
Mobile Computing with the Rover Toolkit

by

Anthony Douglas Joseph

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

November 1997

@ Massachusetts Institute of Technology 1997. All rights reserved.

Author.............
Department of Electrical ngineering and Computer Science

November 26, 1997

/-7C

Certified by.....
~i M. Frans Kaashoek

Associate Professor
Thesis Supervisor

Accepted by...............
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

MAR? 27

~~_;~ -I -- - ~-U-(

Mobile Computing with the Rover Toolkit

by

Anthony Douglas Joseph

Submitted to the Department of Electrical Engineering and Computer Science
on November 26, 1997, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Rover is one of the first architectures that supports the construction of both mobile-
adaptive applications and mobile-adaptive proxies for mobile-transparent applications.
To excel in the harsh conditions of a mobile environment, mobile-adaptive applica-
tions are aware of and take an active part in adapting to those conditions. The
mobile-transparent approach is appealing because it allows applications to be run
without alteration. The contributions of this thesis include the Rover architecture
and a reference implementation, the Rover Toolkit. Together, the architecture and
toolkit support a set of programming and communication abstractions that enable
and simplify the construction of both mobile-adaptive proxies for mobile-transparent
applications and new mobile-adaptive applications. The programming abstractions
include Relocatable Dynamic Objects, a form of code- and data-shipping, along with
remote invocation and method logging, that allows mobile-adaptive applications to
dynamically adapt to environmental changes, and programming language extensions
for reliable execution of applications at servers. The communication abstractions are
based upon Queued Remote Procedure Call, a form of remote invocation that provides
asynchronous, reliable delivery of requests and results. Using the Rover abstractions,
applications obtain increased availability, concurrency, resource allocation efficiency,
code reuse, fault tolerance, data consistency, application adaptation to environmen-
tal changes, and more efficient scheduling and utilization of communication channels.
Experimental evaluation of a suite of mobile applications built with the toolkit demon-
strates that such application-level control can be obtained with relatively little pro-
gramming overhead and allows correct operation, increases interactive performance,
and reduces network utilization under intermittently connected conditions.

Thesis Supervisor: M. Frans Kaashoek
Title: Associate Professor

Acknowledgments

This thesis is the result of a long arduous trip through graduate school. Along the

way, many people have made the trip more enjoyable and pleasant. I owe a special

debt of gratitude to Kim Nelson for helping me get through graduate school and for

putting up with all the nights and weekends I spent in the lab.

Special thanks to Frans Kaashoek for providing me with guidance, support, and

encouragement. Frans is a great advisor and a fun, exciting person to work with.

John Guttag also deserves thanks for mentoring me over the years. I thank him

for the guidance he has given me, especially when I was changing research groups and

during my search for a job.

I thank David Gifford for his efforts during the design stages of the Rover toolkit,

in particular his ideas for the semantics of QRPC.

I thank my parents for the motivation they instilled in me, for all the support

they have provided, and for their faith in me.

I owe a lot of thanks to the rest of the Rover project team: Joshua Tauber, George

Candea, Constantine Cristakos, Alan F. deLespinasse, and Michael Shurpik. Special

thanks go to Josh for all the great design arguments/discussions we shared that helped

shape the Rover architecture and for his help in building and debugging applications.

I thank the Parallel and Distributed Operating Systems group for reading many

drafts of the papers behind this thesis (thanks Massimiliano Poletto, Eddie Kohler,

and Greg Ganger) and for providing me with a fun, exciting, and sometimes loud

(thanks David Mazieres and Emmett Witchel), research environment. Thanks also to

Neena Lyall for making the administrative side of the project much more pleasant.

Thanks go to my roommates (Dave Gardner, Sanjay Ghemawat, and Parry Hus-

bands) for tolerating my equipment (and other) messes and being great roommates.

Finally, I thank my sponsors for providing the resources used by the Rover project.

This work was supported in part by the Defense Advanced Research Projects Agency

under contract DABT63-95-C-005, by an NSF National Young Investigator Award,

by an Intel Graduate Fellowship, and by grants from Intel, IBM and AT&T.

Contents

1 Introduction 13

1.1 Mobile versus Stationary Environment 15

1.2 Goals 18

1.3 Rover: A Toolkit-based Approach 19

1.4 Building and Using Mobile Applications 21

1.5 Arguments for Mobile-Adaptive Computing 23

1.6 Contributions and Results 24

1.7 Outline of the thesis 26

2 Related Work 28

2.1 Relocatable Dynamic Objects 28

2.2 Queued Remote Procedure Call 30

2.3 Mobile-Transparent File Systems 31

2.4 Mobile-Adaptive Applications 32

2.5 Reliable Execution 34

3 Design of the Rover Toolkit 36

3.1 Design Overview 36

3.1.1 Why Use a Toolkit? 37

3.1.2 Failures 38

3.1.3 Mobile Environment Problems Addressed by Rover 39

3.1.4 The Synergy Between the Solutions 43

3.2 Relocatable Dynamic Objects 43

3.2.1 RDO

Using RDOs

The Reliable Execution of RDOs at Servers

Using RDOs for Computation Relocation .

3.2.5 The Safe Execution of RDOs

3.3 Queued Remote Procedure Call .

3.3.1 QRPC

3.3.2 Using QRPC

3.3.3 QRPC Failure Recovery

3.3.4 Client Communication Schedul.

3.4 RDO Replication and Consistency .

3.4.1 Replication

3.4.2 Consistency

3.5 Mobile-Adaptive Application Support

3.6 Design Summary

4 Implementation of the Rover Toolkit

4.1 Implementation Overview

4.2 Client-side Implementation

4.2.1 Access Manager

4.2.2 Persistent RDO Cache

4.2.3 Stable QRPC Log . . .

4.2.4 Network Scheduler . .

4.3 Server-side Implementation ..

4.3.1 Access Manager

4.3.2 Network Scheduler . .

4.3.3 Stable QRPC Log. ..

4.4 Implementation Summary .

5 Applications Using Rover

5.1 Using Objects Instead of Files

in g

.

.. . . 72

74

74

76

76

77

78

79

81

82

83

84

.............. . . . 8 8

3.2.2

3.2.3

3.2.4

5.2 Toolkit Programming Interface 92

5.3 Rover Application Suite 93

5.3.1 Proxies for Mobile-Transparent Applications 95

5.3.2 Mobile-Adaptive Applications 99

5.3.3 Developing Reliable Applications 100

5.3.4 Stock Market Tracker 101

5.3.5 Rover Web Browser proxy 102

5.3.6 Text file search 102

5.4 Discussion 104

6 Experiments 106

6.1 Experimental Environment and Methodology 107

6.2 Null QRPC Performance 108

6.2.1 QRPC Client Costs 111

6.2.2 QRPC Compression Costs 111

6.2.3 QRPC Transport Cost 111

6.2.4 QRPC Stable Logging Cost 113

6.2.5 QRPC Server Costs 114

6.3 Discussion of QRPC Costs 115

6.4 QRPC Batching and Compression 116

6.5 Mobile-Transparent Application Performance 121

6.5.1 Rover File System Proxy 124

6.6 Mobile-Adaptive Application Performance 125

6.7 Fault-Tolerant Applications 127

6.7.1 Stable Variables 128

6.7.2 Rover Web Browser proxy 128

6.7.3 Text file search 129

6.8 Discussion 133

7 Future Work and Conclusion 134

7.1 Future Work 134

7.2 Conclusion 135

8

List of Figures

1-1 Rover offers applications a client/server distributed object system with

client caching and optimistic concurrency control. 18

1-2 Inconsistent replicas in a replicated file system. 22

3-1 The steps in client-side import and export operations for an RDO... 46

3-2 The steps in server-side import and export operations for an RDO. 47

3-3 The components of Queued Remote Procedure Call 55

4-1 The Rover toolkit reference implementation. 75

4-2 Volatile and stable Tcl counters. 85

5-1 Server-side code for a reliable file search application (part one). . . . 103

5-2 Server-side code for a reliable file search application (part two). . . . 104

6-1 Average time to perform a QRPC. When batching is used, the times

tconnect, tcCompOvr, and tsDecompOvr are amortized over the number of

requests in the batch. 112

6-2 Time in seconds to execute 50 null QRPCs with asynchronous log

record flushing. 117

6-3 Time to complete the first request in a batch of QRPCs. 119

6-4 Time to complete subsequent requests in a batch of QRPCs. 119

6-5 Time in seconds to fetch/display 10 WWW pages using Netscape alone

and with the Rover HTTP proxy. 123

6-6 Speedup (or slowdown) of the Rover File System (RFS) Proxy over the

Network File System (NFS). 123

6-7 Speedup (or slowdown) of Rover mobile-adaptive versions of applica-

tions over the original X11-based applications when performing com-

mon tasks 125

6-8 Time to complete the server-side portion of the text search application. 130

List of Tables

1.1 Mobile versus stationary environment. 14

2.1 Benefits and limitations of the Odyssey project. 33

3.1 Server responses to import/export operations and client toolkit actions. 48

3.2 Cache tags options for RDO revalidation. 66

5.1 Implementation choices for the initial application set built using the

Rover toolkit. 90

5.2 Lines of code changed or added in porting or implementing Rover

Exmh, Rover Irolo, Rover Stock Watcher, and Rover Webcal and im-

plementing Rover File System Proxy, Rover HTTP Proxy, and Rover

NNTP Proxy................ 94

6.1 The Rover experimental environment. Measurements include 90% con-

fidence intervals. 109

6.2 Costs for using Rover compression and decompression algorithms. Mea-

surements include 90% confidence intervals. 110

6.3 Attributes of the media used for stable logging (from manufacturer's

specification sheets). 113

6.4 Comparison between experimental and model results. Results are in

milliseconds and include 90% confidence intervals. 115

6.5 Comparison between experimental and model batch results. Results

are in milliseconds. 121

6.6 Approximate times in milliseconds to execute each iteration of the

example counter code in Figure 4-2 at the server. 127

6.7 Time in milliseconds (with 90% confidence intervals) to execute the

server portion of the Rover Web Browser proxy while fetching the Rover

project home page and its two inlined images. 129

6.8 Times in seconds to execute the server-side portion of the file search

application. For the single failure case, the fault was injected after 75%

of the files were searched. 130

6.9 Actual and model times in seconds to execute the server-side portion

of the file search application. 131

6.10 The effects of doubling and quadrupling the amount of data logged by

the text search application 132

Chapter 1

Introduction

The mobile computing environment presents application developers with a unique

set of communication and data integrity constraints that are absent in traditional

distributed computing settings. These constraints make it difficult to use existing

applications and complicate the development of new mobile-adaptive applications.

A mobile-adaptive application adapts its behavior as it discovers the performance

and reliability characteristics of its mobile environment. Adaptive applications to

offer users better interactive performance and better utilization of network band-

width. For example, although mobile communication infrastructures are becoming

more common, network bandwidth in mobile environments is often severely limited,

unavailable, or expensive. The two traditional solutions are either to create single-

use, special-purpose software support for an application or to provide special-purpose

support in the operating system. Unfortunately, the former approach does not lend

itself to code reuse or system resource sharing by multiple applications, while the

latter offers limited portability to other operating systems and limited support for

conflicting changes (update-update conflicts) by remote users.

The hypothesis in this thesis is that running mobile applications efficiently and

correctly often requires making applications and users aware of the environment in

which they are running. This thesis posits that support for mobile applications should

be provided as system facilities in a layer below applications, but above the operating

system. Such facilities should: allow mobile application developers to minimize appli-

Issue Stationary Mobile

Network High bandwidth / Limited bandwidth and latency
resources Low latency latency / Intermittent connectivity
Computational Significant resource Limited resource
resources
Power Unlimited availability Limited availability
Storage Unlimited storage Limited storage
Reliability Very reliable Fragile, limited reliability

Table 1.1: Mobile versus stationary environment.

cations' dependence upon continuous network connectivity; provide tools to optimize

the utilization of available network bandwidth; reduce battery consumption; minimize

dependence on data stored on remote servers; and allow for dynamic division of work

between clients and servers. The ideas behind such system facilities are discussed in

this thesis and encapsulated in a proof of concept implementation, called the Rover

toolkit. The toolkit is one of the first software tools that both supports applications

that operate obliviously to the underlying environment, and enables the construction

of applications that use awareness of the mobile environment to isolate themselves

from its limitations. Furthermore, the toolkit allows application developers to make

the transition from existing applications to mobile-adaptive applications in a gradual

and incremental fashion.

This thesis presents a detailed discussion of the issues associated with the mobile

environment and of the choices that were made in designing and implementing the

toolkit. To illustrate the effectiveness of the toolkit, several distributed applications

were implemented. Experimental results show that these applications perform well

while executing over several wired and wireless networks that differ by nearly three

orders of magnitude in bandwidth and latency.

1.1 Mobile versus Stationary Environment

This section discusses the differences in the resources that are available in stationary

and mobile environments, the variability of those resources, and the significant prob-

lems that these issues cause for mobile computers. The important issues are listed in

Table 1.1.

The stationary environment usually consists of some number of computers that

are interconnected via a high-bandwidth, low-latency network. The computers are

relatively unconstrained with respect to all of the following resources: network, com-

putation, or power. Developers creating applications for stationary applications do

not usually consider power as a resource. However, regardless of available network or

computation resources, a lack of power means neither resource can be used.

The mobile environment usually consists of some number of portable computers

that may be disconnected or interconnected with stationary environment computers

via a variety of wired and wireless networks. In comparison to the computers in the

stationary environment, these computers are relatively constrained with respect to

one or more of the following resources: network, computation, or power.

Developers of applications for mobile environments must address several differ-

ences between the mobile environment and the stationary environment. Relative to

most stationary computers, a single mobile computer has fewer computational re-

sources available and limited electrical power; this difference makes computation mi-

gration from clients to servers an important consideration for mobile environments.

However, taken together, the total sum of the computational power of the mobile

computer clients may be greater than that of a stationary server, making compu-

tation migration from servers to clients to offload work an important consideration.

Stationary computers may have large amounts of storage; thus, they can store very

large amounts of information. Mobile computers, however, have limited amounts of

storage and may not be able to store complete replicas of the data stored at servers.

However, the available resources may change dynamically (e.g., a "docked" mobile

computer that has access to a unlimited electrical power, larger display, graphic or

math coprocessor, additional stationary storage, and high-bandwidth, low-latency

networks).

In addition to the limitations that the mobile environment places upon resources,

the environment also adds volatility. The mobile environment is significantly more

volatile than the stationary environment. Network connectivity, bandwidth, latency,

and cost all can vary while an application is running. In addition, computational and

power resources can vary. These are changes that rarely occur in a stationary envi-

ronment; as such, they are not addressed by applications in stationary environments.

Computers in a stationary environment are usually very reliable. Relative to their

stationary counterparts, mobile computers are quite fragile: a mobile computer may

run out of battery power, be damaged in a fall, be lost, or be stolen [47, 71]. Given

these threats and the limited amount of storage available to mobile computers, pri-

mary ownership of data should reside with stationary computers, not mobile comput-

ers. Furthermore, application developers should take special precautions to enhance

the resilience of the data stored on mobile computers (e.g., storing changes to appli-

cation data using stable storage techniques).

A stationary environment can distribute an application's components and rely

upon the use of high-bandwidth, low-latency networks to provide good interactive

application performance. Mobile computers operate primarily in a limited bandwidth,

high-latency, and intermittently-connected environment; nevertheless, users want the

same degree of responsiveness and performance as in a fully-connected environment.

Network partitions are an infrequent occurrence in stationary networks; therefore,

most applications consider them to be major failures that are exposed to users. In the

mobile environment, applications will face frequent, long-duration network partitions.

Some of the partitions will be involuntary (e.g., due to a lack of network coverage

or radio shadows), while others will be voluntary (e.g., due to high monetary cost

or limited battery power). Applications should gracefully, and as transparently as

possible, handle such partitions. In addition, users should be able to continue working

(i.e., accessing and modifying locally cached data) as if the network was still available,

albeit with some limitations.

When users on different sides of a network partition modify local copies of global

data,, consistency is an issue. In a mobile environment, optimistic concurrency con-

trol [49] is useful because pessimistic methods are inappropriate (e.g., a disconnected

user cannot acquire or release locks), as pointed out by the designers of the Coda

file system for disconnected operation [47]. However, using an optimistic approach

has its costs: associated with long duration partitions, will be a greater incidence of

update-update conflicts than in stationary environments. It is therefore important to

use application-specific semantic information both to detect when such conflicts are

false positives and can be avoided and, when possible, to help resolve such conflicts.

While network bandwidth in the stationary environment is usually symmetric,

in the mobile environment it may be asymmetric. Also, wireless network bandwidth

is a limited, shared resource and currently, is less than wired bandwidth. Stationary

servers have access to unlimited power for transmitting and to larger, better antennas

for receiving. Mobile computers, however, have limited power available for transmis-

sion and smaller, more portable antennas. Thus, servers may be able to transmit

to mobile computers at a higher data rate than mobile computers can transmit to

servers.

As discussed earlier, the differences in resources and their volatility represent sig-

nificant problems for mobile computers. Unfortunately, these are not problems that

technological improvements will fix. Size, weight, and cooling constraints for mobile

computers mean that computational resources and battery power will always be con-

strained. The only solution to these problems is to redesign the classical distributed

systems techniques normally used in stationary environments.

In summary, the mobile environment represents an extreme case of distributed

computing. Certain of the algorithms used by distributed algorithms are based upon

assumptions that are invalid in the mobile environment.

In contrast, the algorithms used by the Rover toolkit are based upon distributed

algorithms that have been adapted and optimized for the mobile environment. Plac-

ing these algorithms in the toolkit provides application developers with the reusable

building blocks that they need to cope with environmental volatility. In addition,

IVIODle rios

Figure 1-1: Rover offers applications a client/server distributed object system with
client caching and optimistic concurrency control.

using a toolkit simplifies the development of mobile applications.

1.2 Goals

This thesis has several goals that directed the design and architecture of the ideas in

the Rover toolkit:

1. Users want applications that provide user interfaces that allow users to con-

tinue working while disconnected. Applications should be able to enqueue non-

blocking requests that will be delivered when connectivity becomes available. In

addition the applications should be able to cache data, and modify that cached

data, while intermittently connected or disconnected.

2. Network connectivity in the wide-area is limited and costly both in terms of

dollars and transmission power; so every effort should be made to efficiently

use available connectivity. In addition, there is a significant amount of existing

wide-area network infrastructure; every effort should be made to reuse it (e.g.,

World-Wide Web, E-mail, etc).

3. Clients may be temporarily computationally underpowered, or servers may be

3eTver

temporarily overloaded; as such, applications should be able to dynamically

shift work between clients and servers.

4. The application development environment should isolate developers from the

mobile environment's problems and help them cope with the mobile environ-

ment's volatility. At the same time, the application development environment

should expose environmental (e.g., connectivity) information to applications, if

the applications desire the information.

5. Application developers should be provided with an efficient application develop-

ment environment; one that allows them to incorporate existing code and appli-

cations, quickly create new mobile-adaptive applications, and provides develop-

ers with an incremental transition from mobile-transparent proxies to mobile-

adaptive applications.

1.3 Rover: A Toolkit-based Approach

The Rover toolkit's design and architecture address the goals listed in the previous

section by providing applications with a general-purpose distributed object system

based on a client/server architecture [16, 38, 41, 40, 74] (see Figure 1-1). Clients are

Rover applications that typically run on mobile hosts, but could run on stationary

hosts as well. Servers, typically run on stationary hosts and hold the long term state of

the system. Rover applications employ a primary-copy, tentative-update, optimistic

concurrency-based distributed object model of data sharing: they call into the Rover

library to import objects, and to export logs of methods that mutate objects. Client-

side applications invoke operations directly on locally cached objects. Server-side

applications are responsible for resolving conflicts and notifying clients of resolutions.

A network scheduler drains the stable queued communications log, which contains

the requests and methods that are to be performed at the server.

Communication between clients is limited to mobile host-server interactions and

peer-to-peer interactions between clients sharing the same local object cache. Such

clients need not be collocated on the same mobile host. There is, however, no support

for remote peer-to-peer (clients using different local object caches) or mobile host-

mobile host (object cache-object cache) interactions.

The Rover toolkit provides mobile communication support based on the novel

combination of two ideas: relocatable dynamic objects (RDOs) and queued remote

procedure call (QRPC). A relocatable dynamic object is an object (code and data)

with a well-defined interface that can be dynamically loaded into a client computer

from a server computer, or vice versa, to migrate computation or data and reduce

client-server communication requirements. Queued remote procedure call is a com-

munication system that permits applications to continue to make non-blocking or

asynchronous remote procedure calls [8] even when a host is disconnected - requests

and responses are exchanged upon network reconnection. The synergy between QRPC

and RDOs helps applications deal with volatility in the mobile environment.

The key task of the programmer when using the Rover toolkit to build a mobile-

adaptive application or a proxy for mobile-transparent applications is to define RDOs

for the data types manipulated by the application or proxy, and for data transported

between client and server. The programmer then divides the application or proxy

into portions that run on the client and portions that run on the server; these parts

communicate by means of QRPC. The programmer then defines methods that update

objects, including code for conflict detection and resolution.

To use the Rover toolkit, a programmer links the modules that compose the client

and server portions of an application with the Rover toolkit. The application can

then actively cooperate with the Rover runtime system to import objects onto the

local machine, invoke well-defined methods on those objects, export logs of method

invocations on those objects to servers, and reconcile the client's copies of the objects

with the server's.

1.4 Building and Using Mobile Applications

The Rover toolkit provides a novel approach to building and using mobile applica-

tions. This section discusses two other categories of classical distributed computing

techniques for building client-server applications for mobile environments. The devel-

opment of both approaches has been guided by the attributes of the typical station-

ary environment and they fall into one of two categories: those approaches that are

special-purpose, single-use implementations and those approaches that are unaware

of the environment.

Special-purpose applications use a special-purpose implementation of the network

transport and data management protocols [33, 47, 68, 71]. Such applications are

able to address all of the differences between stationary and mobile environments.

However, because the network and data infrastructure is very specialized, it may be

difficult to implement, extend, upgrade, or reuse for other applications. In addition,

there is no coordination of resources between multiple applications executing on the

same mobile host. This lack of coordination on a mobile host results in all of the

applications competing in an uncoordinated fashion for the same limited network and

computational resources. An example of the problems that this lack of coordination

introduces is provided in Section 6.4.

Mobile-transparent applications, assume that they are operating under the con-

ditions of a stationary environment; therefore, they make certain, potentially incor-

rect, assumptions about the location and availability of resources. However, mobile-

transparent applications can be used unmodified in mobile environments by having

the operating system shield or hide the differences between the stationary and mo-

bile environments from the applications. Coda [47] and Little Work [31] used this

approach by providing a file system-based interface to applications. These systems

consist of a local proxy for some service, in this case the file system, running on the

mobile host. The proxies are themselves mobile-adaptive applications and they pro-

vide the standard service interface to the application, while attempting to mitigate

any adverse effects of the mobile environment and cooperating with remote proxies

Client Client Client

Figure 1-2: Inconsistent replicas in a replicated file system.

on well-connected, stationary hosts.

Unfortunately, the mobile-transparent approach often sacrifices functionality and

performance. While proxies hide mobility issues from applications, they usually re-

quire manual intervention by users (e.g., having a user indicate which data to prefetch

onto the user's computer). The limitations and semantics of a mobile-transparent in-

terface may make it more difficult to provide a good user interface. In some situations,

it may not be possible to decouple user actions from the network (e.g., most file sys-

tem proxies block when a user requests an uncached file and network connectivity is

not available).

Similarly, the resolution of update-update conflicts (conflict resolution) is com-

plicated because the interface between the application and its data was designed for

a stationary environment. Consider an application writing records into a file shared

among stationary and mobile hosts. While disconnected, the application on the mo-

bile host inserts a new record into the file. The local file system proxy records the

write in a log. Meanwhile, an application on a stationary host alters another record in

the same file. Upon reconnection, the file system can detect that conflicting updates

have occurred. However, without semantic information about the application or its

files, the file system cannot resolve the conflict.

Coda recognizes this limitation and provides for the use of application-specific

resolvers (ASRs) [48]. However, ASRs alone are insufficient. In the above example,

there is no way for the ASR to use the file system interface to determine whether

the mobile host inserted a new record or the stationary host deleted an old one. The

cause of this confusion is that Coda changes the contract between the application

and the file system in order to hide the condition of the underlying network. As

Figure 1-2 shows, the read/write interface no longer applies to a single file, but to

possibly inconsistent replicas of the file. Therefore, any applications that depend on

the standard read/write interface for synchronization and ordering may fail.

1.5 Arguments for Mobile-Adaptive Computing

Although the mobile-transparent approach is appealing because it offers to run ex-

isting applications without alteration, it is fundamentally limited. The functionality

needed to create correct, well-performing applications in an intermittently-connected

environment often requires the cooperation of both application and user. The alterna-

tive to hiding environmental information from applications is to expose the informa-

tion to the applications and involve them in decision-making. Exposing environmental

information yields the class of mobile-adaptive applications.

A mobile-adaptive application can store not only the value of a write, but also

the operation associated with the write. Knowing the operation adds a significant

amount of application-specific semantic information; for example, it allows for "on-

the-fly" dynamic construction of conflict resolution procedures.

Unlike previous systems, the Rover toolkit is designed to support both mobile-

adaptive and mobile-transparent approaches. It also is designed to help application

developers to gradually and incrementally port existing applications to a mobile-

adaptive environment. For mobile-transparent applications, the Rover toolkit provides

the tools to build local proxies for remote services. For mobile-adaptive applications,

the Rover toolkit provides the components and architecture necessary for operation

in a mobile environment.

The mobile-adaptive argument can be viewed as applying the end-to-end argument

from [70] to mobile applications: "Communication functionality can be implemented

only with the knowledge and help of the application standing at the endpoints of

the communications system." The file system example described above illustrates

that applications need to be aware of intermittent network connectivity to achieve

consistency. Similar arguments can be made with respect to performance, reliability,

low-power operation, etc.

The special-purpose, single-use applications discussed in the previous section use

the mobile-adaptive argument. However, the mobile-adaptive argument does not re-

quire that every application use its own, ad hoc approach to mobile computing. On the

contrary, it allows the underlying communication and programming systems to define

an application programming interface that optimizes common cases and supports the

transfer of appropriate information between the layers. Since mobile-adaptive appli-

cations share common design goals, they will share design features and techniques.

The Rover toolkit provides exactly such a mobile-adaptive application programming

interface.

1.6 Contributions and Results

In addition to achieving the goals listed earlier in Section 1.2, this thesis offers several

key contributions and results:

1. QRPC meshes well with intermittently connected environments. QRPC perfor-

mance is acceptable even if every RPC is stored in stable logs at clients before

being transmitted and at servers before being processed. For lower-bandwidth

and higher-latency networks, the overhead of using stable logs is dwarfed by the

underlying communication costs.

2. Using stable message queues enables QRPCs to be scheduled, yielding more

efficient use of communication channels and increased network performance.

The network scheduler uses batching and compression to reduce the number

of roundtrip messages and network connections used by QRPCs. This decrease

in messages reduces the average latency for a request and minimizes the total

amount of data sent over communication channels.

3. The reliable delivery transport offered by QRPC greatly simplifies the develop-

ment of mobile applications by hiding communication failures from applications.

4. Use of RDOs allows mobile-adaptive applications to migrate functionality dy-

namically to either side of a slow network connection to minimize the amount

of data transiting the network. Caching RDOs reduces latency and bandwidth

consumption. Interface functionality can run at full speed on a mobile host,

while large data manipulations may be performed on the well-connected server.

5. RDOs also allow computation migration decision based based upon available

computation resources. Computation can be offloaded from a temporarily com-

putationally underpowered client or a temporarily overloaded server. Thus, com-

putation migration aids in making Rover scalable to large numbers of clients.

6. Long-running applications are usually the most likely to be affected by software

and hardware faults. Rover supports the development of reliable applications

by providing reliable server-side RDOs based upon QRPC's reliable delivery,

several simple language extensions, and failure recovery functions.

7. Experiences with building several mobile-adaptive applications shows that port-

ing existing applications or building new applications using Rover generally re-

quires relatively little change to the original application. In addition, the new

applications perform significantly better than the original applications.

8. Experiences with building several proxies to support mobile-transparent appli-

cations shows that building Rover proxies is fairly easy. In addition, unmodified,

mobile-transparent applications show significant performance benefits from us-

ing Rover proxies.

9. One of the proxies constructed with the Rover toolkit is an World-Wide Web

browser proxy. The proxy supports offline or intermittently connected web

browsing using unmodified web browsers. Several of the techniques used by the

proxy have been adopted by commercial applications or have been proposed as

components of World-Wide Web (WWW) standards.

The thesis includes several software components, a publicly available reference

implementation of the Rover Toolkit along with several example applications (E-

mail browser, graphical rolodex, and HTTP proxy), and on-line documentation of

the toolkit. There also will be internally available prototypes of an NNTP reader

proxy [13], distributed calendar tool, and the Rover File System proxy. Additional

information about the software components is available from the Rover project home

page: http://www.rover.lcs.mit.edu/ .

The software components are provided as examples of how the ideas presented in

this thesis can be used; other implementations of the Rover toolkit and applications

may make different implementation choices. The components are also prototypes;

as such, not all of the features and functionality discussed in this thesis are imple-

mented, including: several of the client cache consistency options; messages are sent

unencrypted; limitations on the sharing of data between client applications on the

same machine; limited support for handling errors. Additional details can be found

in Chapter 4.

1.7 Outline of the thesis

The remainder of this thesis places the research in the context of related work (Chap-

ter 2), presents the design and architecture of the Rover toolkit (Chapter 3), describes

the reference implementation of the Rover toolkit (Chapter 4), discusses the imple-

mentation of several mobile-adaptive applications and proxies for mobile-transparent

applications (Chapter 5), presents experimental results from micro benchmark and

system level measurements (Chapter 6), and finally, offers observations on future work

and the benefits and limitations of the Rover approach (Chapter 7).

Chapter 2

Related Work

To the best of my knowledge, no one has studied an architecture like Rover's, which

provides both queued RPC and relocatable dynamic objects. Queued RPC is unique

in that it provides support for asynchronous fetching of information, as well as for

lazily queuing updates. The use of relocatable dynamic objects for dealing with the

constraints of mobile computing - intermittent communication, varying bandwidth,

and resource poor clients - is also unique to the Rover architecture. There are,

however, a number of research and commercial projects that are related to the Rover

Toolkit. This chapter discusses these related projects in detail.

2.1 Relocatable Dynamic Objects

The Java [3, 73] language provides a limited framework for code-shipping and remote

invocation and could have been used for the language component of RDOs. However,

the Tcl and Tk languages [66] were chosen for the language component for RDOs

because Java was not yet available during the early development of Rover. In addition,

Java has only recently become as portable as Tcl. Future Rover implementations may

be based upon Java or other byte-compiled or interpreted languages.

The important consideration here is that the choice of which code-shipping lan-

guage to use for RDOs is immaterial because the particular form of code shipping is

orthogonal to the Rover architecture. The key difference between Rover and other code

shipping systems is that Rover provides RDOs with a well-defined object-based exe-

cution environment that provides code- and data-shipping, a uniform naming scheme,

an application-specific replication model, reliable execution, and QRPC.

The Bayou project [17, 77] defines a mobile-adaptive, peer-to-peer, database archi-

tecture for sharing data among mobile users, where mobile hosts store updates locally

in a stable log and communicate with other mobile hosts to propagate the changes.

Conflicts are resolved using log replay. Bayou addresses the issues of tentative data

values [78] and session guarantees for weakly-consistent replicated data [75]. To il-

lustrate these concepts, the authors have ported calendar and E-mail applications

and built a bibliographic database tool. Rover borrows the notions of tentative data

and the calendar tool example from the Bayou project. Rover extends this work with

RDOs and QRPC to deal with intermittent communication, limited bandwidth, and

resource poor clients.

An alternative to the Rover object model is the Thor object model [54]. In Thor,

objects are updated within transactions that execute entirely within a client cache.

However, Thor does not support disconnected operation: clients have to be connected

to the server before they can commit. An extension for disconnected operation in

Thor has been proposed by Gruber and others [30], but it has not been implemented.

Furthermore, it does not provide a mechanism for non-blocking communication, and

their proposed object model does not support method execution at the servers.

RDOs can be viewed as simple Agents [69] or as a light-weight form of process

migration [22, 67, 72, 79]. Other forms of code shipping include Display Postscript [1],

Safe-Tcl [9], Active Pages [32], Dynamic Documents [42], and LISP Hypermedia [56].

RDOs are probably closest to Telescript [87], and Ousterhout's Tcl agents [66]. As dis-

cussed above, most differences between RDOs and these other forms of code shipping

are immaterial because of the environment provided by the Rover architecture.

My research borrows from early work on replication for non-mobile distributed

systems. In particular, Rover borrows from Locus [82] (type-specific conflict resolving)

and Cedar [26] (check-in, check-out model of data sharing).

The Rover architecture supports data replication using a primary copy replication

with tentative updates model. Gray et. al. [27] perform a thorough theoretical analysis

of the options for database replication in a mobile environment and conclude that

primary copy replication with tentative updates is the most appropriate approach for

mobile environments.

2.2 Queued Remote Procedure Call

A number of proposals have been made for dealing with the limited communication

environments for mobile computers. Katz surveys many of the challenges [43]. Baker

describes MosquitoNet, which shares similar goals with Rover, but has not been im-

plemented yet [5]. Several commercial systems for mobile environments, including

Telescript [87] and Oracle Mobile Agents [12], offer asynchronous communication and

reliable message delivery.

Several systems use E-mail messages as a transport medium, and obtain benefits

similar to those obtained using QRPC. The Active Message Processing project [81]

has developed various applications, including a distributed calendar, that use E-mail

messages as a transport medium. In another project, researchers at Digital Equipment

Corporation's Systems Research Center (DEC SRC) used E-mail messages as the

transport layer of a project that coordinated more than a thousand independently

administered and geographically dispersed nodes to factor integers of more than 100

digits [52]. The application is a centralized client-server system with one server at

DEC SRC that automatically dispatches tasks and collects results.

There are several research and commercial research projects that use queued

communication to support intermittently connected and/or offline World Wide Web

browsing. The DeckScape WWW browser [10] is a "click-ahead" browser that was de-

veloped simultaneously with the Rover web browser proxy. However, their approach

was to implement a browser from scratch; as such, their approach is not compati-

ble with existing browsers. There currently are a number of commercial offline web

browser proxies available (e.g., IBM's ARTour Web Express [11]) that are compatible

with existing browsers, however all are based upon special-purpose implementations.

IBM's proxy is particularly interesting because it optimizes the communications link

between the local proxy and a remote IBM proxy using compression and differencing

techniques.

2.3 Mobile-Transparent File Systems

Several previous projects have studied building mobile-transparent services for mobile

clients; most have been centered around file systems. The Coda project pioneered

the provision of distributed services for mobile clients. In particular, it investigated

how to build a mobile-transparent file system proxy for mobile computers by using

optimistic concurrency control and prefetching [47, 71]. Coda logs all updates to the

file system during disconnection and replays the log upon reconnection. Coda provides

automatic conflict resolution mechanisms for directories and files, and uses Unix file

naming semantics to invoke application-specific conflict resolution programs at the

file system level [48]. A manual repair tool is provided for conflicts of either type

that cannot be resolved automatically. A newer version of Coda also supports low

bandwidth networks, as well as intermittent communication [58].

The Ficus file system is also a mobile-transparent file system supporting discon-

nected operation, but it relies on version vectors to detect conflicts [68]. The Little

Work project caches files to smooth disconnection from an AFS file system [34].

Conflicts are detected and reported to the user. Little Work is also able to use low-

bandwidth networks [33].

A follow-on to the Coda project, the Odyssey project retains a file system-based

interface, but modifies the operating system by adding an application programming

interface for application awareness of the mobile environment and application adap-

tation to environmental changes [64, 65]. Odyssey is discussed in more detail in the

next section.

2.4 Mobile-Adaptive Applications

The need for mobile-adaptive applications and complimentary system services to ex-

pose mobility to applications was identified concurrently by several groups. Katz

noted the need for adaptation of mobile systems to a variety of networking envi-

ronments [43]. Davies et. al. cited the need for protocols to provide feedback about

the network to applications in a vertically integrated application environment [15].

Similarly, Kaashoek et. al. created a Web browser which exposed the mobile envi-

ronment to mobile code that implemented mobile-adaptive Web pages [42]. Baker

identified the dichotomy between mobile-adaptive and mobile-transparent issues in

general application and system design [5]. Rover is the first implemented general ap-

plication architecture to support both mobile-transparent system service proxies and

mobile-adaptive applications.

The BNU project implements a framework for executing RPC-driven mobile-

transparent applications on mobile computers. It allows for function shipping by

downloading Scheme functions for interpretation [85]. The BNU environment includes

mobile-transparent proxies on stationary hosts for hiding the mobility of the system.

BNU applications do not dynamically adjust to the environment; they do not have

a concept of tentative or stale data; and there is no support for disconnected oper-

ation, such as Rover's queued RPC. Application designers for BNU noted that the

workload characterizing mobile platforms is different from workstation environments

and will entail distinct approaches to user interfaces [50]. A follow-up project, Wit,

addresses some of these shortcomings and shares many of the goals of Rover, but

employs different solutions [84].

A number of proposals have been made for various degrees of mobile-adaptive sup-

port in operating system services and application. The InfoPad [51], Daedalus [59],

GloMop [24] and W4 [6] projects focus on mobile-adaptive wireless information ac-

cess. The InfoPad project employs a dumb terminal and offloads all functionality from

the client to the server. Daedalus and GloMop use dynamic "transcoding" or "dis-

tillation" to reduce the bandwidth consumed by data transmitted to a mobile host.

Odyssey Benefit Odyssey Limitation

Adaptation of multimedia Read-only support, no support
applications for write operations
Centralized resource management No support for disconnected or

intermittently connected operation
Model for data fidelity Single dimension of adaptation
Server to client data migration No support for code migration

Table 2.1: Benefits and limitations of the Odyssey project.

Their transcoding technology is completely compatible with Rover's architecture. Ap-

plications on the mobile host cooperate with mobile-adaptive proxies on a stationary

host to define the characteristics of the desired network connections. Similarly, W4

applies the technique of dividing application functionality between a small Portable

Data Assistant (PDA) and a powerful, stationary host to Web browsing. Rover is

designed for more flexible, dynamic divisions. Depending on the power of the mobile

host and available bandwidth, Rover allows mobile-adaptive browsers to dynamically

move functionality between the client and the server.

The BARWAN [44] project supports mobile, "data type aware" applications. The

approach relies on strongly typed transmissions. A dynamically extensible type sys-

tem enables type-specific compression levels and abstraction mechanisms to conserve

network usage. User code is itself a transmission type allowing computation reloca-

tion. Davies' Adaptive Services [15] similarly takes a protocol-centric approach for

exposing information about the mobile environment to the application.

A similar approach is taken by the Odyssey project. Odyssey focuses on operating

system support to enable "agile" mobile-adaptive applications to use "data fidelity"

to control resource utilization. Data fidelity is defined as the degree to which a copy of

data matches the original [64, 65]. Odyssey provides centralized resource management

and uses application-specific procedures to deal with changes in available resources.

Odyssey has been used to implement a variety of read-only mobile information access

applications. Table 2.1 lists Odyssey's advantages and disadvantages.

Rover, however, in addition to supporting dynamic adaptation of program func-

tionality and data types, also supports application-specific conflict detection and res-

olution.

A number of successful commercial mobile-adaptive applications have been de-

veloped for mobile hosts and limited-bandwidth channels. For example, Qualcomm's

Eudora is an E-mail browser that allows efficient remote access over low-bandwidth

links. Lotus Notes [45] is a groupware application that allows users to share data

in a weakly-connected environment. Notes supports two forms of update operations:

append and time-stamped. Conflicts are referred to the user. TimeVision and Meet-

ing Maker are group calendar tools that allow a mobile user to download portions

of a calendar for off-line use. The Rover toolkit and its applications provide func-

tionality that is similar to these proprietary approaches, however it does so in an

application-independent manner. Using the Rover toolkit, standard workstation ap-

plications, such as the Exmh E-mail browser and the Ical distributed calendar, can

be easily turned into "roving" mobile applications.

2.5 Reliable Execution

Some of the ideas behind the Rover toolkit's reliable execution model were drawn from

existing work in distributed computing. Applying these ideas to the Rover toolkit

moves them to a domain where failures are frequent and network transports offer

intermittent connectivity, high latency, and low bandwidth.

There is a large body of research on logging and distributed fault-tolerant trans-

actions; for an excellent discussion of some of the issues, see [28] and [29].

Other systems have addressed some of the problems relating to reliable commu-

nications. The Tacoma project explored the use of rear guard agents to guarantee

agent delivery and execution [37]. More recent work on Tacoma relies upon Horus

for fault-tolerant communication and execution [80]. ISIS defined an environment for

fault-tolerant computing based on group communication [7]. The failure model used

by ISIS is a fail-stop model, which requires recovering processes to recover their state

from other active processes instead of a log. Rover's failure model supports recovery

based upon either client computer retransmissions (active processes) or server stable

logs.

The state of guardians in the transaction-based Argus system is split into stable

and volatile variables [53]. Recovery relies upon replay of a local stable log. Likewise,

the state of objects in the Clouds distributed operating system project [2] was split

into permanent and volatile data. Clouds also provided computation fault-tolerance

support for mobile objects by using primary and backup schedulers. Rover also splits

server application state into stable and volatile variables.

Chapter 3

Design of the Rover Toolkit

The Rover toolkit is designed to support the construction of mobile-adaptive appli-

cations and proxies for mobile-transparent applications. This chapter discusses the

design and architectural choices that were made during the development of the Rover

toolkit. The first section provides an overview of the ideas in the toolkit followed by

sections discussing Relocatable Dynamic Objects, Queued Remote Procedure Call,

RDO replication and consistency issues, and mobile-adaptive applications.

3.1 Design Overview

This section provides an argument for using a toolkit, discusses the fault model for

the Rover toolkit, and details the problems addressed by the toolkit and the four

solutions offered by it:

1. Relocatable Dynamic Objects (RDO)

2. Queued Remote Procedure Call (QRPC)

3. Replication and application-specific consistency control

4. Mobile-adaptive applications

3.1.1 Why Use a Toolkit?

One of the key contributions of this thesis is a toolkit for transferring existing, mobile-

transparent applications into a mobile environment and for constructing new, mobile-

adaptive applications. An alternative approach is single-use, special-purpose imple-

mentations. However, toolkits offer code reuse, a distinct advantage over special-

purpose implementations. Code reuse means that the functionality offered by the

toolkit only needs to be implemented, debugged, and optimized once - code reuse

simplifies application porting, development, and correctness. Another, sometimes

complementary, approach is operating system support. Toolkits offer the advantage

over operating system implementations of portability to other operating systems and

preservation of application data type semantics.

One can ask the converse question of why a toolkit should not be used. Some of

the potential reasons why one would not use a toolkit are: efficiency of the toolkit,

flexibility of Application Programming Interfaces (APIs), and customizability of the

APIs.

Rover provides developers with a spectrum of customizability. Developers may

choose to use Rover-supplied functionality and components, or they may choose to

replace components with custom functionality. Obviously, there are situations where

a custom implementation will offer better performance than a toolkit. However, a

properly designed and implemented toolkit will often offer sufficient efficiency with the

benefit of reusability. For example, the implementation of the client-side Rover toolkit

uses a multi-level cache implementation to optimize client application performance

(see Section 4.2.2 for more details). In addition, a toolkit is designed to be reused;

thus, it is reasonable to expect that more time will be spent on optimizing the toolkit's

performance, than would be spent on a single application.

Flexibility and customizability of a toolkit are important considerations as they de-

termine the toolkit's applicability to a given application domain. A significant amount

of effort has gone into the design of the application programming interfaces for the

Rover toolkit. There are, however, application domains that are not addressed by the

Rover toolkit (e.g., real-time and multimedia applications).

Although a toolkit is located above the operating system, it can be viewed as serv-

ing a similar purpose: providing an abstract interface to the underlying environment.

Thus, just as application developers do not typically implement custom operating

systems for each application that they develop, mobile application developers need

not implement special-purpose functionality for their applications.

3.1.2 Failures

The Rover toolkit is designed to handle several types of transient failures, some of

which are common in the mobile environment. The most commonly encountered fail-

ures in the mobile environment are transient communication link failures (e.g., a

dropped dialup link, a packet lost due to a wireless link error, or a packet dropped

by a congested router) and power losses (e.g., an exhausted battery).

Other less common failures that are addressed by the toolkit are transient software

failures, or Heisenbugs. Software faults occur mostly in the form of benign, transient

failures caused by programming errors in rarely executed code paths (e.g., race con-

ditions), by resource exhaustion, or by transient hardware errors. The best recovery

mechanism for transient failures is to restart the application or system [29].

One of the important guarantees offered by Rover is a delivery guarantee: changes

to application data will be delivered from client-side applications to servers and the

results delivered back to the client machines, regardless of any transient faults. Appli-

cations can trust that once a request is inserted into the stable log, it will be delivered

to the server. This is an important guarantee considering the potential problems that

may be encountered in the mobile environment. By providing application developers

with this guarantee, Rover greatly simplifies the application developers' problem of

delivering user's modifications to servers.

The delivery of results is only guaranteed to reach the client machine and not the

original client application. Rover provides support for failure recovery only for client-

side Rover toolkit failures and not for preserving the internal state of client-side

applications across client failures. A client application that fails will not be automati-

cally restarted and all application state, except for that stored in the persistent RDO

cache or stable log, is lost.

To help protect against client failures, the data stored at clients is considered

tentative and, unless it was locally created, is a copy of data stored at a server.

Additional client-side application support for failure recovery is an area for future

research. However, regardless of transient failures of the client machine or application,

communication links, or server machine, the user's modifications will be delivered to

the server and the results returned.

For server-side applications, Rover provides extensive support for preserving their

internal state across server failures. The toolkit support for reliable server-side appli-

cations is discussed in more detail in Sections 3.2.2 and 3.3.2.

The Rover toolkit does not address persistent software, hardware, or communi-

cation link failures. Examples of persistent hardware faults are failed components,

in particular, hard disk drives, and total loss situations (theft, fire, etc.). Persistent

software failures, or Bohrbugs, are faults that are not transient; they recur when the

operation is reexecuted (e.g., they are due to programming error). In addition, they

may corrupt system state, leaving the system unrecoverable even after a restart.

There are many research techniques that can be applied to persistent faults [4],

however, for most applications, providing a system that can tolerate persistent failures

would impose an unnecessary burden on programmers, performance, and hardware.

In addition, past studies have shown that most hardware and software errors are

transient, recoverable failures [29]. As such, the Rover toolkit model balances the

need to hide hardware and software faults with the need to avoid overly burdening

programmers and lowering performance in the normal case.

3.1.3 Mobile Environment Problems Addressed by Rover

The Rover toolkit is designed to address the problems and challenges associated with

mobile environments, as described in Section 1.1:

1. The volatile nature of the mobile environment - Use QRPC, replication, and

application-awareness to dynamically migrate RDOs. These Rover solutions al-

low applications to adapt to changes in available computational and communi-

cation resources. Use application-specific consistency control for the problems

related to the high latency for propagating changes to data in the mobile envi-

ronment.

2. Unpredictable remote access times in the mobile environment - Use QRPC to

isolate applications from unpredictable latency and bandwidth. Use RDOs and

replications to move application data and functionality closer to the resources

that they need (e.g., move GUIs to users, move functions to the data that

they use). Use application-specific consistency control to handle changes to data

during periods of disconnected or intermittently connected operation.

3. Limited computational and power resources - Use QRPC's split-phase oper-

ation (discussed in Section 3.3.2) for more power-efficient communication. Mi-

grate RDOs to minimize bandwidth requirements (transmitter time), to hide

latency from applications and users, and to handle constrained computational

resources at clients or servers.

4. Users' desire for good interactive performance and application availability, re-

gardless of available network connectivity - Replicate and migrate application

data and GUI RDOs to give users good interactive performance by hiding net-

work latency. Use application-specific consistency control to allow users to make

immediate changes and propagate results in the background, while handling po-

tential conflicts.

Rover Solution #1: Relocatable Dynamic Objects

Rover provides RDOs to help applications adapt to volatility in the computational,

network, and power resources that are available in the mobile environment. RDOs also

help applications use computation relocation to decrease both application dependence

upon continuous network connectivity and the amount of data sent between clients

and servers.

Some of the alternatives to the dynamic object model offered by RDOs are a static

object model (e.g., a fixed client-server division) or a file system-based model. Each of

these alternatives has some deficiencies relative to RDOs. For example, a static object

model cannot adapt to changes in the mobile environment (computational, network,

and power resources). A file system-based model (even a mobile-adaptive one, such as

Odyssey [65]) uses objects, files, that are coarse-grain and hides application-specific

semantic information that is needed during conflict detection and resolution.

Rover Solution #2: Queued Remote Procedure Call

Rover provides QRPC - asynchronous, queued communication with optional call-

backs - to help isolate applications from both the limitations of networks (bandwidth,

latency, and cost) in the mobile environment and the unreliability of the mobile envi-

ronment (e.g., transient hardware and software failures and limited battery power).

By using QRPC with its logging of requests to stable storage, Rover is able to

offer client applications the delivery guarantee discussed earlier: Once a QRPC is

received by the toolkit, it will be delivered to the intended recipient and the results

will be delivered back to the client's machine, regardless of any transient faults. Rover

does not guarantee delivery in the presence of persistent faults and that the delivery

of results back to the caller is not guaranteed, since the caller application may have

failed in the meantime.

In addition, as described in more detail in Section 3.5, applications can modify

and delete QRPCs that they have issued, but that have not already been sent to a

server.

Two alternatives to using QRPC for communication are operating system-based

communication and application-specific communication. In the former case, the com-

mon communication support usually offered by operating systems is not well suited

to the mobile environment, while special operating system support is usually not

portable, is based upon a file system interface that hides application-specific seman-

tics that may be useful in detecting and resolving conflicts, and does not offer the

delivery guarantees offered by Rover. The Rover toolkit is designed to be portable

across a variety of operating systems and to preserve application-specific semantics.

The other alternative, application-specific communication, makes code reuse diffi-

cult, an important consideration given the amount of effort required to implement the

functionality incorporated in the Rover toolkit. Application-specific communication

also prevents the coordination and management of the communication by multiple

client applications with remote servers (e.g., using a single network connection to

send data from separate client applications to a common server machine). The Rover

toolkit is designed for easy code reuse and QRPC supports several features for opti-

mizing communication between separate client applications and servers.

Rover Solution #3: Replication and Application-Specific Consistency Con-

trol

The Rover toolkit provides users with the capability to continuously access and mod-

ify locally cached data; this support is provided in the form of application-specific

conflict detection and resolution. The toolkit gives client and server applications the

application-specific tools they need to control both the replication of application data

and the degree of consistency between client and server replicas. Rover provides a

significant amount of support for optimistic concurrency, but does not preclude the

use of other concurrency models.

Rover Solution #4: Mobile-Adaptive Applications

Since the mobile environment is dynamic, it is important to present users and appli-

cations with information about the current environment. The Rover toolkit provides

applications with environmental information (e.g., network connectivity options, max-

imum batching delay, compression level, and the contents of the persistent RDO cache

and stable log) for use in dynamic decision making or for presentation to the user.

Applications may use either polling or callback models to determine the state of the

mobile environment.

Applications can choose to forward notifications to users or use them for silent

policy changes. For example, in the Rover calendar application (see Section 3.5),

appointments that have been modified but not propagated to the server are displayed

in a distinctive color (a technique that was borrowed from the Bayou room scheduling

tool [17]). The color informs users that the appointment is tentative and might be

canceled due to a conflict.

3.1.4 The Synergy Between the Solutions

There is a synergy between RDOs and QRPC - QRPC provides the transport layer

for moving RDOs and conveying remote invocations upon RDOs. Rover clients and

proxies use QRPC to lazily import RDOs from servers (see Figure 1-1). When a

client application or proxy issues an import or export request for a remote RDO,

Rover automatically turns it into a QRPC containing the request. By using QRPC

as a transport mechanism, applications and their actions are automatically provided

with isolation from the volatile and fragile nature of the mobile environment.

Likewise, RDOs rely on the toolkit's replication and application-specific consis-

tency control to provide users with continuous access and modification rights to their

data along with coherent views of that data.

Finally, RDOs, QRPC, replication, and application-specific consistency control

are all linked via mobile-adaptive application support. Mobile-adaptive support gives

applications control over the other three solutions.

3.2 Relocatable Dynamic Objects

Relocatable Dynamic Objects (RDO) are the central data structures in the Rover

toolkit. This section details the components of an RDO, discusses the lifetime of and

uses for an RDO, and provides the security model used for RDOs.

3.2.1 RDO

An RDO is an object that consists of: mobile code, encapsulated data, a well-defined

interface that specifies the methods provided by the RDO, and outcalls - the ability

to make invocations from one RDO to another.

Associated with an RDO is a method log. At the client, an RDO's method log

contains any tentative mutating methods (methods with side effects) that have been

applied to the RDO, but which have not been declared as committed by the server.

Included with the mutating methods is any data created for or used by the method.

Client RDOs exist in one of two states:

1. Committed. This state indicates that the RDO is a locally unmodified copy.

2. Tentatively committed. This state indicates that the RDO has been locally mod-

ified, but the changes have not yet been committed by the server. When a mu-

tating method is invoked upon an RDO, the toolkit automatically clones the

committed version of an RDO and applies the method to one of the copies; this

action creates a tentatively committed RDO. Mutating methods are discussed

in more detail in Section 3.2.2.

At the server, an RDO's method log contains a record of the methods that have

been applied to the RDO; this log represents the RDO's history.

RDOs may vary in complexity from simple objects with a small set of methods

(e.g., calendar items) to modules that encapsulate a significant part of an application

(e.g., the graphical user interface for an E-mail browser). Complex RDOs may create

a new thread of control when they are imported.

Servers have multiple options for transmitting RDOs to clients. If the client does

not have a local replica of an RDO, the server marshalls the entire RDO and sends

it. Otherwise the server uses one of two formats, either the entire RDO is marshelled

and sent, or a log suffix message is sent. A log suffix is a suffix of the RDO's method

log, specifically it contains those mutating methods, including methods from other

clients, that have been applied to the RDO since the last time it was imported by the

client - these are the methods that when applied to the client's copy of the RDO will

transform the RDO to reflect the current canonical state of the RDO at the server.

The Rover toolkit provides functions for estimating the marshalled sizes of RDOs

and log suffixes. The server-side application uses these functions to choose between

sending a new RDO and a log suffix based upon which one will require the least

transmission space. For example, if the client has a very old copy of the RDO (i.e.,

a large number of mutating methods have been applied to the RDO since the client

imported it), then the more space-efficient choice is to send a new copy of the RDO.

3.2.2 Using RDOs

All mobile-adaptive application code and all application-touched data are written as

RDOs. All RDOs have a "home" server that maintains the primary, canonical copy.

Clients import secondary copies of RDOs into their local persistent caches and export

tentatively updated RDOs back to their home servers. In addition, clients may create

new RDOs and export the RDOs to servers for execution or for safe-keeping. Since,

RDOs may execute at either clients or servers, they can be used by clients and servers

to ship data and functions from one to the other or vice versa.

At the level of RDO design, application builders have semantic knowledge that

is extremely useful in attaining the goals of mobile computing. By tightly coupling

data with program code, applications can manage resource utilization more carefully

than is possible with a replication system that handles only generic data or files.

For example, an RDO can include compression and decompression methods along

with compressed data in order to obtain application-specific and situation-specific

compression, reducing or optimizing both network and storage utilization.

As discussed in Section 3.1.2, the Rover toolkit provides protection against faults

for client applications' methods and results, but not for client applications. However,

the toolkit provides extensive support for long-running RDOs at servers in the form

of stable variables and recovery procedures. Stable variables are an easy way for

applications to store and use information that is expensive, in terms of time, dollars,

etc., to recreate after a failure. Recovery procedures are procedures that are executed

during server failure recovery to restore an RDO's state, usually from data saved using

stable variables. Together, these two simple mechanisms allow long-running RDOs at

servers to reliably store information that is potentially expensive to reconstruct.

Figures 3-1 and 3-2 summarize the client- and server-side import and export op-

import(RoverRDO RDO,
RoverCallback callback)

Yes

Server response

new RDO

export(RoverRDO RDO,
RoverOp Operation,
RoverCallback callback)

Server response

Log suffix

Apply log suffix to
committed RDO. Reapply
any tentative methods

Figure 3-1: The steps in client-side import and export operations for an RDO.

erations for RDOs. The following sections discuss these operations in more detail.

Construct a QRPC
including operation

and any consistency
info. Save client

callback

Export

Yes Yes

Figure 3-2: The steps in server-side import and export operations for an RDO.

Client Operation: Importing RDOs

When a client-side application issues an import request for an RDO, the toolkit first

checks the local persistent RDO cache to see if the RDO is already resident in the

persistent cache. Import requests, like QRPC, are non-blocking and they include a

priority and an optional callback procedure.

If the RDO is already resident in the persistent cache and depending upon the

RDO's consistency options (see Section 3.4.2), then Rover invokes the optional call-

back procedure to notify the application that the RDO is present.

Otherwise, if the RDO's consistency options require contacting the server or the

Import

Server Response Action Taken by Client Toolkit
Verify Verification that the existing RDO is up-to-date.

Rover invokes the optional callback procedure to
notify the application.

New RDO Message containing a new RDO.
Rover stores the RDO in the local persistent RDO
cache, marks the RDO as committed, and
invokes the optional callback procedure to notify
the application.

Log suffix Message containing a log suffix.
Rover retrieves the committed copy of the RDO
from the persistent cache, applies the methods from
the log suffix, stores the resulting new committed
state of the RDO in the persistent cache, and then
invokes the optional callback procedure to notify
the application.

Error Error message (e.g., the RDO wasn't found or the
client had invalid or insufficient access permissions).
Rover invokes the optional callback procedure to
notify the application of the error.

Table 3.1: Server responses to import/export operations and client toolkit actions.

RDO is not resident in the persistent cache, then the toolkit turns the request into a

QRPC. Rover adds the import's priority and optional callback to the QRPC. Also, if

the RDO is already resident in the persistent cache and has any application-specific

consistency information, Rover includes the information in the QRPC.

Rover then immediately returns a promise [55] to the application, leaving the

application free to continue execution. Applications may use the promise to query

the status of the import operation or to block and wait for the operation to complete

(blocking is an undesirable action, especially when the mobile host is disconnected).

The response from the server will be one of the four messages listed in Table 3.1:

verify, new RDO, log suffix, or error.

After the response message is processed, if there are any outstanding tentative

methods stored in the RDO's method log, then Rover applies the methods as described

in Section 3.2.2 creating new tentatively committed copy of the RDO.

One significant issue for small mobile devices is the size of the persistent RDO

cache. The Rover toolkit does not specify a cache eviction policy, rather it provides

applications with several cache management tools. Applications, and not the Rover

toolkit, are responsible for ensuring that the client does not run out of cache space.

Rover maintains RDO reference timestamps and application-specified priorities. Us-

ing this information and the application-awareness methods specified in Section 3.5,

applications can manage their use of the persistent RDO cache. Additional cache

management tools and policies are an area for future research.

Client Operation: Exporting Changes to RDOs

Once the RDO is local, the client application is free to invoke the methods the RDO

provides. When an application invokes a mutating method on a locally cached RDO,

it directly invokes the RDO's method. The implementation of the RDO's method

uses toolkit provided functions to export the mutating method to the server and

invoke the same mutating method there. Thus, the method is first performed on the

local copy of the RDO and then on the canonical copy of the RDO. To perform

the method locally, Rover first clones the cached copy of the RDO and then applies

the mutating method to one of the copies. Next, Rover marks the modified copy as

tentatively committed (the original, unmodified copy is still marked as committed).

Finally, Rover saves the mutating method in the RDO's method log and commits the

method by using QRPC to lazily propagate the method to the Rover server. Included

with the QRPC is any application-specific consistency information for the RDO.

In the meantime, the application and other local applications may choose to use

committed or tentatively committed RDOs (this choice is explained in more detail in

Section 3.4). This choice allows applications to continue execution even if the mobile

host is disconnected.

The results of applying the mutating method at the server are returned to the

client with a completion message and a results message (more information on server-

side processing can be found in the next section). The completion message indicates

whether the method originally submitted by the client completed successfully. The

results message is in one of two formats:

1. A new RDO. The client-side toolkit replaces the tentative and committed ver-

sions of the RDO in the persistent cache with the new RDO.

2. A log suffix. Rover retrieves the committed copy of the RDO from the persistent

cache, applies the methods from the log suffix, and then stores the resulting new

committed state of the RDO in the persistent cache.

If the completion method indicates that the client's method failed, then the

log suffix may contain a substitute method. The server's substitute method can

be used by the client application to involve the user in conflict resolution. For

example, the information could be used to provide the user with an RDO's old

value, current value, and the method that failed.

As with imports, the server chooses the format that will require the least trans-

mission space.

After the response message is processed, if there are any other outstanding tenta-

tive methods stored in the RDO's method log, then Rover clones the RDO as before

and applies the tentative methods to one of the copies, creating a new tentatively

committed copy of the RDO.

After all local processing is complete, Rover invokes the method's optional callback

procedure.

Server Operation: Importing RDOs

When a QRPC containing an import request arrives at the server, the server routes

the request to the appropriate server-side application. The application examines the

consistency information included with the import request, if any was sent, and takes

one of the following actions:

1. The server returns a message verifying that the client's copy of an RDO is

up-to-date.

2. The server fetches the requested RDO from a object repository or database.

3. The server dynamically generates an RDO.

4. The server returns a log suffix.

For RDOs, the server sets the RDO's consistency options (see Section 3.4.2) and

returns it to the client.

Server Operation: Exporting Changes to RDOs

For export requests, the server routes the request to the appropriate server-side appli-

cation. The application invokes the requested method on the canonical copy. Typically,

before modifying the RDO, the method first checks whether the RDO has changed

since it was imported by the client or the client last received an update for the RDO.

Rover does not try to detect conflicts directly. However, to aid applications in

detecting conflicts, the client-side toolkit maintains application-provided consistency

information for each RDO and automatically sends the information with all import

and export methods. The consistency information allows server-side applications to

easily detect when the client has an old version of an RDO. Complete details of

application-specific conflict detection and resolution are provided in Section 3.4.2.

If the server-side application determines that there is no conflict, then the appli-

cation invokes the mutating method to modify the canonical copy and appends the

results to the RDO's method log at the sever.

As outlined in the above, the results of the mutating method are a completion

message, indicating whether the method completed successfully or encountered an

unresolvable conflict, and a results message containing either a new RDO or a log

suffix. The server returns the completion and results messages to the client.

3.2.3 The Reliable Execution of RDOs at Servers

To provide reliable execution of long-running RDOs at servers, the Rover toolkit

provides special application support. Support for reliable server applications reduces

the amount of work that is redone after a failure. The support is based on using

programming language support to record intermediate values in the stable server log

and providing failure recovery procedures to retrieve those intermediate values. The

Rover toolkit's support consists of two fault-tolerant features: stable variables and

per-application and per-RDO failure recovery procedures.

Stable variables provide a simple mechanism for long-running applications or

RDOs at servers to reliably store information that is potentially expensive to re-

construct. Stable variables are based upon transparent intermediate value logging.

Programmers can declare stable variables anywhere within an application or RDO by

simply notifying the toolkit that the variable is a stable variable. This notification

can be done either at the time the variable is declared or at a later time. Stable

variables are identical to ordinary global variables. The difference is that, for stable

variables, the Rover toolkit records in the stable server log the stable variable's exis-

tence and initial value, if supplied. The toolkit also traces writes to the variables and

then records the changes in the stable server log. The recorded values are used during

failure recovery as a form of REDO log [28].

An alternative approach to providing stable variables would be to provide support

for periodically checkpoint the application's or RDO's state. Providing control over

the frequency of checkpointing would limit the amount of work lost after a failure,

but would not provide application developers with fine grain control over which ap-

plication or RDO data is stably logged and when that data is stably logged. Stable

variables provide application developers with fine-grain control.

An application can specify a per-application failure recovery procedure. Likewise,

an RDO can specify a per-RDO failure recovery procedure. The toolkit saves the

procedures in the stable server log. During server failure recovery, the toolkit first

invokes the application-specific failure recovery procedure to perform any actions that

are necessary to restore the application's execution environment. Then, the toolkit

invokes the RDO-specific failure recovery procedure for each QRPC that failed to

complete execution and needs to be executed. The per-RDO failure recovery procedure

uses any defined stable variables to restore the RDO's state and then resumes the

execution of the interrupted QRPC.

Each application or RDO is responsible for using these techniques to determine

the state of an RDO at the time of a failure. Rover provides support for using stable

variables to record incremental changes that are made to or by an RDO. Some appli-

cations and RDOs may choose to use their own mechanisms (e.g., recording changes

in a private stable log). In keeping with the Rover design philosophy, the choice is

left to the application developer.

3.2.4 Using RDOs for Computation Relocation

Rover gives applications control over the location where RDOs execute. In a mobile

environment, the network often separates an application from the data upon which

it is dependent. By moving RDOs across the network, applications can move data

and/or computation from client to server and vice-versa. Computation relocation is

useful when a large body of data can be distilled down to a small amount of data or

code that actually transits the network or when remote functionality is needed during

periods of disconnection.

For example, migrating a GUI to the client serves both these purposes. The size of

the code to implement a GUI is usually much smaller than the traffic generated by the

user keyboard and mouse events the code receives and the graphical display updates

the code generates. Experimental results in Section 6.6 demonstrate this difference.

At the same time, the GUI together with the application's RDOs can locally

process user actions, avoiding additional network traffic and enabling disconnected

operation.

Clients also can use RDOs to export computation to servers. Such RDOs are

particularly useful for two operations: performing filtering actions against a dynamic

data stream and performing complex actions against a large amount of data. With

RDOs, the desired processing can be performed at the server, with only the processed

results returned to the client.

3.2.5 The Safe Execution of RDOs

The Rover toolkit supports the migration of arbitrary code: code that was generated

by a client can execute at a server, while code that was generated by a server or other

clients can execute at clients. To protect clients and servers from faulty or malicious

code, Rover provides support for the safe execution of RDOs.

There are several primary issues regarding safe execution:

1. Authentication. Cryptographic authentication of clients, servers, and code. Au-

thentication in conjunction with access control provides a means for controlling

what data an RDO can access and what operations it may perform on that

data.

2. Access control. Allows application developers to place limitations on the meth-

ods exported by an RDO. These limitations can be used to restrict changes to

the RDO to authorized, authenticated users. Access control can also be used to

restrict access to environmental resources: persistent storage, network interfaces,

etc.

3. Denial of services. Faulty or malicious code may enter infinite loops, reference

non-existent memory locations, allocate excessive amounts of memory or other

resources, or perform other actions that deny other clients or RDOs of access

to services.

Current Rover architectural support for the safe execution of RDOs is limited:

RDOs sent from clients to servers include cryptographically-protected user identifi-

cation information; RDOs are executed in a restricted interpreter (one that has been

stripped of hazardous functions, as in [9]); at clients, separate address spaces are used

for each application's RDOs; and, at servers, RDOs from clients are restricted to only

invoking those functions exported by server-side applications.

These safety measures are appropriate for the sharing of RDOs between mobile

hosts and servers in the framework of specific applications and environments. However,
there are several safety issues relating to the general use of mobile code that are

not addressed by the current architecture. These issues represent an area of active

research [83] beyond the scope of this thesis.

GUI Filesystem /
Object Repository

Callback

Request

QRequest

Stable Queue Stable Queue
Reply

Rover Client Rover Server

Figure 3-3: The components of Queued Remote Procedure Call.

3.3 Queued Remote Procedure Call

Queued Remote Procedure Call (QRPC) is the transport mechanism for the Rover

toolkit. This section details the components of QRPC, outlines the lifetime of and

uses for a QRPC, and discusses the issues relating to communication scheduling and

failure recovery.

33..1 QRPC

As shown in Figure 3-3, QRPC consists of: Remote Procedure Call (RPC) [8], split-

phase operation, a queue located on stable storage, and a network scheduler. Split-

phase operation means two things: QRPC is asynchronous and it can use separate

network connections or links for requests and responses. Network scheduling offers

several benefits, including reduced communication latency and more efficient use of

available bandwidth, as discussed in Section 3.3.4.

3.3.2 Using QRPC

QRPCs are issued when the toolkit converts an import or export request into a QRPC

or a client application directly issues a QRPC. QRPC is asynchronous transport which

means that control is returned to the application while the QRPC is being transmitted

or is waiting for transmission. Applications may choose to include an optional callback

procedure when invoking a QRPC, they may choose to block and wait, or they may

periodically poll the QRPC's status. The optional callback is invoked when the results

of the QRPC are received by Rover or if the QRPC encounters an unrecoverable error.

Also associated with the client request is a priority for the request, which is added to

the QRPC. The priority is used by the network scheduler, discussed in Section 3.3.4.

The destination host of a QRPC is specified using a session. A session is a map-

ping between a service and a set of servers. Applications offer clients services (e.g.,

the server-side portion of the E-mail browser offers E-mail service, the server-side

web browser proxy offers HTTP service, etc.). Sessions are a precursor to support-

ing replicated servers, however, Rover does not provide any additional support for

applications (e.g., session guarantees across different servers [76]).

When a session contains only a single session to server mapping, Rover provides

ordering guarantees for clients and sessions: the QRPCs sent by a client using a

particular session will be processed in the same order that they were sent. This guar-

antee is necessary because some of the communication networks used by Rover do

not guarantee message ordering.

Client Operation

The first step taken by the client-side toolkit when it receives a QRPC from an

application is to store a new QRPC record containing the QRPC and its optional

callback in a local log located on a stable storage device; this step makes the QRPC

durable. If there is insufficient space on the stable storage device, an error is returned

to the application; when such an error occurs, the application may be able to use

some of the techniques described in Section 3.5 to release some of the log space.

If there are no problems, then in the next step, the client-side toolkit inserts the

QRPC into the appropriate priority queue for transmission based upon the QRPC's

client-specified priority. Finally, the toolkit returns a promise to the application. Since

each QRPC must be logged before it is sent, the logging action is on the critical path

of QRPC execution.

When the mobile host is connected, the Rover network scheduler drains the prior-

ity queues in the background, forwarding any queued QRPCs to the server. For each

QRPC that the the network scheduler is successful in sending, it appends a QRPC

sent record to the stable log.

When the network scheduler fails to send a QRPC due to a delivery failure (e.g., as

a result of a communications problem, link failure, or server failure), it first reevaluates

the condition of available communications links. If no links are available, the scheduler

leaves the QRPC in the queue. Otherwise, the network scheduler marks the QRPC as

a retry and immediately attempts to resend the QRPC. If this second attempt fails,

the server is marked as down. The network scheduler will then periodically reevaluate

the server's condition and attempt to resend the QRPC.

If the client-side toolkit does not receive a server response within a preset amount

of time, the toolkit will poll the server for the QRPC's status. If no response is

received, the toolkit retries the QRPC.

As the client-side toolkit receives the results of each QRPC, the toolkit inserts a

QRPC completed record into the log indicating that the QRPC has completed. The

toolkit then invokes the QRPC's callback, if one was specified.

Server Operation

When the server receives a QRPC from a client, it immediately appends a QRPC re-

ceived record containing the QRPC to its stable log. This logging action is important

because the QRPC may not be executed immediately (e.g., the messages containing

multiple QRPCs may have been arbitrarily reordered by the communications chan-

nel). If the server receives a QRPC out of order, it saves the QRPC in its stable

server log and places it in an incoming QRPC queue. After processing each QRPC,

the server checks the queue to see if any of the messages in it are now acceptable

(i.e., all preceding messages from the client host have already been received and pro-

cessed). The message reception records in the stable log provide a total ordering over

messages received from multiple clients.

Before starting execution of the QRPC, the server also appends a QRPC start-of-

execution record for the QRPC to its stable log; thus, these two logging actions are

on the critical path of QRPC execution. The start record is not mandatory, however,

it greatly simplifies the failure recovery processes described in the next section by

allowing Rover to determine whether the QRPC started execution before the failure.

After the server has finished processing the QRPC and delivered the results back

to the client, it appends a QRPC completed record for the QRPC to its stable log.

By default, results are stored in volatile memory. However, application developers

have the option of specifying that the server should append a record containing the

application's outgoing response to the stable server log. Response logging is very

useful when the generated response is expensive to recreate after a failure.

The results of expensive methods (in terms of CPU usage or some other metric)

or results that are not reproducible (e.g., results that are dependent upon a dynamic

data stream) are good candidates for response logging, as long as the size of the

results is sufficiently small.

Very large or easily regenerated responses, however, are not good choices for re-

sponse logging, since response logging is a synchronous action on the critical path for

processing a client request.

3.3.3 QRPC Failure Recovery

This section discusses the mechanisms provided by the Rover toolkit to handle the

transient software and hardware failures at clients and servers.

Client Failure Recovery

Failure recovery from client software and hardware failures is handled by the client-

side Rover toolkit. This task is simplified somewhat by Rover's use of a stable log.

During failure recovery, the new, sent, and completed records are used to determine

the status of and action to be taken for each QRPC in the log:

1. QRPC never sent or incomplete send (new record only). The QRPC is marked

as a retry and inserted into the appropriate priority queue. The retry tag is

added to the QRPC because the server may have received the request header,
but not the entire message.

2. QRPC sent, but incomplete (new and sent records). The toolkit probes the

QRPC's recipient for a status update. If no update is received for the QRPC,

the toolkit marks the QRPC as a retry and inserts it into the appropriate

priority queue.

3. QRPC sent and completed (new, sent, and completed records). The QRPC

completed successfully, so no action needs to be taken.

The stable client log and unique identifiers are used to guarantee at-least-once

delivery of QRPCs to servers in the presence of transient client software or hardware

failures. The retry tags and unique identifiers are used by servers to detect duplicate

QRPCs.

One issue that remains an open question is how to handle error responses from

resent QRPCs for client-side applications that no longer are running. The current

design ignores such responses.

Server Failure Recovery

The server stable log is not necessary to meet the delivery guarantee specified in

Section 3.1.3. However, a client stable log alone is insufficient to guarantee the efficient

handling of server-side failures. For example, if the QRPCs received at servers (and

the responses sent by those servers) are not stored in a stable log, then the infrequent

occurrence of a server software or hardware failure requires a retransmission from the

client's stable log. Such retransmissions might be significantly delayed if the client

computer is not connected (e.g., a client computer that is disconnected during a long

plane flight). The retransmissions might also incur a significant time and dollar cost

depending upon the connectivity options available to the client.

In addition to the retransmission delay, if the RDO running at the server is long-

running, there might be a significant amount of lost work after a server failure. If the

RDO was using real-time data, it might not be possible to completely recover the lost

information.

During recovery from a server failure, the server's stable log is used as a REDO

log. The received, start, and completed records are used to determine the status of

and action to be taken for each QRPC in the log:

1. Never executed (received, but no start or completed records). Rover treats the

QRPC as a newly received QRPC and queues it for execution after all preceding

QRPCs have been received and processed.

2. Executed and incomplete (received and start records only). The server takes

one of the following actions:

(a) If the stable server log contains a record of the QRPC's output response,

the server repeatedly attempts to retransmit it to the client.

(b) If the stable server log contains an application-provided failure recovery

procedure (see Section 3.2.3), the server invokes the failure recovery pro-

cedure.

(c) Otherwise, the server simply reexecutes the QRPC using the record of the

original QRPC stored in the log.

3. Executed and completed (received, start, and completed records). No action

needs to be taken.

There are two situations during server failure recovery of interrupted requests -

either an import request or an exported method is being repeated. Import requests

are effectively idempotent; so there are no problems with repeating them. Exported

methods, however, usually have side effects and so must be handled differently.

If a failure recovery procedure is present, the procedure can use Rover-supplied

information to determine whether the exported method started execution before the

failure. If the method did not start execution, it is reexecuted. Otherwise, the proce-

dure uses the RDO's method log to determine the QRPC's status and whether the

exported method completed (in which case, its results are in the RDO's method log

and can be sent to the client) or the method did not complete (in which case the

procedure resumes the execution).

If no failure recovery procedure is present, then the RDO's mutating methods can

use Rover-supplied information to determine whether the a method started execution

before the failure.

To reduce the logging overhead, the server can operate without logging QRPC

start records. Without QRPC start records, the failure recovery process cannot dif-

ferentiate between requests that were never executed and requests that were inter-

rupted (executed and incomplete). As such, every request without a completed record

will be processed as an interrupted (executed and incomplete) request. The disadvan-

tage to this approach is that the RDO's recovery procedure and mutating methods

have no Rover-supplied information about whether the QRPC started execution or

not. Instead, they must both be written so that they check the method log to deter-

mine whether a method is being reexecuted. However, this approach may be costly,

since it usually involves checking persistent storage, and it complicates application

development.

3.3.4 Client Communication Scheduling

As mentioned previously, each QRPC has an associated priority. There are multiple

priority queues for sending QRPCs and client applications (and users through those

applications) can specify the priority of a QRPC.

The Rover network scheduler may deliver QRPCs out of order (i.e., non-FIFO),

depending upon any associated, application-specified priorities and the dollar costs for

using the available networks. It also may reorder logged requests based on consistency

requirements and application-specified priorities. Reordering is important to usabil-

ity in an environment with intermittent connectivity, as it allows the user through

applications to identify the important methods. For example, a user may choose to

send urgent updates as soon as possible while delaying other sends until inexpensive

communication is available. Alternatively, the user may choose to cancel or abort the

request using the mobile-adaptive application support discussed in Section 3.5.

One of the advantages of queued communication is that there may be queues

of requests that are waiting to be sent as a result of intermittent connectivity or

disconnected operation. The network scheduler can take advantage of such a backlog

in two ways: by batching or grouping together requests that are destined for the same

server, and by transmitting duplicate requests once.

Batching of Requests for the Same Server

The original network scheduler sent a request as soon as it was received from a

client application - the goal was to minimize delay for every request. However, it

quickly became apparent that for high-latency networks, sending a single request per-

connection resulted in very high per-message overhead. For example, experimental

results show that a request sent over a cellular network completes in an average of

640 milliseconds.

As a result of these observations, the network scheduler uses the following heuristic

to batch requests that are destined for the same server. Before the network scheduler

sends a request to a server it performs two checks:

1. The scheduler checks the priority queues for additional requests that are des-

tined for the same server.

2. The scheduler uses the access manager to check all the client applications (in-

cluding the one that sent the original request) to see if any are in the process

of sending a request.

Rover automatically merges any requests that are found into a single batch of

requests. After each request is found, the scheduler repeats the checks. To prevent a

request from being excessively delayed by batching, the scheduler places a bound on

the amount of the time spent checking for additional requests.

When the time bound is reached or no additional requests are found, the scheduler

batches the requests and sends them on the same connection; the results are also

received on the same connection. Thus, an application that issues several requests in

a series will have the requests automatically batched and sent to the server using a

single connection.

This batching heuristic imposes a small, bounded delay on requests (larger for

early requests in the batch, smaller for later requests in the batch): the time for the

access manager to check each client application for pending requests and to receive

the requests. This delay is a small penalty to pay relative to the three significant

benefits that batching offers: reduced average request latency, better compression

ratios using automatic Rover-supplied compression, and better utilization of bulk

transport networks. For example, batching imposes an 1,800 millisecond delay on the

first request of a batch. However, subsequent requests complete on average once every

17 milliseconds.

Batching is important in situations where the round-trip latency for establishing

communication connections is high. By sending multiple requests in a single connec-

tion, Rover significantly reduces the average connection delay seen by a request when

using high-latency networks. For high-latency, bulk transport networks (e.g., SMTP),

batching allows the high per-message overhead usually associated with such networks

to be amortized across multiple requests.

The network scheduler also provides automatic compression of requests; applying

compression across the multiple requests within a batch usually yields significantly

better compression ratios. Many network interconnection devices provide data com-

pression. However, several studies have shown that processor-based software com-

pression yields more efficient compression than network infrastructure-based com-

pression [57, 63]. The most likely reason for the difference is the availability on hosts

of more memory for compression dictionaries and faster host processors.

One of the alternatives to the network scheduler's batching heuristic is to rely

upon applications to specify the set of requests that should be batched together (e.g.,

by using startBatch and endBatch commands).

There are two advantages to the batching heuristic over application-specified

batching. The first advantage is that the heuristic naturally adapts the size of batches

to the available bandwidth and latency. When the network is low-latency and high-

bandwidth, transmission queues will be short and batches will be small. However,

when the network is latency higher and bandwidth is lower, transmission queues will

be longer and batches will be larger. This effect is confirmed at the network transport

level in Section 6.2.3.

The second advantage is that the heuristic is transparent to applications. To adapt

to rapidly changing network conditions, application-specified batching requires that

applications be constantly aware of the conditions. However, one of the goals of the

Rover toolkit is to decouple applications from environmental volatility.

The disadvantage to the heuristic over application-specified batching is that the

heuristic delays requests while it performs its checks - checks that represent wasted

time when there are no pending messages. Thus, for future work, it would be inter-

esting to investigate having the network scheduler use application-specified batching

commands as informational suggestions or overrides for the batching heuristic.

Merging of Duplicate Requests

In similar fashion to batching, when a client issues an import request for an RDO,

Rover checks to see if there are any duplicate requests for the RDO (i.e., duplicate

QRPCs). Rover automatically merges the duplicate requests into a single request, at

a priority equal to the highest priority of any of the individual requests and with mul-

tiple callbacks, one for each individual request. By merging requests, Rover reduces

latency and bandwidth.

Split-Phase Operation of QRPC

QRPC supports split-phase operation; thus, if a mobile host is disconnected between

sending the request and receiving the reply, a Rover server will periodically attempt

to contact the mobile host and deliver the reply. To aid the server in contacting the

client host, the QRPC can include several possible contact addresses for the mobile

host.

One advantage of the split-phase communication model is that it enables Rover

to use different communication channels for the request and the response and to close

channels during the intervening period. Closing the channel while waiting is partic-

ularly useful when the waiting period is long and the client must pay for connection

time in dollars or in reduced battery power.

Another advantage of QRPC's split-phase communication model is its support for

asymmetric communication. This support is an ideal match for the typical applica-

tion's traffic pattern, where the majority of client-server data traffic is from servers to

clients. Several wireless technologies offer asymmetric communication options, such

as receive-only pagers. By splitting the request and response pair, communication can

be directed over the most efficient, available channel.

The combination of the split-phase and stable nature of QRPCs allows a mobile

host to be completely powered-down while waiting for pending request. When the

mobile host resumes normal operation, the results of the QRPC will be relayed reliably

from the server. Thus, long-lived computation can occur at the server while the mobile

host conserves power.

3.4 RDO Replication and Consistency

An essential component to accomplishing useful work while disconnected is having

the necessary information locally available [46]. RDO replica caching is the chief

technique available in Rover to achieve high availability, concurrency, and reliability.

However, allowing local or remote modifications to shared application data while

disconnected introduces the problem of data consistency. The Rover toolkit addresses

this problem with a flexible approach: application-specific consistency control. This

section discusses strategies for replicating RDOs and for reducing consistency-related

costs.

3.4.1 Replication

Rover relies on the replication of RDOs to reduce client applications' dependence

upon network resources (e.g., so clients can continue working while disconnected).

One of the issues associated with replication is ensuring that cached client copies

are consistent with the server's canonical copy. Rover supports several options for

validating copies of RDOs. The validation option is stored as a cache tag with the

Cache Tag Function

Uncacheable An uncacheable RDO will not be stored in the client's
persistent cache.

Immutable An immutable RDO cannot be modified by client applications
and is never revalidated.

Verify before use A verify before use RDO is always validated before it is
returned to a client application; this action may result in
significant delays if the client is disconnected.

Best effort verify A best effort verify before use RDO is validated before it is
before use returned to the client, if network connectivity to the server is

available. Otherwise, the cached RDO is returned immediately
to the client and a QRPC request to validate the RDO is
sent to the server.

Server callback A server callback RDO is not validated by the client, instead
the server notifies the client of any changes to the RDO.

Lease A lease RDO is not revalidated until the lease from the
server expires or is revoked.

Application-specific The application registers a function that Rover can invoke.
The function returns the appropriate action that the toolkit
should take in handling the cache element.

Table 3.2: Cache tags options for RDO revalidation.

RDO in the client's persistent cache. RDOs are revalidated when a client application

imports an RDO that is already in the client's persistent cache. Rover also performs

periodic background revalidations.

Server applications can mark RDOs with one of seven tags (see Table 3.2). For

each RDO in the persistent cache, the toolkit performs different actions depending

upon the specified tag

As mentioned previously, for small mobile devices the size of the persistent RDO

cache must be considered. The Rover toolkit provides applications with several cache

management tools and information about cache contents, but does not specify a cache

eviction policy.

RDO replication is accomplished during periods of network connectivity by filling

the mobile host's persistent cache with useful RDOs. Applications should decide which

RDOs to prefetch. The usability of applications will be critically dependent upon

simple user interface metaphors for indicating collections of RDOs to be prefetched.

Requiring users to directly list the names of RDOs that they wish to prefetch is

inherently confusing and error-prone. Instead, Rover applications can provide priori-

tized prefetch lists based upon high-level user actions. For example, the Rover E-mail

browser, Rover Exmh, automatically generates prefetch operations for the user's inbox

folder, recently received messages, as well as folders the user visits or selects.

While replication can bring great benefits, application developers must be careful

to avoid unnecessary communication, increased latencies, and dead-lock. Applications

should not replicate any more data than absolutely necessary and should strive to

keep update messages small.

3.4.2 Consistency

When clients are allowed to perform concurrent updates on shared RDOs, most ap-

plications require consistency control to resolve these uncoordinated updates.

In Rover, the server-side application is responsible for maintaining consistent views

of an application's data. Update conflicts are detected and resolved, when possible, by

the server-side application, and the results of reconciliation are always treated by the

client-side of applications as overriding the tentative state stored at the client. Thus,

the client-side applications only needs to submit tentative methods to the server to

reconcile the system state and to assure that any updates are durable.

As discussed earlier, the Rover toolkit provides extensive support for client and

server application handling of mutating RDO method invocations. Client-side appli-

cation support consists of automatic mutating method logging, rollback, and replay.

Server-side application support consists of RDO method log manipulation functions.

The Rover toolkit only addresses consistency schemes and not policies. Thus,

applications are fully responsible for implementing appropriate consistency policies

using either the consistency schemes provided by the toolkit or their own schemes

(e.g., application-level locking or application-specific algorithms). This decision is

based on the idea that no single consistency scheme or policy is appropriate for all

applications.

Optimistic Concurrency Control

There are only a limited number of schemes that lend themselves naturally to mo-

bile environments. The most appropriate scheme is primary-copy, tentative-update

optimistic concurrency control; Rover provides substantial support for this scheme.

However, application developers are not. precluded from using other schemes.

Optimistic concurrency control schemes will be widely used because they allow

updates by any host on any local data regardless of the availability of network con-

nectivity. All Rover applications built to date use optimistic concurrency control.

However, many applications will continue to use a variety of schemes, including ad

hoc approaches such as hand editing or requiring all data replicas to converge to the

same values. Certain applications will be structured as a collection of independent

atomic actions [25], where the importing action uses application-level locks, version

vectors, or dependency-set checks to implement fully-serializable transactions within

Rover method calls. Of course, pessimistic concurrency control may cause long block-

ing periods in the mobile environment.

Together mutating method logging and optimistic concurrency control provide

applications with powerful tools for conflict avoidance. By logging method invocations

at clients, rather than only new data values, Rover increases application flexibility in

resolving conflicts.

For example, a financial account RDO with debit, credit, and balance methods

provides significantly more semantic information to the application than a simple

account file containing only the balance. Debit and credit methods from multiple

clients can be arbitrarily interleaved as long as the balance never becomes negative.

In contrast, consistently updating a balance value by overwriting the old value requires

the use of an exclusive lock on the global balance.

Application-Specific Consistency Information

The downside to optimistic concurrency control is the potential for update-update

conflicts. Conflict detection, avoidance, and resolution all may depend not only on the

application, but on the data or even the method involved. Since Rover can employ

type-specific concurrency control [86], many potential conflicts may be avoided.

The Rover toolkit provides clients with infrastructure to maintain the RDO con-

sistency information necessary to detect potential update-update conflicts and leaves

it up to application developers to provide the policies necessary to verify conflicts and

to resolve true update-update conflicts.

When a server-side application returns an RDO or log suffix, it can include consis-

tency information (e.g., version vectors). The client-side toolkit maintains the infor-

mation with the RDO and sends the information with any import or export requests.

Thus, the server-side application can easily compare the consistency information pro-

vided by the client with the RDO's current consistency information. If the two do not

match, the client has a stale replica of the RDO. For an import request, the server-side

application returns a current replica. Otherwise, for an export request, a potential

update-update conflict exists: the client invoked the mutating method against a stale

replica.

Application-Specific Conflict Detection and Reconciliation

When a potential update-update conflict is identified, it is up to the application to

determine whether a true update-update conflict exists. The definition of conflict-

ing modifications is strongly application- and data-specific. Since the method being

performed is available to the server-side application, it can determine whether an

update-update conflict really exists.

The first step for the server-side application is to determine whether earlier changes

to the RDO actually conflict with the new method. If there is a true update-update

conflict, the next step is to reconcile the server's copy of the RDO with the method

sent by the client.

The conflict reconciliation process is dependent upon application-specified policy,

discussed in more detail in the next session. Based upon that policy, the server-side

application takes one of the following three actions:

1. The application commits the method by overriding the current state of the RDO.

The application then returns a log suffix, which includes the newly committed

method.

2. The application modifies the method (resolving the conflict) and commits the

new method. The application then returns a log suffix, which includes the newly

committed modified method.

3. The application aborts the method by returning a method aborted completion

message and a log suffix.

Since the submitted method is tentative and may have been originally performed

at the client on tentative data, the result of performing the method at the server may

not be exactly what the client expected.

Application Policy

As discussed earlier, Rover leaves consistency policy decisions up to application de-

velopers. Application policy determines whether two update conflict with each other

and how the application handles conflicts.

As an example of one application's choices, the Rover distributed calendar tool

exploits semantic knowledge about calendars, appointments, and notices to determine

whether a change violates consistency. For example, concurrently deleting two differ-

ent appointments in the same calendar does not result in a conflict. Each client is

informed of the other concurrent delete, so that its copy of the calendar will reflect

the second delete. For a conflict that cannot be reconciled, the server returns an error

that is reflected to the user so that he or she can resolve the conflict.

Another application policy issue that application developers must address is the

potential for cascading aborts. Cascading aborts can occur when the client sends

a batch of mutating methods to the server and one fails. If one of the methods

encounters a conflict and is aborted, subsequent methods also may encounter the

same conflict and also abort. Depending upon the number of aborted methods, the

client application may be forced to present the user with a large number of conflicts

to resolve. Thus, the potential for cascading aborts should be minimized as much as

possible by structuring methods so that they are minimally interdependent upon one

another or are commutative.

The interval between the time an RDO is imported by an application and the

time an method is exported back to the server represents the time window during

which conflicting updates may occur. Applications can reduce this or eliminate this

window by using a variety of techniques: periodic revalidation of RDOs using polling,

application-specific locks, or server callbacks.

3.5 Mobile-Adaptive Application Support

The Rover toolkit provides client-side applications with access to a variety of infor-

mation about the mobile environment and the internal state of the toolkit. Rover

client applications can query the status and availability of the network connectiv-

ity and bandwidth, computational resources, electrical power, etc. The toolkit allows

applications to poll for status changes or register callback functions.

The toolkit also provides client applications with the ability to access and modify

internal toolkit state. For example, client applications can access the persistent RDO

cache with the ability to view all entries and delete committed RDOs.

Client applications can view all of the entries in the QRPC priority queues and

the stable client QRPC log. Applications can also modify or delete entries that they

created, with the caveat that they are responsible for ensuring that their modifications

do not break their own application semantics. Note that in some instances, Rover may

not be able to change or modify a QRPC that has already been sent to a server.

One issue Rover addresses with an application-specific approach is method log

growth during disconnected operation. The ability to convey application-level seman-

tics directly to servers is an important functional advantage, especially in the presence

of intermittent connectivity. However, it may lead to a method log that grows in size

at a rate exceeding that of a simple write-ahead log. The traditional approach is log

compaction [46]. Rover takes a different approach by directly involving applications

in reducing the size of the log. Applications can download procedures into the access

manager to manipulate their log records. For example, an application can filter out

duplicate requests (e.g., duplicate QRPCs to verify that an object is up-to-date can

be reduced to a single QRPC). In addition, applications can apply their own notion

of "overwriting" to their methods in the log with the aforementioned caveat about

application semantics.

3.6 Design Summary

To summarize, the design and architecture of the Rover toolkit provides four solutions

to challenges posed by the mobile environment.

Relocatable Dynamic Objects allow computation and data to be dynamically mi-

grated closer to where it is needed. By moving computation from clients to servers,

operations that require high-bandwidth, low-latency network support can execute on

a well-connected server. Likewise, Rover allows applications to use computation re-

location to help improve interactive performance for users by moving GUI functions

from servers to clients. This relocation allows user actions to be serviced locally and

immediately, instead of requiring the actions and their results to traverse the network.

Queued Remote Procedure Call simplifies application development by relieving

application developers of the need to handle transient communication, hardware, and

software faults. QRPC also allows communications to be more efficiently scheduled

using batching and compression.

Replication and application-specific consistency control control allow users to con-

tinue accessing and modifying locally cached data regardless of the availability of

network connectivity.

Mobile-adaptive application support allows applications to query and interact with

the mobile environment. Rather than hide environmental information, it fully exposes

it to applications and, through the applications, it also exposes it to users.

Chapter 4

Implementation of the Rover

Toolkit

4.1 Implementation Overview

This chapter provides specific details about the reference implementation of the Rover

toolkit. The reference implementation provides a fixed reference point by making

many of the design and architecture details concrete. Other implementations of the

Rover toolkit may make different implementation choices.

The reference implementation is a prototype; as listed below, not all of the fea-

tures listed in the preceding chapter are implemented. Some of the features that were

not considered essential in demonstrating the usefulness of the Rover toolkit have not

been implemented. The unimplemented features include: the server callback, lease,

and application-specific cache tag options; encrypted messages; sharing by local ap-

plications of modified objects through the client's cache; multiple contact addresses

for a client machine in a QRPC; server-side RDO size and log suffix size estimation

functions; complete handling of errors.

As shown in Figure 4-1, the reference implementation of the Rover toolkit consists

of four key components: the access manager, the RDO cache (client-side only), the

RDO database (server-side only), the stable log, and the network scheduler; this

chapter discusses each component in turn.

Figure 4-1: The Rover toolkit reference implementation.

Each server or client machine has a local Rover access manager, which is responsi-

ble for handling all interactions between client-side and server-side applications. The

access manager services requests for RDOs, mediates network access, logs mutating

method invocations on RDOs, and manages the persistent RDO cache and persis-

tent RDO database. Client-side applications communicate with the client-side access

manager to import RDOs from servers, to cache them locally, to invoke the methods

provided by RDOs and to make changes globally visible by exporting them back to

the servers. Server-side applications are invoked by the server-side access manager to

handle requests from client-side applications.

The reference implementation of RDOs uses the Tcl and Tk languages [66]. Since

the interface is designed to be language-independent, it will be easy to explore the use

of other interpreted or byte-compiled languages (e.g., Java [3]). RDOs use interpreted

or byte-compiled languages because they languages greatly simplify computation mi-

gration across different architectures.

Rover is designed to be portable and relatively independent of operating systems.

As such, Rover has been implemented on several platforms:

* Several types of IBM ThinkPad laptops running Linux, including ThinkPad 560

(133Mhz Pentium) laptops running Linux 2.0.30.

* Intel 200 Mhz Pentium Pro workstations running OpenBSD 2.1.

* Intel Advanced/EV (120 Mhz Pentium) workstations running Linux 1.3.74.

* DECstation 5000 workstations running Ultrix 4.3.

* SPARCstation 5 and 10 workstations running SunOS 4.1.3_U1.

The primary mode of operation is to use the laptops as clients of the workstations.

However, workstations can also be used as clients of other workstations.

Rover supports a variety of network transports, including wired and wireless local-

area and wide-area network technologies (for more information, see Section 6.1).

4.2 Client-side Implementation

Rover clients use a local client-server model: each client application executes in a

separate address space from one another and from the local access manager, persistent

RDO cache, QRPC log, and network scheduler. By using separate address spaces, the

failure of an individual client has no effect on other clients or the access manager and

its components.

The Rover toolkit on the client helps applications to be minimalistic in their

operation. Client applications start with a minimal "kernel" of functionality and

import additional functionality on demand. This feature is particularly important

for mobile hosts with limited resources: small memory or small screen versions of

applications may be loaded by default. If the application finds more hardware and

network resources available (e.g., if the mobile host is docked), additional RDOs may

be loaded to handle these cases [42].

The following sections detail the implementation of the client-side Rover toolkit,

including the access manager, persistent RDO cache, QRPC log, and network sched-

uler.

4.2.1 Access Manager

Each Rover client application is linked with the Rover toolkit client library and usually

executes as a child processes of the access manager. Client applications use the library

to communicate with the access manger through POSIX pipes or sockets so they can

import RDOs or export logs of methods that mutate RDOs. The applications can

also run as independent processes on the local machine or a remote machine and

communicate with the access manager using TCP sockets. Remote client support is

useful when dealing with severely resource limited mobile hosts (e.g., PDAs) that

have high-bandwidth, low-latency connectivity to a local mobile host.

The Rover library linked with the client application manages communication to

the access manager using a single-threaded, event driven finite state machine. If the

client application is a Tk script, the state machine also interacts with the Tk event

loop.

The access manager is also single-threaded, and it uses an event driven finite

state machine and non-blocking operations to provide efficient support for servicing

multiple clients. Within the access manager, RDOs are imported into the persistent

RDO cache, while QRPCs are exported to the QRPC log. The access manager routes

invocations and responses between applications, the cache, and the method log. The

QRPC log is drained by the network scheduler, which mediates between the various

communication protocols and network interfaces.

4.2.2 Persistent RDO Cache

The persistent RDO cache provides stable storage for local copies of imported RDOs.

The RDO cache model is a three-level cache, consisting of local in-memory caches

that are private to each application, and global in-memory and stable storage-based

caches managed by the access manager.

To improve the efficiency of the local client-server model and reduce communica-

tion between client applications and the access manager, each application has a local

private cache located within the application's private address space and managed by

the Rover toolkit client library. Copies of each RDO imported by the application are

cached within the private cache. These copies are unavailable to other applications

on the mobile host, but, if desired by the application, they will be kept consistent

with the access manager's RDO cache.

The global in-memory cache is located within the access manager's address space,

while the global stable storage-based cache is stored on a local stable storage device.

For both caches, the access manager maintains time of last reference and application-

specified priority information. The information can be used by client-side applications

when RDOs need to be evicted from the cache to provide space for new RDOs . The

access manager also ensures that all changes to the in-memory cache are propagated

to the stable storage-based cache. In addition, the access manager limits the size of

the in-memory cache and transparently moves RDOs from the in-memory cache to

the stable storage-based cache and vice versa using a Least Recently Used (LRU)

algorithm.

Client-side applications do not usually interact directly with the global cache and

the cache hierarchy is not visible to client applications. When a client-side application

issues an import or export operation, the toolkit and access manager satisfy the locally

request based upon whether the RDO is found in the RDO cache hierarchy and the

replication and consistency options specified for the RDO (see Section 3.4).

The reference implementation limits client-side applications to sharing committed

data through the cache. Future implementations will remove this restriction.

4.2.3 Stable QRPC Log

QRPCs are issued when the toolkit converts an import or export request into a QRPC

or a client application directly issues a QRPC. The insertion of a QRPC into the

stable QRPC log is a synchronous action and consists of saving the QRPC contents,

the QRPC's session identifier, an optional callback, and the QRPC's priority to the

stable QRPC log.

The stable client QRPC log is managed by the access manager and the network

scheduler. The log is implemented as an ordinary POSIX file located on: a hard disk,
a battery-backed static RAM PCMCIA card, or a flash RAM PCMCIA card. The

Rover toolkit only addresses transient hardware failures, however media failures for

these devices are sufficiently rare that ignoring them does not represent a cause for

concern.

After the access manager appends a QRPC to the log, it performs both a file flush

and, optionally, a file synchronize operation. These actions flush both the application

and operating system file buffers and force the QRPC to the stable storage device.

Thus, the log append, file flush, and file synchronize operations are on the critical

path for request transmission.

The file synchronize operation is optional because of the cost that it imposes on

QRPCs (see Section 6.2). Making the operation asynchronous only opens a small

window of a few seconds of vulnerability. To increase the robustness of the log when

the file synchronize operation is not immediately performed, the access manager in-

stalls signal handlers for several types of faults, including segmentation faults and

bus errors. Should an unexpected signal occur, the access manager performs flush

and synchronize operations on the log file before aborting its operation.

Support for intermittent network connectivity is accomplished by allowing the log

to be incrementally flushed back to the server. Thus, as network connectivity comes

and goes, the client will make progress towards reaching a consistent state.

As detailed in Section 3.3.2, the stable QRPC log is used during failure recovery.

The new QRPC, QRPC sent, and QRPC completed records are used to determine

the status of and action to be taken for each QRPC in the log. QRPCs that were

never sent or incompletely sent are marked as retries and inserted into the appropriate

priority queue. For QRPCs that were sent, but did not complete, the toolkit sends

a status request message to the server. If no response is received for the QRPC, the

toolkit marks the QRPC as a retry and inserts it into the appropriate priority queue.

The toolkit takes no action for those QRPCs that successfully completed.

The reference implementation provides limited client application access to the

status of outstanding QRPCs. Future implementations will provide client applications

with a richer interface and allow the applications to register QRPC status callback

procedures.

4.2.4 Network Scheduler

The network scheduler manages the available network transports and handles com-

munication between the client-side and server-side toolkits. When communication

channels are available, the network scheduler drains the QRPC priority queues (and

the stable log) and forwards QRPCs to the appropriate servers.

The reference implementation implements request priority using a simple multiple

queue mechanism. Future implementations will explore the use of lottery scheduling

and other priority mechanisms.

To determine the destination server for a request, the network scheduler uses the

QRPC's session identifier. The client-side toolkit maintains session-to-server map-

pings for client applications. Sessions provide a level of indirection for referencing

servers and are a precursor to supporting replicated servers. Each mapping indicates

the current destination server for requests on that session. The toolkit changes the

mapping if the current server is down or the toolkit is unable to send requests to the

current server. The reference implementation currently does not provide any addi-

tional support for replicated servers.

Once the destination server has been identified, the network scheduler batches

and compresses requests for that server and selects the appropriate transport pro-

tocol and medium over which to send them. Rover is capable of using a variety of

network transports. Rover supports both connection-based protocols (e.g., HTTP

over TCP/IP networks) and connectionless protocols (e.g., SMTP over IP or non-IP

networks) [14, 35]. Different protocols have different strengths. For example, while

SMTP has extremely high latency, it is fundamentally a queued background pro-

cess; it is more appropriate than more interactive protocols for fetching extremely

large documents, such as stored video, which require large amounts of time regardless

of the protocol. Another advantage is that the IP networks required for HTTP or

TCP are not always available, whereas SMTP often reaches even the most obscure

locations.

By batching requests, the network scheduler gains transmission efficiency by lever-

aging the queuing of QRPCs performed by the log. The result is a potentially signif-

icant reduction in per-request transmission overhead and an increase in connection

efficiency through amortization of connection setup and teardown across multiple

requests and responses. This amortization is especially important when connection

setup is expensive (either in terms of added latency or dollar cost). For example, the

latency for a null RPC over a 9.6 Kbit/s Cellular CSLIP link is 640 milliseconds;

batching offers a substantial performance benefit: 1,800 milliseconds for the first re-

quest and 17 milliseconds for subsequent requests.

The network scheduler uses the Zlib compression library [18, 19, 20] to apply

compression to the headers associated with requests and, in the absence of application-

specified compression, applies compression to application data. Compression offers

significant performance advantages, especially when combined with batching. Typical

compression ratios for the applications studied in this thesis are 1.5 - 9.7 to one.

The combination of batching and compression yields, on average, a two- to four-fold

reduction in execution times. These applications were communication-bound and not

computation-bound, however, these are the attributes of most of the applications that

are used in the mobile environment.

The reference implementation does not provide support for encrypted communica-

tions, however, future implementations will provide support for a variety of encryption

technologies.

4.3 Server-side Implementation

The Rover server-side toolkit is a privileged application that authenticates requests

from client applications, mediates access to RDOs, and provides a reliable Tcl execu-

tion environment for RDOs from client applications.

For simplicity, the current server implementation is single-threaded. The server

can simultaneously receive multiple requests, but only one request is processed at a

time.

As described in the preceding chapter (Chapter 3), the server-side toolkit provides

server-side applications with: functions for accessing and modifying an RDO database

or repository, stable variable and response logging functions, RDO method log mainte-

nance and manipulation functions, and support for maintaining application-provided

consistency information and detecting potential update-update conflicts.

The following sections detail the implementation of the server-side Rover toolkit,

including the access manager, network scheduler, stable QRPC log, and persistent

RDO repositories.

4.3.1 Access Manager

Each Rover server application is linked into the server using a modular, well-defined

plug-in interface. The Rover toolkit and the server applications all execute in a single

address space.

Within the access manager, incoming QRPCs are placed into receive queues for

processing. The queues are used to hide any network reordering of messages. The

access manager routes incoming requests and responses between client machines and

server applications.

There are two implementations of Rover servers. One is compatible with the Com-

mon Gateway Interface (CGI) [60] of standard, unmodified HTTP-compliant servers

(e.g., Apache, CERN, NCSA, and other httpd servers). A new copy of the CGI-based

server is forked and executed for each connection from a client; these fork and exec

operations make it expensive to maintain shared persistent state.

The other implementation is a standalone TCP/IP server that provides a very

restricted subset of HTTP/1.0. A single standalone server provides service to multiple

clients. The standalone server yields significant performance advantages over the CGI

version, as it avoids the fork and exec overheads incurred on each invocation of the

CGI version. In addition, because a new copy of the CGI server is started to satisfy

each incoming request, any state that is intended to be persistent across connections

must be saved using the file system and re-read for each connection. For these reasons,

the CGI-based server is only intended to be a technology demonstrator that shows

interoperability between Rover and ordinary httpd servers; the rest of this chapter

only discusses the standalone server.

Reliable Server Execution

To protect against transient software and hardware server failures, the standalone

Rover server operates as a pair of processes. The server is automatically started at

system startup time and immediately forks a copy of itself. It then performs a wait

operation on the child process.

Meanwhile, the child server starts execution by: initializing its state; performing

failure recovery, if necessary; and preparing to receive and process requests. During

initialization, the child server installs signal handlers for all the POSIX signals that

can be caught by a process.

If the child server encounters an unrecoverable error or a signal that cannot be

handled, it terminates operation. The parent process detects the end of the child server

and starts a new child server. Because the parent server's operation is extremely simple

(wait and restart a process), it should not be vulnerable to many software faults. The

parent server will automatically recover from transient server hardware failures since

it is automatically started at system startup time.

To improve the efficiency of the server's recovery from transient failures, the Rover

toolkit includes several server-side features for reliable operation as described in Sec-

tion 3.2.2 and 3.3.2. The reliability features are a stable log for incoming QRPCs,

stable variables for intermediate value logging, and logging of server responses to

stable storage.

4.3.2 Network Scheduler

The network scheduler handles the reception of incoming requests from clients and

the transmission of results back to clients. The server executes as a single process;

so to avoid blocking other parts of the server, the network scheduler uses an event

driven finite state machine and non-blocking operations to receive requests and send

results.

For efficiency reasons and because of the latency associated with opening a network

connection back to a client, the toolkit usually sends the response to a client on the

same connection as the request. However, the connection may be shutdown by the

user (to save money or battery power) or lost as a result of communication failures.

As mentioned earlier, QRPC supports split-phase communications, which allows the

server to send results back to the client using a new connection.

The client-side toolkit support for split-phase communication reuses functionality

added to the client-side access manager to support the Rover HTTP proxy [41] (see

Section 5.3.1). The access manager provides an httpd-like interface port that allows

unmodified client WWW browsers to operate in an offline or intermittently connected

manner by submitting HTTP requests directly to the access manager, instead of a

remote WWW server.

To aid the server in contacting the client host, each QRPC from the client includes

several contact addresses for the client access manager (e.g., IP and SMTP addresses)

and the client access manager's httpd port number.

Thus, when a new connection is needed, the server-side toolkit will use the contact

list to attempt to open a new connection to the client-side access manager.

4.3.3 Stable QRPC Log

Crucial to providing the server with efficient reliable operation is a stable log of

incoming QRPCs, stable variables, failure recovery procedures, and logging of server

responses as described in Sections 3.2.3, 3.3.2, and 3.3.3. Incoming QRPCs are saved in

the stable log to make failure recovery more efficient. During QRPC execution, server-

side applications may use stable variables and response logging to save intermediate

values and final results to the stable server log. Together, these techniques enable

applications to quickly recover from transient failures, reduce the delay in recovering

from failures, and reduce the amount of work that is reexecuted after a failure.

The following sections detail the implementation of the stable log and server-side

support for reliable execution.

global counter

set counter 0 Rover_stable counter 0

while {$counter < 10000} { while {$counter < 10000} {

incr counter incr counter

} }

(a). Volatile Tcl counter (b). Stable Tel counter

Figure 4-2: Volatile and stable Tcl counters.

Implementation of the Stable QRPC Log

Like Rover clients, the server stable QRPC log is implemented using ordinary POSIX

files located on a hard disk, on a battery-backed static RAM PCMCIA card, or on

a flash RAM PCMCIA card. As each record containing an incoming QRPC, stable

variable, server response, etc. is appended to the log, the server-side toolkit performs

both a file flush and, optionally, a file synchronize operation. Thus, log flushing is on

the critical path for message reception, stable variable processing, and the processing

of other reliable execution operations.

As described in Section 3.3.2, all incoming QRPCs are saved in the stable log

before being executed. In addition, before the server begins executing a particular

QRPC, it appends a start record for the QRPC to the stable log.

During idle periods, the server-side toolkit cleans the stable QRPC log by deleting

information for QRPCs whose results that have been successfully transmitted back

to client machines.

Stable Variables

Rover's server-side support for reliable execution of long-running RDOs is based upon

extending the programming language used to construct RDOs, Tcl. Application devel-

opers declare stable or non-volatile variables using the Rover_stable variableName

[initialValue] declaration to specify the name and, optionally, the initial value for a

stable variable. The server appends the declaration in the stable server log file and

sets a Tcl variable trace on the variable. The Tcl variable trace procedure registers

a procedure that will be invoked when the specified variable is modified. Rover uses

this procedure to detect changes to stable variables; the changes are then appended

to the stable server log.

Programmers are required to explicitly declare stable variables because of the high

overhead associated with both tracing writes to a stable variable (approximately 2

times the cost of a write to a volatile variable) and recording changes in a disk-based

stable server log (approximately 100 times the cost of a write to a volatile variable).

Section 6.7 provides a detailed discussion of the costs associated with using stable

variables.

Failure Recovery Procedures

Each RDO can use the Tcl function RoversetRecoveryProc to specify the name of

a special Tcl procedure to be used during recovery; the server saves the procedure

name in the stable server log. In addition, each server application can specify a C

recovery procedure that will be invoked during the recovery process. The toolkit

provides routines that application developers can use to perform the necessary failure

recovery steps.

During failure recovery, the Rover server scans its stable server log looking for

any QRPCs that were received but not processed or that were processed but whose

results were not delivered to the client. Unprocessed QRPCs are handled as detailed in

Section 3.3.2. For incomplete QRPCs, the server invokes the application's and RDO's

recovery procedures. If the C failure recovery procedure is specified, it is responsible

for performing the following actions:

1. Restoring the application's or RDO's C environment. This action consists of

initializing any local or static variables used by the request.

2. Restoring the application's or RDO's Tcl environment. This action consists of

loading any Tcl libraries and RDOs used by the request.

3. Invoking a toolkit-provided function, restoreStableVars, to restore the RDO's

stable variables. During failure recovery, the values of stable variables in the sta-

ble server log take precedence over the initial values specified by Rover_stable

declarations. The reason for this precedence order is that the logged values

represent later states of the variable.

4. Invoking the RDO's Tcl recovery procedure, if one was specified. When the

Tcl recovery procedure is invoked, it should recreate any volatile data that was

being used at the time of the fault and then resume the computation that was

in progress.

5. If no Tcl recovery procedure is specified, the C recovery procedure should reex-

ecute the QRPC.

Part (a) of Figure 4-2 provides an example of a simple Tcl counter that can be

created at a client and shipped to a server for execution. The corresponding version

using stable variables is provided in part (b). As can be seen from the figure, it is

very simple to declare and use a stable variable. Once declared, a stable variable can

be treated as any other global variable. No Tcl recovery procedure is needed for the

counter code. During failure recovery, the C recovery procedure restores the latest

saved value of the counter and resumes execution of the code.

Reliable Application Development

Creating new reliable applications and proxies or modifying existing ones involved two

steps: identifying the objects that should be made stable and providing the necessary

recovery procedures.

The first step is usually simple. The best candidates for stable variables are ob-

jects that are expensive to recreate (computationally or otherwise); or represent non-

recoverable data, such as a dynamic data stream. Objects that are logged should be

small. Otherwise, the cost of logging each object may outweigh the costs of recreating

it.

For the second step, the Rover toolkit provides application developers with help

in creating the necessary recovery procedures. As outlined in the previous section,

the toolkit provides procedures for performing several of the recovery steps, including

procedures for restoring stable variables and invoking the Tcl recovery procedure.

4.4 Implementation Summary

This chapter detailed the reference implementation of the Rover toolkit. The imple-

mentation of the Rover toolkit client library consists of approximately 1,200 line of

Tcl/Tk code and 24,000 lines of C code. The server library consists of 1,100 lines of

Tcl/Tk code and 8,400 lines of C code. There is an additional 9,500 lines located in

a library that is common to both client and server.

Chapter 5

Applications Using Rover

This chapter discusses the steps involved in implementing new mobile-adaptive ap-

plications, porting existing applications to a mobile-adaptive environment, and con-

structing proxies for mobile-transparent applications. The chapter also defines the

programming interface provided by the Rover toolkit and describes the sample appli-

cations that have been constructed using the toolkit.

The application porting process is based upon converting a file system-based ap-

plication into an object-based application. For the the applications discussed in this

section, the process consisted of porting all of the application's data to an object-based

model. However, on-going research with the Rover File System Proxy, discussed below

in Section 5.3, will make the process incremental and gradual.

5.1 Using Objects Instead of Files

There are several steps involved in porting an existing application to Rover, creating

a new Rover-based application or constructing a proxy. Each step requires the ap-

plication developer to make one of several implementation choices. The choices used

in developing the initial set of Rover applications and proxies are presented in Ta-

ble 5.1. While Rover does not provide any mechanical tools for building applications

or proxies, it does provide a consistent framework.

The first step is to split the application or proxy into components and identify

Issue Choice

Object Design Use RDOs that encapsulate sufficient state to
effectively service local requests, but are small
enough to easily prefetch.

Computation Migration Use RDOs to migrate computation that requires
high bandwidth access.

Notification Use colors and text to notify users of tentative
information. Use Rover Toolkit functions to
query environmental information.

Replication Use RDOs to replicate information.
Consistency Use logs of operations to detect conflicts and help

resolve them.
Object Prefetching Tradeoff of RDO size versus easier prefetching,

but have to avoid overly aggressive prefetching.

Table 5.1: Implementation choices for the initial application set built using the Rover
toolkit.

which components should be present on each side of the network link. It is very

important that application developers think carefully about how application or proxy

functions should be divided between a client and a server. The division will be mostly

static, as most of the file system components will remain on the server and most of

the GUI components will remain on the client. However, those components that are

dependent upon the computing environment (network or computational resources)

or are infrequently used may be dynamically generated and migrated. For example,

the search operation performed by a client could be dynamically customized to the

current link attributes: over a low-latency link, more work could be done at the client

and less at the server, and vice versa for a high-latency link. Likewise, the main

portion of an application's help information could be prefetched by a client, but less

frequently referenced portions could be loaded on demand.

Once the application or proxy has been split into components, the next step is

to appropriately encapsulate the application's or proxy's state within objects that

can be replicated and sent to multiple clients. For example, a user's electronic mail

consists of messages and folders. In a traditional distributed computing environment,

one encapsulation is to store each message in an individual file and use directories to

group the messages into folders.

Metadata information for messages (e.g., the size or modification date of a mes-

sage) is determined by using file system status operations. In the mobile computing

environment, the corresponding encapsulation stores messages as objects and folders

as objects containing references to message objects. Each object encapsulates both

the message or folder data and the appropriate metadata.

In migrating to the mobile environment, an application's or proxy's reading of

files is replaced by the importing of objects and its writing of files is replaced by the

exporting of changes to objects. The file system interface still exists in the server-side

of the application. However, inserted between the two halves of the application or

proxy is an object layer.

One of the primary purposes of the object layer is to provide a means of reducing

the number of network messages that must be sent between the client and server;

this reduction is done by migrating computation. Consider the E-mail folder scan

operation, which returns a list of messages and information about the messages in a

folder. Using a file system-based approach means scanning the directory for the folder,

opening each message, and extracting the relevant information. This approach is an

appropriate operation for a well-connected host, but would be very expensive and

time-consuming over a high-latency link. Using an object-based approach, the server-

side application constructs a folder object containing the metadata for the messages

contained in the folder. The client-side application can then import the folder object

in a single roundtrip request and avoid multiple roundtrip requests. The multiple

requests are replaced by local computation - querying the folder object about the

messages it contains.

The next step is to add support for interacting with the environment. For example,

in the E-mail example, one of the important pieces of message metadata that a folder

object contains is the message's size and the size of any attachments. This information

can be used by the application and conveyed to the user to allow useful decisions to

be made.

Support for prefetching is another environment interaction issue. For example, the

server-side HTTP proxy automatically prefetches inlined images. Also, the application

developer must decide which mechanisms to use for notifying users of the status of

displayed data.

The final important step is the addition of application-specific conflict resolution.

For most stationary environments, conflicts are infrequent. However, for the mobile

environment, they will be more common. Fortunately, application developers can

leverage the additional semantic information that is available with Rover's method-

based, instead of value-based, approach to object updating.

5.2 Toolkit Programming Interface

The programming interface between Rover and its client applications or proxies con-

tains four primary functions: create session, import, invoke, and export. Client appli-

cations call create session once with authentication information to set up a connection

with the local access manager and receive a session identifier. The authentication in-

formation is used by the access manager to authenticate client requests sent to Rover

servers.

To import an object, an application calls import and provides the object's unique

identifier, the session identifier, and optional callback and arguments. In addition, the

application specifies a priority that is used by the network scheduler to reorder QR-

PCs. The import function immediately returns a promise [55] to the application. The

application can then wait on this promise or continue execution. Rover transparently

queues QRPCs for each import operation in the stable log. When the requested ob-

ject is received by the access manager, the access manager updates the promise with

the returned information. In addition, if a callback was specified, the access manager

invokes it.

The current implementation also has a load operation that is an import combined

with a call to create a process. Applications use the load operation to import RDOs

that need a separate thread of control. When the access manager receives an RDO

that was requested by a load, it creates a separate process and executes the RDO. The

reason for a separate load operation is historical. At the time that the prototype was

implemented, the underlying development operating systems (the UNIX-based Linux

and SunOS operating systems) did not support multiple threads per address space

and only provided limited support for dynamic linking. In a future implementation,

load may be directly incorporated within import.

Once an object is imported, an application can invoke methods on it to read

and/or change it. Applications export each local change an object back to servers

by calling the export operation and providing the object's unique identifier, the ses-

sion identifier, a callback, and arguments. Like import, export immediately returns

a promise. When the access manager receives responses to exports, it updates the

promise and invokes any application-specified callbacks.

5.3 Rover Application Suite

The design and architecture chapter of this thesis (Chapter 3) discusses several impor-

tant issues in designing mobile-adaptive applications. This section provides examples

of how those issues are addressed in several mobile-adaptive applications and prox-

ies for mobile-transparent applications that have been developed using the Rover

toolkit (Table 5.1 lists the major implementation issues). The two proxies for mobile-

transparent applications are: Rover NNTP proxy, a USENET reader proxy [13]; and

Rover HTTP proxy, a proxy for Web browsers. The mobile-adaptive applications are:

Rover Exmh, an E-mail browser; Rover Webcal, a distributed calendar tool; Rover

Irolo, a graphical rolodex tool; and Rover Stock Market Watcher, a tool that obtains

stock quotes.

An additional proxy for mobile-transparent applications, the Rover File System

proxy (RFS), is under development. This application demonstrates the true versatility

of the Rover toolkit, as it will allow many existing application to run unmodified in a

mobile environment by providing a standard file system interface on top of the toolkit.

The proxy will provide application developers with the flexibility to gradually and

incrementally migrate applications from a file system-based model to an object-based

Rover Original New Rover New Rover
Program code client code server code

Rover Exmh 24,000 Tcl/Tk 1,700 Tcl/Tk 140 Tcl/Tk
220 C 2,400 C

Rover Irolo 470 Tcl/Tk 420 Tcl/Tk 280 Tcl/Tk
220 C 560 C

Rover Stock Watcher none 200 Tcl/Tk 160 Tcl/Tk
220 C 260 Perl, 310 C

Rover Webcal 26,000 C++ 2,600 C++ 1,300 C++
and Tcl/Tk and Tcl/Tk and Tcl/Tk

Rover File System Proxy none 55 Tcl/Tk 340 C
3,000 C

Rover HTTP Proxy none 210 Tcl/Tk 1,600 C
3,200 C

Rover NNTP Proxy none 510 Tcl/Tk 350 C
223 C

Table 5.2: Lines of code changed or added in porting or implementing Rover Exmh,
Rover Irolo, Rover Stock Watcher, and Rover Webcal and implementing Rover File
System Proxy, Rover HTTP Proxy, and Rover NNTP Proxy.

model.

Two of the mobile-adaptive applications are based upon existing UNIX applica-

tions. Rover Exmh is a port of Brent Welch's Exmh Tcl/Tk-based E-mail browser.

Rover Webcal is a port of Ical, a Tcl/Tk and C++ based distributed calendar and

scheduling program written by Sanjay Ghemawat. Rover Irolo and the Rover Stock

Market Watcher were built from scratch.

This application suite was chosen to test several hypotheses about the ability to

reasonably meet users' expectations in a mobile, intermittently-connected environ-

ment. These applications represent a set of applications that mobile users are likely

to use.

In addition to using standard quantitative techniques to measure the performance

and efficiency of the toolkit, it is important to qualitatively test the ideas contained in

the Rover toolkit by using the toolkit to construct complete applications. Qualitative

tests are necessary to investigate how using RDOs affects the structure of applications

and the ease of programming.

As can been seen in Table 5.2, porting these file system-based workstation applica-

tions to a mobile-adaptive Rover applications requires varying amounts of work. For

example, porting Exmh and Ical to Rover required simple changes to approximately

10% of the lines of code. Most of these changes came from replacing file system calls

with object invocations; these modifications in Rover Exmh and Rover Webcal were

made almost independently of the rest of the code.

Recent applications were written/ported in a few weeks, while some of the earlier

applications required several person-months of work. Earlier applications required

more time because the architecture of toolkit was changing while the applications

were being ported. Many of the changes were a direct result of the experiences learned

while porting the applications.

The Rover HTTP and NNTP proxies demonstrate how Rover mobile-adaptive

proxies support existing applications (e.g., Netscape and XRN) without modifica-

tion. Creating these proxies for these services is far easier than modifying all the

applications that use these services.

5.3.1 Proxies for Mobile-Transparent Applications

All of the proxies that have been developed using the Rover Toolkit are read-only.

Adding support for write operations and for dynamically changing the priority of

requests (i.e., converting prefetch requests into foreground requests) are areas of on-

going and future research.

Rover NNTP proxy. Using the Rover NNTP proxy, users can read USENET

news with standard news readers while disconnected and receive news updates even

over very slow links.

The Rover NNTP proxy consists of two components: an NNTP proxy located on

the client and a remote NNTP proxy running on a Rover server. The client NNTP

proxy is implemented as a Rover client application and uses Rover's reliable, queued

communication mechanism with automatic message compression and batching. The

server proxy is linked with the Rover server using the server's application plug-in

interface.

Whereas most NNTP servers download and store all available news, the Rover

proxy cache is filled on a demand-driven basis. When a user begins reading a news-

group, the NNTP proxy loads the headers for that newsgroup as a single RDO while

articles are prefetched in the background. As the user's news reader requests the

header of each article, the NNTP proxy provides them by using the local newsgroup

RDO. As new articles arrive at the server, the server-side of the proxy constructs op-

erations to update the newsgroup-header object. Thus, when a news reader performs

the common operation of rereading the headers in a newsgroup, the NNTP proxy can

service the request with minimal communication over the slow link.

Rover HTTP proxy. This application interoperates with most of the popular

Web browsers. It allows users of existing Web browsers to "click ahead" of the arrived

data by requesting multiple new documents before earlier requests have been satisfied.

The Rover HTTP proxy consists of two components: an httpd proxy located on

the client and a remote httpd proxy running on a Rover server. The client proxy uses

Rover's reliable, queued communication mechanism with automatic message com-

pression and batching and is implemented as a set of modules linked with the access

manager. This implementation choice was done to help with the design of the ac-

cess managers external interfaces. The other Rover client proxies were constructed as

Rover client applications. The server proxy is linked with the Rover server using the

server's application plug-in interface.

The client proxy intercepts all local web requests and, if the requested item is

not locally cached or is already being fetched, returns a null response code (HTTP

response 204) to the browser and uses QRPC to enqueue the request in the operation

log. When a connection becomes available, the network scheduler forwards the request

to a Rover server. In the meantime, the user can continue to browse already available

pages and issue additional requests for pages without waiting. The granularity of

RDOs is individual pages and images.

The server proxy fetches the documents requested by client proxies and auto-

matically applies compression to the returned documents. The compression is either

Rover's automatic compression or application-specific compression. In addition to

compression, the client and server proxies cooperate in prefetching.

The client proxy specifies the depth of prefetching for pages, while the server

proxy automatically prefetches links and inlined images to the depth specified by the

client. The client proxy also parses pages as they arrive and builds reference lists of

inlined images and links. Depending upon the specified prefetch depth, these reference

lists indicate pages and images that the client proxy is expecting the server proxy to

prefetch for it. Thus, the reference lists can be used by the client proxy to detect

browser requests for pages that will be prefetched by the server proxy (e.g., a browser

request for an inlined image will be ignored if the client proxy is already expecting

the inlined images from the server proxy).

The client proxy tracks the status (request pending, request sent, arrived and

not viewed, or arrived and viewed) of all HTTP objects (pages and images) that are

requested directly by a web browser or indirectly due to the prefetching depth or are

stored in the local Rover object cache. Users have two choices for viewing dynamically

generated lists of the HTTP objects in the cache and the QRPC log. Both choices

expose the object cache and QRPC log directly to the user by providing dynamic

views of their HTTP-related contents and allowing the user limited control over their

contents (e.g., cancel request, delete object, and reload object).

One choice for viewing is a dynamically generated HTML list. When the web

browser requests the page (http://home/cache), the client proxy generates the list

for the browser. The usual setup is for the web browser to have two windows, one

displaying the cache contents and request list and the other displaying the desired web

pages. The list page window includes HTML links with HTML target commands

to automatically cause the other browser window to request a link when it is clicked

on in the cache list window. The other choice for viewing the list is a Tk window

application. This application can directly control NCSA's Mosaic [61] and NCC's

Netscape Navigator [62] browsers using their remote control interfaces.

One interesting note about the HTTP proxy is that the techniques of prefetching

and compression that it pioneered have been adopted by several commercial web

browsers and are in the process of being added to HTTP standards [23, 63].

Rover File System proxy. This application makes the process of porting a

mobile-transparent application to a mobile environment easier by addressing a signif-

icant problem: the need to completely shift all of the application's data storage from

one model (a file system) to a model that is better suited for disconnected operation

(an object repository or database). RFS makes the porting process gradual and in-

cremental by allowing the Rover toolkit to support both a file model and an object

model for mobile applications.

Adding RFS to the toolkit raises a number of issues relating to file caching,

prefetching, and conflict detection and resolution. Many of these issues have already

been addressed to some extent by the Coda file system and others [33, 34, 47, 48, 58,

71], however, RFS is also addressing the issues associated with integrating a file sys-

tem model with an object-based model. Specifically, how to map file system objects

(inodes, directories, and files) onto Rover objects, cluster objects for prefetching, use

Rover's conflict detection and resolution model, and partially replicate files.

RFS, as a part of the Rover toolkit, offers application developers a simple alter-

native: those portions of an application's state that are difficult to port, that change

infrequently, or exhibit update conflicts that are easy to detect and resolve can rely on

RFS for storage. On the other hand, application state that is sensitive to bandwidth

and latency, or where conflicts may be complicated to detect or handle, can use the

full functionality of Rover's object management support as well as its conflict reso-

lution and detection. This set of choices will significantly ease the process of adding

mobile-adaptive support to applications.

RFS consists of two components: a user-level installable file system located on

the client and a remote file system proxy running on a Rover server. The RFS client

proxy uses Rover's reliable, queued communication mechanism with automatic mes-

sage compression and batching. The RFS client proxy is composed of a small kernel

module and the RFS process, which runs as a Rover client application. RFS makes

use of two caches: Rover's shared memory/disk cache, and a small in-memory cache

managed directly by RFS. The latter cache is used to minimize the amount of com-

munication between the RFS client proxy and the Rover toolkit. The server proxy is

linked with the Rover server using the server's application plug-in interface.

The prototype implementation supports disconnected operation by caching re-

mote inodes, files, and directories; however, it is currently limited to read-only access.

Starting with a simple read-only implementation allowed for immediate analysis of

performance and experimentation with various strategies for prefetching, caching,

cache (re)validation, and conflict resolution.

Future plans for RFS include extending the proxy to provide full support for

both read and write, as well as prefetching, hoarding, and disconnected operation

with lease-based concurrency control and server callbacks. Extending RFS will require

addressing many of the issues raised by the Coda file system and others, while further

tuning RFS performance.

The Rover File System will provide the final component of a complete devel-

opment environment. Using RFS, application writers will be able to gradually and

incrementally port existing mobile-transparent applications to a mobile-adaptive en-

vironment. This support will be an important incentive for migrating to a mobile

computing environment.

5.3.2 Mobile-Adaptive Applications

Rover Exmh. Rover Exmh uses three types of RDOs: mail messages, mail folders,

and lists of mail folders. By using this level of granularity, many user requests can be

handled locally without any network traffic. Upon startup, Rover Exmh prefetches

the list of mail folders, the mail folders the user has recently visited, and the messages

in the user's inbox folder. Alternatively, using a finer-level of granularity (e.g., header

and message body) would allow for more prefetching, but could delay servicing of

user requests, especially during periods of disconnection. In the other direction, using

a larger granularity (e.g., entire folders) would seriously affect usability and response

times for slow links.

Some computation can be migrated to servers. For example, instead of performing

a glimpse search of mail folders locally at the client and thus having to import the

index across a potentially low bandwidth link, the client can construct a query request

RDO and send it to the server.

The GUI indicates that an operation is tentative using color coding. Conflict

detection is based upon a log of changes to RDOs; the log allows the server to detect

and resolve a conflict such as one user adding a message to a folder and another user

deleting it. Unresolvable conflicts are reflected back to the user.

Rover Webcal. This distributed calendar tool uses two types of RDOs: items

(appointments, daily todo lists, and daily reminders) and calendars (lists of items).

At this level of granularity, the client can fetch calendars and then prefetch items

using a variety of strategies (e.g., plus or minus one week, a month at a time, etc.).

Rover Webcal uses color coding to aid the user in identifying those objects that

have been locally modified but not yet propagated to a server. Conflict detection is

based upon a log of changes to RDOs; this log allows the server to detect and resolve

a conflict such as one user adding an item to a calendar and another user deleting it.

Rover Irolo. This graphical rolodex application uses two types of RDOs: entries

and indices (lists of entries). The GUI displays the last time an entry was updated

and indicates whether the item is committed or tentative. Conflict detection is based

upon a log of changes to RDOs; this log allows the server to detect and resolve a

conflict such as one user adding an entry to an index and another user deleting it.

Rover Stock Market Watcher. This application uses both computation mi-

gration and fault-tolerance techniques [39, 40]. The client constructs RDOs for stocks

that are to be monitored and sends them to the server. The server uses Rover's

server-side fault-tolerant support to store the real-time information retrieved from

stock ticker services.

5.3.3 Developing Reliable Applications

To measure the effects of Rover's support for server-side reliable execution on end-to-

end application performance, the reliability extensions were added to two applications

and a proxy: a stock market watcher application, a simple file search application, and

the server portion of the Rover Web Browser proxy (described in more detail in

Section 5.3). The applications and proxy were chosen to evaluate the ease of con-

100

structing reliable applications or modifying existing applications and to measure the

performance of reliable applications (see Section 6.7.2).

5.3.4 Stock Market Tracker

As an exercise to gauge the added difficulty in constructing reliable applications, the

reliability extensions were added to a simple financial stock market tracking applica-

tion.

Operation of the application is as follows:

1. The user specifies a stock, an attribute for the stock (e.g., price, volume, trend,

or changes), and a threshold. The user is notified when the attribute for the

stock exceeds the threshold.

2. The client-side application constructs a stock watching RDO containing the

user's parameters and sends the RDO to the server.

3. The server-side application executes the RDO. When the RDO indicates that

the user-specified threshold has been exceeded, the server-side application no-

tifies the client.

When a server-side failure occurs, all volatile information is lost. As a result, any

trend data that the RDO was generating and using that data is lost. There are two

alternatives for saving the stock's attributes: manually generate RDOs that use the

filesystem to store the information or use stable variables for the attributes.

Manually making the information stable would require an effort comparable to

the effort required to implement stable variables (e.g., constructing data marshalling

and unmarshalling procedures). Instead, the reliable extensions were used to make

the application's information persistent across server failures.

The application uses stable variables to store the stock's current attributes. As

with the other examples of reliable applications, the changes only affected a few lines

of code.

101

5.3.5 Rover Web Browser proxy

The Rover Web Browser proxy is a client-server application consisting of a client proxy

on the client machine and a server proxy on the server machine (see Section 5.3.1).

The modifications to support reliable operation only affected the server portion of

the application.

When the server receives a request from a client for a web page, it fetches the page

and returns it to the client. It also prefetches any inlined objects and returns them to

the client in the same connection (thus avoiding multiple connection setups for each

inlined object). Since multiple pages may refer to the same set of inlined objects (e.g.,

logos, bullets, etc.), the server uses a hash table to keep track of the timestamps and

sizes of those objects that it has already sent to a client.

The proxy was modified to make the hash table it uses stable. This change was

a simple modification consisting of changes to 55 lines of code. The primary benefit

of these simple changes is that after a server failure, the stable hash table allows the

server to avoid sending duplicate objects to clients, conserving potentially expensive

and/or limited bandwidth.

Experimental evaluation of the modifications shows that they have a negligible

effect on performance (see Section 6.7.2). Other costs (httpd server overhead and

transport cost) and their variability dominate the server execution times.

5.3.6 Text file search

A simple text file search application was constructed to explore the ease of using

stable variables. The application uses stable variables to store information about the

state of the search (i.e., the remaining files and directories to be searched and the

matches found so far). An excerpt from the server code is provided in Figures 5-1

and 5-2. The difference between the stable and volatile versions is only a few lines of

code. After a failure, the stable version can resume the search in-progress with only

a small amount of lost work.

Experimental evaluation of the modifications shows that, when there are no faults,

102

Declare the stable variables

currentFiles: list of files to be searched in the current directory

currentDirs: list of directories to be searched

currentResult: results of search so far

if {![info exists currentFiles]} {Rover_stable currentFiles ""}

if {![info exists currentDirs]} {Rover_stable currentDirs ""}

if {![info exists currentResult]} {Rover_stable currentResult ""}

Main search procedure

Search for (search) in all files and directories in or below (topdir)

proc search {topdir search} {

global currentDirs currentResult

currentDirs will already be set by the recovery procedure

if we're recovering

if {$currentDirs == ""} {set currentDirs $topdir}

Iterate through the list of directories

for {} {[llength $currentDirs] > 0} {} {

Get the next directory to search

set dir [lindex $currentDirs 0]

Expand the current dir and append it for breadth-first search

set newList [concat $currentDirs [findDirs $dir]]

Search the directory and save the result

searchDir $dir $search

Update the list of directories to search

set currentDirs [1range $newList 1 end]

}
return $currentResult

Figure 5-1: Server-side code for a reliable file search application (part one).

the performance using logged stable variables with asynchronously flushed buffers is

nearly identical to the performance using volatile variables (see Section 6.7.3). When

there is a failure, the reliable version of the application performs significantly better

than the volatile version.

103

File search procedure

Search for (search) in all files in (dir)

proc searchDir {dir search} {
global currentFiles currentResult

currentFiles (and tempResult) will already be set if we're recovering

if {$currentFiles == ""} {set currentFiles [findFiles $dir]}

Iterate through the list of files

while {[llength $currentFiles] > 0} {

Execute grep on each file

set fname [lindex $currentFiles 0]

if ![catch {exec /usr/bin/fgrep $search "$dir/$fname"} data] {

Save the result

if {$data != ""} {

lappend currentResult [list "$dir/$fname" $data]

}

Update the list of files to search

set currentFiles [1range $currentFiles 1 end]

Figure 5-2: Server-side code for a reliable file search application (part two).

5.4 Discussion

The experimental results presented in this section confirm the hypotheses listed at

the beginning of this chapter.

At the micro benchmark level, batching and compression of multiple requests

yields significant performance benefits for slower networks - increased throughput

and reduced average latency. In addition, stable variables are easy to use, offer signif-

icant performance gains in the presence of failures, and, with asynchronous logging,

yield performance comparable to that for volatile applications.

At the system level, unmodified mobile transparent applications gain usability

and performance benefits from the Rover toolkit. For mobile-adaptive applications,

the usability and performance gains are more substantial. Rover allows users to see

104

the same excellent GUI performance across a range of networks that varies by nearly

three orders of magnitude in both bandwidth and latency.

Finally, when using asynchronous logging, the performance of reliable applications

is comparable to that of volatile applications.

105

Chapter 6

Experiments

This chapter contains the results of experiments designed to explore several hypothe-

ses about the Rover toolkit. The experiments fall into two categories: low-level bench-

marks and system-level experiments.

The low-level benchmarks test the following hypotheses:

1. Even with the overhead of stable logging, using QRPC instead of RPC signifi-

cantly improves performance by enabling batching and compression of multiple

requests and responses.

2. Stable variables offer significant performance gains in the presence of failures.

However there must be a clear demarcation between stable and volatile variables

due to the overhead associated with stable variables.

The system-level experiments test the following hypotheses about end-to-end per-

formance:

1. Mobile-transparent applications benefit from using the Rover toolkit.

2. Mobile-adaptive applications offer significant performance advantages over ex-

isting non-adaptive versions of the applications.

3. Applications using Rover's reliable execution support gain significant perfor-

mance improvements over ordinary applications in the presence of failures and

have comparable performance when there are no failures.

106

6.1 Experimental Environment and Methodology

The network transports used for the experiments included a variety of wired and

wireless local-area and wide-area network technologies:

1. 10 Mbit/s switched Ethernet. All of the machines used in the test were connected

to the same segment. The segment used for the experiments was relatively idle

during the experiments.

2. 2 Mbit/s wireless AT&T WaveLAN. The WaveLAN base station used for the

experiments was placed on the same Ethernet segment as the server. In addition,

the base station was logically isolated from other base stations in the building.

However, WaveLAN's physical radio layer is a shared media; to minimize the

impact of shared access on the experiments, the experiments were run during

idle periods.

3. 128 Kbit/s and 64 Kbit/s Integrated Digital Services Network (ISDN) links. On

the remote end of the link, the client laptop was connected via an idle Ethernet

segment to an Ascend Pipeline 50 ISDN router. The router was connected to a

local Ascend Pipeline 50 router using the Public Switched Telephone Network

(PSTN). The local router was connected to the Rover server using the building's

networking infrastructure.

4. Serial Line IP with Van Jacobson TCP/IP header compression (CSLIP) [36] over

28.8 Kbit/s V.34 wired and 9.6 Kbit/s V.32 analog cellular dial-up links. For

the experiments, the client used the PSTN to connect to the building's terminal

server modem pool. The cellular link supports 14.4 Kbit/s V.32 connections,

however at the data higher rate, the link suffers from significantly higher error

rates.

These networks are representative of the networks that are available in the local and

wide area. Ethernet is available in most office workplaces, while multi-megabit wire-

less office networks are being deployed in many offices. Wired dialup PSTN network

107

connections are the most widely deployed remote network access solution, while ISDN

is gradually becoming available in many locations as a cost-effective home-office net-

work connectivity solution. Wireless wide-area network connectivity, however, is still

in its infancy - there are a variety of proprietary solutions that are available in

limited geographic areas. Analog cellular networks are an open standard and their

coverage reaches most metropolitan and suburban locations.

It is important to note that ordinary TCP/IP was used over all the networks,

including the wireless networks. While Rover applications might benefit from the use

of a specialized TCP/IP implementation, it is not a necessary requirement. Another

advantage of using Rover is that Rover application sends less data than an unmodified

application; thus, Rover applications are also less sensitive to errors on wireless links.

The test environment consisted of a single server and multiple clients. The stan-

dalone TCP/IP server executed on an Intel 200 Mhz Pentium Pro workstation. The

clients were IBM ThinkPad 560 laptops (133 Mhz Pentium). The HTTP server used

in the HTTP and web browser experiments was an Intel Advanced/EV (120 Mhz

Pentium) workstation. All of the machines were otherwise idle during the tests.

The clock resolution on the ThinkPad and Pentium Pro is 10.0 milliseconds.

Except for Ethernet, the traffic in all of the networks uses shared public resources

and traversed shared links. As such, there is increased variability in the experimental

results for those network transports. To reduce the effects of the variations on all of the

experiments, each experiment was executed multiple times and the results averaged.

In addition, most of the experimental results include 90% confidence intervals.

6.2 Null QRPC Performance

The baseline performance for QRPC was established using TCP latency and band-

width measurement experiments. The TCP latency experiment measured the time to

open a TCP connection, send two bytes, receive two bytes, and close the connection.

The TCP bandwidth experiment measured the time to transmit 1 MByte of ASCII

data.

108

TCP
Transport Throughput Latency

1 MByte null RPC
(Mbit/s) (milliseconds)

Ethernet 8.4 ±0.08 2.4± 0.72

WaveLAN 0.79 ±0.17 12 ± 0.85

128 ISDN 0.44 ±0.03 69 ± 3.19

64 ISDN 0.21 ±0.01 73 ± 2.43

28.8 Wired CSLIP 0.023±0.01 310 ± 7.51
9.6 Cellular CSLIP 0.017±0.02 620 ±12.20

Table 6.1: The Rover experimental environment. Measurements include 90% confi-

dence intervals.

The cost of a QRPC has several primary components:

1. Client-side processing costs. The overhead associated with constructing a re-

quest, compressing the request, logging the request to stable storage, and de-

compressing the server's response.

2. Transport cost. This cost is the time to transmit the request and receive the

reply: the TCP null RPC cost from Table 6.1 plus the per-byte network trans-

mission cost.

3. Server-side processing costs. The time to process the QRPC at the server, in-

cluding parsing the QRPC, decompressing the request, and generating and com-

pressing the response. For the experiments, no server-side authentication was

performed and no application code was executed.

Combining these costs yields a model of the approximate average time to perform

a QRPC, based upon client and server processing power and network parameters.

The model is presented in Figure 6-1 and the costs are analyzed in detail in the

following sections. Where appropriate, costs are presented in terms of processor cy-

cles. Note that the client and servers have different processor architectures (Pentium

and Pentium Pro); thus, comparisons of cycle counts between the two may not by

appropriate.

109

Table 6.2: Costs for using Rover compression and decompression algorithms. Mea-
surements include 90% confidence intervals.

The QRPC measurements used a synthetic benchmark consisting of a client issuing

a series of 50 null QRPCs with no interval between requests. This benchmark is

representative of what occurs when the client prefetches or imports a series of RDOs.

For example, when Rover Exmh starts executing at the client, it imports the 48 RDOs

that compose the client GUI. Afterwards, it imports the RDOs containing the recent

messages in the user's inbox. In similar fashion, Rover Webcal issues multiple imports

for the calendar entries.

Modern mobile computers have fast processors. Most mobile applications, how-

ever, are communication-bound; thus, processor cycles are available for compression

and decompression algorithms. The benchmark application is representative of a

communication-bound mobile application.

Each experiment was performed with each of Rover's automatic request compres-

sion and heuristic batching functions enabled and disabled. Batched requests were

sent as one single batch of 50 requests.

The request and result data for each null QRPC consisted of sending 14 bytes

and receiving 0 bytes The total amount of data sent and received depends upon the

QRPC headers, since the headers include host address information and variable size

message sequence number and identifier information. The message size numbers below

are averages of the actual message sizes.

For an uncompressed, non-batched QRPC, a total of 211 bytes were sent and 53

bytes were received. When Rover's zlib-based compression is used with non-batched

QRPC, the amount of data transmitted actually increases to 224 bytes sent and 61

110

bytes received. Applying compression to a single null QRPC (or its null result) yields

more output than input, because QRPC request and response headers are already

compact and the compression algorithm has fixed 12 byte headers.

6.2.1 QRPC Client Costs

The time for the client-side toolkit to construct a single QRPC was measured as 3.14

± 0.25 milliseconds (418,000 ± 33,300 cycles). For a batch of 50 requests, the time

was measured as approximately 25.5 milliseconds (3,430,000 cycles).

The time for the client-side toolkit to process the results of a single QRPC was

measured as 0.247 ± 0.002 milliseconds (32,900 ± 260 cycles).

6.2.2 QRPC Compression Costs

There are eight costs associated with using the zlib compression and decompression

algorithms. At clients and servers there is initialization overhead for compression and

decompression; in addition, there are per-byte costs for compression and decompres-

sion. Table 6.2 lists the measured costs. The measured per-byte costs are a function of

the amount of data being compressed; thus, the numbers in the table are approximate.

The measurement experiments were performed with warm caches.

Client-side compression and decompression and server-side decompression is done

using input and output memory buffers. Server-side compression is done using an

input memory buffer and an output communication socket.

6.2.3 QRPC Transport Cost

The transport cost for a QRPC (tnet) is dependent upon the latency and bandwidth

of the network technology. For comparison purposes, Table 6.1 provides TCP perfor-

mance measurements for several representative networks. The table shows null RPC

latency for a ping-pong over TCP sockets and the throughput for sending 1 MByte

of ASCII data using TCP sockets.

111

- tClient + tnet + tServer,

tClient

tnlet

tServer

fcComp ()

fcDecomp (X)

fsComp (X)

fsDeconp ()

t constr + tcLog + fcComp(SZrequest) + fcDecomp (SZcompResult) + tresultProc

SZcompRequest + SZcoinpResult
tconnect +

bw
tparse + fsDecomp(SZcompRequest) + tsLog + tServerApp + fsComnp(SZresuit)

tcCompOvr + tcComp X X

tcDecompOvr + tcDecomp X X

tsCompOvr + tsComp X X

tsDecoimpOvr + tsDecomp X X

where,

tconstr

tcLog

S Zrequest

SZcompResult

tresultProc

tconnect

bw

S ZcompRequest

tparse

tsLog

tServerApp

S Zresult

tcCompOvr

tcComp

tcDecoinpOvr

tcDecomp

tsCompOvr

tsCoinp

tsDecompOvr

tsDecomp

= Client QRPC construction time

Client QRPC logging time

Size of marshalled request
Size of QRPC header and compressed marshalled result

= Client result processing time

Network connection time (usually tlatency x 2)
Network bandwidth

Size of QRPC header and compressed marshalled request
Server time to parse QRPC

Server QRPC logging time
= Server-side application's time to execute request

Size of result

= Client

= Client

= Client

= Client

= Server

Server

= Server

= Server

compression algorithm overhead

compression algorithm per-byte cost
decompression algorithm overhead

decompression algorithm per-byte cost

compression algorithm overhead

compression algorithm per-byte cost
decompression algorithm overhead
decompression algorithm per-byte cost

Figure 6-1: Average time to perform a QRPC. When batching is used, the times
t(onnect, tcCompOvr, and tsDecompOvr are amortized over the number of requests in the
batch.

112

tQRPC

Disk Capacity Seek Rot. RPM Max. transfer Interface
(MBytes) time Latency rate

(ms) (ms) (MByte/s)
Quantum 2110S 2,111 10.5 6.7 4,500 10.0 SCSI-II
IBM DTNA-22120 2,120 13.0 7.5 4,000 16.6 IDE

Table 6.3: Attributes of the media used for stable logging (from manufacturer's spec-
ification sheets).

TCP throughput over Ethernet and WaveLAN is lower than expected because of

software overhead and, for WaveLAN, media contention. TCP throughput over other

network transports is higher than expected because of the compression performed

by the modems and ISDN routers. A slower network means that the network queues

grow giving the network hardware or software more data to apply compression to be-

fore transmission. For compressible data, more data to compress at one time results

in better compression ratios. The 1 MByte of ASCII data used for the test is very

compressible (GNU's gzip -6 yields a 14.4:1 compression ratio). Since RDOs are con-

structed of Tcl scripts (ASCII), it is reasonable to expect that Rover applications will

also observe similar compression benefits when using links with built-in compression.

In contrast, the 1 MByte of random binary data used for the test was incompressible

(a 1:1 compression ratio). A typical Rover binary, however, has a 3.30:1 compression

ratio.

6.2.4 QRPC Stable Logging Cost

The cost of logging null QRPCs to disk was measured at client and server machines.

The server has a PCI bus-based NCR 53c815 Fast SCSI-II interface to two Quantum

Fireball 2110S disks. The clients have IDE-based IBM Travelstar DTNA-22120 disks.

The attributes of the disks are listed in Table 6.3.

The client logging experiment measured the per-QRPC cost of logging 100 null

QRPCs to the disk and synchronously flushing the file buffers after each logging

action. The amount of data logged per QRPC was 39 bytes. The experiment yielded

an average client logging time of 17.1 ± 0.47 milliseconds.

The server logging experiment measured the per-QRPC cost of logging 100 null

113

new QRPC, QRPC start, and QRPC result records. After the new and start records

were logged, the file buffers were synchronously flushed - a total of two flush oper-

ations per QRPC. The amount of data logged per QRPC was 161 bytes. The result

of the experiment was an average logging overhead of 18.1 ± 0.19 milliseconds.

Overall, the experimental results show that while client and server logging does

have a cost (35.2 milliseconds), its relative impact on performance is a function of

the transport media. Since most Rover users will often be connected via slower links

(e.g., wired or cellular dialup), the cost of stable logging will be a minor component

of overall performance (e.g., less than 5% for cellular links). For wired networks,

asynchronous log flushing can be used at servers and clients. Using asynchronous log

flushing yields performance comparable to when no logging is performed at the client

or the server. Thus, for all networks, it is acceptable to pay the additional cost for

client and server logging of QRPCs.

In addition, given that in a mobile environment the time to retransmit a QRPC

from a client to a server after a failure is likely to be significant (e.g., a client dis-

connected for an extended period of time or connected over a high latency link), it

is acceptable to pay a small performance penalty for server logging of incoming QR-

PCs. Furthermore, by using asynchronous log flushing, a significant performance gain

is achieved in exchange for a small window of vulnerability. For highly connected, rel-

atively faultless environments, like Ethernet and WaveLAN, clients and servers can

determine whether to synchronously or asynchronously flush log buffers. The cost of

fault-tolerance need be paid only if necessary.

The use of an alternative to a file system, a different type of file system (e.g., a

log-based file system), a flash RAM card, or a small battery-backed static RAM card

could offer substantial performance benefits over using an ordinary file system with

a disk [21].

6.2.5 QRPC Server Costs

The measured time to parse, dispatch, and process a null QRPC at the server (tparse +

tServerApp) is approximately 0.31 milliseconds (62,000 cycles). The processing time

114

Network Compression No Compression
Actual Model Actual Model

Ethernet 39± 2.9 41 51±11. 50

WaveLAN 49± 8.0 53 61± 1.8 63

128 ISDN 110± 7.6 110 110± 1.6 120

64 ISDN 140±17. 120 120± 5.1 130

28.8 Wired CSLIP 460± 7.5 440 490±16. 460

9.6 Cellular CSLIP 640±46. 780 610±12. 800

Table 6.4: Comparison between experimental and model results. Results are in mil-

liseconds and include 90% confidence intervals.

only included the time to parse, dispatch, and execute the QRPC. Authentication

information is sent with the QRPC, however no authentication is performed by the

server.

6.3 Discussion of QRPC Costs

To validate the model of the end-to-end costs for a null QRPC, several experiments

were performed. Each experiment measured the average roundtrip time to send a

QRPC from a client to a server and to receive the result at the client. Table 6.4

provides a comparison between the experimental and model results.

The results show that the model provides a reasonably accurate representation

of the costs for null QRPC. Three-quarters of the model's results are within 10%

of the experimental results. Most of the differences are because the model does not

completely account for the compression provided by some networks. This difference

is especially visible in the cellular network results.

The QRPC tests involved transmitting only 5 KBytes of data. However, the net-

work bandwidth numbers used for the models were those from Table 6.1 and involved

transmitting a compressible 1 MByte text file. Due to wireless network errors, the

large file throughput performance for a wireless networks will be lower than for small

files. The QRPC performance model does not directly capture the effects of wireless

errors. Such errors could be modeled by increasing the value for network's latency and

115

decreasing the value for the network's bandwidth. The errors could also be modeled

by injecting errors during experiments and measuring their effect on performance.

The effects of compression on single and batched requests is investigated further

in Section 6.4.

6.4 QRPC Batching and Compression

Figure 6-2 shows the effects of batching and compression on the performance of QRPC

with asynchronous logging. Batching and compression is transparent to applications

and it offers significant performance gains by eliminating multiple roundtrip messages

and increasing the efficiency of the compression algorithms.

The experiments measured the effects of batching and compression using the

heuristic from Chapter 3.3.4 on the time to perform a synthetic benchmark con-

sisting of a client issuing a series of 50 null QRPCs with no interval between requests.

This benchmark is representative of what occurs when the client prefetches or imports

a series of RDOs. For example, when Rover Exmh starts executing at the client, it

imports the 48 RDOs that compose the client GUI. Afterwards, it imports the RDOs

containing the recent messages in the user's inbox. In similar fashion, Rover Webcal

issues multiple imports for the calendar entries.

The measurements consisted of four experiments. The four lines in Figure 6-2

show the progress in executing QRPCs:

1. The compressed batched line shows the rate of progress when both Rover's au-

tomatic header and data compression and the network scheduler's automatic

batching are applied. For this test, the compression ratio was approximately fif-

teen to one and the batch size was all fifty requests in one message. Since most

of the data being sent is request headers and compression was applied across the

entire batch of requests, it might appear that the compression ratio is skewed

by using null QRPCs. However, as the results from Section 6.2.3 show, request

data has a comparable compression ratio (14.4:1).

116

- Compressed batched
- -- Compressed single
------ Uncompressed single
--- Uncompressed overlapped a

()

1.5 -

1.0-

0.5 -

'I- ~ -"~-' -

10 20 30 40

QRPC Sequence Identifier

Ethernet

100 -

50-
r -

I -' -4

I -

10 20 30 40

QRPC Sequence Identifier

128 Kbit/s ISDN

I--I
--

10 20 30 40

QRPC Sequence Identifier

WaveLAN

/

I I I I
10 20 30 40

QRPC Sequence Identifier

64 Kbit/s ISDN

r

/

r . " '-- --'I. III -z" : :

,, . - -I --
I

40-

30 -

20 -

10-

10 20 30 40

QRPC Sequence Identifier

19.2 Kbit/s Wired CSLIP

--

A. /~4" I
I I I

10 20 30 40

QRPC Sequence Identifier

9.6 Kbit/s Cellular CSLIP

Figure 6-2: Time in seconds to execute 50 null QRPCs with asynchronous log record

flushing.

117

1.0 -

0.5 -

0-
I

40 -

30-

20 -

10-

J r--I
VI

T . i iL

o,-

2. The compressed single line shows the rate of progress with Rover's automatic

header and data compression and only a single request outstanding. The com-

pression ratio was 1.11 to one. The request headers are compact and have limited

compressibility. As with the first measurement, non-null requests are usually

more compressible than null requests. For faster networks, the computational

overhead of compressing and decompressing requests is greater than the savings

from sending less data.

3. The uncompressed single line shows the rate of progress without compression

or batching and with only a single request outstanding. This line demonstrates

that there are networks where Rover's compression is not as effective as the

compression performed by the underlying network or where the execution time

of applying software compression and decompression are greater than the time

to transmit the uncompressed data.

4. The uncompressed overlapped line shows the rate of progress without compres-

sion or batching, but with multiple outstanding requests - one connection

per request. The multiple outstanding requests caused two problems: request

reordering and network resource contention. Although the requests were dis-

patched by the access manager in order, many requests were received at the

server out of order. Also, the high number of simultaneous connections caused

contention for network resources. The results of both problems were significant

delays in request processing. This experiment is an example of what happens

if applications are operating in an uncoordinated fashion (e.g., special-purpose,

single-use applications).

Overall, compression combined with batching offers performance gains with the

largest gains occurring for the slowest networks. The main reason for the batching

performance gain is the elimination of multiple roundtrip messages, reducing the slope

of the completion curve. In addition, compression used with batching offers benefits

because it allows multiple QRPC headers within a batch to be compressed. However,
using batching imposes a delay on the time before a request is sent and the response

118

tfirst tconstrBatch + fcComp (SZrequestBatch) + fcDecomp (SZcompResult) + tresultProc

SZcompRequestBatch + SZcompResult
+tconnect + bw
+tparse + fsDecomp(SZcompRequestBatch) + tServerApp + fsComp(SZresult)

where,

tconstrBatch = Client QRPC batch construction time

SZrequestBatch = Size of marshalled batch request

SZcompRequestBatch = Size of QRPC header and compressed marshalled

batch request

Figure 6-3: Time to complete the first request in a batch of QRPCs.

tdelta fcDecomp (SZcormpResult) + tresultProc +

SZcompResult +
bw

tparse + tServerApp + fsComp(SZresult)

Figure 6-4: Time to complete subsequent requests in a batch of QRPCs.

is received.

To further analyze the effects of batching on performance, the analysis from the

previous section was repeated. There are two metrics of interest:

1. The delay imposed upon the first request, tfirst (see Figure 6-3). This delay is

the cost of using batching. To compute tfirst, the following values were used:

* tconstrBatch is the time to construct a QRPC batch. This time was measured

as approximately 25.5 milliseconds (3,390,000 cycles).

* sZrequest is the size of the marshalled batch request. During the experi-

ments, the amount of data sent as a single batch ranged from 4537 to 5737

bytes, depending upon the amount of header information. The amount of

119

header information is a function of the client host addresses used for the

experiments.

* SZcoinpRequest is the size of the compressed marshalled batch request. The

amount of data sent ranged from 495 to 517 bytes. As with sZrequest, the

amount of data sent depended upon the amount of header information.

* Asynchronous logging was used for these experiments, thus tcLog and tsLog

were approximately 0.

* For null QRPC, SZresult is 0 and fsComp(SZresult) is 0.

2. The times for subsequent requests to complete, tdelta (see Figure 6-4). These

times are represent the primary advantage of using batching, a reduction in the

time between request completions. To compute tdelta, the following values were

used:

* The following values were set to 0 for the model: tconstr, feConmp, tconnect,

SZcompRlequest, and fsDecomp.

* Asynchronous logging was used for these experiments, thus tcLog and tsLog

were approximately 0.

* For null QRPC, SZresult is 0 and fscomp(SZresult) is 0.

Note that batching increases the efficiency of the compression algorithm. Without

batching, the compression ratio between uncompressed and compressed data is 1:1.03.

Using batching, the compression ratio varies from 9.17:1 to 11.1:1.

Table 6.5 shows the model's results and the actual experimental results for the

tfirst and tdelta metrics. The experimental results show that relative to issuing a single

request at a time, batching imposes a delay on the first request. However, using batch-

ing also substantially reduces the time required for subsequent requests to complete.

For example, on the cellular network, the first request completes in 1,800 millisec-

onds while subsequent requests complete on average once every 17 milliseconds. In

comparison, the roundtrip time for a single request is 640 milliseconds (see Table 6.4).

120

Network tfirst tdelta

Actual Model Actual I Model

Ethernet 65 50 3.6 4.4
WaveLAN 71 64 3.6 4.9
128 ISDN 230 130 3.4 5.4
64 ISDN 250 140 3.3 6.6
28.8 Wired CSLIP 660 560 16. 25.
9.6 Cellular CSLIP 1500 930 18. 32.

Table 6.5: Comparison between experimental and model batch results. Results are in
milliseconds.

The model results show that for faster uncompressed networks, the model accu-

rately predicts the expected value for tfirst. The less accurate results for tfirst are due

to the TCP bandwidth models. The constants for the model are based upon sending

ASCII file and are representative of the general compression attributes for a network.

More or less compressible transmissions will yield different results. For example, when

network compression is disabled on the cellular network, tirst is 2080 milliseconds and

tdelta is 105 milliseconds.

Likewise, the results for tdelta show that the model accurately predicts the expected

values for faster uncompressed networks. Networks with compression have the same

effect on the tdelta model as on the tfirst model. Nevertheless, the models provide useful

information about expected application performance.

'The single and batched QRPC models provide application developers with the

tools that they need to predict application performance on a given network. Applica-

tion developers can use the models to estimate application performance for existing

and future networks.

6.5 Mobile-Transparent Application Performance

The performance of Netscape, using a mobile-transparent Rover HTTP proxy was

compared against the same application executing independently. The experiment con-

sisted of measuring the time to fetch and display ten WWW pages using a variety of

121

networks.

To minimize the impact of internet and remote HTTP server performance on the

experiments, the ten WWW pages were copied from ten different WWW sites and

stored on a local HTTP server. The number of images per page ranged from 1 to 14

images, for an average of 5 images. The total number of pages and images was 61.

When Netscape was used alone, 61 network connections were created. Each con-

nection was used for a single page page or image. When Netscape was used with the

Rover HTTP proxy, 10 network connections were created. One connection was used

to transmit each page and its associated images.

Netscape by itself transmitted 36.7 KBytes and received 347 KBytes. Netscape

in conjunction with the Rover HTTP proxy transmitted 26.3 KBytes (1.40:1) and

received 291 KBytes (1.19:1). The data received by the proxy consisted of 41 KBytes

of overhead and 250 KBytes of compressed data representing 348 KBytes of uncom-

pressed data. The HTML portion of the pages accounted for 72 KBytes (28 KBytes

compressed) and had a compression ratio of 2.6:1. The majority of the data con-

sisted of images, which were far less compressible using the default Rover compres-

sion. Application-specific image compression techniques can offer up to two orders of

magnitude of compression [24]. Using techniques such as delta encoding for communi-

cation between the client and server proxies would also yield significant performance

benefits [57].

Using the proxy, the number of network connections is a function of the number of

pages and not the number of pages and inlined images. For slower networks, opening

a network connection is an expensive operation; thus, minimizing the number of

connections is important.

Figure 6-5 shows the completion times for each network. On the faster networks

(Ethernet, WaveLAN, 128 Kbit/s ISDN), Rover is slower because the requests are

processed by two different machines (the web server and the server-side proxy). How-

ever, on the slower networks, Rover yields up to a 31% improvement in performance.

As noted above, using application-specific compression would yield even better per-

formance.

122

m Netscape alone
3 Netscape + Rover HTTP Proxy

500 -

400 -

300 -

200 -

100-

WaveLAN

Figure 6-5: Time in seconds to fetch/
and with the Rover HTTP proxy.

-185-447

Ethernet

R=i

display 10 WWW pages using Netscape alone

Sequential directory read (Cold)
Sequential directory read (Hot)
Sequential directory / random read (Cold)
Sequential directory / random read (Hot)
Seq. ASCII file read (Cold)
Seq. binary file read (Cold)

-167

WaveLAN 128 ISDN 64 ISDN 28.8 Wired 9.6 Cellular

Figure 6-6: Speedup (or slowdown) of the Rover File System (RFS) Proxy over the
Network File System (NFS).

It is important to note that the experiments do not reflect the "click-ahead" nature

of the Netscape+Rover HTTP proxy application, which allows the user to browse the

loaded pages while waiting for additional pages to load.

123

.n
o
Iln

Ethernet

In
128 ISDN

In
64 ISDN 19.2 Wired 9.6 Cellular

100-

-100-

III II III In_I _ _ ___ _~ LL

r m I- -- Liit: I-I r:.I .A-& 1L LLrl- -1 ":'
LL_ L_ L_

6.5.1 Rover File System Proxy

The performance of the Rover File System proxy was compared against the Network

File System version 2.3 (NFS). The measurements were made with a remote file

system on the Rover server containing 6.4 MB in 155 files, 15 directories, and no

symbolic links. Both the Rover client and server used asynchronous log flushing. Each

experiment was first performed with all caches (RFS client, Rover Access Manager,

NFS client, and disk buffer) empty. The same experiment was then immediately

repeated to measure hot cache performance. RFS was configured to mark all the data

as read only; as a result, there was no additional network traffic while measuring RFS

hot cache performance. Standard NFS file and directory caching was enabled. The

experiments measured the speedup or slowdown of RFS relative to NFS: (NFS-RFSX

100).

The sequential directory read performance was measured using the UNIX find

command. Sequential directory read & random file read performance was measured

using the UNIX find and fgrep commands. ASCII & binary sequential file read

performance was measured using the UNIX cat command. Figure 6-6 presents the

results for these experiments. Overall, RFS outperforms NFS over slower networks.

With an empty cache, RFS has a higher latency for sequential directory reads,

however, with a hot cache, relative performance of sequential directory reads is com-

parable or significantly better (e.g., RFS execution time over cellular networks is 2.3%

of NFS execution time). The reason for better NFS performance is the overheads as-

sociated with: the user-level RFS and Rover implementations, QRPC, and QRPC

over TCP. In contrast, the NFS client resides entirely in the kernel and uses UDP.

When file data is included (sequential directory read & random file read), RFS

performance over slower networks is significantly better than NFS performance (e.g.,

RFS cold cache execution time over cellular networks is less than half of NFS execution

time). RFS performs better over slower networks due to its automatic header and data

compression. On faster networks, the overhead associated compression is greater than

the latency of sending uncompressed data.

124

m Rover Irolo speedup
c3 Rover Exmh sneedup

1 UU -

a 80-

60-

40-

20-

S0-
I

~1!,1TA 1.. 13 IQ CThT ~ A rnTN 10 9 Wirp'd 0 6~ CehIhr
- nernet WaV Lae AiN I1 f IQ XT I, a. ,) ,i, Q...........

Figure 6-7: Speedup (or slowdown) of Rover mobile-adaptive versions of applications

over the original X11-based applications when performing common tasks.

Rover's automatic compression offers significant performance benefits for cold

cache ASCII file read performance, while Rover's use of TCP offers performance

gains for cold cache binary file read performance. NFS's kernel-based implementation

offers slightly better warm cache performance than RFS. For example, the worst RFS

performance is for a warm cache 1 megabyte ASCII file read over Ethernet: 0.04 for

NFS versus 0.96 milliseconds for RFS.

Overall, the positive results can be explained by Rover's automatic data com-

pression and the caching policies employed by Rover and RFS. Both techniques are

designed for the high-latency, low-bandwidth communication found in mobile environ-

ments. As mentioned earlier, the negative results are due to the overheads associated

with: the user-level RFS and Rover implementations, QRPC, and QRPC over TCP.

The positive results are due to the RFS design and the design of the Rover toolkit.

Both the positive and the negative results are partly the consequences of design de-

cisions that favored ease of development and portability over performance.

6.6 Mobile-Adaptive Application Performance

This section presents the performance benefits of caching RDOs and a comparison

between mobile-transparent applications and mobile-adaptive applications running

on both high-bandwidth, low-latency and low-bandwidth, high-latency networks.

125

. rL-hI

L_ I

To measure the performance benefits of the complete Rover system for mobile-

adaptive applications, the performance of Rover Exmh, and Rover Irolo was compared

against their unmodified X11-based counterparts, Exmh, and Irolo. For each appli-

cation, a workload representative of a typical user's actions was performed and the

time to complete the task was measured. The tasks were: reading eight MIME E-mail

messages and browsing fifty rolodex entries.

To keep the measurements representative, the times did not include the cost of

starting the application and loading the data required for the task. Excluding these

times is acceptable because the system is typically used in this manner: the application

is started and the data are loaded over a fast network and then the application is used

repeatedly over a slow network (or without any network connectivity). Each task was

repeated on each of the six network options.

For the X11-based applications, the SSH (Secure Shell) Remote Login Program,

ssh [88] program was used to forward X11 connections over each of the network

options. Ssh provides applications with authenticated, encrypted, and compressed

network connections. The experiments used a compression level equivalent to GNU's

gzip at level 6 compression. Without compression, the applications are nearly unusable

over the slower networks.

Figure 6-7 presents the percent of speedup of the Rover version of each application

over the original X11-based application (Xl-Rover x 100). For the fastest network,

Ethernet, Rover performance is comparable or better than the original application.

For all of the other networks, Rover application performance is consistently better

(ranging from a 16% performance gain on WaveLAN to an 82% performance gain on

cellular dial-up). These results are especially encouraging, since they represent the

target environment for Rover.

When no network is present, it is not possible to use the original X11-based

applications. The Rover applications, however, show no change in performance as

long as the application data are locally cached.

The amount of data sent and received by the Rover versions of the applications is

significantly less than the amount sent by the original X11-based applications.

126

Storage Volatile Tracing Stable logging
media only Async. Sync.

None 0.038 0.040

Disk - - 0.099 10

Table 6.6: Approximate times in milliseconds to execute each iteration of the example

counter code in Figure 4-2 at the server.

* Irolo sent 113 KBytes and received 133 KBytes versus Rover Irolo, which sent

20.6 KBytes (5.49:1) and received 16.7 KBytes (7.96:1).

* Exmh sent 517 KBytes and received 247 KBytes versus Rover Exmh, which

sent 35.8 KBytes (14.4:1) and received 7.95 KBytes (31.1:1).

What the numbers fail convey is the extreme sluggishness of the user interface

when using slower (e.g., cellular) links without Rover. Scrolling and refreshing op-

erations are extremely slow. Pressing buttons and selecting text are very difficult

operations to perform because of the lag between mouse clicks and display updates.

With Rover, the user sees the same excellent GUI performance across a range of

networks that varies by nearly three orders of magnitude in both bandwidth and

latency.

6.7 Fault-Tolerant Applications

Low-level and system level experiments were performed to provide a better under-

standing of the costs of using the language extensions for server-side reliable execution.

The low-level experiments measured the individual costs for using stable variables.

The system-level experiments used a reliable proxy (the server portion of the Rover

Web Browser Proxy) and a reliable application (the file search application from Sec-

tion 5.3.6) to measure the effects of the reliable execution extensions on end-to-end

application performance. Implementation details for the application and proxy can

be found in Section 5.3.3.

127

6.7.1 Stable Variables

The cost of using stable variables has two components: the Tcl write tracing overhead

and the stable logging of changes. These costs were measured using the simple counter

code, from Figure 4-2, at the server and used a disk for stable logging. While the code

does not reflect the likely behavior of most applications, it provides a baseline for

the overhead associated with using stable variables. The results are summarized in

Table 6.6.

At the server, the extra cost to trace a write to a Tcl variable is negligible. Adding

stable variable logging with asynchronous log buffer flushing doubles the cost versus

a volatile variable. Using synchronous logging to a disk, the cost per iteration is two

orders of magnitude higher than when a volatile variable is used.

The substantial execution time difference between volatile variables and syn-

chronously logged stable variables suggests that there should be a clear distinction

between stable and volatile variables. By distinguishing between stable and volatile

variables, only those applications that choose to provide added reliability will incur

the associated added logging costs. Performance of non-fault-tolerant applications will

be unaffected.

Applications should also be allowed to choose between synchronous and asyn-

chronous log flushing so that they have control over the reliability/performance trade-

off.

6.7.2 Rover Web Browser proxy

The proxy experiments measured the time to fetch the Rover project home page and

its inlined images, http://www.rover.lcs.mit.edu/ . To help reduce the variability of

the results, the experiments used copies of the home page stored on a private httpd

server. The page consists 62.5 KBytes in three elements: two pictures (54 KBytes)

and the HTML text (8.5 KBytes). The size of all the objects with Rover compression

is 55.4 KBytes.

The proxy experiment measured the performance of the server portion of the proxy

128

Stable None Volatile Stable logging
storage only Async. Sync.

None 600±50 610±80 -
Disk - 600±50 600±60

Table 6.7: Time in milliseconds (with 90% confidence intervals) to execute the server
portion of the Rover Web Browser proxy while fetching the Rover project home page
and its two inlined images.

- the time from when the Rover server dispatched the proxy module to when the

module returned. The times include the transport and processing overheads of the

local httpd server and some of the transport overhead of sending the data back to

the client.

The results presented in Table 6.7 show the execution times when the proxy was

implemented without hash tables, with volatile hash tables, and with logged stable

hash tables with asynchronously and synchronously flushed buffers. As can be seen

from the table, the performance is almost identical in all cases. Other costs (httpd

server overhead and transport cost) and their variability are dominating the server

execution times. Overall, the results show that the cost of stable hash tables is an

acceptably small component of the execution time of the proxy.

What Table 6.7 does not show is the primary benefit to the proxy of using a

stable hash table. After a server failure, the stable hash table allows the server to

avoid sending duplicate objects to clients, conserving potentially expensive and/or

limited bandwidth.

6.7.3 Text file search

The file search application was used to scan 1.9 MBytes in 328 files in 3 directories

both without faults and with a single fault injected after 75% of the files were searched.

The server-side execution times are presented in Table 6.8. The corresponding model

for the execution times is presented in Figure 6-8.

The average time to search a file when stable variables are not used, tfileWork, is

129

Failures Volatile Tracing Stable logging
only Async. Sync.

None 10.1±0.057 10.1±0.053 10.2±0.050 14.9±0.046
Single (75%) 19.4±0.048 11.7±0.050 15.1±0.038

Table 6.8: Times in seconds to execute the server-side portion of the file search ap-
plication. For the single failure case, the fault was injected after 75% of the files were
searched.

tfileSearcli tfileWork + ttraceOver + tlogOver

tSearch - tfileSearch X rSearchedFiles + rTFailures X (tfileSearch X 0.5 + trecover)

trecover = tforkExec + treadLog

Figure 6-8: Time to complete the server-side portion of the text search application.

30.9 milliseconds (6,180,000 cycles).

When variable writes are traced, 350 writes are traced. The per-write tracing time,

ttraceOver, from Table 6.6 is 0.040 milliseconds (8,000 cycles), yielding a total tracing

overhead of 14 milliseconds. As the results show, tracing has a negligible effect on

performance.

When stable variables are used, the 350 writes log an average of 250 bytes (a total

of 81,275 bytes) at a per-write logging cost, tlogOver, of 0.12 milliseconds (24,000 cycles)

using asynchronous logging or 14.7 milliseconds (2,940,000 cycles) using synchronous

logging. In the failure-free cases, the performance using logged stable variables with

asynchronously flushed buffers is nearly identical to the performance using volatile

variables. Synchronous logging is two orders of magnitude slower than asynchronous

logging; thus, synchronous logging yields a significant performance slowdown.

After a failure, the parent server forks and executes a new child server. This action,

t forkExec, takes 0.72 milliseconds (144,000 cycles). When stable variables are not used,

the number of searched files, nSearchedFiles, is incremented by the number of files and

the times for treadLog, ttraceOver, and tlogover are 0. The time to read the stable QRPC

log is 12.6 ± 0.26 milliseconds (2,520,000 ± 2,472,000 cycles).

130

Failures Volatile Stable logging
Async. Sync.

Actual Model Actual Model Actual Model

None 10.1 10.1 10.2 10.2 14.9 15.0
Single (75%) 19.4 17.8 11.7 11.2 15.1 15.2

Table 6.9: Actual and model times in seconds to execute the server-side portion of
the file search application.

When stable variables are used, nSearchedFiles, is constant (equal to the number

of files) regardless of the number of failures. A failure causes the loss of an aver-

age of half of one file's work. The time to restore the application's stable variables

from the log is dependent upon on the type of logging. The time to read the stable

QRPC log and restore the stable variables is: for asynchronous logging 1,003 ± 31

milliseconds (200,600,000 ± 6200000 cycles); for synchronous logging, 201 ± 13 mil-

liseconds (40,200,000 ± 2,600,000 cycles). The asynchronous time is greater because

the log read operations are blocked in the operating system by the pending log write

operations.

Table 6.9 presents a comparison between the model's results and the actual results

from experiments. All of the model results are within a few percent of the experimental

results with the exception of the volatile, single failure case. In the volatile, single

failure case, the difference is 8.3%. The reason for the difference is that the model

assumes that an equal amount of work is done per file. In actuality, more work is done

per file before 75% of the files have been searched than afterwards. The model predicts

that the application spends 7,600 milliseconds searching 75% of the files, while the

actual amount of work done is 8,000. Compensating for this difference yields a time

of 18.2 milliseconds and a difference of 6.3% (comparable to the differences for other

results).

Asynchronously logged stable variables perform as well as volatile variables; thus,

in the presence of failures, stable variable application performance will be better than

volatile application performance. For example, in the above experiment, when a single

fault is introduced after 75% of the files have been searched, the execution time of

131

Amount of Logging Asynchronous Synchronous
Logging Logging

Normal (250 bytes) 10.1±0.057 14.9±0.046
2x logging (500 bytes) 10.2±0.057 15.2±0.049
4x logging (1,000 bytes) 10.3±0.057 15.6±0.064

Table 6.10: The effects of doubling and quadrupling the amount of data logged by
the text search application.

the volatile variable version of the application is nearly doubled. The asynchronously

logged version of the application shows only a 14.7% degradation in performance.

Synchronously logged stable variables offer lower failure free performance (e.g.,

in the above experiment, the synchronously logged version shows only a 1.3% degra-

dation in performance). Thus, in the presence of failures, there is a crossover point

where synchronously logged stable variables perform better than the volatile applica-

tion. Combining the models for synchronously logged variables and volatile variables

and solving for the crossover point yields a crossover point of a failure after 50% of

the files have been searched (163 files).

Using stable variables allows an application developer to construct a simple, ac-

curate model of an application's performance. The developer can use the model to

decide whether or not stable variables are needed for an application.

To explore the effects of the amount of data logged on performance, the server

was modified to log writes multiple times. Table 6.10 shows the effects on the ex-

ecution time of the search application as a function of the number of times each

write was logged. The results show that when asynchronous logging is used, the ef-

fect of the amount of data written has a minimal effect on performance (less than

a 2% performance degradation when four times as much data is logged). The effect

on synchronous logging is more significant than for asynchronous logging, but is still

minimal (less than 5% performance degradation when four times as much data is

logged).

The text search application demonstrates that stable variables are a simple, effi-

cient mechanism for providing applications with reliable storage. Using asynchronous

132

logging yields performance equal to volatile applications and protects applications

against their own and server failures, but not against operating system or hardware

failures. Synchronous logging can be used for a greater degree of protection against

faults with a somewhat higher performance penalty.

6.8 Discussion

The experimental results presented in this section confirm the hypotheses listed at

the beginning of this chapter.

The low-level benchmarks show that the batching and compression of multi-

ple requests yields significant performance benefits for slower networks - increased

throughput and reduced average latency. In addition, stable variables are easy to use,

offer significant performance gains in the presence of failures, and, with asynchronous

logging, yield performance comparable to that for volatile applications.

The system-level experiments show that unmodified mobile transparent appli-

cations gain usability and performance benefits from the Rover toolkit. For mobile-

adaptive applications, the usability and performance gains are more substantial. Rover

allows users to see the same excellent GUI performance across a range of networks

that varies by nearly three orders of magnitude in both bandwidth and latency.

Finally, stable variables provide a simple, efficient mechanism for building reliable

applications that perform as well as volatile applications.

133

Chapter 7

Future Work and Conclusion

This thesis has shown that the integration of relocatable dynamic objects and queued

remote procedure calls in the Rover toolkit provides a powerful basis for building

mobile-transparent and mobile-adaptive applications. It is quite easy to adapt appli-

cations to use these Rover facilities, resulting in applications that are far less depen-

dent on high-performance communication connectivity.

7.1 Future Work

This thesis proposes a general-purpose architecture for building applications for mo-

bile environments. The ideas in the thesis are made concrete through the reference

implementation, the Rover toolkit.

Some of the interesting areas for additional and future research are:

1. More powerful mobile code security. There already are several active research

efforts ongoing in this area.

* Safely execution of mobile code from insecure clients, servers, and environ-

ments.

* Authenticating clients to servers, servers to clients, and users to servers.

* Providing access control mechanisms for server-side databases.

134

2. Additional request batching techniques. Using application-specified batching

commands as informational suggestions or overrides for the existing batching

heuristic.

3. Client-side application failure recovery. Providing mechanisms for preserving

the state of and automating the recovery of client-side applications.

4. Cache management tools and policies. Providing tools to help users manage

client-side caches.

5. More complete reference implementation. Providing a reference implementation

that implements the features and functionality that are not implemented in the

current reference implementation (as discussed in Section 4.1).

7.2 Conclusion

The results of this thesis can he summarized as follows:

1. QRPC provides a mechanism that works well in intermittently connected envi-

ronments. QRPC's reliable delivery transport frees application developers from

worrying about communication failures. QRPC performance is acceptable even

if every RPC is stored in stable logs at clients and servers before being processed.

For lower-bandwidth networks, the overhead of using stable logs is dwarfed by

the underlying communication costs.

2. Using a queued communication model enables QRPCs to be scheduled, batched,

and compressed for more efficient use of communication channels and increased

network performance. Using batching and compression minimizes the number

of roundtrip messages and network connections used by QRPCs, reduces the

average latency for a request, and minimizes the total amount of data sent over

communication channels.

3. Using RDOs allows mobile-adaptive applications to migrate functionality dy-

namically to either side of a slow network connection minimizing the amount of

135

data transiting the network. Caching RDOs reduces latency and bandwidth con-

sumption. Interface functionality can run at full speed on a mobile host, while

large data manipulations may be performed on the well-connected server. RDOs

also allow computation migration decision based based upon available computa-

tion resources. Computation can be offloaded from a temporarily computation-

ally underpowered client or a temporarily overloaded server. Thus, computation

migration aids in making Rover scalable to large numbers of clients.

4. Together, RDOs and QRPCs allow application developers to decouple many

user-observable delays from network latencies. The result is excellent graphical

user interface performance over network technologies that vary by three orders

of magnitude in bandwidth and latency.

5. Experimental results demonstrate these Rover's fault-tolerance features impose

low overhead. The low overhead is especially true in the low-bandwidth, high-

latency environment typical of mobile clients.

6. The toolkit also helps application developers protect long-running applications

- the applications that are the most likely to be affected by transient software

and hardware faults. The fault-tolerant features described in this thesis provide

a powerful, but easy to use, tool for building mobile-adaptive applications that

are reliable in the presence of such faults.

7. The language extensions for stable variables provide a natural and simple way

for programmers to maintain stable state, dramatically reducing the recovery

time after a failure. The changes necessary to add fault-tolerant support to an

application are usually minimal. However, the potential high cost associated

with using stable variables means that their use should be determined by the

application programmer and not by the system. Furthermore, giving application

programmers control over the use of stable or volatile variables and synchronous

or asynchronous log buffer flushing, allows them to make the appropriate relia-

bility/performance tradeoffs.

136

Overall, the Rover toolkit allows application developers to rapidly build appli-

cations and proxies that yield good application performance. Measurements of end-

to-end mobile application performance shows that mobile-transparent and mobile-

adaptive applications perform significantly better than their stationary counterparts.

For example, Rover offers a 12% performance improvement for the mobile-transparent

Netscape application. Mobile-adaptive applications show performance improvements

of up to a factor of 5.5 over slow networks.

Developing applications for the mobile environment is a complicated process. The

volatility of the environment makes achieving correct operation difficult. The Rover

toolkit simplifies the development process and helps ensure application correctness

by providing developers with the tools that they need.

137

Bibliography

[1] Adobe Systems. Programming the Display PostScript System with X. Addison-

Wesley Pub. Co., Reading, Massachusetts, 1993.

[2] M. Ahamad, P. Dasgupta, and R.J. Leblanc. Fault-tolerant atomic computations

in an object-based distributed system. Distributed Computing, 4:69-80, 1990.

[3] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley

Publishing Co., Reading, Massachusetts, 1996.

[4] A. Avizienis. Software fault tolerance. In Proc. 1989 IFIP World Computer

Conference, pages 491-497, Geneva, 1989. IFIP Press.

[5] M.G. Baker. Changing communication environments in MosquitoNet. In Proc.

of the Workshop on Mobile Computing Systems and Applications, pages 64-68,

Santa Cruz, California, December 1994.

[6] J. Bartlett. W4-the Wireless World-Wide Web. In Proc. of the Workshop

on Mobile Computing Systems and Applications, pages 176-178, Santa Cruz,

California, December 1994.

[7] K. Birman and T. Joseph. Reliable communication in the presence of failures.

ACM Transactions on Computer Systems, 5(1):47-76, February 1987.

[8] A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. ACM Trans-

actions on Computer Systems, 2(1):39-59, February 1984.

138

[9] N. S. Borenstein. EMail with a mind of its own: The Safe-Tcl language for

enabled mail. In IFIP Transactions C, pages 389-415, Barcelona, Spain, June

1994.

[10] M. H. Brown and R. A. Schillner. DeckScape: An experimental web browser.

Technical Report 135a, Digital Equipment Corporation Systems Research Cen-

ter, March 1995.

[11] Henry Chang, Carl Tait, Norman Cohen, Moshe Shapiro, Steve Mastrianni, Rick

Floyd, Barron Housel, and David Lindquist. Web browsing in a wireless envi-

ronment: Disconnected and asynchronous operation in ARTour Web Express.

In Proc. of the Third Annual ACM/IEEE International Conference on Mobile

Computing and Networking, Budapest, Hungary, September 1997.

[12] Oracle Corporation. Oracle mobile agents: Technical product summary, August

1995.

[13] Constantine Cristakos. The Rover NNTP proxy. Advanced Undergraduate

Project, Massachusetts Institute of Technology, June 1996.

[14] D. H. Crocker. Standard for the Format of ARPA Internet Text Messages. In-

ternet RFC 822, August 1982.

[15] N. Davies, G. Blair, K. Cheverst, and A. Friday. Supporting adaptive services

in a heterogeneous mobile environment. In Proc. of the Workshop on Mobile

Computing Systems and Applications, Santa Cruz, California, December 1994.

[16] A. F. deLespinasse. Rover Mosaic: E-mail communication for a full-function web

browser. Master's thesis, Massachusetts Institute of Technology, June 1995.

[17] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The

Bayou architecture: Support for data sharing among mobile users. In Proc. of

the Workshop on Mobile Computing Systems and Applications, pages 2-7, Santa

Cruz, California, December 1994.

139

[18] L. Peter Deutsch. DEFLATE Compressed Data Format Specification version 1.3.

Internet RFC 1951, May 1996.

[19] L. Peter Deutsch. GZIP File Format Specification version 4.3. Internet RFC

1952, May 1996.

[20] L. Peter Deutsch and Jean-Loup Gailly. ZLIB Compressed Data Format Speci-

fication version 3.3. Internet RFC 1950, May 1996.

[21] F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J. A. Tauber. Storage

alternatives for mobile computers. In First Symposium on Operating Systems

Design and Implementation, pages 25-37, Monterey, California, November 1994.

[22] F. Douglis and J. Ousterhout. Process migration in the Sprite operating system.

In Proc. of the 7th International Conference on Distributed Computing Systems,

pages 18-25, Berlin, West Germany, September 1987.

[23] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and T. Berners-Lee. HyperText

Transfer Protocol - HTTP/1.1. IETF HTTP Working Group Draft 08, July

1997.

[24] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to network and client

variability via on-demand dynamic distillation. In Proc. of the Seventh Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 160-173, Cambridge, Massachusetts, October 1996.

[25] D. K. Gifford and J. E. Donahue. Coordinating independent atomic actions. In

Proc. of the Spring COMPCON Conference, pages 92-92, San Francisco, Cali-

fornia, February 1985.

[26] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The Cedar file system.

Communications of the ACM, 31(3):288-298, March 1988.

[27] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangers of replication and a

solution. In Proc. of the 1996 SIGMOD Conference, Montreal, Quebec, Canada,

June 1996.

140

[28] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan-Kaufmann Publishers, Inc., San Mateo, California, 1993.

[29] J. Gray and D. Siewiorek. High-availability computer systems. IEEE Computer,

24(9):39-48, 1991.

[30] R. Gruber, M. F. Kaashoek, B. Liskov, and L. Shira. Disconnected operation

in the Thor object-oriented database system. In Proc. of the Workshop on Mo-

bile Computing Systems and Applications, pages 51-56, Santa Cruz, California,

December 1994.

[31] P. Honeyman, L. Huston, J. Rees, and D. Bachmann. The LITTLE WORK

project. In Proc. of the 3rd Workshop on Workstations Operating Systems, Key

Biscayne, FL, April 1992.

[32] H. Houh, C. Lindblad, and D. Wetherall. Active pages. In Proc. of the First

International World- Wide Web Conference, pages 265-270, Geneva, May 1994.

[33] L. Huston and P. Honeyman. Partially connected operation. In Proc. of the Sec-

ond USENIX Symposium on Mobile & Location-Independent Computing, pages

91-97, Ann Arbor, MI, April 1995.

[34] L. B. Huston and P. Honeyman. Disconnected operation for AFS. In Proc. of the

First USENIX Symposium on Mobile & Location-Independent Computing, pages

1-10, Cambridge, Massachusetts, August 1993.

[35] Information Sciences Institute. Transmission Control Protocol: DARPA Internet

Program Protocol Specification. Internet RFC 793, September 1981.

[36] V. Jacobson. Compressing TCP/IP Headers for Low-Speed Serial Links. Internet

RFC 1144, February 1990.

[37] D. Johansen, R. van Renesse, and F. B. Schneider. Operating system support for

mobile agents. In Proc. of the 5th IEEE Workshop on Hot Topics in Operating

Systems, Orcas Island, Washington, May 1995.

141

[38] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K. Gifford, and M. F.

Kaashoek. Rover: A toolkit for mobile information access. In Proc. of the

Fifteenth Symposium on Operating Systems Principles (SOSP), pages 156-171,

Copper Mountain Resort, Colorado, December 1995.

[39] A. D. Joseph and M. F. Kaashoek. Building reliable mobile-aware applications

using the Rover toolkit. In Proc. of the Second International Conference on

Mobile Computing and Networking (MOBICOM '96), pages 117-129, Rye, NY,

November 1996.

[40] A. D. Joseph and M. F. Kaashoek. Building reliable mobile-aware applications

using the Rover toolkit. Wireless Networks, 1997. To appear.

[41] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile computing with the

Rover toolkit. IEEE Transactions on Computers, 46(3):337-352, March 1997.

[42] F. Kaashoek, T. Pinckney, and J. A. Tauber. Dynamic documents: Mobile wire-

less access to the WWW. In Proc. of the Workshop on Mobile Computing Systems

and Applications, pages 179-184, Santa Cruz, California, December 1994.

[43] R. H. Katz. Adaptation and mobility in wireless information systems. IEEE

Personal Communications, 1:6-17, 1994.

[44] R. Katz et. al.. The Bay Area Research Wireless Access Network (BARWAN).

In Proc. of the Spring COMPCON Conference, February 1996.

[45] L. Kawell Jr., S. Beckhardt, T. Halvorsen, R. Ozzie, and I. Greif. Replicated

document management in a group communication system. Presented at the

Second Conference on Computer-Supported Cooperative Work, Portland, OR,

September 1988.

[46] J. J. Kistler. Disconnected Operation in a Distributed File System. PhD thesis,

School of Computer Science, Carnegie Mellon University, May 1993.

142

[47] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file

system. ACM Transactions on Computer Systems, 10:3-25, February 1992.

[48] P. Kumar. Mitigating the Effects of Optimistic Replication in a Distributed File

System. PhD thesis, School of Computer Science, Carnegie Mellon University,

December 1994.

[49] H. T. Kung and J. T. Robinson. On Optimistic Methods for Concurrency Con-

trol. ACM Transactions on Database Systems, 6(2):213-226, June 1981.

[50] J. Landay. User interface issues in mobile computing. In Proc. of the Fourth

Workshop on Workstation Operating Systems (WWOS-IV), pages 40-47, Octo-

ber 1993.

[51] M.T. Le, F. Burghardt, S. Seshan, and J. Rabaey. InfoNet: the networking

infrastructure of InfoPad. In Proc. of the Spring COMPCON Conference, pages

163-168, 1995.

[52] A. K. Lenstra and M. S. Manasse. Factoring by electronic mail. In Advances in

Cryptology - Eurocrypt '89, pages 355-371, Berlin, 1989. Springer-Verlag.

[53] B. Liskov, D. Curtis, P. Johnson, and R. Scheifier. Implementation of Argus.

In Proc. of the Eleventh Symposium on Operating Systems Principles (SOSP),

Austin, Texas, December 1987.

[54] B. Liskov, M. Day, and L. Shrira. Distributed object management in Thor. In

M. Tamer Ozsu, Umesh Dayal, and Patrick Valduriez, editors, Distributed Object

Management. Morgan-Kaufmann Publishers, Inc., San Mateo, California, 1993.

[55] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous

procedure calls. In Proc. of the SIGPLAN Conference on Programming Language

Design and Implementation, pages 260-267, Atlanta, GA, June 1988.

[56] J.C. Mallery. A Common LISP hypermedia server. In Proc. of the First Inter-

national World- Wide Web Conference, pages 239-247, Geneva, May 1994.

143

[57] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachender Krishna-

murthy. Potential benefits of delta encoding and data compression for HTTP.

In Proc. of the 1997 SIGCOMM Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communication, pages 181-196, Palais

des Festivals, Canne, France, September 1997.

[58] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan. Exploiting weak connec-

tivity for mobile file access. In Proc. of the Fifteenth Symposium on Operating

Systems Principles (SOSP), pages 143-155, Copper Mountain Resort, Colorado,

December 1995.

[59] S. Narayanaswamy, et. al.. Application and network support for InfoPad. IEEE

Personal Communications, 3(2):4-17, April 1996.

[60] National Center for Supercomputing Applications. Common Gateway Interface.

University of Illinois in Urbana-Champaign, 1995.

[61] National Center for Supercomputing Applications. Mosaic. University of Illinois

in Urbana-Champaign, 1995.

[62] Netscape Communications Corporation. Netscape Navigator. Mountain View,

California, 1995.

[63] Henrik F. Nielson, James Gettys, Anselm Baird-Smith, Eric Prud'hommeaux,

Hakon Wium Lie, and Chris Lilley. Network performance effects of HTTP/1.1,

CSS1, and PNG. In Proc. of the 1997 SIGCOMM Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication, pages

155-166, Palais des Festivals, Canne, France, September 1997.

[64] B. D. Noble, M. Price, and M. Satyanarayanan. A programming interface

for application-aware adaptation in mobile computing. In Proc. of the Second

USENIX Symposium on Mobile & Location-Independent Computing, Ann Arbor,

MI, April 1995.

144

[65] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton,

Jason Flinn, , and Kevin R. Walker. Agile application-aware adaptation for

mobility. In Proc. of the Sixteenth Symposium on Operating Systems Principles

(SOSP), Saint Malo, France, October 1997.

[66] J.K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, Mas-

sachusetts, 1994.

[67] M. L. Powell and B. P. Miller. Process migration in DEMOS/MP. In Proc. of

the Ninth Symposium on Operating Systems Principles (SOSP), pages 110-119,

October 1983.

[68] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. J. Popek. Resolving

file conflicts in the Ficus file system. In Proc. of the USENIX Summer 1994

Technical Conference, pages 183-195, Boston, Massachusetts, 1994.

[69] D. Riecken, editor. Intelligent Agents. Communications of the ACM, 37(7), 1994.

[70] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2(4):277-28, November 1984.

[71] M. Satyanarayanan, J. J. Kistler, L. B. Mummert, M. R. Ebling, P. Kumar, and

Q. Lu. Experience with disconnected operation in a mobile environment. In Proc.

of the First USENIX Symposium on Mobile & Location-Independent Computing,

pages 11-28, Cambridge, Massachusetts, August 1993.

[72] J. M. Smith. A survey of process migration mechanisms. Operating Systems

Review, 22(3):28-40, July 1988.

[73] Sun Microsystems Corporation. Remote Method Invocation for Java. http://-

chatsubo.javasoft.com/current/rmi/index.html, July 1996.

[74] J. A. Tauber. Issues in building mobile-aware applications with the Rover toolkit.

Master's thesis, Massachusetts Institute of Technology, June 1996.

145

[75] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and

B. B. Welch. Session guarantees for weakly consistent replicated data. In Proc.

of the 1994 Symposium on Parallel and Distributed Information Systems, pages

140-149, September 1994.

[76] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and

B. B. Welch. Session guarantees for weakly consistent replicated data. Technical

Report CSL-94-9, Xerox Palo Alto Research Center, July 1994.

[77] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and

C. H. Hauser. Managing update conflicts in a weakly connected replicated storage

system. In Proc. of the Fifteenth Symposium on Operating Systems Principles

(SOSP), pages 172-183, Copper Mountain Resort, Colorado, December 1995.

[78] M. Theimer, A. Demers, K. Petersen, M. Spreitzer, D. Terry, and B. Welch.

Dealing with tentative data values in disconnected work groups. In Proc. of the

Workshop on Mobile Computing Systems and Applications, pages 192-195, Santa

Cruz, California, December 1994.

[79] M. Theimer, K. Lantz, and D. Cheriton. Preemptable remote execution facili-

ties for the V-System. In Proc. of the Tenth Symposium on Operating Systems

Principles (SOSP), pages 2-12, Orcas Island, Washington, December 1985.

[80] R. Van Renesse, T. Hickey, and K. Birman. Design and performance of Horus:

A lightweight group communications system. Technical Report TR 94-1442,

Department of Computer Science, Cornell University, Ithica, New York, August

1994.

[81] J. Vittal. Active message processing: Messages as messengers. In Proc. of IFIP

TC-6 International Symposium on Computer Message Systems, pages 175-195,

Ottawa, Canada, April 1981.

146

[82] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS distributed

operating system. In Proc. of the Ninth Symposium on Operating Systems Prin-

ciples (SOSP), pages 49-70, Bretton Woods, NH, 1983.

[83] Dan S. Wallach, Dirk Balfanz, Drew Dean, , and Edward W. Felten. Extensible

security architecture for Java. In Proc. of the Sixteenth Symposium on Operating

Systems Principles (SOSP), Saint Malo, France, October 1997.

[84] T. Watson. Application design for wireless computing. In Proc. of the Work-

shop on Mobile Computing Systems and Applications, pages 91-94, Santa Cruz,

California, December 1994.

[85] T. Watson and B. Bershad. Local area mobile computing on stock hardware

and mostly stock software. In Proc. of the First USENIX Symposium on Mobile

V Location-Independent Computing, pages 109-116, Cambridge, Massachusetts,

August 1993.

[86] W. Weihl and B. Liskov. Implementation of resilient, atomic data types. ACM

Transactions on Programming Languages and Systems, 7(2):244-269, April 1985.

[87] J. E. White. Telescript technology: The foundation for the electronic market-

place, 1994.

[88] Tatu Y1lnen. SSH (Secure Shell) Remote Login Program, 1997. http://-

www.cs.hut.fi/ssh.

147

