
Transport in Lagrangian-Unsteady Flows:

Dispersion in Diverging or Converging Ducts, and

Transport Rate Enhancement Accompanying

Laminar Chaos

by

Michelle D. Bryden

B.S., University of California, Davis (1992)
S.M., Massachusetts Institute of Technology (1994)

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering

at the APR 28 1997

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LE`, R-,:ts

February 1997

@ Massachusetts Institute of Technology 1997. All rights reserved.

Author ......................... ....
/Department of Chemical Engineering

Dec. 18, 1996

C ertified by .........................
Professor Howard Brenner

Willard H. Dow Professor of Chemical Engineering
Thesis Supervisor

Accepted by ..............................................
Professor Robert Cohen

St. Laurent Professor of Chemical Engineering
Chairman, Departmental Committee on Graduate Students



Transport in Lagrangian-Unsteady Flows:

Dispersion in Diverging or Converging Ducts, and

Transport Rate Enhancement Accompanying

Laminar Chaos

by

Michelle D. Bryden

Submitted to the Department of Chemical Engineering
on Dec. 18, 1996, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Chemical Engineering

Abstract

This thesis concerns transport phenomena in laminar, Lagrangian unsteady flow
fields. First, a multiple-timescale technique is used to analyze convective disper-
sion in diverging or converging ducts. A long-time, asymptotic equation governing
the cross-sectionally averaged solute probability density is derived and its coefficients
computed from the exact, microscale transport problem. The form of this equation
and its limits of applicability are shown to be dependent upon the number of spatial
dimensions characterizing the duct. Additionally, the techniques developed for the
case of rectilinear channel and duct boundaries are extended to incorporate curvilin-
ear boundaries, and an illustrative calculation performed for the case of axisymmetric
flow in a flared Venturi tube.

Secondly, generalized Taylor dispersion theory is used to study transport in chaotic
laminar flows. Transport of a solute is considered for the case of laminar axial
'Poiseuille' flow in the annular region between two nonconcentric cylinders, accom-
panied by a laminar chaotic transverse flow induced via alternate rotation of the
cylinders. A Brownian tracer introduced into the flow is allowed to undergo an in-
stantaneous, irreversible reaction on the surface of the outer cylinder. The resulting
effective, transversely- and time-averaged reaction rate, axial solute velocity, and ax-
ial convective dispersivity are computed and their values compared to those in the
presence of comparable non-chaotic transverse flows. The presence of chaotic flow
significantly increases the effective reaction rate, decreases the axial dispersivity, and
causes the mean solute/solvent velocity ratio to approach the perfectly-mixed value
of 1.0.

The Stokes flow occurring within a non-neutrally buoyant spherical droplet sus-



pended in an immiscible liquid which is undergoing simple shear is shown to be chaotic
under many circumstances wherein the droplet translates by buoyancy through the
entraining fluid. When solute initially dissolved within the droplet is extracted into
the bulk fluid, the resulting extraction rate is significantly higher in the chaotic flow
case.

Both chaotic flows studied reveal that commonly used qualitative measures of
mixing effectiveness, such as Poincard maps, do not always correctly indicate trends
in the transport rate. Explicitly, the degree of enhancement does not strictly correlate
with the qualitative degree of 'chaosity' shown in the map.

Thesis Supervisor: Professor Howard Brenner
Title: Willard H. Dow Professor of Chemical Engineering
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Chapter 1

Introduction

This thesis concerns material (or equivalently heat) transport phenomena in complex

flow fields, explicitly those that are Lagrangian unsteady due to either temporal

variations or spatial variations in the direction of flow. In particular, the theory of

generalized Taylor dispersion, or macrotransport processes, is further developed and

utilized to analyze global reaction and dispersion processes occurring in two broad

classes of flows: (i) those net unidirectional flows whose mean velocity varies along

the direction of net flow; and (ii) laminar chaotic flows.

Macrotransport theory allows multi-dimensional microscale transport problems to

be reduced to macroscopically equivalent one-dimensional problems in the direction

of the mean flow, characterized by macroscale phenomenological coefficients (such as

effective reaction-rate constant, solute velocity, and axial dispersivity) that can be

calculated from the exact, microscale transport equations and boundary conditions.

The prototypical example of a macrotransport analysis is G. I. Taylor's (1953) treat-

ment of the dispersion of a passive solute dissolved in a fluid undergoing Poiseuille

flow in a tube. Using clever intuitive approximations, Taylor demonstrated that the

cross-sectionally-averaged solute concentration evolves according to a one-dimensional

convective-dispersive type equation, in which the solute velocity is equal to the aver-

age velocity of the solvent, and the dispersion coefficient macroscopically quantifies



the axial spreading arising from the radial variations in the axial velocity profile. Aris

(1956) later formalized these results through use of the method of moments, in addi-

tion to incorporating the effect of axial (vs. transverse, or radial) molecular diffusion,

which Taylor had explicitly neglected.

Following these pioneering contributions, abundant research into so-called Taylor

(or Taylor-Aris) dispersion phenomena has appeared in the scientific and engineer-

ing literature (see Brenner & Edwards 1993). The method of moments and related

'projection' techniques have been used to study dispersion in a variety of situations,

including: (i) spatially-periodic flows, such as flow through model porous media; (ii)

time-periodic flows, which are common in physiological flows; and (iii) dispersion of

chemically reactive solutes. This thesis both: (i) expands upon the existing theory

to analyze flows which were previously not amenable to classical dispersion theory -

in particular flows in converging and diverging ducts; and (ii) applies existing macro-

transport theory to novel chaotic laminar flows of potential practical and academic

interest. Specifically, in the context of several examples, it is shown how existing

macrotransport theory can be used to calculate the enhancement of global transport

rates resulting from chaotic flows.

Chapter 2 of this thesis presents a multiple-timescale analysis of dispersion in

diverging and converging flows. Classical Taylor dispersion theory based on moment

methods is limited to those circumstances in which the mean velocity does not vary

in the direction of net flow; yet many flows of interest do not fulfill this criterion. For

example, flows in nature, such as occur in rivers and estuaries, rarely, if ever, maintain

a constant width over the course of their entire length. Rather, their cross-sections

expand (and occasionally contract) as they flow, leading to variations in the mean

velocity along the flow path. Similarly, plumes (and jets) expand as they travel away

from their origins. In industrial applications, the entrance and exit regions of reactors

and other vessels typically involve gradual expansions and contractions, in which the

mean velocity varies in the direction of flow.



Only a limited number of studies of dispersion phenomena in these types of flows

exist. Those prior theoretical analyses are limited to small angles of divergence and/or

(incorrectly) assume without theoretical justification that the macroscale equation

has the same elementary form as in the constant cross-section case (Gill & Giiceri

1971, Smith 1983, Mercer & Roberts 1990). Such converging-diverging problems are

unamenable to existing techniques, such as the method of moments or gradient ex-

pansions. In the present work, a multiple-timescale expansion is used to determine

the proper form of the governing macroscale equation, as well as to obtain values

for the coefficients appearing therein. It is shown that the form of the macrotrans-

port equation depends upon the dimensionality of the diverging or converging duct,

differing significantly for two- vs. three-dimensional flows. Appropriate limits of ap-

plicability governing these asymptotic, long-time macrotransport descriptions of the

mean solute transport process are established in terms of the physical parameters

quantifying the microscale transport process.

The remaining chapters of this thesis apply macrotransport theory to laminar

chaotic flows. A detailed review of the kinematics of chaotic flows is presented in

Chapter 3, so only a brief description is provided at this point. A flow is said to

be chaotic if its material particle trajectories display chaotic behavior; that is, if the

coupled, possibly non-linear, set of equations for the particle position x = x(xo, t)

(with xo the position vector at time t = 0),

dxdx= v(x, t), (1.0-1)
dt

possesses chaotic solutions (i.e. two initially proximate particles follow exponentially

diverging trajectories). Even a velocity field satisfying the linearized Navier-Stokes

equations can display chaotic behavior, since v is often nonlinear in x. Laminar flows

may possess a recirculation region, which when periodically perturbed in time or space

can create chaotic behavior. A much studied example is the journal-bearing flow, oc-



curring in the annular space between nonconcentrically positioned circular cylinders.

Each cylinder is rotated independently and time-periodically. For sufficiently large

eccentricities, the flow patterns resulting from the individual cylinder rotations con-

tain a recirculation region adjacent to the stationary cylinder. It is the temporal

perturbation of these two recirculation regions that results in chaotic motion.

It has been suggested that laminar chaotic flows would be useful in mixing ap-

plications, particularly for shear-sensitive solutes (for which turbulent mixing would

prove undesirable), as well as for highly viscous fluids (for which production of a

turbulent flow may be impractical). In fact, many existing mixer designs have been

shown to produce chaotic flows; cf. Khakhar, Franjione & Ottino (1987), wherein the

Kenics static mixer is shown to be equivalent to the chaotic partitioned-pipe mixer.

Following the pioneering work of Aref (1984), much effort has been devoted to the

study of chaotic flows (see Ottino 1990 for a review). However, the vast majority of

research into chaotic flows has focused on demonstrating that particular flows display

chaotic behavior, and on establishing which regions of the chaotic flow will be well

mixed. That research, most of which consists of purely computational kinematics,

has resulted mainly in visualizations of the regions exhibiting chaotic behavior and

in establishing other primarily qualitative descriptions of the extent of mixing. Much

less attention has been paid to quantifying the (presumably) enhanced rate of mixing,

or to determining the extent by which rates of transport processes are enhanced by

laminar chaotic flows.' In contrast, this thesis develops a universal method for glob-

ally quantifying the rate of chaotic transport, using ideas drawn from macrotransport

theory for reactive solutes. This method is then used to study several chaotic flows

and to illustrate the transport enhancement attained through the judicious selection

of the parameters governing these flows. In addition, the important effect of molecular

'Throughout this thesis, the term 'mixing' will be used to denote the process by which an initially
inhomogeneous fluid is rendered homogeneous, while the 'extent of mixing' is a measure of the degree
of homogeneity of the final product. 'Transport' includes all heat- or mass-transfer processes, and
is measured in terms of the amount of material or heat transferred per unit time.



diffusion, excluded from most prior work, is considered.

In Chapter 4, solute transport of within the chaotic flow existing in the annular

space between alternately-rotating eccentric cylinders (also known as the 'journal-

bearing flow') is considered. A first-order, instantaneous chemical reaction or solute

deposition process is prescribed on the surface of the outer cylinder. Superposed on

the two-dimensional chaotic transverse flow is an axial, pressure-driven 'Poiseuille'

flow. Using macrotransport theory (Brenner & Edwards 1993), the effective reac-

tion/deposition rate, mean axial solute velocity, and axial convective dispersivity are

determined. Each of these three macroscale parameters provides an independent

means for quantifying the degree of chaotic enhancement by comparing their respec-

tive relative values in the presence and absence of chaos.

The most direct and easily interpreted measure of the degree of chaotic enhance-

ment is provided by the effective reaction rate. Since the reaction at the outer wall

is assumed instantaneous, the overall reaction rate is determined exclusively by the

transport of solute to the wall. Thus, the effective reaction rate furnishes a direct

and simple measure of the transverse transport rate.

The effective axial solute velocity in the presence of the inhomogeneous reaction is

increased above the mean solvent velocity via the depletion of solute from the slowest

moving streamlines, existing near the reactive wall (cf. Shapiro & Brenner 1986).

In a transversely well-mixed flow, this disparity in velocities is lessened; indeed, in a

perfectly-mixed flow the solute and solvent velocities would be identical. Thus, the

mean axial velocity of the reactive solute furnishes a simple global measure of the

transport effectiveness of a given flow, although it is less easily interpreted than is

the effective reaction rate.

Lastly, the axial convective Taylor dispersivity declines with improved transverse

transport rates due to the increased rate at which the solute molecules sample the

various axial velocities characterizing the Poiseuille streamlines. The dispersivity

thereby provides an additional means of globally assessing the effectiveness of the



chaotic transverse transport.

By calculating these three macrotransport coefficients, it is shown that the trans-

verse transport rate is significantly enhanced by the existence of chaotic flow within

the annulus. Comparison of the effect of varying the flow parameters on each of the

three macroscale coefficients reveals that the choice of optimal parameters for maxi-

mizing the transport rate is independent of which of the three quantitative measures

is used to assess the effectiveness of the chaotic flow; that is, what is optimal for one

is also optimal for the other two. In a more general context, it is shown that qualita-

tive diagrams such as Poincar6 maps, which are frequently used in visualizing chaotic

flows, do not always provide accurate qualitative indications of the effectiveness of a

given flow in enhancing the global transport rate. Explicitly, the quantitative degree

of enhancement does not strictly correlate with the qualitative degree of 'chaosity'

indicated by the map.

Chapter 5 addresses a novel steady chaotic flow, occurring within a spherical fluid

droplet. The flow considered is that arising from translation of a non-neutrally buoy-

ant droplet through an external fluid undergoing simple shear. This flow is of interest

due to its ubiquity in applications, as well as to the ease with which it can be pro-

duced in the laboratory. It occurs (among other circumstances) when a droplet rises

or falls through the annular space between two vertical concentric cylinders contain-

ing a Couette flow produced by their relative rotation. A comparable, yet nonchaotic,

flow is produced by the translation of the non-neutrally buoyant droplet through a

vertical Poiseuille flow occurring, say, in the same (non-rotating) annular apparatus

- the only difference between the two flows being the relative orientation of the

external shear and translational motions.

The parameter ranges for which the flow internal to the droplet is chaotic are first

determined; following this, the rate of extraction of a passive solute initially dissolved

within the droplet into the bulk fluid is considered for circumstances in which the

bulk-phase mass-transfer coefficient is effectively infinite, and hence non-rate-limiting.



This extraction rate is conceptually equivalent to the effective chemical reaction rate

considered in Chapter 4. It constitutes a simple and direct measure of the rate at

which solute is transported through the droplet interior to the interface, from where

it passes unrestricted into the bulk fluid. Results gleaned from this example once

again demonstrate that: (i) laminar chaotic flows can significantly enhance transport

rates; and (ii) the extent of mixing, as determined through Poincar6 sections, does not

always accurately correlate with the degree of enhancement observed in the transport

rate.
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Chapter 2

Dispersion in diverging and

converging ducts

Abstract

A multiple-timescale analysis is employed to analyze Taylor dispersion-like convective-
diffusive processes in converging and diverging flows. A long time, asymptotic equa-
tion governing the cross-sectionally averaged solute probability density is derived.
The form of this equation is shown to be dependent upon the number of spatial di-
mensions characterizing the duct or 'cone'. The two-dimensional case (nonparallel
plates) is shown to be fundamentally different from that for three dimensions (circu-
lar cone) in that, in two dimensions, a Taylor dispersion description of the process is
possible only for small P6clet numbers or angles of divergence. In contrast, in three
dimensions, a Taylor dispersion description is always possible provided sufficient time
has passed since the initial introduction of solute into the system. The convective
Taylor dispersion coefficients D, for the respective cases of low-Reynolds number flow
between nonparallel plates and in a circular cone are computed and their limiting
values, DP, for zero apex angle are shown to be consistent with the known results for
Taylor dispersion between parallel plates and in a circular cylinder. When plotted
in the nondimensional form of D_/-, versus the half-vertex angle 00, the respective
dispersivity results for the two cases hardly differ from one another, increasing mono-
tonically from 1.0 for 00 = 0 to approximately 2.6 for a fully flared duct, o00 = r/2.
Lastly, the techniques developed above for the case of rectilinear channel and duct
boundaries are extended to the case of curvilinear boundaries, and an illustrative
calculation performed for the case of axisymmetric flow in a flared Venturi tube.



2.1 Introduction

The problem of convective dispersion in ducts of constant cross-section, such as cylin-

ders and parallel plates, has been well-studied. In those studies, the velocity profile

and molecular dispersivity are taken to be independent of the axial (global) coor-

dinate. In fact, application of the general theory of macrotransport processes in its

current form (Brenner & Edwards 1993) explicitly requires that the phenomenological

coefficients appearing in the microscale description of the process be independent of

the global-space position.

A limited number of studies exist which address problems involving axially-varying

velocity fields. Thus, Frankel & Brenner (1991) studied Taylor dispersion in un-

bounded shear flows, allowing the velocity to depend linearly on the global coor-

dinate. Mercer & Roberts (1990) used centre manifold theory to treat the case of

dispersion in channels with slowly varying cross-section and thus, varying velocity.

Gill & Giiceri (1971) conducted numerical studies of Taylor dispersion in flow between

nonparallel flat plates, in addition to having derived a theoretical expression for the

axial dispersion coefficient in channels possessing small angles of divergence. Lastly,

Smith (1983) derived a expression for the dispersion coefficient in a varying channel

whose small depth relative to its width allowed it to be treated as well-mixed in the

vertical direction.

The method of multiple-timescales has been used to analyze Taylor dispersion in

rectangular ducts (Pagitsas, Nadim & Brenner 1986). This method takes advantage of

the separation of time-scales required for a macrotransport description of the process

to exist. The present contribution presents a multiple-timescale analysis of dispersion

between nonparallel flat plates and in a circular cone. The functional dependence of

the macrotransport equation upon the dimensionality of the channel is established

and circumstances quantified whereby such a dispersion description of the process

is indeed possible. The Taylor dispersion coefficients for low-Reynolds number flow



between nonparallel flat plates and in a circular cone are calculated. Finally, an ex-

tension of the current multiple-timescale methods to cross-sectionally varying flows

in curvilinear channels and ducts is presented, and illustrated by example. This ma-

terial has previously appeared in the Journal of Fluid Mechanics (Bryden & Brenner

1996).

2.2 Kinematics of flow in an n-dimensional cone

The vector velocity field for axisymmetric radial flow in an n-dimensional cone of

apex angle 200 (see figures 2-1a and 2-1b) is of the form

v = irVr(r, O) 0 < r < 00, -Oo 0 I Oo 7 (n = 2) (2.2-1)
0 < r < , O< 0 0<0 • 7r (n = 3)

with

Vr = Q (2.2-2)

Here, the inverse rn- 1 dependence results from the requirement that the axisymmetric

flow field satisfy the continuity equation

10
1 (rnv 1 v,) = 0 (2.2-3)

for incompressible radial flow. The algebraically-signed 'volumetric' flow rate through

the duct, namely Q = f VrdS (with dS a scalar element of surface area on the surface

r = constant) is given explicitly by the expression

Q = 2,i - 2 j Q(O) siniS- 2 OdO. (2.2-4)

The exact solution of the Navier-Stokes equations for incompressible Jeffrey-Hamel



(a)

k\u

Figure 2-1: (a) Nonparallel plates (b) Circular cone



flow between nonparallel flat plates (n = 2) is well known (Rouse 1959; Goldstein

1965a) and can be expressed in terms of elliptic functions. For low Reynolds number

flow this velocity field is

Q cos 20 - cos 200v, = (n = 2). (2.2-5)
r sin 200 - 20 0 cos 00

While no comparable exact Navier-Stokes solution exists for flow in a circular cone

(n=3) (Ackerberg 1965; Goldstein 1965b), the velocity field for low Reynolds number

is (cf. Happel & Brenner 1983)

3Q cos2 0 - cos 2 0
v = (n = 3). (2.2-6)
Vr 2n 2 (1 + 2 cos O0)(1 - cos 00)2

2.3 Microscale transport equation for convection

and molecular diffusion in a diverging or con-

verging duct

The governing equation for unsteady convection and diffusion of a dissolved or col-

loidal Brownian species between nonparallel plates or in a circular cone is

OC Q(0) OC D[ 1 C 1 0 Cn-2
Ot r n - 1 Or r 2 r n - 3 Or r Sin n - 2 0 00 00

n3 02] = 0, (2.3-7)
sin 0 002

with D the molecular diffusivity, assumed constant, and 6n3 the Kronecker delta. This

equation is to be solved for the solute concentration C(r, 0, (q), t) subject to the initial

and boundary conditions:

Clt=o = Co, (2.3-8)



ac
-=0 at 0=0 and 00, (2.3-9)

C is finite at r = 0, (2.3-10)

CIO = C| +27 (n = 3). (2.3-11)

(In the two dimensional case, we have for simplicity by symmetry confined ourselves

in the above to the half region 0 0 • < 00). The first of these conditions represents

a prescribed initial solute concentration, with Co(r, 0, (0)) a specified function. The

second represents the condition of symmetry about the cone axis, together with the

requirement of no flux through the duct walls. The remaining conditions (2.3-10) and

(2.3-11) respectively represent the requirements of boundedness of the concentration

field and single-valuedness of the latter in the azimuthal angle 0.

As the velocity field and molecular diffusion coefficient are both independent of

the angle 0, this angle constitutes a 'dead' degree of freedom over which one can

integrate in the n = 3 case. (Of course, in the n = 2 case no such integration is

required.) To ultimately establish the macrotransport equation [see (2.5-50)], we

therefore need solve only for the azimuthally averaged concentration field:

c(r, 0, t) def j27( C(r, 0, ¢, t)do (n = 3). (2.3-12)

Upon introduction of the dimensionless quantities

tD 0 r
7 = 2 0, =- R=-, (2.3 - 13a, b, c)

8O ro o ro

where ro is a characteristic radial distance, (2.3-7) - (2.3-11) become

Oc q(0) c 2 1 2 n- 1 ac __ 1
+E -- 1

O7 Rn- 1 dR Rn-1 R OR R2 sinn- 2 (OO)

x (sinn-2(00)-a) = 0, (2.3-14)X) ( E8



C,=0 = C0 ,

aO
OE

at 0=0 and 1,

c is finite at

(2.3-15)

(2.3-16)

(2.3-17)R = 0,

in which co is the prescribed value of c at 7 =0,

Q(EOo)
Q

E =2
T•-2D

0D n-2 D'·=(j";s )

(2.3-18)

(2.3-19)

(2.3-20)

In the above, Q - f Q(O)dS/ f ddS is the algebraically-signed average 'volumetric'

flow rate, explicitly defined as

= Q() sinn- 2 Osin n - 2 dO. (2.3-21)

The dimensionless parameter ge| is proportional to the ratio of the angular diffusion

time TD to the convection time 7Q from r = 0 to ro, respectively defined as

2 r2

D' TQ = 7injQ|
(2.3 - 22a, b)

2.4 Multiple time-scale analysis

Equation (2.3-14) may be recast in terms of the comparable Green's function (Brenner

& Edwards 1993), the latter being formally equivalent to the conditional probability

density P(R, E, 7TR', O') that a unit tracer introduced into the system at position

and



(R', 0') at time 7 = 0 is present at the position (R, 0) at time T:

OP q(O) OP
OT Rn- 1OR

1
SR"-1 OR

(n-1 0 P
R2 S
R2 sinn- 2 (00o)

xa( sinn-2(00)••)OE) 88
6(R-R') 6(0-0')

Rn- 1 sinn-2 (00)

This equation is to be solved subject to the boundary conditions

S00 at 0=0 and 1,

P is finite at R = 0,

R"- 1P -+ 0

In the long time limit and for Ie <K 1, the above system of microscale equa-

tions may be reduced to a comparable macroscale equation for the cross-sectionally

averaged probability density, defined as

P sinn-2 (Oo)d / Ssin n-2 (00o)dE,
0

through the use of a multiple-timescale analysis in which E is a small parameter. (The

physical implications of the requirement that E be small are discussed in §2.6.)

accomplish this macrotransport analysis, introduce into (2.4-23) the sequence of time

variables

7- = Em - (m = 0, 1, 2, ... , 0o),

each of which is to be treated as an independent variable, and write

P(R, 0, ·rR', O') - P(R, O, oT1, 7 2, ... R', 0').

(2.4-28)

(2.4-29)

(2.4-23)

as R -+ oo.

(2.4-24)

(2.4-25)

(2.4-26)

P=oI (2.4-27)



Expand P in a perturbation series in E:

P = E n"Pn(R, 9,O 7, 1 T2,... 1 ).
n=O

(2.4-30)

The time derivative appearing on the left-hand side of (2.4-23) may then be written

as
OP OO n +m Pn

n=O m=O OTm
(2.4-31)

Substitute (2.4-30) and (2.4-31) into (2.4-23) and equate terms of equal order in E to

obtain the following recursive sequence of equations governing the respective P,:

OPo 1 0
070 R2 sinn- 2 (00o) 00

sin2 (60o) Po)OE
6(R - R')
Rn-1

6(E - e')
sinn-2(O00)

OPi OPo q (0) OPo
Oro OT-1r Rn- 1 OR R2Sinn- 2(000)

(sinn-2(E0o)O•
0) = 0

OPo q() OP1
+ +

072 Rn--1 OR
1 19 -sinn -2(o ) O P2)P

R 2 sinn-2(Oo) 0aE, (]
OPO= 0, (2.4-34)OR (Rn-i

R n - 1 8R

up to and including terms of second order in E. Each such equation is to be solved

subject to the same boundary conditions set forth for P in (2.4-24)-(2.4-26).

Multiply (2.4-32) by sinn-2(600), integrate from O = 0 to O = 1 and apply the

boundary condition (2.4-24) to obtain

(To > 0).OPo = o
870

and

(2.4-32)

OP2 OP
0-o + T1

(2.4-33)

(2.4-35)



Thus, for long times (To > 1),

Po 0 Po(R, i, 72, .. IR') + exp, (2.4-36)

in which 'exp' denotes terms which decay exponentially in T0.

Substitution of (2.4-36) into (2.4-33) furnishes an asymptotic equation governing

P1 for long times. Multiply (2.4-33) by sinn-2(060), integrate from 0 = 0 to 1, and

apply the boundary condition (2.4-24) to derive the asymptotic relation

aP1
O70o

OPo 1 OPo
+ + -  exp.

T71 R- 1 OR

The second and third terms in the above equation are independent of 70 .

order to prevent secular growth of P 1 in To, it is required that

OPo

7OT1

1 OPo
R n- 1 OR'

(2.4-37)

Thus, in

(2.4-38)

whence

(2.4-39)P 1 - exp.

(This secular growth argument is equivalent to that used by Chatwin (1970)). Sub-

stitute (2.4-36), (2.4-35), and (2.4-39) into (2.4-33) to obtain

1 0 ( 00( OP1sin 12 (Oo) 00 sinn-2 ( 0) O )sin n-2 0EO)O)0
q-) 1+ePo

R 3-nO (q(O)- 1) + exp.OR

The above may be solved subject to the boundary and normalization conditions (2.4-

24) and (2.4-39), yielding

P1 ~ f (2)R3-OPo + exp,
OR

(2.4-40)

(2.4-41)



where the function f(O) represents the solution of the boundary value problem

(2.4-42)1 a sinn-2(o(--0 = q(() - 1,

subject to the conditions

Of
at " =u ana I,

£

Jo f () sinn-2(Oo)dE = o.0

It remains only to find the terms of O(e2). By substituting the respective so-

lutions (2.4-36) and (2.4-41) for Po and P1 into (2.4-34) and integrating over the

cross-sectional area, the dependence of P 0 upon 72 may be obtained:

_P2 _Po K a
T70

0 T2 Rn-1 OR
(Rn-I OPo

OR )

Here,

- F(0 0o) - f(O)q(e) sinn-2(OOo)dO/ j0 sinn- 2 (00)dO, (2.4-46)

or in an alternative form which may be derived through use of (2.4-42)-(2.4-44) in

the above,

F(00) = 1 2sin n-2 (0o)dE / sinn- 2 (00o)dO.

Prevention of the secular growth of P 2 in To requires that

OPo R R

O72 R n- 1OR
F(0o) a
Rn-l OR

(2.4-43)

(2.4-44)

F(0o) a
Rn-1 OR

~ exp. (2.4-45)

(2.4-47)

otJ

R _n OPoR

Rn_ IPo ) R 3-ndPo)OR O0OR ) (2.4-48)



and

P 2 N exp. (2.4-49)

2.5 The macrotransport equation

The macrotransport equation governing P (accurate to O(E2)) may be found by in-

tegrating (2.4-31) over the cross-sectional area and substituting (2.4-36), (2.4-38),

(2.4-39), (2.4-48), and (2.4-49) into the resulting expression to obtain (in dimensional

form)

OP Q OP D 0 ( dPnO D 9 3-nr')
+ r r -

at rn - 1 Dr rn-1 dr dr rn-1 dr dr rn- 1  fo sinn-2 OdO
(2.5-50)

wherein
-2

D = •-0F(0) (2.5-51)

represents the convective contribution to the dispersivity. This equation is valid for

both positive (diverging flow) and negative (converging flow) values of Q. Note that

inasmuch as F(0o) is always nonnegative [see (2.4-47)] it follows that Dc is always

nonnegative irrespective of the direction of flow.

2.6 Range of validity of the global equation

The present analysis is valid provided that e| <« 1 and To > 1 (or equivalently

t > Oir /D). It can be shown that the first requirement is automatically satisfied

provided that the second constraint is met. A tracer particle initially introduced

into the flow within a diverging or converging cone at the radial position r' will (on



average) be located at time t at the point

rt = [nQt + (r')n]( 1
/

n ) .  (2.6-52)

(For converging flows, for which Q < 0, the above is valid for t < (r')n/n Q|, after

which time the solute particle will, on average, have flowed out of the cone through

the apex along with the solvent.) Substitution into (2.6-52) of the inequality

t > 0 2r (2.6-53)D

followed by subsequent rearrangement gives

nD Qro < 1. (2.6-54)
D[rt - (r') n]

The characteristic length ro is to be chosen as the larger of the two lengths rt and

r'. Thus, for diverging flows (Q > 0) ro = rt, while for converging flows (Q <

0) ro = r'. After replacement of ro in (2.3-19) and (2.6-54) with the appropriate

length, comparison of the two constraints reveals that the requirement (2.6-53) is

more restrictive than the requirement &E <K 1. Thus, satisfaction of a single constraint

suffices to guarantee that the macrotransport description (2.5-50) of the process is

applicable.

Observe that e, the ratio of the transverse diffusion time to the convection time,

scales as ro-n +2 (2.3-19). Hence, in three dimensions a macrotransport description

of the process is always possible for some sufficiently large ro or, equivalently, for

long enough times. For the two-dimensional case, the situation is different. In this

case, E is independent of ro. Thus, circumstances exist for which no macrotransport

description is possible, regardless of the length scale of the channel. Physically, this

means that in some instances the transverse diffusion time TD is greater than or



equal to the convection time TQ. In such cases, corresponding to large flow rates or

apex angles, a particle introduced into a diverging flow will be swept downstream

so quickly that insufficient time exists for it to sample all angular positions. This is

so because as the particle is convected downstream, the transverse distance through

which it must travel in order to reach the most distant streamlines increases more

rapidly than (Dt) , the lateral distance through which it has diffused. It may appear

that this limitation would not be present for the case of converging flow, for which

the particle encounters a decreasing cross-sectional area as it is convected toward the

apex of the system. This impression is erroneous, however, for although the particle

is confronted with a smaller area to sample, its velocity increases at precisely the

same rate at which the cross-sectional area decreases, so that the particle still has

insufficient time in which to sample all of the streamlines. In such circumstances, a

purely asymptotic description of the process cannot be valid since the particle will

'remember' the angular position 0' at which it was originally introduced.

In contrast, in three dimensions, a macrotransport description is always possible

for some sufficiently large ro. Although the transverse distance that a particle in a

diverging flow must sample increases as it is convected through the cone, the velocity

with which it is convected decreases rapidly enough that the particle can sample all

of the streamlines if given enough time. Likewise, in converging flow, the velocity in-

creases more slowly than the cross-sectional area decreases, thus enabling the particle

to sample all of the streamlines.

2.7 Examples: Low Reynolds number flow

2.7.1 Nonparallel Plates

Application of (2.4-42)-(2.4-44) together with (2.4-47) and (2.5-51) to the case of

creeping flow between nonparallel plates, for which the velocity is given by (2.2-5),



gives

Q2 1 602 - 6 sin 2 200 + 900 sin 2 00 cos 2 00 + 402 sinf2 200
S= D 12 (sin 200 - 200 cos 20o) 2  (2.7-55)

It may be shown in the limit 0o -+ 0 that this reduces to the classical result for

Taylor dispersion between flat plates. To do so, replace the flow rate with the average

def - defvelocity, V = Q/r, introduce the half-distance, h = 0or, between the plates, and

expand in a Taylor series about 00 = 0 to obtain

DC c (1+ 15 +... ) (2.7-56)

where
2 V-h 2

O= 2 V 2  (n = 2) (2.7-57)
105 D

is the classical result (Wooding 1960) for flow between parallel plates.

A plot of the convective contribution (2.7-55) to the dispersivity versus the half

angle between the flat plates is given in figure 2-2. The dispersivity increases appre-

ciably with increasing angles owing to the fact that the transverse velocity gradients

Ovr/O0 increase with increasing angles of divergence.

For this two-dimensional situation, the macrotransport equation governing the

angularly-averaged conditional probability density P(r, tjr') is

OP Q OP D* OP 6(r - r')S+  r 6(t) (2.7-58)
Ot r Or r Or Or r

in which

D* = D + Dc (2.7-59)

is the total Taylor-Aris dispersivity. The solution of (2.7-58) may be found through
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Figure 2-2: Convective contribution, D,, to the dispersion coefficient for axisymmetric
low-Reynold's number flow between nonparallel plates or in a circular cone. Observe
that for the limiting case where •0 = 7n/2, the dispersivity ratio quantified by the
ordinate attains the limiting values of 105/47T2 (n = 2) and 128/57r2 (n = 3).



use of Laplace transforms to be

p 1 r [r2  1 )2]t IT exp(t -• Ie- (2.7-60)exp /e If2

2D*t r' 4D*t 2 2D*t

in which

Pe*- (2.7-61)D*
is the effective Peclet number and I, is the modified Bessel function of order v

Note that the two-dimensional case is unique in that the macrotransport equation

(2.5-50) assumes the same functional form as the symmetric, purely radial form of the

microscale equation (2.4-23). In contrast the three -dimensional macroscale equation

possesses a different structure than the original microscale equation in regards to the

final term appearing on the left-hand side of (2.5-50).

2.7.2 Circular cone

Solution of (2.4-42)-(2.4-44) for low-Reynolds number flow in a circular cone, for

which the velocity is given by (2.2-6), followed by subsequent use of (2.4-47) and

(2.5-51) yields (see figure 2-2):

-2
Q2 (1 - (o)(2 - 3(o - 23(02 - 38( - 8( 4 - 2) + 30(02(1 + (0)2 ln[2((o + 1) - 1]

c 15D (1 + 2(o) 2 (1- (0)3

(2.7-62)

in which (0 - cos Oo. As in the two-dimensional case, replacement of the flow rate

with the average velocity V - Q/r2 , introduction of the 'radius' h f 0or at any point

in the cone, and expansion of the above in a Taylor series about O0 = 0 demonstrates

that in the limit 00 -- 0, the dispersion coefficient reduces to the classical result for

Taylor dispersion in a circular cylinder (Taylor 1953; Aris 1956):

D N - 61 + 1 0+ .) (2.7-63)



where
1 V-h 2

- V 2h4 (n = 3). (2.7-64)
S 48 D

The macroscale equation in three dimensions is

OP Q P D 2 aD P DCO2P 6(r - r') 6(t)
t + r 2 Or rr r -r 2 Or2  . (2.7-65)

In this case, in contrast with the two-dimensional case (2.7-58), the convective dis-

persivity D, contributes to the net transport differently than does the molecular

diffusivity D, as can be seen by comparing the final two terms on the left-hand side

of the above.

2.8 Discussion

2.8.1 Solute conservation

Although our analysis is valid for both converging and diverging flows, the semi-

infinite configuration of the conical domain, coupled with the singularity of the veloc-

ity field at the apex r = 0, leads to fundamental differences in the temporal behavior of

the probability densities for the respective cases of Q > 0 and Q < 0, all other things

being equal. In particular, the total probability of a solute particle being located

within the cone is conserved for diverging flow, but not for converging flow; rather, in

the latter case there is a continuous loss of solute through the apex. Mathematically,

this behavior may be seen by integrating the microscale equation (2.4-23) over the in-

finite domain Voo of the cone and applying the boundary conditions (2.4-24)-(2.4-26)

to obtain (in dimensional form)

d
d IPdV = QP r=0, (2.8-66)dt Jvoo



where dV = dSdr - rn-1 sin n - 2 OdrdO(dq) is a 'volume' element. For Q = 0, the

total amount of solute initially present in the cone is conserved for all time, as in

the known results (Carslaw & Jaeger 1959) for pure diffusion in a wedge and in a

circular cone. However, examination of the solution (2.7-60) of the macrotransport

equation for n = 2 reveals that for Q > 0, Po=0 = 0 for all times t > 0. Hence,

for diverging flow, the particle is always contained within the cone. The explanation

for this phenomenon lies in the functional form of the velocity field, which varies

inversely with radial position. A solute particle is never able to diffuse backwards to

the apex of the cone because its diffusion is opposed by an infinite velocity in the

positive direction. In contrast, for Q < 0, P assumes a finite positive value at the

origin, namely

P r=exp r(2 ) 2 4X (2.8-67)
r(4D*tt (

Thus, solute exits the cone at its apex, eventually becoming entirely depleted.

2.8.2 Asymptotic behavior of the microscale field

Not only does our analysis result in an asymptotic equation for the macroscale prob-

ability density P, but concomitantly it also furnishes an asymptotic approximation

to the exact microscale probability density P. In particular, in combination, (2.4-30),

(2.4-36) and (2.4-41) yield

Q02 P
P(r, 0, t r', 0') - P(r, thr') + + of (O/o)r-" +... . (2.8-68)

D dr

This asymptotic expression is similar in appearance to the first two terms occurring

in the expansion of Taylor (1954) (subsequently expanded upon by Gill 1967), with

the exception of the presence of the coefficient r3-" occurring in the second term on

the right-hand side of the above, which arises from the varying cross-sectional area

of the duct.



Asymptote to
hyperbola

n=nn=const <Tc/2 •

I
-- I:

AO=ccos rjo
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Figure 2-3: Hyperboloid of revolution ('Venturi' tube). The coordinate system is
q = ý, q2 = r, q3 = q, with S1 the domain 0 < r7 < ro0, 0 < q < 271. The duct throat,
corresponding to the value ( = 0, is of radius c. The duct centerline corresponds to
the value Tr = 0 and the unit normal vector n to the duct surface 7r0 is the unit vector
i? = 0 in oblate spherical coordinates. The major and minor axes Ao and Bo of the
hyperboloid ro are respectively as shown in the sketch, with Bo/Ao - tan il0; thus,
the angle between the z-axis and the dashed asymptote corresponds physically to the
angle ro0.

2.9 Dispersion in curvilinear, cross-sectionally

varying channels and ducts

The methods described herein may be utilized to analyze dispersion in generally

varying channels and ducts whose boundaries are curvilinear rather than rectilin-

ear. We use general orthogonal curvilinear coordinates (Happel & Brenner 1983)

(ql, q2, q3) and consider 'unidirectional' flows whose streamlines lie along the q1 coor-

dinate curves. Flow through a hyperbolic cone or 'Venturi' tube (Happel & Brenner

1983, p.150) as in figure 2-3 constitutes an example of this class. We will confine

ourselves to the three-dimensional, duct-flow case, although the analysis is easily ex-

tended to two-dimensional, channel flows. The surface of the duct will be taken to be

defined by the functional relation F(q2, q3) = const. The continuity equation in such



a coordinate system is

Oql h2h3

in which the scalar ul(ql, q2, q3) is the speed hi(qx, q2, q3) and is the metrical coefficient

in the qi direction. The velocity field is thus of the form

u1 = h2h 3q(q 2, q3). (2.9-70)

In this notation, the convection-diffusion equation governing the conditional proba-

bility density P(qi, q2, q3, t q,, , q) is

OP P 0h2h3 [ (h OP) 0 ( h2 OP
t hh 2h3 (q2 q3)q - Dhh 2h3  2h3 q q hh 3 q2

19 h3 a) 2 -q' 1 (2 3 A-2
Sq3] = 6(t)6(ql - qD)6(q2 - q2)6(q 3 - q)hh 2h3. (2.9-71)

We now follow a procedure similar to that used in our previous analysis. It is again

required that the convection time be much larger than the transverse diffusion time.

The ratio of these times is given by |E , where

S= Q 2 h h31 (2.9-72)
D||q llh 2

Here, the brackets I...| denote an appropriate norm of the quantity they bound; q2 is

the coordinate corresponding to the largest of the two transverse directions, and the

constant Q is related to the volumetric flow rate Q through the duct (both Q and Q

being independent of the 'axial' distance qi) as follows:

Q = Q/f dq2dq3, (2.9-73)/ Ji



where

(2.9-74)Q = q(q 2, q3)dq2dq3.JS1

Here, S 1 denotes the 'cross-sectional' domain corresponding to the surface defined by

ql = const. and bounded by the curvilinear duct wall, F(q 2 , q3) = const.

Upon performing a multiple-timescale analysis similar to that for the circular

cone, the macrotransport equation governing the macroscale conditional probability

density P(ql, t q') is ultimately found to be

OP Q aP
Ot A Oqi

D 0

A Oql ( OaaqI 10

A 8Oql
(-OP

aDc q

1
= -- (t)6(qi - q'),
A

in which

X(ql) = j/1 hldA1,

(2.9-76)

and

(2.9-77)

where dA 1 = dq2dq3/h 2h 3 is a differential areal element on the surface ql = const.

The convective contribution D, to the dispersion required in (2.9-75) is given by

-2

De(q1) = Ds, v(q 2 , q3)g(ql, q2, q3)dq2dq3,

q(q2, q3)

Q

The function g(ql, q2, q3) appearing above represents the solution of the following

boundary value problem:

O ( h2 Og[q2 h1h30q2
O(h 3 Og]

+Oq3 1h2 0q 3q3 = v - dq2dq3,
Shh2h3 S1

(2.9-75)

with

(2.9-78)

(2.9-79)

(2.9-80)



n. Vg = 0 on F(q2,q3)= const., (2.9-81)

g dAl 0. (2.9-82)

In the above, n represents the unit vector normal to the surface of the duct. Use

of (2.9-80)-(2.9-82) in (2.9-78) allows Dc to be written in an alternative form which

demonstrates that the dispersivity is nonnegative:

DC = f1 2 + hq3 dAi (h2 3 ( ] dA3 (2.9-83)
Oq2 ) O3 hi

The 'average' probability density function appearing in the macrotransport equa-

tion (2.9-75) is defined as

Sef dAl/ dA1  -84)

S s s, h (2.9-84)

In our prior discussion of dispersion in a cone and between non-parallel plates, the

average utilized was an area average. The above average is equal to the volume average

taken over an infinitesimal volume centered at a given 'axial' position ql

P = lim q PdV/ dV (2.9-85)
•-+0 J ql-6 1 11-6

where dV = dqldq2dq3/hih 2h3 is a differential volume element. The quantity defined

in (2.9-85) is identically equal to the area average in the conical geometry considered

previously, since in that case hi is independent of q2 and q3 .

The physical form of (2.9-75) becomes especially transparent in circumstances

where the metrical coefficient hi is, at most, a function only of qx, and hence inde-

pendent of q2 and q3 . Since the quantity dql/hl = d1/, say, is the arc length, measured

along the ql-coordinate curve (Happel & Brenner 1983), it follows that when hi is of

the form h(qx) -- h (11), the quantity dll is then an exact differential. Consequently,



the arc length 11 possesses a global physical interpretation. In such circumstances,

(2.9-76) and (2.9-77) become A = Al/hl and X = hlA 1 , where Al(ql) = A1 (11 ) is

the 'cross-sectional' area of the duct corresponding to the domain S1. Moreover, the

'volume average' probability density P defined by (2.9-84) becomes identical with the

(curvilinear) area-average probability density fs1 PdA1 /A 1 . In these circumstances,

the macrotransport equation (2.9-75) governing - P(11 , t|l) adopts the form

(P Q P D) 
1 8 8 1

P Q OP- D A OP D* 6 (t)6(11 - 11) (2.9-86)
Ot A, 0 11  A, 0 11 a0 11  A, a1 c , A1

in which

D* = Dchl. (2.9-87)

An example of a configuration for which hi is independent of q2 and q3 occurs

for the circular cone case, where (Happel & Brenner 1983, p.504) with the choice

(q1, q2, q3) = (r, 0, 0), we have that

hi = 1, h2= /r, h3 = 1/r sin 0, (2.9-88)

and hence 11 = r, A1 = X = 27r(1-cos o)r2. In this case (2.9-86) reproduces (2.7-65).

2.9.1 Dispersion in a flared, 'Venturi' tube

As an application of the general curvilinear analysis embodied in (2.9-75), consider

the problem of convection and diffusion in a 'Venturi' tube (i.e., a hyperboloid of

revolution of one sheet, as in figure 2-3). Such a flow may be described in oblate

spheroidal coordinates (-oo < ( < oc, 0 < < 7r/2, 0 < 0 < 27r), in which the

hyperboloidal surface of the tube is q = q0 . (This coordinate system is identical to

that appearing in Happel & Brenner (1983, p.512) with the exception of the ranges of

r and (.) These coordinates are related to circular cylindrical coordinates (z, R, 0),



having their origin O at the center of the tube throat, by the relations

z = c sinh ýcos 7, R = c cosh sin 7. (2.9 - 89a, b)

The coordinate surfaces ( = const. and 4 = const. are respectively oblate spheroids

and meridian planes, the latter containing the z-axis.

The axisymmetric stream function for the low-Reynolds number flow through the

tube is (Happel & Brenner 1983; Sampson 1891)

Q (((2 - 3(02) - (1 - 3(•2)
27r (1 + 2(o)(1 - (0)2  (2.9-90)

in which ( = cos 71 and Co = cos •o denotes the surface of the duct, so that the

streamlines are hyperbolas, lying on the coordinate surfaces r = const. in a meridian

plane (0 = const). In contrast to the previous cases of flow in a circular cone or

between nonparallel plates, in the present geometry the flow contains both 'diverging'

and 'converging' regions and no singularity exists at the origin.

In this oblate spheroidal coordinate system, the quantities necessary for determi-

nation of the macroscale equation are

1
hi = h2 - 1 (2.9-91)

c(cosh2  s - sin 2 rj) '

1
h3 = (2.9-92)c cosh ( sin 71

and

q(r) = (2.9-93)
dro

The condition which must be met in order for the present multiple-timescale analysis



to apply is again EI <K 1, with

Dclo cosh o'

in which ýo is a characteristic value1 of the 'axial' coordinate ý, and

Q=

Solution of (2.9-80) subject to (2.9-81)-(2.9-82) yields

3cc o (1 - ()(( - ¢o)(( + Co + 1) (cosh 2  2 + s - 1)
ccosh ýsiny (1 + 2(o)(1 - 0o)2(3 cosh 2 + (02 + (o - 2)

(2.9-94)

(2.9-95)

(2.9-96)

The resulting macroscale equation is then of the form (2.9-75) with

A(s) = c3 CoA(3A2 + C 1),

x(ý) = 3cCoA,

Q (A2 + 2)2
cD A(3A2 + CI)2

(2.9-97)

(2.9-98)

(2.9-99)

in which A = cosh (, and the constants Ci are functions only of 77o as follows:

Co = (2/3)>r(1 - (o),

C1 = (02+ o -- 2,

(2.9-100)

(2.9-101)

(2.9-102)

1For long axial distances from the tube throat, the distance r = (R2 + z2) ½ from the origin
approximates r ý c cosh (, while the transverse distance approximates h - crqo cosh (. The parameter
E is thus proportional to the ration of the transverse diffusion time TD to the axial convection time
7Q, respectively defined as TD - h2 /D, TQ = r3 /Q.

Dg(l, ~)
O

C2 = (02 - 1,



6ri2 (1 - (o)(2 - 3(o - 23(02 - 28(03 - 804) + 30(2((o + 1)2 ln[2((o + 1) -1]
5 (1 + 2(o)2(1- -0) 4

(2.9-103)

The above Venturi tube results may be compared with the circular cone results, (2.7-

62)-(2.7-65), as follows. Referring to figure 2-3, it is seen that at large distances

fýj -+ 00 along the axis, the hyperboloidal duct surface is isomorphic with the surface

of the circular cone of half-angle 00 - •o in figure 2-1(b). From (2.9-89 a,b), we

find that the distance r = (R2 + z2) from the origin O is r = c(cosh2  - Cos2r)½,

which for (| -+ oc asymptotes to r - ccosh . Additionally, from (2.9-91), we see

that, asymptotically hi - (ccosh )- ', which is independent of 7r and 0, and thus

asymptotically fulfills the requirement set forth in the paragraph following (2.9-85).

Use of the above asymptotic relation for hi and the dispersivity (2.9-99) in (2.9-87)

reveals that in this limit, D* is independent of the axial position 11 - r (li being

calculated from its definition, dl1 = dl/hl), and may therefore be brought to the

outside of the derivative in which it appears in the macrotransport equation (2.9-86).

The ratio D*/A 1 then reduces to the form

-2
c 2 C3  (2.9-104)

A 1  D 187r(1 - o)r 2 '

which may be shown, through use of the respective (albeit slightly different) defini-

tions (2.9-95) and (2.3-21) for Q in the hyperboloidal and conical cases, to be exactly

equal to the dispersivity (2.7-62) in the case of a circular cone, bearing in mind

that 00 =- To. Straightforward calculation shows that the other terms appearing in

the macrotransport equation (2.9-86) are also identical to their counterparts in the

circular cone case, (2.7-65).

Finally, we note that the case of flow through a circular aperture in a wall occurs

when mj0 = 7r/2 ((o = 0).
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Chapter 3

Laminar Chaos: Background

3.1 Introduction

The existence of chaotic laminar flows was first demonstrated by Aref (1984). The

seemingly contradictory suggestion that chaos could exist within a laminar flow has

since been confirmed both theoretically and experimentally in numerous studies (see

Ottino 1990 for a review). In contrast to turbulent flows, in which the instantaneous

flow field is chaotic and apparently random, in a laminar chaotic flow the flow field is

completely known. The particle trajectories, however, may behave chaotically. Such

flows may prove useful for improving transport in circumstances for which turbulent

flows are impractical. For example, suspensions of living cells used in biotechnology

cannot be subjected to the high shear rates produced by turbulent flows without

causing damage to the cells. Similarly, many polymers suffer degradation due to

locally high shear rates. In other instances, where the fluid is highly viscous, or even

viscoelastic, it may not be practical to produce a turbulent flow. Laminar chaotic

flows have the ability to provide thorough and rapid mixing without the high shear

rates and potentially large power requirements accompanying turbulent flows.



Chaotic trajectories are possible because the Lagrangian equation

dxdx= v(x, t) (3.1-1)
dt

for the particle trajectories x = x(xo, t) (with xo the initial position vector at time

t == 0) comprises, in many instances, a set of coupled non-linear equations, with the

instantaneous velocity v a non-linear function of the position vector x. Chaos is often

described as the exponential divergence (in time) of initial conditions. In the case

of laminar flows, the presence of such exponential divergence assures that a solute

locally dissolved within a fluid subjected to a chaotic laminar flow will soon disperse

throughout the fluid even in the absence of molecular diffusion or turbulent eddies.

Moreover, small perturbations in the particle positions - caused for instance by

molecular diffusion - are magnified by the chaotic flow, further increasing the extent

of solute spreading. The unavoidability of such perturbations signifies that laminar

chaotic flows are irreversible. [This observation provides the basis for a proposed

separation technique based on differences in diffusivities (Aref & Jones 1989).] The

common belief that laminar flows are necessarily reversible results from experiments

and analyses with linear flows. Taylor's famous 'unmixing' experiment, for example,

was conducted in a linear Couette flow, in which the trajectories constitute solutions

of equations of the form
d= f(r),
dt

(3.1-2)

dr

dt

with r the radial coordinate and 0 the angular coordinate. The position at time

t of a particle initially located at (ro, o00) is (ro, 0o + f(ro)t). Thus a perturbation

in the particle position grows at most linearly in time, assuring that the flow is

reversible. In general, however, pathlines in laminar flows need not be reversible and



this sensitivity to small perturbations enhances the mixing effectiveness of these flows

(Dutta & Chevray 1995).

3.2 Examples of chaotic laminar flows

An incompressible flow must be either time-dependent and at least two dimensional

(possessing two non-zero velocity components) or, if steady, three-dimensional in order

to exhibit chaotic behavior. This conclusion derives from the observation that a two-

dimensional flow is a Hamiltonian system, with the stream function 7P representing

the Hamiltonian; that is,
dxx 0_

dt Ox2 '
(3.2-3)

dZ2  0_

dt Ox1

A two-dimensional autonomous Hamiltonian system is always integrable. (See Do-

herty & Ottino 1988 for an explanation of Hamiltonian chaos directed towards chem-

ical engineers.) Chaotic laminar flows may thus be divided into three categories: (i)

two-dimensional, time-periodic flows; (ii) three-dimensional, spatially-periodic flows;

and (iii) three-dimensional confined flows. These flows possess curved streamlines and

are unsteady from a Lagrangian perspective, a result of temporal or spatial variations

in the flow field. In each, the streamlines at successive times or positions cross one

another. This crossing of streamlines provides the mechanism by which two particles,

initially close to one another on the same streamline, may be transferred to different

streamlines, thus allowing their relative positions to diverge in time. Examples of

each of these three classes of flows are discussed in the following sections.



3.2.1 Three-dimensional spatially-periodic flows

The first example of a laminar chaotic flow was the so-called ABC flow,

vl = Asinx 3 + C cOS x 2 ,

v2 = B sinx l + A cos x 3 , (3.2-4)

v3 = C sin x 2 + B cos x 1,

shown to be chaotic by Arnold (1965) and Henon (1966) and investigated further by

Dombre et al. (1986). Numerical integration of this flow to obtain the trajectories

is straightforward, but the flow itself is not easily generated physically, as it requires

the continuous application of a three-dimensional spatially-periodic force to the fluid.

A more realistic flow is represented by the partitioned-pipe mixer (Khakhar, Fran-

jione & Ottino 1987, Kusch & Ottino 1992) (see figure 3-1). This spatially-periodic

flow is generated by positioning flat plates along the centerline of a pipe. The plates

are placed perpendicular to one another in a periodic fashion (i.e. first one plate of

length 1, say, followed by a second plate placed perpendicular to it, with this pattern

repeated along the entire length of the tube). The pipe wall is rotated relative to

the plates, while a pressure-driven laminar axial flow conveys the fluid through the

apparatus. Transverse streamlines for this flow are illustrated in figure 3-1. In this

flow, the requisite crossing of streamlines occurs when a given particle reaches the

juncture between two plates, at which point it encounters a secondary flow oriented

at right angles to the flow to which it had previously been subjected.

A similar spatially-periodic flow is the 'twisted-pipe' flow. The fluid motion here

consists of an axial flow through a twisted pipe, the axis of curvature of which changes

periodically along the axis of the pipe. The secondary flow induced by the pipe cur-

vature thus varies periodically along the pipe, creating chaotic trajectories. This flow,

proposed as an improved heat-exchanger design, has been demonstrated experimen-



(a)

(b)

Figure 3-1: Partitioned-pipe mixer: (a) 'unit-cell' geometry; (b) transverse stream-
lines.



(a) (b)

Figure 3-2: Streamlines in the annular region between rotating, nonconcentric cylin-
ders: (a) Outer cylinder rotation; (b) Inner cylinder rotation.

tally to increase the heat-transfer rate (Acharya, Sen & Chang 1992).

3.2.2 Two-dimensional time-periodic flows

Two-dimensional flows which exhibit chaos include the blinking vortex flow (Aref

1984), time-periodic cavity flows (Jana & Ottino 1992), and eccentric annular flow

(Aref & Balachandar 1986, Chaiken, Chu, Tabor & Tan 1987). Eccentric annular

flow (figure 3-2) is considered in detail in this thesis. It is produced by the alter-

nate (or other time-periodic) rotation of two cylinders, one located nonconcentrically

within the other. For sufficiently large eccentricities, the transverse streamlines for

single-cylinder rotation contain recirculating regions near the stationary cylinder (fig-

ure 3-2). Time-periodic rotation of the two cylinders provides the requisite crossing

of streamlines at successive times and can produce chaos for the proper choices of

geometry, rotation period, and relative angular velocities of the two cylinders.

3.2.3 Three-dimensional confined flows

All three-dimensional confined chaotic laminar flows studied to date in the literature

are flows confined within a spherical domain. These include time-dependent spherical

Couette flows (Cartwright, Feingold & Piro 1996) and flows within a droplet (Bajer



& Moffatt 1990, Stone, Nadim & Strogatz 1991). The flows considered by Stone et al.

(1991) were those occurring within a neutrally-buoyant droplet suspended in a general

three-dimensional linear external flow. The present work addresses a related but

novel chaotic flow within a droplet, namely the flow generated within a non-neutrally

buoyant droplet translating through an exterior fluid undergoing a simple shearing

motion. This flow may be produced by allowing a bubble to translate by buoyancy

through the annular space of a vertical concentric-cylinder Couette flow apparatus,

possibly accompanied by a vertical Poiseuille flow (see figure 3-3). Figure 3-4 shows

the droplet streamlines occurring in the interior of the droplet for the respective

cases of translation of a non-neutrally buoyant bubble through a quiescent fluid and

of a (non-translating) neutrally-buoyant droplet suspended within a simple shear

flow. Superposition of these two flows can create chaotic trajectories, depending upon

their relative orientation. For example, suppose that the direction of translational

motion is perpendicular to the shear plane. The translational motion thus moves

a particle contained within the droplet vertically through the plane of shear. As

the particle moves in this vertical direction, it passes from one region of the shear-

produced flow to another; these differing regions may possess crossing streamlines, a

necessary precursor to chaos.

3.3 Assessment of laminar chaos

Several methods currently exist for assessing the effectiveness of a given laminar

chaotic flow. Each, however, has limitations, being either difficult to compute, to

interpret, or both.



Non-neutrally
buoyant droplets

Figure 3-3: Annular flow apparatus for creating a chaotic laminar flow within a non-
neutrally buoyant droplet. The droplet translates by buoyancy parallel to the axis
of the cylinders, one of which is rotated to produce a Couette flow. A gravity- or
pressure-driven axial laminar flow may also be present in the annular region between
the cylinders.

J~



(a) (b)

Figure 3-4: Streamlines within a spherical droplet: (a) translating through a quiescent
fluid; (b) suspended within a simple shear flow.

3.3.1 Liapunov exponents

The rate of divergence of initial conditions, quantified by Liapunov exponents, is one

measure commonly used for studying chaotic systems. In the case of laminar chaotic

flows, Liapunov exponents are calculated by computing the trajectories of two initially

proximate particles, initially joined by a vector dXo and located at a point X 0. The

Liapunov exponents A are then determined as follows:

A(Xo, dXo) -- lim lim 1- ( dX (3}3-5)
too tdXol-+ t i dXo3

A positive Liapunov exponent indicates that initial conditions diverge exponentially

in time, whereas a negative value corresponds to convergence; that is, two material

particles, initially distant from one another, will eventually reach the same position,

where they will remain for all subsequent times. Linear flows, such as Poiseuille or

Couette flow, have two zero Liapunov exponents, a consequence of their linear (as

opposed to exponential) divergence of initial conditions.

Liapunov exponents have the advantage of providing a quantitative measure of the

degree of chaos. Unfortunately, they are difficult to calculate. Each N-dimensional



flow has up to N independent exponents, one for each linearly independent initial

orientation of the vector dXo joining the two particles. Special precautions are neces-

sary to assure that the Liapunov exponent for each orientation is calculated correctly.

Without these precautions, calculations for almost all orientations will yield the value

of the maximum exponent (Lichtenberg & Lieberman 1983).

Even when one is assured of correctly calculating all of the Liapunov exponents,

questions as to their usefulness and interpretation remain. As these exponents are

functions of position, characterization of an entire flow field necessitates calculating

many exponents at various positions. At best, this furnishes a large set of local

measures of the effectiveness of the flow in promoting chaotic mixing, with no clear

protocol for comparing the relative global effectiveness of different flow fields. Indeed,

even the local interpretation of Liapunov exponents in quantifying the degree of chaos

is not clear. For instance, is a flow possessing two exponents with large magnitudes

- one positive and one negative - more or less effective than a flow with two smaller

exponents, both of which are positive?

3.3.2 Poincar6 sections

A tool which overcomes many of the difficulties with the computation and interpre-

tation of Liapunov exponents is the Poincar6 section. These plots provide a visual

image of the trajectories within a given flow field. The information gleaned from

these diagrams unambiguously indicates which regions of a given flow display chaotic

behavior and, conversely, which are non-chaotic, or regular. These plots, widely used

in the laminar chaos literature, are qualitatively useful in assessing the mixing ability

of flows, as they provide a clear visualization of the location and extent of unmixed

(regular) islands. The extent of these unmixed regions must be minimized if one

wishes to produce a homogeneous mixture.

A Poincar6 section is produced by integration of (3.1-1) to produce the Lagrangian



Figure 3-5: Construction of the Poincare section for a flow within a spherical droplet.

trajectories x X(Xo, t) for several initial positions xo, typically spaced equidistant

from one another throughout the flow. A plot of the complete particle trajectories

would be contain so much information as to be confusing. Rather, the N-dimensional

plot of the particle trajectories is reduced to a set of points plotted in an N -1 dimen

sional space. For instance, a Poincare section corresponding to a three-dimensional

confined flow, such as the flow existing within a spherical droplet (figure 3-5) consists

of the intersection of the particle trajectories, which are curves in three-dimensional

space, with an appropriately chosen plane. Time- and spatially-periodic flows are

portrayed as in figure 3-6 by representing the trajectories as occurring within a torus,

the periodic variable being represented by the coordinate around the torus. The in

tersection of a plane normal to the torus axis with the torus provides the Poincare

sections. Thus, a two-dimensional time-periodic flow with time period T is repre

sented by plotting the positions of the particles at time t and at successive times

t nT, with n an integer. The Poincare section for a three-dimensional spatially

periodic flow is constructed by plotting the two-dimensional positions of particles as

they pass through the planes z = Zo + nl, with z the coordinate along which the flow

is periodic and l the spatial period.

Poincare sections provide an easily-interpreted visualization of the behavior of a

given flow field. A region of the flow which is chaotic will contain many apparently
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Figure 3-6: Construction of the Poincare section for a time- or spatially-periodic flow.

randomly distributed points; non-chaotic regions will consist of easily identifiable

closed curves. A completely regular flow will often produce a Poincare section that

simply reproduces the streamlines of the flow. In other circumstances, particularly

in the case of confined three-dimensional flows, a non-chaotic flow will contain only

closed pathlines; for such flows it is not possible to produce a meaningful Poincare

section, as the pathlines of each particle will intersect a given plane at only a finite

(u ually small) number of positions.

Poincare sections are invaluable in determining which regions of a given flow are

chaotic. As pointed out by Swanson & Ottino (1990), however, these diagrams may be

subject to misinterpretation. One major failing is that many sets of initial conditions

are plotted on the same diagram. Thus, no means exists to distinguish between

the various trajectories corresponding to different initial conditions. Some chaotic

trajectories may preferentially sample one portion of the chaotic region, but it is

not possible to discern this from the Poincare sections. To overcome this limitation,

Swanson & Ottino (1990) suggest using a different color for each initial condition

portrayed.

Unfortunately, Poincare sections do not provide any rate information. They pro-
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vide only a picture of the extent of chaos within a flow and suggest the degree of

mixing which is possible, but furnish no indication as to the length of time required

to achieve mixing.' Thus, while these plots may be useful in mixing applications for

predicting whether or not a given flow provides effective mixing, they are less useful

in predicting the utility of a given flow in enhancing the rate of heat- or mass-transfer

processes. Also, they fail to include molecular diffusion, the effect of which may be

significant, as diffusion allows solute molecules to escape from the regular regions in

which they would otherwise be trapped. Furthermore, no quantitative measure of

chaotic effectiveness can be gleaned from Poincard sections.

3.3.3 Experimental studies

Purely kinematical experimental investigations of chaotic flows yield information sim-

ilar to that contained within Poincard sections. Such experiments (e.g. Swanson &

Ottino 1990, Kusch & Ottino 1992, Dutta & Chevray 1995, Saatdjian et al. 1996)

consist primarily of (non-diffusive) tracer studies, in which the position and shape of

a finite domain into which a tracer is initially introduced is tracked over a period of

time. Such experiments possess the advantage of allowing the introduction of a small,

finite 'blob' of tracer. In a chaotic flow, this blob will distort and stretch, providing a

direct illustration of the divergence of initial conditions. The analogous computations

are less straightforward, since the set of initial conditions is necessarily discrete rather

than continuous.

Related experiments consist of continuous injection of a tracer into the flow at

a given point in order to visualize the streaklines. These experiments are especially

useful in three-dimensional flows, allowing visualization of the unmixed regions of the

flow, or KAM tori (Kusch & Ottino 1992). Furthermore, these experiments permit

1Moreover, as the particle trajectories are purely deterministic, it is impossible to incorporate
molecular diffusion (Brownian motion) effects into the analysis, and hence to assess the role of
diffusion in the convective mixing process.



investigation of those three-dimensional flows which are not amenable to analysis via

Poincar6 sections (owing to the loss of information inherent in the reduction of di-

mensionality occurring in the construction of these plots). For example, the eccentric

helical annular mixer (Kusch & Ottino 1992) consists of eccentrically positioned cylin-

ders, undergoing time-periodic rotation about their longitudinal axes, accompanied

by an axial laminar flow in the annular region between the cylinders. A Poincard

plot of this flow lacks any information regarding the axial transport, while streakline

experiments reveal complex three-dimensional structures (Kusch & Ottino 1992). Ul-

timately, however, such experimental tracer studies of mixing effectiveness possess the

same major disadvantage as do Poincard sections, namely that their purely qualitative

visual nature fails to furnish global rate information.

3.4 Heat- and mass-transfer rate enhancement via

laminar chaos

Much of the current literature concerning laminar chaotic flows focuses on exploit-

ing their sensitivity to initial conditions and to small perturbations in the particle

positions (due, for example, to molecular diffusivity or inertia) to improve mixing in

initially homogeneous fluids (Ottino 1990, Ottino et al. 1992, Aref & Balachandar

1986, Swanson & Ottino 1990, among others). These investigations focus on qualita-

tive visualizations of the regions of flow exhibiting chaotic behavior obtained through

numerical computation of the Poincard sections, in combination with experimental

tracer studies.

The above-cited studies do not address the interaction between molecular diffu-

sion and chaotic flows, nor do they consider the enhancement of transport rates by

laminar chaos. A small number of theoretical papers do, however, address the issue

of chaos-enhanced transport. Thus, Jana & Ottino (1992) studied heat transfer in



a chaotic cavity flow. They considered the approach to equilibrium of an initially

isothermal fluid which is perturbed by a step change in the wall temperature, and

found significant enhancement of the heat-transfer rate in circumstances for which

chaotic transport was present. The extent of heat-transfer enhancement exhibited a

strong dependence on the Peclet number Pe, exhibiting a maximum at intermediate

values of Pe. Ghosh, Chang & Sen (1992) investigated heat transfer between rotat-

ing eccentric cylinders maintained at different temperatures. Although their work

was limited to small eccentricities and small oscillations superposed on otherwise

steady rotary flows, conditions under which chaotic transport would be expected to

be small, they nevertheless observed a significant increase in heat transfer occurring

in circumstances where chaotic transport was present. Adopting a different approach,

Toussaint, Carriere & Raynal (1995) studied the rate of decay of an initially inhomoge-

neous scalar field in the presence of both chaotic and non-chaotic flows, demonstrating

that the rate of decay to homogeneity was greater in the chaotic flow case.

Jones & Young (1994) studied shear dispersion in a twisted pipe for circumstances

wherein chaotic particle trajectories were present. Previous studies of Taylor disper-

sion in curved tubes, involving regular, non-chaotic particle trajectories (Nunge, Lin,

& Gill 1972, Janssen 1976, Johnson & Kamm 1986), found that the secondary flow

induced by tube curvature acted to decrease the convective dispersion by a factor

of up to five below that occurring in a straight tube under comparable conditions.

Jones & Young (1994) concluded that the presence of chaotic advection decreases the

axial dispersion to an even larger extent than does regular secondary flow, changing

the dependence of the dispersivity upon the Peclet number from the classical Pe2

behavior (Taylor 1953) to Pe In Pe.

While the studies cited above suggest that chaotic flows may be useful in enhanc-

ing transport rates, they do not generally provide a unique quantitative measure of

chaotic transport effectiveness. In contrast, the present work develops quantitative



measures, such as the effective rate of transport-limited reactions and the rate of ex-

traction of solute from a droplet in circumstances for which the transport processes

internal to the droplet are limiting. Explicitly, two flows are examined, namely eccen-

tric annular flow and flow within a non-neutrally buoyant droplet undergoing simple

shear. Chemical engineering applications of these flows, including enhancement of

the rate of transport-limited reactions, reduction of axial dispersion, and enhance-

ment in the rate of solute extraction from a droplet into a surrounding bulk phase

are studied. Particular attention is paid to the correspondence (or lack thereof) be-

tween predictions of transport effectiveness based upon Poincard sections and the

present quantitative measures. More generally, this thesis develops a general philos-

ophy based on the theme of macrotransport processes (Brenner & Edwards 1993)

enabling the simple, global quantification of the effect of laminar chaos on whole

classes of transport processes.
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Chapter 4

Reaction and dispersion in

eccentric annular flow

Abstract

Generalized Taylor dispersion theory is used to study the chaotic laminar transport
of a reactive solute between eccentric rotating cylinders in the presence of an inho-
mogeneous chemical reaction. The circumstance considered is that of laminar axial
'Poiseuille' flow in the annular region between the two nonconcentric cylinders, ac-
companied by a secondary, generally chaotic, flow induced via alternate rotation of
the cylinders. A Brownian tracer introduced into the flow is assumed to undergo
an instantaneous, irreversible reaction on the surface of the outer cylinder. The re-
sulting effective, transversely- and time-averaged reaction rate, axial solute velocity,
and axial convective dispersivity are computed. When chaos is present, the effective
reaction rate is increased to a value several times larger than occurs in the absence of
chaotic transport. It is found that an optimum alternation frequency exists, and that
this frequency decreases with increasing transverse Peclet number (Peq). It is also
observed that the maximum achievable reaction rate increases with Peq. The effect of
laminar chaotic transport on the mean axial solute/solvent velocity ratio is to drive
its value towards the perfectly-mixed value of 1.0, despite the removal of solute from
the slower-moving axial streamlines near the outer (reactive) cylinder wall. Lastly,
in the presence of transverse chaotic transport, the convective, Taylor contribution
to the axial solute dispersivity acquires a value up to several orders of magnitude
smaller than that achievable by means of non-chaotic convection.



4.1 Introduction

The present chapter utilizes Taylor dispersion theory for time-periodic, chemically

reactive systems (Shapiro & Brenner 1990) to assess the effect of laminar chaos on

both transverse and axial solute transport rates. The situation considered is that of

net axial annular flow taking place between eccentric cylinders which are alternately

rotated. This flow has been studied both experimentally and computationally by

Kusch & Ottino (1992). In addition, flow between rotating eccentric cylinders (in the

absence of axial flow) has been studied extensively as a simple example of a system in

which the phenomenon of laminar chaos occurs under well-defined conditions (Aref

& Balachandar 1986, Chaiken et al. 1987, Swanson & Ottino 1990, Kaper & Wiggins

1993). A Brownian tracer particle, likened to a diffusing solute molecule, is assumed

to undergo instantaneous irreversible reaction on the outer cylinder surface' following

its initial introduction into the annular space between the cylinders. A global, purely

axial, transversely- and time-averaged description of the resulting reactive transport

process is sought and ultimately found. In particular, the effective reaction or wall

deposition rate, mean axial solute velocity, and axial dispersivity are computed. Since

the deposition is assumed instantaneous, its rate is limited by the transport of so-

lute to the wall rather than by the true kinetics of the reaction or deposition process.

Hence, the effective reaction rate furnishes a quantitative global measure of the trans-

port effectiveness in a given secondary (i.e., transverse) flow field. The convective or

Taylor contribution to the axial dispersivity also depends on the lateral transport,

varying inversely with molecular diffusivity in a purely axial flow. Thus, the effect of

any enhancement in the net transverse transport is to decrease the axial dispersion,

whence the latter also furnishes an additional, independent measure of the transport

1We will on occasion refer to this instantaneous irreversible process as 'deposition', having in
mind the model of a Brownian aerosol or hydrosol particle being deposited on the outer wall and
held there permanently (Shapiro & Brenner 1986, Shapiro, Kettner & Brenner 1991).



Figure 4-1: Eccentric cylinders. Bipolar coordinates.

effectiveness of a given chaotic flow field. This material has previously appeared in

the Journal of Fluid Mechanics (Bryden & Brenner 1996).

4.2 Geometry and flow

Consider an infinitely long circular cylinder of radius Ri positioned nonconcentrically

within another, larger cylinder of radius Ro, their centers being separated by a dis-

tance E (Figure 4-1). (Throughout, subscripts i and o, when they appear, represent

the values of the functions to which they are affixed on the inner and outer cylin-

ders, respectively.) A point within the eccentric annular space bounded by the two

cylinders will be denoted (z, q), with z the axial position parallel to the cylinder axes,

and q = q(i7, ) the 'local', transverse position vector in the plane perpendicular to

the z axis. Here, 7r and ( are cylindrical curvilinear coordinates, explicitly bipolar

coordinates in the present context (Happel & Brenner 1983).

A transverse flow is produced by rotating the inner and outer cylinders alternately,

=0

=2rt



each for the same period T at the respective angular velocities Qi and Qo. The

secondary, local-space velocity field is then given by

0q '' ui(q), 2nT < t < (2n + 1)T,
uo(q), (2n + l)T < t < 2(n + l)T,

(n = 0, 1, 2, ...), where ui and u, are the quasi-steady, Stokes flow, bipolar-coordinate

velocity fields (Ballal & Rivlin 1976) respectively resulting from rotation of the inner

and outer cylinders. The quasi-steady assumption is valid provided that the period

of modulation T is large compared with the viscous time scale L 2/v, where L is a

characteristic length, say Ro - Ri, and v the kinematic viscosity. The assumption of

Stokes flow is justified provided the Reynolds number Re = R2 /IV is less than unity

(San Andres & Szeri 1984).

In addition to the unsteady two-dimensional transverse flow produced by the

rotation of the cylinders, a steady laminar axial flow U = izU(q) is superposed. This

Poiseuille-like bipolar-coordinate flow field is given by Snyder & Goldstein (1965),

among others (Piercy, Hooper & Winney 1933).

4.3 Probability density transport

Consider an effectively point-size Brownian solute particle introduced at time t' into

the flow U + u occurring between the two eccentric cylinders. The particle will

be assumed to undergo transport by convection and diffusion in the annular space

while undergoing instantaneous, irreversible deposition on the outer cylinder. Let

P - P(z, q, tlq', t') denote the conditional probability density that the tracer is located

at the point (z, q) at time t, given that it was initially introduced into the fluid at

the point (0, q') at time t'. This probability density is governed by the following



boundary-value problem:

aP OP 02p
+ U(q) + u(q, t) VqP - D 2 2 = (z)6(q - q')(t - t'), (4.3-2)at Dz2 Oz-

P = 0 on 0 qo, (4.3-3)

n VqP = 0 on Oqi, (4.3-4)

IzlmP - 0 as z- +oo (m = 0, 1,2,...). (4.3-5)

Here, D is the molecular diffusivity, Vq the local-space (two-dimensional) gradient

operator, n the unit normal vector, and aq, a point lying on the surface of a circular

cylinder, Go = constant (a = i, o). Boundary condition (4.3-3) is a consequence of

the instantaneous irreversible solute deposition on the outer cylinder, while (4.3-4)

represents the condition of no flux through the inner cylinder wall. Equation (4.3-5) is

necessitated by the requirement that the probability density be bounded as Izl -+ oc

in such a way that the axial moment integrals

F zmPdz (4.3-6)

implicit in the subsequent theory converge for all non-negative integers m and for

all local points q E qO, in which qo represents the two-dimensional annular domain

(0 < < 27r, 77o < r7< ri) lying perpendicular to the axes of the cylinders, 7ri and

4.4 Global, axial transport description

A macroscale description of the transport processes outlined above may be ob-

tained through application of the time-periodic moment-matching scheme described

by Shapiro & Brenner (1990). This method allows the calculation of mean trans-



port coefficients which are independent of the exact initial conditions, thus providing

global information about the transport processes and eliminating the necessity of

performing a separate calculation for each new set of initial conditions.

Define the time- and transverse position-averaged conditional probability density

< >(z,tq',t') 2T T
< P > (z7 tlqi7 t) = 1 f t+2T f P(z7 q7 tq', tf)dqdt. (4.4-7)

Here, the transverse average of a function f(z, q, t) is defined as

f (z, t) = f (z, q, t)dq, (4.4-8)

whereas

< f> (z, q, t) = T f(z q, t)dt (4.4-9)

denotes the time-average of the function over one period, 2T. For asymptotically

long times < P > obeys the following one-dimensional system of macroscale, axial

convection-dispersion-(first-order, irreversible) reaction equations (Shapiro & Bren-

ner 1990):

<P> <<P> aP> K
a + U* -D* + K* < P >= A(q', t')6(z)6(t - t'), (4.4-10)

Izlm < P >-+ 0 as z - +oo. (4.4-11)

The macroscale phenomenological coefficients K*, U*, and D* respectively represent

the effective solute reaction-rate constant, axial velocity, and axial dispersivity. These

axial position- and time-independent constants are given in terms of quadratures of

the microscale phenomenological and geometric data by the expressions

K* = K, (4.4-12)



D* = D + D *,

B(q, t)P'(q, t)A(q, t)[U(q) - U*]dqdt

is the Taylor (i.e., 'convective') contribution to the axial dispersivity. Here, the local-

space Po0 and A fields together with the reactivity coefficient K are

following adjoint pair of transverse-space eigenvalue problems:

found from the

+ VqP -DVqPo - KPo = 0,

Poo = 0

n -VqPo0 =

on aqo,

0 on Oqi,

Po(q, t + 2T) = Pco(q, t),

2T f2T Podqdt = 1;2T ut q

+ u- VqA + DV2A + KA = 0,

A = 0 on 8qo,

n -VqA = 0 on Oqi,

A(q, t + 2T) = A(q, t),

P0oAdq = 1.

The B field required in the determination of D* represents the solution of the following

U I= 2To
2T o

and

where

(4.4-13)

I2T q
1

(4.4-14)

(4.4-15)

at (4.4-16)

(4.4-17)

(4.4-18)

(4.4-19)

(4.4-20)

and
OA
at

(4.4-21)

(4.4-22)

(4.4-23)

(4.4-24)

(4.4-25)

q U(q)PO'(q, t)A(q, t)dqdtq0



boundary-value problem:

+ u. Vq(BPo0 ) - DV2(BP10 ) - KBPo = Po[U(q) - U*], (4.4-26)
at +D

BPo = 0 on Oqo, (4.4-27)

n - Vq(BPo') = 0 on Oqi. (4.4-28)

The term appearing on the right-hand side of (4.4-10) represents a 'fictitious' ini-

tial condition, which differs from the true, delta function initial condition by the factor

A(q', t'). The need for such a fictitious initial condition arises from the fact (Shapiro

& Brenner 1990) that the macroscale equation (4.4-10) is valid only for asymptoti-

cally long times, and hence does not accurately describe the transport occurring at

short times. Use of a fictitious initial condition corrects for this 'anomalous' behavior

by properly accounting for the solute transport and reaction occurring prior to the

time at which the macroscale equation (4.4-10) becomes applicable. As a result of

this initial condition, < P > depends upon both the initial transverse position q' and

the initial time t' (the latter through the combination t - t'), although the macroscale

phenomenological coefficients K*, U*, and D* appearing in (4.4-10) are independent

of the initial conditions. The value of A(q', t') may be used to determine the utility of

the present asymptotic analysis. In instances in which most of the solute has already

been consumed by chemical reaction prior to this asymptotic analysis becoming valid,

A(q', t') will be extremely small and the distinction between a small amount of solute

remaining and zero residual solute will be mout from a practical point of view. In

other instances, such as when the solute is initially introduced in a region relatively

distant from the reactive wall, A(q', t') will be close to unity. Thus, our macroscale

analysis will possess greater utility in practical applications. However, practical con-

siderations aside, our analysis nevertheless provides a simple quantitative measure of



the effectiveness of laminar chaos in enhancing the transverse transport rate.

Introduce the dimensionless variables

Peq =
o D '

B
B ROPeQ

VRo
PeQ= D'

Po = PR,

u = QoRo

KRR2 uK R u
D ' u

Vq = RoVq,

(4.4-29)

(4.4-30)

is the circumferential velocity of the outer cylinder, and

V=Jqo U(q)dq/ jq dq

is the average axial solvent velocity. (The denominator of (4.4-31) is simply the

cross-sectional area 7r(R 2 - R ) of the annular domain.) This yields the following

nondimensional system of differential equations governing the fields P', A, and B:

±O- + PeqTi VP - qpo - P = 0,
Or

aA
- + Peq. -VA + VqA + rA = 0,

(BP ) Pe Vq( - (P,) _ t 2o_ = 150o (oj(q) -
O-F q 0 0

U*V),

(4.4-32)

(4.4-33)

(4.4-34)

which are to be solved subject to the boundary conditions given by (4.4-17)-(4.4-20),

(4.4-22)-(4.4-25), and (4.4-27)-(4.4-28), respectively, with B replaced by B and P"O

by- P1o. In addition, for the macroscale coefficients, one obtains

U*Ro
D

PeQ

2T
02T qoU(q)P (q, T)A(q, T)dqd-

tD
7 =

R2'

U

r

in which

(4.4-31)

(4.4-35)



and

D* Pe2 2T

= Q -fi(q, r)Po'(q,T7)A(q, 7) UO(q)
U*W

-V )dqdT, (4.4-36)

in which T = TD/R . The relevant parameters to be investigated in quantifying K*,

U*, and D* are thus Peq, T, and Qj/Qo, in addition to the geometric factors Ri/Ro

and (dimensionless) eccentricity = EI(Ro - Ri).

4.5 Solution scheme

In order to facilitate determining the eigenvalue r, representing the effective Dam-

kohler number for the reaction - define the field po(q, t) as follows:

P' (q, T) = po~(q, T) exp(KTr).

From (4.4-32), the po field is thus governed by the relation

0 Peqi Vqp _ Vp 0 = 0,

whereas the equation for the B field becomes

8O(Bpoc) oo+ Pe u Vq(Bp) - V(Bpo ) p o U(q)

In terms of the new variables, K is now given by

U*V- V

1
=- lim

T--+o 2T
( fqo po(q, 7 + 2T)dq

qlno Po(q, T)dq

(4.5-37)

(4.5-38)

(4.5-39)

(4.5-40)



Similarly, upon replacing A by

A(q, 7) = a(q, T) exp(-KTr), (4.5-41)

the new field a obeys the equation

Oa+ Peq - Vqa + V2a = 0. (4.5-42)

The trio of boundary-value problems posed in the preceding paragraph were solved

sequentially. Spatially uniform initial conditions were imposed upon each of the above

three functions and calculations carried out until each attained its asymptotic, time-

periodic behavior, which was independent of the arbitrarily chosen initial conditions.

In order to avoid instabilities associated with (4.5-42), a new time variable 0 = -7

was introduced, yielding the following stable equation for a(q, 0):

Oa
- Peqd -Vqa - Vqa = 0. (4.5-43)

This equation is identical to that governing the po field, with the exception of the

algebraic sign of the convective term. Owing to the symmetry of the problem, it

was not necessary to solve for the a and p•o fields separately. Rather, the a field

was obtained by inverting the po field about the axis joining the centers of the two

cylinders while reversing its time dependence.

The equations were explicitly written in bipolar coordinates (rm, ) and subse-

quently solved by an implicit finite-difference method. All the calculations utilized a

radius ratio value of Ri/Ro = 0.3, while the other parameters were varied over ap-

propriate ranges. First, the eccentricity was varied over its entire range (0 < E < 1),

from the concentric- to the tangent-cylinder case. Peq was varied over the range zero

to 106; large transverse Peclet numbers are of particular interest because species pos-



sessing small molecular diffusivities experience extremely small effective reaction rates

in the absence of transverse convection, thus making lateral transport enhancement

essential in attempting to achieve more rapid reaction rates. In addition to varying

Peq, which is equivalent to varying the angular velocities of both cylinders, we also

studied the effect of the angular velocity ratio Qi/Io, including distinguishing be-

tween co-rotating cylinders (Qi/IQo > 0) and counter-rotating cylinders (Qi/Q2o < 0).

Varying this ratio over a range similar to that employed for Peq allowed us to assess

the effect of varying the velocity of the inner cylinder, while holding the velocity of

the outer cylinder fixed. Finally, the alternation period T was varied over the range

10- s to 1, respectively corresponding to very rapid oscillation and to a period equal

to the diffusion time.

4.6 Results

4.6.1 Reactivity Coefficient

Figure 4-2 illustrates the dependence of the effective reaction-rate coefficient on the

eccentricity, while figure 4-3 shows representative streamlines for these flow conditions.

Figure 4-2 reveals that in the absence of any flow (curve 1), the net deposition rate

decreases slightly with increasing eccentricity. This simply reflects the increasing

average distance that a particle must travel in order to reach the reactive outer wall.

Rotation of the outer cylinder singly (curve 2) leads to only a modest increase in

the reaction rate over that in the absence of transverse flow. This increase is due

to the separation occurring on the inner cylinder (see figure 4-3a), which serves to

transport the reactive species from the area adjacent to the inner cylinder to the

central region, thereby increasing the gradient driving the diffusion towards the outer

wall. In comparison with the preceding case of rotation of the outer cylinder, a much

more dramatic increase in the deposition rate is observed when the inner cylinder is
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Figure 4-2: Dependence of the ratio of the effective Damkdhler number K to its value
K0 at zero eccentricity and in the absence of transverse flow on the dimensionless
eccentricity E for Ri/Ro = 0.3: (1) no transverse flow; (2-4): Peq = 5000, Qi/Qo = 6,
with (2) outer cylinder rotation; (3) inner cylinder rotation; (4) alternate rotation,
T = 0.001.
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Figure 4-3: Streamlines for Ri/Ro =
Inner cylinder rotation.

0.3, e = 0.5: (a) Outer cylinder rotation (b)



rotated singly (curve 3). This is a consequence of the location of the separation point.

When the inner cylinder is rotated, separation occurs at the outer, reactive wall (see

figure 4-3b). Thus, the effect of the separation is to transport species from the central

portion of the annulus to the region very close to the reaction site, greatly enhancing

the effective reaction rate.

The remaining curve displayed in figure 4-2 (curve 4) represents a situation in

which the cylinders rotate alternately - circumstances for which chaotic advection

has been shown to occur (Aref & Balachandar 1986, Chaiken et al. 1987, Swanson

& Ottino 1990). When each cylinder is successively rotated for a period T = 0.001,

the deposition rate attains a value above that which could be achieved solely from

rotation of the inner cylinder alone (curve 3). This clearly demonstrates the transport

enhancement occasioned by laminar chaos for this set of parameters. Comparison of

the Poincar6 sections (figure 4-4) for these parameters with the resulting deposition

rate shows that while there is some relationship between the Poincard sections and

the deposition rate, the conclusions drawn from these diagrams may be different than

the calculated results. For instance, a large island is present in the Poincard section

for E = 0.7, suggesting that the mixing achieved in this geometry is less effective than

that for either c = 0.3 or e = 0.5, where the only regular regions occur in thin bands

close to the outer cylinder. In contrast, the calculated results show that the effective

reaction rate for E = 0.7 is only slightly smaller than that for 6 = 0.5 and is, in fact,

larger than that for E = 0.3.

The effect of the alternation period T on the deposition rate is illustrated in figure

4-5. It is seen that an enhanced deposition rate, over that attained by simply rotating

the inner cylinder continuously, occurs only over a limited range of frequencies, a result

similar to that observed by Ghosh et al. (1992) in their study of heat transfer. The

increase observed in the deposition rate with switching period for small periods may

be explained by examining the Poincar6 sections for these flow conditions (figure 4-6).
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Figure 4-4: Poincare sections for alternate rotation, with Ri/Ro = 0.3, Peq = 5000,
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Figure 4-5: Dependence of the effective DamkShler number c on the alternation
period T for Ri/Ro = 0.3, e = 0.5, Qi/Qo = 6, Peq = 5000.
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Figure 4-7: Dependence of the effective Damk6hler number Ki on Pe, for Ri/Ro = 0.3,
E == 0.5, Ri/Co = 6, T = 0.01.

There is a dramatic increase in the extent of the chaotic regions at the smallest periods

(compare figures 4-6a and b). For longer periods, no such explanation is possible,

since here the extent of chaotic regions is comparable to that present at the optimum

alternation period. One possible explanation is that for these longer switching periods

it takes longer for a comparable amount of mixing to occur, thus decreasing the

effective reaction rate. Another possibility is that when molecular diffusion is present,

very long switching periods allow sufficient time for diffusive transport to establish

a pseudo-steady state during each half of the cycle, corresponding to that which

occurs when one cylinder rotates continuously. The net rate of transport to the outer

cylinder is thus (approximately) simply the average of the respective rates attained

when each cylinder is rotated individually.

Figure 4-7 displays the dependence of deposition rate on transverse Peclet number.

In the absence of diffusion, Aref & Balachandar (1986) and Chaiken et al. (1987)
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Figure 4-8: Dependence of the effective Damk6hler number i on the angular velocity
ratio Q2i/Qo for Ri/Ro = 0.3, E = 0.5, Peq = 1000, T = 0.01

observed that the extent of mixing depends only on the on the products QiT and

QoT (i.e., the angular distances traveled by each cylinder during one period) rather

than on the angular velocity and switching period individually. Here, the rate depends

on each of these parameters separately, as can be seen by comparing figures 4-5 and

4-7, which would be the same if the rate depended only on the total distance traveled

during each period. It is seen that for Peq < 500, the deposition rate for alternate

rotation falls into the envelope between the respective rates attained for continuous,

single-cylinder rotation. For large P6clet numbers the deposition rate reaches an

asymptotic value 1.3 times that attained by rotating only the inner cylinder, and 2.5

times that achieved in the complete absence of convection (Peq = 0).

Figure 4-8 depicts the effect of varying the angular velocity 2i of the inner cylinder,

while keeping constant both the switching period T and the angular velocity Qo

of the outer cylinder. Comparison of these results with those observed when the



velocities of both cylinders are varied (figure 4-7) shows that the asymptotic limit

for the deposition rate is independent of the angular velocity of the outer cylinder.

Moreover, the value of the parameter PeqQi/Qo at which the deposition rate in the

presence of chaotic flow first exceeds that achieved through rotation of the inner

cylinder alone is independent of whether the angular velocity of only the inner cylinder

or the angular velocities of both cylinders are varied. It thus appears that for large

P&clet numbers the rotation rate of the inner cylinder alone controls the deposition

rate. This is physically reasonable, since it is the rotation of the inner cylinder

that creates a separation region near the outer (reactive) wall. Rotation of the outer

cylinder contributes little to the enhancement of the deposition rate on its own, but in

combination with alternate rotation of the inner cylinder it serves to transport solute

particles from areas lying outside of the separation region to the area of separation,

where the local deposition rate is higher. Also investigated was the effect of rotating

the cylinders in opposite directions rather than in the same direction (i.e., negative

values of Qi/Qo). In the absence of diffusion, Poincard plots indicate that better

mixing is achieved with co-rotating cylinders than with counter-rotation (Chaiken

et al. 1987). This trend is not observed here. For example, an effective Damkohler

number of 19.05 occurs for Peq = 5000, T = 0.001, E = 0.5, and Qi/Qo = 6 (co-

rotation) versus a value of 19.13 for the equivalent counter-rotation case.

The period Tmax for which the maximum deposition rate occurs is shown in figure

4-9. This optimum period is given by Tmax = CPe' 1 (where C is a constant) - at

least for large Peq, equivalent to small diffusivities. This trend is consistent with the

observation in the absence of diffusion that the extent of mixing depends only on the

angular distance traveled during each period. However, the maximum deposition rate

ma,,r attainable depends upon Peq, increasing with increasing Peq, as seen in figure 4-

10. While the extent of chaotic mixing is the same in each of these instances, the rate

at which transverse transport occurs varies with Peq. In the purely deterministic case
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Figure 4-10: Dependence of the maximum achievable Damk6hler number upon Peq,
with Ri/Ro = 0.3, c = 0.5, Qi/Qo = 6.

the rate would vary linearly with angular velocity, but here, with diffusion present,

the rate of increase is lessened, with the deposition rate varying approximately as

Pe 0.25

4.6.2 Effective axial velocity

Figure 4-11 illustrates the dependence of the mean axial solute velocity upon Peq

for e = 0.5. For small Peq the average solute velocity U* exceeds the mean annular

'Poiseuille' velocity V of the solvent for both continuous rotation of a single cylinder

and successive alternate rotation of both. This is a consequence of the fact that the

reaction at the outer cylinder removes solute from the slowest-moving axial stream-

lines, so that the only solute molecules to survive the trip downstream - and hence

reach the exit of the system, where they are monitored - are those that have prefer-
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Figure 4-11: Dependence of the mean axial solute velocity upon Peq, with Ri/Ro =
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entially sampled the (faster-moving) axial streamlines existing near the center of the

annular space. As Peq is increased, the mean solute velocity decreases significantly

for situations in which only the inner cylinder is rotated. In this circumstance, the

recirculating flow near the reactive outer cylinder transports solute from some of the

faster-moving axial streamlines to the reaction site, thereby decreasing the solute

concentration along the faster streamlines, and hence reducing the average solute ve-

locity below that of the passive solvent carrier. In the case of rotation of the outer

cylinder alone, U*exceeds V for all Peq because, as is true for small Peq, the solute

is preferentially removed from the slower-moving streamlines. When the cylinders

are rotated alternately with a period of T = 0.01, the velocity ratio U*/V falls be-

tween the values for each of the cylinders rotating individually, ultimately attaining

an asymptotic value of 1.1 for very large Peq. From these data it cannot be unequiv-

ocally established whether laminar chaos is the cause of the effective solute velocity

approaching the perfectly-mixed value of 1.0, or if rotating the cylinders alternately

is simply causing this velocity to adopt a value intermediate between those attained

by rotating each of the cylinders individually.

The transverse Peclet number dependence of the axial solute velocity at the op-

timum alternation period is illustrated in figure 4-12. For large Peq, the alternation

period that maximizes the effective reaction rate is also the period at which the nor-

malized solute velocity is closest to unity. For smaller Peq, the optimums differ only

slightly from one another. In this figure, as in figure 4-11, the effective velocity when

laminar chaos is present again lies between those for the individual single cylinder

rotations, but here it is clearer that the effect of chaotic transport is to cause U*/V

to approach the perfectly-mixed value of 1.0
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Figure 4-13: Dependence upon eccentricity of the ratio of the convective contribution
D;t to the dispersivity to its value (D) 0o for concentric cylinders in the absence of
reaction and transverse flow, with Ri/Ro = 0.3, Peq = 5000 and Qi/Qo = 6.



4.6.3 Convective dispersivity

Figure 4-13 portrays the dimensionless convective contribution D*/(D*)o to the dis-

persivity, in which (D*)o represents the convective or Taylor dispersivity occurring for

the case of concentric cylinders and in the absence of transverse flow. The diminution

of solute concentration along the slower-moving streamlines resulting from reaction

at the outer wall causes the dispersivity in the absence of transverse flow to be less

than that observed by Sankarasubramanian & Gill (1971). In both the present work

and that of the afore-mentioned authors the dispersivity increases markedly as the

eccentricity is increased. This phenomenon is caused by the increasing gradients aris-

ing in the axial velocity profile with increasing eccentricity. The presence of steady

transverse convection, as embodied in the pair of curves for the respective individual

rotations of the inner and outer cylinders, acts to suppress most of this increase by al-

lowing a solute particle to cross-sectionally sample the axial streamlines more rapidly.

As evidenced by the T = 0.001 data, the effect of laminar chaos is to further decrease

the convective dispersion as a consequence of the enhanced transverse transport.

The Peq dependence of the convective dispersivity for e = 0.5 is shown in figure

4-14. At large Peq, when the cylinders are rotated alternately (T = 0.01), the disper-

sivity achieves only about 5% of the value arising in the complete absence of rotation,

and only one-half of the value attained when the inner cylinder is rotated continu-

ously. For uniform rotation of the inner cylinder, as well as for alternate rotation of

both cylinders, the Taylor dispersivity increases with Peq for small Peclet numbers,

then subsequently decreases with further increases of Peq, as expected. This initial

increase is caused by an enhancement in the probability of a tracer particle being

found on one of the slower-moving streamlines, a result of the recirculation existing

near the outer wall. For larger Peq this effect is ultimately overcome by the dimin-

ished time required for a solute particle to cross-sectionally sample all of the axial

streamlines.
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The convective dispersivity achieved at the optimum alternation period is dis-

played as a function of Peq in figure 4-15. The alternation period that maximizes the

reaction rate is the same as that which minimizes dispersion for large Peq. While the

dispersivities for continuous rotation of either of the cylinders reach asymptotic values

for large transverse P6clet numbers, that for alternate rotation at the optimum period

decays as approximately Pe, o 65 . Thus, the dispersivity under these circumstances

is no longer inversely proportional to D, instead varying as DPe0.65 Pe2 oc D-0.35

This behaviour is consistent with the results of Mezid, Brady & Wiggins (1996), which

show that the axial dispersivity does not vary inversely with the molecular diffusivity

when an ergotic transversal flow is present. However, the Peq dependence in this

case is different than the Pe In Pe dependence found by Jones & Young (1994) in the

'twisted-pipe' flow.

4.7 Conclusions

In addition to affecting the three phenomenological macrotransport coefficients ap-

pearing in the macrotransport equation (4.4-10), the presence of chaotic advection

also reduces the length of time required before the asymptotic description of the

transport process embodied in (4.4-10) becomes applicable. In the absence of trans-

verse convection, this description is valid only for times exceeding a characteristic

cross-sectional diffusion time, (R, - Ri)2/D. For species with small diffusivities this

restriction may be prohibitively long, allowing the solute particle to exit the duct (and

hence be monitored) before the asymptotic theory described here becomes valid. By

enhancing the lateral transport rate, the presence of laminar chaos significantly re-

duces the amount of time required to reach this asymptotic state. For example, with

the arbitrarily chosen, spatially-uniform initial condition used in our calculations, and

for the case where rotation is absent and E = 0.5, the reaction-rate constant achieved



a value lying within 1% of its ultimate, asymptotic value in a dimensionless time

interval of T = 0.28 following its introduction. This compares with the very much

smaller times of 1.2 x 10-2 and 1.5 x 10- 3 required to achieve the same 99% asymp-

tote for alternation at the optimum frequency with Peq = 104 and 105, respectively.

This finding is consistent with the analysis of Jones (1994), which showed that the

time required for Taylor dispersion to be valid in the chaotic flow in a twisted pipe is

t > R/UlnPe rather than t > R 2 /D as for nonchaotic flow.

From the results presented here it is evident that laminar chaotic advection not

only significantly enhances the extent mixing of an inhomogeneous fluid, as has been

previously demonstrated (Aref & Balachandar 1986, Chaiken et al. 1987, Swanson &

Ottino 1990), but also increases the effective transverse transport rate. In particular,

it is seen that the deposition or reaction rate may be enhanced at least severalfold over

that achieved in the complete absence of transverse convection, or when one of the two

cylinders is continuously and singly rotated. For Pe, = 5000 the maximum reaction

rate attainable is approximately 2.5 times that obtained for the purely diffusive case,

or 30% greater than that attainable by rotating the inner cylinder singly (figure 4-

5). For very large Peq(10 6), the maximum deposition rate in the presence of laminar

chaos (figure 4-10) is nearly five times that achieved solely by steady rotation of the

inner cylinder alone (figure 4-7), the maximum rate achievable by regular, nonchaotic,

secondary convective transport.

Lateral transport enhancement is also observed to affect both the mean axial solute

velocity and convective dispersivity. Explicitly, the effect of chaotic transport is to

cause the mean value of the axial solute velocity through the annulus to approach that

of the solvent, despite the selective removal of solute from the slower-moving axial

streamlines. At the same time, the existence of laminar chaos acts to dramatically

decrease the Taylor dispersivity by as much as several orders of magnitude over that

achievable by non-chaotic advection. It was also noted that any change of parameters



that serves to increase the deposition rate will, in most cases, decrease the dispersivity,

although this is not always the case. The most notable exception occurs at small Peq,

where the dispersivity increases with increasing Peq,, simultaneous with the deposition

rate. These differences in behaviour arise from the fact that whereas the deposition

rate depends exclusively on cross-sectional transport, the axial dispersivity depends

jointly on both the transverse and axial transport. Therefore, for one seeking a

computational means of evaluating the transport effectiveness of a given flow field, the

deposition rate is the most sensitive of the three possible phenomenological measures

by virtue of its exclusive dependence on the transverse transport processes.

Poincar6 maps, while providing a qualitative view of the extent of chaotic trans-

port, as well as a visual image of which regions of the flow are affected by laminar

chaos, furnish no directly usable engineering design information regarding the trans-

verse transport rate (Swanson & Ottino 1990). In contrast, the present work provides

a quantitative measure of the degree of transport enhancement arising from the pres-

ence of chaotic advection. In particular, Poincard sections indicate that, in general,

longer switching periods lead to a greater extent of mixing. Here, it was found that an

optimum alternation frequency exists with respect to the transport rate. Moreover,

our analysis incorporates the effect of molecular diffusion, demonstrating that even at

very large transverse Peclet numbers, the presence of molecular diffusion can signif-

icantly affect the transport rate beyond that occasioned by convection (i.e., laminar

chaos) alone, provided that sufficient time is allowed. On a broader theme, quantita-

tive understanding of the interaction between molecular diffusion and laminar chaos

may have important ramifications in elaborating the much debated (Glotefety, Taylor

& Zoller 1983) role of molecular diffusion in turbulent chaos.
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Chapter 5

Chaotic streamlines and

mass-transfer enhancement within

a non-neutrally buoyant droplet

undergoing simple shear

Abstract

The Stokes flow occurring within a non-neutrally buoyant spherical droplet suspended
in an immiscible liquid which is undergoing simple shear is shown to be chaotic un-
der many circumstances for which the droplet translates by buoyancy through the
entraining fluid. This flow is easily produced, for example, when the droplet rises

(or falls) through the annular space of a vertical concentric cylinder Couette vis-
cometer or through a vertical Poiseuille flow. The parameters studied include: (i)
droplet/bulk fluid viscosity ratio; (ii) shear strength/bubble rise velocity ratio; and
(iii) the angle between the translational bubble velocity vector and the vorticity vec-
tor characterizing the undisturbed shear. Streamlines existing within a droplet that
translates perpendicular to this vorticity vector are shown to be non-chaotic for all
choices of physical parameters. Other relative orientations frequently contain chaotic
trajectories. When solute initially dissolved within the droplet is extracted into the
bulk fluid, the resulting overall mass-transfer coefficient (calculated via generalized
Taylor dispersion theory) quantifying the extraction rate at asymptotically long times
is shown to be significantly higher in the chaotic flow case.



5.1 Introduction

In addition to the enhancement of reaction or deposition rates and the reduction of

axial convective dispersion discussed in the previous chapter, many other potential

practical applications of laminar chaos for enhancing transport rates remain to be

investigated. This chapter addresses one such application, the transport of a passive

solute from a non-neutrally buoyant spherical droplet into an entraining bulk fluid

which is undergoing simple shear. Chaotic Stokes flows within a spherical domain

have been studied by Bajer & Moffatt (1990) as well as by Stone, Nadim & Strogatz

(1991), the former considering a general quadratic flow occurring within a sphere and

the latter the internal streamlines for a neutrally-buoyant spherical droplet dispersed

in a fluid which is undergoing a general linear flow. Another three-dimensional con-

fined flow exhibiting chaotic behavior is the time-dependent spherical Couette flow

considered by Cartwright, Feingold & Piro (1996). The work of Stone et al. (1991)

is the most relevant in the context of our work. They demonstrated that the particle

paths within a drop immersed in a general linear Stokes flow may wander chaotically,

with the extent of chaotic motion depending upon the orientation of the vorticity

vector relative to the principal axes of strain of the undisturbed shear flow, as well as

upon the relative magnitudes of the vorticity and shear rate. However, they did not

consider the circumstances of a non-neutrally buoyant drop (which translates relative

to the bulk fluid), which their preliminary results suggested exhibited behavior sim-

ilar to that observed for their neutrally-buoyant case. In addition, they noted that

the internal pathlines arising for the simple shear flow case are non-chaotic.

In the present chapter we focus on the superposition of the two above-mentioned

flows, whereby a spherical drop translates through a simple shear flow. In combi-

nation, these elementary flows can display chaotic behavior within the droplet. The

structure of the resulting Poincard sections differs appreciably from those observed

in the flows considered by Stone et al. (1991). Potential fundamental and practical



interest centers on the flows considered herein owing to the ease with which they can

be realized experimentally, in addition to their immediate applicability to common

chemical engineering processes such as liquid-liquid extraction. Poincar6 sections for

these flows are presented in §5.3, and the parameter ranges established for which

chaotic flow occurs. Section 5.4 presents values obtained for the overall mass-transfer

coefficient quantifying the transport of a passive solute from the droplet interior into

the external fluid phase. Results are given for circumstances in which the flow in-

ternal to the drop is chaotic, as well as when it is non-chaotic. These mass-transfer

data provide a quantitative global measure of the chaotically-enhanced improvement

in extraction rate.

5.2 The flow field internal to the drop

The circumstance to be considered is that of a spherical droplet translating by buoy-

ancy through a fluid undergoing a simple shear flow. Different angles a between the

direction of the vorticity vector w of the undisturbed shear flow and the direction of

the gravity vector g will be investigated, with particular attention paid to the limit-

ing cases in which w is either parallel (a = 0) or perpendicular (a = w/2) to gravity.

Each of these configurations is easily produced: the former results from allowing

the bubble to rise or fall through the annular space between two vertical concentric

cylinders, wherein a Couette flow is maintained by their relative rotation; the latter

results when a bubble rises or falls within a Poiseuille flow occurring in a vertical tube.

[For definiteness in the subsequent analysis, the relative translational motion of the

droplet will always be described as if it were rising through the fluid (i.e. moving

opposite to the direction of gravity).] Intermediate angle flows (0 < a < 7/2) are

also easily realized by combining the circular Couette flow with an annular Poiseuille

flow. As will be seen later, the two limiting angles yield flows which display strikingly
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different behavior, with the a = 0 case containing large regions in which the particle

paths within the droplet are chaotic, whereas the a = 7/2 case contains only peri-

odic pathlines. In circumstances where the externally-imposed flow is not strictly a

linear shear flow it may nevertheless be regarded as such in proximity to the droplet,

provided that the droplet radius a is small compared with both the characteristic

linear dimension of the apparatus in which the external flow is generated and the

distance of the droplet from the walls of this apparatus. The droplet will be assumed

to remain spherical, a condition which requires inter alia that the respective Reynolds

numbers based on translation and shear both be small compared to unity, and that

the interface be inviscid [i.e. devoid of any special interfacial rheological properties

(Edwards, Brenner & Wasan 1991) other than interfacial tension]. Accordingly, in the

quasi-steady Stokes flow case the complete flow occurring within the droplet is simply

the linear superposition of the respective flows resulting from the bubble's translation

through the quiescent fluid and from the external shear flow for the neutrally-buoyant

droplet case.

The internal flow created by the bubble's translation is an axisymmetric Stokes

flow of the form (Hadamard 1911)

1
VT = U-[xx - (2r 2 - a2)I], (5.2-1)

2a2(l + Ua)

in which a = 1p/Po is the droplet/external-fluid viscosity ratio, x is the position

vector measured from the center of the drop, r 2 = x - x, and

2a2Ap9 1+r
U= 2a2  g g (5.2-2)

9Po g + a

is the bubble velocity, with Ap the algebraically-signed droplet/external-fluid density

difference, g = Igj the acceleration of gravity, g - g/g a unit vector parallel to gravity,

and a the droplet radius. Typical streamlines resulting from this flow are plotted in
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Figure 5-1: Streamlines internal to a spherical droplet rising by buoyancy through a
quiescent fluid.

figure 5-1.

A general external shear flow of the form v' = x - G, with G - Vv" the undis-

turbed velocity gradient, induces a fully three-dimensional flow within the droplet.

The internal flow field for a neutrally-buoyant droplet possessing an inviscid interface

and suspended within such a shear flow is given by Taylor (1932) as

1 1
VG = 1 [(5r 2 - 3a 2)(G + Gt) -x - 2xx -G -x] + -wxx, (5.2-3)

4a2( 1 + a) 2

with w = V x v" the vorticity vector. For the simple shear flow v" = i2 Gxl, we have

that G = ili 2G and w = i3G, with (x 1, x 2  3) a system of right-handed rectangular

Cartesian coordinates, (il, i2, i3) the corresponding unit vectors, and G the shear rate.

Typical internal streamlines generated by this flow are shown in figure 5-2. Note that

as a increases, the streamlines approach those for a solid-body rotation. It will be

shown later that no chaotic flow exists for these large values of a.
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(b) a = 0.5

Figure 5-2: Streamlines internal to a neutrally-buoyant spherical droplet suspended
in a fluid undergoing simple shear flow for various viscosity ratios. The streamlines
shown are those lying in the meridian plane containing the simple shearing flow.
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5.3 Chaotic trajectories within the drop: Poincar6

sections

A qualitative description of the flow may be obtained through the use of Poincar6

sections. In the present case we integrate the equation

dx- = v(x) (5.3-4)
dt

governing the Lagrangian trajectories x - x(xo, t) of the fluid particles, with v the

vector velocity field arising from the appropriate superposition of (5.2-1) and (5.2-3),

and x the position vector at time t of the particular fluid particle whose position vector

at time t = 0 was xo. Poincar6 sections may then be obtained in an appropriately

chosen plane, in this case the meridian plane whose unit normal is g. These plots are

similar to those obtained by Stone et al. (1991) for more general shear flows.

Three non-dimensional fluid-mechanical parameters arise in the present study: (i)

the ratio G - aG/U, representing the strength of the shear field relative to the bubble

rise velocity U = |UI; (ii) the internal/external viscosity ratio a; and (iii) the angle

a = cos- 1(i3 g- ) (0 < a < 7r/2) between the undisturbed vorticity vector and the

direction of gravity. [The orientation of the x, coordinate is maintained such that

throughout this chapter the angle cos- 1 (i, - g) = 7/2.]

Displayed in figure 5-3 are the Poincar6 sections for G = 1, a = 0 (corresponding

to a bubble rising perpendicularly to the shear plane), and for varying viscosity ratios

a. As is evident, the extent of the chaotic region decreases with increasing a. Indeed,

as a -+ oc the flow becomes completely non-chaotic, with the flow internal to the

droplet being simply a rigid-body rotation at angular velocity 1/2w.

Figure 5-4 displays Poincard sections for a = 0, a = 0, and for several values of

G. For small shear rates, such as G = 0.1, the particle trajectories are quasiperiodic,
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Figure 5-3: Poincare sections for G = 1, a = 0 and the indicated viscosity ratios.
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Figure 5-4: Poincar6 sections for a = 0, a = 0, and the indicated shear strength
ratios.

with particles traversing the surface of a torus (see figure 5-5). Larger values of G

result in correspondingly larger regions of the flow containing chaotic trajectories.

Figure 5-6 depicts the Poincard section resulting when G = 1, a = 0, and a =

-r/4. This flow exhibits considerable chaotic behavior. In contrast, for a = ir/2 the

resulting particle trajectories differ qualitatively from those at other angles. Indeed,

since the respective internal flows generated by the translational and shear flows lie

in the same plane, the resulting particle trajectories are purely periodic.

5.4 Effective mass-transfer coefficient

This section furnishes a calculation of the rate at which a passive solute, initially

dissolved in the droplet and absent from the bulk fluid, is transferred into the lat-

ter. The resistance to interphase mass transfer will be assumed governed locally by an

external mass-transfer coefficient k which is independent of surface position. [Our an-

alytical and computational methods are equally applicable to circumstances in which

the mass-transfer coefficient k, rather than being constant, varies in a prescribed
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Figure 5-5: Typical trajectory of a particle with G = 0.1, a = 0, and a = 0

Figure 5-6: Poincar6 section for a = 0, a = r/4, and G = 1
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manner over the surface of the droplet (e.g. Lochiel & Calderbank 1964, Baird &

Hamielec 1962).] Our goal is to determine the overall rate of interphase mass transfer

by investigating the internal convective and diffusive transport processes occurring

within the droplet. During the process the external fluid will be assumed to act sim-

ply as an infinite reservoir for solute, and hence to undergo no changes itself in solute

concentration.

The instantaneous solute concentration c(x, t) within the droplet obeys the stan-

dard convective-diffusive equation

dc
+ v -Vc - DV 2c = 0, (5.4-5)

at

subject to the respective initial and boundary conditions,

c=co at t=O0, (5.4-6)

Oc
D = -kc at r = a, (5.4-7)
Or

where co = c(x, 0) is taken to be a constant. The results ultimately obtained for

the overall mass-transfer coefficient K defined in (5.4-8) are independent of this ar-

bitrary choice of initial solute distribution, the constancy of co being chosen merely

for convenience.

These equations were solved numerically using an alternating-direction finite-

difference method, and the overall mass-transfer coefficient subsequently calculated

as

K = - lim 1 (f c(x, t + At)dV (5.4-8)K= -lim in , (5.4-8)t +00 At fV c(x, t)dV
in which At is an arbitrarily short time interval and V denotes the droplet domain.

This approach is equivalent to solving the generalized Taylor dispersion zeroth-order

local moment eigenvalue problem (Brenner & Edwards 1993). [See Edwards, Shapiro

108



& Brenner (1993) for a proof of this equivalence.] This asymptotic mass-transfer

coefficient provides a global measure of the effectiveness of the chaotic flow field in

enhancing the solute transport processes occurring within the droplet. It has the

advantage of being independent of initial conditions, and is comparable in nature

to the effective reaction-rate coefficient (Bryden & Brenner 1996) for circumstances

wherein the solute is depleted by a first-order irreversible chemical reaction (quantifies

by a kinetic reaction-rate coefficient k) occurring at the interface. The global physical

significance of K lies in the fact that it appears as the coefficient of the exponential

decay term in the asymptotic relation

M(t) , Mfe - Kt (5.4-9)

governing the mass M(t) = fv c(x, t)dV of solute remaining in the droplet at time t

for times t satisfying the inequality t >> a2 /D, with Mf the fictitious mass of solute

initially present (Shapiro & Brenner 1987); that is, Myf M(0), where M(0) =

fv c(x, O)dV - coV in present circumstances. Calculation of Myf is discussed in §5

(see table 5.1).

For a fixed Sherwood number Sh= ka/D, we parametrically explored the ef-

fects on K of varying the: (i) translational Peclet number (Pe = Ua/D); (ii) shear

strength/bubble rise velocity ratio G; (iii) relative orientation a of the shear and

translational flows; and (iv) viscosity ratio a. Typical Peclet numbers for liquid

droplets of diameters 0.1 to 10 mm are of order 105 to 1010 for hydrocarbon-aqueous

systems. Such extremely high Peclet numbers can cause numerical instabilities in

the requisite calculations. However, it proved unnecessary to carry out calculations

at very large Peclet numbers, since clearly defined trends became evident at much

smaller values. Indeed, for many sets of parameters an asymptotic limit was already

achieved at values of Pe - 100. Asymptotic limits were also observed at large Sher-
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wood numbers. All the calculations reported here employed a value of Sh = 100, just

slightly below the asymptotic limit at which the interphase transport rate becomes

independent of k. Thus, the results reported herein furnish an approximation to the

case wherein the external mass-transfer coefficient becomes infinite; that is, when the

boundary condition (5.4-7) is replaced by the condition c = 0 at r = a.

Figure 5-7 displays the effective mass-transfer coefficient K as a function of Pe for

a -= 0, a = 0, and for various values of G. With the exception of the G = 0.1 case,

each of these flows possesses chaotic regions (see figures 5-3a and 5-4). Also shown

are the mass-transfer coefficients obtained when only one of the two basic flows, shear

or translation, is present. For small Peclet numbers the extraction rate approaches

that occurring in the absence of flow, namely the smallest root of tan A = A/(1 - Sh),

with A = Ka2/D|pe=o (approximately 9.67 for the present value of Sh = 100). From

these results, it is clear that those flows which are chaotic, cf. figures 5-3(a) and

5-4(b), result in the largest extraction rates, whereas the quasiperiodic case (G = 0.1)

is nearly indistinguishable from the case of pure translational motion. The extraction

rate induced by the shear flow alone is scarcely larger than that for the purely diffusive

case. The latter behavior is expected, since many of the streamlines for this case

resemble those for solid-body rotation; and a purely rotary internal flow contributes

nothing to the transport of solute towards the droplet surface. From a comparison

of figures 5-3(a) and 5-4(b) it is not obvious which of the two flows, G = 0.5 or

G = 1, is the more chaotic in nature, since each Poincard section contains several

regular islands. In contrast with such purely qualitative attempts to distinguish the

more chaotically effective of these two flows, the quantitative rate results of figure 5-7

clearly distinguish between them.

The influence of the viscosity ratio a on mass transfer is illustrated in figure 5-8.

Again, it is seen that those flows which appear visually to be most chaotic result in

the largest mass-transfer rates.
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Figure 5-7: Effective mass-transfer coefficient as a function of Peclet number for
a = 0, a = 0, Sh=100, and various values of G. The value G = oc corresponds to the

case of no translation of the droplet. (In this case the value appearing on the abscissa
is the shear P6clet number, PeG = a2G/D. For a given PeG the strength of the shear
field is identical to that present for Pe = PeG and G = 1.)
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Figure 5-8: Effective mass-transfer coefficient as a function of P6clet number for
c = 0, Sh=100 and (1) G = 1, a = 0; (2) = 1, = 0.5; (3) G = 1, o = 1; (4)

= 0, c= 0.
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Figure 5-9 furnishes the effective extraction rate as a function of Pe (with a = 0

and G = 1) for three possible relative orientations a of the directions of gravity and

shear, namely : (i) a = 0 (translational motion parallel to the vorticity vector);

(ii) a = 7r/2 (translational motion perpendicular to the vorticity vector); (iii) a =

wK/4. As noted earlier, when a = -r/2 the trajectories are periodic, whereas in the

remaining cases they are largely chaotic. It is clear that the chaotic flows again result

in the greater extraction rates. Indeed, the effective mass-transfer coefficient in the

a = 7/2 case is even less than that occurring in the absence of shear! This result

is a consequence of the streamline pattern for this flow. Superposition of translation

and shear lying in the same plane results in the disappearance of streamlines that

circulate from the center of the droplet towards the exterior, despite their presence in

the case of pure translation. Rather, the streamlines are now closer in configuration

to concentric circles, thus contributing little to the extraction rate. Finally, the mass-

transfer coefficient is seen to be greater for a = 0 than for a = 7/4 despite the

apparently larger extent of chaos visible in the latter case. Thus, the extent of the

chaos does not always provide an accurate qualitative correlation of the global rate

of transport.

5.5 Discussion

Although only bubbles with inviscid interfaces have been considered, the results ob-

tained herein may nonetheless be applied to circumstances in which the interface is

viscous (i.e. possesses its own intrinsic Newtonian interfacial rheological properties),

provided that appropriate changes are made in the respective denominators of (5.2-

1) and (5.2-3), as well as in the magnitude U of the translational velocity. This is a

consequence of the fact that the configuration of the streamlines arising from the bub-

ble's translational motion are unaffected by the existence of interfacial viscosity; only
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Figure 5-9: Effective mass-transfer coefficient as a function of P6clet number for
a = 0, Sh =100, and: (1) G = 1, a = 0; (2) G = 1, a = 7r/4; (3) G = 1, a = 7r/2; (4)

G = 0; (5) no translation (( -+ oc).
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0 0 0
o 00 0
0 0.1 0
0 0.5 0
0 1 0

0.5 1 0
1 1 0
0 1 7/4
0 1 r/2

K24.4 0.83(
24.4 0.83
12.0 0.60
23.5 0.83
29.4 0.84
40.6 1.14
30.5 0.95
26.5 0.93
36.7 1.22
15.8 0.54

Table 5.1: Effective mass-transfer coefficient Ka2/D and fictitious/true initial solute
mass ratio Mf/M(O) for the uniform initial solute concentration case, with Pe=200,
Sh=100, and the parametric trio sets cited herein.

the magnitude of U is influenced by the interfacial rheology (Edwards et al. 1991).

Thus, the velocity field resulting from translational motion occurring in the presence

of interfacial rheology is identical to that for an inviscid bubble, with the quantity

a + ~"/apo (in which WS is the surface dilatational viscosity) appearing in the place of

the viscosity ratio oa in (5.2-1) and (5.2-2). Similarly, for small Reynolds and capillary

numbers, interfacial rheology affects the droplet velocity field created by the external

shear flow only through the denominator appearing on the right-hand side of (5.2-3)

(Edwards et al. 1991), in which o is then replaced by & de + (5Pota)-1(4pS  + 6Ks),

with p' the surface shear viscosity. Furthermore, the value of & varies over the range 0

to oc for both viscous and inviscid interfaces. Hence, by means of appropriate scaling,

the results found here may also be applied to circumstances in which the interface is

viscous.

In order to use (5.4-9) to predict the amount of solute remaining within the droplet

at a given time t after the experiment commences, it is necessary to calculate the

fictitious amount of solute Mf initially present in the droplet at t = 0 (Brenner &

Edwards 1993). Use of a fictitious initial value in place of the true value corrects

for those transport processes occurring prior to the time t = O(a 2/D) at which the

present global asymptotic description embodied in (5.4-9) becomes valid. Calculation
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of Mf requires determining the solution A(x) of the steady-state differential equation

v -VA + DV2A + KA = 0, (5.5-10)

subject to the respective boundary and normalization conditions

OA
D = -kA at r = a, (5.5-11)

Or

Vy PAdV = 1, (5.5-12)

in which

P0o(x) = lin {c(x, t)/ J c(x, t)dV (5.5-13)

represents the long-time, 'non-reactive', zeroth-order, local moment (Brenner & Ed-

wards 1993). For a specified true initial solute concentration c(x, 0), the fictitious

mass Mf of solute initially present in the droplet is then found through the quadra-

ture

Mf J c(x, 0) A(x)dV. (5.5-14)

For Pe=200, table 5.1 displays the ratio of fictitious to true initial solute masses,

Mf/M(0), where M(0) -- coV is the true mass of solute initially present in the drop

for the case described by (5.4-5) to (5.4-7). Equivalently, if we define a fictitious

(uniform) initial solute concentration cf as cf = Mf/V, then Mf/M(O) - cf/co

represents the ratio of fictitious to true initial homogeneous solute concentration in

the droplet.

The problem of extracting a solute from a translating droplet was addressed by

Kronig & Brink (1949). They found an approximate solution for asymptotically large

Peclet and Sherwood numbers. The asymptotic global extraction-rate coefficient

Ka 2/D = 24.4 furnished by our calculations in the absence of shear (cf. table 5.1)
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agrees quite well with the limiting value of 26.85 found by Kronig & Brink (1949)

for the infinite Sherwood number case, the slight difference presumably being due to

the difference in Sherwood numbers. However, our fictitious/true initial mass ratio of

Mf/M(O) = 0.83 is larger than the value of 0.65 quoted by Kronig & Brink (1949).

Our calculations showed that this latter quantity approaches its limiting asymptotic

value at much larger values of both Pe and Sh than does K. Additional calculations

performed with Sh=500 and Sh=800 (in place of Sh=100) and Pe=200 each provided

identical values of 25.8 and 0.69 for the respective values of Ka 2/D and Mf/M(O),

whereas a calculation with Sh=500 and Pe=300 provided the respective values of

26.1 and 0.66, suggesting the possibility of excellent agreement between these two

very different modes of calculation at Sh= oc, Pe=oc.

5.6 Conclusions

We have demonstrated that chaotic low Reynolds number flows can arise within a

spherical droplet by superposing translational and simple shear flows. Moreover, the

presence of chaotic streamlines is shown to significantly increase the rate of extraction

of a solute from the interior of the droplet into the bulk fluid, an observation of

potential practical importance in the design of mass-transfer devices.

The class of flows studied herein possesses the distinct advantage of being easily

realized with elementary equipment. Thus, unique opportunities exist for experi-

mental studies of these chaotic flows. In this context, tracer studies similar to those

undertaken for two-dimensional, time-dependent, chaotic flows (e.g. Swanson & Ot-

tino 1990, Kusch & Ottino 1992, Dutta & Chevray 1995, Saatdjian et al. 1996),

and three-dimensional, spatially periodic, chaotic flows (e.g. Kusch & Ottino 1992),

as well as solute extraction experiments, would be expected to usefully supplement

the present theoretical analysis. Such realizations would hopefully demonstrate the
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practical applications of chaotic flows towards improving industrial mass-transfer pro-

cesses.

The occurrence of chaos in such elementary circumstances as those studied here

suggests that other simple, practically relevant, chaotic flows exist, and that they

merely await discovery and/or theoretical elucidation before being put to productive

use in industrial applications. Indeed, it appears that in many laminar flows, chaos

may be the rule rather than the exception.
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Appendix A

Program for calculating effective

reaction rate, velocity, and

convective dispersivity in chaotic

flow between rotating eccentric

cylinders

* This program calculates effective reaction rate (infinitely fast reaction),
* velocity, convective dispersivity. It uses the LU decomposition subroutine
* ARROW, written by Paul Thomas in Prof. R.A. Brown's research group.

* files:
* input = input file
* c.dat = records calculated coeffeicients
* vin.dat = stores x,y and components of velocity (tecplot format)
* pl.dat = stores concentration profile (PO) after rotation of outer cylinder
* p2.dat = stores concentration profile (PO) after rotation of inner cyl.
~~***~**~**~****~*****t****~**************************
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* variables:
* (variables ending in 1 refer to outer cylinder, 2 to inner)
* bl,b2=banded part of matrix
* rowl,row2 = bottom rows of matrix
* cornl,corn2 = bottom right corner of matrix
* coll,col2 = right-hand columns of matrix
* storep = temporary storage of PO field, arguments are (space,time)
* storepb = temporary storage of B field
* f = matrix of PO and B fields (PO=1, B=2)
* vel,ve2 = eta component of velocity

* vzl,vz2 = zeta " " "

* v = axial velocity
* PAsum = sum of P and A fields over all space & one time period
* Ubar = avg velocity
* Uold = avg vel. from previos calculation
* oldrate = rate from previous calculation
* h = metrical coefficient
* delt =time step
* deln = grid spacing in eta direction
* delz = grid spacing in zeta direction
*******************************************************************

* variables in input file
* numsit= number of different velocity schemes to calculate
* tau = variable to determine if pivoting is used (see arrow.f)
* pout = 1 to store PO profiles, anything else otherwise
* num = number of geometries to calculate
* tol = relative error tolerance (accuracy needed before stopping calculations)
* in = 1 to display calculations to screen, anything else otherwise
* sizen = number of grid points in eta direction
* sizez = " zeta "

* delt = time step
* maxit = maximimum number of iterations
* Pe = transverse Peclet number

* max2n = time to rotate inner cylinder*2
* maxln = " " outer "*2

* rratio = inner/outer radius ratio

* etal = inner cylinder eta value
* eta2 = outer
* c = c (determined from bipolar coordinate geometry)
* eps = degree of eccentricity

program chaos
double precision bl(181,3601),coll(181,3601),rowl(3601,181)
double precision cornl (181,181),corn2(181,181)
double precision storepb(3601,300)
double precision b2(181,3601),col2(181,3601),row2(3601,181)
double precision f(3601,2),etal,eta2,c,vel(3601),vzl (3601)
double precision ve2(3601),vz2(3601)
double precision v(3601),PAsum,storep(3601,300),Ubar,Uold
double precision del,term,sum,deleta,h,eta,zeta,delt,a
double precision sdel,sl,s2,cdel,cl,c2,oldrate
double precision deln,delz,delb,dels,conv,Pe

double precision hl,h2,h3,h4,h5,h6,h7,h8,f13,f14
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double precision fl,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12
real taul,tau2 ,detlog,x,y,tol,max2n,maxln,tau
integer n,lrhs,iarrow,nod,nrhs,jna,maxit,first,sec,num,pout
integer sizen,sizez,ja,lbd,iband,jn,isign,count,optime,oppos
parameter (pi=3.14 159 2 6 5 3 5 9)

open(unit=2,file='input',status='old')
open (unit=3,file= 'c.dat',status= 'unknown')
open(unit= 10 ,file= 'vin.dat',status= 'unknown')
open(unit=7,file='pl.dat',status= 'unknown')
open(unit= 8,file= 'p2.dat',status='unknown')

read(2,*) numsit,tau,pout

do 6000 nnn=l,numsit
read(2,*) num,tol,in,sizen,sizez,delt,maxit,orat
read(2,*) Pe,max2n,maxln,rratio

write(3,*) 'Rratio: ',rratio
write (3,*) 'Pe: ',real(Pe)
write (3,*) 'Win/Wout: ', orat
write(3,*) 'tau in: ' ,real(max2n/2)
write(3,*) 'tau out: ',real(maxln/2)
write(3,*)

do 5000 nm=l,num

read (2,*) etal,eta2,c
read (2,*) eps

lrhs=2
iarrow=sizen
nrhs= 2
jna=3601
jn=3601
ja=181
taul=tau
tau2=tau
lbd=181

deln=1.0/(sizen)
delz=1.0/sizez
nod=sizen* (sizez-1)
iband=2*sizen+l
deleta=etal-eta2

max2=nint(max2n/deleta**2/delt)
maxl=nint(maxln/deleta**2/delt)

****** VELOCITY PROFILE***********************************

******************************************************

sdel=sinh(deleta)
s2=-sinh(eta2)
sl=-sinh(etal)
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cdel=cosh(deleta)
cl=cosh(etal)
c2=cosh(eta2)
del=deleta**2-sdel**2
delb=deleta*cdel-sdel
dels=sdel* (2*sl*s2*sdel-deleta* (sl**2+s2**2))
hl=deleta*s2-sl*sdel
h2=-deleta*sl+s2*sdel
h3=-eta2*sl*sdel+etal*deleta*s2
h4=etal*s2*sdel-eta2*deleta*sl
h5=eta2*cl*sdel-etal*deleta*c2
h6=-etal*c2*sdel+eta2*deleta*cl
h7= sl*c2*sdel-eta2/2.0*sinh(-2.0*etal)

$ +0.5*etal*sinh(-2.0*eta2)+etal*deleta
h8=-cl*c2*sdel-etal*c2**2+eta2*cl**2
fl=1.0/del*(delb/dels*hl *h7+h3)
f2=1.0/del*(delb/dels*h2*h7+h4)
f3=1.0O/del*(delb/dels*hl*h8+h5)
f4= 1.0/del* (delb/dels*h2*h8+h6)
f5=hl/dels*cdel
f6=h2/dels*cdel
f7=-sl/dels*sdel**2
f8=-s2/dels*sdel**2
f9=0.5*sinh(etal +eta2)*hl/dels
flO=0.5*sinh(etal+eta2) *h2/dels
fl 1=0.5*cosh(etal+eta2)*hl/dels
fl2=0.5*cosh(etal+eta2)*h2/dels
fl3=0.5* (sdel-2.0*etal*cdel)*hl/dels
f14=0.5*(sdel-2.0*etal *cdel) *h2/dels

do 5 m=l,sizen*sizez
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
eta=-eta

phi= ((fl+f5*eta) *cosh(eta)+ (f3+f7*eta) *sinh (eta)+
$ cos(zeta)* (f9*cosh(2*eta)+f11*sinh(2*eta)-f5*eta+f13))

vel (m) =sin(zeta)* (f9*cosh(2*eta)+fl 1 *sinh(2*eta)-f5*eta+f3)
$ +sin (zeta) /(cosh(eta)-cos(zeta)) *phi

term= (fl+f5*eta)*sinh(eta)+ (f3+f7*eta)*cosh(eta)
term =term+f5 *cosh(eta) +f7* sinh (eta)
term= (term+cos(zeta)* (f9*2*sinh(2*eta) 2*fl 1 *cosh(2*eta)-f5))
vz 1 (m)=term-sinh (eta)/(cosh(eta)-cos(zeta)) *phi

phi=((f2+f6*eta)*cosh(eta) + (f4+f8*eta)*sinh(eta)+
$ cos(zeta) * (fl0*cosh(2*eta)+fl2*sinh(2*eta)-f6*eta+f14))

ve2(m)=sin(zeta)* (fl0*cosh(2*eta) +fl2*sinh(2*eta)-f6*eta+fl4)
$ +sin(zeta)/ (cosh(eta)-cos(zeta)) *phi

ve2(m)=-ve2(m)*orat*c/sl
term= (f2+f6*eta)*sinh(eta)+ (f4+f8*eta)*cosh(eta)
term=term+f6*cosh (eta) +f8*sinh(eta)
term= (term+cos(zeta) *(flO*2*sinh(2*eta) +2*fl2*cosh(2*eta)-f6))
vz2 (m)=term-sinh (eta)/ (cosh(eta)-cos (zeta))*phi
vz2(m)=-vz2(m)*orat*c/s1
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5 continue

do 6 m=0,sizez-1
vel(m*sizen+1)=0.0
ve2(m*sizen+ 1)=0.0
vzl(m*sizen+l)=0.0

6 continue

if (pout.eq.1) then
write(10,*) 'ZONE I=',sizez+l,'J=',sizen
do 11031 i=l,sizen

do 11041 j=l,sizez
m=(j-1)*sizen+i
call calch(sizen,m,deleta,deln,delz,c,h,etal ,eta,zeta)
denom=cosh(eta)-cos (zeta)
x=c*sinh(eta)/denom
y=c*sin(zeta) /denom
dxdz=-sinh(eta)*sin(zeta)/h**2/c
dxde=cosh(eta)/h-sinh(eta)**2/h**2/c
vx=h* (vz2(m)*dxdz+ve2(m)*dxde)

dydz=cos(zeta) /h-sin(zeta)**2/h**2/c
dyde=sin (zeta) *sinh(eta)/h**2/c
vy=h*(vz2(m)*dydz+ve2(m)*dyde)
write(10,*) x,y,real(vx), real(vy)

11041 continue
m=i
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
denom=cosh (eta)-cos (zeta)
x=c*sinh(eta)/denom
y= c*sin(zeta) /denom
dxdz=-sinh (eta) *sin(zeta) /h* *2/c
dxde=cosh(eta) /h-sinh(eta)**2/h* * 2 /c
vx=h* (vz2(m)*dxdz+ve2(m)* dxde)

dydz=cos(zeta) /h-sin(zeta)**2/h**2/c
dyde=sin(zeta)*sinh(eta)/h**2/c
vy=h* (vz2(m)*dydz+ve2(m) *dyde)
write(10,*) x,y,real(vx), real(vy)

11031 continue
end if
**********axial velocity***************************

cothl=cosh(etal)/sinh(etal)
coth2=cosh(eta2)/sinh(eta2)
fl= (etal*coth2-eta2*cothl)/2.0/deleta
f2= (cothl-coth2) /2.0/deleta
do 7 i=l,sizen*sizez

call calch(sizen,i,deleta,deln,delz,c,h,etal ,eta,zeta)
v(i) =fl +f2*eta-0.5*cosh(eta) /sinh(eta)
do 8 n=1,20

oldv=v(i)
den= (exp(2.0*n*etal)-exp(2.0*n*eta2))
An= (cothl-coth2)/den
Bn=(exp(2.0*n*etal)*coth2-exp(2.0*n*eta2)*cothl) /den
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v(i) =v(i) +cos(n*zeta)* (An*exp(n*eta) +
$ (Bn-cosh(eta)/sinh(eta))*exp(-n*eta))

if(abs((v(i)-oldv)/v(i)) .lt.le-6) then
goto 7

end if
8 continue
7 continue

Vbar=0.0
area=O.O
Vmax=0.0
do 1100 j=l,sizen*sizez

if(v(j).gt.Vmax) vmax=v(j)
call calch(sizen,j,deleta,deln,delz,c,h,etal,eta,zeta)
Vbar=Vbar+1/h**2*v(j)
area=area+l/h**2

1100 continue
Vbar=Vbar/area

write(*,*) Vbar, Vmax/Vbar

**********initial conditions************************************

do 10 m=l,sizen*sizez
f(m,1) = 1.0
f(m,2) = (V(i)-Vbar)*delt*deleta**2

10 continue
****************************************************************

call makemat(vel,vzl,Pe,delt,sizen,sizez,b1,deleta,deln,delz,
$ c,coll,rowl,cornl,etal)

call makemat(ve2,vz2,Pe,delt,sizen,sizez,b2,deleta,deln,delz,
$ c,col2,row2,corn2,etal)

************************************************************

* begin computation
****************************** *********************************

do 1000 count=l,maxit
oldrate=rate
sum=0.0
***** calculate total PO in annulus ***********************

do 100 j=1, sizen*sizez
call calch(sizen,j, deleta,deln,delz,c,h,etal,eta,zeta)
sum=sum+1/h**2*f(j,1)

100 continue
**************************************

****** normalize to 1 *******************************

do 101 i=l,sizen*sizez
f(i,1)=f(i,1)/sum
f(i,2)=f(i,2)/ sum

101 continue
************************************************************

********calulate rate of reaction ***********************

time=delt* (maxl +max2)*deleta**2/2.0
rate=log(sum)/time
Ubar=Ubar/time
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Dbar=Dbar/time

******* signal error if any points have negative PO*****

if (k.gt.0) then
write(*,*) 'k neg',k
write(3,*) 'k neg'
goto 5000

end if

if (in.gt.0) then
write(*,*) 'Ubar ',real(Ubar/Vbar), 'Dbar ',Dbar/Vbar**2, ' rate ',rate,k

end if

k=0
if(abs((rate-oldrate)/rate).lt.tol) then

if(abs((Dbar-Dold)/Dbar).lt.tol) goto 15
end if

Dold=Dbar
Uold=Ubar
Ubar=0.0
Dbar=0.0
if(count.eq.1) then

PAsum=1.0
Uold=Vbar

end if
if(maxl.eq.0) goto 1001

************rotate outer cylinder*************************

do 1500 first=l,maxl
call arrow (f,b 1,coll ,rowl,corn 1,detlog,isign,taul ,j n,iband,lbd,

$ ja,jna,nrhs,nod,iarrow,lrhs)
if (taul.ne.-1) call makemat(vel,vzl,Pe,delt,sizen,sizez,bl,

$ deleta,deln,delz,c,coll,rowl,cornl,etal)

do 1501 i=l,sizen*sizez
if(f(i,1).lt.0) then

k=k+l
end if
storep(i,first) =f(i,1)
storepb(i,first) =f(i,2)
f(i,2)=f(i,2) + (V(i)-Uold)*f(i,1)*delt*deleta**2

1501 continue
1500 continue

tempDbar=0.0
tempUbar=0.0

do 1511 j=l,maxl
optime=maxl+l-j
tempUbar=0.0
tempDbar=0.0
PAsum=0.0
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do 1510 i=l,sizez*sizen
call calch(sizen,i,deleta,deln,delz,c,h,etal,eta,zeta)
if (zeta.eq.0) then

oppos=i
else

r=zeta/pi*sizen*sizez
oppos=i+sizen*sizez-r

end if
a=storep(oppos,optime)
tempDbar=tempDbar+1.0/h**2*storepb(i,j)*a*(V(i)-Uold)
tempUbar=tempUbar+1.0/h**2*storep(i,j)*a*V(i)
PAsum=PAsum+a*storep(i,j)/h**2

1510 continue
Ubar=Ubar+tempUbar/PAsum*delt/2.0*deleta**2
Dbar=Dbar+tempDbar/PAsum*delt/2.0*deleta**2

1511 continue

if (pout.eq.1) then
rewind(7)
write(7,*) 'ZONE I=',sizez+l,'J=',sizen
do 1103 i=1,sizen
do 1104 j=l,sizez

m=(j-1)*sizen+i
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
denom=cosh (eta)-cos (zeta)
x=c*sinh(eta)/denom
y=c*sin(zeta) /denom
write(7,*) x,y,real(f(m,1))

1104 continue
m=i
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
denom=cosh (eta)-cos(zeta)
x=c*sinh(eta) /denom
y=c*sin(zeta) /denom
write(7,*) x,y,real(f(m,1))

1103 continue
end if

1001 if (max2.eq.0) goto 1000
*********rotate inner cylinder *******************************

do 1550 sec=l,max2
call arrow (f,b2,col2,row2,corn2,detlog,isign,tau2,jn,iband,lbd,

$ ja,jna,nrhs,nod,iarrow,lrhs)
if(tau2.ne.-1) call makemat(ve2,vz2 ,Pe,delt ,sizen,sizez,b2,

$ deleta,deln,delz,c,col2,row2,corn2,etal)

do 1551 i=l,sizen*sizez
storep(i,sec)=f(i,1)
storepb(i,sec)=f(i,2)
f(i,2)=f(i,2)+(V(i)-Uold)*f(i,1) *delt*deleta**2

1551 continue
1550 continue

do 1561 j=1,max2
optime=max2+1-j
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tempDbar=0.0
tempUbar=0.0
PAsum=0.0
do 1560 i=l,sizen*sizez

call calch(sizen,i,deleta,deln,delz,c,h,etal,eta,zeta)
if (zeta.eq.0) then

oppos=i
else

r=zeta/pi*sizen*sizez
oppos=i+sizen*sizez-r

end if
a=storep(oppos,optime)
tempDbar=tempDbar+1 .0/h**2*storepb(i,j) *a* (V(i)-Uold)
tempUbar=tempUbar+1.0/h**2*storep(i,j)*a*V(i)
PAsum=PAsum+a*storep(i,j)/h**2

1560 continue
Ubar=Ubar+tempUbar/PAsum*delt/2.0*deleta**2
Dbar=Dbar+tempDbar/PAsum*delt/2.0*deleta**2

1561 continue

******output P0 profile************************************

if (pout.eq.1) then
rewind(8)
write(8,*) 'ZONE I=',sizez+l1,'J=',sizen
do 1105 i=1,sizen

do 1106 j=l,sizez
m=(j-1)*sizen+i
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
denom= cosh (eta)-cos (zeta)
x=c*sinh(eta) /denom
y=c*sin(zeta) /denom
write(8,*) x,y,real(f(m,1))

1106 continue
m=i
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
denom=cosh (eta)-cos (zeta)
x=c*sinh(eta)/denom
y=c*sin(zeta)/denom
write(8,*) x,y,real(f(m,1))

1105 continue
end if

************************************************************

1000 continue
write(*,*) sum
write(3,*) eps,-rate,Ubar/Vbar,Dbar/Vbar**2
write(3,*)
write(*,*) rate,Ubar/Vbar,Dbar/Vbar**2

5000 continue
6000 continue

end

******calculate metrical coefficients***************************

subroutine calch(sn,n,deleta,deln,delz,c,h,etal,eta,zeta)
integer sn,n,term
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double precision p,deln,delz,h,c,etal,deleta,zeta,eta
parameter (pi=3.14159265)
p=1.0*(n-0.5)/sn
term= aint(p)
eta=deln* (n-term*sn-1)
zeta=delz* (term)
h=1.0/c* (cosh(-eta*deleta+etal)-cos(zeta*2.0*pi))
eta=etal-eta*deleta
zeta=zeta*2.0*pi
return
end

*********form matrix***********************************************

subroutine makemat(ve,vz,Pe,delt,sizen,sizez,b,deleta,deln,delz,
$ c,col,row,corn,etal)

integer sizez,sizen
double precision deln,delz,h,c,deleta,zeta,eta,delt,Pe
double precision b(181,3601),col(181,3601),row(3601,181)
double precision corn(181,181)
double precision etal,ve(3601),vz(3601)
parameter(pi=3.14159265)
do 13 m=l,sizen*sizez-sizen

do 16 j=1,2*sizen+1
b(j,m)=0.0

16 continue
do 17 j=1,sizen

col(j,m)=0.0
row(m,j)=0.0

17 continue
13 continue

do 30 m=1,sizen
do 31 j=l1,sizen

corn(m,j)=0.0
31 continue
30 continue

do 20 m=l,sizen*sizez-sizen
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
term=l1.0/4.0/(pi*delz)**2*deleta**2
b(sizen+l,m)=delt*h**2*(1.0/(deln)**2+term)+1.0
b(sizen,m) =-0.5*h**2*delt*(1.0/deln)**2
conv=delt*h/4.0*ve(m)*deleta/deln
b(sizen,m)=b(sizen,m)-Pe*conv
b(sizen+2,m) =-0.5*h**2*delt*(1.0/deln)**2
b(sizen+2,m)=b(sizen+2,m)+Pe*conv

20 continue

do 40 m=l,sizen
b(1,m)=O.O
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
b(2*sizen+1,m) =-h**2/8.0
b(2*sizen+1,m)= b(2*sizen+1,m)*(deleta/pi)**2
b(2*sizen+l,m)=b(2*sizen+l,m)*delt/delz**2
conv=delt/8.0/pi*h*deleta**2*vz(m)/delz
b(2*sizen+1 ,m)=b(2*sizen+1 ,m)+Pe*conv
col(m,m) = -h**2/8.0*(deleta/pi)**2*delt/delz**2
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col(m,m) =col(m,m)-Pe*conv
40 continue

do 50 m=sizen+1,(sizez-2)*sizen
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
conv=delt/8.0/pi*h*deleta**2*vz(m)/delz
b(1,m)=-h**2/8.0*(deleta/pi) **2*delt/delz**2-Pe*conv
b(2*sizen+ 1 ,m)=-h**2/8.0*(deleta/pi)**2*delt/del z**2+Pe*conv

50 continue

do 55 i=l1,sizen
m= (sizez-2)*sizen+i
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
conv=delt/8.0/pi*h*deleta**2*vz(m) /delz
b(1,m)= -h**2/8.0*(deleta/pi)**2*delt/delz**2-Pe*conv
col(i,m)= -h**2/8.0*(deleta/pi)**2*delt/delz**2+Pe*conv

55 continue

do 60 i=1,sizen
m=i+ (sizez-1) *sizen
call calch(sizen,m,deleta,deln,delz,c,h,etal,eta,zeta)
conv=delt/8.0/pi*h*deleta**2*vz(m)/delz
row(i,i) =-h**2/8.0* (deleta/pi) **2*delt/delz**2+Pe*conv
row(m-sizen,i) =-h**2/8.0* (deleta/pi) **2*delt/delz**2
row(m-sizen,i)=row(m-sizen,i)-Pe*conv
corn(i,i)= delt*h**2*((1.0/deln)**2

$ +1.0/4.0*(deleta/delz/pi)**2)+1.0
conv=delt*h*deleta/deln/4.0*ve(m)
corn(i+l,i)= -0.5*h**2*delt*(1.0/deln)**2+Pe*conv
corn(i-1,i)= -0.5*h**2*delt*(1.0/deln)**2-Pe*conv

60 continue

do 70 m=0,sizez
b(sizen,m*sizen+l) = 0.0
b(sizen+2,m*sizen) = 0.0
b(sizen+2,m*sizen+1)=2.0*b(sizen+2,m*sizen+1)

70 continue
corn(2,1) =2.0*corn(2,1)
end
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Appendix B

Program to calculate extraction
rate from a droplet

* This program calculates the extraction rate from a droplet undergoing translation
* and simple shear. It uses the LU decomposition subroutine ARROW,
* written by Paul Thomas in Prof. R.A. Brown's research group.
****************************************************************************

program xtract
integer sizeth,sizep,sizer,max,time,a,aa,ocoord,num
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision

vr,vt,vp,delt,delth,delp,dely,shear,F,Pe,tol
P (70000),P1 (70000),P2(70000),rate,sum,oldrate
r,t,dpdy,dp2dy,dpdt,dp2dt,dpdp,dp2dp,rhs(70000)
b(1600,6,90),dl(1600,90,1),e2(1,1)
cl(1600,1,90),el(1600,1,1),bth(80,6,80)
ex,term,c2(1,80),d2(80,1),b2(2,6,80)
c(1,80),d(80,1),e(1,1),bl(6,80)
temp(70000),al ,alpha,beta,z,delz,ln,delr,bratio
cul(70000),cu2(70000),cu3(70000),mtc,terml
oldsuml,oldsum2,oldsum3,oldsum4,oldsum5
c3(44,1,80),d3(44,80,1),e3(44,1,1)
angle2,anglel

character* 10 filename
parameter (pi=3.14159265359)
open (unit=2,file= 'expinl ',status= 'old')
read(2,*) num
do 6000 count=1, num
rate=1.0
oldrate=1.0
oldsuml=1.0
oldsum2=2.0
oldsum3=3.0
oldsum4=4.0
oldsum5=5.0
read(2,*) filename,out,old
read(2,*) delt,sizer,sizeth,sizep,shear,F,Pe,max,tol,tau
read(2,*) al,alpha,beta,mtc
read(2,*) anglel,angle2
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anglel=anglel*Pi
angle2=angle2*Pi
delz= 1.0/ (real(sizeth) +1.0)
delp=2.0*pi/real(sizep)
ymax=log(1.0/(al-l.0))
ymin=log(1.0/al)
dely=(ymax-ymin) /real(sizer)
ocoord=sizer*sizeth*sizep+2*sizer+ 1
bratio= (beta+ 1)/ (beta-1)
ln=log(bratio)
z=delz
ex= (z-alpha) / (1.0-alpha)
t=pi*((2.0*alpha+beta)*bratio**ex+2.0*alpha-beta)/

$ 2.0*alpha+l.0)/(1.0+bratio**ex)
delth=t
jn=80
iband=3
lbd=6
ja=l
jna=80
nrhs=l
lrhs=l

111 do 10 i=l,sizer
y=i*dely+ymin
r=al-exp(-y)
rold=r
a=i+sizeth*sizep*sizer
P(a)=1.0
cul(a)=0.0
cu2(a)=0.0
cu3(a)=0.0
a=i+sizer+sizeth*sizep*sizer
P(a)=i.O
cul(a)=0.0
cu2(a)=0.0
cu3(a)=0.0
doll j=0,sizeth-l

do12 k=0,sizep-1
a=i+sizer*j +sizeth*sizer*k
P(a)=l.0
cul(a)=0.0
cu2(a)=0.0
cu3(a)=0.0

12 continue
11 continue
10 continue

P(ocoord)=1.0
cul(ocoord)=0.0
cu2(ocoord)=0.0
cu3(ocoord)=0.0
if (old.eq.1) then

open(unit=4, file='savestate', status='old')
read(4,*) P(ocoord),cul(ocoord),cu2(ocoord),cu3(ocoord)
do 2101 i=l,sizer
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a=i+sizeth*sizer*sizep
read(4,*) P(a),cul(a),cu2(a),cu3(a)
a=a+sizer
read(4,*) P(a),cul(a),cu2(a),cu3(a)
do 1102 j=1, sizeth

do 1103 k=l,sizep
a=i+(j-l1)*sizer+(k-l1)*sizer*sizeth
read(4,*) P(a),cul (a),cu2(a),cu3(a)

1103 continue
1102 continue
2101 continue

close(4)
end if
do 18 j=1,sizeth

z=j*delz
ex= (z-alpha) /(1.0-alpha)
t=pi*((2.0*alpha+beta)*bratio**ex+2.0*alpha-beta)/(2.0*alpha+1.0)

$ /(1.O+bratio**ex)
dzdt=2.0*beta* (2.0*alpha+ 1.0) *(1.O-alpha)/pi/ln/

$ (beta*beta-((2.0*alpha+ 1.0)*t/Pi-2.0*alpha)**2)
dz2dt=2.0*beta*(2.0*alpha+1.0)**2*(1 .0-alpha)/pi**2/ln*

$ 2.0*((2.0*alpha+1.0)*t/Pi-2.0*alpha)
term=(beta*beta-((2.0*alpha+ 1.0) *t/Pi-2.0*alpha)**2) **2
dz2dt=dz2dt/term
told=t

18 continue
delr=al-exp(-ymin-dely)

13 do 5000 time=l,max
if (time.eq.1) then
do 90 i=1,sizer

c2(1,i)=0.0
d2(i,1)=0.0
c2(1,sizer+i)=0.0
d2(sizer+i,1)=0.0

90 continue
*************step in r********************************************************

***************** ***** /der*********************************************
d2(1,1)=delt/2.0*(-1.0/delr**2)
e2(1,1)= 1.0+delt/2.0* (2.0/delr**2)
d2(sizer+l1,1)=delt/2.0*(-1.0/delr**2)
end if
a=(sizeth-1)*sizer/2+1
aa=a+sizep/2*sizer*sizeth
dp2dt= (P(a)-2.0*P(ocoord)+P(aa))/delr/delr
a=sizer*sizeth*sizep/4+(sizeth-l1)*sizer/2+1
aa=a+sizer*sizeth*sizep/2
dp2dp=(P(a)-2.0*P (ocoord)+P(aa)) /delr/delr
a=sizer*sizep*sizeth+l 1
dp2dy=(P (a)-2.0*P(ocoord)+P(a+sizer))/delr/delr
rhs(2*sizer+1) =P(ocoord)+delt/2.0* (2.0*dp2dt+2.0*dp2dp+dp2dy)
rhs(2*sizer+l1) =rhs(2*sizer+ 1)+23.0/12.0*cul (ocoord)

$ -4.0/3.0*cu2(ocoord)+5.0/12.0*cu3(ocoord)
**do 100 1*****************************-ax*************************************

do 100 i=l,sizer
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y=i*dely+ymin
r=al-exp(-y)
term=exp(2.0*y)
terml=exp(y)
if (time.eq.1) then

b2(1,1,i)=-delt/2.0*term/dely**2
b2(1,1,i)=b2(1,1 ,i)+delt/2.0* (terml/r/dely+term/2.0/dely)
b2(1,2,i)= 1.0+delt/2.0*2.0/dely**2*term
b2(1,3,i)=-delt/2.0*term/dely**2
b2(1,3,i)=b2(1,3,i)-delt/2.0*(term 1 /r/dely+term/2.0/dely)
if(i.eq.1) then

c2(1,1)=b2(1,1,i)
c2(1,sizer+1)=b2(1,3,i)+delt*(terml/r/dely+term/2.0/dely)

end if
b2(1,1,i+sizer)=b2(1,1,i)
b2(1,2,i+sizer)=b2(1,2,i)
b2(1,3,i+sizer)=b2(1,3,i)

end if
a=sizeth*sizer*sizep+i
if (i.eq.1) then

dp2dy=(P(a+ 1)-2.0*P(a)+P(ocoord)) /dely/dely
dpdy= (P(a+l1)-P(ocoord))/dely/2.0

else if (i.eq.sizer) then
dp2dy= (-mtc*2.0*dely*P(a) /term +P(a-1)-2.0*P(a)+P(a-1))/dely**2
dpdy=-mtc*P (a) /term1

else
dp2dy=(P(a+1)-2.0*P(a)+P (a-1))/dely/dely
dpdy= (P(a+ 1)-P(a-1))/2.0/dely

end if
aa=3*sizer*sizeth*sizep/4+i
dp2dp=(P(sizer*sizeth*sizep/4+i)-2.0*P(a)+P(aa))/delth**2
dp2dt= (P(i)-2*P(a)+P(sizeth*sizer*sizep/2+i)) /delth**2
rhs(i)=P(a) +delt/r**2* (dp2dt+dp2dp) +delt/2.0

$ *(term*dp2dy+(term+terml*2.0/r) *dpdy)
rhs(i)=rhs(i)+23.0/12.0*cul (a)-4.0/3.0*cu2(a) +5.0/12.0*cu3(a)
a=sizeth*sizer*sizep+sizer+i
tcoord=i+sizer*(sizeth-1)
pcoord=i+sizer*(sizeth-1)+sizer*sizeth*sizep/4
if (i.eq.1) then

dp2dy=(P(a+ 1)-2.0*P(a)+P(ocoord))/dely/dely
dpdy=(P(a+l)-P(ocoord)) /dely/2.0

else if (i.eq.sizer) then
dp2dy=(-mtc*2.0*dely*P(a)/term1 +P(a-1)-2.0*P(a) +P(a-1))/dely**2
dpdy=-mtc*P (a) /terml

else
dp2dy=(P(a+1)-2.0*P(a)+P(a-1))/dely/dely
dpdy=(P(a+1)-P(a-1))/2.0/dely

end if
dp2dp= (P(pcoord)-2.0*P(a)+P (pcoord+sizer*sizeth*sizep/2))
dp2dt=(P(tcoord)-2.0*P(a)+P(tcoord+sizer*sizeth*sizep/2))
rhs(sizer+i)=P(a) +delt/ (r*delth)**2* (dp2dp+dp2dt)

$ +delt/2.0* (term*dp2dy+ (term+2.0*terml/r) *dpdy)
rhs(sizer+i)= rhs(sizer+i) +23.0/12.0*cul(a)

$ -4.0/3.0"cu2(a)+5.0/12.0*cu3(a)
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100 continue
if(time.eq.1) then

term=exp(2.0*ymax)
terml=exp(ymax)
b2(1,1,1)=0.0
b2(1,3,sizer)=0.0
b2(1,2,sizer)=b2(1,2,sizer) +mtc*2.0*dely/terml*delt/2.0*

$ (terml /r/dely+term/2.0/dely+term/dely* *2)
b2(1,1,sizer)=b2(1,1,sizer)

$ -delt/2.0*(terml /r/dely+term/2.0/dely+term/dely**2)
b2(1,1,sizer+l)=O.O
b2(1,3,2*sizer)=0.0
b2(1,2,2*sizer) =b2(1,2,sizer)
b2(1,1,2*sizer)=b2(1,1,sizer)

end if
iarrow=1
nod=2*sizer
do 101 i=l,nod

c(1,i)=c2(1,i)
d(i,1)=d2(i,1)
do 102 j=1,3

bl (j,i)=b2(1,j,i)
102 continue
101 continue

e(1,1)=e2(1,1)

call arrow(rhs,bl ,c,d,e,detlog,isign,tau,jn,iband,lbd,ja,
$ jna,nrhs,nod,iarrow,lrhs)

if (time.eq.1) then
do 1001 i=l,nod

c2(1,i)=c(1,i)
d2(i,1)=d(i,1)
do 1002 j=1,3

b2(1,j,i)= bl(j,i)
1002 continue
1001 continue

e2(1,1)=e(1,1)
end if
do 105 i=l,sizer

P 1 (sizer*sizeth*sizep+i) =rhs(i)
P1 (sizer*sizeth*sizep+sizer+i)=rhs(sizer+i)

105 continue
P1 (ocoord)=rhs(2*sizer+ 1)

•**~******************* center points ********************* ***************
do 110 k=l,sizep

do 120 j=1,sizeth
z=delz*j
ex= (z-alpha)/(1.0-alpha)
t=pi* ((2.0*alpha+beta)*bratio**ex+2.0*alpha-beta)/

$ (2*alpha+1.0) /(1.O+bratio**ex)
cott=cos(t) /sin(t)
term=(2.0*alpha+1.0) *t/Pi-2.0*alpha
dzdt=2.0*beta*(2.0*alpha+1.0)*(1.0-alpha)/pi/ln/
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$ (beta*beta-term*term)
term=2.0*alpha+l1.0
dz2dt=2.0*beta*term*term*(1 .0-alpha) /pi/pi/ln*

$ 2.0*((2.0*alpha+1.0)*t/Pi-2.0*alpha)
term=term*t/pi-2.0*alpha
term= (beta*beta-term*term)
term=term*term
dz2dt=dz2dt/term
do 130 i=l,sizer
y=i*dely+ymin
r=al-exp(-y)
term=exp(2.0*y)
terml=exp(y)
if((time.eq. 1).and.(j.eq. 1).and. (k.eq. 1)) then

b2(2,1 ,i)= ((2.0*term1/r+term)/2.0/dely-term/dely/dely) *delt/2.0
b2(2,2,i)= 1.0+delt/2.0*2.0/dely/dely*term
b2(2,3,i)= (-(2.0*terml/r+term)/dely/2.0-term/dely/dely)*delt/2.0

end if
call dpt(i,j,k,delz,sizer,sizeth,sizep,P,dpdt)
call dp2t(i,j,k,delz,sizer,sizeth,sizep,P,dp2dt)
call dpp(i,j,k,delp,sizer,sizeth,sizep,P,dpdp)
call dp2p(i,j,k,delp,sizer,sizeth,sizep,P,dp2dp)
call dpr(i,j,k,dely,sizer,sizeth,sizep,P,dpdy,mtc,terml)
call dp2r(i,j ,k,dely,sizer,sizeth,sizep,P,dp2dy,mtc,terml)
a=i+(j-1)*sizer+(k-1)*sizer*sizeth
rhs(i)=P(a)+delt* (dp2dt/r/r*dzdt*dzdt+ (dz2dt+cott*dzdt) /r/r*dpdt

$ +dp2dp/r/r/sin(t)/sin(t)) +delt/2.0*(term*dp2dy+(terml*2.0/r+term)*dpdy)
rhs(i) =rhs(i) +23.0/12.0*"cul (a)-4.0/3.0*cu2(a) +5.0/12.0*cu3(a)
if (i.eq.1) then

PO=Pl(ocoord)
rhs(1)=rhs(1) +PO*delt/2.0* (term/dely/dely-terml/dely/r

$ -term/dely/2.0)
end if

130 continue

if((time.eq.1).and.((j.eq.1).and.(k.eq.1))) then
term=exp(2.0*ymax)
term1=exp(ymax)
b2(2,1,1)=0.0
b2(2,3,sizer)=0.0
b2(2,2,sizer)=b2(2,2,sizer)+mtc*2.0*dely/terml*delt/2.0*

$ (term 1 /r/dely+term/2.0/dely+term/dely**2)
b2(2,1 ,sizer)=b2(2,1 ,sizer)-delt/2.0*(terml/r/dely+term/2.0/dely+term/dely**2)

end if
nod=sizer
iarrow=0
do 201 i=l,nod

do 202 jj=1,3
bl(jj,i)=b2(2,jj,i)

202 continue
201 continue

call arrow(rhs,bl,c,d,e,detlog,isign,tau,jn,iband,lbd,ja,

$ jna,nrhs,nod,iarrow,lrhs)
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if((time.eq.1).and.(k.eq.1).and.(j.eq.1)) then
do 2001 i=1,nod

do 2002 jj=1,3
b2(2,jj,i)=bl (jj,i)

2002 continue
2001 continue

tau=-1.0
end if
do 140 i=l,sizer

a=i+(j-1)*sizer+(k-1)*sizer*sizeth
Pl(a)=rhs(i)

140 continue
120 continue
110 continue

if(time.eq.1) tau=0.0
************************step in theta*** ********** ********************

do 210 k=l,sizep
if (k.eq.sizep/2+1) goto 210
if(time.eq.1) then

if ((k.eq.1).or.(k.eq.2)) then
tau=0.0

else
tau=-1.0

end if
end if
do 220 i=l1,sizer

y=i*dely+ymin
r=al-exp(-y)

********************* Z axis**********************************************

if (k.eq.1) then
ii=i
if(time.eq.1) then

do 5131 j=1,sizeth
c3(ii,1,j+l)=0.0
d3(ii,j+1,1)=0.0
c3(ii, 1,j+sizeth+ 1) =0.0
d3(ii,j +sizeth+ 1,1) =0.0

5131 continue
bth(ii,1,1)=0.0
bth(ii,2,1)=l1.0+delt/ (r*delth)**2
bth(ii,3,1)=-delt/2.0/ (r*delth)**2
bth(ii,l1,sizeth+2)=-delt/2.0/(r*delth)**2
bth(ii,2,sizeth+2)=1 .0+delt/(r*delth) **2
bth(ii,3,sizeth+2) =-delt/2.0/ (r*delth) **2
c3(ii,l1,1)=-delt/2.0/(r*delth)**2

end if
a=sizer*sizeth*sizep+i
aa=i
dp2dt=(P(aa)-2.0*P(a)+P(aa+sizer*sizeth*sizep/2)) /delth**2
rhs(1)=P 1 (a)-delt/2.0*(dp2dt/r**2)
a=sizer*sizeth*sizep+sizer+i
aa= (sizeth-1) *sizer+i
dp2dt= (P(aa)-2.0*P(a)+P (aa+sizer*sizeth*sizep/2))/delth**2
rhs(sizeth+2)=P1 (a)-delt/2.0*(dp2dt/r**2)
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end if
****************************center points ***************** ***************

do 230 j=l1,sizeth
if (k.eq.1) then

aa=j+l
else

aa=j
ii=sizer+i

end if
z=delz*j
ex= (z-alpha)/(1.0-alpha)
t=pi*((2.0*alpha+beta)*bratio**ex+2.0*alpha-beta)/

$ (2*alpha+ 1.0)/(1.O+bratio**ex)
term= (2.0*alpha+ 1.0)*t/Pi-2.0*alpha
dzdt= 2.0*beta*(2.0*alpha+1 .0)* (1 .O-alpha) /pi/ln/

$ (beta*beta-term*term)
term= 2.0*alpha+ 1.0
dz2dt=2.0*beta*term*term*(1 .0-alpha) /pi/pi/ln*

$ 2.0*(term*t/Pi-2.0*alpha)
term=term*t/pi-2.0*alpha
term= (beta*beta-term*term)
term=term*term
dz2dt=dz2dt/term
cott=cos(t)/sin(t)
a=i+(j-1)*sizer+ (k-1)*sizer*sizeth
call dpt(i,j,k,delz,sizer,sizeth,sizep,P,dpdt)
call dp2t(i,j,k,delz,sizer,sizeth,sizep,P,dp2dt)
rhs(aa)=P1 (a)-delt/2.0*(dzdt**2*dp2dt/r**2+

$ (dz2dt+dzdt*cott)/r**2*dpdt)

if((time.eq.1).and.((k.eq.1).or.(k.eq.2))) then
bth(ii,1,aa)=-(dzdt/r/delz)**2+ (dz2dt+cott*dzdt)/delz/2.0/r**2
bth(ii,l,aa) =bth(ii,l,aa)*delt/2.0
bth(ii,2,aa)=1.0+2.0/2.0*delt*(dzdt/r/delz)**2
bth(ii,3,aa)=-(dzdt/r/delz)**2-(dz2dt+cott*dzdt) /delz/2.0/r**2
bth(ii,3,aa)=bth(ii,3,aa)*delt/2.0

end if

if (k.eq.1) then
tt=Pi-t
term= (2.0*alpha+1.0) *tt/Pi-2.0*alpha
dzdt=2.0*beta*(2.0*alpha+1.0)*(1 .O-alpha)/pi/ln/

$ (beta*beta-term*term)
term=2.0*alpha+ 1.0
dz2dt=2.0*beta*term*term*(1.O-alpha)/pi/pi/ln*

$ 2.0*(term*tt/Pi-2.0*alpha)
term=term*tt/pi-2.0*alpha
term= (beta*beta-term*term)
term=term*term
dz2dt=dz2dt/term
cott=cos(tt) /sin (tt)
kk=k+sizep/2
jj=sizeth-j+l
a-i+(jj-1)*sizer+(kk-1)*sizer*sizeth
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call dpt(i,jj,kk,delz,sizer,sizeth,sizep,P,dpdt)
call dp2t(i,jj,kk,delz,sizer,sizeth,sizep,P,dp2dt)
rhs(aa+sizeth+l)=P l(a)-delt/2.0* (dzdt**2*dp2dt/r**2+

$ (dz2dt+dzdt*cott)/r**2*dpdt)

if (time.eq.1) then
bth(ii,l,sizeth+2+j)=(-(dzdt/r/delz)**2-

$ (dz2dt+cott*dzdt)/delz/2.0/r**2)*delt/2.0
bth(ii,2,sizeth+2+j)=1 .0+2.0/2.0*delt* (dzdt/r/delz)**2
bth(ii,3,sizeth+2+j)=(-(dzdt/r/delz)**2+

$ (dz2dt+cott*dzdt) /delz/2.0/r**2)*delt/2.0

if(j.eq.sizeth-1) then
c3(ii,1,2*sizeth+1)=bth(ii,3,2*sizeth+1)
bth(ii,3,2*sizeth+ 1) =0.0

end if

if(j.eq.sizeth) then
d3(ii,1,1)=bth(ii,3,2*sizeth+2)
bth(ii,3,2*sizeth+2)=0.0
d3(ii,2*sizeth+ 1,1)=bth(ii,1,2*sizeth+2)
bth(ii,1,2*sizeth+2)=0.0
e3(ii,1,1)=bth(ii,2,2*sizeth+2)
bth(ii,2,2*sizeth+2)=0.0

end if
end if

end if

if ((time.eq.1).and.(k.eq.2)) then
bth(ii,1,1)=0.0
bth(ii,3,sizeth)=0.0

end if

if(k.ne.1) then
if (j.eq.1) then

rhs(j)=rhs(j) +delt/2.0*P2(sizer*sizeth*sizep+i)*
$ (dzdt/r/delz*dzdt/r/delz-(dz2dt+dzdt*cott)/delz/r/r/2.0)

else if (j.eq.sizeth) then
rhs(j)=rhs(j) +delt/2.0*P2(sizer*sizeth*sizep+sizer+i)*

$ (dzdt/r/delz*dzdt/r/delz+ (dz2dt+dzdt*cott)/delz/r/r/2.0)
end if

end if
230 continue

if (k.eq.1) then
nod=2*sizeth+l
iarrow=1

else
nod=sizeth
iarrow=0

end if

do 301 inew=1,nod
do 302 j=1,3
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bl (j,inew) =bth(ii,j,inew)
302 continue

if (k.eq.1) then
c(1,inew)=-c3(ii,l,inew)
d(inew,1)=d3(ii,inew,1)

end if
301 continue

if (k.eq.1) e(1,1)=e3(ii,1,1)

call arrow(rhs,bl,c,d,e,detlog,isign,tau,jn,iband,lbd,ja,
$ jna,nrhs,nod,iarrow,lrhs)

if((time.eq.1) .and.((k.eq. 1).or.(k.eq.2))) then
do 3001 inew=1,nod

do 3002 j=1,3
bth(ii,j,inew)=bl (j,inew)

3002 continue
if(k.eq.1) then

c3(ii,1,inew)=c(1,inew)
d3(ii,inew,1)-=d(inew,1)

end if
3001 continue

if (k.eq.1) e3(ii,l,1)=e(1,1)
end if

if (k.ne.1) then
do 240 j=1,sizeth

a=i+(j-1)*sizer+(k-1)*sizer*sizeth
P2(a)=rhs(j)

240 continue
else

do 245 j=l1,sizeth
a=i+(j-1)*sizer
P2(a)=rhs(j+l)
P2(a+sizer*sizeth*sizep/2)=rhs(3+2*sizeth-j)

245 continue
P2(sizer*sizeth*sizep+i)=rhs(1)
P2(sizer*sizeth*sizep+sizer+i)=rhs(sizeth+2)

end if
220 continue
210 continue
**************************solve for origin************************************

optheta=(sizeth-1)/2*sizer+1
optheta2=optheta+sizer*sizeth*sizep/2
P2(ocoord)=P1 (ocoord)-delt/2.0*(P(optheta)-2.0*P(ocoord)

$ +P(optheta2))/delr/delr+delt/2.0* (P2(optheta)+P2(optheta2))/delr/delr
P2(ocoord)=P2(ocoord)/(1.0+2.0*delt/2.0/delr/delr)
if(time.eq.1) then

tau=0.0
end if

**************************step in phi*****************************************

do 300 i=l1,sizer
y=i*dely+ymin
r=al-exp(-y)

140



do 310 j=1,sizeth
z=delz*j
ex= (z-alpha) / (1 .0-alpha)
t=pi* ((2.0*alpha+ beta)*bratio**ex+2.0*alpha-beta) / (2*alpha+1.0)

$ /(1.O+bratio**ex)
ii=i+sizer*(j-l)
do 320 k=l,sizep-1

if(time.eq.1) then
cl(ii,l,k)=0.0
dl(ii,k,1)=O.O
b(ii,1,k)=-delt/(r*delp*sin(t))**2/2.0
b(ii,2,k)=1.0+delt/2.0*2.0/ (r*delp*sin(t))**2
b(ii,3,k)=-delt/(r*delp*sin(t))**2/2.0

end if
call dpp(i,j,k,delp,sizer,sizeth,sizep,P,dpdp)
call dp2p(i,j,k,delp,sizer,sizeth,sizep,P,dp2dp)
a=i+(j-1)*sizer+(k-1)*sizeth*sizer
rhs(k)=P2(a)-delt/2.0*(dp2dp/r**2/sin(t)**2)

320 continue
if (time.eq.1) then

b(ii,1,1)=0.0
b(ii,3,sizep-1)=0.0

end if
k=sizep
if (time.eq.1) then

el(ii,1,1)=bdet/(ii,2,1)
dl(ii,1,1)=-delt/(r*delp*sin(t))**2/2.0
dl(ii,k- ,1)=-delt/(r*delp*sin(t)) **2/2.0
cl(ii,1,1)=-delt/(r*delp*sin(t))**2/2.0
cl(ii,l,sizep-1)=-delt/ (r*delp*sin(t))**2/2.0

end if
call dpp(i,j,k,delp,sizer,sizeth,sizep,P,dpdp)
call dp2p(i,j,k,delp,sizer,sizeth,sizep,P,dp2dp)
a=i+(j-l)*sizer+ (k-) *sizeth*sizer
rhs(k)=P2(a)-delt/2.0*dp2dp/r**2/sin(t)**2
iarrow=1
nod= sizep-1
do 401 inew=1,nod

c(1,inew)=cl (ii,l1,inew)
d(inew,1)=dl (ii,inew,1)
do 402 kk=1,3

bl (kk,inew) =b(ii,kk,inew)
402 continue
401 continue

e(1,1)=el(ii,1,1)

call arrow(rhs,bl,c,d,e,detlog,isign,tau,jn,iband,lbd,ja,
$ jna,nrhs,nod,iarrow,lrhs)

if(time.eq.1) then
do 4001 inew=l,nod

cl (ii,1,inew)=c(1,inew)
dl(ii,inew,1)=d(inew,1)
do 4002 kk=1,3
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b(ii,kk,inew)=bl (kk,inew)
4002 continue
4001 continue

el(ii,1,1)=e(1,1)
end if
do 330 k=1,sizep

a=i+ (j-1) *sizer+ (k-) *sizer*sizeth
temp(a)=rhs(k)

330 continue
310 continue
300 continue
************************ solve for z-axis ********* *************************

do 350 i=1,sizer
a=i+sizer*sizeth*sizep
y=i*dely+ymin
r=al-exp(-y)
dp2dp=(P(sizep*sizer*sizeth/4+i)-2.0*P(a)

$ +P(sizep*sizer*sizeth*3/4+i))/delth/delth
temp(a)=P2(a)-delt/2.0* (dp2dp/r/r) +delt/2.0*

$ (temp(sizep*sizer*sizeth/4+i) +temp(sizep*sizer*sizeth*3/4+i))
$ /delth/delth/r/r

temp(a)=temp(a)/(1.0+delt/2.0*2.0/delth/delth/r/r)
a=i+sizer+sizer*sizeth*sizep
aa=sizep*sizer*sizeth/4+sizer*(sizeth-1)+i
dp2dp= (P(aa)-2.0*P(a)+P(aa+sizer *sizeth*sizep/2))
dp2dp=dp2dp/delth/delth
temp(a)=P2(a)-delt/2.0*(dp2dp/r**2)+delt/2.0*

$ (temp(aa) +temp(aa+sizeth*sizep*sizer/2))/delth/delth/r/r
temp(a)=temp(a)/(1.0+delt/2.0*2.0/delth/delth/r/r)

350 continue
** *********** solve r=O *** ************ ************************************

aa=sizer*sizeth*sizep/4+(sizeth-1)/2*sizer+1
P(ocoord)=P2(ocoord)-delt/2.0/delr/delr*

$ (P(aa)-2.0*P(ocoord)+P(aa+sizer*sizep*sizeth/2))
$ +delt/2.0*(temp(aa)+temp(aa+sizeth*sizer*sizep/2))/delr/delr
P (ocoord)=P(ocoord)/ (1 .0+2.0*delt/2.0/delr/delr)
do 1101 i=l,sizer

a=i+sizer*sizeth*sizep
P(a)=temp(a)
P (a+sizer) =temp(a+sizer)
do 1201 j=1,sizeth

do 1301 k=1l,sizep
a=i+sizer* (j-1)+sizeth*sizer* (k-1)
P(a)=temp(a)

1301 continue
1201 continue
1101 continue
********* update convection************************************************

do 600 i=l,sizer
do 610 j=1,sizeth

do 620 k=l,sizep
a=i+sizer* (j-1)+sizeth*sizer* (k-1)
cu3(a)=cu2(a)
cu2(a)=cul(a)
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620 continue
610 continue

a=i+sizer*sizep*sizeth
cu3(a)=cu2(a)
cu2(a)=cul(a)
a=a+sizer
cu3(a)=cu2(a)
cu2(a)=cul(a)

600 continue
a=ocoord
cu3(a)=cu2(a)
cu2(a)= cul(a)
do 700 i=l,sizer

y=i*dely+ymin
r=al-exp(-y)
terml=exp(y)
do 710 j=l,sizeth

z=delz*j
ex= (z-alpha) / (1.0-alpha)
t=pi*((2.0*alpha+beta)*bratio**ex+2.0*alpha-beta)/

$ (2*alpha+1.0)/(1 .0+bratio**ex)
term= (2.0*alpha+ 1.0)*t/Pi-2.0*alpha
dzdt=2.0*beta* (2.0*alpha+ 1.0) * (1.0-alpha) /pi/ln/

$ (beta*beta-term*term)

do 720 k=l,sizep
a=i+sizer* (j-l)+sizeth*sizer* (k-1)
call v(k,vr,vt,vp,t,delp,r,shear,F,Pe,anglel,angle2)
call dpt(i,j,k,delz,sizer,sizeth,sizep,P,dpdt)
call dpp(i,j,k,delp,sizer,sizeth,sizep,P,dpdp)
call dpr(i,j ,k,dely,sizer,sizeth,sizep,P,dpdy,mtc,terml)
cul (a) =-delt*(term l*vr*dpdy+dzdt*vt/r*dpdt+vp*dpdp)

720 continue
710 continue

vr=Pe*(1.0-r*r)
a=sizer*sizep*sizeth+i
if (i.eq.1) then

dp2dy= (P(a+1)-2.0*P(a)+P(ocoord))/dely/dely
dpdy=(P(a+l)-P(ocoord))/dely/2.0

else if (i.eq.sizer) then
dp2dy=(-mtc*2.0*dely*P(a)/terml+P(a-1)-2.0*P(a)+P(a-1))/ dely/dely
dpdy= (-mtc)*P(a)/terml

else
dp2dy=(P(a+1)-2.0*P(a)+P(a-1))/dely/dely
dpdy=(P(a+1)-P(a-1))/2.0/dely

end if
cul (a) =-delt*terml*vr*dpdy
vxl=shearrate*r*sin(anglel)* (F* (5.0/3.0*r**2)- 1.0)
vx=Pe*vxl*cos(angle2)
vy=Pe*vxl*sin(angle2)
dpdt=(P(i)-P(i+sizer*sizeth*sizep/2)) /delth/2.0
cul(a)=cul(a)-delt*dpdt*vx
dpdt=(P(i+sizer*sizeth*sizep/4)-P(i+sizer*sizeth*sizep*3/4))/2.0/delth
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cul (a)= cul (a)-delt*dpdt*vy
a=a+sizer
if (i.eq.1) then

dp2dy= (P(a+ 1)-2.0*P(a)+P(ocoord))/dely/dely
dpdy=(P(a+l)-P(ocoord))/dely/2.0

else if (i.eq.sizer) then
dp2dy= (-mtc*2.0*dely*P(a) /terml +P(a-1)-2.0*P(a) +P(a-1))/dely/dely
dpdy=-mtc*P (a) /term 1

else
dp2dy=(P (a+1)-2.0*P(a)+P(a-1)) /dely/dely
dpdy=(P(a+1)-P(a-1))/2.0/dely

end if
cul (a)=-delt*terml*vr*dpdy
dpdt=(P(i+(sizeth-1)*sizer)

$ -P(i+(sizeth-1)*sizer+sizeth*sizer*sizep/2))/2.0/delth
cul (a)=cul (a)-delt*dpdt*vx
dpdt= (P(i+sizer*sizeth*sizep/4+sizer*(sizeth-1))

$ -P(i+sizer*sizeth*sizep*3/4+sizer*sizeth-1))/2.0/delth
cul (a) =cul (a)-delt*vy*dpdt

700 continue
up= 1 +sizer*sizeth*sizep
down= 1 +sizer+sizer*sizeth*sizep
cul (ocoord)=-delt*Pe*(P (up)-P(down)) /delr/2.0

S***************** calculate rate ******************** *********
ncount=0.0
sum=0.0
do 400 i=1l,sizer

y=i*dely+ymin
r=al-exp(-y)
do 410 j=0,sizeth-1

z=delz*(j+l)
ex= (z-alpha) /(1.0-alpha)
t=pi*((2.0*alpha+beta)*bratio**ex+2.0*alpha-beta) /

$ (2*alpha+1.0)/(1.0+bratio**ex)
term= (2.0*alpha+1.0) *t/Pi-2.0*alpha
dzdt=2.0*beta*(2.0*alpha+1.0) * (1.0-alpha)/pi/ln/

$ (beta*beta-term*term)
do 420 k=0,sizep-1

a=i+sizer*j+k*sizer*sizeth
term=P (a) *r*r*sin(t)
sum=sum+term*delz/dzdt*delp*dely*exp(-y)
if (P(a).lt.O)then

ncount=ncount+ 1
end if
if (ncount.gt.0) goto 5100

420 continue
410 continue

if(P(i+sizer*sizeth*sizep).lt.0) then
ncount=ncount+l
goto 5100

end if
if(P(i+sizer*sizeth*sizep+sizer).lt.0) then

ncount=ncount+l
goto 5100

144



end if
term=exp(-y)*pi
sum=sum+P (i+sizeth*sizer*sizep)*r*r*delth*delth*dely*term
sum=sum+P (i+sizer+sizeth*sizer*sizep)*r*r*delth*delth*dely*term

400 continue
if(P(occord).lt.0) then

k=300
goto 5100

end if
sum=sum+P(ocoord)*delr**3*4.0/3.0*Pi
rate=-log(sum/oldsum5)/delt/5
oldsum5=oldsum4
oldsum4=oldsum3
oldsum3=oldsum2
oldsum2=oldsuml
oldsuml=sum
if(out.eq.1) then

write(*,*) rate,sum,(rate-oldrate)/rate,time
write(*,*)

end if
if(abs ((rate-oldrate) /rate).lt.tol) goto 5100
if((sum-oldsum5)/sum.gt.1.0) goto 5100
if ((time/200.0).eq.aint(time/200.0)) then

open(unit=4, file='savestate', status='unknown')
write( 4 ,*) P(ocoord),cul(ocoord),cu2(ocoord),cu3(ocoord)
do 501 i=l,sizer

a=i+sizeth*sizer*sizep
write(4,*) P(a),cul (a),cu2(a),cu3(a)
a=a+sizer
write(4,*) P(a),cul(a),cu2(a),cu3(a)
do 502 j=l1, sizeth

do 503 k=1,sizep
a=i+(j-1)*sizer+(k-1)*sizer*sizeth
write(4,*) P(a),cul (a),cu2(a),cu3(a)

503 continue
502 continue
501. continue

close(4)
end if

4950 oldrate=rate
tau=-1.0

5000 continue
5100 tau=-1.0

open (unit =3,file=filename,status= 'unknown')
if(ncount.gt.0) write(3,*) i,j,k,P(a)
write(3,*) sizer,sizeth,sizep,delt,tol,al,beta
write(3,*) 'k:',mtc
write(3,*) 'Pe: ',Pe
write(3,*) 'F: ',F
write(3,*) 'shear: ',shear
write(3,*) 'net shear: ', shear*Pe
write(3,*) 'alpha:',anglel
write(3,*) 'beta:', angle2
write(3,*) rate, oldrate,ncount,time
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write(3,*)
close(3)

6000 continue
7000 end
***************************************************************************

subroutine v(k,vr,vt,vp,t,delp,r,shear,F,Pe,A,B)
integer k
double precision p,r,t,x,y,z,xl,yl,zl,vx,vy,vz,vxl,vyl,vzl
double precision vr,vt,vp,delp,shear,F,Pe,A,B,sigma
sigma=2.0/3.0/F-1.0
p=(k-1)*delp
x=r*sin(t)*cos(p)
y=r*sin(t)*sin(p)
z=r*cos(t)
xl=cos(B)*x+sin(B)*y
yl=sin(B)*cos(A)*x+cos(A)*cos(B)*y+sin(A)*z
zl=sin(A)*sin(B)*x-sin(A)*cos(B)*y+cos(A)*z
vxl=shear*(F*yl* (5.0/3.0*r*r- 1.0)-4.0/3.0*F*x1*x1*yl-yl)
vyl=shear*(F*xl*(5.0/3.0*r*r-1.0)-4.0/3.0*F*x1*yl*yl+x1)
vzl=-4.0/3.0*F*shear*zl*xl*yl
vx=cos(B)*vxl-sin(B)*cos(A)*vyl+sin(A)*sin(B)*vz1
vy=sin(B)*vxl+cos(A)*cos(B)*vyl-sin(A)*cos(B)*vz1
vz=sin(A)*vyl+cos(A)*vzl
vr=vx*sin(t)*cos(p) +vy*sin(t)*sin(p) +vz*cos(t)
vt=vx*cos(t)*cos(p)+vy*cos(t)*sin(p)-vz*sin(t)
vp=-vx*sin(p)+vy*cos(p)
vr=Pe*(-cos(t) * (r*r-1.0)/(1.0+sigma)+vr)
vt=Pe*(-sin(t)*(1.0-2.0*r*r)/( (1.0+sigma)+vt)
vp=Pe*vp/r/sin(t)
return
end

***************************************************************************

subroutine dpr(i,j,k,dely,sizer,sizeth,sizep,P,dpdy,mtc,terml)
integer i,j,k,sizer,sizeth,sizep,a,aa
double precision dely,dpdy,P(70000),mtc,terml
a=sizer*sizeth*(k-1) +sizer*(j-1)+i
if (i.eq.1) then

aa=sizer*sizeth*sizep+2*sizer+l 1
dpdy= (P(a+ 1)-P(aa))/2.0/dely

else if (i.eq.sizer) then
dpdy=-mtc*P (a) /terml

else
dpdy= (P(a+ 1)-P(a-1))/2.0/dely

end if
return
end

***************************************************************************

subroutine dp2r(i,j,k,dely,sizer,sizeth,sizep,P,dp2dy,mtc,terml)
integer i,j,k,sizer,sizeth,sizep,a,aa
double precision dely,dp2dy,P(70000),mtc,terml
a=sizer*sizeth*(k-l1) +sizer*(j-l1) +i
if (i.eq.1) then

aa=sizer*sizeth*sizep+2*sizer+ 1
dp2dy= (P (a+ 1)-2.0*P (a) +P (aa))/dely/dely
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else if (i.eq.sizer) then
dp2dy= (-mtc*2.0*dely*P(a)/term1 +P(a-1)-2.0*P(a)+P (a-1))/dely/dely

else
dp2dy= (P(a+1)-2.0*P (a)+P(a-1))/dely/dely

end if
return
end

***************************************************************************

subroutine dpt(i,j,k,delth,sizer,sizeth,sizep,P,dpdt)
integer i,j,k,sizer,sizeth,sizep
double precision delth,dpdt,P(70000)
a=sizer*sizeth* (k-1)+sizer*(j-1)+i
if (j.eq.1) then

dpdt=(P (a+sizer)-P(sizer*sizeth*sizep+i)) /2.0/delth
else if (j.eq.sizeth) then

dpdt= (P(sizer*sizeth*sizep+sizer+i)-P(a-sizer)) /2.0/delth
else

dpdt=(P(a+sizer)-P(a-sizer))/2.0/delth
end if
return
end

***************************************************************************

subroutine dp2t(i,j,k,delth,sizer,sizeth,sizep,P,dp2dt)
integer i,j,k,sizer,sizeth,sizep
double precision delth,dp2dt,P(70000),Ppi
a=sizer*sizeth*(k-1)+sizer*(j-1)+i
if (j.eq.1) then

dp2dt=(P(a+sizer)-2.0*P (a)+P(sizer*sizeth*sizep+i))/delth/delth
else if (j.eq.sizeth) then

Ppi=(P(sizer*sizeth*sizep+sizer+i))
dp2dt=(Ppi-2.0*P(a)+P(a-sizer)) /delth/delth

else
dp2dt=(P(a+sizer)-2.0*P(a)+P(a-sizer))/delth/delth

end if
return
end

***************************************************************************

subroutine dpp(i,j,k,delp,sizer,sizeth,sizep,P,dpdp)
integer i,j,k,sizer,sizeth,sizep
double precision delp,dpdp,P(70000),opterm
a=sizer*sizeth*(k-1)+sizer*(j-1)+i
if (k.eq.1) then

opterm= (P(a+sizer*sizeth*(sizep-1)))
dpdp=((P (a+sizer*sizeth))-opterm) /delp/2.0

else if (k.eq.sizep) then
opterm= (P(a-sizer*sizeth* (sizep-1)))
dpdp=(opterm-(P(a-sizer*sizeth))) /delp/2.0

else
dpdp=((P(a+sizer*sizeth))-(P(a-sizer*sizeth)))/2.0/delp

endif
return
end
subro****uti*********ne desiersietsiePd2d*************************************************************p

subroutine dp2p(ij,k,delp,sizer,sizeth,sizep,P,dp2dp)
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integer i,j,k,sizer,sizeth,sizep
double precision delp,dp2dp,P(70000),opterm
a=sizer*sizeth*(k-l1)+sizer*(j-l1)+i
if (k.eq.1) then

opterm=P (a+sizer*sizeth* (sizep-1))
dp2dp=(P(a+sizer*sizeth)-2.0*P(a)+opterm)/delp/delp

else if (k.eq.sizep) then
opterm=P (a-sizer*sizeth*(sizep-1))
dp2dp= (opterm-2.0*P(a)+P (a-sizer*sizeth))/delp/delp

else
dp2dp=(P(a+sizer*sizeth)-2.0*P(a) +P(a-sizer*sizeth)) /delp/delp

end if
return
end

************************************************************************
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