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Abstract

Translating Japanese into English is very challenging because of the vast difference in
word order between the two languages. For example, the main verb is always at the
very end of a Japanese sentence, whereas it comes near the beginning of an English
sentence. In this thesis, we develop a Japanese-to-English translation system capable
of performing the long-distance reordering necessary to fluently translate Japanese
into English. Our system uses novel feature functions, based on a dependency parse
of the input Japanese sentence, which identify candidate translations that put de-
pendency relationships into correct English order. For example, one feature identifies
translations that put verbs before their objects. The weights for these feature func-
tions are discriminatively trained, and so can be used for any language pair. In our
Japanese-to-English system, they improve the BLEU score from 27.96 to 28.54, and
we show clear improvements in subjective quality.

We also experiment with a well-known technique of training the translation system
on a Japanese training corpus that has been reordered into an English-like word order.
Impressive results can be achieved by naively reordering each Japanese sentence into
reverse order. Translating these reversed sentences with the dependency-parse-based
feature functions gives further improvement.

Finally, we evaluate our translation systems with human judgment, BLEU score,
and METEOR score. We compare these metrics on corpus and sentence level and
examine how well they capture improvements in translation word order.

Thesis Supervisor: Michael Collins
Title: Associate Professor of Computer Science
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Chapter 1

Introduction

Japanese sentences have vastly different anatomy compared to English sentences.

For example, the main verb of a Japanese sentence always comes at the end of the

sentence, whereas it comes near the beginning of an English sentence. It follows that

to translate a Japanese sentence into English, one must prolifically and accurately

reorder the Japanese words to get a fluent English translation. In this thesis, we built

a machine translation system that can learn to do this reordering between Japanese

and English sentences accurately, using a novel technique that can be applied to

translation between any language pair.

Our technique is to translate a dependency graph of the Japanese sentence with

a phrase-based translation system. This dependency graph tells us how the Japanese

words relate to each other. Our translator uses this dependency analysis to reorder

the Japanese words during translation and produce English translations that have

key dependency relations in the correct order. For example, it is critical that active

English verbs come before their object. The system automatically learns to perform

the long-distance reordering of a sentence-final Japanese verb to before its object.

Many Japanese-+English machine translation systems, such as Yahoo Babel Fish [Ya-

hoo, 2008], rely on hand-built grammars and reordering rules, which are costly to

assemble and update. Recent systems take a wholly statistical approach, requiring

only a large corpus of parallel text for training. However, these systems perform long-

distance word reordering neither efficiently nor accurately. This thesis contributes a



powerful long-distance reordering model to today's best statistical machine transla-

tion systems. In Chapter 2, we review where our work fits into the landscape of

previous work on statistical reordering models.

We introduce two methods of incorporating Japanese dependency analysis into a

state-of-the-art Japanese-English machine translation system to improve translation

quality. The first method is to reorder the Japanese training corpus into an English-

like word order before training, as Wang et al. [Wang et al., 2007] showed to be

effectual for Chinese translation. The second method is to add feature functions

that identify translations in which certain dependency relations are translated in the

correct order. Used together, these methods improved BLEU score 27.96-+28.74 on

the test corpus used in the NTCIR-7 Patent Translation Task [Fujii et al., 2007]. We

explicate these two methods in Chapters 3 and 4.

Several automatic metrics like BLEU score have been developed to automatically

compare the quality of machine translation systems, but their ability to capture dif-

ferences in word order is suspect [Callison-Burch et al., 2006]. In Chapter 5, we

present detailed analysis of the results of our orchestra of experiments. We compare

three measures of translation quality: human evaluation, BLEU score [Papineni et

al., 2001], and METEOR fragmentation score [Lavie and Agarwal, 2007]. We show

that despite its lack of an explicit reordering metric, in practice BLEU score is useful

for evaluating systematic differences in word order.

In Chapter 6, we outline future work and reframe the contributions of this thesis.

Let us start by briefly looking at the challenges of translating Japanese into

English and previewing for how this thesis will tackle them. Section 1.1 intro-

duces Japanese grammar, and Section 1.2 gives background on current approaches to

Japanese-English machine translation. Section 1.3 looks at problems with existing

systems, and we finish up with an overview of how this thesis improves the state of

the art: Section 1.4 introduces novel features that integrate dependency analysis into

a phrase-based translation system and Section 1.5 shows how reordering Japanese

sentences into English word order before translating can also improve translation

quality.



1.1 Japanese grammatical challenges

The word order of Japanese is very different from that of English. Two features of

Japanese grammar account for many of the differences that make Japanese machine

translation challenging. First, the verb comes at the end of the sentence, as in this

example.

Teacher-Nom tea-Acc drank

"The teacher drank tea."

The verb 'A' t L ?', "to drink", comes at the end of the sentence, and its subject

and object precede it. In an English translation of this sentence, the word order

would be Subject-Verb-Object; in Japanese, the most natural word order is Subject-

Object-Verb.1 If we were to translate this sentence from Japanese to English without

reordering the words, we might get "By the teacher tea was drunk". Such unnatural

passivization is common in some statistical Japanese-English translation systems,

and is a problem that our thesis aims to quash.

The second notable feature of Japanese grammar is that most words have ex-

plicit case markers. A word's case represents the function it plays in the sentence:

subject, object, nounal modifier, etc. Japanese puts one syllable after most words

to explicitly mark the word's case. In the above example, ' b' (the subject marker)

marks '7tt' ("teacher") as the subject of the sentence. Similarly 't' (the object

marker) marks 'M- ' ("tea") as the object of the sentence. These short case markers

are sometimes called "particles" or "postpositions" because in Japanese they always

immediately follow the word they attach to.

Because each word has its role in the sentence demarked in its surface form, the

words in this sentence can be scrambled with the meaning and grammaticality of

the sentence preserved, as long as the verb stays at the end.

(1.2) 1 - LhL ft 7,L O

tea-Acc Teacher-Nom drank

1Approximately 75% of world's languages are Subject-Object-Verb [Crystal, 1997], so long-
distance verbal reordering is a critical issue not only for Japanese-+English translation.



"The teacher drank tea."

This scrambling also presents a challenge to existing translation systems and is ad-

dressed in our work.

The previous examples showed that in Japanese, the main verb always comes at

the end of the sentence. Many patterns in Japanese are similar; verb phrases have

the verb at the end, noun phrases have the noun at the end, and so on. To state

this phenomenon with more formal linguistic terminology, the head of a phrase is

the word in the phrase that determines its syntactic type; for example, the head of

the English noun phrase "the girl who was sitting and drinking tea" is the noun "girl".

Similarly, in Japanese:

sitting and tea-Acc was drinking girl

"the girl who was sitting and drinking tea"

Notice that the nounal head "girl" is at the end of the clause, while in English it is

at the beginning of the clause. In general, we can say that Japanese is head-final

while English is more head-initial. Swapping head orientation is a difficult aspect of

Japanese-+English translation. We next take a look at how this is handled in current

translation systems.

1.2 State-of-the-art Japanese English translation ap-

proaches

Current machine translations systems fall into three categories:

Rule-based sytems rely on hand-built syntactic parsers and many manually-edited

transfer rules. Rule-based Japanese-+English systems have been around for

more than 30 years and are of high quality. Example: Yahoo! Japan Translation

at http: //honyaku. yahoo. co. jp.

Phrase-based systems are trained only on a large corpus of parallel text, from

which they learn a set of multi-word phrases and a language model, without



using syntactic knowledge [Koehn et al., 2003]. A well-known example is Google

Translate at http://translate. google. com.

Hybrid systems combine a statistical (sometimes phrase-based) model with syn-

tactic knowledge. One successful example is the dependency treelet system of

Quirk et al. [2005].

In a nutshell, the translation system developed in this thesis classifies as a hybrid

system. We started with the open-source Moses statistical phrase-based transla-

tor [Koehn et al., 2007], and modified it to incorporate a syntactic parse analysis to

improve reordering decisions.

The largest available collection of Japanese-English parallel text is Utiyama's

Patent Parallel Corpus [Utiyama et al., 2007], so in this thesis we focus on examples

from the domain of patent translation. Gloss 1.4 shows an example from our test

corpus. Translations from the best available Japanese-English translation systems

are given in Table 1.2.

(1.4) 1/)7'/1 3U AJ, f tfz -4 jfL" AG C7/41 -\6 o

Preamp 3- TOP input-Passive reproduction signal-Acc amplify and AGC amp 4-to output

"The preamp 3 amplifies an input reproduction signal, and sends out to an AGC

amplifier 4."

Table 1.1: Comparison of translations of Gloss 1.4.
MOSESIMPROVED MOSESBASELINE GOOGLE YAHOO

The preamplifier The preamplifier 3, 3 preamp input sig- Pre-amp 3 amplifies
3 amplifies the re- the input playback nal is amplified by an input reproduc-
produced signal, signal is amplified playing the AGC tion signal and out-
which is output and output to the amplifier, the out- puts it to AGC am-
to the AGC am- AGC amplifier 4. put 4. plifier 4.
plifier 4.

Translations from YAHOO and MOSESIMPROVED are very good, while offerings

from MOSESBASELINE and GOOGLE are unnatural or incorrect. In the next section,

we will discuss the shortcomings of these systems.



1.3 State-of-the-art foibles

In Table 1.2, YAHOO is the translation from Yahoo Japan Translation, a rule-based

system under development since 1987 [Cross Language, 2008].2 The other three sys-

tems are phrase-based. Systems GOOGLE and MOSESBASELINE translate content

words and idioms accurately, but for the most part eschew syntactic analysis. A lack

of syntactic sensibility leads to several systematic errors.

Most noticeably, word order is incorrect. In both the GOOGLE and MOSES-

BASELINE translations, the verb "amplified" follows its object "reproduction signal".

Phrase-based systems employ several scoring functions for ranking hypothesis trans-

lations. One such feature function penalizes each reordered phrase. This feature

function is helpful for translating from, for example, French-+English, where word

order is largely preserved, but is not useful for Japanese-+English translation, and

encourages verbs to stay at the end of their clause. The Google translation blithely

leaves "output" as the last word in the sentence.

The component most responsible for reordering in phrase-based systems is the lan-

guage model, which gives a higher score to translations composed of n-grams that

appeared often in a large corpus of English training text. The language model helps to

encourage phrases to reorder into a grammatical a translation, but the grammatical

word order chosen by the language model often does not maintain the meaning of the

original Japanese sentence. For example, consider the Moses baseline: "The pream-

plifier 3, the input playback signal is amplified..." The main verb is made passive,

keeping the original verb-object Japanese word order while remaining grammatical.

In the process, the subject (what is performing the amplification) is separated from

the verb. The meaning of the sentence is lost.

In contrast, rule-based systems, like Yahoo's, perform well translating patent data,

for two reasons. First, highly regular legalese can be parsed by handwrit grammars,

which are composed of thousands of special-case rules that occasionally break down

2Yahoo Japan Translation uses software from Cross Language, a company specializing in
Japanese-Chinese-Korean translation services. Its translation quality is much better than Systran,
another eponymous system translation services company's product, which is what Yahoo Babel Fish
uses for its backend [Yahoo, 2008].



on more colloquial text. More colloquial text, in contrast, omits many case markers

and understood pronouns so is much harder to parse. Second, literal translations are

acceptable because idiomatic patterns are rare in patent text. Rule-based systems

must have special rules for any expression which it translates idiomatically.

In this thesis, we improve the phrase-based decoder Moses to perform syntactically-

motivated reordering, and thus aim to achieve the best of both worlds. The transla-

tion from MOSESIMPROVED uses a syntactic dependency analysis to improve on the

Moses baseline. This method is introduced nextly.

1.4 Dependency analysis in a phrase-based transla-

tor

The major contribution of this thesis is a method to integrate syntactic dependency

information into the Moses phrase-based translator. The idea is to translate a depen-

dency tree, instead of a flat sentence. For example, the dependency parse identifies

a sentence's main verb and object. During translation, we can give higher scores to

translation hypotheses that put the main verb before its object.

Let's look at how this works for Gloss 1.4. Figure 1-1 shows its dependency parse.

Arrows indicate dependencies. For instance, the arrow between them indicates that

preamp 3-TOP been input repr. sig.-Acc amplify and AGC amp 4-to output

Figure 1-1: Preamp dependency parse example.

"amplify" depends on "reproduction signal-Acc". Further observing that "reproduction

signal-Acc" has accusative case, and knowing that the target language English has

Subject-Verb-Object order, the translator can prefer to translate the verb "amplify"

before it translates its object "reproduction-signal". We will codify this preference

by introducing a feature function in Moses that counts occurrences of a verb being

translated before its object.



In addition, we will introduce feature functions for a range of grammatical con-

structs: a feature that counts when relative clauses are translated after the noun

they modify, one that counts when genitive modifiers are translated after the noun

they modify, and so on. We could have a feature for every part-of-speech and case

pairwise combination. Furthermore, we introduce a cohesion constraint in the same

vein as [Cherry, 2008]

We discriminatively train the weights of these features to identify the most useful

features and maximize translation quality. This discriminative training step is impor-

tant to tune the system for the grammatical features of the target language. While

the verb-before-its-object feature function identifies good English translations, if we

were translating into Japanese, we would give a negative weight to the verb-before-

its-object feature. This setup would correctly prefer to translate Japanese verbs after

their objects.

1.5 Syntactic reordering in the preprocessor

We experimented with one more technique to reorder the Japanese training data into

an English-like word order before running Moses training (following [Wang et al.,

2007]). When translating an unseen Japanese sentence, we first preorder it into

this English-like word order, then translate preordered Japanese sentence with the

specially-trained Moses setup. With this approach, the burden of reordering phrases

is pushed to a syntactic preprocessing step, and the Moses translator itself can perform

a largely monotonic (no reordering) translation, at which it excels.

The challenge is to build an algorithm that reorders a Japanese sentence into a

pseudo-Japanese sentence that has the same words but in English-like word order.

In this thesis I describe two such algorithms. The first is fast and naive, and simply

reverses the order of all tokens after splitting the sentence at punctuation and '1t',

the topic marker. The second algorithm uses three linguistically-motivated heuristics

for flattening a tree formed from a dependency parse.

For illustration, Gloss 1.5 shows the preamp sentence reordered with the naive



reverse preprocessor, which will be described in detail in Section 4.2.

(1.5) 1j3 7 T')7": -I"Wa 4 Tj G C A - L * f.lr: : -k.P.- Wt,

TOP-3 preamp output to 4 amp GCA and amplify Acc-repr. signal input-Passive

To complete the example, we could insert several function words into the English gloss

given above to complete a fluent sentence: "The 3 preamp outputs to 4 amp ACG and

amplifies the reproduction signal that has been input." This shows that we could translate

the preprocessor-reordered Japanese sentence into English with a monotonic translation.

In our experiments, we found an improvement in translation quality using the naive

reverse preprocessor. Surprisingly, we saw a smaller improvement using the linguistically-

motived smarter preprocessor, which usually produced more accurately English-like pseudo-

Japanese.

We achieved the best translation quality when combining approaches: use the reverse

preprocessor and an assortment of dependency-motivated feature functions at optimal weights.

Altogether, we achieved a BLEU score improvement of 27.96-28.74





Chapter 2

Related Work

This chapter outlines recent work on statistical reordering models in machine trans-

lation. Methods span a wide gamut: preprocessing techniques, reranking techniques,

linguistically-informed reordering constraints, local distortion models, tree-to-tree and

tree-to-string translators, and dependency treelet systems.

2.1 Reordering during preprocessing

Collins et al. [20051 introduced a very effective technique for building a phrase-based

system with long-distance reordering ability. Working on German-English, they

wrote rules to transform a deep parse of the German sentence so that its words read

in English word order. They parse the German training data, apply these rules to

transform it into English word order in a preprocessing step, then train a phrase-

based system on the reordered data. Before translation, they perform the same

reordering on the input sentence. This led to a significant improvement in English

output word order. Wang et al. [2007] followed up with analogous experiments for

Chinese-+English.

In Chapter 4, we apply the same technique to Japanese-+English translation, with

two twists. First, we introduce a trivially computable reordering algorithm for putting

Japanese into English word order, in addition to a reordering algorithm that flattens

a Japanese dependency tree into English word order. Second, our algorithms keep



the dependency information from the tree imbedded in the reordered sentences so

that the dependency analysis can be used by the decoder to make smart reordering

decisions at decoding time.

Kanthak et al. [2005] further developed the preordering technique. Their system

automatically learns how to reorder source sentences into target language word order

from monotonization of training data word alignments. However the weakness of their

baseline decoder, which failed to translate 37% of their Japanese test corpus, makes

it difficult to tell how effective their automatically-trained source-side reorderer is.

Li et al. [2007] takes the idea of Kanthak et al. one step further. First they

trained a statistical source-side reordering model, which predicts whether a node of

a tree should keep its children in order or invert them, by using word alignments and

deep parses of the source sentences of the training data. To translate a sentence,

they generate the 10 best preorders with their reordering model, then translates all

of the preorders with a phrase-based decoder (using a maximum distortion limit of 4)

and out of the 10 pick the translation with highest combined source-side reordering

model score and decoder score. They worked with Chinese-*English and achieved an

improvement over their no-preordering baseline of the same magnitude as Wang et

al. [2007]. The advantage of Li et al.'s work is that there is no need for handwrit tree

reordering rules.

2.2 Reranking phrase-based system output

Och et al. [2004] tested a range of global syntactic features on 1000-best output

of a phrase-based system. They found no significant improvements from statistical

features, including target-side parse tree probability, tree-to-string model probabil-

ity, tree-to-tree model probability, and word alignment scores from a Tree Adjoining

Grammar. One interesting finding was that a state-of-the art statistical parser tended

to assign higher probability to ungrammatical machine translation output than to

human-translated references. This is one reason that we chose to incorporate only a

source-side dependency analysis.



Nichols et al. [2007] developed a Japanese-+English Moses system and a separate

rule-based translator based on three man months of handcrafted transfer rules. The

parser, also based on handwrit rules, can parse 65% of sentences, and the transfer

rules succeed 33% of the time. When available, their system picks the rule-based

translation (about 13% of the time) and otherwise falls back on the Moses translation.

They found that the rule-based system makes poor word choices, while the Moses

system has trouble preserving the structure of the sentence.

2.3 Reordering models for phrase-based systems

Zens et al. [2004] implemented several reordering constraints in a phrase-based Japanese-+English

decoder.1 The first constraint is the same as the maximum distortion limit in Moses

(see Section 3.5.1) and the second is the "ITG constraint", where only reorderings that

could have been made by either straight or inverted combo of contiguous "blocks" are

allowed. Each block is a combination of phrase pairs continguous on both the source

and target side. These constraints aid in ruling out certain reorderings that are more

probable to be bad, but do not aid in identifying reorderings that preserve meaning

of the original sentence.

Kanthak et al. [2005] subsequently built a decoder that takes as input a weighted

finite-state reordering automaton with constraints based on the work of Zens et

al. [2004]. They added additional reordering constraints under which words at the

end of a sentence are translated first, in a special case for Japanese. Otherwise trans-

ducer paths are weighted to prefer monotonic translation. It is hard to tell how well

their reordering automaton works, because they compare it to a baseline that allows

no reordering.

Tillmann [2004] introduced a local, lexicalized, phrase orientation model. This

model, now implemented in Moses and described in detail in Section 3.4.5, predicts

whether a phrase swaps position with the previous or next phrase based on phrase

'The "decoder" is the program that searches for the best translation of a sentence; we examine
its anatomy in Section 3.2.



alignment of the training data. In a later work, Tillmann and Zhang [2005] built a

maximum-likelihood trained log-linear model to predict the same thing. Al-Onaizan

and Papineni 12006] developed a similar model that assigns a probability distribution

over possible relative jumps conditioned on source words. In another alike technique,

Kuhn et al. [2006] wrote a decoder that chooses the next phrase to translate based on

a lexicalized decision tree trained on phrase alignment of the training data. As part

of their discriminatively trained system with millions of features, Liang et al. [2006]

added thousands of phrase-orientation features for each part of speech pair, but it is

difficult to gauge their utility because their decoder allowed very limited reordering.

Xiong et al. [2006] developed a similar reordering model that estimates the proba-

bility of two given "blocks" combining in straight or inverted order, where a block is a

pair of source and target contiguous sequences of words. (A block could be one phrase

pair, or a combination of multiple contiguous phrase pairs.) They employ the first

and last word of each block as features, and use phrase alignments from the training

data as reordering examples in a maximum-entropy framework. Zhang et al. [2007]

improved on Xiong et al.'s model by incorporating part of speech and dependency

features conditioned on block boundary words. It is unclear how well these block

reordering models can handle long-distance reordering with a series of independent

decisions based only on block boundary features. After translating a Japanese sen-

tence, the best-scoring translation may never have compared the position of the main

verb relative to its object.

Cherry [20081 incorporated dependency information into Moses and added a fea-

ture function that counts how often a dependency subtree's translation is interrupted

by translating a different part of the tree. Cherry found that sentences translated

cohesively tend to receive higher BLEU score and human judgment than uncohesive

translations. In Section 3.6.2, we describe a comparable cohesion feature that we

incorporated in our experiments.



2.4 Hierarchical phrases

Chiang [2007] introduced a model akin to a phrase-based system but with hierarchical

phrases. Each phrase can include nonterminals where other phrases can nest. Long-

distance reordering patterns can be learned automatically with this mechanism. For

example, the Chinese-+English phrase pair <[1] iTs [2], the [2] of [1]> swaps the

position of its two arguments, which could be arbitrarily long.2  The major idea

is that the hierarchical phrase model is formally syntax-based in that it uses the

Synchronous Context-Free Grammar formalism, but not linguistically syntax-based,

because it induces a grammar from a parallel text without relying on any linguistic

assumptions or annotations (like the Penn Treebank). Because to our knowledge

Chiang's model has only been applied to Chinese-English translation, it is unknown

how well hierarchical phrases can do as the only motivators of long-distance reordering

in a language pair like Japanese-+English that requies a lot of it.

2.5 Tree-to-string translation

Systems that decode by translating a parse tree bottom-up have recently come into

vogue. The decoder of Riezler and Maxwell III [20061 feeds dependency parse snippets

into a grammar generation component and scores with feature functions similar to

a phrase-based decoder, using dependency snippet transfer rules instead of phrase

pairs. Huang et al. [2006] offer a similar setup using parse-tree-to-string transducers,

and Liu et al. [2006] contribute a system using tree-to-string alignment templates.

In general, tree-based decoders must tackle difficult challenges in efficiency and

how to integrate varied information sources like a language model. This thesis avoids

such issues by incorporating a source-side dependency analysis in an existing phrase-

based decoder, which translates in an efficient left-to-right manner with an easily

extendable log-linear scoring model. Still, by decoding in a flat string-to-string man-

ner, we make at least theoretical concessions in preserving sentence meaning and

2In a Japanese->English, we might see a very similar phrase pair <[1] 0) [2, the [1] that [2]>.
We introduce a feature to handle this inversion in Section 5.6.2.



target-language grammaticality.

2.6 Tree-to-tree translation

Ding and Palmer [2005] focus on dependency-tree to dependency-tree translation

using a synchronous dependency insertion grammar induced from the training data,

but do not build a head-reordering model for flattening the resulting dependency tree,

so they systematically generate translations such as "foreign financial institutions the

president of". Correspondingly, their system could not model the head-initial to

head-final inversion crucial for Japanese- English translation. Lin [2004] developed

a similar tree-to-tree system based on assembling linear paths through a source-side

dependency tree, but like Ding and Palmer they incorporated no language model or

discriminative reordering model, which led to disappointing BLEU scores.

Cowan et al. [2006] stepped it up with a system based on Aligned Extended Pro-

jections, which consist of a pair of corresponding clausal tree structures extracted

from the training data using deep parsers for both source and target languages. This

system excels at clausal translation, but does not yet model how to reorder clauses.

Clausal reordering is not critical for their language pair, German-+English, but is

important when translating Japanese sentences, which often have deeply nested de-

pendencies ordered oppositely compared to English.

2.7 Dependency treelet translation

In their "dependency treelet" system, Quirk et al. [2005] parse the source side of

the training data, project these dependency trees onto the target side using word

alignments, then extract dependency treelet pairs. A treelet is defined to be an

arbitrary connected subgraph of the dependency tree. The decoder covers the source

dependency tree with treelet pairs bottom-up and scores hypotheses with a log-linear

model incorporating typical features, such as language model and word alignment

probabilities, and a novel order model.



Their order model assigns a probability to the word order of a target tree given a

source tree. This order model makes the assumption that the position of each child

can be modeled independently in terms of its position relative to its head (parent

in the dependency graph). Their features model whether a modifier is ordered to

the left or right of its head, and how far away, with features parameterized on word

and part of speech of the head and modifier. Quirk et al. [2005] train the order

model as a decision tree. Menezes et al. [2006] later upgraded it to a log-linear model

with features chosen to maximize performance on a development set. Chang and

Toutanova [2007] introduced a global order model that ranks n-best dependency tree

output of the treelet system using local features that capture head-relative movement

and global features that capture the surface movement of words in a sentence.

In Section 3.6.1, we introduce a similar set of features that model head-relative

movement using a source-side dependency parse. We additionally condition our fea-

tures on the case of the modifier and head, and simplify the model so it predicts only

if a modifier should be on the left or right side of the head. We eschew lexicalized

features in our model, but they could easily be added by further parameterizing our

features, which we leave as future work.

Menezes and Quirk [2007] improved on their initial treelet approach with the

"dependency order template" system that avoids the combinatorial explosion of re-

ordering treelets that they encountered in their 2005 effort, which necessitated strict

pruning of the search space. They introduce order templates, which are unlexical-

ized transduction rules mapping dependency trees containing only parts of speech

to unlexicalized target language trees. These order templates are extracted from

source-side dependency trees and word alignments of the training data.

At translation time, order templates are combined with relevant treelet transla-

tion pairs to construct lexicalized transduction rules. Menezes and Quirk cite two

advantages of this approach: the decoder needs only to consider reorderings that are

captured in some order template, and reordering knowledge can generalize to un-

common words because the order templates specify only part of speech. Our feature

functions play a role similar to order templates and share the positives: they aim the



decoder's beam so that correct reorderings are not pruned, and they can pick up the

fully-lexicalized phrase table and language model because our features condition only

on part of speech and case.

Xiong et al. [2007] also incrementally improved the treelet system of Quirk et

al. [20051 to support discontinuous output phrases and generalized treelets with

imbedded variables, in a manner reminiscient of Chiang's hierarchical phrases.



Chapter 3

Syntactic Feature Functions for

Phrasal Reordering

This chapter introduces the major contribution of this thesis: syntactic feature func-

tions for a state-of-the art phrase-based machine Japanese-+English translation sys-

tem that significantly improve reordering decisions. These features score English

translation hypotheses using a dependency parse of the source Japanese sentence. We

add many such feature functions, one per dependency relationship we wish to model,

and discriminatively train their weights. The most useful single feature increased

BLEU score 27.97-+28.35. Combining the three most useful additional features, we

achieved a 27.96-+28.54 BLEU increase.

We give a whirlwind picture of the Moses phrase-based translation system and

show where these new feature functions fit in the translation process. Then we detail

the feature functions themselves.

3.1 Moses phrase-based translation system

Phrase-based systems represent the state of the art in machine translation; phrase-

based systems, like Google's, have dominated the NIST Machine Translation Evalu-

ation, held yearly since 2001 [NIST, 2006].

Moses is another high-quality phrase-based translation system [Koehn et al., 2007].



Moses is free software and actively developed by many researchers around the world

(most notably at the University of Edinburgh) and has been used as a baseline system

for several major translation workshops [WMT Baseline, 2007; Fujii et al., 2007]. It

includes open-source implementations of everything needed to build a translation

system between any language pair. The most important of these components is the

decoder, which performs the actual search for the best Japanese translation of an

input English sentence.

3.2 Framing the search problem

The job of the decoder is to search for the best English translation e (of length I) of

a given Japanese sentence f (of length J). The decoder chooses the English sentence

with highest probability:

e = argmaxe. {Pr (e f1j) } (3.1)

Because the search space is all possible English sentences, formulating this search

problem efficiently is challenging, and will be an important topic of discussion later.

We can use Bayes' rule to rewrite the probability in Equation 3.1 as:

S= argmaxe {Pr (el) - Pr (fj(e) } (3.2)

Framing the search problem in this way, called the source-channel approach [Brown

et al., 1993], is appealing in theory, if we have access to the true probability distri-

butions Pr (ef) and Pr (fJ le{). In practice, to model Pr (e1), we use an n-gram

language model, and to model Pr (ffJle), we use phrase co-occurrence probabilities

learned during training. These methods provide poor approximations to the true

distributions, so the combination in Equation 3.2 may be suboptimal. One more

problem with this approach is that it is not clear how to extend this system with

more dependencies, like additional data or scoring functions.

To combat these problems, Och and Ney [20011 introduced a maximum entropy



model that directly models the posterior probability, and leads to the following deci-

sion rule:

e = argmaxei {Pr (ej fj ) } (3.3)

M

= argmaxi Z Amhm(eI, f j) (3.4)
m=1

In Equation 3.4, we have a set of M feature functions hm(ei, f J), m = 1, ..., M used

to score translation hypotheses. For each feature function, there is a model parameter

Am that gives a relative weight to the feature.

Now we have framed the translation problem in terms of writing feature functions

that can identify good translations and setting the weights for those features. We

can recover the source-channel approach as a special case if we make our first feature

function the log of the language model probability, and our second an estimate of

Pr (fJ le1) based on hidden phrasal alignments (covered in the next section) and co-

occurrence counts of aligned phrases in the training data. We can furthermore add as

many feature functions as we wish, if we think they may be aidant in distinguishing

good translations from bad. Before we introduce more feature functions in Section 3.4,

we must develop the phrase-based translation model that Moses is built on.

3.3 Phrase-based translation

To translate an input Japanese sentence, we will segment it into phrases, translate

each phrase into English, then reorder those phrases to produce the output English

translation. In the context of this discussion, a phrase means simply a contiguous

sequence of words in either language; it is not used in any linguistic sense. The build-

ing block of phrase-based systems is the phrase pair, which comprizes a Japanese

phrase and its English translation. Training our translation model consists of auto-

matically learning a phrase table from the parallel training corpus. For more detail

on this training process, see [Koehn, 2007].

To codify the notion of phrases into our translation model, we follow [Och and



Ney, 2004] and introduce a hidden phrasal decomposition by segmenting the Japanese

sentence fJ and English sentence el each into a sequence of K phrases (k = 1,... , K):

f l = f fjk-l+1,7 * fjk (3.5)

e k = e, ik_+l,.. ik (3.6)

We further introduce a hidden phrasal alignment 7r between the Japanese phrases

fgK and the English phrases 8K. This alignment is a permutation of the English phrase

positions 1, ... , K, so that ek and f k are translations of each other. We finally define

zk as the phrase pair (a pair of strings) that is used to translate the kth Japanese

phrase:

ek k (3.7)

Hence, in the decoding process, we simultaneously search for 1) the optimal seg-

mentation of the Japanese sentence into phrases; 2) the optimal English translation

for each phrase; and 3) the optimal way to order these phrases into an English sen-

tence. We use hidden variables z , a vector of the phrase pairs used, and 7rK, their

permutation from Japanese to English order, to help us score hypotheses. With this

model, our feature functions take the functional form

h(ef, fJ, izl, zf). (3.8)

3.4 Baseline feature functions

Our baseline Moses setup uses the following feature functions.

3.4.1 Language model

In our experiments, we used a 5-gram language model:

I+1

hLM (ef f, , ) = log Ip (ei ei- 4 ,..., i-1) (3.9)
i=1



The language model picks translations which look like grammatical English, with-

out regard to whether or not they are an adequate translation of the original Japanese

sentence.

Al-Onaizan and Papineni [2006] illustrated the inability of the language model

to discriminate correct reorderings by itself. They rearranged a corpus of English

sentences into Arabic word order, then tried to translate them into English with a

phrase-based decoder and no distortion model except an English language model.

As they increased the maximum reordering limit so that words could freely reorder,

English word order recovery rapidly deteriorated. While the language model is very

important in producing grammatical English, we must rely on complementary re-

ordering models to preserve the meaning of the original sentence.

3.4.2 Translation model

Moses models Pr (el fJ) by scoring each phrase separately:

K

hTM(e , f, 7r, z,) = log -p (zk fk+) (3.10)
k=l

In Equation 3.10, the phrase translation probability distribution is estimated by rel-

ative unsmoothed frequency in the training data. Moses also includes inverted prob-

abilities to model Pr (e{ fj), which are otherwise analogous to the above, and the

"lexical weighting" of each phrase, which is described on p. 5 of [Koehn et al., 2003].

These translation model features together pick translations which have all of the

right content words, but not necessarily in the right place (target language phrases

may be in the wrong order) or with agreeable dependencies (two phrase translations

might make sense independently, but be laughable together because of word sense

ambiguity).



3.4.3 Word and phrase penalties

These are simple features to count how many words long the hypothesis is:

hwORDPENALTY(e, f', 1r, ) = I (3.11)

And how many phrases long it is:

hpHRASEPENALTY(e1, , z) = K (3.12)

These features provide a straightforward method to tune output translation length.

One reason this is important is that our Japanese preprocessor splits sentences into

many more tokens than there are English words in an optimal translation.

3.4.4 Distortion penalty

This feature is roughly a measure of how far phrases have been reordered compared

to a monotonic translation. This is computed by the negative sum over the distance

(in the source language) of phrases that are consecutive in the target language:

K+1

hDISTORTION(e-, 1 , , z = E - - Jk-1 (3.13)
k=1

where j 0r is defined to equal 0 and jK+1, 1 is defined to equal J.

In a Japanese-+English system, this feature is of little help to distinguish quality

translations. Because of the vast difference in English and Japanese word order,

non-monotonic translation is the norm rather than the exception. For most of our

systems, this feature got a very low or negative weight (ADIsTORTION) after parameter

tuning. With a negative weight, this feature encourages non-monotonic translations.

If we consider language pairs with similar word order like French-+English, for

which the first phrase-based translation systems were developed, this distortion penalty

is extremely beneficial. In the words of Och and Ney [20041, it "simply takes into ac-

count that very often a monotone alignment is a correct alignment."



3.4.5 Local lexical reordering

Finally, Moses includes a set of features that improve local reordering decisions. They

model how often a phrase is translated monotonically relative to the phrase before

it, how often a phrase swaps place with the phrase before it, and how often a phrase

is translated discontinuously relative to the phrase before it. Additionally, analogous

features are included for modeling how a phrase is ordered relative to the phrase after

it.

Knowing whether a phrase prefers monotonic translation or to swap with a neigh-

bor is very useful for a language like Spanish, where these local lexical reordering

features give a significant gain in BLEU score, as shown in Appendix C of [Koehn et

al., 2007]. For example, in Spanish, adjectives follow the noun they modify; "green

salsa" is, deliciously, 'salsa verde' [Knight, 1999]. In a Spanish-+English translation

system, Moses's local lexical reordering features can give a higher score to translation

hypotheses that correctly swap adjectives to come before the noun they modify.

However, these features are not sufficient for Japanese-English translation. First,

a local reordering model offers little help to reorder verbs from the end of a Japanese

sentence. Often the Japanese verb must leapfrog many phrases to get to its English

proper spot between its subject and object. In this case, the Moses local reordering

features can only tell the decoder to reorder the verb, not to where.

Second, the scrambling property of Japanese means that contiguous phrases do

not necessarily have a relation to each other. Therefore statistics counting how a

phrase is ordered relative to the previous and next phrase are not very meaningful.

Furthermore, these counts are learned from phrase alignments induced from the train-

ing corpus. Based on our personal observations of our Japanese-English data, phrase

alignments in the training data are very noisy and not reliable for learning reordering

patterns.

Still, these local reordering feature functions have some utility for Japanese-+English

translation. One merit is that they can handle the agglutinative morphology of

Japanese verbs. To inflect a Japanese verb (to make it negative, past tense, polite, or

otherwise) one appends morphemes to the end of the verb. This is demonstrated by



segmented output from our Japanese preprocessor in Gloss 3.1. In this example, the

verb "gaze" has an ending that makes it negative together with a politeness marker,

and an ending that puts it into past tense together with another politeness marker.

(3.1) Lj . -eV LYL 2 L L:

I TOP stars Acc gaze at [polite] not [polite] [past tense] .

"I did not gaze at the stars."

It is natural to translate this sentence with phrase pairs: <)F\ l, I>> <a , the

stars>> < Y)I, gaze at>> < -At L 2, did not>. The local reordering feature

should identify that the inflection "did not" should swap with the verb stem "gaze

at", and that this verb stem should in turn swap with its object "stars". These two

reorderings lead to the correct permutation of the English phrases.

Notice that one word is often split over more than one phrase during translation

because of abundant Japanese morphology. Here, the verb 'EtJ -4 k L, fZ ' ("did

not gaze at") is translated as part of two distinct phrases: ' W ~Y' and 'I ± k -

Lf:'.

3.5 Beam search

It is clear that Moses needs long-distance reordering features to effectively translate

Japanese to English, but we must be careful that our features are efficiently com-

putable during the decoding process. This section introduces the decoding machinery

and the constraints it imposes on the structure of our features.

Moses, like most phrase-based decoders, performs the search in Equation 3.4 with

an iterative beam search [Koehn et al., 2007]. It is called a beam search because

the decoder explores the space of possible translations breadth-first, translating one

phrase at a time, but quickly discards very low-scoring translations. This leads to the

possibility of search errors, where the highest-scoring translation under our model is

not found. Practically, these errors are not a prohibitive problem; still, it is useful if

features can identify promising translations as early on as possible to prevent them

from being discarded.



The decoder keeps a stack of hypotheses. It expands each hypothesis in the stack

by translating one uncovered Japanese phrase, appending this translation to the end

of its work-in-progress English translation, and adding the new resulting hypothesis

to the stack. The Japanese phrase that was translated becomes covered in this

new hypothesis. In this way the decoder assembles English hypothesis translations

from left to right, translating one Japanese phrase at a time. The order in which it

picks Japanese phrases to translate determines the word order of the English output

sentence.

These are the critical data that each hypothesis contains:

* phrase pair translated by this hypothesis

* back link to the previous hypothesis that this one expands, which allows us to

recover the English translation

* bit vector representing which Japanese words have been translated

* vector of feature function scores

* score, computed by taking the dot product of the feature scores vector with the

feature weight vector

Let us take a look at examples of translation hypotheses for the preamp example

introduced in Chapter 1, reproduced here with spaces between words.

(3.2) 7p') T/ 7 3 U kj: 7, 1 f 7 41 V-4_ JOL09 L -C A GC T7P 4 _\WV]h7 t

Preamp 3- TOP input-Passive repr. signal-Acc amplify and AGC amp 4-to output

"The preamp 3 amplifies an input reproduction signal, and sends out to an AGC

amplifier 4."

After translating several phrases of the preamp example, this is a promising hy-

pothesis:



Preamp Hypothesis #149442

Expands #84738

Covers 1 ') 7>1 3 1 .................. < f i L > ........

Phrase pair <- Jtf"$ L, amplifies the>

Features < DISTORTION = -12, WORDPENALTY = 5, LM -

-25.821,... >

Score -101.988 + future cost - 103.270 = -205.258

(Ellipses represent uncovered words in the coverage vector.)

Hypothesis #149442 is expanded into many hypotheses, and among the best is

Hypothesis #318530:

To complete

that could next

this example, Table 3.1 lists a very small subset of the phrase table

be used to expand Hypothesis #149442.

3.5.1 Search efficiency

Because the search space of all possible English sentences is so huge, the Moses de-

coder takes a number of measures to keep the search process efficient. The first

is a hard limit on how far phrases can reorder. With a maximum distortion limit

MaxDistortion, the next phrase the decoder picks to translate must start within

MaxDistortion words from the leftmost uncovered word. For many language pairs,

this limit is important for high quality translations, and setting MaxDistortion > 6

begins to hurt translation quality [Koehn et al., 2005]. For Japanese-+English we

Preamp Hypothesis #318530

Expands #149442

Covers 7" 1) T /- 73 IJ <<Ajc1* 1 -tP 0 L ..~_ ...

Phrase pair <<k j] t L, f I~ -y, reproduced signal , which is>

Features < DISTORTION = -21, WORDPENALTY = 10, LM -

-40.422,... >

Score -102.947 + future cost - 102.049 = -204.995



7 with the
"_ through
" based on
a g c 7> 7 the agc amplifier
as 7' 7 agc ( automatic gain control) amplifier
ag c 7 > 7 including the agc amplifier

into
- on

to a

\ tfh tis output to the
B j output
f to output

Sttf 6 a outputs to the
2 tt t t to output the

Si t H i and outputs the result to the
6 awith

,the
_ be

Table 3.1: Phrase table excerpt.

found that having no distortion limit gave highest translation quality. However, de-

coding our test set with no distortion limit (defined as MaxDistortion = 0) takes on

average 37 seconds per sentence, which is 5 times longer than with MaxDistortion =

9. Thus there is an important tradeoff between quality and speed. (See Section 5.4

for distortion limit experiments.)

Each hypothesis is scored before it is added to the stack, and at each step, the

decoder prunes the stack to keep only the highest-scoring hypotheses. There is an-

other quality-speed tradeoff in setting the maximum size of the hypothesis stack. The

default stack size is 100; increasing this to 200 improves quality slightly (28.46-+28.63

BLEU) but also causes translation to take almost twice as long. One more optimiza-

tion Moses implements is to recombine identical hypotheses (as measured by which

Japanese words have been translated and end of the English translation), and keep

only the higher-scoring hypothesis. We now must formulize how to score a hypothesis

which may have a set of uncovered Japanese words yet to be translated.

We first decompose each feature function into a sum of the contributions from each

English phrase used in the translation. This allows us to calculate a feature's value



for a hypothesis by adding together 1) the contribution of the last translated English

phrase and 2) the previous value of the feature in the hypothesis this one was expanded

from. As a simple example, consider the word penalty feature, WORDPENALTY, of

Equation 3.11, which equals the number of words in the sentence. Let's say that a

hypothesis A is expanded into hypothesis B by adding English phrase C of length

C.length to the end. The value of B's WORDPENALTY feature is equal to the value

of A's WORDPENALTY feature plus the contribution of C, which is C.length.

A hypothesis's score is then the dot product of the feature scores vector with the

feature weight vector. In addition, because the pruning compares translations that

may have translated differing subsets of Japanese words, we also add a heuristic to

the score that estimates the future cost of translating the uncovered Japanese words.'

Unfortunately, many useful feature functions do not decompose nicely into contri-

butions from each used phrase pair, and we are unable to incorporate them into our

beam search. One approach to incorporate such global features, used for example by

Och et al. [2004], is to use them in an n-best reranking step. With this method, the

efficacy of the features is limited by the quality of the translations in the n-best list; if

the n-best list does not contain translations with the needed long-distance reordering,

there is no hope for the reranker to pick a good translation. As a result, Och et al.

could not achieve a significant improvement in Chinese-+English translation quality

with their global syntactic feature functions reranking a 1000-best list. Hence we will

focus our attention on designing only features that can be integrated directly into a

beam search.

Let us recap the constraints that the decoder imposes on the space of possible

feature functions:

* Must decompose into a sum of contributions from each phrase pair used trans-

lation.

* Each such contribution must be a function of only

'See [Och and Ney, 2004] for the derivation of such a heuristic, and [Koehn, 2007] for an expla-
nation of how it is implemented in Moses.



- The input Japanese sentence.

- Which Japanese phrase was last translated to expand this hypothesis, and

the English phrase used for their translation.

- A bit vector representing which Japanese words have been translated.

3.6 Long-distance reordering feature functions

With the previous discussion in mind, we aim to build long-distance reordering fea-

tures with multipronged merits:

1. Model reordering over an arbitrarily long distance

2. Consistently perform head-final to head-initial reordering

3. Effective even in the wake of Japanese scrambling

4. Resistant to noisy word alignments in training data

5. Applicable to any language pair

6. Computable efficiently in a phrase-based decoder

Our features will use a dependency parse and count the number of times a certain

dependency pattern occurs. One example is a feature that counts how many times

in a sentence a verb is translated before its object. If we give this feature high

positive weight, it will cause the decoder to prefer sentences with verbs preceeding

their objects, as is correct English. If instead we give this feature negative weight,

the decoder will prefer sentences with verbs coming after their objects, as would be

preferred for translating into other languages, like Korean, Hindi, or another Subject-

Object-Verb language.

Discriminative training can automatically assign optimal weights to optimize trans-

lation quality on a development corpus [Och and Ney, 2001]. In this way, our transla-

tion system does not need to know that English is a Subject-Verb-Object language,

or any grammatical property of English; these properties are learned automatically



during discriminative training. To emphasize the applicability of these features to

any language pair, we use source and target language to refer to the languages we

are translating to and from.

We also introduce two more types of features in addition to these pairwise depen-

dency pattern counters. One encourages cohesively translating all words of certain

linguistic phrases before moving on to another phrase, and one discourages reordering

phrases across punctuation marks.

We now introduce notation that will allow us to formally define these features. We

view each hypothesis as a state transition, wherein one new phrase is translated. As it

translates left-to-right one phrase at a time, the decoder assembles a sequence of state

transitions. When all source phrases have been translated, the decoder's sequence of

state transitions maps to (e{, f J, 7rf, z K, which feature functions score. In line with

the discussion in Section 3.5.1, feature functions that can be efficiency implemented

in the decoder must decompose into contributions from each state transition.

We use the variable q to denote a hypothesis. We define qk as the kth hypothesis

in the decoder's state transition sequence underlying (e{, f J, 7K, zf). Then we can

define efficiently-computable feature functions in the form

K

h(e, f J, r , z ) = x(f', qk). (3.14)
k=1

x(f J , qk) is a real-valued decomposed feature function that calculates the

feature we wish to model of the state transition qk in the context of the original

Japanese sentence f 1 .

Variable k of Equation 3.14 has no meaning in the context of the decoder's beam

search, so we write our new features in terms of some general hypothesis q:

X(fiJ, q) (3.15)



We define a hypothesis (or state transition, if you prefer) q to contain these fields:

q.source : source language phrase

q.target : target language phrase

q.start : index of the first word of the phrase in the source sentence

q.end : index of the last word of the phrase in the source sentence

q.coveragef : q.coveragej = 1 if the jth source word has been translated, 0 otherwise.

(Range [q.start, q.end] is covered in q.coverage.)

To give a simple concrete example of this notation, Equation 3.16 gives the definition

of the decomposed feature function for the WORDPENALTY feature (Section 3.4.3),

which counts how many words are in the target side of the phrase pair.

XWordPenalty(fi, q) = q.target.length (3.16)

3.6.1 Pairwise dependency order

These features require the input sentence to have the following annotations:

* words grouped into chunks, where a chunk roughly corresponds to a short

linguistic phrase.

* part of speech of each chunk

* grammatical case of each chunk

* dependency of each chunk

Chunks are loosely defined; they could be any non-overlapping grouping of con-

tiguous words. In the same way, when we translate Japanese, "words" are loosely

defined. As we will see in examples, our Japanese preprocessor (Section 5.2) splits

sentences with high granularity into small tokens, often splitting at morpheme bound-

aries. Still we use "word" to describe each token of Japanese input, even though many



of them could not be considered proper words. If we were to translate from English,

it might work well to consider each English word as its own chunk.

We define a chunk x to contain these fields:

x.parent : chunk that this chunk modifies or NULL

x.children : list of chunks that modify this chunk

x.pos : part of speech

x.case : case

x.start : index of the first word of the chunk in the source sentence

x.end : index of the last word of the chunk in the source sentence

Chunks are important because they allow our features to consider reordering

groups of words together. To illustrate, Gloss 3.3 shows our previous stargazing

example (Gloss 3.1) divided into chunks.

(3.3) ( b 11) (9- -e) (ULY) I± / -L k)

(I TOP) (stars Acc) (gaze at [polite] not [polite] [past tense])

"I did not gaze at the stars."

All of the tokens that belong to the verb are grouped in one chunk. The topic

marker and accusative case marker (which marks the object) are also grouped together

in chunks with their noun. Resulting chunks like (1M?) (stars-Acc) are called bunsetsu

(fZi) in Japanese grammar. A bunsetsu consists of a content word and affixed

function words like case markers or verbal morphology [Suzuki and Toutanova, 2006].

One peculiarity to note in Gloss 3.3 is that the period is not in any chunk. Our

features gracefully ignore any words that are not in chunks. Furthermore, the depen-

dency structure can consist of multiple subtrees that are not connected. The only

restriction that we impose on the dependency graph is that each chunk have at most

one parent; that is, each chunk modifies at most one other chunk.



We can now formulate our objective in reordering Gloss 3.3 thusly: irregardless

of how the decoder segments the sentence into phrases, we would like as much of

the verbal chunk '~S -L A, kT L z' to be translated before the accusative chunk

'Se' as possible. To this end, we will define a feature function VERBBEFOREACC

that counts up what fraction of the verbal chunk is translated before its accusative

modifier.

Example: Defining the VERBBEFOREACC feature

We begin with two indicator functions that identify chunks relevant to the VERBBE-

FOREACC feature:

is_accusative(x) = 1, if x.pos = 'Noun' and x.case = 'Acc'; (3.17)

0, otherwise.

is verb(x) = if x.pos = 'Verb'; (3.18)
0, otherwise.

Then we define two helper functions that compute what fraction of some chunk was

allready translated before q (Equation 3.19), and what fraction was translated by q

(Equation 3.20).

frac_already_covered(x, q)

num. words in x covered in q.coverage J and not in range [q.start, q.end]
num. words in x

(3.19)

frac translated(x, q) = num. words in x in range [q.start, q.end] (3.20)
num. words in x

Finally, we define XVERBBEFOREAcc(fiJ , q), the decomposed feature function for VERBBE-

FOREACC. For every dependency between a verb and its accusative object in the

sentence, Equation 3.21 counts up the fraction of the verbal chunk that has already

been translated times the fraction of the accusative chunk is translated by q.



We let X = set of chunks that overlap [q.start, q.end] according to dependency parse of fj.

is_accusative(x) - is_verb(x.parent)

XVERBBEFORAcc(fJ , q) = frac_ already_ covered (x.parent, q) (3.21)
xEX

-fractranslated(x, q)

Next we look at a how to compute XVERBBEFOREAcc(f, q) for an example hypoth-

esis.

Example: VERBBEFOREACC in action

Consider Figure 3-1, which is the same as Figure 1-1 with part of speech and case

annotations. Japanese chunks are separated by spaces.

U)7Y:) 3tt k-W J1f . 1 -1"1- AGC7 -_.)14 t :t-T6
preamp 3-TOP been input repr. sig.-Acc amplify and AGC amp 4-to output

POS Noun Noun Verb Noun Verb Noun Verb
Case TOP Acc Lat

Figure 3-1: Annotated preamp dependency parse.

Now for illustration we will compute the value of VERBBEFOREAcc for Hypoth-

esis #318530 first shown in Section 3.5 and repeated here with chunks marked.

Notice that q.source covers two chunks on the Japanese side. Its first four words,

')J ;1 * f 7', completely cover the second chunk, and its last two words, 'I= f

-y', cover the first two words of the chunk ( f ~ ).

Preamp Hypothesis #318530

Expands #149442

Covers (1 ') T' /) (3 11) (<)« j ; ft .) (~: - > ) (_1Y L

...> (..............) ( > .
Phrase pair <A«kj f1 Is4tfg {A-q, reproduced signal , which is>

Features < VERBBEFOREACC =?,... >

Score -102.947 + future cost - 102.049 = -204.995



To compute XVERBBEFOREAcc (fJ, q), we sum up the contributions of each of the two

covered chunks.

* Chunk (Jti j * i ) has part of speech 'Verb' and no case, which does not

match the kind of child we are looking for (a nounal chunk with accusative

case), so makes zero contribution.

* Chunk (t L ) matches the kind of child we are looking for, with part

of speech 'Noun' and case 'Acc'. The phrase translated in q, < - ;8 f

4I 4 ->, covers 2/3 of (41 C 4- ) ("'- 1-4" is covered while ""

is uncovered), so frac_translated((j: A - L), q) = 2/3.

Its parent in the dependency tree, (J$fi L 7), has part of speech 'Verb' which

matches the kind of parent we're looking for. In the hypothesis, 'J J$ L'

has already been covered, which is 2/3 of the whole chunk ( I$f L T), so

frac_already_ covered((0If1 L T), q) = 2/3.

Hence XVERBBEFOREAcc (fl, q) = (2/3)(2/3) = 0.444.

To compute the value of VERBBEFOREACC for Hypothesis #318530, we add

0.444 to the value of VERBBEFOREACC of the back-linked Hypothesis #149442,

which was 0. Therefore the feature vector contains VERBBEFOREACC = 0.444.

The positive value indicates that this hypothesis contains a verb coming before its

accusative dependency.

General definition

We would like to build a template for features like VERBBEFOREACC so that we

can model the dependency orders of other parts of speech and case combinations. In

general, we parameterize our pairwise dependency order features on a parameter s



with four fields:

s.parent_pos : part of speech of parent chunk, or 'Any'

s.parent_case : case of parent chunk, or 'Any'

s.child_pos : part of speech of child chunk, or 'Any'

s.child case : case of child chunk, or 'Any'

For a given s, we can define two features. The first counts how many times a

parent chunk with part of speech s.parentpos and case s.parent case is translated

before its child with part of speech s.child_pos and case s.child_case. The second

counts the opposite: how many times a relevant child chunk is translated before its

parent chunk. These two formulations seem redundant, but we found both to be

useful when integrated in the decoder.

We begin with two indicator functions in the same vein as is_accusative and

is_verb (Equations 3.17 and 3.18) that identify chunks that match the parent or

child settings of parameter s.

matches parent (x, s) = 1, if x.pos = s.parent_pos and x.case = s.parent_case;

10, otherwise.

(3.22)

matches child (, s) = 1, if x.pos = s.child_pos and x.case = s.child case;

0, otherwise.

(3.23)

We also reuse the definitions of frac_already_covered and frac_translated in Equa-

tions 3.19 and 3.20.

We design XPARENTBEFORECHILDTEMPLATE(f J , q, s) in Equation 3.24 to return the sum

of the fraction of chunks translated before their children during the translation of



phrase q.source. That is abstruse, but when the decoder sums the contribution from

each phrase, it gets the count of chunks (or partial chunks) translated before their

children (or partial children).

Again let X = set of chunks that overlap [q.start, q.end] according to dependency parse of fjJ.

XPARENTBEFORECHILDTEMPLATE(( J, q, s)

matches_child(x, s) -matches_parent(x.parent, s)

= Z frac_already _covered(x.parent, q) (3.24)
XX

- frac _translated(x, q)

To get VERBBEFOREAcc, for example, we would instantiate PARENTBEFORECHILDTEM-

PLATE and set parameters s.parent_pos = 'Verb', s.parent_case = 'Any', s.child_pos =

'Any', and s.child_case 'Acc'.

The second feature CHILDBEFOREPARENTTEMPLATE, given in Equation 3.25, is

similar to PARENTBEFORECHILDTEMPLATE but counts the opposite ordering: how

many chunks are translated before their parents.

XCHILDBEFOREPARENTTEMPLATE (f , q)

matches_child(y, s)

= matches _parent(x, s) - frac _ already covered (y, q)
X me yE.children

r frac_translated(x, q)

(3.25)

Implementation

We take several measures to implement these features efficiently in Moses. Let us

say we are translating a sentence with M chunks. First, before translation begins

we precompute a map that maps each word position to its chunk index between

0 and M - 1. Second, we maintain a vector chunk_coverageJ in each hypothesis

where and each chunk_coveragem holds the number of words in the mth chunk



that have been translated. These data structures can be updated from the previous

hypothesis in time linear in the length of the input sentence, and afford computing

XPARENTBEFORECHILDTEMPLATE(fi, q , ) and XCHLDBEFOREPARENTTEMPLATE(fl, q) also in time

linear in the length of the sentence.

To integrate these features into Moses, we first need a way to mark up the in-

put sentences with dependency information. We defined a set of tags that can be

appended to any word to indicate whether it is a head, what chunk it belongs to,

its dependencies, its part of speech, and its case. Then we defined a new input

type for Moses called DependencyTree, which is a subclass of the default input type

Sentence. Before translating, DependencyTree strips away the dependency annota-

tions and builds an internal representation of the chunks defined in the sentence and

their dependency structure. These internal representations can quickly be accessed

to compute our feature functions.

Below is the preamp example annotated with its dependencies in DependencyTree

input format.

7" ') 7 __head__(O,O)__pos__(n) 3__head__(1,2,0)__pos__(n) __case__(top)

It Ahf L __head__(3,6)__pos __(v) *1 / ff f-__head__(7,9,4) __pos__(n) __case_ (acc

-4tAJi L__head__(10,12,8)__pos_ (v) 7 A GC 7/1

4__head__(13,17)__pos__(n) __case__(lat) 16 ±- -4-7i __head__(18,19,11,11,16)__ pos__(v)

Notation - __head__(7,9,4) __pos__(n)__case_(acc) indicates that 'f-' is

head of a chunk that spans the (zero-indexed) 7th to 9th words ('i 1~A - '), and

is modified by the chunk that is headed by the 4th word (' ').

3.6.2 Chunk cohesion

The motivation for this feature is that a chunk should be translated completely before

words from other phrases are interspersed. This feature CHUNKCOHESION counts

up how many chunks have uncovered words remaining when a different chunk is

translated. With a negative weight (which we denote ACHUNKCOHESION), it encourages

chunks to be translated cohesively without interruption from other chunks. This is



similar to the cohesion feature developed by Cherry [2008], which counted how many

times any subtree of the dependency tree was interrupted. Cherry's cohesion feature

is complimentary to ours.

Definition

We define a partially covered chunk to be one with at least one uncovered word. We

let previous_partially _covered be the number of partially covered chunks according

to q.coverage J before q.source was translated and current_partially_covered be the

number of partially covered chunks after q.source was translated.

XCHUNKCOHESION(fi, q) = max(current _partially _covered

- previous _partially_ covered, 0) (3.26)

Implementation

Similar to the pairwise dependency features, the chunk cohesion feature is easily

computed if we maintain a bit vector in each hypothesis that holds whether or not

each chunk has any uncovered words.

Example

Here is an example that translates the next phrase in an incohesive way.

The back-linked Hypothesis #149442 has two partially covered chunks: (......

L) and (i $ L ... ). For an expanded hypothesis to incur no cohesion penalty,

Preamp Hypothesis #318478

Expands #149442

Covers (1 97T> 7- ) (3 U") (<AJ > ...... ) ( ...... . ) (itIi L

) (..> .............. ( . ) .. .. >..

Phrase pair « fi , input to a>

Features < CHUNKCOHESION =?,... >

Score -103.086 + future cost - 102.990 = -206.077



it would have to translate some of one of those two chunks. Hypothesis #318478,

however, translates < Ai > next and thus adds a third partially uncovered chunk

(iA J ... . .. )
Hence XCHUNKCoHESIoN(f, q) = 3 - 2 = 1, and the CHUNKCOHESION feature of

Hypothesis #318478 has value 1 as this is the first cohesion violation seen in the path

leading to this hypothesis.

3.6.3 Reordering across punctuation

It is often incorrect to translate a word across a punctuation mark, like a comma or

quotation mark. This feature PUNCT counts up how many times a phrase is reordered

across a punctuation mark. If its weight APUNCT is negative, it discourages reordering

across punctuation.

Definition

To calculate this feature, first we let first_gap be the position of the leftmost un-

covered word in q.coverageJ before q.source was translated and next_punct be the

leftmost punctuation after first_gap. Hence, in order to not cross punctuation, the

next translated phrase must either come completely before next_punct, or include

next_punct and include all uncovered words left of it. The first two regimes of

Equation 3.27 express the inverse of these cases.

1, if next punct < q.start;

XPUNc T (f, q) = 1, if q.start < next_punct < q.end and q.start - first_gap;

0, otherwise.

(3.27)

Implementation

Before beginning beam search in the Moses decoder, we precompute a bit vector pJ

where pj is 1 if the jth word of the input sentence is a punctuation mark, and 0



otherwise. Then first_gap and next_ punct can be computed in time linear to the

length of the sentence.





Chapter 4

Reordering before translating

We saw in Chapter 3 that one weakness of phrase-based translation systems is per-

forming the long-distance reordering required when translating from Japanese to En-

glish. One way to improve word order in translation output is to reorder Japanese

sentences into a more English-like word order in a preprocessing step before translat-

ing. Wang et al. [2007] recently presented good results performing similar preordering

for Chinese-English translation, and others have succeeded with different language

pairs [Li et al., 2007; Collins et al., 2005; Kanthak et al., 2005].

We start out by motivating why pre-translation reordering, which we call pre-

ordering, is a good idea. Then we present two ways to reorder Japanese into an

English-like word order. In the first, we split the Japanese at punctuation and the

topic marker 'J:', then simply reverse the word order of every segment in between. In

the second, we use a Japanese dependency parser and several linguistically motivated

rules to transform certain Japanese grammatical structures so their surface form has

an English word order. Both preorders improved translation quality, as will be shown

in Chapter 5.

4.1 Motivation for preordering

If we reorder the Japanese training sentences (and unseen Japanese sentences before

translation) into a more English-like word order, we expect a phrase-based system



trained on this new parallel training data to outperform a baseline system trained on

the original Japanese sentences. This is because the features used in phrase-based

systems (described in Section 3.4) are most effective when not much reordering is

required during translation. The preordering step alleviates the need for long-distance

reordering during the translation process.

For instance, we noted previously that our Japanese-English word alignments

tend to be poor in our baseline Moses system. One plausible advantage of reordering

Japanese sentences into a more English-like word order before training the system

might be improved word alignment quality. This is because Japanese and English

phrases that are translations of each other will be in similar positions, and the word

alignment algorithm can safely prefer alignments between words whose position is

similar. We expect better word alignment to result in a more accurate phrase table

and better word choice in translations.

We implement the following preordering methods in a way that maintains depen-

dency relationships during the reordering. Hence we can output a pseudo-Japanese

preorder with dependency annotations that are consistent with the dependencies of

the original Japanese sentence.

4.2 Reverse preordering

English is head-initial. Japanese is head-final. So reversing the word order of a

Japanese sentence could be a good start towards an English-like order. We factor

out the commonality that the topic of English and Japanese sentences both come at

the beginning by reversing words before and after the topic marker 'IW' separately.

Punctuation is kept in the same place.

We begin by tokenizing the sentence with the Mecab [Kudo, 2007] morphological

analyser, then follow these steps:

1. Split the Japanese sentence at punctuation into a list of "segments".

2. Further split each segment at 'U5', the topic marker, to get a pre-topic segment



(which ends with 'W') and post-topic segment. The motivation is that the topic

comes at the beginning of both Japanese and English sentences, and should not

move to the end.

3. Reverse the order of the words in each segment, so each segment reads back-

wards.

4. Concatenate the segments and punctuation back together in their original order

in the sentence.

We call this reordering the REV preorder. Let us follow these steps to reorder the

preamp example, reshown in Gloss 4.1 with words separated by spaces and segment

boundaries marked by II.

(4.1) 7JP)T,> 3 7P I AllJ f -/? 1 * L T

Preamp 3- TOP || input-Passive repr. signal-Acc amplify and

A GC 7 '> 7 4 f- 1 It o

AGC amp 4-to output II

"The preamp 3 amplifies an input reproduction signal, and sends out to an AGC

amplifier 4."

The topic segment is ' 7 ') 7 ' 7 3 1t', which is reversed into 'I t 3 1 ') 7 '> 7"'. The

middle segment is also reversed, and these two segments are concatenated together

with the final period to get Gloss 4.2, the final REV preorder.

TOP-3 preamp output to 4 amp GCA and amplify Acc-repr. signal Passive-input

As noted in Chapter 1.5, this REV preordering could be successfully translated into

English monotonically by adding only a few auxiliary words: "The 3 preamp outputs

to 4 amp ACG and amplifies the reproduction signal that has been input."

We can analyze this reverse ordering as performing both local and long-distance

movement. Long-distance movement can be seen in the verb 't± 7 T .' (output)

moving from the end of the sentence to the beginning of the sentence. This long-

distance reversal is effective in transforming head-final verb and noun phrases to be



head-initial as they are in English. Local movement can be seen in the verb 'tf 7J

*f ' (whose tokens are literally, output do [passive] [past tense]) reordering to 'f.

*I A J' ([past tense] [passive] do output). This local reordering is effective for

verbs because most English auxiliaries precede the verb they assist, while Japanese

auxiliaries and inflections follow the verb their verb.

This naive REV does have two significant problems. First, subjects marked by

'be', the Japanese subject marker, are reordered to follow their verb. An example

of this problem is shown later in Section 4.4.1. We could have chosen to also split

segments at 'h', but this would break the word order if the sentence contained a

relative clause with ' " in it. The second problem is that compound nouns are

reversed, and English and Japanese compounds already have the same structure. In

reversed Gloss 4.2, ' t P-' (reproduction signal) has been reordered into '1'4-

4iL' (signal reproduction), which is clearly a worse order than the original.

4.3 Dependency tree preordering

In this section we present a more sophisticated way to reorder Japanese into English by

flattening a dependency tree parse of the Japanese. We start by running the sentence

through Mecab, which tokenizes and tags each word with part of speech. We split

the sentence into segments at punctuation marks1 , apply our reordering technique

to each segment separately, and in the end concatenate the reordered segments and

punctuation (in the same order they appeared in the original sentence) together. We

call this reordering the CABOCHA preorder.

To reorder a segment, we first parse it with the Cabocha Japanese Dependency

Structure Analyzer [Kudo and Matsumoto, 2002]. The output of Cabocha is a list of

chunks. These chunks correspond to the notion of chunk we defined in Section 3.6.1:

a content word (usually the head) and affixed function words like case markers or

verbal morphology. Each chunk contains the following information:

'We consider as punctuation marks: , , . ?? ! : ;< ><> 0 [1 [ > > () [1
I - [] {}(o



. ID number

* Start and end position in sentence

* Chunk that this chunk modifies (in other words, parent chunk)

* Position of head

* Position of the last non-punctuational word

From this list of chunks, we can construct a dependency tree with a node for

each chunk and an edge for each dependency. Because of how Cabocha constrains its

dependency model, all of a node's children precede it in the sentence. As a result, the

root node is always the final chunk of the sentence. Figure 4-1 shows the dependency

tree constructed from the preamp example (once the period at the end has been

split away), with each chunk's head underlined and its part of speech listed. The

dependency relations are analogous to those previously shown in Figure 3-1.

output
verb

3 tl i L T AG C 7>1 4\
3- TOP amplify AGC amp 4-to

number noun verb noun

preamp repr. signal-Acc
noun noun

input-Passive
verb

Figure 4-1: Dependency tree for preamp example.

We reorder a Japanese segment in two steps:

1. Flatten the dependency tree according to four rules.



2. Reverse the word order within each chunk.

To flatten the tree we decide for each node into which position among its children

to flatten. Algorithm 1 shows the recursive function flatten(chunk) that returns an

ordered list of chunks containing chunk and all of its descendants. The crux of the

algorithm is determining where chunk should be placed among its children. All non-

verbs are placed before their children, which induces a head-initial word order. The

placement of verbs is determined by going down the following list:

1. Immediately after rightmost topic or subject, if it exists.

2. Otherwise, immediately before leftmost object, if it exists.

3. Otherwise, immediately after rightmost verb, if it exists. This is to prevent

verbs from leapfrogging verbs that preceded them that share only a coordinative

dependency.

4. Otherwise, before all children.

We reorder a segment by calling flatten on the root node of its dependency tree,

and finally reversing the word order within each chunk. The resulting CABOCHA

preorder for our preamp example is shown in Gloss 4.3.

(4.3) 1 3 7' ') T , W t LJf T I -. ft ChMt -\ 4 T G C Ao

TOP-3 preamp output and amplify Acc-repr. signal Passive-input to 4 amp GCA

As with the REV preorder, we can add auxiliaries to the gloss of the CABOCHA pre-

order to form a correct translation: "The 3 preamp outputs the amplified reproduction

signals that has been input to 4 amp ACG." The placement of the main verb "output"

is questionable; it should probably come after "amplify", with which it coordinates,

but our rules put it immediately after its subject, "preamp 3". One fix would be to

never place verbs farther left than their leftmost child verb. The verb "amplify" has

been placed correctly before its object "reproduction signal". The head-final noun

phrase 'A\J ; ft ]/= i41 1V' (input-Passive reproduction signal) successfully

reordered to be head-initial '~ T h * ; fAjJj' (signal reproduction Passive

input).



Algorithm 1 Calculate flatten(chunk) to flatten a Japanese dependency tree into
English-like word order
Ensure: ordered_words is an ordered list containing chunk and all descendants.

{First, choose where to place chunk into its children.}
pos z part of speech of head of chunk
ordered_children e list of children of chunk, ordered as they were in original sentence
if pos = 'Verb' and a child has a subject marker 'h' or topic marker 'W1' then

insert chunk into ordered_children after rightmost child subject or topic
else if pos = 'Verb' and a child has an object marker '%' then

insert chunk into ordered_children before leftmost child object
else if pos = 'Verb' and a child has head with part of speech 'Verb' then

insert chunk into ordered_children after rightmost child verb
else

insert chunk into beginning of ordered_children.
end if
{Second, recursively flatten each child.}
ordered_words = [ ]
for all child in ordered children do

if child = chunk then
append child to ordered_words

else
append flatten(child) to ordered_words

end if
end for



Thanks to its systematic head-final to head-initial inversion, we found that the

CABOCHA preorder tended to closely match English word order. We demonstrate in

Section 5.5 that CABOCHA dominates REV and BASELINE (no reordering) preorders

in translation quality when translating monotonically (that is, not allowing reordering

other than what has already been reordered in the preorder). We will now take a

look at examples of CABOCHA and REV preorders and what it looks like to translate

them monotonically.

4.4 Preorder examples

On the next two pages, we present a pair of example sentences reordered into REV and

CABOCHA preorder. Each example shows a gloss of BASELINE, REV, and CABOCHA

preorders. Under each gloss is the monotonic translation of the preorder (using Moses

trained on equivalently preordered data with its baseline set of feature functions). The

first example 4.4.1 causes hiccoughs for both REV and CABOCHA, and the second

example 4.4.2 is reordered correctly to the same word order with both preordering

methods.



4.4.1 Example: Thwarted by lock release pins

Reference: The lock release pin is set to a longitudinal length so that it does not abut
against the front wall inner surface of opening 26.

B A SELIN E .............. ....................................................

(4.4) "3 Mf;[f, IZ:l bl h E 26 0) mU Ni _z -1 N
Lock release pin Nom opening 26 Gen front end wall inner surface to abut

do not way of longitudinal direction Gen long -ness to set Passive Present.

"The lock is released until when the lock release pin opening 26 of the front wall abut
against the inner surface such that in a front-to-rear direction."

The monotonic translation has no chance to preserve the meaning of the original
sentence because the word order is unsalvageable.

R E V .................. ........................................................

(4.5) 16 - - a tZ_ El R 0) V 9
Present Passive set to -ness long Gen direction longitudinal

of way not do abut to inner surface wall front end Gen

26 MC bIZ/ f RT) ' .
26 opening Nom pin release lock .
"Is set at a length of the longitudinal direction so as not to abut against the inner
surface of the front end wall of the opening 26 and a pin is unlocked."

The subject of the sentence, "release lock", is reordered to the end of the sentence, as
is a forementioned systematic problem with the REV method.

C ABO CHA .............. ....................................................

(4.6) ,16 -Z il ; L - Rl - &

Present Passive set to -ness long Gen direction longitudinal

Nom pin release lock of way not do abut to inner surface

Up HUM 0 I 26
wall front end Gen opening 26 .
"Is set to a length of the longitudinal direction of the release pin locked so as not to
abut against the inner surface of the front end wall of the opening 26."

Excellent, except that "release lock" should appear at the beginning of the sentence.
The problem is that "release lock" needs to be both the subject of "abut" and the
object of the passive "set", but appears only once in the Japanese sentence. The
CABOCHA preorder algorithm, based on the dependency tree, chooses to put "release
lock" in the subject position of "abut" instead of "set", which would work better here.



4.4.2 Example: Smooth clockings

Reference: Register 35 has a function of delaying the signal Not Taken for 1 clock
cycle.

B A SE LIN E .....................................................................

L, , 97 35 tI , f$-- NOTTAKEN 4- 1 ~ 7 ") 3 ~ 7 o
Register 35 TOP , signal Not Taken Acc 1 clock delay Causative function Acc provid,

Register 35 comprises a signal NOTTAKEN a delay of one clock period.

R EV ................ ............. ........ ......................................

(4.8) 1i:35 L, : 9 7 i " 7 3 1 % NOTTAKEN
TOP 35 register , provide Acc function Causative delay clock 1

signal.

Acc Not Taken

"Register 35 has a function of delaying one clock predicts NotTaken signal."

The monotonic translation is good, with exception that "predicts" has been strangely
inserted.

C A BO CHA ......... .........................................................

(The preorder is identical to REV.)

(4.9) 12 35 L : 9, , u "] , 1 ;k NOTTAKEN
TOP 35 register , provide Acc function Causative delay clock 1

signal.

Acc Not Taken

"Register 35 is provided with a function for delaying one clock predicts NotTaken
signal."

Even though the preorder has correct word order, the monotonic translation is poor
because "provide" is needlessly made passive.

(4.7)



Chapter 5

Experiments

This chapter describes the setup of our Japanese--English Moses system and the

experiments we performed with it to measure the effectiveness of the new feature

functions presented in Chapter 3 and the reordering preprocessors of Chapter 4.

Overall, our best system combined a tuned selection of feature functions with our

reverse preprocessor to increase BLEU score 27.96-+28.74.

5.1 Training data

Phrase-based translation systems require a large corpus of parallel text to build their

translation model, and the larger the corpus, the higher translation quality. Fortu-

nately, Masao Utiyama has spearheaded creation of two very large parallel Japanese-

English corpora in the patent and news domains. Our system is trained on 58.6

million words (measured on the English side) of parallel text, 53.5 million of which

are patent data. The training corpus includes:

* Japanese-English Patent Parallel Corpus [Utiyama et al., 2007] training set

provided for the NTCIR-7 Patent Translation Task [Fujii et al., 2007], 53.5

million words of Japanese-English patent data.

* Japanese-English News Article Alignment Data [Utiyama and Isahara, 2003],

3.6 million words from the Yomiuri Shimbun and Daily Yomiuri newspapers.



* Tanaka Corpus [Tanaka, 2001], 1.2 million words of sentences collected by Ya-

suhito Tanaka's students.

* EDICT Japanese-English Dictionary [Breen, 1995], 0.45 million words from a

general-use dictionary.

We trained a 5-gram language model on only the English side of the Patent Parallel

Corpus training set. We use the 915-sentence development (dev) and 899-sentence

test (test) sets, both single-reference, supplied for the NTCIR-7 Patent Translation

Task [Utiyama et al., 2007]. These 1814 sentences were held out from the Patent

Parallel Corpus training set but come from the same collection of patents.

5.2 Preprocessing

Japanese is written without spaces, so we use the Mecab [Kudo, 2007] morphological

analyser to tokenize the Japanese data (add spaces between words). We further

tokenize punctuation using the Moses script tokenizer.perl. We normalize wide-

character numbers to their ASCII (the patent data contain many wide-character

numbers) and discard sentences longer than 100 words. As is the recommended setup

for Moses systems, we lowercase all English words during preprocessing, and recase

words as a postprocessing step using a recaser provided with Moses [WMT Baseline,

2007].

When preprocessing development or test data for translation by Moses, the final

step is to annotate each sentence in our DependencyTree input format described in

Section 3.6.1 so that the decoder can read it as input.' The chunking, dependency

'Moses already supports annotation of the input in two forms that we did not use in these
experiments. The first is its flagship "factored translation" capability, where one can translate not
just surface form but also build phrases with part-of-speech, stemmed form, or other factors. In
preliminary experimentation, we found that using Mecab part of speech as an factor did not lead to
a significant BLEU increase.

The second advanced Moses feature is "confusion net" decoding, where one can pass multiple
candidates for each source word as input, could be more useful. Dyer [2007] translates confusion
nets wherein each word has its surface form and various stemmed forms as candidates, and found
that this improved quality when translating from morphologically complex languages. This technique
could improve translation of rarely-seen conjugations of Japanese verbs.



parse, and part of speech tags are the result of the process described in Section 4.3.

Each chunk's grammatical case is determined by looking up the last word in the chunk

and its part of speech in Table 5.1. An explanation of each case will be given below

in Section 5.6

Last word and POS Case Abbreviation

hb 1Ji -4WJ Nominative 'Nom'
t1 -t w a Topic 'TOP'

S7 J-i-- V Accusative 'Acc'
0) -a-A- LT Genitive 'Gen'
S1 a - M 1f6i Lative 'Lat'

S J fi] -J f] Dative 'Dat'
Anything else 'None'

Table 5.1: Select Japanese postpositions and the case they mark.

5.3 Automatic evaluation metrics

We use BLEU score on our test corpus to evaluate translation quality of our

baseline and modified Moses systems. Designed by Papineni et al. [2001], BLEU is

ubiquitously used to compare machine translation output across systems and is the

official evaluation metric for the NIST and NTCIR machine translation evaluations.

BLEU compares machine translation output to reference translations. The more

similar they are, the higher the score, which ranges from 0 to 100. Similarity is

measured by n-gram precision; the more words, bigrams, trigrams, and 4-grams

from a translation that appear in the reference, the better. Because n-gram precision

does not directly model long-distance word order, it is unclear whether or not BLEU

can account for differences in word order between translations [Callison-Burch et al.,

20061.

Lavie and Agarwal [2007] introduced another automatic evaluation metric called

METEOR, which, unlike BLEU, explicitly accounts for the alignment between match-

ing words of the reference and the translation. One component of METEOR is the

fragmentation score, which is a measure of how dissimilar the order of the words



that match in both the translation and the reference are. The lower the METEOR

fragmentation score, the better the word order.

We include plots of both BLEU and METEOR fragmentation scores when dis-

cussing our results. We defer an in-depth discussion of BLEU and METEOR to

Section 5.13, where we analyze whether these metrics are capable of capturing differ-

ences in word order between our system.

5.4 Experiments with decoder parameters

The most important Moses decoder parameter is maximum distortion limit, which we

denoted MaxDistortion and described in Section 3.5.1. The larger the MaxDistortion,

the higher the freedom for phrases to move around during transltion. Table 5.2 shows

BLEU score decoding with a range of MaxDistortion settings, different preorders,

and the baseline Moses feature functions listed in Section 3.4 with weights tuned

for MaxDistortion = 6.2 (Setting MazDistortion = -1 corresponds to unlimited

reordering.)

Table 5.2 verifies that when the language pair has very different word order,

long-distance reordering is crucial for high translation quality. When translating

preorder REV, which has a roughly English word order, quality peaks at about

MazDistortion = 9, and drops off for higher values. In contrast, when translating

the BASELINE (no reordering) preorder, the higher the setting of MazDistortion, the

higher the translation quality. We can interpret this result as follows: Translating

between REV and English, most words need to move fewer than 6 places, so allowing

them to move farther results in incorrect reordering; translating between BASELINE

and English, some words need to move farther than 9 places, so disallowing such long

movement rules out many correct translations.

Based on these results, in later experiments we set MaxDistortion = 9 unless

otherwise noted.

Table 5.3 shows BLEU score for a MaxDistortion = 9 REV system decoding with

2This system used a non-patent recaser, so scores are not directly comparable with other systems.



MaxDistortion BASELINE REV CABOCHA Seconds per sentence3

0 20.86 20.32 21.61 2.2
6 23.76 25.44 24.79 5.0
9 25.24 25.49 25.12 7.8

-1 26.07 25.08 24.58 37.2

Table 5.2: How MaxDistortion affects BLEU score and translation time for different
preorders.

various stack size settings, which controls the beam width in the the decoder's beam

search.4 A larger beam width means fewer search errors are made. The Moses default

is 100, and these results show that increasing it does not significantly improve quality.

Because translation is much slower with a large stack size, we use the default 100 in

our experiments.

Stack size BLEU Seconds per sentence

100 28.46 4.5
200 28.63 8.4
400 28.51 16.1

Table 5.3: How stack size affects BLEU score and translation time.

5.5 Evaluating preorder efficacy

Table 5.2 also illustrates the impact of preordering on translation quality. When no

reordering is allowed during decoding, CABOCHA achieves the highest BLEU score,

validating our observation that its word order is closest to English. However, with a

limited amount of reordering, REV is the leader. This is a very surprizing result, but

one that was consistent across test corpora or feature function choice.

Equally surprizing is that when unlimited reordering is allowed, the BASELINE

preorder, which is the original Japanese word order, performs best. This is shock-

ing, and we can offer no explanation. With unlimited reordering and employing the

4This system was trained only on the patent corpus, so scores are not directly comparable with
other systems. It is notable that our systems trained on only on the patent data tended to outperform
equivalent systems trained on our full training data (consisting of patent data, news data, and
dictionaries) in experiments on our patent-domain test corus.



default Moses feature functions, only the language model can evaluate long-distance

reorderings. Because language model scores are in no way conditioned on the source

sentence, the language model cannote advise the decoder on how to reorder words.

Without the feature functions we developed in Section 3.6, the decoder is "driving

blind" when positioning words far away from their original spot, but has maximum

freedom to assemble them according to the language model into fluent English, which

leads to a high BLEU score. Still, we would expect one of the preordered systems

to outperform the baseline. It may be the case that the phrase table of the base-

line system is unexpectedly of higher quality than that of the preordered systems, or

that the local inversion in the preordered systems degrades BLEU score with unlim-

ited reordering. We continue to compare REV versus BASELINE as the preorder for

upcoming experiments.

5.6 Long-distance reordering features

Now we turn our attention to the experiments with the long-distance reordering

feature functions we incorporated into Moses in Section 3.6.1.

First we consider two general features instantiated from PARENTBEFORECHILDTEM-

PLATE and CHILDBEFOREPARENTTEMPLATE with parameter s set to 'Any' for all

fields, so that it tracks the order of every pairwise dependency. We get feature PAR-

ENTBEFORECHILD, which counts how often a parent is translated before its child, and

feature CHILDBEFOREPARENT, which counts how often a child is translated for its

parent. Feature PARENTBEFORECHILD should encourage more translations with par-

ents ordered before their children when we set its weight, denoted APARENTBEFORECHILD,

to be positive. When given a negative weight, feature CHILDBEFOREPARENT should

encourage similar behavior.

To test our features, we trained 'Baseline' and 'Rev' preordered systems, tuned

their weights using MaxDistortion = 6, and normalized all weights so their absolute

values sum to 1. We use these systems as the baseline. For each feature, we redecoded

the dev and test corpora with its weight set to a range of values spaced every 0.05



over the interval where the feature appeared useful. We report the weight that led

to maximum score on the dev corpus, this maximum dev score, and the test corpus

score using that weight. In Table 5.4, we show the results for PARENTBEFORECHILD

and CHILDBEFOREPARENT. Both give small improvements. Plots of test scores

using these general features are given in Figures 5-1 and 5-2.

Feature Weight dev BLEU test BLEU

PARENTBEFORECHILD 0.25 +0.13 +0.39

CHILDBEFOREPARENT -0.30 +0.09 +0.08

Table 5.4: Best scores for general pairwise features.
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Figure 5-1: APARENTBEFORECHILD against BLEU and METEOR fragmentation scores

with BASELINE preorder.

The difference between these two general pairwise dependency order features is

that PARENTBEFORECHILD should upgrade the score of translations with better

word order, and CHILDBEFOREPARENT should downgrade the score of translations

with worse word order. Evaluating which of these approaches will be more effective in

the decoder is very difficult, so we experimented with both. Table 5.4 suggests that
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PARENTBEFORECHILD is more effective, and that promoting correct translations is

more useful than demoting incorrect ones.

Next we will analyze more specific features. While PARENTBEFORECHILD and

CHILDBEFOREPARENT track every dependency, we now define features that track

only how dependencies between words with certain parts of speech and case are

ordered. We start off with these three features that capture the biggest differences in

Japanese and English word order:

VERBBEFOREAcc counts when verbs come before their object. (PARENTBEFORECHILDTEMPLATE

with s.parent pos '= Verb', s.child_case = 'Acc')

NOUNBEFOREGENTEMPLATE counts when nouns come before a genitive noun that

modifies them. (PARENTBEFORECHILD with s.parent_pos = 'Noun', s.child_case =

'Gen')

NOUNBEFOREVERBTEMPLATE counts when nouns come before the verb of a rela-

tive clause that modifies them. (PARENTBEFORECHILD with s.parent pos =
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'Noun', s.child_pos = 'Verb')

The performance of these features are summarized in Table 5.5. All three fea-

tures improved translation quality, and NOUNBEFOREGEN led the pack with a +0.38

BLEU improvement. Plots of test scores using these specific features are given in

Figures 5-3-5-5.

Feature Weight dev BLEU test BLEU

VERBBEFOREACC 0.30 +0.06 +0.05
NOUNBEFOREGEN 0.25 +0.25 +0.38

NOUNBEFOREVERB 0.25 +0.05 +0.12

Table 5.5: Best scores for specific pairwise features.

Now we will show examples of each feature at work.

5.6.1 Verb before accusative argument feature

Feature VERBBEFOREACC successfully fulfilled its goal of encouraging translations

with correct English Subject-Verb-Object order. Although the BLEU score increase

is a miniscule, many translations improve to a better word order. See Figure 5-3 In

the following example, "serve" moves to before its object (in the Japanese sentence)

"guide for the moving holder 3".

Japanese 7 ,L jT 9 9

Reference A sealant 7, which serves as a seal for cutting gas 9,

also serves as a guide for the moving holder 3.

AVERBBEFOREAcc = 0 7 is a seal material of the working gas 9 seal and the

moving holder 3 also serves as a guide.

AVERBBEFOREAcc = 0.40 7 is a seal member for sealing the machining gas 9 and

also serves as a guide for moving holder 3.

The Moses baseline system translates many sentences into English sentences with

passive main verbs, because this is the most natural way to construct a verb-final

English sentence if the verb is not motivated to reorder to earlier in the sentence.

The VERBBEFOREACC feature correctly activizes some of these passive sentences:
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BASELINE preorder.

against BLEU and METEOR fragmentation scores with

Japanese + 3L,7 h -71 )7-- 90iti3 9 U B

Reference Then, the bit map data generating section 39 generates

bit map data for each color according to each color

density.

AVERBBEFOREACC = 0 Then, the bit map data generator 39 according to the

density of each color, the bit map data of each color is

generated.

AVERBBEFOREAcc = 0.40 Then, the bit map data generator 39 according to the

density of each color, and generates bit map data for

each of the colors.

Naturally, even if the verb successfully moves before its object, the translation

might not improve. Here, "generated" moves before its object "braking torque", but

the sentence remains passive and incomprehensible.
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Japanese i Li, n - 9 1 6 L ,-- 9 1 5 L FSEJt A L

Reference And, the kinetic energy of the liquid filled between the

rotor 16 and stator 15 is converted into thermal energy

to thereby produce a brake torque.

AVERBBEFOREAcc = 0 Then, the rotor 16 and between the stator 15 of the

liquid to be filled in the kinetic energy is converted to

thermal energy braking torque is generated.

AVERBBEFOREACC = 0.40 Then, the rotor 16 and between the stator 15 of the

liquid to be filled in the kinetic energy is converted to

thermal energy generated by the braking torque.

Overall, we think VERBBEFOREAcc improves translation quality more than the

small BLEU score improvement indicates. It causes translations to better preserve

the meaning of the original sentence, and has no observable systematic negative effect.

5.6.2 Noun before genitive modifier feature

Feature VERBBEFOREACC earned the largest BLEU increase of our features, as

shown in the BLEU Figure 5-4. It aims to translate the Japanese pattern 'A 0) B'

into "B of A" by encouraging noun B to move before the genitive-case noun A. 5 Ex-

amples include '7 } ') } 6'k,~l' (literally, America-Gen president) to "President

of the United States", '[l ri 6) 4 k~ ' ('Tanaka- Gen father') to "father of Tanaka",

and '!!6f'0),' (world-Gen window) to "window to the world". However, just as of-

ten, 'A 0) B' can be translated without swapping A and B; examples include 'tL O6')

CiZ' (I-Gen thesis) to "my thesis", ' _1')t' (brown-Gen book) to "brown book", or

translating the first two examples as "United States President" and "Tanaka's father".

Although NOUNBEFOREGEN achieved a significant BLEU score increase, it is

5 )' is not usually considered a case marker, but instead a conjunctive particle indicating adnom-
inal relation [Suzuki and Toutanova, 20061. For our purposes, however, it is beneficial to think of ')'
as marking the preceding noun phrase with genitive case, which means that it modifies the following
noun phrase. '0)' is pronounced like the Japanese dramatic style noh, and functions similarly to
Chinese i] ('de' in pinyin).
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harder to find instances where it subjectively improved translation quality compared

to experiments with VERBBEFOREACC. Many sentences are randomly affected and

are often reordered into "sound bites" that increase BLEU score without increasing

translation quality.

Nevertheless there are some examples of clear improvements in noun phrase re-

ordering. In the following example, ' p - - 1 3 0) *k 1' (instruction queue

13- Gen state) correctly becomes "state of the instruction queue", whereas before "in-

struction" was dropped.
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Japanese I 1 4 U W i ttz f r , 1Z It i-

Reference FIG. 14 shows one example of the state of queue 13 in

the cycle in which a branch instruction is executed.

ANOUNBEFOREGEN = 0 FIG. 14 is a branch instruction is executed in a cycle

of the instruction queue 13.

ANOUNBEFOREGEN = 0.40 FIG. 14 is a branch instruction is executed in a cycle

shows the state of the instruction queue 13.

Similarly, this example correctly forms "implantation of impurity ions".

Japanese Z I-J.c ,1-t 4 7 , ')-7,/ L ',# -91 ;-

Reference In this step, impurity ions were implanted for forming

the source and drain regions.

ANOUNBEFOREGEN = 0 In this process, since the source / drain region is

formed under the conditions of the impurity ions are

implanted.

ANOUNBEFOREGEN = 0.40 In this process, since the source / drain region is

formed under the conditions of implantation of im-

purity ions.

This next example is translated correctly with or without reordering the arguments

"buffer counter" and "initial value" of ')'.

Japanese '

Reference The initial value of the buffer counter is set to N.

ANoUNBEFOREGEN = 0 The buffer counter is set to the initial value N.

ANouNBEFOREGEN = 0.40 The initial value of the buffer counter is set to N.

Finally, here is an example of a noisily affected translation. Here ')' is used as part

of fixed grammatical construct ('AO) JIY h'Tft 1 L 6 ', "A is better"), so reordering

its arguments is not desirable. With the NOUNBEFOREGEN-induced reordering, the

meaning of the second clause is lost, but the word choice is flukily better (it includes

"better", which also appears in the reference), so mistranslating this example might

boost BLEU score.



Japanese Z -Z, M 1 0 1 2 L& 'L -ItL11, M 1 0 )

Reference Comparing FIGS. 10 and 12 indicates that the char-

acteristics shown in FIG. 10 are better than those in

FIG. 12.

ANoUNBEFOREGEN = 0 In this case, the comparison between FIGS. 10 to 12,

the characteristic is more excellent in FIG. 10.

ANOUNBEFOREGEN = 0.40 In this case, the comparison between FIGS. 10 to 12,

it is better characteristics of FIG. 10.

5.6.3 Noun before verbal modifier

In Japanese, relative clauses precede the noun they modify. For instance, 'lIk-A,Z0

S%' (is yelling man) means "man who is yelling". The NOUNBEFOREVERB feature

gives high marks to translations that reorder relative clauses to follow the nouns

that they modify. The impact on BLEU score, shown in Figure 5-5, was small, but

we believe that the positive slope when 0 < AVERBBEFOREAcc < 0.30 indicates that

AVERBBEFOREACC does have a significant positive effect on translation quality.

In the following improved example, NOUNBEFOREVERB causes 'i E,t-i~L-

S9ii &' (reference light-Nom propagate optical path length) to correctly reorder

into "optical path length of the light propagating on a reference", which is very close

to the reference translation "optical path length through which the reference light is

propagated".

Japanese Z J .Q J ) .Z9Li Jt -9 : =:

Reference As a consequence, the optical path length through

which the reference light is propagated may be varied.

ANOUNBEFOREVERB = 0 As a result, the reference light is propagated through

the optical path length can be changed.

ANOUNBEFOREVERB = 0.30 As a result, the optical path length of the light prop-

agating on a reference can be changed.
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BASELINE preorder.

Relative clauses are especially pervasive in Japanese grammar. Here, "after" fol-

lows relative clause "relief valve 140 operates", which NOUNBEFOREVERB successfully

reorders to the beginning of the sentence to form "After the relief valve 140 is oper-

ated..."

Japanese ') ) --7 1 4 0 Sl ' il ;Lto c ott fli 7_

Reference Upon the operation of the pilot relief valve 140, the

steering force is defined by lines which are in parallel

indicating the manual steering characteristic. 6

ANOUNBEFOREVERB = 0 The relief valve 140 is operated to the steering force

after the straight line in parallel with the manual

steering characteristic.

ANouNBEFOREVERB = 0.30 After the relief valve 140 is operated to steering force

is a straight line parallel to the manual steering char-

acteristic.

6The given reference translation is a stand-in to make this example easier to understand. The

NounBeforeVerb child weight



Naturally, there are plenty of sentences that unexplainably changed for the worse.

Here is one, where the baseline's correct "number of bits" turns into "bit number".

Japanese hjlU 40 Dt 677_--9 , I tCbt 'I) T7

Reference Data obtained by addition, that is, the serial address,

must be chosen to be a value smaller than the finally

determined total number of bits.

ANOUNBEFOREVERB = 0 The data obtained by the addition, that is, the serial

address is determined to be a value smaller than the

total number of bits must be selected.

ANOUNBEFOREVERB = 0.30 The data obtained by the addition, that is, the serial

address is determined to be a value smaller than the

total bit number must be selected.

5.7 Feature performance with unlimited reordering

We hypothesized that our long-distance reordering features might offer more im-

provement if the decoder allowed unlimited reordering. To test this, we decoded

the test corpus setting MaxDistortion = -1 with a range of values for features

VERBBEFOREACC, NOUNBEFOREGEN, and NOUNBEFOREVERB. Table 5.6 shows

the maximum BLEU score achievable with the perfect weight for the test corpus.

The features are beneficial with either limited and unlimited reordering.

Figures 5-6-5-8 plot the performance of these three features decoding test with

different weights and no distortion limit. NOUNBEFOREGEN gives markedly less

possible benefit over the baseline with MaxDistortion = -1 compared to with

MaxDistortion = 9 (which was shown in Figure 5-4). NOUNBEFOREVERB in con-

trast offers a larger improvement with more reordering allowed.

original reference included many things not mentioned in the Japanese sentence: "Upon the operation
of the pilot relief valve 140, the steering force is defined by one of four thin lines which are in parallel
with the thick line indicating the muscular-energy steering characteristic." The problem of creative
reference translations is an issue with any test corpus.



Feature MaxDistortion = 9 MaxDistortion = -1

VERBBEFOREACC +0.14 +0.15
NOUNBEFOREGEN +0.48 +0.26

NOUNBEFOREVERB +0.16 +0.30

Table 5.6: Maximum BLEU improvements on test corpus for limited and unlimited

reordering.
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5.8 Feature performance on REV preorder

Because our long-distance reordering features focus on target-side word order, we

would expect the same features to be useful regardless of preorder. On the contrary,

we found that our long-distance reordering features were largely useless when de-

coding preordered sentences. Table 5.7 shows the performance across features. We

can infer that when translating with the REV preorder, the decoder does not need

our feature functions to guide word order, because long-distance is unnecessary to

translate preordered sentences.

Feature Weight I dev BLEU test BLEU

PARENTBEFORECHILD 0.05 +0.02 -0.13
CHILDBEFOREPARENT -0.50 +0.09 +0.14

VERBBEFOREACC 0.15 +0.08 +0.07
NOUNBEFOREGEN 0.15 +0.01 -0.04

NOUNBEFOREVERB 0.15 +0.04 -0.05

Table 5.7: Best scores with REV preorder.

The mystery in Table 5.7 is why CHILDBEFOREPARENT is more useful than PAR-

ENTBEFORECHILD when decoding preordered sentences, while we saw the opposite

pattern when decoding BASELINE preorder. This result may be attributable to noise.

Figures 5-9 and 5-10 show BLEU score when decoding test corpus in REV preorder.

Decoding the REV preorder with ACHILDBEFOREPARENT = -0.50 (the weight that

gave the highest BLEU score on the dev corpus) gave us our highest absolute test

BLEU score, 28.74, among experiments conducted with MaxDistortion = 9. This

represents a +0.78 increase over the comparable baseline, which is the BASELINE

preorder decoded with MaxDistortion = 9 and only our PUNCT feature function.

5.9 Combining features

Our long-distance reordering features individually improved BLEU score. If we em-

ploy more than one at the same time, does the BLEU increase by the sum of the

increase we saw for each feature on its own?
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First we look at the simple example of using CHILDBEFOREPARENT and PAR-

ENTBEFORECHILD together. We found that dev BLEU score using both features did

not improve over using just one of them, as evidenced by Table 5.8.

.APARENTBEFORECHILD

0 0.25
0 26.99 27.12

A HILDBEFOREPARENT -0.30 27.08 27.09

Table 5.8: BLEU score on dev corpus when using CHILDBEFOREPARENT and PAR-
ENTBEFORECHILD simultaneously.

To gauge performance of unisonal employment of VERBBEFOREACC, NOUNBE-

FOREGEN, and NOUNBEFOREVERB, we found the weights of these features that gave

highest scores individually on the test test corpus. Then we decoded the test corpus

using all three features at the same time with those perfect weights.' The results are

shown in Table 5.9. We see a total +0.58 increase using all three features. The max-

imum increase, if each feature contributed an increase equivalent to its standalone

improvement, is +0.75. We can conclude ton the hat the features provide additive

improvements in translation quality, but the improvement is less than the sum of the

parts.

AVERBBEFOREAcc INOUNBEFOREGEN NOUNBEFOREVERB test BLEU

0 0 0 27.96
0.10 0 0 28.06

0 0.40 0 28.45
0 0 0.30 28.12

0.10 0.40 0.30 28.54

Table 5.9: Performance of pairwise dependency features when combined.

5.10 Chunk cohesion

We introduced the CHUNKCOHESION feature in Section 3.6.2 to encourage chunks

to be translated completely before moving on to translate other chunks. Figures 5-

7It would be proper experimental technique to report results based on weights tuned on the dev,
here our aim is only to compare how effective features are alone versus combined.



11 and 5-12 show their effect on BLEU and METEOR fragmentation score when

decoding preorder BASELINE and REV using a range of ACHUNKCOHESION.

The CHUNKCOHESION feature improved translation on the BASELINE preorder

somewhat, but offered no improvement when translating the REV preorder. One

plausible explanation is that the cohesion helps chunks move as a unit over long

distances but is inutile for short movements.

Feature Weight dev BLEU test BLEU

CHUNKCOHESION -0.35 +0.21 +0.20

Table 5.10: Best scores for chunk cohesion feature.
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Unfortunately, when used with our other long-distance reordering features, CHUNKCO-

HESION does not increase translation quality. It offered maximum 0.02 BLEU score in-

crease when used with feature weights AVERBBEFOREAcc = 0.15, ANOUNBEFOREGEN = 0.45,

and ANOUNBEFOREVERB = 0.35.
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Figure 5-12: ACHUNKCOHESION against BLEU and METEOR fragmentation scores with

REV preorder.

5.11 Punctuation

The PUNCT feature, introduced in Section 3.6.3 to discourage phrase movement over

punctuation marks, did not prove especially helpful for BLEU score or subjective

quality. With the BASELINE preorder, MaxDistortion = 9, and weight APUNCT =

-0.45, this feature improved dev BLEU score by 0.20 and test by 0.10.

Subjectively, there was little systematic improvement to translations around punc-

tuation. For the most part, we found that even without the PUNCT feature, phrases

did not reorder over punctuation. Still, we found a few examples where this fea-

ture helped clausal cohesion around punctuation. Setting ApU,1T to a highly negative

weight ensured that "for example" stayed inside the parenthetical in the following

example.
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Most of the time, however, word choice was randomly juggled in the vicinity of

punctuation and not necessarily for the better. Here is one example where a more

negative weight (APUXCT) for PUNCT improved translation quality. The sequence "not

limited to GaAs" is successfully translated.

Just as often, however, the translation jugglery is for the worse. A more strongly

negative ApUN , weight butchers this translation.

Japanese PEt, _ ITI (-- -t4! A') L L7.

Reference Specifically, the returned light L.sub.R is converted into an

electrical signal (e.g., reproduced signal) and then output.

APUNCT = 0.05 That is, the signal is converted into an electrical signal (a

reproducing signal), for example.

APUNCT = -10.0 In other words, the electric signal is converted to a signal (for

example, a reproduced signal) is output.

Japanese I L, -t v T9 6 1, G aAs ltS- -. t "-)' : i

MtD L 9 -\ tV, V1 _t In G a A sNH-k A Jz-TtJ

Reference Not only GaAs but also a material which makes the ohmic

contact readily attainable, that is, InGaAs or the like, for

example, may be used for the cap layer 6.

APUcT = -0.05 Further, the GaAs cap layer 6 is not limited to the material

of the ohmic contact to tend to, for example, InGaAs or the

like may be used.

APUNT = -10.0 Further, the cap layer 6 are not limited to GaAs, ohmic con-

tact to tend to substance such as, for example, InGaAs or the

like may be used.



Japanese Z--) 2 ftI1 -F 9l 2 00)-7 t9 9 "- t P A, P

Bb%- PA, P B :_-9 * - o

Reference The two-segment detector 23 is made up of two photodi-

odes PA, PB for detecting the reflected laser light illuminated

thereon.

ApUNCT = -0.05 The two-division detector includes two photodiode Pa, PB,

and the irradiation of the reflected laser light are detected by

the photodiode Pa and Pb.

APUNCT = -10.0 The two-division detector includes two photodiode Pa, PB,

and the reflected laser beam is irradiated onto the photo diode

Pa, PB, the detected.

5.12 Minimum error rate training

Moses comes with a script to perform Minimum Error Rate Training (MERT) to tune

feature weights to maximize BLEU score on a development corpus [Och and Ney, 2001;

Koehn et al., 2007]. However, preliminary experiments showed that running MERT

training, adding a new feature, then rerunning MERT training often resulted in lower

dev scores. Some score randomness is expected because the Moses MERT algorithm

is not deterministic, but we decided that for evaluating the effect of new features on

scores, it was best to tune parameters by hand. One reason for the poor results using

the Moses MERT script may be that it was designed and tested with the small number

of default Moses features, which number 10 to 20 depending on configuration. Liang

et al. [2006] successfully developed a discriminatively trained system with millions of

features. Using their parameter tuning method would be effective to tune weights for

our features, and would open the door to adding features to model many more part

of speech and case dependency relations.

The weights learned from using the Moses MERT script, presented in Table 5.11,

hint at the promise of the MERT technique.8 Each feature is automatically given a

8The weights in Table 5.11 cannot be compared with weights in other tables, because they have
been normalized alongside the baseline Moses weights.



weight that pushes translations toward correct English word order; that is, the MERT

tuning correctly identifies whether to scale each feature positively or negatively to

improve dev translations.

Feature Weight

PUNCT -0.015772
CHUNKCOHESION -0.004921

PARENTBEFORECHILD 0.017132
CHILDBEFOREPARENT -0.219797

VERBBEFOREACC 0.126323
NOUNBEFOREGEN 0.102700

NOUNBEFOREVERB 0.098392

Table 5.11: Feature weights after minimum error rate training.

The baseline Moses distortion penalty weight (which penalizes non-monotonic

translations, see Section 3.4.4) was also noteworthy at -0.000135. The negative

value indicates that, when using our new feature functions, the decoder could achieve

better translations by preferring non-monotonic translations. In contrast, MERT

set the distortion penalty weight to a value greater than 0.01 every time we tuned

parameters on a system that did not include our long-distance reordering features.

5.13 BLEU versus METEOR for evaluating word or-

der quality

When scoring a hypothesis translation against a reference, BLEU focuses only on how

many n-grams in the hypothesis match the reference, and otherwise ignores word order

completely. Because BLEU typically counts up to 4-grams, it does not explicitly factor

long-distance word order into the score at all. Callison-Burch et al. [2006] note that

if b is the number of bigram mismatches (pairs of words that appear together in the

hypothesis translation but not the reference), then there are (k - b)! possible ways, to

generate identically scored translations using only the words in the hypothesis. Hence

theoretically BLEU seems unable to distinguish differences in word order between

translation systems. METEOR in contrast explicitly incorporates a fragmentation



score, which measures how dissimilar the word order is among words that appear in

both. The METEOR metric makes the assumption that the lower the fragmentation

score, the better the word order.

In the plots in this chapter, we compare BLEU score and METEOR fragmentation

score on our experiments where we range the weight of one long-distance reordering

function while keeping all other system parameters the same. For a feature that

clearly should have a positive effect on English word order, like NOUNBEFOREGEN,

we expected the METEOR fragmentation score to have a positive slope around zero

until a peak in translation quality. We expected BLEU score to increase, but not as

systematically.

If anything, the plots show the opposite phenomenon: BLEU score had a system-

atic positive slope as the beneficial feature weight increased, while METEOR fragmen-

tation score tended to bounce around. The plots for AVERBBEFOREACC, ANoUNBEFOREGEN,

and ANOUNBEFOREVERB in Figures 5-3-5-5 are an interesting sample to look at. For

AVERBBEFOREAcc, BLEU score is better than the baseline for all AVERBBEFOREAcc 0.45,

which indicates that translation quality is increasing. Meanwhile METEOR fragmen-

tation score is higher than the baseline for all values of AVERBBEFOREAcc except 0.15,

which indicates that translate quality is decreasing, at least word order wise. Looking

subjectively at the translations, it more sentences are improved word-order wise than

are harmed.

For ANOUNBEFOREVERB (Figure 5-5), another subjectively beneficial feature, BLEU

monotonically increases from weight 0 to 0.3, while METEOR score is scattered

and reaches its highest value (indicating worst quality) at weight 0.3. Either BLEU

or METEOR fragmentation score is making a mistake, and the evidence that our

features do improve on word order leads us to conclude that BLEU is capturing

word order differences in translations better than METEOR fragmentation score.

This is not to say that METEOR is a bad metric; this is merely evidence that its

fragmentation component is likely not a great indicator of word order quality. It is

also clear that BLEU is not a fantastic metric for evaluating changes in system word

order; we interpret the plots and our subjective judgments merely as evidence that



BLEU is not totally useless for evaluating word order choices in translation. This is

likely because translations with words in proper order simply generate more n-gram

matches with the reference.



Chapter 6

Conclusion

This thesis developed two techniques to improve long-distance reordering decisions in

the phrase-based translation model and demonstrated their utility in a state-of-the-

art Japanese-+English system. Chapter 3 introduced our major contribution, a set of

long-distance reordering feature functions that use a dependency analysis of the source

sentence to encourage translations that reorder phrases in a way that preserves their

original meaning. Chapter 4 presented algorithms for reordering Japanese into an En-

glish word order before translation, with the surprising result that a naive preprocessor

that basically flips the Japanese to read backwards outperforms a dependency-tree

flattening method we developed. Experiments in Chapter 5 demonstrated significant

improvement in BLEU score and subjective quality in experiments with both methods

and further gains when we combined them.

6.1 Future work

Current statistical translation systems have a long way to go to achieve perfect word

order for languages requiring long-distance reordering. Our pairwise dependency or-

der features are only the beginning of what is possible when incorporating dependency

analysis into phrase-based models.



6.1.1 Smarter reordering limit

Translation quality increses when we allow unlimited reordering of phrass, but trans-

lation speed becomes prohibitively slow. Current phrase-based systems offer little

recourse if we wish to limit reordering but still consider linguistically-motivated long-

distance reordering. The ubiquitous' MaxDistortion limit is a vestige of systems

that favor monotone translation and causes quality hemorrhage in language pairs

that require long-distance reordering.

A discriminatively trained model for limiting reordering based on a dependency

tree distance metric could help the decoder to speedily try all of the important long-

distance reorderings. For instance, after the decoder completely translates the subject

of a sentence into English, the distortion limit should force the decoder to next trans-

late a phrase that is within a certain distance from the verb that the subject modifies.

The challenge is training a discriminative order model that is part of the decoder's

internal machinery.

6.1.2 More effective features

It is critical to identify translation hypotheses with promising word order as early

as possible to avoid the decoder pruning them. For example, it is undesirable that

the pairwise dependency order features of Section 3.6.1 have value zero until both

the child and parent have been translated. We should experiment with features

that have nonzero contribution as soon as either the child or the parent is trans-

lated, because at that point we can infer that the other member of the dependency

relationship will be translated after it, based on the assumption that the decoder

always builds its translation left-to-right. This would allow earlier detection, and

less pruning, of correct word orders. To concretize this idea, an improved version of

XPARENTBEFORECHILDTEMPLATE(f
J , q, s) is given in Equation 6.1. This version contributes

a nonzero value to a hypothesis as soon as the parent chunk is translated.



XIMPROVEDPARENTBEFORECHILDTEMPLATE (f, q, s)

matches_ child(y, s)

xeX yex.children_parent (x, s) frac alreadycovered(y, q)
- frac_translated(x, q)

(6.1)

If our dependency-based features were integrated into a discrminative training

system with support for millions of features, we could introduce features that are are

parameterized on head and modifier words themselves in addition to their parts of

speech. Features that measure how far modifiers move away from their head or the

order of dependency tree siblings may also improve translation quality.

6.1.3 Other language pairs

Because our long-distance reordering features make no assumptions about source

or target language word order, they should be easily appliable to any phrase-based

system. Experimenting on other language pairs is an extremely exciting prospect.

In particular, features promoting verbal head movement should be very useful for

English-+Japanese translation to help verbs to reorder to the right of all of their

modifiers.

6.2 Contributions

To translate between Japanese and English, or any language pair with very different

word order, we need a translation system that can perform long-distance reordering

while preserving the meaning of the original input. Towards this goal, this thesis:

* Designed a class of feature functions for phrase-based translation that can iden-

tify translations with correct long-distance reordering for any language pair.



* Implemented these features in a state-of-the-art phrase-based decoder to achieve

significant improvements in Japanese--English BLEU score and subjective trans-

lation quality.

* Remedied to a significant extent the problem of leaving Japanese verbs sentence-

final and genitive constructions inverted when translating into English, which

plagues most statistical phrase-based translation systems.

* Demonstrated a naive, trivially computable source-side preordering algorithm

that dramatically increases Japanese-+English translation quality when decod-

ing with limited allowed reordering.

* Provided evidence that BLEU is useful for evaluating quality of translations

that differ mostly in word order.
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