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ABSTRACT

The muscle-type nicotinic acetylcholine receptor (AChR) is a ligand-gated ion channel
required for fast synaptic transmission at the neuromuscular junction. It is the archetype of the
Cys-Loop superfamily of receptors and a prototypic allosteric protein. The muscle-type AChR
has two distinct transmitter binding sites found in the extracellular ligand-binding domain.
When acetylcholine binds these sites, a series of still unresolved conformational changes occur,
leading to opening of the transmembrane pore over 40 A distant from the binding sites. High
resolution structures of the intact receptor and the acetylcholine binding protein have provided
greater insight into the structural basis of the allosteric mechanism coupling agonist binding and
pore opening. However, comprehensive models of the agonist-bound receptor in its closed and
open states are still not available. In particular, the details describing the conformation of
binding site residues and the dynamics of their interactions with agonists and competitive
antagonists are still under investigation. These details are of particular importance to the design
of AChR agonists, partial agonists, and competitive antagonists which may have therapeutic
potential for treating neuromuscular and neurological pathologies. Using single-channel
electrophysiology we investigated details of the agonist-bound open-state transmitter binding
sites. Using a series of structurally related organic cations, we observed a structure-activity
relationship that suggests cation-n binding interactions are important for open-state affinity. We
also conducted a structure-function study to measure kinetic and thermodynamic differences in
agonist binding to the two different transmitter binding sites in both the closed and open states.
We observed that the two binding sites have unequal affinities for the agonist choline in the
closed state and equal affinities in the open state. The state-dependent difference in affinities
suggests that binding determinants from the a subunits predominantly determine open-state
choline affinity at each site. In the last chapter, we exploit the state-dependent affinities of small
molecules for the AChR to develop a probe for live-cell labeling. The ability of a non-
competitive antagonist incorporating state-dependent AChR binding, photoreactivity, and click
chemistry moieties was characterized electrophysiologically, and state-dependent photolabeling
of AChRs in live cells was demonstrated. A probe with these characteristics is suitable for
investigating the activity-dependent changes in AChRs associated with the complex synaptic
changes associated with neuromuscular and neurological disorders.

Thesis Supervisor: Stuart Licht
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Chapter I. Introduction

I.A Summary

Nicotinic acetylcholine receptors (AChRs) are ligand-gated ion channels (LGICs)

essential for signal transduction at the neuromuscular junction and at the synapses of the central

nervous system (1-4). LGICs are integral membrane proteins with two allosterically linked

functions (2, 5). LGICs act both as receptors for signaling molecules and gated ion channels for

control of ion flux across membranes. In recent decades, data from cryoelectron microscopy (6)

and x-ray crystallography (7) have produced a more detailed understanding of the structural basis

of AChR function. However, many molecular details pertaining to structural dynamics during

ligand binding and gating of the ion channel are still unknown. In this thesis, structure-function

studies of the muscle-type AChR from the adult mouse were performed using single-channel

electrophysiology. In Chapters II and III, structural dynamics involved in agonist binding at the

transmitter binding sites were investigated. In Chapter IV, basic knowledge of non-competitive

antagonism was used to design a chemical probe for neurobiological applications. In this first

chapter, an introduction to AChR structure and function is given, and a brief introduction to

single-channel electrophysiology is provided.

I.B Ion Channels at Fast Chemical Synapses

Ion channels facilitate the fast transduction of an extracellular chemical signal into a

cellular response. Ion channels are pore-forming, integral membrane proteins that mediate the

flow of ions across a cell membrane. In excitable cells, such as neurons and myocytes, the

opening or closing of ion channels can cause a change in membrane potential. The change in

membrane potential initiates a cascade of events leading to an amplified cell response on fast

timescales. In contrast, signaling pathways involving second messengers are considered slow.

Ion channels of excitable cells can be broadly categorized as voltage-gated or ligand-gated

(Figure 1.1) (8).

Voltage-gated channels include sodium (Nav), potassium (Kv), and calcium (Cay)

channels, and they comprise a homologous gene superfamily (8, 9). Voltage-gated channels

contain a charged membrane spanning region, the voltage sensor. The voltage sensor changes

conformation in response to changes in membrane potential. Movement of the sensor leads to

opening or closing of the ion channel by an allosteric mechanism.



LGICs mediate chemical-to-electrical signal transduction at fast synapses. Binding of

neurotransmitters to an LGIC is allosterically linked to the conformation of the ion channel pore.

There are three homologous LGIC gene superfamilies. First, the P2X purinergic receptor family

consists of ATP-sensitive ion channels. P2X receptors are thought to be trimeric (10). Second,

the ionotropic glutamate receptor family includes N-methyl-D-aspartate receptors (NMDARs),

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and kainate

receptors (KARs). These receptors are tetrameric. Third, the "cys-loop" superfamily includes

AChRs (Figure 1.2), 5-hydroxytryptamine receptors (5-HT 3Rs), y-amino-butyric acid receptors

(GABAARs), and glycine receptors (GlyRs). These receptors are pentameric. The name "cys-

loop" refers to a 13 amino acid loop flanked by a disulfide bridge that is structurally conserved

across the family.

I.C Acetylcholine Receptor Biology

Physiologically, the action of muscle-type AChRs at the neuromuscular junction provides

a model for synaptic transmission (Figure 1.3). When an impulse reaches a motor neuron

terminal, the presynaptic action potential causes local calcium influx. The presynaptic nerve

terminal is densely populated by acetylcholine-laden vesicles. The local calcium influx causes

vesicles to fuse to the presynaptic membrane, releasing acetylcholine into the neuromuscular

junction. The postsynaptic, muscle-cell membrane is highly folded. Muscle-type AChRs are

found on the apices of the folds, with densities of 10,000 AChRs per 1 gm 2. Released

acetylcholine binds the receptors, and AChR channels open. Influx of sodium ions through the

open AChRs causes local depolarization of the membrane. The depolarization is propagated by

voltage-gated sodium channels. The propagated postsynaptic action potential causes opening of

voltage-gated calcium channels and subsequent calcium release from the sarcoplasmic reticulum.

This calcium release initiates muscle contraction.

Each AChR is made up of five homologous subunits, and seventeen different subunit

homologs have been identified. There are ten a subunits named al-alO. All a subunits contain

a vicinal disulfide bridge between adjacent cysteines in the Loop C region, described in more

detail below. These subunits contribute the principal components to the transmitter binding sites.

Non-a subunits include the 31-04, 8, s, and y subunits.



Neuronal AChRs are expressed at synapses throughout the central nervous system (11,

12). Homomeric neuronal AChRs are made up of a subunits. Heteromeric neuronal AChRs can

be made up of a subunits only or of both a and 0 subunits.

Muscle-type AChRs are expressed in the peripheral nervous system. They are either

fetal-type (a2 8y) or adult-type (a 2 68s) channels. The muscle-type AChR is the archetype of

cys-loop receptors. The muscle-type AChR was essentially the first LGIC identified and

characterized (13, 14). Many biochemical, electrophysiological, and structural ion channel

techniques were developed while studying this receptor (15, 16).

Functional AChRs exist in closed, open, or desensitized conformations. The closed

AChR state predominates in the absence of agonist. It is a non-conducting conformation, and it

is characterized by low agonist affinity compared to the other conformations. The open state is

an ion-conducting conformation. It has higher agonist affinity compared to the closed AChR.

The difference between closed-state and open-state affinities favors opening of the AChR in the

presence of agonist. However, prolonged agonist exposure favors the desensitized AChR state.

This conformation is non-conducting and has high agonist affinity. Typically, the term "gating"

refers to transitions between the closed and open states.

I.D Structures of the Acetylcholine Receptor and Binding Proteins

Cryoelectron microscopy is currently the only source of images of the membrane-bound,

intact AChR. LGICs have proven refractory to x-ray crystallography. However, AChRs from

electric rays and electric eels are particularly amenable to high-resolution cryoelectron

microscopy. The electrical current-generating organs of these fish are highly enriched in

AChRs. These receptors can be frozen in tubular, crystalline arrays for electron microscopy

(17). The most recent images provide a 4 A resolution model for the closed, agonist-free

Torpedo marmorata muscle-type AChR (6, 18). Secondary structure assignments corroborate

decades of biochemistry and electrophysiology concerning the structure of the ligand binding

domain and ion conduction pore (15, 16, 19). Cryoelectron microscopy has also provided the

only images of the open AChR. By freezing receptors milliseconds after acetylcholine exposure,

a 25 A resolution model of the open receptor was obtained (20). However, a complete atomic-

resolution image of the intact AChR is still not available.



Recently, atomic-resolution models of acetylcholine binding proteins (AChBPs) have

become available (Table 1.1). The AChBP is a soluble homolog of the AChR extracellular,

ligand-binding domain. It is a pentamer with similar secondary structure as the AChR ligand-

binding domain. The AChBP has a cys-loop, and several binding site residues and structures are

conserved between the AChBP and AChR. The Lymnaea stagnalis snail AChBP was first

discovered in 2001 (7, 21). Since then, structures of AChBPs from different species have been

solved by x-ray crystallography (7, 22-31). Models are available for AChBPs in complex with a

variety of agonists and antagonists. These models have been used to infer details about the

conformation of residues in the AChR ligand-binding domain, and AChR homology modeling

has been conducted (32-37). Recently, an atomic-resolution x-ray structure of the extracellular

ligand-binding domain of the AChR a-subunit was obtained. This model confirmed the

structural homology between the AChBP and AChR ligand binding domain (38).

There are several caveats to the use of AChBP models. The AChBP is a snail protein

with a distant relationship to the mammalian AChR. It lacks an ion channel domain, and it

shares only approximately 20% sequence identity to the ligand-binding domain of AChRs. It is

also not clear to which AChR conformational states the AChBP structures actually correspond.

AChBP models can be classified into two types. Structures of apo-AChBP or antagonist-bound

AChBP are compared to the closed-state AChR ligand-binding domain. Structures of agonist-

bound AChBPs are compared to the desensitized-state AChR; however, the distinction between

the open state and desensitized state is not clear.

Atomic-resolution structural models of all the functional states of the intact AChR are

still needed. Comparison of agonist-free, closed-state models and agonist-bound, desensitized-

state models have provided some key insights described below. However, there are currently no

high-resolution models of the agonist-bound closed AChR and agonist-bound open AChR.

These are necessary to pinpoint gating structural changes and to define the allosteric pathway.

I.E General Description of the AChR Structure

The 4 A resolution cryoelectron microscopy structure of the intact Torpedo AChR

provides a model for muscle-type receptors (6). Muscle-type AChR subunits are arranged

clockwise in the order ap3ay (ap8as for the adult-type receptor). They are positioned pseudo-

symmetrically around the ion conduction pathway (Figure I.2A). The Torpedo AChR is



homologous to the adult mouse muscle-type AChR used for experimental studies described in

this thesis. The Torpedo marmorata a-subunit (accession number P02711) and the Mus

musculus a-subunit (accession number P04756) are 79% identical and 91% similar. Figure 1.4

shows an alignment of the adult mouse subunits annotated according to the homologous Torpedo

structure. The N-terminus signal sequence is removed in the mature AChR. Figure 1.5 shows

the Torpedo a-subunit structure color-coded according to the annotated alignment. The AChR

structure has three major domains: the extracellular ligand-binding domain, the transmembrane

domain, and the cytoplasmic domain.

The ligand-binding domain is formed from the first -200 residues of the N-terminus of

each subunit. It has a P-sheet core with 10 P-strands arranged in a "Greek-key" motif. There are

6 outer strands and 4 inner strands (Figures 1.4 and 1.5). The eponymous cys-loop is between

strands 06 and 07. It consists of 13 residues flanked by cysteines which form a disulfide bond.

The cys-loop contains a well-conserved N-glycosylation signal sequence, N-X-S/T. N-

glycosylation is essential for assembly and trafficking of the receptor (39, 40), and

deglycosylation also attenuates the channel activity of mature receptors (38).

The transmembrane and cytoplasmic domains are C-terminal to the ligand-binding

domain. The transmembrane domain is made up of 4 a helices labeled M1-M4. The ion

conduction pore is lined by the M2 helices from each subunit. The Ml, M3, and M4 helices

form an outer ring, and they interact with the lipid bilayer. Between the M3 and M4 sequences,

there is a cytoplasmic domain. It contains one a helix called the amphipathic helix, MA. The

cytoplasmic domain is important for assembly, trafficking, phosphorylation, and interactions

with other proteins (41-44).

I.F The N-Terminal Ligand Binding Domain

Agonists and competitive antagonists bind the transmitter binding sites (TBSs) in the

extracellular ligand binding domain. In the muscle-type AChR, there are two distinct TBSs. The

first site is found at the interface of the a and 8 subunits. The second site is found at the

interface of the a and s subunits in the adult-type AChR or at the interface of the a and y

subunits in the fetal-type AChR. When both sites are unoccupied, the probability that the

channel will open is 10-7-10-6. When both sites are bound with acetylcholine, the probability

that the channel will open increases to nearly 1 (45).

11



When the TBSs are unoccupied, the closed-state ligand-binding domain is asymmetric

because of the orientation of the a subunits. In the closed state, the a subunits' backbone

carbons overlay well with one another, and the non-a subunits overlay well with one another.

However, the a subunits do not overlay well with the non-a subunits. The a subunits are

"distorted" in the closed AChR. Their P-sheet cores are rotated approximately 100 (Figure 1.6),

(6, 20, 46).

When the TBSs are occupied by agonist, the open/desensitized ligand-binding domain is

highly symmetrical. Structural rearrangements were visible in cryoelectron images of the open

AChR (20, 46). In agonist-bound open state, all the subunits overlay well. The a subunits rotate

and convert to a "relaxed" conformation that is similar to the conformation of non-a subunits. It

is proposed that the rotation of the a subunits is coupled to rotation of the transmembrane

helices. Rotation of the transmembrane helices is thought to cause pore widening, allowing ion

flux.

A hydrated pocket inside the a subunit's 3-sheet core is important for conversion from

the closed state to the open state. X-ray crystallography of the mouse a subunit revealed an

ordered water molecule inside the ligand-binding domain (38). The water interacts with highly

conserved residues, aThr52 and aSer126. These residues can be mutated to alanine or valine

with minor effects. Mutation to bulkier hydrophobic residues does not impair surface

expression, but it impairs gating. It is proposed that the hydrated pocket provides the a subunits

with conformational flexibility, and the flexibility is necessary for the allosteric gating

mechanism.

I.G The Transmitter Binding Sites

Each TBS is made up of a "principal face" and a "complementary face". An a subunit

always contributes the principal face. a subunit binding determinants are found on three major

segments, Loops A, B, and C. 75% of the binding-site residues are found on the a subunit. In

the muscle-type AChR, the 6, y, or F subunits contribute the complementary face.

Complementary binding determinants are found on four major segments, Loops D, E, F, and G

(Figure 1.7). In the adult-type AChR, sequence variations in the 8 and . subunits are correlated

with the different TBSs' affinities for agonists and competitive antagonists (47-50).



Affinity labeling identified a reducible disulfide bond, several aromatic residues, and

several acidic residues at the TBSs (15, 16). 4-(N-maleimido)benzyltri-[ 3H]-methylammonium

iodide is an electrophilic alkylating reagent. It was used to affinity label residues caC192 and

aC 193 in Loop C. These cysteines form the vicinal disulfide pair that is characteristic of all a

subunits (51). The photoaffinity reagent [3H]-p-(dimethylamino)-benzenediazonium

fluoroborate was used to identify several residues on the principal face: in Loop A, aTyr93 (52);

in Loop B, aTrp149 and aTyrl51; in Loop C, aTyrl90, aCysl92, and aCysl93 (53).

Photolabeling with [3H]-nicotine identified several residues on both the principal and

complementary face: in Loop C, aTyrl90, aCysl92, and aTyrl98 (54, 55); in Loop E, yTrp55

(54). Chemical crosslinking identified several acidic residues on the complementary face in

Loop F: 8Asp165, 8Asp180, 8Glu182, yAsp174 (56-58).

Conserved aromatic residues at the TBSs form an "aromatic cage" where ammonium

groups bind. The aromatic cage consists of five conserved residues: aTyr93 in Loop A;

aTrpl49 in Loop B; aTyrl90 and aTyrl98 in Loop C; and 8Trp57, ETyr55, or yTyr55 in Loop

E. Mutagenesis and functional studies implicate all of these residues in AChR function (15, 16).

Atomic-resolution structures of the mouse a subunit and AChBPs further corroborated the

identification of residues in the aromatic cage (7, 22).

Acidic residues in and around the TBSs are thought to mediate long range electrostatic

interactions with positively charged ligands. AChR agonists and competitive antagonists are

most commonly ammonium compounds. For example, acetylcholine is a quaternary ammonium,

nicotine is a tertiary ammonium, and epibatidine is a secondary ammonium at physiological pH

(Figure 1.8). The TBSs exhibit a net negative electrostatic potential of approximately -10 mV,

measured by accessibility to charged affinity labeling reagents (59) and diffusion-enhanced

fluorescence energy transfer (60). Electrostatic steering at the TBSs contribute approximately -1

kcal/mol binding energy by increasing association rate constants (60). However, acidic residues

do not make direct contacts with agonists (22, 27). Direct charge neutralization and ion pairing

are not as important to binding as hydrogen bonding and other interactions.

It is proposed that a critical factor in AChR pharmacology is the ability of agonists and

competitive antagonists to form a cation-7t interaction at the TBSs (61). For example, cation-7t

interactions between agonists and aTrp 149 are important for AChR activation. Unnatural amino



acid mutagenesis was used to introduce fluorinated analogs into the muscle-type AChR at

position al149 (61-63). Fluorination of aTrpl49 in Loop B attenuates activation of the receptor

by the potent agonists acetylcholine and epibatidine. It increases the concentration required for

half-maximal activation, EC5o. The change in EC5o correlated well with the calculated cation-7n

binding potential of the fluorinated analogs (63, 64). In contrast to the strong agonists

acetylcholine and epibatidine, the weak agonist nicotine does not form a cation-n interaction

with aW149 (62). Structural studies show that aW149 is positioned at the TBS by a redundant

network of hydrogen bonds. Residue aD89 is a part of this network, and substitution with

standard or unnatural amino acids at this position can disrupt binding of acetylcholine (65, 66).

Thus, cation-n interactions with aW149 are critical for AChR activation and are sensitive to the

conformation of aW149.

TBS conformational changes associated with AChR activation have been inferred from

AChBP structures (67), and the most notable change is the movement of Loop C (Figure 1.9)

(7). Several structures of AChBPs with no ligand bound, bound to a competitive antagonist, or

bound to an agonist have been published (22-31). The apo- or antagonist-bound AChBP

structure corresponds to the closed conformation of the AChR ligand binding domain. In the

closed state, Loop C is positioned away from the binding site in an "uncapped" conformation.

When agonist is bound to the TBS, Loop C "caps" the site. There is an approximately 10 A

change in position. In the capped conformation, the binding site and aromatic cage are arranged

more compactly around the agonist. It is not clear whether the agonist-bound AChBP represents

the agonist-bound open (68) or desensitized state (34) of the AChR ligand-binding domain, but

movement of Loop C is likely a key event in the coupling of agonist binding to pore gating.

I.H The Ion Conduction Pore

Affinity labeling and mutagenesis originally determined that the ion conduction pore is

lined by the M2 helices. Residues in the M2 transmembrane segment were affinity labeled,

using the non-competitive antagonists chlorpromazine (59, 69, 70), triphenylmethylphosphonium

(71), meproadifen mustard (72), 3-(trifluoromethyl)-3-(m-[ 125I]iodophenyl)diazirine (73), and

tetracaine (74). Labeling patterns implied a-helical secondary structure, with hydrophobic

residues predominantly facing the pore lumen. Mutagenesis demonstrated that the M2 segments

determine the magnitude of the current flow, called the conductance, through the open channel.

14



Chimeric receptors were made with M2 segments interchanged between bovine and Torpedo

AChRs. The conductances of the chimeras were determined by the species which donated the

M2 segment (75). Subsequently, several acidic and glutamine residues were identified which

control conductance and cation selectivity (76). These residues are arranged in three rings of

equivalent positions in the pore. The "inner" and "intermediate" rings are near the intracellular

end of the pore, and the "outer" ring is at the extracellular end. (Figure 1.10) In the intermediate

ring, mutagenesis indicated that aGlu241 and its equivalent positions have the greatest impact on

conductance and cation selectivity. Chemical labeling experiments later identified M1 residues

that also line the pore (77-80). The residues are at the extracellular end of the MI helices. It was

proposed that the pore is wider at the extracellular side, which would require Ml residues to line

the pore.

The 4 A resolution model of the Torpedo AChR transmembrane domain suggests a

mechanism for pore opening (Figure 1.10) (6, 18). In agreement with biochemical studies, the

model includes a funnel-like transmembrane region that narrows at intracellular end. The M1,

M3, and M4 helices form an outer ring, interacting with the lipid bilayer. The M2 helices form

an inner ring, lining the pore. The M2 helices extend approximately 10 A above the lipid

bilayer, and the axial ion conduction path is approximately 40 A long. The pore constricts at its

middle and remains constricted to its intracellular end. The constriction creates a hydrophobic

zone approximately 8 A long. This zone may prevent ion flow in the closed state, acting as the

"resting gate". The zone is narrowest at residues aLeu251 and aVa1255 where the channel

diameter is approximately 6-7 A. Sodium and potassium cations would be required to lose their

solvation shell to pass through this barrier. However, desolvation is energetically unfavorable in

the absence of acidic and polar residues. Gating would therefore entail widening of the channel

in this region. When agonist binds, the a-subunits' ligand binding domains may rotate. The

rotation may be coupled to the transmembrane domain by the loop between the p1 and 02

strands. Movement of the loop could then rotate the M2 helices. Rotation of the M2 helices

could reposition hydrophobic residues away from the pore axis, widening the conduction

pathway and opening the resting gate (18).

The substituted-cysteine accessibility method (SCAM) has been used to identify the

resting gate and an analogous desensitization gate. In SCAM, a pore residue of interest is

mutated to a cysteine. If the residue is surface/water exposed, then it can be modified by a



methanethiosulphonate reagent. Modified residues may interrupt the flow of ions through the

pore, and therefore reactivity can be monitored using electrophysiology. SCAM can assay

changes in the environment of a residue in the absence and presence of acetylcholine and has

been used to identify the resting and desensitization gates (81, 82). The resting gate is located at

the intracellular end of the pore from residues aGly240 to aThr244 and the equivalent positions

in the non-a subunits (82). SCAM experiments and other functional studies suggest that there is

a desensitization gate that is distinct from the resting gate (83, 84). The desensitization gate is

located at residue aLeu251, more extracellular to the resting gate (85).

More recently, functional studies have suggested pore gating involves subtle changes in

pore residues rather than large rotations of the M2 helices. Similar to SCAM, a pore residue of

interest can be mutated to an ionizable residue, Lys, Arg, or His. Protonation of the substituted

residue may interrupt ion flow, allowing protonation to be monitored by electrophysiology. The

pKa at each position can then be estimated specifically for the open channel. Residues

throughout the M I, M2, and M3 helices have been probed (86, 87). The residues identified as

facing the lumen of the open pore are the same as those identified as facing the lumen of the

closed pore by affinity labeling. Thus, gating involves only subtle changes in pore residue

conformations, and opening involves only slight widening of the pore. Theoretical studies

suggest that even a 1.5 A increase in radius is sufficient for opening. This small increase in

radius is calculated to significantly decrease the energetic barrier to ion conduction across the

hydrophobic gate region (88, 89). Together, protonation and SCAM experiments suggest that

the resting gate is located at the narrow, hydrophobic intracellular end of the pore, and small

conformational movements in gate residues are sufficient to widen the pore enough for solvent

accessibility and ion conduction.

I.I Coupling of Agonist Binding to Channel Gating

The central mechanistic question about AChR function is how agonist binding is

allosterically linked to channel gating. The TBSs are approximately 40 A away from the pore

resting gate. When agonists bind to the TBSs, three large scale conformational changes are

apparent. First, Loop C moves approximately 10 A and caps the agonist-bound site. Second, the

a subunits rotate approximately 100. Third, the pore widens at the hydrophobic gate region,

permitting ion flux. While this model of the coupling between TBS and pore is consistent with



recent structural data, the exact details of the structural basis for the allosteric linkage are still

being investigated. The AChBP structures have been particularly useful on this front. At atomic

resolution, AChBP models and homology models have permitted specific interactions to be

proposed and investigated. As a result, several loops and interacting residues have been shown

to be a part of the AChR allosteric pathway.

Three loops at the interface of the ligand-binding domain and transmembrane domain are

important to the coupling mechanism, and optimization of these loops can rescue the activity of

initially non-functional chimeric receptors (90). The ligand-binding domain of the serotonin 5-

HT3A receptor, a homomeric AChR-type channel, was replaced with the AChBP. The AChBP

can bind agonist, but it lacks the structural elements required for allosteric coupling. Thus, the

chimera exhibited normal surface expression and ligand-binding properties, but binding of

agonist did not cause channel opening. The 01-02 loop, cys-loop, and 138-9 loop were then

mutated from the AChBP residues to the corresponding residues of the 5-HT3A receptor.

Replacement of these loops rescued the allosteric coupling, and the chimeric channels opened in

response to agonist binding. It is hypothesized that these three loops propagate conformational

changes by interacting directly with the transmembrane helices or with the M2-M3 loop.

Subsequently, three other "triggers" were identified which couple agonist binding to

gating (Figure 1.11) (91-93). The first trigger is proximal to the TBS. It consists of three

residues, aTyrl90, aAsp200, and aLysl45 (93). In the resting agonist-free state, aAsp200 and

aLys145 form a salt bridge (7). When agonist binds, movement of Loop C brings the hydroxyl

group of aTyrl90 within 2-3 A of aAsp200. Because of the interaction between aTyrl90 and

aAsp200, the aAsp200--aLys145 salt bridge is weakened. This causes a conformational change

in aLys145. aLysl45 is part of the 17 strand, adjacent to the cys-loop which has already been

implicated in the coupling mechanism.

The second trigger is also proximal to the TBS, and it consists of an intersubunit pair of

spatially adjacent residues. The pair consists of aTyrl27 on the principal face and 8Asn41 (or

eAsn39) on the complementary face (92). aTyrl27 is adjacent to the cys-loop, 8Asn41 is

adjacent to the pl-12 loop, and both loops are already implicated in the allosteric mechanism.

aTyrl27 and 8Asn41 are energetically coupled, and disruption of their interaction attenuates fast

gating.



The third trigger has been called a principal pathway for coupling of agonist binding and

channel gating because it makes a much larger contribution to the allosteric linkage than the

other identified pathways (91). This trigger consists of five residues at the domain interface of

the a-subunits. aArg209 is between the 010 strand and the M helix. It interacts with aGlu45

in the pl-p2 loop. aGlu45 is adjacent to aVa146. aVa146 interacts with aPro272 and aSer269

in the M2-M3 linker. When agonist binds, movement of Loop C may be transmitted through the

p10 strand and the M2-M3 linker through these five residues. These residues are energetically

coupled, and disruption of their interactions attenuates gating more severely than disruption of

the other triggers. These triggers demonstrate that a principal pathway for coupling of agonist

binding to pore opening exists, but there are also several redundant interactions. Both principal

and redundant allosteric linkages are functionally important and conserved for AChRs.

However, they are not conserved across the cys-loop superfamily. Instead, the coupling

elements are tuned to the specific purpose of each receptor (61).

I.J The Gating Transition State and Conformational Dynamics

Rate-equilibrium free energy relationships have been used to probe the dynamics and

transition state of AChR gating (94). Structural data have provided static models of the closed,

open, and desensitized states (16, 61, 67, 95); however, it remains a challenge to obtain dynamic

information about gating conformational changes. Probing the details of the short-lived open

state has been particularly difficult. Recently, a linear free energy relationship approach derived

from physical organic chemistry has been used to address channel dynamics. Residues

throughout the AChR are probed through mutagenesis. The effects of mutations on gating are

assessed by single-channel electrophysiology. By assessing several mutations of a particular

position, a linear free-energy relationships is observed. The 1-value is the slope of linear

relationship between the logarithm of opening rate and the logarithm of gating equilibrium.

Measuring D-values for positions throughout the receptor creates a map of the conformational

wave linking agonist-binding and pore opening (Figure 1.12) (96-107).

The O-value is a measure of transition state structure and timing of conformational

changes during gating. The D-value is between 0 and 1. For D = 1, changes in the gating

equilibrium are due entirely to changes in the opening rate. A O-value approaching I indicates

that a residue's conformation in the gating transition state is similar to its open-state
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conformation. It also implies that, during gating, changes in this residue's conformation occur

early in the reaction. Conversely, for D = 0, changes in gating equilibrium are due entirely to

changes in the closing rate. A 'D-value approaching 0 indicates that a residue's conformation in

the gating transition state is similar to its closed-state conformation. It also implies that, during

gating, changes in this residue's conformation occur late in the reaction. For the AChR, binding

site residues exhibit D-values close to 1, consistent with an allosteric reaction initiated by agonist

binding. Residues at the interface of the ligand-binding domain and the transmembrane domain

exhibit intermediate O-values. Residues in the pore region exhibit low O-values (107). AChR

gating involves sequential conformational changes of distinct (-value regions, transducing

agonist binding into pore opening.

I.K The Desensitized State

The desensitized state is a non-conducting conformation that is thermodynamically

favored in the presence of agonist. For the muscle-type AChR, it is known that there is a

desensitization gate distinct from the resting gate (81, 83, 84); however, it has also been observed

that there are several kinetically resolvable desensitized states (108). Desensitization kinetics

vary widely across LGICs, and desensitization is known to be important in shaping the synaptic

currents of neuronal AChRs and other LGICs (109, 110). In the case of the normal

neuromuscular junction, it is unlikely that desensitization influences endplate currents because

the muscle-type AChR desensitizes slowly compared to the half-life of acetylcholine in the

synaptic cleft. However, desensitization likely plays a role in shaping endplate currents of

diseased neuromuscular junctions, such as in slow-channel myasthenic syndromes (111). One of

the major unresolved questions is what differences there are between the open-state and

desensitized-state ligand-binding domains. Both states are high agonist-affinity conformations.

It has been proposed that the desensitized conformation involves formation of short-range

electrostatic interactions between the binding site and the agonist (112).

I.L Single-Channel Patch-Clamp Electrophysiology

Patch-clamp electrophysiology is one of the most widely used techniques for the

functional characterization of AChRs and ion channels in general (8, 113). It allows

measurement of current flow through open channels expressed at a cell surface. To obtain a



patch-clamp recording, a glass pipette is first used to isolate a membrane patch containing one or

several ion channels. By applying gentle suction when the pipette contacts the membrane, a tight

seal is formed between the glass and the membrane. The pipette contains an electrolyte solution

and an electrode. The cells are bathed in an appropriate electrolyte solution containing a

ground electrode. This configuration creates a circuit, allowing open channel currents to be

detected. Because single-channel currents have picoampere magnitudes, these currents require

specialized amplifiers to achieve adequate signal-to-noise ratios.

The three main modes of patch-clamp electrophysiology are the cell-attached, inside-out,

and outside-out modes (Figure 1.13) (114). In the cell-attached mode, the pipette is sealed to the

membrane, and the cell is left intact during recording. In the inside-out mode, the pipette and

isolated membrane patch are pulled away from the cell. This action leaves the intracellular

membrane face exposed to the bathing solution. The extracellular surface faces the inside of the

pipette. In the outside-out mode, the isolated membrane patch is ruptured, and then the pipette is

pulled away from the cell. The ruptured membrane reforms, exposing the extracellular

membrane face to the bathing solution. The intracellular surface faces the inside of the pipette.

In all three modes, single-channel recordings can be obtained.

The patch-clamp amplifier can be used both to record currents and to control

transmembrane voltage. Under normal physiological conditions, the interior of an excitable cell

is at a potential of -40 to -70 mV relative to the extracellular solution. In cell-attached patches, a

"command" voltage between the pipette and bath electrodes is applied by the amplifier. The

command voltage is additive with the natural transmembrane voltage. Using the command

voltage, the total circuit voltage is held constant, or "voltage-clamped". Current flow through

open channels in the patch is usually detected under voltage clamp. The opening conformational

change occurs on microsecond timescales, much faster than the patch-clamp recording

bandwidth. Therefore, single-channel currents appear as all-or-nothing binary events. The

currents are detected and amplified by the patch-clamp amplifier. The analog current data is

digitized and recorded directly to a computer for single-channel analysis.

I.M Single-Channel Kinetic Analysis

Channel conductance and reversal potential are two channel properties that can be

investigated by single-channel electrophysiology. Channel conductance, g, defines the



magnitude of the open-channel current at a particular transmembrane voltage. The reversal

potential, VR, is the transmembrane potential at which current flow reverses. It indicates the ion

selectivity of a channel. For a channel selective to Na+, the reversal potential equals the Nernst

potential for Na+. For a non-selective channel, the reversal potential is approximately 0. These

two properties are measured by recording single-channel currents over a range of applied

voltages. According to Ohm's law, the observed current-voltage relationship is I = g - (V -V),

where V is the applied voltage.

Single-channel electrophysiology also provides information about the kinetics associated

with channel conformational changes. Single-channel electrophysiology is a single-molecule

technique, and the observed channel openings are stochastic in nature. When analyzing single-

channel data, microscopic rate constants can be treated as probabilities. They are the transition

probabilities for changes from one conformational state to another. For example, consider an ion

channel that has only three conformations. It has closed and desensitized conformations which

are non-conducting and an open conformation which is ion-conducting. Suppose that the

conformational transitions are described by the kinetic model in Scheme 1.1 where rate constants

have units s1 . The closed channel can either open or remain closed. The open channel can

either close or desensitize. The desensitized channel can re-open or remain desensitized.

Microscopic rate constants are measured by analyzing the distributions of the durations of

conducting and non-conducting events (Figure 1.14). In a single-channel record, a series of

conducting and non-conducting periods are observed. The dwell times, the lengths of these

periods, are measured. The open state can be unambiguously assigned to conducting periods.

The mean open dwell time is inversely proportional to the total probability of leaving the open

state. The total probability of leaving the open state equals the probability for the open-to-closed

transition plus the probability for the open-to-desensitized transition. Therefore, the mean open

dwell time for the system described by Scheme 1.1 is <topen> = (k-I + k+2) "1. Because single-

molecule conformational changes are stochastic processes, the open dwell times will be

exponentially, not normally, distributed. In contrast to open events, non-conducting periods

cannot be unambiguously assigned to either the closed or the desensitized state. However, the

distribution of non-conducting dwell times will be the sum of two exponential functions. The

two exponentials have respective decay times <tclosed> = k+l'1 and <tdesensitized> = k-_21. If k+l and

k2 are sufficiently different, the two non-conducting states will be distinct (Figure 1.14).



When k+, and k-2 are very different, the events have a characteristic "clustered"

appearance (Figure 1.15). When clustered events are observed, the non-conducting periods can

be attributed to the closed and desensitized states with relatively high probability. For example,

assume activity from exactly one channel is recorded, and let k+l = 2000 s-', kl = 1000 s-, k+2 =

1 s-1, and k-2 = 0.1 s-1 in Scheme 1.1. Clusters of short conducting and non-conducting periods

will be observed. These periods can be assigned to the open and closed states, respectively. The

"intracluster" closed dwell times will be exponentially distributed with a mean lifetime of I/k+ =

(2000 s')-' = 0.5 ms. The intracluster open dwell times will be exponentially distributed with a

mean lifetime of 1/k.l = (1000 s-')-~ = 1 ms. Clusters will be separated by long non-conducting

periods that can be assigned to the desensitized state. Desensitized dwell times will be

exponentially distributed with a mean lifetime of 1/k.2 = (0.1 s-')' = 10 s. There are no direct

transitions between the closed and desensitized states. Therefore, the total intracluster open time

will be exponentially distributed with a mean lifetime of 1/k+2 = (1 s1)-1 = 1 s. If a physically

relevant kinetic model is available, single-channel kinetic analysis can provide estimates for

microscopic rate constants that would be otherwise difficult to determine with ensemble

methods.

There are physically relevant kinetic models that can accurately describe and predict the

activity of muscle-type AChRs . The AChR is generally described using a concerted Monod-

Wyman-Changeux allosteric model (115). The AChR has three distinct functional states in this

model, the closed, open, and desensitized states. The channel can bind zero, one, or two agonist

molecules leading to states termed unliganded, monoliganded, or diliganded, respectively.

Ligand binding favors opening and desensitization.

AChR kinetic models (Scheme 1.2 and 1.3) are more complex than the example given in

Scheme 1.1, but single-channel kinetic analysis of these models is quite tractable because of

well-developed statistical methods. Single-channel records are first idealized. Unprocessed

records consist of a time-ordered list of current amplitudes. To idealize these records, each data

point is classified as conducting or non-conducting. A time-ordered list of conducting and non-

conducting dwell times is produced. When a kinetic model is proposed, it predicts what the

distribution of dwell times will be. The rate constants in a proposed kinetic model can be varied

until the predicted distributions best fit the observed data. A maximum-interval likelihood

algorithm is used for this fitting procedure. Fitting produces two results: estimated microscopic



rate constants and a likelihood score for the estimation. The likelihood score is the probability

that the observed data is a result of the proposed model and is useful for discriminating between

models.

Single-channel kinetic analysis is sensitive to the omission of short-lived events due to

finite recording bandwidth, but methods to correct for these missed events are available. When

an event is very short in duration, it may be missed or truncated because it is too short to be

detected by the patch-clamp amplifier. This missed-event problem can be described analytically

and incorporated into fitting algorithms. Software is available which uses a mathematically

exact solution to compensate for missed events, but this method requires significant

computational time (116). Software is also available which uses an approximate solution to

correct for missed events (117). The approximate method estimates microscopic rate constants

with comparable accuracy to the exact method and requires less computing time. In the

approximate solution, the total duration of missed events is assumed to be small compared to

observed events. A "dead time" is defined, and events shorter than the dead time are considered

undetected. Adjacent events are concatenated. The dead time is then used to make a first-order

correction to the dwell-time distributions predicted by the proposed model. The maximum

interval likelihood and approximate missed event correction algorithms are incorporated in the

QuB software suite (117-119). This software package was used to analyze data presented

throughout this thesis.

I.N Conclusions

Recent high-resolution AChR and AChBP structures have enhanced our understanding of

the allosteric coupling between agonist binding and pore opening. However, it still remains a

challenge to provide atomic-level details for all of the functionally relevant AChR conformations

and to probe the structural dynamics involved in AChR allosteric transitions. Models for the

agonist-bound closed AChR and agonist-bound open AChR are still unavailable. A better

understanding of the nature of agonist and antagonist binding interactions is still needed to define

AChR pharmacology. In this thesis, the conformation, interactions, and dynamics at the TBSs

were investigated in structure-function studies, utilizing single-channel kinetic analysis. In

Chapter II, an agonist structure-activity relationship is explored. Calculated cation-pi binding

energies are shown to correlate with gating efficiency. This parameter may be useful for



predicting and designing agonists and antagonists. In Chapter III, the contributions of the TBS

principal and complementary faces to agonist binding in the closed and open state are compared.

Results suggest that the open state, like the desensitized-state model, is highly symmetric. At the

TBSs, structural and functional symmetry are increased by decreasing the contribution of the

complementary face to binding.

Chapter IV describes efforts to exploit the channel conformation-dependence of small-

molecule binding to the AChR to develop chemical probes for use in living cells. A non-

competitive antagonist incorporating pore binding, photolabeling, and click chemistry moieties

was synthesized. The candidate probe's ability to inhibit the AChR was characterized

electrophysiologically, and state-dependent photolabeling by the probe was demonstrated in

living cells. The probe could be a useful chemical tool in investigations of activity-dependent

changes in AChR biology associated with neuromuscular diseases or nicotine addiction.
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Tables I.1. Currently available PDB structures of the acetylcholine receptor (AChR) or
acetylcholine binding protein (AChBP).

PDB Species
119B Lymnaea stagnalis

10ED Torpedo Marmorata
1UV6 Lymnaea stagnalis
1UW6 Lymnaea stagnalis
1UX2 Lymnaea stagnalis
1YI5 Aplysia californica

2BYQ Aplysia californica
2BJO Bulinus truncatus
2BR7 Aplysia californica
2BR8 Aplysia californica
2BG9 Torpedo Marmorata
2BYN Aplysia californica
2BYP Aplysia californica
2BYR Aplysia californica
2BYS Aplysia californica
2C9T Aplysia californica
2UZ6 Aplysia californica
2QC 1 Mus musculus
2PGZ Aplysia californica
2PH9 Aplysia californica
3C84 Aplysia californica
3C79 Aplysia californica
2ZJU Lymnaea stagnalis
2ZJV Lymnaea stagnalis

Agonist are shown in blue.
2 Antagonists are shown in red.
3 The extracellular ligand-binding domain
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AChBP
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AChBP
AChBP
AChBP
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Scheme I.1. A simple kinetic model for ion channel conformational changes. "C", closed; "0",
open; "D", desensitized; k+/-n, s" .
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Scheme 1.2. A general kinetic model derived from MWC theory of AChR concerted allosteric
conformational changes. Conformational states: C, closed; 0, open; A, bound agonist. Rate
constants: k+, agonist association, M-1 s1; k., agonist dissociation, s-; i3, monoliganded opening
rate, s-'; al, monoliganded closing rate, s-l; 12, diliganded opening rate, s'1; a2, diliganded
closing rate, s-1; H, high affinity site; L, low affinity site.
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Scheme 1.3. A simplified AChR kinetic model.
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Figure 1.1. Ligand-gated ion channels are one class of ion channels. The cys-loop receptors are
one of three gene superfamilies of ligand-gated ion channels. Cys-loop receptors consist of five
homologous subunits arranged pseudo-symmetrically around the ion conduction pore. Each
subunit has an N-terminal ligand-binding domain and four transmembrane helices.
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Figure 1.2. The AChR cryoelectron structure at 4 A resolution (PDB 2BG9) and the AChBP x-
ray structure at 2.7 A resolution (PBB 119B). (A) A view of the muscle-type AChR from the
extracellular side. The ot-subunits are red, the P3-subunit is green, the 8-subunit is blue, and the c-
subunit is purple. (B) A side view of the AChR. (C) A top view of the homomeric AChBP.
The subunits are colored arbitrarily. The location of the transmitter binding sites are shown by
the cyan spheres. (D) A side view of the AChBP. The locations of the TBSs are indicated by
colored spheres. The cys-loop is shown as a yellow loop.
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Figure 1.3. AChRs at the neuromuscular junction are models for signal transduction at fast
chemical synapses. The presynaptic nerve terminal is yellow, and the postsynaptic muscle
endplate is blue. Opening of AChRs (brown) depolarizes the membrane. The postsynaptic
action potential is propagated by voltage-gated sodium channels (green), ultimately opening
voltage-gated calcium channels (orange).
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Figure 1.4. Alignment of the adult mouse muscle-type AChR subunit protein sequences. The
Torpedo and mouse cc-subunits are 71% identical, and the Torpedo sequence and structure were
used to annotate the sequence: a-helices, orange; inner p-sheets, green; outer P-sheets, tan;
disulfide, yellow; TBS aromatic residues, red; residues at the domain interface, blue.
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Figure 1.5. A side view of the a6 subunit interface. The a-subunit is color coded according to
Figure 1.4, and the 8-subunit is grey.
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Figure 1.6. Cartoon explanation of the rotation of the ot-subunits.
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Figure 1.7. Cartoon of the transmitter binding site and the loops contributing binding
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Close-up view ofa TBS. In the antagonist-bound structure (red, left), the peptide competitive
antagonist ct-conotoxin IMI is shown in grey.



A

B

E KMT
E KMG
EKTS
Q K CT

Resting
Gate

LSI
LSI
VA I
VSI

S VLLSLT
FALL T L T
SVLLAQS
NVL LAQ T

Desensitization
Gate

Open

V FLL
VF LL
VFLL
V FLF

EL
D K
K R
Q K

Desensitized

PST S
PETS
PAT S
PETS

Figure 1.10. The muscle-type AChR transmembrane domain. (A) View from the extracellular
opening. (B) A side view ofocM2 helices. The extracellular side to the left. Highlighted
residues in the sequence alignment are shown as spheres (87). The light blue region is above the
lipid bilayer. (C) A proposed mechanism for pore gating involves rotation of the M2 helices,
causing widening of the pore. (D) Diagram of approximate locations of the closed and
desensitized gates as determined by SCAM.

Closed

Alpha
Beta
Delta
Epsilon

si

It



Figure 1.11. Residues important for coupling agonist binding to pore opening: the initial trigger,
blue; the intersubunit trigger, green; the principal trigger, red; loops, yellow.
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Figure 1.12. Color-coded D-value map of the a-subunit demonstrating the conformational
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Figure 1.14. (A) An example of a single-channel record. Openings are upward deflections in
current. (B) An example of the closed dwell-time distribution when there are two non-
conducting states (arrows). The dwell-time distribution is plotted using the Sigworth-Sine
transformation (120): the histogram is plotted with a loglo x-axis with 0.1 log unit bin widths,
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exponentials because each exponential appears as a peak. (C) An example of the open dwell-
time distribution with only one conducting state.
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Chapter II.

A Structure-Activity Relationship Between Organic Cations, Binding, and Gating of the

Acetylcholine Receptor: Cation-sr Binding Energy as a Parameter for Distinguishing

Agonists From Antagonists

II.A Summary

Cation-it interactions have been shown to be important for activation of acetylcholine

receptors by strong agonists. Cationic agonists interact with aromatic residues found in the

transmitter binding sites. Using a series of structurally related organic cations, we demonstrate

that the efficiency for channel opening, the gating energy, is strongly correlated with the cation-it

energy. This suggests that cation-ni interactions contribute significantly to the open-state affinity

of these cations. We propose that the cation-ni binding energy may be a useful metric for

quantitative structure-activity relationships used to guide the design of agonists and antagonists

with therapeutic potential to treat nicotine addiction, neuromuscular and neurological disorders.

II.B Introduction

Cation-it interactions have been shown to be important for the function of nicotinic

acetylcholine receptors (AChRs) and other members of the cys-loop superfamily (1, 2). These

interactions are formed between cationic small molecules and aromatic residues at the transmitter

binding sites (TBSs) for these receptors. The cation-nI binding energy therefore may be a useful

parameter in predicting the action of a candidate molecule as either an agonist or competitive

antagonist.

AChRs are involved in a broad range of synaptic activities through the central and

peripheral nervous systems, and as a result they are the targets of therapeutic drugs for a variety

of conditions. Structure-activity relationships (SARs) continue to be used to develop AChR

antagonists that can be used as muscle relaxants (3). However, using parameters such as

molecular shape, charge, and hydrogen bonding ability, SARs have had limited success in

guiding drug design for neuromuscular blocking agents. In the brain, AChRs have been

proposed to be targets for treating nicotine addiction, depression, and a variety of neurological

disorders (4). SARs for these drug candidates are typically centered on derivatives of AChR

agonists or antagonists derived from natural sources, such as nicotine or epibatidine. The small



molecule drugs that bind AChRs are structurally very diverse. The identification of simple,

independent parameters which correlate with binding or gating would therefore be useful for

improving SAR guided drug design.

Structural and biochemical studies of the AChR and the acetylcholine binding protein

(AChBP) have provided a model for the ligand-binding process and identified several aromatic

residues that are important for binding charged agonists and competitive antagonists (5-12). The

binding site "aromatic cage" consists of residues cTyr93, cTrpl49, ucTyrl90, cTyrl98, and

6Tyr57 (or y/ETyr55). Residues cTyrl90 and aTyrl98 are part of Loop C, a binding

determinant on the a subunit. In the apo-AChBP structure, Loop C is positioned away from the

TBS cavity. In the agonist-bound AChBP, Loop C is displaced approximately 10 A from its

apo-position towards the TBS cavity (8). In this conformation, Loop C "caps" the agonist-bound

binding site, and residues otTyrl90 and aTyrl98 come in close proximity of the bound molecule.

In this arrangement, the aromatic cage is contracted, increasing favorable contacts with the

agonist molecule (Figure II.1). In contrast, comparison of apo-AChBP and agonist-bound

AChBP structures indicate that ucTrp149 found in Loop B does not change conformation

significantly. Molecular dynamics simulations on nanosecond timescales also have shown that

the backbone of cTrpl49 is relatively stable when a simulated receptor relaxes from an agonist-

bound conformation (13).

Using unnatural amino acid mutagenesis, aTrp149 was shown to form cation-nr

interactions with cholinergic agonists (14, 15). Substitution of fluorine in the indole ring of this

residue increased the concentration for half-maximal AChR activation, the ECso0, for epibatidine

and acetylcholine. The observed increase in EC 5o correlated with the calculated decrease in

cation-n binding ability of the fluorinated analogs. A similar correlation was not observed for

the other binding site aromatic residues, suggesting aTrp149 is primarily responsible for the

cation-7t interaction (15-17).

EC 50 , analogously to KM for enzymes, reflects both binding and conformational or

chemical equilibria. For an ion channel EC5o, the equilibrium for the open-closed

conformational change, called gating, can be a significant component. Therefore, the correlation

between EC 50 and cation-n binding energy is consistent with three possibilities. In the first case,

the cation-n energy could contribute entirely to the closed-state affinity. The cation-n interaction



could fully form when agonist binds the closed state, and it could remain constant in strength

during AChR gating. In the second case, the cation-it energy could contribute to both binding

and gating. The cation-it interaction could form in the closed-state, but strengthen in the open

state. In the third case, the cation-ni energy could contribute entirely to the open-state affinity.

Agonist binding to the closed AChR would not involve the cation-ni interaction. Instead, the

cation-it interaction would only exist in the open state, and the gating equilibrium would

correlate with cation-it energy. In all of these three cases, attenuation of the cation-it energy

would increase the EC 50o.

It has been hypothesized that the correlation between EC 5o and cation-it energy primarily

reflects contributions to binding (14). Both 5-hydroxytryptamine (5-HT) and acetylcholine

(ACh) are strong agonists for the serotonin channel, 5-HT3AR. For both 5-HT and ACh, channel

activation is attenuated by fluorination of aTrpl49, and ECso's are linearly correlated to

calculated cation-it binding energies for the fluorination series. For all combinations of agonist

and mutated receptor, maximal currents of similar magnitude were observed when exposed to

saturating concentrations of agonist, suggesting gating efficiency was not severely compromised

(18). However, with the strong agonists used in these studies, changes in gating efficiency could

lead to relatively small changes in channel maximal currents. The previous studies therefore did

not rule out the possibility that the interaction between agonist and aTrpl49 changes with gating

(14, 15, 18). Currently, there are no definitive models for the agonist-bound closed and open

AChR states, and there is no direct structural data to resolve this issue. Although fluorination

was introduced at a precise binding site location, the AChR is an allosteric protein complex.

Perturbations localized to the binding site do not necessarily affect agonist affinity only, and

likewise perturbations far from the binding site do not necessarily affect gating only. For

example, mutations aY93F and aY190F affect both binding and gating, and mutation aYl98F

affects gating primarily (19-21). In contrast mutation aN217K in the MI transmembrane helix

primarily affects binding (22).

If the cation-it binding energy is strongly correlated to closed-state affinity, it may be a

useful parameter in structure-activity relationships that distinguish agonists from competitive

antagonists. A strong agonist exhibits a high affinity for the closed state and an even higher

affinity for the open state, promoting efficient gating. A strong competitive antagonist exhibits a



high affinity for the closed state but not for the open state, making gating inefficient.

Establishing metrics for closed-state affinity and open-state affinity could aid drug design. The

cation-n binding energy appears to be a good candidate as a useful metric for closed-state

affinity and possibly open-state affinity.

We hypothesized that the ability of an organic cation to form a cation-7t interaction will

predict its closed-state affinity for the muscle-type AChR. We tested this hypothesis by

measuring agonist binding affinity (KD) and gating efficiency (02) for activation of mouse

AChRs by organic cations. Single-channel recordings are used to directly measure microscopic

rate constants and equilibria. By using a series of structurally related organic cations, we probe

the role of the aromatic cage in agonist binding and gating, without having to deconvolve the

effect of secondary elements such as the ester moiety of ACh. For the set of compounds tested,

there is a strong correlation between the ab initio calculated cation-n binding energy and 02 and

a weaker correlation with KD. These results suggests that secondary structural elements may

play a role in positioning the cationic center. We conclude that cation-it binding energy has the

potential to be used as a parameter in designing AChR agonists and antagonists.

II.C Materials and Methods

Chemicals.

Tetramethylammonium (TMA) chloride, triethylmethylammonium (TEMA) chloride,

and tetramethylphosphonium (TMP) bromide were from Aldrich. Ethyltrimethylammonium

(ETMA) iodide was from TCI. Dimethyldiethylammonium (DEDMA) hydroxide from Fluka

was neutralized with hydrochloric acid. Cell culture reagents were from Invitrogen (Carlsbad,

CA). Plasmids for expression of the adult mouse cc, 3, 5, and E subunits were generously

provided by Professor Anthony Auerbach at SUNY Buffalo. The plasmids contain the pRGB4

backbone, with a CMV promoter (23).

Cell culture.

HEK-293 human embryonic kidney cells (ATCC CRL-1573) were maintained in

Dulbecco's Minimum Essential Media (DMEM) supplemented with 10% Fetal Bovine Serum

(FBS) at 370 C in a 5% CO 2 humidified atmosphere. Cells were transfected at 40-60%

confluency using the method of calcium phosphate precipitation according to previously



published protocols (24) as follows. For one 35 mm plate, a total of 3.5 tg of plasmid DNA was

used in a mass ratio of 2:1:1:1 of a:P1::s subunits. Plasmids were mixed in 87.5 L of 250 mM

CaCI2 on ice. The plasmid solution was added drop wise to ice-cold 87.5 gL of 50 mM HEPES,

pH 7.05, 280 mM NaCl, 1.5 mM Na2HPO4. The layered mixture was incubated for 10 minutes

at room temperature without disturbance, and then it was mixed. The mixture was incubated for

an additional 15 minutes at room temperature and then mixed again, forming a fine DNA

precipitate that is visible under the microscope. The precipitate was added drop wise to cells.

Media was changed 8-30 hours after addition of DNA, and patch-clamp experiments were

conducted 24-72 hours after media change. For transfection of several dishes, the recipe could

be multiplied up to 4-fold for a single mixture; however, use of more than 350 jtL of plasmid

solution inhibits the formation of precipitant.

Justification for use of the aG153S mutant.

The aGl53S mutation is a gain-of-function mutation originally identified from a patient

diagnosed with slow-channel congenital myasthenia (genetic disease causing muscle weakness).

It has been shown to primarily increase agonist affinity (25). This mutation is at the binding site

and is proposed to be important for the hydrogen bonding network and allosteric transduction

mechanism (26). Although this mutation occurs at the binding site, it is not part of the aromatic

cage. The aG153S mutation is not likely to directly affect the cation-n interaction between

aTrpl49 and the agonist, as aTrpl49 has been shown to be primarily stabilized by aD89 (27,

28). Furthermore, the cation-nt interaction has shown to be robust to variations in sequence and

structure, existing in several different cys-loop receptors (29). We therefore use this mutant

assuming its effects are equivalent for the series of agonists used here. Of the series, only TMA

is a highly efficacious agonist for the wild-type AChR (30-32). Furthermore, high

concentrations of these cations causes severe open-channel block. The advantage of using the

aG153S mutant is that it enables single-channel clusters to be recorded and analyzed for the

series at lower agonist concentrations, where block is not nearly as severe and can be

compensated for in our analysis. As a control to demonstrate that the mutation affects the series

of cations equivalently, a rate-equilibrium free energy relationship (REFER) is examined in the

Results. The REFER is shown to be linear with a slope approximately 1 as has been observed

previously for energetic changes at the TBSs, due to mutation or ligand variation (33, 34).
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Single-channel recordings.

Single-channel recording was performed in the cell-attached mode according to

previously published protocols (35, 36). Borosilicate pipettes (IB150F-4, World Precision

Instruments, Sarasota, FL) were pulled to resistances of 10-20 MO using a two-stage pipette

puller (PP-830, Narishige, East Meadow, NY). Pipette tips were coated with Sylgard (Dow

Corning, Midland, MI) and cured using a heat gun. The pipettes were then heat polished using a

microforge (MP-830, Narishige). Before recording, transfected cells were washed with

Dulbecco's Phosphate Buffered Saline (DPBS) containing (in mM): 137 NaCI, 0.9 CaCl 2, 0.5

MgCI2, 2.7 KC1, 1.5 KH2PO 4, 8.1 Na2PO4 , pH 7.3. The bath solution was DPBS. Pipette

solutions were DPBS supplemented with agonist. Pipettes tips were backfilled with the pipette

solution, filling 1-2 mm linear volume, using a MicroFil syringe (World Precision Instruments).

For each compound tested, a new syringe was used. Cell membrane potentials were typically -

30 to -40 mV, and a command voltage of -70 mV was used during recording. Single-channel

currents were amplified with an Axopatch 200B patch-clamp amplifier (Axon Instruments,

Foster City, CA) and recorded through a low-pass Bessel filter at 10 kHz. Data was digitized at

a sampling rate of 20 kHz using a NI 6040 E Data Acquisition Board (National Instruments,

Austin, TX). Data was recorded using QuB software (www.qub.buffalo.edu) (37-41).

Identifying Single-Channel Clusters.

At high agonist concentrations, single-channel events have a characteristic clustered

appearance. Most channels are desensitized, resulting in the long closed sojourns between

clusters. If only one open conductance level is observed in the cluster, the clusters themselves

likely represent activity from one channel. As the "intracluster" open probability increases, the

probability that the cluster represents activity from exactly one channel becomes very high.

Therefore, analysis of intracluster events permits estimation of microscopic rate constants

without the problem of ensemble averaging. The data presented in this study are derived from

intracluster events and the durations, or dwells, of these events.

The baselines of single-channel records were adjusted manually using QuB. A 5 kHz

Gaussian digital filter was applied, and records were idealized using either the segmental k-



means or half-amplitude algorithms in QuB (37). All records were examined visually in their

entirety, and misidealizations were corrected manually.

To identify clusters, the desensitized and non-desensitized closed dwells are classified

and separated by analyzing exponential time constants that describe the close dwell-time

distribution. There are several non-desensitized and desensitized closed states, and the lifetime

of each of these states is exponentially distributed. Each state contributes an exponential time

component, or time constant, to the observed closed dwell-time distribution. For each idealized

dwell-time record, these time constants and their fractional contribution to the distribution, or

amplitude, were determined in QuB using a maximum-interval likelihood (MIL) algorithm (38).

MIL fitting in QuB requires the use of a kinetic model. The fitted time constants depend on the

number of states included in the model but not the topology of the model. Thus, an arbitrary,

uncoupled star model was used to obtain time constants, ignoring the fitted rate constants (42).

Closed and open states were added successively until the negative log-likelihood score increased

by less than the ln(N)/2, the Schwarz threshold for nested model selection for N events (42, 43).

This procedure results in a set of time constants and associated fractional amplitudes, (ti, ai), that

describe the observed closed dwell-time distribution

By inspecting the closed dwell-time distribution and time constants determined above, a

critical time, tcrit, was chosen to separate non-desensitized dwells and desensitized dwells.

Typically, non-desensitized closed dwells make the largest contribution to the distribution at

shorter times. In contrast, desensitized dwells contributed longer closed dwells. To choose a tcrit,

the closed-dwell time was visually inspected, and an initial cutoff was subjectively chosen to

separate non-desensitized and desensitized components. The non-desensitized components (ti,

ai) are shorter than the cutoff, and the desensitized components (tj, aj) are longer than the cutoff.

The critical time was chosen to minimize the percentage of misclassified events by solving

Equation II.1, and the fraction of misclassified events, K, is given by Equation 11.2. An

example is given in Figure 11.2. The fraction of misclassified events was typically less than 5%.

aae 1t = ae ' (.1)

i=1 'i j=m+l ,j

m --cnt  n -I

iK=la,-e ' + a -(1-e ) (11.2)
i=1 j=m+1



Once the tcrit is determined, clusters were defined as successive open and closed events

separated by closed dwells of length greater than the tcrit. Clusters with fewer than five events

and multiple-conductance levels (more than one channel) were excluded. Clusters were visually

examined to ensure tcrit was properly chosen.

Single-Channel Analysis of Ilntracluster Closed and Open Events

The intracluster closed and open dwell-time distributions were analyzed in QuB to

estimate the diliganded closing rate constant a2, the diliganded opening rate constant 32, and the

diliganded gating equilibrium constant 02 = 12/a2. Clustered activity was observed for TMA

and ETMA at concentrations from 10 tM to 5 mM. Clustered activity was observed for

DEDMA at concentrations from 50 tM to 5 mM. At 10 1iM DEDMA, activity from low-

channel count patches appeared to exhibit very long, low open probability (Po) clusters. Because

loose clusters such as this may include interlaced activity of more than one channel, the observed

open probability is between P. and N-Po where N is the number of channels in the patch.

Analysis of these clusters is still useful for obtaining upper bounds for P0 and 12. Estimation of

a2 is not affected by this complication. Clusters were only observed for TEMA at 1 mM, but as

with DEDMA estimates from lower concentrations still provided upper bounds for P0 and 32. At

5 mM TEMA, currents were too low in amplitude due to fast block, and were not analyzed

further. The analysis and estimation of diliganded rate constants is explained in detail in the

Results section.

Intracluster open probabilities were analyzed according to the equivalent binding sites

model shown in Scheme II.1. In the equivalent binding sites scheme, agonist binding to each

transmitter binding sites is identical. The agonist closed-state dissociation constant is KD. The

diliganded gating equilibrium constant is 02. The blocking dissociation rate constant is KB. The

gap equilibrium constant is KG. The gap state empirically compensates for the contamination of

clusters by desensitized sojourns, and it adjusts for the maximum open probability observed for

each agonist (24). The gap state is accessible from both the unblocked and blocked open state.

The resting and desensitization gates have been shown to be distinct entities (44, 45), and it has

also been shown that the desensitization gate can close while the open pore is blocked (46).



The equivalent binding sites model is often a good descriptor of single-channel activity

when differentiating binding sites is not essential (24). However, the two muscle-type AChR

binding sites are not equivalent (25) as discussed in more detail in Chapter III. In this work, we

are interested in comparing binding energy versus diliganded gating energy, so the equivalent

binding sites model is an appropriate and useful simplification.

Computations.

Ab initio calculations were carried using the Gaussian 03 program package (47).

Geometry optimization and Hartree-Fock energies were calculated in the gas phase using the 6-

31g(d,p) basis set. Gas phase calculations have proven useful for investigating the trends in a

cation-it perturbation series (14, 15, 18, 48-50). We examined the binding energy trends

between benzene and the cations experimentally investigated in this work. Tryptophan has also

been used to investigate possible additional hydrogen bonding with some agonists (14). Here,

benzene was used as a simple model aromatic (48-51). Our interest was to assess cation-nI

binding energy as a straightforward metric which might correlate with closed-state or open-state

affinity. The binding energy was estimated as the difference in energies of benzene and the

cation optimized separately versus the energy of the pair optimized in complex. The cation was

initially placed 4.5 A above the benzene ring in at least three different orientations; for example,

TMA was placed with one, two, or three methyl groups facing the benzene ring. The

conformations of the benzene-cation complexes optimized to approximately the same final

conformation in each case, and the mean and standard deviation (SD) of the calculated binding

energies were used throughout the work. No constraints were placed on the conformation of the

benzene ring or the benzene-cation distance. The calculated TMA-benzene interaction energy

and conformation agreed with the previously published value using this method and basis set

(48). As expected, the calculated cation-n energies of the organic cations are smaller than those

previously reported for cations such as Na+ (49, 50), but the trends are still apparent.

Non-linear least squares fitting of the dose-response curves and fitting of linear

correlations was performed in Origin (OriginLab, Northhampton, MA).

II.D Results

Activation and Block by Simple Organic Cations.



Single-channel currents from the gain-of-function otG153S mutant AChR were measured

using TMA (Figure 11.3), ETMA (Figure II.4), DEDMA (Figure 11.5), TEMA (Figure 11.6),

and TMP (Figure 11.7) as agonists. TMA was the most efficacious agonist of the ammonium

series, and substitution of additional ethyl groups decreased activity. The Po versus

concentration dose-response curve was initially fitted to a Hill equation (Equation 11.3), where

EC50 is the concentration for half-maximal open probability and n is the Hill coefficient. The

EC50 and Hill coefficients are reported in Table II.1.

M= pax [Agonist]" (H.3)
EC"o +[Agonist]"

Activation by TEMA was weak, and the Hill coefficient was constrained to 1.5 to

produce a reliable fit. Hill coefficients consistently have been observed to be 1 to 2 for AChR

agonists (52). In this range, PoMax varied from 0.028 to 0.053 with a coefficient of variation of

20% (Table 11.2), and the standard deviation of this range of values was used to estimate the

error in PoMax

It is important to measure the magnitude of unresolved open-channel blockade because

fast blockade will cause an overestimation of open probabilities. A reduction in open-channel

current at high concentrations was observed for all compounds, indicative of unresolved fast

open-channel blockade. (Figure II.8A) Cationic agonists can also block the open-channel by

binding the open pore and interrupting current flow (53). When blockade kinetics are

sufficiently fast, the interruptions of current are unresolved because of limited recording

bandwidth. This phenomenon causes a decrease in the observed open-channel current. The

apparent current amplitude in the presence of unresolved open-channel block is a function of the

maximal current in the absence of blocker, io, and the blocking dissociation constant, KB (54).

(Equation 11.4)

K
= 0o  (11.4)

KB +[Blocker]



The measured KB values for the various agonists are reported in Table II.1. As expected,

increasing the number of number of ethyl substitutions increases blocking affinity (53).

Contamination of clusters by desensitized sojourns is important to identify because it

causes underestimation of the open probability. In most of the high open-probability clusters,

regardless of agonist, a gap state is observed to contaminate clusters. The gap state encompasses

short-lived desensitized states that has a lifetime on the order of I to 10 ms (24). Because of the

similarity of the gap lifetime to the critical times used for cluster identification, there is

inevitably some contamination of gap sojourns in clusters. The gap state is easily dealt with by

incorporating it into any model used for analysis (24).

Estimation of Diliganded Gating Rate Constants

The diliganded opening rate constant, P2, can be measured from the dose-response

relationship of the intracluster closed times. The effective opening rate, an apparent rate constant

incorporating gating and agonist binding rates, is inversely proportional to the major intracluster

closed time component which scales with agonist concentration (55). As the agonist

concentration increases, the receptor is increasingly saturated so that the effective opening rate,

P2', approaches the true opening rate P2 (55). This method provides accurate results even in the

presence of gap state contamination for two reasons. One reason for the robustness of the P2

measurement is that the gap state closed time component is typically small in fractional

amplitude. A second reason is that the non-desensitized components are agonist-concentration

dependent, but the gap state component is not. A Hill equation can be used to describe the dose

response (Equation 11.5).

,[Agonist]"
K paren+[A gonist]"

Estimation of P2 in this manner does not require assumption of a model. It is an empirical fit that

has been used extensively in studies of the AChR to provide accurate estimates of P2 (24, 56).

The aG153S mutant primarily increases agonist affinity, and we expect the diliganded opening

rate to be similar to the wild-type rate. As expected, the opening rate constant for TMA for both



the wild-type and mutant is approximately 10000 s' (30). The dose-response of the effective

opening rates are shown in Figure II.8B, and values are reported in Table 11.3.

For ETMA, the unconstrained fit converged to values of P2 = 3400 ± 200 s-l and a Hill

coefficient of n = 5.7. The Hill coefficient fell far outside the expected range of I to 2 for AChR

agonists (52). Constraining the Hill coefficient to 1.5 produced a good fit, and the opening rate

constant was P2 = 3500 + 200 s-'. We tested the sensitivity of the estimate of P2 to variation in n,

and it varied from 3800 + 400 s-1 (n=l) to 3500 ± 200 s-1 (n=2) with a coefficient of variation of

3%. Therefore, the estimate of P2 is insensitive to n and is robust and reliable.

Because activation by TEMA is weak, the Hill coefficient was constrained to produce a

reliable fit. When the Hill coefficient was constrained to n = 1.5, the opening rate constant was

estimated to be P2 = 60 s-1. The opening rate constant was fairly sensitive to n. For the range of

n from 1.0 to 2.0, the coefficient of variation for 32 estimates was 52%. 30% of this variation

was due to the estimates of P2 when n was constrained to 1.0 or 1.1, and the estimates of P2

when n was constrained to 1.2-2.0 accounted for the remaining 22% variation (Table 11.2). The

standard deviation of these range of opening rate constant values was used to estimate the error;

hence, we estimated that P2 = 60 ± 40 s- for activation of the aGl53S AChR by TEMA.

The diliganded closing rate constant c2 can be estimated from the mean length of single-

channel openings. Open lifetimes were observed to increase with agonist concentration (Figure

II.8C). This observation is consistent with fast, unresolved open-channel block described above.

The increase in mean open lifetime, <to>, is linearly related to concentration (Equation 11.6).

The y-intercept estimates the unblocked open lifetime which is inversely proportional to the

diliganded closing rate constant a2.

1 1 [Blocke (11.6)
< to > = -- + (II.6)

a 2  a 2  K,

Measured values for c2 are reported in Table 11.3, and we calculate the gating equilibrium

constant 0 2 = P2/ a2.

Diliganded Gating -Value



The diliganded gating rate constants and equilibria were measured in a model-

independent manner, and the slope, 0, of the linear rate-equilibrium free energy relationship

(REFER) is consistent with previously measured values (33, 34) (Figure 11.9). For the AChR

allosteric gating mechanism, the O(-value is a measure of transition state structure and relative

timing in the conformational reaction (57). To measure 0, perturbations are applied to the

AChR at a specific location, such as a series of mutations at a single residue or a series of

agonists at the transmitter binding site. For the series, the diliganded opening rate constant 12 is

plotted as a function of the gating equilibrium 0 2 on a log-log scale. The D-value is the slope of

the linear REFER. A 1-value close to I indicates the change in gating equilibrium is due mostly

to a change in P2. For the transmitter binding sites, D - 0.9 has been measured (33, 34). For the

agonists examined here, D = 0.84 + 0.01 (R2 = 0.9992) was observed. We conclude that in our

system, the mutant TBSs exhibit characteristics consistent with wild-type TBSs.

Estimation of Ko From the Po Dose-Response Curve

The closed state affinities, KD, were estimated by fitting Equation 11.8 to the intracluster

open probability dose-response relationships, using measured values of KB and 0 2 (Figure

II.8D, Table 11.3). A simple equivalent binding sites models was used to fit the dose-response

relationships because basic discrimination between total closed-state binding affinity and gating

efficiency was the goal (24). Given Scheme II.1, the intracluster open probability equals the

total steady-state occupancy of all open states within the cluster (Equation 11.8). A is the agonist

concentration, and KG is the equilibrium constant for gap state contaminating sojourns. Fast

open-channel block is unresolved in these experiments, causing lengthening of open lifetimes.

Therefore, it is appropriate to treat unresolved block as an open state, and it appears as the

second term of the numerator in Equation 11.8.

A2 .  2 A
K K 2 K,O 2-A A2 A2 A2 A A2 A2

1+ + + 2 -®22 "+ 2 KG +
j( 2 "02"@ .K

KD KD K K 2 KB  KG KD  K B

A2 "2 2 K, +A3 "02 (2.8)
K "KB +2. AKD K +A2 KB +A2 ®2. K + A3 .2 +A2 .0 2  K B +A 3 02 .KG
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We take the approach of using model-independent measurements obtained above to

constrain this model-dependent analyses, an approach often used to produce physically relevant

fitted solutions (24, 25, 52, 56). KB was constrained using the model-independent measurements

of fast open-channel block obtained above. This constraint prevents over-parameterization and

prevents optimization of KB to a value inconsistent with the observed data. We also constrained

02 because we obtained model-independent measurements of 02 which reflects the observed

activity.

TEMA is a weak agonist, and an additional constraint was placed on KG to obtain an

estimate of KD for TEMA. KG can be estimated according to Equation 11.9, so that the fitted

curve saturates at the observed PoMax. From our estimate of PoMax for TEMA, KG was

constrained to 30, and fitting produced an estimate of KD = 200 gM for TEMA.

Max 1P =limP = (II.9)
0 ( 1+ K

Because we obtained estimates of poMax and 02 for TEMA by constraining the Hill coefficient to

n = 1.5, we examined the sensitivity of KD estimation to the values of PoMax and KG. Sensitivity

analysis of PoMax and 02 produced a range of 11 values for each parameter. We estimated KD for

the 121 possible combinations, and the standard deviation of these 121 values was used to

estimate the error in the dissociation constant for TEMA. Therefore we estimate KD = 200 ± 200

M.

Calculation of Cation-Pi Interaction Energies

Ab initio calculations of benzene-cation complexes were carried out using the Gaussian

03 program. Geometries were optimized and Hartree-Fock energies were calculated in the gas

phase, using the 6-31g(d,p) basis set. The calculated conformations are shown in Figure II.10

and energies are reported in Table II.4. For reference, the conformation of the benzene-TMA

complex was manually docked in the epibatidine-bound AChBP structure (Figure II.11), and

benzene was overlaid with aTrp149.



The cation-pi energies calculated for TMA, ETMA, DEDMA, and TMP were similar.

The calculated energy for TEMA was lower. We also carried out calculations for

tetraethylammonium (TEA). We did not perform single-channel recordings on TEA because its

activity was too low, but it has previously been studied (31). The distance between the cation

heteroatom and the benzene ring ranged from 4.8 to 5.0 A, in agreement with other calculations

for quaternary ammoniums (48, 51). For all optimized complexes, three a carbons are oriented

with protons facing the benzene 71 system in a facial conformation, as has been previously

observed (48).

Both gating energy and closed-state binding affinity show positive correlation with the

calculated cation-pi binding energy, but the closed-state binding affinity is more weakly

correlated (Figure 11.12).

II.E Discussion

Calculated Cation-Pi Energy Strongly Correlates with Gating Energy

The calculated cation-i binding energies are linearly correlated with the diliganded

gating energies for simple organic cations (Figure 11.13). Single-channel recording allowed us

to experimentally measure the diliganded rate constants a 2 and 02 for TMA, ETMA, DEDMA,

TEMA, and TMP. The diliganded gating equilibrium, 02, was calculated from these

microscopic rate constants. There is a clear linear correlation between cation-nc energy and the

diliganded gating energy, -R-T-ln (02). A slope of me = 3.1 ± 0.6 (R2 = 0.87) was measured.

It can be useful to consider this correlation partitioned between gating rate constants

because changing the cation-n binding energy acts as an energetic perturbation to the binding

sites. We observe that mp2 > ma2 as expected because we have already determined from the D-

value that a perturbation to the binding site affects the opening rates constant more than the

closing rate constant. The gating rate constants are plotted as energies, +R-T.ln(u 2) and -

R-T-ln(0 2), to be consistent with plots of gating and binding energies. For the closing rate

constant, the slope is ma2 = 0.5 ± 0.1 (R2 = 0.86), and for the opening rate constant, the slope is

mp2 = 2.6 ± 0.5 (R2 = 0.87).

Unexpectedly, mp2 > 1 which suggests either the calculated cation-7i binding energy

underestimates the strength of the interaction in the AChR binding site or multiple cation-n



interactions are important to open-state affinity. We used a simple model system to perform an

ab initio calculations of cation-nt binding energies between the cations and benzene. In reality,

the aromatic cage of the AChR TBSs contains both tyrosine and tryptophan residues. The

cation-it binding ability of benzene and phenol have been calculated to be nearly equal, but an

indole has significantly greater cation-it binding potential (49, 50). Thus, if the cations are

primarily interacting with the indoles of tryptophan residues, our calculations may underestimate

the true cation-n binding energy causing a slope greater than unity. It is also reasonable to

expect that the cation can form cation-n interactions with the multiple aromatic residues when

the aromatic cage is compactly arranged in the open state. Although previous studies using

unnatural amino acids suggested that the aromatic cage residues other than cTrp149 do not make

cation-it interactions with acetylcholine in the muscle-type AChR (15, 58), other studies have

shown that different agonist can bind in with different favorable contacts (7, 8, 14, 18, 29). Of

note, residues aTyrl90 and aTyrl98 appear to be in significantly greater contact with the

agonist molecule in bound AChBP structures (7, 8). NMR studies also suggest that the cationic

head of acetylcholine comes within 3.9 A of all five aromatic cage residues when bound to the

AChR (59). It is possible that multiple cation-it interactions of varying strengths are present in

the agonist-bound open-state TBS consistent with an observed slope of greater than unity.

Calculated Cation-Pi Energy Weakly Correlates with Close-State Affinity

The calculated cation- binding energies are also correlated with the closed-state affinity,

but more weakly than with diliganded gating energy (Figure 11.14). Closed-state affinities were

estimated by fitting the intracluster open probability dose-response relationships, using Scheme

11.1. Both KB and 0 2 were constrained during fitting because model-independent measurements

were made for these parameters. When the binding energies, +R-T-In(KD), are plotted versus the

calculated cation-n binding energies, TMP is a clear outlier (Figure II.14A). Excluding TMP,

the linear correlation has slope mK = 0.15 ± 0.07 (R2 = 0.4986). The slope mK is significantly

smaller than the slope me, suggesting that gating is significantly more sensitive to differences in

the abilities of simple agonists to form cation-it interactions.

The KD'S for the ammonium series are very similar, but TMP is an outlier. TMP is a

monovalent cation of approximately the same molecular size as ETMA or DEDMA, suggesting



that simple electrostatics do not account for TMP's anomalous behavior. The difference in

hydrophobicity between TMP and the ammonium compounds may explain the difference in

affinities. The hydrophobicity of small drugs is often estimated by the calculated octanol-water

partition coefficient, Log P (60, 61). TMP is significantly more hydrophobic than the

ammonium compounds. The relationship between Log P and closed-state binding energy is

approximately linear (62, 63), and the slope is mrKogP = 0.7 ± 0.1 kJ/mol (R2 = 0.88) (Figure

II.14B).

These results suggest that the cation-n binding interactions contribute only weakly to the

total closed-state binding affinity of simple organic cations to the AChR. Other factors such as

hydrophobicity appear to have a stronger influence. The correlations indicate the calculated

cation-it binding energy may not be an informative metric for the closed-state affinity of organic

cations to the AChR; however, they do not rule out a role for cation-n interactions in the closed

state.

Implications for the A ChR Binding and Activation Mechanism

The strong linear correlation between calculated cation-it energy and gating energy

suggests that cation-n interactions are important for open-state affinity of organic cations to the

AChR TBSs. There is a weak linear correlation between closed-state binding affinities and

calculated cation-ni energies with a near-zero slope, suggesting other agonist-channel interactions

are more important than cation-i interactions in the closed state. Simple organic cations are not

positioned for a strong closed-state cation-i interaction by any mechanisms other than

partitioning to the binding site and conformational sampling. In contrast, agonist-bound AChBP

structures suggest the TBS aromatic cage is arranged compactly around the organic cation in the

open state. The increase in favorable contacts between the cation and aromatics improve

positioning for cation-n interactions in the open-state.

This mode of binding may differ with other agonists, and the different contributions

cation-7t energies make to closed-state or open-state affinities for different agonist can be tested.

For example, 5-HT and ACh are both more complex than the organic cations investigated here,

and cation-n interactions for these strong agonists are hypothesized to contribute primarily to

binding rather than channel gating (14). For more complex agonists, the structural components



separate from the cationic center may help position the molecule for a cation-in interaction in the

closed-state. For example, the backbone carbonyl of caTrpl49 has also been shown to impact

activation, attributed to hydrogen-bonding interactions (14). For 5-HT and ACh, the non-

cationic moieties might position the cationic center optimally for a strong cation-7t interaction.

In this binding mode, the strength of the closed-state interaction is nearly maximal, and the

interaction does not strengthen in the open state to a large extent.

Parameters for Quantitative Structure-Activity Relationships

These results suggest that the calculated cation-n binding energy between a charged

agonist and an aromatic ring is a useful parameter for structure-activity relationships that

distinguish agonists from antagonists. For simple organic cations, we have shown that the

cation-n energy is strongly correlated with gating. Thus, similar small molecules that can bind

the closed state well, but do not form cation-n interactions are candidates for antagonistic

activity. Log P is already a commonly used parameter in structure-activity relationships, and it

correlates with closed-state binding affinity. Thus, Log P may be useful for judging the ability of

a small molecule to partition to the closed-state binding site.

We briefly investigated whether the reported binding and gating characteristics of TEA

are predicted by the observed correlations. Correcting gating and closed-state affinity for the

effects of the mutant receptor used in these studies, we found that TEA closed-state affinity and

binding energy fit well on the trend lines predicted by Log P and cation-n energy, respectively.

Clearly, cation-n energy will not be a sole predictor of agonistic versus antagonistic

activity, but the strong correlations that have been observed suggest it will be an extremely

useful metric for predicting binding and gating characteristics.

II.F Conclusions

We show here that cation-n interactions between organic cations and the AChR binding

site contribute to the channel gating efficiency. Cation-n interactions have been shown to impact

the function of a broad array of ion channels, both ligand-gated and voltage-gated, and enzymes

(64). The results suggest that calculated cation-i binding energies may be a useful parameter for

predicting agonistic versus antagonistic activity of drug candidates.
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Table II.1. Hill Parameters for Intracluster Open Probability Agonist Dose Response
Agonist PoMax EC5so (ptM) n KB (fLM)

TMA 0.81 + 0.03 50 ±7 1.2 ± 0.1 7000 +2000
ETMA 0.66 ±0.04 80 10 1.7 ±0.2 2000 ±100

DEDMA 0.30 ±0.03 230 ±60 1.6 ±0.2 1000 ±100
TEMA 0.03 ± 0.01 400 ± 200 1.5 * 500 ±20
TMP 0.77 ± 0.04 310 ± 50 1.6 ± 0.1 2900 ±300

* For TEMA, n was constrained to 1.5 to obtain estimates. The sensitivity of PoMax to the value
of n is evaluated in Table II.2, and the error in PoMax is the standard deviation of values obtained
from the sensitivity analysis.

Table 11.2. Sensitivity of TEMA Dose-Response Estimates to the Hill Coefficient n

po
M ax

1
1.1
1.2
1.3
1.4

1.5*
1.6
1.7
1.8
1.9
2

0.05
0.04
0.04
0.04
0.03
0.03

0.031
0.030
0.030
0.029
0.028

* 0.03
* 0.02
± 0.01
± 0.01
± 0.01
- 0.01*
± 0.005
± 0.004
± 0.004
* 0.004
± 0.003

32 (S-)

EC5o (pM)

1100
800
600
500
500
400
400
400
400
300
330

- 900
± 500
± 400
± 300
* 200
* 200*
- 100
± 100
± 100
± 00
± 90

ECso (pM)

1 200 ±300 3000 ± 9000
1.1 100 ± 100 2000 ± 2000
1.2 80 60 1000 ± 100
1.3 70 ±40 800 ±700
1.4 60 30 700 ± 500

1.5* 60 ±20* 600 ±400*
1.6 50 ± 10 500 ±300
1.7 50 ± 10 500 ±300
1.8 50 ± 10 400 ± 200
1.9 47 ± 8 400 ± 200
2 45 £±7 400 ±200

* For TEMA, n was constrained to 1.5 to obtain estimates. Standard deviations of the ranges of
values obtained in sensitivity analysis were used as the estimated errors for the respective
parameters.



Table 11.3. Gating and Closed-State Binding Microscopic Rate Constants and Equilibria
Agonist 32 (s " ) a2 (S- 1) 2 (S 1') KD (uM) KGap

(Unitless)

TMA 10300 ±500 700 ± 70 15 ±2 120 ±20 0.24 ±0.05
ETMA 3400 ±200 1030 ± 90 3.3 ± 0.4 120 ± 10 0.33 ± 0.09

DEDMA 380 ±30 1400 ± 100 0.27 ±0.03 110 ±20 1.4 ±0.4
TEMA 60 ± 40' 2000 ± 100 0.03 ± 0.02 200 ± 200 30 2

TMP 5200 ± 100 900 ± 40 5.8 ± 0.3 530 ± 50 0.22 ± 0.08
For TEMA, n was constrained to 1.5 to obtain an estimate. The sensitivity of P2 to the value of

n is evaluated in Table 11.2, and the error in P2 is the standard deviation of values obtained from
the sensitivity analysis.
2 For TEMA, KGap was constrained to 30 to obtain and estimate of KD, and the error in KD is the
standard deviation of values obtained from sensitivity analysis.

Table II.4. Gating and Closed-State Binding Energies'
Agonist Cation-x2  +R.T*ln(a 2) -R.T'ln(3 2) -R.T*ln(0 2) +R*T.ln(KD)

TMA -28.45 ± 0.01 16.3 ± 0.3 -22.9 ± 0.1 -6.7 ± 0.3 -22.3 ± 0.4
ETMA -27.19 ± 0.19 17.2 ± 0.2 -20.1 ± 0.2 -2.9 ±0.3 -22.4 ± 0.3

DEDMA -26.28 ± 1.80 18.0 ± 0.2 -14.7 ± 0.2 3.3 ± 0.3 -22.7 ± 0.3
TEMA -23.31 ± 1.62 18.8 ±0.1 -10 ±2 9 ±2 -21 ±3
TMP -26.97 ± 0.05 16.9 ± 0.1 -21.2 ± 0.1 -4.4 ± 0.1 -18.7 ± 0.2

' Energies
298.15K.

in kJ/mol and uncertainties are propagated uncertainties. R is the gas constant. T =

2 Cation-n energies are reported as the mean ± SD for three repeated HF6-31 g(d,p)// HF6-
3 1g(d,p) geometry optimizations, except for TEA which is the average of two trials.



k+GA20 B k+Ga A2G
kGap

[A]-k kB

2-[A]- k+ [A]- k+ A k+GaC ' AC ' A2C A20 "A2G
k 2k a 2  k20 Gap

Scheme II.1. An AChR equivalent binding sites model. The closed AChR states are
represented by C. The open states are represent by O. The gap states are represented by G. The
blocked state is indicated by B. The agonist molecule is denoted A. In the equivalent binding
sites scheme, agonist binding to each transmitter binding sites is identical, characterized by the
association rate constant k+ and dissociation rate constant k, with dissociation constant KD = k /
k. A statistical factor of 2 is include for the apparent rates of the first binding and unbinding
events. The ratio of the diliganded opening rate constant /32 and closing rate constant a 2 is the
gating equilibrium constant 02. The blocking dissociation rate constant is KB = kB / k B. The
gap equilibrium constant is KG = k+Gap / k-Gap.



A ,; -~ i

A R

6Tyr57(E)

C

Figure II.1. The aromatic cage in the AChR binding site. (a) An overlay of the apo- (grey) and
epibatidine-bound (cyan) AChBP structures (2BYN, 2BYQ). (b) An enlarged view of the
aromatic box. (c) Aromatic residues are labels according to the AChR structure. For example,
aTrpl49(B) indicated the residue equivalent to Trp149 in Loop B of the ca-subunit of the
muscle-type AChR. Shown for reference, caCysl92(C) and aCysl93(C) are located at the tip of
Loop C. Epibatidine is not shown for clarity.
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Figure 11.2. Choice of tcrit for 1 mM TMA. At 1 mM TMA, there is typically a large peak
centered at less than 1 ms, representing the bulk of non-desensitized dwells. Desensitized dwells
are apparent at greater than 100 ms. For this record, the closed-time distribution was best fit to 7
components: (0.11 ms, 49%); (0.75 ms, 19%); (4.08 ms, 10%); (25.22 ms, 5%); (317.76 ms,
5%); (2461.89 ms, 9%); and (17645.30 ms, 2%). A critical time of approximated 50 ms is
calculated (red arrow). Use of this critical time produces clustering that is visually verified
(Figure 3). It causes misclassification of 1.7% of events.
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Figure 11.6. Single-channel activation of aGl 53 S213 AChR receptors by TEMA. Current
amplitudes were too low for analysis at 5000 pM TEMA.
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Figure 11.8. Analysis of single-channel clusters. (A) Fast, unresolved open-channel block

causes a decrease in apparent single-channel current with increasing agonist concentration. (B)

The effective opening rate P' approaches the true opening rate P as agonist saturates the receptor.
(C) The closing rate is inversely proportional to the unblocked mean open lifetime. (D) Fitting
the intracluster open probability using Scheme II.1 provides estimates of the closed-state affinity,
KD. TEMA data are also shown with independent scaling (E-F).
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Figure II.10. Energy-optimized conformations produced from HF6-31g(d,p)//HF6-31 g(d,p)
geometry optimization for benzene in complex with (A) TMP (B) TMA (C) ETMA (D) DEDMA
(E) TEMA (F) TEA. Ball and stick representation are shown using van der Waals atomic radii to
size spheres. Atoms are colored by charge distribution on a scale of -1 (bright green) to +1
(bright red), with values labeled.
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Figure II.11. Overlay of the apo- (grey) and epibatidine-bound (cyan) aromatic box. X-ray
structure of the epibatidine-bound AChBP (2BYQ) aromatic box with epibatidine hidden (A) or
shown (B). (C) Optimized benzene-TMA complex manually positioned in the aromatic box.
The benzene ring was overlaid with the aTrp 149. Hydrogens are not shown, except for TMA.
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Chapter III.

Evidence from single-channel recording that the acetylcholine receptor is more symmetrical

in the open than the closed conformation

III.A Summary

One of the central issues in nicotinic acetylcholine receptor (AChR) physiology and

pharmacology is the dynamic interaction between ligands and the transmitter binding sites. The

a subunits contribute the principal agonist binding determinants at the transmitter binding sites.

Structural studies have shown that the closed muscle-type AChR is asymmetric because the ac

subunits are rotated relative to non-a subunits, and functional studies have shown that the closed-

state binding affinities can differ between the two sites. When agonist is bound to the AChR, all

subunits overlay well, and the receptor is highly symmetric. Therefore, the increase in structural

symmetry may translate to an increase in functional symmetry of the two transmitter binding

sites; that is, we hypothesize that the open-state affinities are identical. We tested this hypothesis

using single-channel recordings from heterologously-expressed adult mouse, muscle-type aG"53S

mutant AChRs in the presence of the low-efficacy agonist choline. Both model-independent

analyses and maximum-likelihood estimation of microscopic rate constants indicate that the

open-state affinities are equivalent and that channel gating leads to an increase in functional

symmetry. The two binding sites have non-equivalent closed-state affinities but equivalent

open-state affinities, consistent with the hypothesis that the transmitter binding sites' principal

faces primarily determine open-state affinity.

II.B Introduction

Understanding the conformation and the dynamics of agonist binding in the closed and

open states of the nicotinic acetylcholine receptor (AChR) is a central issue for AChR

pharmacology and rational drug design. Biophysical, biochemical, and electrophysiological

methods have been used to investigate agonist and antagonist binding to the AChR (1-6), but

capturing the dynamic molecular details of ligand interactions in the transient open state remains

a challenging task. The muscle-type AChR is a ligand-gated ion channel required for synaptic

transmission at the mammalian neuromuscular junction (NMJ). It is a pentameric complex made

up of two a subunits, one 13 subunit, one 6 subunit, and either one E or one y subunit, arranged in



clockwise order cap 3a when viewed from the synaptic cleft. The adult muscle-type AChR's two

transmitter binding sites (TBSs) are situated at the a-6 and ca- subunit interfaces. Cryoelectron

microscopy of the intact AChR (7) and x-ray crystallography of acetylcholine-binding proteins

(AChBPs) (8, 9) have provided high-resolution models; however, there are currently no

definitive models of the agonist-bound closed or open states (1).

The AChR TBSs have been structurally and functionally characterized in the closed and

desensitized states. The two TBSs are located in the N-terminal ligand-binding domain of the

muscle-type AChR. Each TBS has principal components (Loops A-C) that make up the principal

"face" of the binding site, and there are complementary components (Loops D-G) that make up

the complementary face. The a subunit contributes the principal components, and the 6 or E

subunit contributes the complementary components, depending on the subunit interface. In the

closed state, the binding sites are functionally asymmetric; that is, the two sites are characterized

by different agonist affinities and kinetics depending on receptor subtype and species (10-15).

In the desensitized state, ligand-binding and stopped-flow fluorescence experiments indicate that

the differences between the two sites are much smaller (16, 17). However, information about

agonist binding in the transient open state has not been easily accessible in functional studies,

and it is not clear what differences there may be between the open and desensitized states.

Two major conformational changes have been proposed to occur when agonists bind the

AChR: closure of the Loop C binding determinant over the binding site and rotation of the a

subunits. First, in the closed state, the AChR and AChBP models suggest Loop C is "uncapped".

This conformation leaves the agonist binding site more open for ligand binding. With agonist

bound, Loop C is shifted approximately 10 A, "capping" the agonist-bound site (7, 9). Second,

in the closed state, the a subunits overlay well with one another, and the non-a subunits overlay

well with one another; however, the a subunits do not overlay well with the non-a subunits (7).

The a subunits' interior P-sheets are rotated approximately 100. A 9 A resolution open-state

model suggests the a subunits rotate so that all subunits overlay well, and the AChR becomes

highly symmetrical (18) (Figure 1A). These static models have been of great use in developing

structural models for the allosteric closed-to-open conformation change, called gating, but open-

state agonist interactions are still not clear.

We propose that the dynamics of open-state agonist binding can be used to investigate the

structure-function relationship relating to the symmetry of the TBSs. Single-channel



electrophysiology is one method to directly assay AChR open-state properties. For example,

single-channel recording has previously been used to measure the rate of acetylcholine

dissociation from open receptors (19). From structural studies, it is apparent that the a subunits

induce an asymmetry in the closed state which is lost in the symmetric in the open state. We

hypothesize that functional symmetry parallels this state-dependent change. Using

electrophysiology, we test the hypothesis that the affinities of the TBSs are different in the closed

state, but they are equivalent in the open-state. Comparing closed-state versus open-state

affinities, the relative open-state contributions of the principal and complementary binding

determinants are compared.

In considering the functional symmetry of the AChR, three plausible hypotheses can be

put forward (Figure III.1B). First, the difference in the TBSs' open-state affinities could be

larger than the difference in their closed-state affinities. Because the two TBSs differ

structurally in their complementary faces, this observation would suggest that the

complementary faces increase their contribution to agonist binding in the open state. Second,

the difference in affinities could remain the same in the closed and open states. This observation

would suggest increased open-state affinity is due to improved binding to both faces. Third, the

difference in open-state affinities could be smaller than the difference in their closed-state

affinities. Because the two TBSs have identical principal faces, this observation would suggest

that the principal faces increase their contribution to binding in the open-state. Agonist binding

is associated with the closure of Loop C and compaction of aromatic residues in Loops A-C.

Thus, we expect that the third hypothesis is correct, and the receptor is both structurally and

functionally more symmetric in the open state.

The hypothesis was tested using single-channel recordings of heterologously expressed

mouse adult muscle AChRs. The low efficacy agonist choline has proven useful for a variety of

AChR structure-function studies because it stimulates gating that is not faster than conventional

patch-clamp recording bandwidth (20-22), while retaining the gating mechanism observed for

stronger agonists (23). We used the previously characterized aG153S gain-of-function mutant,

which primarily increases agonist affinity (12, 24). This permits a larger range of activity to be

studied. Activation of this mutant using acetylcholine has previously been reported (11, 12). In

those single-channel studies, closed-state acetylcholine affinities differed by less than 10-fold,
and acetylcholine binding kinetics at the two different TBSs differed more substantially;

however, the thermodynamics and kinetics of acetylcholine binding to the open state were not



investigated. Previous single-channel kinetic analysis of activation of this mutant with choline

has only been conducted assuming equivalent sites, and the thermodynamics and kinetics of

choline binding to the open state were not investigated (24).

For choline-stimulated aG153S AChR currents, a model-free analysis of open

probabilities and dwell times supports the hypothesis that the TBSs are asymmetric in the

liganded closed states but symmetric in the open states. Maximum-likelihood model fitting of

single-channel activity was used to determine agonist binding, dissociation, channel opening,

and closing rate constants. Assuming the AChR obeys detailed balance (25), loop balance was

applied to the AChR thermodynamic cycle, and open-state affinities were calculated. We

demonstrate that the binding sites are functionally asymmetric in the closed state and become

symmetric in the open state, consistent with the previously characterized structural changes.

III.C Materials and Methods

Cell culture, electrophysiology, and single-channel analysis carried out using the same

methods reported in Chapter II.

Materials.

Choline chloride was obtained from Sigma (St. Louis, MO), and cell culture reagents

were from Invitrogen (Carlsbad, CA). Plasmids containing the adult mouse muscle

acetylcholine receptor subunit cDNAs in the pRGB4 vector were generously provided by

Professor Anthony Auerbach (SUNY Buffalo, Buffalo, NY) (26). The a subunit contains the

previously described V433A background mutation which does not affect channel kinetics and is

referred to as wild-type (11). The aGI53S mutation was engineered by site-directed

mutagenesis using a Qiagen QuickChange Kit (Valencia, CA) (11, 12, 24). Plasmid sequences

were confirmed by dideoxy sequencing at the MIT Biopolymers Laboratory (Cambridge, MA).

Cell Culture.

HEK-293 human embryonic kidney cells (ATCC CRL-1573) were maintained in

Dulbecco's Minimum Essential Media (DMEM) supplemented with 10% Fetal Bovine Serum

(FBS) at 370 C in a 5% CO 2 humidified atmosphere. Cells were transfected at 40-60%

confluency using the method of calcium phosphate precipitation according to previously



published protocols (11). For one 35 mm dish, a total of 3.5 tg of plasmid DNA was used in a

mass ratio of 2:1:1:1 of c:L3:6:E subunits. Media was changed 8-30 hours after addition of DNA,
and patch-clamp experiments were conducted 24-72 hours after media change.

Justification for Use of the aG153S Mutant

The cG153S mutation has been shown to increase the closed-state affinity of agonists

(12), and its use allows a range of choline concentrations to be used. Because we use a gain-of-

function mutation in these studies, we first justify its use. In this study we are interested in the

functional symmetry between the two TBSs and how their symmetry is different in the closed and

open states. Because the mutation occurs on the a subunits, it does not change the symmetry of

the system because there is one a subunit at each TBS. Therefore, use of this system is still

appropriate for comparing principal face and complementary face binding contributions in the

closed versus open state.

Justification for Assuming the AChR Obeys Detailed Balance

Detailed balance, or microscopic reversibility, requires that the AChR operate at

thermodynamic equilibrium in the absence of a source of additional free energy. For the AChR

which has no enzymatic component, this free energy can only come from the ion gradient. If a

permeant ion were to bind the pore, this could affect gating and cause violations of detailed

balance. However, AChR permeant ion block is not detected in single-channel recordings,

suggesting the ion gradient is not coupled to AChR gating. Furthermore, in early studies of the

AChR, no temporal asymmetries were detected in bursts of openings, consistent with detailed

balance (25).

Electrophysiology.

Single-channel recording was performed in the cell-attached mode according to

previously published protocols (27, 28). Before recording, transfected cells were washed with

Dulbecco's Phosphate Buffered Saline (DPBS) containing in mM: 137 NaCl, 0.9 CaCl 2, 0.5 mM

MgCl 2, 2.7 KCI, 1.5 KH2PO 4, 8.1 Na2PO 4, pH 7.3. The bath solution was DPBS, and pipette

solutions were DPBS supplemented with choline. Pipette resistances were typically 10-20 MQ,
and pipettes were held at a command voltage of -70 mV during recording. Membrane potentials



were usually -30 to -40 mV. Single-channel currents were amplified with an Axopatch 200B

(Axon Instruments, Foster City, CA) and recorded through a low-pass Bessel filter at 10 kHz.

Data was digitized at a sampling rate of 20-100 kHz using a NI 6040 E Data Acquisition Board

(National Instruments, Austin, TX). Data was recorded using QuB software

(www.qub.buffalo.edu).

Kinetic Analysis.

Single-channel records were processed using the QuB software suite (29-32). Data were

idealized using the segmental K-means algorithm. Dwell-time distributions were fitted, and time

constants were determined using the maximum-likelihood algorithm in QuB as previously

described (Chapter II). At high, desensitizing choline concentrations, single-channel activity is

clustered, and clusters were identified using a critical time t,,i as previously described (Chapter

II) (11, 28, 33). For fitting, clusters of homogeneous activity were used. Homogeneous clusters

were used if their activity fell within 1-2 standard deviations (SDs) of the mean current

amplitude, mean closed time, and mean open time as has been previously done (11). Single-

channel clusters recorded at 0.25, 0.5, 1, 2, and 5 mM choline were globally fitted to AChR

gating models (Scheme III.1 and 111.2), using the maximum interval likelihood algorithm with

missed event correction. A dead time of 2.5 times the sampling interval was imposed. Fitting

was repeated multiple times (10-50 repetitions) for each model with rate constant perturbations

to provide higher confidence that the fitted model did not represent erroneous convergence. An

additional gap state has been previously described and used in AChR gating models (11);

however, a gap state did not significantly improve fitting and in most cases caused non-

convergence or poor fitting. Furthermore other models incorporating choline-dependent block

or additional diliganded open states also did not improve fitting.

Deterministic Simulation of Macroscopic Behavior.

Macroscopic channel behavior was simulated by calculating time-dependent state

occupancies using previously described Q-Matrix methods in MATLAB (The MathWorks,

Natick, MA) (28). The validity of these simplified calculations were verified by comparing Q-

matrix calculated macroscopic currents to previously published experimental and M-Cell

simulated synaptic currents (24). Previously reported rate constants for wild-type and mutant



acetylcholine activation measured within the same studies were used in order to avoid comparing

rate constants measured under different experimental conditions (12, 34).

III.D Results

To test the hypothesis that the TBSs have distinct closed-state choline affinities but

symmetric open-state affinities, we estimated closed-state and open-state affinities of choline to

the aG153S mutant receptor using single-channel kinetic analysis. The activity of single-channels

was fitted to a kinetic model which allows for non-equivalent affinities, that is, the agonist

binding steps are allowed to be distinct (Scheme III.1). This type of model is commonly used to

fit AChR activity (11, 12, 35, 36). A simplified model which imposes equivalent affinities is

also commonly used to fit adult muscle-type AChR kinetics (37) (Scheme 111.2). This scheme is

often a good model for adult muscle-type AChR activity because the two TBSs have similar

closed-state agonist affinities. However, both models are physically reasonable, and Scheme

III.1 allows for the possibility of non-equivalent affinities. It is important to note that this model

does not require non-equivalent affinities. Hence, we used Scheme 111.2 as a more general

model which is suitable for testing the hypothesis that the TBSs are functionally asymmetric in

the closed state but symmetric in the open state. We take the approach of first making model-

independent measurements of gating. We then used these model-independent measurement to

constrain fitting of kinetic models, as is commonly done (11, 37).

Binding Sites Contribute Unequally to Gating

Initially, we tested the functional equivalence of the binding sites by recording the

activity of hybrid channels containing a wild-type and a mutant a subunit, and we find the sites

contribute unequally to gating, as observed by others (38). Cells were transfected with both the

wild-type a and mutant aGI 53S cDNAs, along with wild-type f3, 8, and s cDNAs. Because

muscle-type AChRs contain two a subunits, four populations of AChRs exist when cells express

both wild-type and mutant a subunits, differing at the TBSs. Channels can assemble in which

both binding sites are wild-type, both sites are mutated, the a-8 site is mutated (hybrids), or the

a-s site is mutated (hybrids) (38). Currents were recorded at 20 mM choline to saturate receptors

(4 patches) (39). Four distinct modes of channel activity were observed, demonstrated in the

distribution of open probabilities (Figure III.2AB). For equivalent sites that contribute equally



to gating, single-channel activity from the two hybrid populations would be indistinguishable, as

has been observed for transmembrane-region mutants (40-42). In this case, three modes of

activity would be observed: wild-type, hybrid, and mutant. In contrast, for non-equivalent sites

that contribute unequally to gating, two distinguishable subsets of hybrid channel activity are

predicted (38, 42). In this case four modes of activity would be observed. Four modes of

activity were observed, and a segmental k-means algorithm was used to fit the open probabilities

to four Gaussian curves: wild-type 0.12 ± 0.02, hybrid 0.33 ± 0.04, hybrid 0.54 ± 0.04, mutant

0.80 + 0.03 (mean ± standard error). Gating rate and equilibrium constants of the four

populations were determined (Table III. I). As expected, the two transmitter binding sites

contribute unequally to gating (38).

Although two hybrid activities were observed, the hybrid closing rate constants are equal,

consistent with identical open-state TBSs in support of our hypothesis. Only one open lifetime

was necessary to fit hybrid openings for the number of fitted events. However, two distinct open

lifetimes might be too similar in magnitude to distinguish. The ratio of the two hybrid lifetimes

is 1.1 + 0.1 (mean ± standard error), indicating that if there are two distinct lifetimes, they are

unlikely to differ by more than 20-30%.

Because the currents analyzed above were recorded at 20 mM choline to saturate

receptors, unresolved fast block prolongs the apparent open events, resulting in underestimation

of the diliganded closing rate x2 by 2-fold (39). However, this phenomenon occurs for all four

receptor populations and, therefore, does not affect the analysis of binding site independence

used here.

We also demonstrate that the aG153S mutations are not coupled between TBSs.

Because the AChR is an allosteric protein complex, mutations might be energetically coupled.

The binding sites are generally considered independent of one another (11, 38), but coupling due

to the mutation would make Scheme 111.2 inappropriate for fitting single-channel activity. To

address this question, single-channel activity was measured from hybrid channels containing one

wild-type and one G153S mutant ca-subunit. The kinetic behavior of the hybrid channels is

consistent with independent TBSs that contribute unequally to gating.

Thermodynamic mutant cycle analysis indicates that the aGl53S mutations at the two

TBSs are uncoupled. Because the receptors are saturated, the observed differences in Po are due

to diliganded gating. Gating rate constants for each population were estimated using a



maximum-likelihood algorithm assuming a two-state open-closed model (38). For independent

perturbations, the change in gating free energy due to the aG153S mutation at each binding site

is path-independent. In terms of free energy, the equality AAGgating(wild-type to hybrids) +

AAGgating(hybrid8 to mutant) = AAGgating(wild-type to hybrids) + AAGati,g(hybrids to mutant)

should hold (38). In terms of diliganded gating equilibrium constants, non-interacting binding

sites predicts ®WT-OMut / ®Hybridl.®Hybrid2 = 1. We observed that the ratio OWT.®Mut /

®Hybridl.®Hybnd2 = 0.9 + 0.3 (mean + standard error) is approximately 1, suggesting the energetic

contribution of each binding site is independent (Figure III.2C).

Using the measured gating rate and equilibrium constants of the four populations, the

rate-equilibrium free energy relationship (REFER) for wild-type, hybrid, and mutant activity

was also determined. REFER analysis, plotting log P,2 versus log 02, measures the relative

position of the transition state along the conformational reaction coordinate, and has been used

as an indicator of relative timing of AChR domain motions in the gating conformational change

(23, 43). If the dynamics of the independent a subunits were asynchronous during the gating

reaction, nonlinear curvature in the REFER plot would be expected because each of the hybrid

channels would give rise to a different slope in the REFER plot (42). In fact, REFER

coordinates of the wild-type, mutant, and the hybrid aG153S populations are collinear (R2 
=

0.98 ± 0.01, mean ± standard error), suggesting that the binding sites have similar gating

transition state conformations and relative timing of conformational motions (Figure III.2D).

The slope of the linear REFER is (D = 0.79 + 0.03 (mean ± standard). The O-value is close to 1,

as expected for the transmitter binding sites (20, 23). This value suggests choline activation of

the aG153S AChR does not utilize an allosteric mechanism unique from wild-type receptors,

supporting the use of Scheme 111.2.

Model-Independent Measurements of the Gating Rate Constants a1, a2, /32

Functional asymmetry of the open-state binding sites predicts that there are four AChR

open states, and symmetry of the open-state binding sites predicts that there are three open states.

To determine the number of open states and their associated lifetimes, single-channel activity

was measured at low choline concentrations (numbers of patches: 1 at I nM, 7 at 10 nM, 7 at

100 nM, 5 at 1 M, 6 at 10 gM, 26 patches total). At low choline concentrations, single-channel

activity is not clustered, and closed and desensitized sojourns cannot be distinguished. Thus,



only open dwell-time distributions were analyzed. Sums of exponentials were fitted to the open

dwell-time distributions, and time-constant analysis was performed. An example of an open

dwell-time distribution observed at 100 nM choline is shown in Figure III.3A.

Open events could be classified into short (0.14 ± 0.02 ms, mean ± SD), intermediate

(0.6 ± 0.1 ms), and long (1.2 ± 0.2 ms) lifetimes, consistent with symmetric open-state binding

sites. The relative amplitudes of these open lifetimes were concentration dependent (Figure

III.3B). The short-lifetime open state steadily decreased in relative amplitude with increasing

concentration. For the intermediate-lifetime open state, the relative amplitude exhibited a bell-

shaped concentration dependence with a maximum at ~10-5 -10'4 M. The long-lifetime open state

was absent at very low concentrations and steadily increased in relative amplitude with

increasing concentration. The magnitude of the three open lifetimes and the concentration

dependences of their relative amplitudes indicate that they correspond to openings of the

unliganded, monoliganded, and diliganded aG153S AChR. The shortest lifetime was consistent

with the reported unliganded lifetime (24) and can be assigned to the unliganded open state. The

longest lifetime is consistent with our measurements at saturating choline concentrations (Table

III.I) and can be assigned to the diliganded open state. The monoliganded open state is unlikely

to have a lifetime shorter than the unliganded open state or longer than the diliganded open state.

The intermediate open lifetime therefore can be unambiguously assigned to a monoliganded

open state. A histogram of the open lifetimes observed in all the low concentration records

clearly shows three peaks (Figure III.3C). A Gaussian was fitted to each peak, and the channel

closing rate constants were determined: the unliganded closing rate constant cto (7000 ± 1000 s

'), the monoliganded closing rate constant a, (1900 ± 400 s-'), and the diliganded closing rate

constant a 2 (1100 ± 200 s-'). It is not surprising that the unliganded and monoliganded open

states are easily observable, as other gain-of-function mutants have shown a propensity for

opening with fewer than two agonist molecules bound (44).

Notably, only one monoliganded open lifetime was observed, consistent with the

hypothesis that the open-state TBSs are functionally identical. Additional monoliganded open

states were not necessary given the number of events fitted. These data do not rule out the

hypothesis that there are two distinct monoliganded open state with lifetimes that differ by 10%

or less (as judged by least-squares fitting of the histogram in Figure III.3C) and are therefore



not resolved as individual components. However, the existence of two monoliganded lifetimes

of similar lifetimes would not impact the model fitting conducted below.

To determine diliganded gating rate constants, single-channel activity was recorded at

high concentrations of choline (numbers of patches: 4 at 0.25 mM, 4 at 0.5 mM, 4 at 1 mM, 5 at

2 mM, 4 at 5 mM, 21 total). Single-channel activity was observed as clusters at these

concentrations (Figure III.4A). The choline dependence of the intracluster open probability was

fitted to a Hill equation to estimate the effective concentration for half-maximal activation (ECs

= 1.2 ± 0.4 mM) and maximum open probability (Po"" = 0.6 + 0.1) (Figure III.4B). The

apparent opening rate, P2', is the reciprocal of the major intracluster closed-time component that

scales with agonist concentration. The dose response of 32' was fitted to a Hill equation to

estimate the true microscopic opening rate constant (32 = 2200 ± 700 s-') (11, 28, 45) (Figure

III.4C).

The diliganded closing rate constant, a 2, was measured from the dose response of the

mean open time to, and the gating equilibrium was measured from 32 and a 2. Choline is useful as

a low-efficacy agonist which induces resolvable gating events, but fast open-channel blockade

also occurs at high concentrations. When fast blockade is present, the observed mean

intracluster open time is to = a2 ' + (a 2 KBlock)J-[choline] (28, 46, 47) (Figure III.4D). The

diliganded closing rate constant (a2 = 1300 ± 100 s-') and choline blocking equilibrium constant

(KBlock - 10-2 M) were determined. Fast choline block of the mutant is not different from the

wild-type channel (KBock - 10 - 20 mM), as expected from the location of residue G153 in the

binding site, far from the ion conduction pore. The concentration dependence of to was

observed to be shallow and linear, indicating that fast choline block is not severe up to 5 mM.

Furthermore, the diliganded closing rate constant determined at high choline concentration is

consistent with its estimate at low choline concentration. From the diliganded gating rate

constants, we estimate 02 = 132/ 2 = 1.7 ± 0.6.

Four Closed Dwell-Time Components Suggests Two Distinct Binding Steps

The intracluster closed dwell-time distributions observed at 0.25 mM choline exhibited

four closed components, suggesting that there are two binding events with distinct closed-state

affinities that can be detected. At 0.25 mM choline single-channel clusters can be isolated, and

ensemble averaging does not obscure microscopic steps. At this concentration, the receptors are



not highly saturated, and all the conformational and bound states are sampled. The number of

exponential components in the closed dwell-time distribution equals the number of kinetically

distinguishable closed AChR states (28). For identical binding sites, there are three

distinguishable closed states: one unliganded, one monoliganded, and one diliganded closed

state. Three closed components would be observed in the closed dwell-time distributions. For

non-equivalent binding sites, there are four distinguishable closed states: one unliganded state,

two distinguishable monoliganded closed states, and one diliganded closed state. Four closed

components would be observed. We observed four closed components at 0.25 mM choline (4

out of 4 patches) (Figure 111.5). Fits of the distribution to four components were significantly

better than fits to three components. Approximately 25000 events were observed for each

record, and according the to the Schwartz criterion for this number of events, an increase of 5 in

the log-likelihood score is significant (48). The log-likelihood score improves by 13 + 3 (mean

+ standard error), a value which is by the Schwartz criterion and also the Likelihood Ratio Test

(a=0.001). In contrast, addition of a fifth component only improved the likelihood score by 1.1

+ 0.6, which is not significant. The four closed time components were similar in magnitude,

leading to broad distributions and an absence of four well-separated peaks. Thus, they could not

be analyzed in a model-independent manner. However, these observations are consistent with

asymmetric agonist binding sites in the closed state, indicating that fitting of Scheme 2 may

reveal distinct closed-state affinities.

Maximum-Likelihood Model Fitting and Rate Estimation

Using maximum-likelihood model fitting, Scheme 111.2 was shown to be a statistically

better model of caG153S AChR activity than Scheme III.1. The clusters of single-channel

activity recorded at 0.25, 0.5, 1, 2, and 5 mM choline (Figure III.4) were simultaneously fitted

to equivalent (Scheme III.1) or non-equivalent (Scheme 111.2) independent binding sites models

using the maximum idealized likelihood algorithm in the QuB software suite

(http://qub.buffalo.edu) (11). The clusters that exhibited stationary and homogeneous single-

channel activity were selected for fitting as described in the Materials and Methods section

(11). At each concentration, the clusters from all patches were pooled, and data from all

concentrations were fit simultaneous to the models. Unliganded openings are not included in the

models because they are extremely rare at the analyzed concentrations. The diliganded gating

rate constants were determined in a model-independent manner as described above, and



therefore, they were constrained to a 2 = 1300 + 400 s1 and P2 = 2200 ± 700 s-' during fitting.

Monoliganded openings still occur frequently at these concentrations, and they are included in

the model for fitting. Only one monoliganded lifetime was observed, and its monoliganded

closing rate was determined in a model-independent manner as described above. Therefore, a1

was constrained to 1900 ± 100 s'1 for both monoliganded open states in Scheme 111.2 during

fitting.

Using these constraints, the non-equivalent, independent binding sites model (Scheme

111.2) fitted the data well and was a statistically better descriptor than the equivalent binding

sites model (Scheme III.1). It is difficult to determine by inspection which model produced

calculated probability distributions that better fit the observed dwell-time distributions. (Figure

111.6) This is consistent with the utility of the equivalent binding sites model in many scenarios

where discrimination of the binding sites is not necessarily possible or important to the question

at hand. However, the non-equivalent binding model is, for the results in the current study, a

significantly better descriptor of the data statistically. The fitted equivalent sites model log-

likelihood score is 2543496 compared to the fitted non-equivalent sites model score of 2562432,

an increase of 18936 in probability score with only three additional free parameters. This

difference is significant by the Schwartz criterion and Likelihood-Ratio Test (a=0.001) (Table

III.2) (49). Therefore, the rate constant estimates from the fitted non-equivalent binding sites

model were used for further analysis.

Closed-State Affinities Are Non-Equivalent, Open-State Affinities Are Equal

Rate estimates from fitting Scheme III.2 show that the two TBSs have distinct closed-

state binding and dissociation kinetics and differ in closed-state affinity by 10-fold; however, the

estimated open-state affinities are equal (Table 111.2). For simplicity, the superscript labels "H"

and "L" are used to indicate high and low affinity. The kinetics of choline association and

dissociation differ substantially. The association rates differ by -100-fold, with faster

association to the low-affinity site (k+H ~ 104 M s-1 versus k+L - 106 M'l s-1). The dissociation

rates differ by 1000-fold, with faster dissociation from the low-affinity site (k.H - 10' sd' versus

k.L - 104 S-1). The high-affinity binding site has a choline closed-state dissociation constant KDH

- 0.1 mM, and the low-affinity site has a choline closed-state dissociation constant KDL - 1 mM.



In contrast, we estimate that the open-state choline dissociation constants are equivalent:

JD - JDL - 50 pM. Open-state association and dissociation rate constants are difficult to measure

(19) and were not directly observed here. Instead, the open-state dissociation constants, JDL and

JDH, can be determined by applying loop balance, a consequence of detailed balance, to the

AChR conformational cycle (Figure 111.6) (25). Invoking loop balance, it follows that KDL , 1H

- JDH = KDH . IL. jDL. Using monoliganded gating equilibrium constants, O®L - 0.1 and ®1H

0.01, and closed-state affinities, we find that JDL - JDH. Loop balance allows us specifically to

write JDL,® 2 = KDLOIH, such that JDL = 40 ± 20 [tM, and to write JDH.®2 = KDH'OL, such that JDH

= 60 ± 20 pM. Hence, the TBSs are more functionally asymmetric in the closed receptor (KDH _

I 0KDL) and more symmetric in the open receptor (JDH - JDL), at least in terms of binding energy

and affinity.

III.E Discussion

State-Dependent Changes in Binding Site Organization

Single-channel kinetic analysis of the aG153S AChR activated by choline has

demonstrated that the two TBSs have non-equivalent closed-state affinities but equal open-state

affinities. Structural data suggests that the closed AChR has an asymmetric ligand-binding

domain because the two ca subunits are rotated relative to the non-a subunits (7). In contrast, all

subunits have equivalent conformations in the open AChR, and the ligand-binding domain is

symmetric (18). Our results are consistent with the functional predictions of this structural

model. Specifically, the binding sites have closed-state choline affinities which differ by 10-

fold (-300 pM versus -3000 pM) but have equivalent open-state choline affinities (-50 jIM).

This functional information can be used to infer details about changes in the molecular

organization of the agonist binding sites upon channel gating.

Regardless of the state of the receptor, the differences in binding affinity and selectivity

between the two TBSs may be attributed largely to residues on the complementary face in Loops

D-G. Because the principal face is formed by c subunits at both sites, binding interactions

between Loops A-C and the agonist are expected to be similar, if not identical, for the two

binding sites. The complementary face is formed by the 8 subunit at one TBS and the c subunit at

the other TBS. Asymmetry in closed-state agonist affinities indicates that the complementary

faces contribute appreciably to ligand-channel interactions. Several residues on the
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complementary face have been implicated in determining differential agonist and competitive

antagonist affinities and specificities between the two sites in the closed AChR (13-17, 50, 51).

We observe that the TBSs have equal open-state affinities, suggesting that their principal

faces increase their fractional contributions to agonist binding in the open state compared to the

closed state (Figure 111.7). The fractional contributions of the complementary faces decrease in

the open state so that the principal faces primarily determine open-state affinity. Currently, there

are no models for the agonist-bound closed and open states. The agonist-bound AChBP

structures are thought to mimic the desensitized state, and it is not clear what differences exist

between the open-state and desensitized state TBSs. However, our results are consistent with

models comparing the agonist-free closed state and agonist-bound desensitized state. In x-ray

protein crystal structures of carbamylcholine- or nicotine-bound AChBP, the agonist-buried

surface area is approximately 2-fold greater for the principal face than the complementary face,

suggesting the agonist makes a larger number of contacts with the principal face (52). The

bound agonist may also be stabilized by closure of Loop C and compaction of the aromatic

"cage", both at subunit components (7). Our results therefore also suggest that the TBS is

structurally similar in the open and desensitized states, as has been hypothesized (53). Both of

these states are high affinity conformations with slow rates of agonist dissociation (0.1-10 s')

(16, 17, 19). It has also been previously reported that the binding affinities for the two TBSs in

the desensitized state are similar to each other (16, 17). While our functional studies suggest that

the open-state and desensitized-state conformations of the transmitter binding sites are similar, a

definitive answer to the question of open-state binding site conformation must await structural

experiments that allow characterization of local residue environments in transient states. It may

also be interesting to examine changes in functional symmetry for other agonists. Unlike

acetylcholine, choline lacks a carbonyl moiety which has been shown to be a pharmacophore.

This may indicate that for quaternary ammonium containing cholinergic agonists, the charged

moiety is largely stabilized by the principal face while the complementary face has a larger

fractional contribution to stabilization of the carbonyl and non-charged moiety.

Unequal Contributions to the Energetic Driving Force of Gating

The results presented here also confirm that the two binding sites contribute unequally to

the total free energy of the gating reaction, as previously reported (54). As discussed in the

Results section, analysis of hybrid channels in previous studies has indicated that the binding
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sites contribute unequally to gating (38). Our analysis further demonstrates that the difference

between closed- and open-state affinities at the high-affinity site is much smaller than the

difference in closed- and open-state affinities at the low-affinity site. Therefore, binding at the

low-affinity site contributes more to the free energy difference between closed and open states

than binding at the high-affinity site. Because the differential binding affinity in closed and

open states ultimately provides the driving force for agonist-gated channel opening, agonist

binding to the low-affinity site is the major factor in driving the gating reaction. Structurally,

the low-affinity site would thus also be expected to undergo a conformational change of

commensurately greater magnitude. Interestingly, the choline binding rate constant for the high

affinity site is particularly slow (-104 M' - s-'). The high affinity site's slow on-rate might be

rationalized by a similarity between its closed state structure and the compact structure of the

open state, assuming that the binding and unbinding processes are slower for the more compact

states.

It might be argued that the -10-fold affinity difference associated with functional

asymmetry is only a minor contributor to the overall thermodynamics of gating, and thus not

mechanistically significant. In terms of thermodynamics, a 10-fold affinity difference translates

to an energetic difference of only - 5 kJ/mol binding free energy, roughly that of a single weak

hydrogen bond and not very large compared to ambient thermal energy (kT). However, effects

of this magnitude can be very important in physiological context. Our results demonstrate that

the moderate asymmetry in binding affinities is associated with large asymmetries in agonist

binding kinetics. In fact, these kinetic asymmetries appear to be the more critical issue when

considering synaptic transmission, given the far-from-equilibrium nature of that process. We

examine in greater detail the possible physiological implications of the kinetic asymmetry of the

binding sites below.

Asymmetric Agonist Binding Site Kinetics Predicts a Dominant aG153S-Associated Phenotype

for Slow-Channel Myasthenic Syndromes

The results of this work provide evidence that AChR activity is best described by

Scheme III.2, in which the closed AChR has functionally asymmetric binding sites, but the

open-state binding sites are symmetric. However, the physiological importance of such

distinctions is not immediately clear, especially since both symmetric and asymmetric models

have been used in various single-channel kinetic analyses throughout the literature. (12, 34)
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Previous studies have not commented on how these different models might lead to different

physiological consequences. To examine the question of physiological relevance we used either

symmetric or asymmetric models to simulate AChR activity at the neuromuscular junction and

assessed predicted differences in synaptic transmission. We found that symmetry considerations

in AChR gating kinetics may be important in understanding not only the molecular-level gating

mechanism but also the molecular pathology of slow-channel congenital myasthenic syndromes

(SCCMSs).

SCCMSs are associated with impaired neuromuscular transmission and muscle weakness.

A large fraction of SCCMS cases are associated with AChR mutations that perturb channel

kinetics, and many of these mutations specifically slow down agonist dissociation (55). The

kinetic distinction between the two agonist binding sites might help explain the dominant

inheritance pattern of SCCMS associated with slowed agonist dissociation. The decay of the

muscle-type AChR synaptic current is determined by channel gating and fast agonist dissociation

from either of the two binding sites, since a single dissociation event highly disfavors channel

opening. For a SCCMS-associated mutation occurring on the a-subunit, heterozygous patients

will have four populations of channels: both binding sites wild-type, both sites mutated, the a-

8 site mutated, or the a-s site mutated. With this mixed population (neglecting possible effects

such as decreased channel expression), the ensemble behavior of the two different hybrid

awildtypeamutant populations could drastically influence the overall phenotype.

The ensemble behavior of the mixed population can be analyzed in the context of either

symmetric or asymmetric binding models. The two kinetic models, symmetric versus

asymmetric binding, make different predictions about the properties of the two different hybrid

awildtype/amutant populations and the associated disease phenotype. The symmetric binding model

predicts that the synaptic response of hybrid channels is no different from wild-type channels

(Figure III.8A). Because AChR synaptic current decay is partially determined by fast agonist

dissociation and because both sites exhibit fast agonist dissociation, the kinetic symmetry acts as

a level of redundancy which can protect against impaired function at just one site. Therefore,

the symmetric model predicts that mutation and decreased agonist dissociation at just one site

would not cause a delayed synaptic current decay. Fast agonist dissociation from the second

wild-type site would still be competent to terminate activity quickly, rescuing the ensemble
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phenotype of all hybrid channels at the NMJ. In this scenario, mutation at both sites is required

to produce the slow-channel phenotype.

In contrast, if transmitter binding sites are non-identical, mutation in only one site is

sufficient to produce the slow-channel phenotype. When binding sites are asymmetric, there is a

high-affinity and a low-affinity site. Low affinity is caused primarily by an increased rate of

agonist dissociation as seen in our experiments and previous reports with both mammalian and

Torpedo receptors (10, 12). With one "slow" and one "fast" agonist dissociation site, the AChR

current decay time course is determined primarily by the site with faster dissociation. Therefore,

the slow-channel phenotype is due solely to mutation in the low-affinity site, which slows the

fast agonist dissociation step and the rate of synaptic current decay. In this scenario, half the

hybrid channels will behave like wild-type channels, and half the hybrid channels will exhibit

the slow-channel phenotype because there is no rescue by a second fast site (Figure III.8B).

A symmetric model predicts that 25% of the channels at a heterozygous SCCMS

patient's NMJ will be dysfunctional, while an asymmetric model predicts that 50% will be

dysfunctional; however, whether or not this will lead to an observed difference in synaptic

behavior is not immediately obvious. To determine quantitatively whether differences in the

hybrid populations might be meaningful in shaping the time course of synaptic currents, two

clinically-identified SCCMS-associated mutations were analyzed in simulations. The cN217K

and aGl53S mutations are slow-channel mutations with similar clinical phenotypes and similar

molecular pathologies due to slowed agonist dissociation (12, 34, 56). Acetylcholine-induced

gating of each mutant has previously been examined at the single-channel level. For the oCN217K

mutant, acetylcholine activation was characterized with a symmetric binding sites model (Scheme

III.1) (34). For the uoG153S mutant, acetylcholine activation was characterized using an

independent, asymmetric binding sites model (Scheme 111.2) (12). Given the similarity of the

mutations, the disease phenotype and inheritance, predictions of both published symmetric and

asymmetric binding models can be analyzed and compared to reported clinical data. Q-matrix

methods were used to simulate the macroscopic AChR synaptic currents in response to a 1 mM

acetylcholine pulse of duration 0.5 milliseconds (variations of impulse height and width did not

affect the predictions) (28).

The simulations of AChR synaptic currents using a symmetric binding model predict a

mild change in phenotype due to a heterozygous SCCMS-associated mutation, suggesting
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recessive inheritance of the phenotype. The previously published microscopic rate constants for

the clinically-identified caN217K mutant, obtained assuming a symmetric binding sites model,

were used in the simulations (Table III.3) (34). Synaptic currents due to the wild-type, the

single hybrid, and the doubly mutant channel populations were analyzed individually and as the

1:2:1 mixture that might be found at the neuromuscular junction of a heterozygous SCCMS

patient. In the simulations, only the doubly mutant receptors display the disease phenotype.

Therefore, assuming symmetric binding kinetics in a heterozygous patient, only 25% of the

AChR population at the NMJ would be expected to be doubly mutant and have slow-channel

characteristics. At the simulated heterozygous NMJ, the total current decays similarly to the

wild-type current, suggesting that the phenotype will be inherited as a recessive trait (Figure

III.8C). However, the acN217K-associated disease is found to be dominantly inherited in

clinical studies (56), contrary to the prediction from the kinetic simulations that assume a

symmetric binding model.

In contrast to the predictions of the symmetric binding model, simulations of AChR

synaptic currents demonstrate that the asymmetric binding model predicts a pronounced change

in phenotype due to a heterozygous SCCMS-associated mutation, suggesting dominant

inheritance. Rate constants for the clinically-identified oaG153S mutant, obtained from fits to an

asymmetric binding model, have previously been published (Table 111.4) (12). Using these rate

constants for simulations, the synaptic currents due to the wild-type, the two distinct hybrids,

and the doubly mutant channel populations can be analyzed individually and as the 1:1:1:1

mixture that might be found the neuromuscular junction of a heterozygous SCCMS patient. In

these simulations, both hybrid receptors bearing the mutation at its low-affinity/fast-dissociation

site and the doubly mutant receptors exhibit the slow-channel phenotype. In a heterozygous

patient with asymmetric binding kinetics, 50% of the AChR population is expected to be

kinetically defective. This causes a qualitatively pronounced change in synaptic current,

increasing the decay time roughly 200% and suggesting a dominant phenotype (Figure III.8D).

Clinically, the aG153S mutation leads to a dominant disease-associated phenotype (12),

consistent with the prediction of the kinetic simulations.

Simulations of currents at the neuromuscular junction show that the asymmetric binding

sites model established in vitro by single-channel kinetic analyses may also help explain the

clinical observation that SCCMS are inherited as dominant traits. In addition to the AChR,
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many other ligand-gated ion channels exhibit high structural symmetry and multiple ligand

binding sites. Similar kinetic analyses and simulations of synaptic currents may therefore prove

to be generally useful in explaining and predicting phenotypes of channel mutations for

heterozygous genotypes.

III.F Conclusions

We have conducted structure-function studies which support the hypothesis that the

AChR has unequal closed-state affinities and equal open-state affinities. Our results suggest that

open-state binding affinities are primarily determined by the a subunits, that the transmitter

binding sites are structurally similar to one another, and that the open- and desensitized-state TBS

structures are not vastly different. Functional studies are complementary to structural models,

and we have demonstrated the utility of structure-function studies in assessing conformational

dynamics of the transient open state.
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Table III.1 Maximum Likelihood Rate
Estimation

of Hybrid Activity

92 12 (S-1) a 2 (S-1)
Wild-type 0.15 ± 0.01 130 ± 40 900 + 300

Hybrid 0.46 ± 0.04 250 + 60 500 + 100
Hybrid 1.1 + 0.1 500 + 100 500 + 100
Mutant 2.8 + 0.2 1300 + 400 500 + 200

Table III.1. Maximum-likelihood fitting of single-channel activity recorded at 20 mM choline.
Diliganded rate constants 12 and a2 are in s-1 and gating equilibrium constants 02 are unitless.
Mean + standard error, 4 patches.

Table 111.2 Maximum Interval
Equivalent Binding Sites
k- 1140000 + 20000
k_ 1790 +20

,1I 346 ± 4
a, 1900 ±400*

2200 + 700*
1300 ± 100*

1560 + 30

0.18 ± 0.04

02 1.7 + 0.6

LL 2543496

Likelihood Rate Estimation
Non-Equivalent Binding Sites
kL 2090000 + 30000
kL 5900 + 100
k+H 26000 + 600
kH 9.3 + 0.2

A L 524 + 6
aL 1900 +400*
fiH 50 ± 1
a H  1900 + 400*
/12 2200 + 700*
a2 1300 + 100*

KDL

KDH

e;L

02

LL

2820 + 60
360 10

0.28 + 0.06
0.026 ± 0.006

1.7 ± 0.6

2562125

Events 482898
Clusters 9003

Table III.2. Rate estimates obtained from maximum-likelihood fitting of Schemes III.1 and
111.2. Association rate constants are in M-'-s-', and all other rate constants are s-'. Dissociation
constants are in pM, and equilibrium gating constants are unitless. Standard errors are fitting
error estimates given by the QuB fitting software. *These rates were fixed according to
estimates explained in the Results section.
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Table 111.3 Simulation:
Symmetric Model Rate Constants

Wildtype Hybrid Mutant
k ; 1.29E+08 1.29E+08 1.16E+08
k; 21900 21900 1890
k 2  - 1.16E+08 -
k2 - 1890 -

/62 48900 39185 31400
a 2  1660 1204 873

k desensi,,i-e 30 30 30
k-desensitire 0.01 0.01 0.01

Table 111.3. Previously reported rate constants used for simulating activity of wildtype, hybrid,
channel activity for the caN217K slow-channel mutant (34).
all other rates are in s-.

Association rates are in

Table 111.4 Simulation: Asymmetric Model Rate Constants
Wildtype Hybrid Hybrid Mutant

(High Affinity) (Low Affinity)
k ; 8.40E+07 7.88E+08 8.40E+07 7.88E+08
k-; 210 1267 210 1267
k 2  1.80E+07 1.80E+07 9.50E+07 9.50E+07
k_2 16457 16457 970 970

/32 60000 50000 50000 44965
a2  2288 1500 1500 883

k desens,ie 30 30 30 30
k-desensitize 0.01 0.01 0.01 0.01

Table 111.4. Previously reported rate constants used for simulating activity of wildtype, hybrid,
and mutant channel activity for the aG153S slow-channel mutant (12). Association rates are in
M-~ -s , and all other rates are in s-'. Parentheses indicate which agonist binding site is mutated.
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AO

2-A-k. Ak+ 2
C , AC - A2C A20

k 2-k- a2

Scheme III.1. AChR kinetic model with identical binding sites. Closed-state agonist association
and dissociation are identical at both binding sites. Kinetic states: "C", closed; "0", open; "A"
represents bound agonist. Rate constants are in s-' except where noted: P1, monoliganded
opening; P2, diliganded opening; a, monoliganded closing; a2 diliganded closing; k+, agonist
association (M- -s'); k., agonist dissociation.

ACH

ACL

a1 H
AOH

fl2

A 2C " A20
a2

6l1L
AUL

Scheme 111.2. AChR kinetic model with potentially non-identical binding sites. Closed-state
agonist association and dissociation are not constrained to be identical at both binding sites. This
model is more general than Scheme III.1. Note that the closed-state kinetics and affinities are not
required to be different, they are simply allowed to be different. Kinetic states and rate constants
are labeled as in Scheme III.1. Low and high affinity sites and associated rate constants are
denoted by superscript "L" and "H", respectively.
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HACH

AC H 4- " AO H

KDL

A2

Ji

02

C -

KD H

ACL

A2 0

JD H

AOL

Scheme III.3. AChR conformational model showing thermodynamic loops that obey detailed
balance. JDH and JDL are the open-state agonist dissociation constants. Derived loop balance
equations: outer loop, KDL ()1H " JDH = KDH ), L . JDL; top loop, JDL-)2 = KDLI IH; bottom loop,
JDH), -= KDH OL.
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Closed "Distorted" Open "Relaxed"

Sa
0-*

Figure III.1. AChR symmetry. (A) A simplified representation of the change in structural
symmetry as proposed from structural data. (B) Representation of the hypothesis tested in this
work with transmitter binding sites represented as ovals. The AChR has non-equivalent closed-
state affinities represented by the ovals labeled "High" and "Low". Upon gating, there are three
predicted outcomes: top, the open-state affinities become more different represented by the ovals
labeled "Higher" and "Lower"; middle, the open-state affinities increase or decrease
equivalently; bottom, the open-state affinities can become equivalent represented by the ovals
labeled "Same".
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Figure 111.2. Hybrid activity from mixtures of wild-type and the G153S mutant a-subunits. (A)
Example clusters of the four modes of activity from wild-type (WT), hybrid (H), and mutant (M)
channels elicited at saturating 20 mM choline. (B) Example of four modes of activity shown in a
histogram of intracluster open probabilities from one patch. A segmental k-means algorithm was
used to fit four Gaussian curves to the wild-type (black), hybrid (blue), and mutant (red) open
probabilities. (C) Mutant cycle analysis shows the caG153S mutations at the two binding sites are
independent. (D) An example of a REFER plot from the activity of one patch with a @-value of
approximately 0.8.
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Figure III.3. Estimation of channel closing rate constants at low choline concentrations for
the aG153S mutant. (A) An example open dwell-time distribution obtained at 100 nM choline.
The distribution was best fit by three exponential components, also referred to as time constants.
(B) Concentration dependence of the amplitudes for time constants assigned to unliganded
(black squares), monoliganded (blue triangles), and diliganded (red circles) openings. (C) A
histogram of observed open time constants shows three distinct peaks assigned to unliganded
(black), monoliganded (blue), and diliganded (red) openings.
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Figure III.4. Estimation of diliganded channel gating at high choline concentrations for
the aG153S AChR. (A) Examples of single-channel clusters recorded at 0.25, 0.5, 1, 2, and 5
mM choline, shown at 10 kHz filtering with open events shown as upward deflections. (B) The
intracluster open probability concentration dependence was fit (solid line) to a Hill equation:
EC 50o = 1.2 0.4 mM and Popenm = 0.6 ± 0.3. (C) From fitting (solid line) the concentration
dependence of the effective opening rate, 32 = 2200 + 700 s-i . (D) From a linear fit (solid line)
of the concentration dependence of intracluster mean open time, a2 = 1300 ± 100 s-' and Kbklock
10-2 M- .
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Figure 111.5. Closed dwell-time distributions at 0.25 mM choline were best fit by four closed
components (black, blue, red, purple) suggesting that two distinct binding events are detectable.
Fitting to 4 closed components versus 3 was statistically better, but fitting to 5 components versus
4 was not. The superposition of all calculated distributions is shown in green.
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Figure III.6. Intracluster closed (left) and open (right) dwell-time distributions at 0.25, 0.5, 1, 2,
and 5 mM choline. Maximum-interval likelihood was used to fit the data to Scheme 1II.1 ( red)

versus Scheme 111.2 (blue). Scheme III.2 was a statistically better model.
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Closed State Is
More Asymmetric

Open State Is

Figure 111.7. Fractional contributions of the principal (unfilled triangles) and complementary
faces (shaded triangles) change with gating. In the closed state, TBSs' affinities differ because
interactions with the complementary faces are significant. In the open state, the TBSs' affinities
are equal because the principal face is largely responsible for open-state binding.
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Figure III.8. Kinetic symmetry considerations may be useful in understanding slow-channel
congenital myasthenic syndromes. (A) Identical closed-state binding sites (Scheme III.1)
suggests the disease is more likely recessive. Left: pentagon, AChR; open circle, wild-type TBS;
crossed circle, SCCMS mutant TBS. Top right: predicted wild-type synaptic current. Middle
right: predicted heterozygous current. Bottom right: predicted homozygous SCCMS current.
(B) Non-equivalent closed-state binding sites (Scheme 111.2) suggests the disease is more likely

dominant. (C) Deterministic simulation of the aN217K SCCMS mutant using literature-reported
rate constants quantitatively predicts a recessive phenotype, but clinically the associated disease is
dominant. Only the homozygous SCCMS simulated current (dashed line) is significantly slowed

in decay time. (D) Deterministic simulation of the aG153S SCCMS mutant using literature-
reported rate constants quantitatively predicts a dominant phenotype, correlating with clinical

observation that the associated disease is dominant. Both the homozygous (dashed line) and
heterozygous (dotted line) are significantly slowed in decay time.
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Chapter IV.

Development of a Trifunctional Probe Suitable for Activity-Dependent Protein Profiling of

the Acetylcholine Receptor

IV.A Summary

Activity-based protein profiling (ABPP) has been used extensively to characterize

enzymes involved in cellular signaling pathways, but its use has not yet been extended to ion

channels. We have synthesized a state-dependent photoaffinity probe for the nicotinic

acetylcholine receptor (nAChR) as a proof of concept that ABPP can be applied to ion channels.

The candidate probe named BPyneTEA comprises nAChR binding functionality, a

benzophenone group for photolabeling, and an alkyne group for biotinylation via "click

chemistry", permitting selective purification. Electrophysiological measurements at the single-

molecule level show that BPyneTEA blocks both the closed and open states of receptor with

similar affinity and kinetics. Covalent photolabeling studies indicate that BPyneTEA labels the

activatable closed state selectively over the inactive desensitized state. Thus, BPyneTEA shows

promise as a probe for non-desensitized nAChRs, and may be useful in studying the

physiological roles of nAChR desensitization in addiction and neuromuscular disorders. The

results suggest that ion channel pores, like enzyme active sites, will be a broadly useful target for

ABPP probes.

IV.B Introduction

Activity-based protein profiling (ABPP) is rapidly becoming one of the essential

experimental approaches in understanding biological processes at the systems level (1). The

ABPP approach involves the use of chemical reagents that selectively target an active state of a

protein. It provides a direct method for interrogating signaling processes that involve activation

or inactivation of an already-expressed protein. Because of the importance of such processes in

biology (e.g., cascades of protease or kinase activation), ABPP has proven to be useful in a broad

range of biological applications (2-4). ABPP reagents have been prepared for a number of

important enzyme classes, including serine proteases (5), kinases (6), and histone deacetylases

(7), and the strategy is likely to be useful for many additional classes of enzyme active sites.
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Ion channels are one important class of proteins for which ABPP probes have not been

previously reported. Although ion channels typically do not incorporate enzyme active sites,

they exist in different conformations with different associated activities. A probe molecule that

selectively labels a subset of the different activation states of the channel could thus be used as

an activity-based probe. Activation and deactivation of ion channels are central to some of the

most important processes in neurobiology, such as neuronal excitability and synaptic plasticity

(8). Development of ABPP probes for ion channels would therefore have the potential to

provide useful tools for the study of neurobiology at the systems level.

An affinity reagent that both reacts differentially with an ion channel in different

conformational states and contains a bioorthogonal reactive group (e.g., azide or alkyne) for

affinity labeling and purification (9) would allow ABPP studies of the target channel. Reagents

with a subset of these features have been developed, but channel-directed ABPP probes with all

of the required functionality have not yet been reported. Many ion channel inhibitors exhibit a

pronounced binding preference for closed or open conformations of the target channel (10-13).

A photoactivated state-dependent inhibitor of AMPA receptors (14) has proven to be a valuable

tool for measurements of AMPA receptor trafficking in neurons, but similar compounds that

allow isolation and detection of the inactivated receptors are not yet available.

The nicotinic acetylcholine receptor (nAChR) is an ion channel in the Cys-Loop family

that becomes cation-permeable upon binding the neurotransmitter acetylcholine. The state-

dependent pharmacology of nAChR blockers has been used to design chemical probes that bind

selectively to different activation states of the channel, allowing differential covalent labeling

(15-18). However, probes suitable for proteomic applications have not yet been characterized.

A channel-selective photoaffinity probe containing a biotin group has been synthesized (19), but

its ability to mediate state-dependent labeling has not been tested.

Because the nAChR exhibits dramatic changes in pore structure on switching from active

to inactive states, this channel is a promising target for the design of a channel-directed ABPP

probe. Like other neurotransmitter-gated channels, nAChRs typically undergo desensitization: a

transition into a long-lived inactive state in response to prolonged exposure to acetylcholine (20,

21). In contrast to closed states of nAChRs which predominate in the absence of

neurotransmitter, desensitized states typically have very high affinities for acetylcholine and

nicotine (22-25) and predominate in the presence of neurotransmitter. Site-directed cysteine
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accessibility experiments suggest that desensitization involves a collapse of the intracellular end

of the ion permeation pore (26). As often observed in ion channel permeation pores (27), the

nAChR pore contains charged and hydrophilic functional groups for cation solvation as well as

hydrophobic pore-lining regions (28, 29). Collapse of the pore on desensitization might

therefore have a substantial effect on the binding of a charged and/or hydrophobic probe

molecule, allowing ABPP studies of closed, activatable versus desensitized nAChRs in vivo.

ABPP probes for nicotinic acetylcholine receptors (nAChRs) might be used to help

characterize the roles that desensitization and re-activation of these receptors play in neuronal

excitability and the pathogenesis of neuromuscular disorders. For example, nicotine, an nAChR

agonist, is present at desensitizing concentrations in the serum of tobacco smokers, and nAChR

activation (30, 31) and desensitization (21, 32) in reward-sensing areas of the brain have been

implicated in tobacco addiction. Similarly, altered desensitization of the muscle-type nAChR

has recently been proposed to contribute to the impaired neuromuscular transmission that causes

muscle weakness in patients with slow-channel myasthenic syndromes (33). Using selective

labeling of non-desensitized receptors, non-desensitized and desensitized receptors could be

separately isolated with their associated proteins. Post-translational modifications and protein-

protein interactions in non-desensitized and desensitized receptor populations could then be

compared. We demonstrate in this work that this goal is achievable by developing a probe that

preferentially photolabels non-desensitized nAChRs.

We synthesized a candidate ABPP probe for state-dependent binding and photolabeling

of nAChRs. The candidate probe, known as BPyneTEA (benzophenone-alkyne-

triethylammonium), contains a terminal alkyne moiety, permitting bioorthogonal conjugation to

azide-functionalized biotin (34), and an core benzophenone, permitting covalent photolabeling

(Figure IV.1) (35). Benzophenone itself has previously been shown to act as a weak blocker

and to exhibit state-dependent nAChR covalent labeling, selectively labeling the closed channel

in the M2 pore-lining segment (36). BPyneTEA also includes a terminal triethylammonium

(TEA) group to direct the probe to the ion permeation pore and decrease membrane permeability.

Tetraalkylammoniums are known nAChR open pore blockers (37), and attaching TEA to the

BPyne core provides additional structural similarity to the local anesthetic and open-pore blocker

QX-314 (N-ethyl lidocaine) (11). Because our candidate probe combines features of several

"parent" state-selective structures, we characterized its action on nAChRs both
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electrophysiologically and biochemically to assess the effect of combining these features in a

single structure. Electrophysiological characterization of this candidate probe at the single-

molecule level indicates that it binds both the closed and open states of the nAChR, suggesting

that the probe exhibits some of the binding properties of the parent structures. Use of the

candidate probe to photolabel nAChRs in living cells shows that covalent labeling is selective for

closed over desensitized channels. These results demonstrate that the probe is suitable as an

ABPP reagent, and that ABPP is amenable for application to ion channels, where the ion

conducting pore may act as a reactive site analogously to an enzyme active site.

IV.C Materials and Methods

BPyneTEA was synthesized by Wan-Chen Lin as a part of her doctoral thesis. Cell culture,

electrophysiology, and single-channel analysis were carried out using the same methods

described in Chapter II.

Synthesis of the Biotin-Azide Reagent

To a cooled (0 "C) mixture of biotin (122 mg, 0.5 mmol), N-ethyl-N'-(3-dimethyl-

aminopropyl)carbodiimide hydrochloride (EDC, 144 mg, 0.75 mmol), and HOBT (101 mg, 0.75

mmol) in anhydrous DMF (5 mL) was added 1-amino- l-azido-3,6,9-trioxaundecane (55 mg,

0.25 mmol, diluted in 1 mL of anhydrous DMF) dropwise. The reaction mixture was stirred at 0

"C for 0.5 h and was then allowed to warm to ambient temperature. The mixture was stirred at

room temperature for 24 h, concentrated by rotary evaporation, and then diluted with

MeOH/CHCI3 (5:95, 15 mL). The organic phase was washed with 1 N HCI (aq) (5 x 10 mL),

the resulting aqueous phase was neutralized with saturated NaHCO 3 (aq) (3 x 10 mL), and re-

extracted with CHCI3 (5 x 10 mL). The combined organic phases was washed with brine (5 x 10

mL saturated sodium chloride aqueous solution), dried over anhydrous Na2SO 4, concentrated by

rotary evaporation, and purified by silica gel chromatography (CHCl3 4 17:83 MeOH:CHCI 3) to

give biotin-N3 (101 mg, 91%) as a white solid. TLC (1:5 MeOH:CHCI 3) Rf 0.40; 'H NMR

(CD 30D, 300 MHz): 8 4.50 (m, IH), 4.31 (dd, J= 8.0, 4.4 Hz, 1H), 3.72-3.58 (m, 10H), 3.54 (t,

J= 5.4 Hz, 2H), 3.46-3.32 (m, 4H), 3.21 (m, 1H), 2.93 (dd, J= 12.6, 5.0 Hz, IH), 2.71 (d, J=

12.6 Hz, 1H), 2.22 (t, J = 7.4 Hz, 2H), 1.80-1.54 (m, 4H), 1.52-1.48 (m, 2H); 13C NMR

(CD 30D, 75 MHz): 8 176.2, 166.2, 71.8 (2 peaks), 71.7, 71.4, 71.3, 70.7, 63.5, 61.8, 57.2, 51.9,
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41.2, 40.5, 36.9, 29.9, 29.6, 27.0; HRMS-ESI (m/z) calcd for C18H32N6NaO5S [M + Na]+:

467.2047; found: 467.2045. NMR spectra were obtained by Mathew Tantama and interpreted by

Wan-Chen Lin. MS was obtained by Wan-Chen Lin.

Electrophysiology

HEK 293 cells were transiently transfected with a 2:1:1:1 mass ratio of adult mouse

muscle a, 3, 6, and E AChR cDNAs using the method of calcium phosphate precipitation (22,

38). Single-channel patch-clamp recordings were obtained in the cell-attached mode (39). The

pipette and bath solutions were Dulbecco's phosphate buffered saline (DPBS, in mM): 137

NaCl, 2.7 KCI, 0.9 CaCI2, 0.5 MgCl2, 6.6 Na2HPO4, 1.5 KH2PO4 , pH 7.3. For experiments at

low acetylcholine concentration, 1 M acetylcholine (serially diluted from a IM stock) and

varying amounts of BPyneTEA were included in the pipette solution from 0 to 500 [M

concentrations. For experiments at high choline concentration, the ca subunit contained the gain-

of-function G153S mutation (38, 40), and the pipette solution included 1 mM choline and

varying amounts of BPyneTEA. Single-channel currents were recorded with an Axopatch 200B

(Axon Instruments, Foster City, CA) through a low-pass Bessel filter at 10 kHz, and data were

digitized at a sampling rate of 20 kHz using a NI 6040 E Data Acquisition Board (National

Instruments, Austin, TX). The membrane potential was usually -30 to -40 mV. For recordings

at 1 mM choline, the command potential was held at -70 mV. To measure voltage dependence,

the command potential was varied from 0 to 200 mV during recording. Single-channel currents

were not observed in the presence of BPyneTEA and the absence of agonist.

Single-channel Analysis

The QuB software suite (www.qub.buffalo.edu) (41-45) was used to adjust for baseline

drift, to idealize events, to analyze dwell-time distributions, and to determine clusters as in

Chapter II (43, 46, 47). OriginLab (OriginLab Corporation, Northampton, MA) and Matlab

(The Mathworks, Natick, MA) were also used for non-linear least squares fitting and figure

preparation.

Analysis of Single-Channel Clusters
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BPyneTEA exhibits the characteristics of a slow open-channel blocker. Open-channel

blockers can be classified as fast, intermediate, or slow blockers according to the magnitude of

their unblocking rate constants (with association rate constants typically 106 - 108 M~' - s-1). For

fast blockers, the unblocking rate constant is fast compared to the sampling frequency of the

recording, so that the mean residence time in the blocked state is short, even shorter than the time

resolution of the experiment. As a result, when the channel opens, several blocking and

unblocking events occur before the channel closes, leading to a net decrease in the observed

open-channel current amplitude. BPyneTEA does not exhibit this phenotype. For intermediate

blockers, the unblocking rate constant is of similar magnitude as channel opening and closing.

As a result, when the channel opens, several blocking and unblocking events occur and are

resolvable, causing a burst of shortened single-channel openings within the overall cluster of

openings. However, BPyneTEA does not cause resolvable bursts within clusters of activity and

does not exhibit this phenotype. Instead, BPyneTEA acts as a slow blocker.

For slow blockers, the unblocking rate constant is slow compared to channel opening,

resulting in long sojourns in the closed blocked state that are indistinguishable from desensitized

sojourns. As a result, an additional path is available to terminate clustered activity, resulting in

shortening of clusters (Scheme IV.1). Because the probability of blockade is proportional to the

time a channel spends open, longer open events are more likely to be blocked. This leads to a

net decrease in the observed mean open time within a cluster, that is <topen> = (aX + k+desensitize +

k+blockopen . [blocker])- - (a + k+blockopen . [blocker]) 1 since k+desensitize << a, where a is the

channel closing rate constant, k+desensitize is the desensitization rate constant, k+blockopen is the rate

constant for block (association of the blocker) to the open state.

The same argument can be applied to blockade of the closed state within in a cluster, and

closed-state blockade leads to a net decrease in the closed time: <tclosed> = (P' + k+blockclosed

[blocker])-, where 3' is the apparent opening rate constant, k+blockclo sed is the rate constant for

block (association of the blocker) to the closed state. In the case of closed-state blockade, a

complication is introduced when dealing with clusters. Because clusters are defined by sojourns

in the long-desensitized state, sojourns in a fast-desensitized or "gap" state, shorter-than-average

sojourns in the long-desensitized state and shorter-than-average sojourns in the blocked state

may contaminate the clusters. The closed time component which decreases in magnitude as
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blocker concentration increases is therefore the closed component of interest for determining

blockade rate constants.

Kinetic simulations illustrate how a blocker that binds to both the open and the closed

states affects the open and closed time distributions. The following parameters were used for

kinetic simulations: k+blockclosed = 5 X 106 M-1 S-1, kbloc klosed = 50 s- , 13 = a = 1000 S-1, k+blockopen =

1 X 106 M-1 s-1 kblockopen = 50 S"l , k+desensitize = k-desensitize = 100 s"1. The results of the simulation

show the decrease in both closed and open dwell times with increasing blocker concentration

(Figure IV.2) and the appearance of a long-lived closed component.

As mentioned above, slow blockade terminates clustered single-channel activity early,

but shorter-than-average sojourns in the blocked state may contaminate clusters. Therefore, the

longest-lived closed component in clusters represents an underestimate of the actual blockade

lifetime. Because the unblocking rate constant is inversely proportional to the mean blockade

lifetime, the long-lived closed component provides an upper bound for the total unblocking rate

constant, a function of unblocking rate constants for both the open and closed states. Ideally, this

component would increase in amplitude as blocker concentration increases; however, because of

the presence of contaminating desensitized sojourns this is likely not to be the case in practice

with a limited sample of clusters. Still, this complication does not preclude estimation of an

upper bound, with the caveat that, by definition, the upper bound may overestimate the true

unblocking rate constant, leading to an upper bound for the blocking dissociation constant that

overestimates the true dissociation constant. It might be possible to deconvolve the open-state

and closed-state unblocking rate constants from dwell-time correlation analysis, but this would

require a very large data set and is beyond the scope of the analysis performed in this work.

Analysis of Unclustered Single-Channel Activity and Voltage-Dependent Block

For a simple open-channel blockade model, the mean open time is inversely

proportionally to the sum of rate constants leaving the open state (Scheme IV.2). We can write

the mean open time as <topen> = (a + k+block - [blocker]) ~'. It has been shown previously that the

closing rate constant (a) is voltage-dependent (48). The mean open time increases with

hyperpolarization (the transmembrane voltage used in the current experiments range from 0 to -

200 mV) according to the relationship a(V) = ao - exp(za'a-F-V/R-T) where F is Faraday's
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constant, R is the gas constant, T is the temperature, z is the gating charge, and 8 is the electrical

distance or the percent of the transmembrane electric field sensed by the gating charge.

For open-channel blockade by a charged group, the voltage dependence of the blockade

association rate constant can be similarly described using the Woodhull model (49). In this

analysis, we neglect permeation of the blocker as a rare event, meaning that increasing

hyperpolarization increases blockade according to the relationship k+block(V) = k+block0 " exp(-

Zblock ' 6 block - F-V/RT). For BPyneTEA, Zblock = +1. Hence, we can write <topen> = [a

exp(z(-8&6-FV/R-T) + k+block0 exp(-8block - F-V/RT)]1-. From experiments at 1 gM acetylcholine

using the wild-type receptor, we have a range of <topen> as a function of concentration and

voltage. Initial fitting of the 3-dimensional surface using non-linear least squares fitting in

Matlab (The Mathworks, Natick, MA) did not lead to a stable solution. Therefore, we fit <topen>

as a function of [BPyneTEA] at each voltage, providing estimates of a and k+block as a function

of voltage. The voltage dependence was then fitted to the appropriate equations from the

Woodhull model, providing estimates of the electrical distance, the fractional distance from the

extracellular membrane face within the transmembrane electric field.

Photolabeling and Western Blotting

AChR-expressing HEK 293 cells were grown in 35 mm dishes. Cells were washed with

DPBS prior to addition of 1 mL DPBS containing BPyneTEA with or without 0.2 jM

acetylcholine. According to previously published protocols, cells were irradiated for 1 hour at

40 C at 365 nm wavelength using a UVL-56 (UVP) handheld lamp at a distance of 5 cm and

intensity of 1350 9W/cm 2 (34). The labeling solution was removed, and cells were gently

dissociated and collected in 2 mL DPBS. For each experimental condition, cells from four 35

mm dishes were typically pooled. Cells were pelleted for 10 minutes at 1000 x g, and the

supernatant was aspirated. Cells were lysed for 3 hours with gentle agitation at 40 C in 500 gL

lysis buffer (50 mM HEPES, pH 8, 150 mM NaCl, 1% Triton-X100, iX Roche EDTA-free

protease inhibitor cocktail) (50). Lysates were pelleted for 5 minutes at 10000 x g to remove

insoluble material, and cleared lysates were split into equal aliquots.

As a control for variability in expression levels, solubilized receptors from one aliquot of

cleared lysate were captured with a-bungarotoxin-functionalized Sepharose beads for 20 hours at

40 C. a-bungarotoxin (Biotium, Hayward, CA) was coupled to CNBr-activated Sepharose (GE
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Healthcare, Piscataway, NJ) according to the manufacturer's instructions. Following capture,

beads were washed with wash buffers containing 50 mM HEPES, pH 8, 1% Triton-X100, 0.1

mg/mL BSA and NaCI at increasing concentrations of 150, 250, 500, and 1000 mM. Beads were

eluted with SDS loading buffer (51) for 1 hour at 250C for SDS-PAGE and Western blotting.

To assess photolabeling, a second aliquot of cleared lysate was brought to 0.1% SDS, 5%

t-butanol, 100 tM tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (Sigma, St. Louis, MO), 1

mM tris-(2-carboxyethyl)phosphine, 100 [M biotin-azide reagent, 1 mM CuSO 4 and subjected to

click chemistry conditions for 3 hours at 250 C with stirring (52). Following the click reaction,

lysates were dialyzed in 4 liters of 50 mM HEPES, pH 8, 150 mM NaCl, 0.1% SDS, 1% Triton-

X100 for 3 hours with one dialysis buffer change to remove excess biotin-azide reagent.

Biotinylated, soluble receptors were then captured with streptavidin-functionalized agarose beads

(Thermo Scientific, Rockford, IL) for 12 hours at 40C. Following capture, beads were washed

with wash buffers containing 50 mM HEPES, pH 8, 0.1% SDS, 1% Triton-X100, 0.1 mg/mL

BSA and NaCI at increasing concentrations of 150, 250, 500, and 1000 mM. Beads were eluted

with reducing SDS loading buffer (2% SDS) (51) for 20 minutes at 250C followed by 5 minutes

at 65 0C, and the supernatant was removed while hot. Two additional elutions were carried out,

and the eluates were pooled. Following SDS-PAGE of the pooled eluates on a 10% gel, protein

was transferred to nitrocellulose, and protein transfer was quantified by reversible Ponceau S

staining. The protein transfer to nitrocellulose was carried out in a Biorad tank transfer apparatus

using transfer buffer consisting of 25 mM Tris, 192 mM Glycine, 0.1% SDS, 20% methanol in

deionized water pre-chilled at 40C. The gels were first equilibrated in transfer buffer for 30

minutes, and nitrocellulose membranes were equilibrated for 15 minutes, both at room

temperature. Protein was then transferred for 50-60 minutes at 500 V, and the entire apparatus

was placed in an ice-bath to reduce heating.

Western blotting was conducted at room temperature using a primary mouse anti-AChR

a subunit antibody (Clone 26, BD Biosciences, San Jose, CA) at 1:250 dilution and a secondary

horseradish peroxidase-conjugated goat anti-mouse antibody (BioRad, Hercules, CA) at 1:15000

dilution. Blots were blocked with 3% BSA in tris-buffered saline containing 0.1% Tween-20

(TBST) for 1 hour with agitation. Blots were incubated with primary antibody diluted in

blocking solution for 1 hour with agitation. Blots were washed 3 x 10 minutes in 50 mL TBST.

Blots were incubated with secondary antibody diluted in blocking solution for 1 hour with
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agitation. Blots were washed 3 x 10 minutes in 50 mL TBST and then 1 x 5 minutes in 50 mL

tris-buffered saline without detergent. SuperSignal West (Thermo Scientific) substrate was used

for chemiluminescent detection. Blots were incubated in 7.5 mL substrate for 5 minutes, and

then placed in plastic wrap for imaging. Blots were imaged, and densitometry was conducted

using a CCD imaging system (Alpha Innotech, San Leandro, CA). Bands were background

subtracted, and photolabeling levels were normalized for expression levels. To perform the

background subtraction, the area of interest around a given band was defined and pixel density

quantified. Then, an equal area of background immediately above and immediately below was

quantified, the two background estimates averaged, and the background value subtracted from

the band of interest. The background-subtracted band from the streptavidin eluate, representing

the photolabeled protein, was normalized by dividing it by the background-subtracted

expression-control band (Figure IV.5). For any given blot, 2 to 7 exposures were typically taken

and densitometry conducted in order to assess the variability in quantification for a single blot.

IV.D Results

Electrophysiological Characterization: BPyneTEA Blocks Both the Closed and Open AChR

Patch-clamp recordings of individual ion channel openings allow measurement of state-

dependent binding and blockade. Quaternary ammonium blockers such as tetraethylammonium

and QX-314 often block nAChRs by binding the open pore. Small hydrophobic blockers such as

benzophenone can bind the nAChR in the closed conformation (53), and, in fact, binding of

benzophenone to the channel pore is highly selective for the closed nAChR over the desensitized

nAChR (36). Since BPyneTEA incorporates both benzophenone and TEA/QX-314-like

structural elements, it is likely that BPyneTEA can bind the nAChR pore in both the open and

closed states.

Single channel patch-clamp current recordings were used to test the hypothesis that

BPyneTEA can block both open and closed nAChRs. To ensure that both open and closed states

were observable, single-channel currents were recorded from a gain-of-function nAChR mutant,

ocG153S (40), activated using the weak agonist choline. The combination of the gain-of-function

mutation and the weak agonist extends both channel openings and channel closings, making

them long-lived enough to be easily resolved (54). In addition, fast blockade by choline itself is

negligible at the concentration of choline used here (1 mM) (55). Channel activity in the absence
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of a blocker is therefore observable as clusters of openings and closings that are terminated by

entry into long-lived desensitized states. In the presence of BPyneTEA, however, a cluster of

activity may be terminated early by blockade (Figure IV.3AB). Blockade of either closed or

open states might terminate a cluster.

Direct observation of individual BPyneTEA blockade events at the single-molecule level

supports the hypothesis that this candidate probe binds both the open and closed states.

Individual association rate constants were measured for BPyneTEA binding to both closed and

open conformations. To determine the association rate constant for open-state blockade, the

distribution of nAChR open durations was measured as a function of BPyneTEA concentration

(Figure IV.3C). Blockade of the open state truncates open intervals within a cluster, decreasing

the mean open time (11, 56) (Figure IV.3D). The association rate constant for open state

blockade was determined from the BPyneTEA concentration-dependent decrease of the observed

open time (56) and is 1.3±0.7 x 106 M-' - s-1 (mean ± standard error, nonlinear least squares

fitting). The distribution of closed durations within a cluster was used to determine the

association rate constant for BPyneTEA binding to the closed nAChR. Like open-state blockade,

binding of BPyneTEA to the closed state is expected to truncate closings, decreasing the

observed mean closed times (Materials and Methods). In this case, there are multiple kinetic

components in the closed time distribution, but only one that decreases in a BPyneTEA-

dependent fashion; this represents the lifetime of the closed, blocker-free state. The association

rate constant for binding to the closed state was determined from the BPyneTEA concentration-

dependent decrease of the fastest closed time component and is 5±2x106 M-1  s' (mean ±

standard error, nonlinear least squares fitting) (Figure IV.3E). Both open and closed states thus

bind BPyneTEA with an association rate constant of _-xl06 M 1 S-1; the difference in blockade

rate constants between the open and closed states is not statistically significant (unpaired, two-

sided t-test, p=0.068).

The affinity of BPyneTEA for the closed and open states can also be estimated from the

single-channel measurements. The observation that BPyneTEA terminates clusters of activity

(Figure IV.3B) shows that its average residence time in the channel is long compared to the

normal closed and open states. The closed time kinetic component corresponding to the

BPyneTEA-bound state(s) is therefore not expected to be directly observable among the closed

components within a cluster of nAChR activity (Materials and Methods). Nonetheless, the
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slowest component in the intracluster closed time distribution sets a lower limit on the true

residence time of BPyneTEA; only BPyneTEA blockade events that are shorter than average can

be observed within clusters of activity (Materials and Methods). The average duration of these

intracluster blockade events (Figure IV.3C) can be used to put a lower limit on the residence of

the candidate probe and an upper limit on the dissociation rate constant. This slow component

has a mean time of -10 ms, corresponding to a dissociation rate constant of -100 s-1 . Using this

dissociation rate constant as an upper limit, upper limits for the closed and open blockade

dissociation constants can be obtained using the association rate constants: <-20 pM for the

closed state and <-80 pM for the open state.

Electrophysiological Characterization: BPyneTEA Binds Within the Transmembrane Electrical

Field

To estimate how BPyneTEA is situated in the transmembrane electric field when binding

to the nAChR, we measured the voltage dependence of open-state blockade. For these

experiments, single-channel currents from wild-type nAChRs activated by acetylcholine were

recorded. This set of conditions both allows the observation of large numbers of channel

openings and permits the open-state to be observed selectively. At low acetylcholine

concentration (1 p.M), the nAChR is open for >95% of the observed bursts (57). The observed

open duration was measured as a function of both BPyneTEA concentration and transmembrane

voltage, allowing the association rate constant to be measured as a function of voltage (Figure

IV.4). The Woodhull model (49) (Materials and Methods), which describes channel pore

interactions with charged blockers, defines an electrical distance (0 <5 b < 1) to the kinetic barrier

for binding within the transmembrane electrical field. The more deeply this barrier resides

within the transmembrane electric field, the more sensitive the association rate constant will be

to transmembrane voltage (49) and the larger 8b will be. The measured electrical distance is 8b =

0.2 + 0.1 (mean + standard error). Assuming that blockade is due to binding within the open

pore, and approximating the transmembrane field as uniform through the pore, this electrical

distance corresponds to a barrier to blockade situated about 8 A deep in a 40 A channel pore.

However, it is also possible that BPyneTEA blocks the nAChR by binding an allosteric site

exterior to the pore within the transmembrane field.
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State-Dependent Labeling ofAChRs in Living Cells

To test whether BPyneTEA selectively labels the non-desensitized states of the nAChR

compared to the inactive desensitized state, we carried out photolabeling of nAChRs expressed

in live, intact HEK293 cells in the presence or absence of the desensitizing agonist acetylcholine.

The results of the electrophysiological experiments described above indicate that BPyneTEA

binds to both closed and open non-desensitized states. However, it is possible that the candidate

probe also binds with appreciable affinity to desensitized nAChRs. Photolabeling using

BPyneTEA was carried out on nAChR-expressing HEK-293 cells in the absence or presence of

acetylcholine in order to determine the probe's selectivity for resting and desensitized states,

respectively (Figure IV.6). Copper(I)-catalyzed [3+2] cycloaddition (i.e., "click" chemistry) of

an azide-functionalized biotin was carried out to biotinylate the photolabeled ion channels

(Scheme IV.3) (9). Biotinylated ion channels were captured on streptavidin-coated beads, and

nAChRs were visualized by Western blotting with an antibody against the nAChR a-subunit.

Quantification of the captured nAChRs (normalized for expression levels) shows that the resting

state is labeled more efficiently than the desensitized state by a factor of 1.95 + 0.37 (n=3, mean

± SD, p = 0.047 two-sided t-test) (Figure IV.6A). BPyneTEA is therefore a selective covalent

label for closed, non-desensitized nAChRs.

Photolabeling at low probe concentrations is desirable in order to minimize the possibility

of non-specific effects of the probe on cells. Experiments on the dose-dependence of BPyneTEA

labeling show that labeling can be effective at BPyneTEA concentrations of <100 tM (Figure

IV.6B). At a BPyneTEA concentration of 50 gpM, selective labeling of closed, non-desensitized

nAChRs is observed: a factor of 1.80 ± 0.26 (n=3, weighted mean ± SD, p = 0.034, two-sided t-

test). The selectivity at the lower concentration is comparable to that observed at 250 gtM

BPyneTEA. At 10 gM BPyneTEA, weak labeling is observed, but its state selectivity is not

statistically significant (1.24 ± 0.19, n=3, p = 0.16, two-sided t-test). Labeling was not observed

in the absence of BPyneTEA or in the absence of UV irradiation (Figure IV.6C).

IV.E Discussion

Taken together, electrophysiological and covalent photolabeling results support the

hypothesis that BPyneTEA binds selectively to the non-desensitized nAChR compared to the

desensitized receptor. Single-channel current measurements show that BPyneTEA binds the
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non-desensitized open and closed states with similar kinetics and affinities, while BPyneTEA is

observed to photolabel the non-desensitized closed state with higher affinity than the

desensitized state in whole cells. The results provide a proof of concept that BPyneTEA can be

used for state-dependent labeling of non-desensitized nAChRs in live cells, and they suggest

more broadly that ABPP can be applied to ion channel pores as it has been to enzyme active sites.

Covalent photolabeling is more efficient in the absence of acetylcholine, indicating that

BPyneTEA can be used for selective covalent labeling of closed, non-desensitized nAChRs.

Structural differences in the pore region may account for the differential labeling of resting and

desensitized states (Figure IV.7). On the basis of electrophysiological (28, 58) and solvent

accessibility (26) studies, the constriction in the pore (or "gate") that occludes ion access differs

structurally for closed and desensitized states. The gate is deep within the pore in the closed

state, but shallower and closer to the extracellular face of the membrane in the desensitized state.

The results of the Woodhull analysis of the voltage-dependence of BPyneTEA open-channel

blockade suggest that the dominant barrier to blockade is not far from the extracellular side of

the channel. This observation provides a possible explanation for the similarity of blockade

affinities in closed and open states and the lower affinity in the desensitized state compared to

the closed state. If BPyneTEA binds within the nAChR transmembrane pore at a shallow site

near the desensitization gate, then BPyneTEA binding to the non-desensitized states would be

unobstructed by the closed-state gate, but constriction of the desensitization gate would disfavor

binding to the desensitized state. The data do not rule out the possibility that the probe binds the

open and/or closed channel outside the conduction pore. However, the hypothesis of shallow

pore blockade provides a straightforward explanation for the observation that BPyneTEA rapidly

binds both closed and open states of the channel. Further structural and functional studies will

be required to test this hypothesis and determine which specific residues are labeled by

BPyneTEA.

Selectivity for closed states compared to desensitized states is likely to be a crucial

parameter in determining the utility of probes for investigation of nAChR desensitization in vivo.

Because desensitization occurs primarily from the open state and is the thermodynamic

minimum for the agonist-bound channel(59), only channel populations that spend most of their

time in the closed state will remain activatable. For example, in the course of normal

physiological stimuli, nAChRs at the neuromuscular junction are closed > 95% of the time (57).
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One factor that could decrease selectivity for the closed state is binding of the probe to the

nAChR at different sites in different channel conformations. Previous work has shown that

benzophenone binds within the closed nAChR pore, but at non-pore sites in the desensitized

nAChR (36). Optimization of the blocker and benzophenone moieties may allow improved

selectivity for the closed state; the modular design of the molecule is expected to enable facile

synthesis of second-generation probes.

Labeling with BPyneTEA and similar probes is expected to be compatible with the

biological processes of interest. Four of the most important factors in evaluating the utility of the

probe for biological experiments are accessibility of cells to the reagent, level of state-selectivity,

timescale of the photochemical reaction, and protein selectivity of labeling. Like other

techniques based on photochemistry, labeling with BPyneTEA is likely to be most useful for

physiological preparations that can be thoroughly illuminated and perfused, such as neuronal

cultures or thin brain slices. The selectivity of BPyneTEA for closed over desensitized

conformations is modest (~ 2-fold), but high enough that comparison of subproteomes using

mass spectrometry is expected to be feasible. The use of trypsin-catalyzed 180 labeling of

peptides for relative quantification of subproteomes by mass spectrometry (60) has allowed

enrichments/depletions of < 2-fold to be detected (61). Photolabeling over tens of minutes is

compatible with the timescales of many of the biological questions of greatest interest, such as

long-term neuronal plasticity associated with nicotine addiction. In addition, this technology

may be adaptable to faster timescales after further optimization, since benzophenone probes have

been used to conduct structure-function studies of voltage-gated ion channels using sub-

millisecond UV flashes (62) and of nAChRs using seconds-long UV exposures (15). Finally,

although the relatively high extracellular concentration of BPyneTEA (50 PtM) may lead to non-

specific labeling of other channels or membrane proteins, selective detection of the target

channel by Western blotting or mass spectrometry is expected to allow accurate target profiling

even when off-target labeling is significant, as has previously been observed in ABPP studies (2).

IV.F Conclusions

The potential utility of a channel-targeted ABPP strategy depends on whether it will be

generalizable to a large number of structurally distinct channels. Large changes in pore structure

(as judged by accessibility to reactive probes in solution) have been observed for other Cys-Loop
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receptors such as the serotonin receptor (63), as well as glutamate receptors (64), potassium

channels (65), and sodium channels (66). Channel pores and surrounding regions typically

contain both hydrophobic and charged groups (27), providing diverse functionality for

interaction with small molecules. The single-molecule techniques available for direct

observation of small molecule-channel interactions make testing state-dependent binding

straightforward for a variety of channels. In addition, the many characterized state-selective

channel blockers and inhibitors offer a rich set of potential pore-binding groups for ion channel-

targeted ABPP probes. Ion channels as a class thus share many of the advantages of enzyme

active sites as ABPP targets, and appear likely to be a generally useful target for ABPP

techniques.
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Scheme IV.1. A kinetic model describe BPyneTEA block of the AChR. Using clustered single-
channel activity, we can determine if BPyneTEA blocks the closed state and if BPyneTEA
blocks the open state. Rate constants: k+bc(o), block association rate constant to the closed (open)
state, M -' s l; 3', channel opening; a, channel closing; k+desensitize, desensitization; k-desensitize,
recovery from desensitization.
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Scheme IV.2. A kinetic model for only open-channel block. Using unclustered single-channel
activity, we can quantify open-channel block and its voltage dependence, but we cannot interpret
closed event unambiguously. "C", closed; "0", open; "B", block; [b], BPyneTEA concentration.
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Scheme IV.3. Click reaction between BPyneTEA and the biotin-azide reagent.
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Figure IV.1. The structure of the candidate probe BPyneTEA synthesized in this study
compared to the structurally related blockers benzophenone and QX-314.
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Figure IV.2. Simulated effect of slow closed-channel block on the intracluster closed dwell-
time distribution. Closed (left) and open (right) dwell-time distributions are shown. Dotted lines
mark the mean closed and open times in the absence of blocker. Blue arrow: short closed
component. Black arrow: long closed component due to blockade events.
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Figure IV.3. BPyneTEA blocks both closed and open nAChRs. (A) Single-channel currents
from aG153S nAChRs activated by choline (1 mM) in the absence (top) or presence (bottom) of
BPyneTEA (500 tM). (B) BPyneTEA blockade terminates clusters of openings. (c) Histograms
of intracluster closed (left) and open (right) duration distributions as a function of BPyneTEA
concentration. (continued next page)
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Figure IV.3 (continued). BPyneTEA blocks both closed and open nAChRs. (D) BPyneTEA
induces a decrease in mean intracluster open times, indicating open-state binding. (E)
BPyneTEA induces a decrease in the mean lifetime of a short-duration closed time component,
indicating closed-state binding.
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Figure IV.4. The transmembrane electric field affects BPyneTEA binding. (A) Single-channel
currents from wild-type nAChRs activated by acetylcholine (1 pM) in the presence of
BPyneTEA (500 mM) at -70 mV (top) and -140 mV (bottom). Hyperpolarization increases the
rate of blockade. (B) The voltage dependence of a: ao = 1150 + 50 s-1, 8a = 0.25 ± 0.02 (mean
± standard error from nonlinear least squares fitting). (C) Voltage dependence of the association
rate constant for TEA blockade: k+blockO = 5 ± 1 X 105 M-I's 1, 8block = 0.2 ± 0.1. The sensitivity
of the association rate constant to voltage corresponds to the charged blocker being influenced by
20 + 10% of the total transmembrane electric field.
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Figure IV.5. Densitometry and normalization of Western Blots. An example blot of samples
tested at 250 gM BPyneTEA. Blots were probed with an primary anti-AChR c subunit mouse
antibody, followed by a secondary anti-mouse goat antibody with conjugated horseradish
peroxidase. Chemiluminescence was used for signal detection. The pixel densities of AChR a
subunit bands (red boxes) were background subtracted using regions of interest of equal area
above and below the band (green boxes). Bands representing photolabeling levels were
normalized to the level of AChR expression: absence of acetylcholine (closed channels), lane C
divided by lane A; presence of acetylcholine (desensitized receptors), lane D divided by lane B.
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Figure IV.6. State-dependent photolabeling of nAChRs in live cells. (A) Closed nAChRs
(absence of acetylcholine) were labeled two-fold more efficiently than desensitized nAChRs
(presence of acetylcholine) using 250 pM BPyneTEA. (B) Using either 250 or 50 gIM
BPyneTEA, closed nAChRs were labeled two-fold more efficiently than desensitized nAChRs.
At 10 pM BPyneTEA, no difference could be detected. Bars are means of three trials, error bars
are standard errors. (C) Control experiments in the absence of UV or BPyneTEA did not show
photolabeling.
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Figure IV.7. A hypothesis for a binding site within the channel pore, explaining BPyneTEA
blockade characteristics. Additional study is required to determine the actual locus because the
block by BPyneTEA could occur by an allosteric mechanism rather than direct occlusion of the
ion conduction pathway. Black lines, AChR pore lining; green ovals, BPyneTEA able to block;
red oval, BPyneTEA block is inhibited by structural changes near the desensitization gate.
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