 0 < AVref I < Vsatl Av,,, Va,,,

0 00 0 0 0 0 00

-1 0 0 -1 0 0 -1 0 0

0 0 0 0 1 0 0 1 0
411 0 -1 0' C 42 1  0 -1 0 C431 0 0 0

0 0 0 0 0 0 0 0 0

0 0 -1 0 0 -1 0 0 -1

AVref 2  0 0 - 0 0

-2A1 - 2AM - 2

0 0 -Vari
D411 0 D421 Vsa D431 - 0

0 Vsal 0

0 0 0

0 . 0 -. 0

0 0 0 0 0 0 0 00

-1 0 0 -1 0 0 -1 0 0

0 0 0 0 1 0 0 1 0
412 0 -1 0 C422 0 -1 0' C432 0 0 0 '

0 0 1 0 0 1 0 0 1

0 0 -1 0 0 -1 0 0 -1

0 0 0

0 < AVref-2 < Vat2  - 21 -2M - 2M

0 I0 - l

D412 0 D422 VsaI 432 0

0 0 0

Vsat2 sa2 Vsat2

0 00 0 00 0 00

-1 0 0 -1 0 0 -1 0 0

0 0 0 0 1 0 0 1 0
C413 0 -1 0' C 4 2 3  0 -1 0 C 433 0'

0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0

AVref 2  Vat2  - 21 - 2A - 2

0 0 - Vsa,
D413 0 D 423 = Vsat D433 0

-Vsa2 sat2 - sat2

0 0 0
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