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ABSTRACT
This thesis focuses on techniques with which natural language can be used to search for
specific elements in a structured document, such as an XML file. The goal is to create a
system capable of being trained to identify features, of written English sentence
describing (in natural language) part of an XML document, that help identify the sections
of said document which were discussed.

In particular, this thesis will revolve around the problem of searching through
XML documents, each of which describes the play-by-play events of a baseball game.
These events are collected from Major League Baseball games between 2004 and 2008,
containing information detailing the outcome of every pitch thrown. My techniques are
trained and tested on written (newspaper) summaries of these games, which often refer to
specific game events and statistics.

The choice of these training data makes the task much more complex in two
ways. First, these summaries come from multiple authors. Each of these authors has a
distinct writing style, which uses language in a unique and often complex way. Secondly,
large portions of these summaries discuss facts outside of the context of the play-by-play
events of the XML documents. Training the system with these portions of the summary
can create a problem due to sparse data, which has the potential to reduce the
effectiveness of the system.

The end result is the creation of a system capable of building classifiers for
natural language search of these XML documents. This system is able to overcome the
two aforementioned problems, as well as several more subtle challenges. In addition,
several limitations of alternative, strictly feature-based, classifiers are also illustrated, and
applications of this research to related problems (outside of baseball and sports) are
discussed.

Thesis Supervisor: Deb K. Roy
Title: Professor, MIT Media Laboratory
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Chapter 1 - Introduction

1.1 The Problem

The broad goal of the research behind this thesis is to form a bridge between spoken

language and elements easily recognizable by a computer. Although my main focus will

be on the English language and Extensible Markup Language (XML) documents of a

specific format (illustrated in Appendix A), most of the ideas discussed are still

applicable to other languages and document formats.

To native English speakers, the English language and its grammatical rules might,

at first glance, seem very natural and well defined. However, in many ways, the English

language is very complex, highly context dependent and potentially ambiguous - one

sentence might have different meanings under different contexts. Thus, machine

processing of English (and every other commonly spoken language) is believed by some

to be an Al-Complete' problem, making it necessary to build statistical and other models

of languages. The field of Natural Language Processing has evolved out of necessity due

to these complexities. In addition, several file formats, including XML, and programming

languages have been created as intermediaries between written word and computer

instructions. Still, XML and similar formats, such as HTML fall much closer to machine

language than written word. Much work is still required to bring these languages and

formats closer to natural language. This is the problem addressed by this thesis.

I have chosen to focus on XML documents detailing events from Major League

Baseball (MLB) games. Sports are a particularly good dataset for language processing

An AI-Complete problem is defined as a problem that is equivalent to making computers as intelligent as
humans. [1 ]



tasks because they are just restrictive enough with their possible contexts. The rules of

any sport limit the terminology and information necessary to understand the context of

any game event. As previously mentioned, one of the main problems with computers

understanding natural language is that language is highly context-dependent. Although

there are many efforts to make computers more context-aware, the problem is outside of

the scope of this thesis. Thus, I chose a topic with limited context.

Although rules of every major sport are restrictive enough to limit context, they

are simultaneously permissive enough to allow for an unlimited variety of possible events

and outcomes, which is precisely why they are exciting - many different things could

happen. Baseball in particular is a good sport on which to focus. In baseball, plays are

cleanly segmented - each play has a minimal effect on the context necessary to

understand the rest of the game. In addition, it is easy to identify and segment individual

game plays, unlike continuous-play sports such as basketball and soccer.

MLB games in particular are an ideal data source. First, the games are well

documented, with accurate records of nearly every pitch thrown in the league since 2004.

Second, there is a substantial amount of training and testing data available. Thirty teams

play in the MLB, each of which plays 162 regular-season games before an eight-team

best-of-seven post-season playoff. This ensures that at least 2,458 games are played each

year. Third, each game already has an abundant number of natural language summaries

for it. These summaries are often published in local newspapers or online. For each of the

(over 2,458) games played, MLB.com has two summaries - one local summary for the

home and away teams. Thus, by itself, MLB.com has nearly 5,000 natural language

summaries for every year. These summaries, from 2005 to part of 2008, are the testing



and training data for my system, which builds a classifier capable of taking sentences

from these summaries and elsewhere, and searching through an XML document,

containing events describing what happened during a particular game, for the relevant

elements.

The following formalization of the task will introduce notation used throughout

this thesis:

Each summary, S, is a sequence of sentences:

S= (s,s2,...,S,)

Where the number of sentences, n, is ISJ. In addition, define each set of game events, E:

E = (eje2,..,em)

Where IE[ = m. Every event, e, stores the pitcher, batter, a log of each pitch thrown

during that at-bat, and a short textual description of that event, as can be seen in

Appendix A. Our goal is to, for each sentence s,(i = 1,2,..., TS), figure out which subset of

E is discussed. For this purpose, define a function that properly maps a sentence, s e S

to the set of events , F c E, which is discussed in that sentence. This function will be

called DISCUSSED.

To illustrate, take the following imaginary baseball game:

Event Inning Pitcher Batter Description
e, 1 Top Peter Betsy Betsy hits a home run to right field
e2  1 Top Peter Billy Billy hits a home run to center field
e3 1 Top Peter Bobby Bobby hits a home run to left field

e4 I Top Marvin, the home team manager, forfeits

Table 1 - Example (Imaginary) Baseball Game

And its matching summary:

Sentence Text
s, It was the shortest game in the history of baseball.



s2  Betsy, Billy, and Bobby hit three consecutive home runs in the first three
plays.

s3  The home team's manager, Marvin, decided to pull the game in the
middle of the inning.

s4  "It was unbelievable," said Peter.
S5  "I don't know what hit me."

Table 2 - Example (Imaginary) Summary

This would result in the following definition of DISCUSSED:

S DISCUSSED(s)
SI {}
s2 {e 1,e2,e3}
S3  {e 4}
S4 {}
s, {}

Table 3 - Discussion Table for Imaginary Game

Thus, our goal is to find a mapping from S to subsets of E, matching the

DISCUSSED function as closely as possible. A diagram showing the basic structure of

the system is shown in Figure 1 below.

Figure 1 - Basic Classifier Diagram

1.2 Applications

The most obvious and direct application of the work described in this thesis is towards an

interface that allows users to easily search for specific parts of any baseball game by

inputting an English sentence. In addition, minimal changes would be required to build a

database-query system capable of searching across multiple games. Further work could



allow the system to generate statistics based on English queries (Ex: "How many home

runs did Manny Ramirez hit in 2007?")

However, the applications of the approach, techniques, and lessons learned from

this project are not limited to baseball, sports, or any particular domain. As mentioned in

the previous section, the main limiting factor is context - given enough context, a similar

system can be built for any domain. This would allow a structured search of any type of

structured document on any subject matter with sufficient context understanding.

1.3 Related Work

I did the research for this thesis as an extension of some research done under Dr. Michael

Fleischman, who researched language modeling, focusing on sports video [2] for his

Ph.D. thesis.

Benjamin Snyder, currently a Ph.D. student, addressed a similar problem in a

different way - by using a strictly feature-based approach [3]. Snyder's focus is on

generating a set of features to align a database containing game statistics. Unlike the

system described in Snyder's research, I assume no access to game statistics, generated or

fetched, which were crucial sources of features for Snyder's system. As a result, after

some experimentation, I ultimately decided against a strictly feature-based system. In the

next chapter, I describe some of the results and difficulties of using a strictly feature-

based system similar to Snyder's.

Somewhat related to this work are the efforts to create natural language

programming interfaces, all of which, on some level, are doing a search of some sort. In

particular, the Chickenfoot plug-in for the Firefox browser [4] stands out because it is



capable of searching HTML (which is similar to XML) pages to allow for easier

programming of Firefox plug-in (closer to natural language, but still not written word).

Finally, although the problems might seem disparate, I found many similarities

between the task of searching structured documents and that of machine translation2 .

Although the similarities will be detailed in the next section, the basic idea is roughly that

we are translating from English to a highly structured language.

1.4 Approaches

I tried two different approaches while trying to solve this problem. The first system I built

was strictly feature-based, similar to Snyder's system described in the above section. The

second, which uses a few techniques from machine translation, is the main system

discussed in the subsequent chapters. My approaches for data gathering will be discussed

in the next chapter, followed by a description of the two aforementioned systems in

chapters 3 and 4.

Chapter 2 - Data Sources

2.1 Data Collection

There were two types of data to collect - game events and natural language (newspaper)

game summaries. From there, I combined the data into a set of XML documents for

organizational purposes, which allowed me to leverage existing tools for accessing XML

documents. All of the data collected for this project comes from the website MLB.com.

2 Machine translation is defined as the automated translation of a document written in one language to
another by a computer.



2.1.1 Events and Game Statistics

The first task is to collect a set of game events in order to create the structured document

which will be searched. In other words, I have to build of a set of events, E, for every

game.

The E for every game can be extracted from MLB.com's Gameday feature, which

gives a dynamic overview of every game played, with information as detailed as the

velocity, spin, and location of each pitch, and statistics of each player (how many hits,

scores, etc. they have). The online interface for MLB.com's Gameday feature is shown in

Figure 2 below.

J. Berow.±i M. Ramiroz

Pkkf? Atlvn4 I E

4 I {317 Fs a A pa to R CuAA. Faanz

xrd Caraz Tw o.

Mvd Ueht Awc- eu:.

Figure 2 - Sample Game Events
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There are several XML files driving this interface. These XML files will subsequently be

referred to as "unassembled", in contrast to the "assembled" XML files we are building

and will subsequently search. For every game, these unassembled XML files need to be

combined into a single XML file with a consistent structure. Two of the unassembled

XML files are shown in Figure 3, which shows the pitches of a particular inning (this file

is from the ninth inning) and Figure 4, which shows the players involved in the game.

sz_bot=" 1,710 pfxx="-51376 .pfw" 226" px"&0389" pz="
2

.75" x)=" I .059" VO="50.000 z0="5.912" vx0="3255' vy0="-121,575" vz0=".5.327" ax=" -9(W
ay="27.630" az="-17.056" break_yv=-"237" break_angle="2 1.' breaklength="5 4" ptch_type="CH" typeconfidence=" 09(04214671762893"!>
<runner id=" 120074" start=

"" 
end=" 1' event="Single"?>

<!athat>
<action b="O" s='O'" 0='2 des=rOffensi ve Substitution: Pinch runner Jacoby Ellshury replaces David Ortiz. 

"
event

="
Offensive sub" player="453056" pitch="3"t>

- <atbat nunm="76 b-"O" s=O
* 
o= "2 batter=" 120903" pitcher=*I 11244 des=-Manny Ramirez homers (3) on a fly ball to left center field. Jacoby Ellsbury scores.

stand="R" event="Honme Run" score="T">
<po des=Pickofl Attempt IB ">
<pitch des="'n play, run(s)" id="610' type="X" x="] 11.59" y='142.47" on _tb="453056" sv id="080414 223555' startspeed="82,4" endspeed=" 747"
sz_top="3250 szbot=" L520" pfx_="-2,967" ptx"_." 1255" px="-).266" pz=2"'662' xr-"-0.823' y-'50.(ll" z0="6,093" v'-"2.224" vyI="-120.701"
zv0="-.4361" ax="-4290 ay="27.822" a="-1 5.824 breaky--"23.7" break_angle= 127 breaklength="4,9" pitch_type=FA"

type _onfidene= " 0,69195729999784 18" '>
,rnner id="453056 start="lB' end="" event= "Pickoff AttempI 1JB score="T' rbi="T" earned=T"'i>
<runner id="120903 start="

' 
end="" event="Pickoff Attempt B score="T" rbib"T" earned=Th"

<athat>
- <atbat num="77' b='"0 s="i " o="2' battler="425)3" pitcher-" 11244' desKevin Youkilis doubles 5) on a ground ball to left fielder David Dellucci. ' stand="R"

event=""Double'>
<pitch desr"Called Strike" id="617" type=-"S" x="10558' y="13 ).38 sv_id='080414_223641" start speed-"80.9" end.speed="73.2" sztop-"3.20(" szbot=I l510
pfxx='-4.7355' pt_ z--"8.919" px""-0.134" pz="3.250" x="- 0.10" yO='"50).0" zO=6.134" vO="3.227' vyO""-118-514" vz0xl"-2.437" ax="-6 613" a"="27.319'

Figure 3 - Sample Unassembled Inning XML File

,<player id' 136770" firt=" J1I)." last=' IDrre num="7 boxname="Drew" rl="R' positio="RF" status="A' bat order="6" gampoeitin="RF"a g='.353" hr=' 3 rbi="l
<plaver id=45306" first='a"acob'" Iast="Elilsblur nn= "46" bnxuame="Ellhsrry' rl='" posktlon="C stalasa"A" at ="2v 26" Ir-"l" rb=L-'">
<player id 452657' firs="Jolt InLeer nim""' " boxnaemm"Lei" rl=L" positioan-"P" status'A" batjorder-O' pgamositika"WsPr"vXI0(" hr="'O rbi=7 wins" "'
losses"""!"2='4!r("4 n
<player Id='42565'7" iati'"JavieY l ast=" 'pe nu=":48 boxm ime='"t z" rl '" poxtIoR"P =' sIttSa ='.A .X)0' rl-"O I " = '0 "O wIns" bssts"0 tra="4.3 C'>
<player id= '47670V" frs-=-"led' las="Lowrie snm="I' braume="iwrie" rt="R" positio=""SS" statas="A'" a".I)O"' br=' rbi="L0'
<playerrid= 15'l0ti tit-='iulit" as="Lugn" m= 25"boxna"e="Lzas" rl=l' pnsln="SS' stabas= "baLerrd""9 gamne.posltl="SS'ag="28' tr"l" ri=d" >
<playr id='493137 tk'it='D rukc" "la tsuzak" s rams*-i" buse"HMat~z krl-"R" peitionP" statu.s'A avg='. t r='' rbi=-" wims=3" ksses'0 " era-=2,70"
<player id='50606" firsat="Hleki Iat"Okaian' nam"37" bornme="Ot jim" rl"L" poion'=*P' ats="A* Darg=OO hr="O' rbi=0" na="" losse-"O' er="Oa 0".
<player id= 120074" irft=-David" lsto'Ortiz" ntm="a34" beanam "-Ortiz" rl= 'L" oOin=D "D' s "s=VA" bat adr=*3"' "amle polilon=DH a g= 07" bIir=" ' ri " ,
<player id= '449097* firt="'axathan' lat="Papelbon' umn58il bsxnasae='Papib" rl="tR" pasitio="P" statua="A" arg" .CO)" 0hr" ebi="0" wins="' loses w era= ' i 50",
<player 1i=456030" rst-lst s stin" lat="Pamenia man=" 1' mhoam="PALeroia rl='R" pition="R sitals="A' hlt_rdr "2" rgae..pai="?t' ag= 283 ' r- " rhi="I 7>
<player i' 120903' kst='Manyy last='"amirez mim="24" boxnaawe"Ramuirez rl="R' podtlon LF" sttsA'

t 
bart rder'4="' Iamepostten"LF" " Vg =* h5--0 " "2" rbM'=">

-player id='123 I 18 first= Julian" last='Tavaref nam='51" boxnamem="Tavarez" rl='R" positioav"P"status=A' sig=0*.00* hr'0" rbi='O" wim="O" lomssms=" a="7.36"".6>
<player id=' 123341 first='Mike' latat"rimlin" num='"50" boxnanme"Tinlin" rl=R" positiin='P' status='A" avg="."OCI' hr="0" rbl="T" wins= 'O" hises"I " era="8 1 .It"
<player hd='123660" firA="Jeoi t lat="Varitek" amum="33" boumasane"Vaick" r='R" pumition *C" latats='A bat urde-n7" gam.pusetdm="C" a'rg='244'" r='2' rbi-="3>
<player id-' 123801 firt-'Tin" last-'Wakefield" a -u-'49" boomame-'Wakefield" r-"'R" posltie-"P' status-'A'-" avg-' 0I ". r- rbi-"'" wims-"'" lones-' era'-327"
<playr id-='4259043 tiat'Kevin last="Youlktds" Insu=""i boxname=Yoallkilis" e="R po Stioll=W" IB'stllatl='A" ba..dntera'" gVie posidlon=.'3B rg"

%' ? * hr="" rbi-8"/>
<playerid 1k'136780 fi~Hs-Mikc last="Lowcll' nsm"25' bonam=""Lowdcl rl""R

' 
poslion=""3B" status="

14
D5' avg=".200" hr-=" rbi=*0"'

olaeVr id=' 12 L l first=C'tu a Inst'Sehillin" nmna="3l" bonam"Schillin" r="R"" osllion="P' tatus="'l av6a = i" hr"'0" rbi=*O" wine=0" oessca="90 era=' Oit)> 1

Figure 4 - Sample Unassembled Players XML File

These files and others are assembled to form a set of events, E, for that game. A sample

assembled XML file is shown in Appendix A.



2.1.2 Game Summaries

In addition to the set of events, E, we need a natural language summary, S, to train and

test the system. For this, I used the summaries available on MLB.com. For each game,

there are two summaries - one from the perspective of the home team and one from the

perspective of the away team. In addition to having different authors, they also generally

discuss different aspects and events of the game. Two such summaries, each describing

the Boston - Cleveland game (pictured in Figure 2), are shown below. Figure 5 shows the

summary of the game from Boston's perspective, and Figure 6 shows the game from

Cleveland's perspective:

Manny's homer in ninth topples Tribe

N-W 44-nt,~ hbp A P4QRs-. FI*Q mk%,4 I * b 4 tho ~ 08I~M F dx44WW -chnk~ R

D44by4.4444 4*. 4 4* 4.4.4 S *444r44y..4 44.4L44
a "

44 44.

Figure 5 - Boston SummaryU Afafter fetching these summaries and
F, left 0 s sla the 4-4'w ~ dl ~ rrnn
NA . PI" I- R-1. .0as - WW 9 jay he .3 .*A:
'%Werq a won pWN ftIsi R ed S. M.WO I r TO Mi1 Poro tIsM ost twtE~ a V
BU eW# a 03 M, noth,.M* MMsh MW VQ ht" 04 6U tsn ihsB

Fig~30 urprp'ure 5 - oston ummar

After fetching these summaries and

Borowski, Indians tagged by Manny
OW512=11:05 AMET

wattl Wt aW. 'ft nis sont," SO, 60["N, 01 . dtsnoW x It -3 right V--

In Uo M obLAA syeiyh*V 9-W -d w tht - d a - W,* lof the s-nd *m .Its; po

*Rk. fs wl fty. hu I- a n~ft d 4hs Atr 01 h~f all"N* *W his OO MtYtnIF 0 - 16 0' f

-rmFab*9a W V-n qto e ts Mr patj rt 8M 31 mo.,towfly WW. npoi wert.

Figure 6 Cleveln~Nv~uMan um mary.l :

mathi.ng them t.o.4 g m (and their events.., E),
F444444444 4 lveadSu m r

*44447444 4444 44*4444.4 44*4.4444444444444*444* -4* d-***4etsE

the web styling and other HTML elements are stripped, leaving only the resulting text.

The next step is to separate the summary into individual sentences. This is done with the

algorithm described by Kiss & Strunk (2006) [5] using the Natural Language Toolkit

(NLTK) written in Python [6].

18



2.2 File Format

An example of a fully assembled file is shown in Appendix A. Each file has two portions

- a "searchable" portion, which contains all of the events and game information, and a

summary portion, which contains the sentences of a particular summary. Put another

way, the searchable portion of the assembled file is E and the unsearchable portion is S.

However, the fact that they are included in the same file is only a technical detail, done

for convenience, but not strictly necessary for any of the techniques used in this project.

The searchable portion of the file contains the names of the home and away

teams; the players for both teams; and information for each inning, including pitches,

hits, and other game events. Some information is discarded from the unassembled inning

file (seen in Figure 3), such as pitch velocity and location, and player statistics (hits, runs,

and scores for each player). For the remainder of this document, the specific file format

used will be abstracted away, and we will use the terms introduced in Chapter 1 for the

summaries, sentences, and game events for the sake of generality.

Chapter 3 - Feature-Based System

My first attempt to create this system was with a system based on a set of "features",

similar to that described in Snyder's paper [3]. A feature is any characteristic of a

sentence. An example of one possible valid feature is "how many words are in the

sentence?" Most features in the system are binary features. A binary feature is a feature

that has a yes-or-no answer. An example of a binary feature is "does the sentence contain

the word 'pitch'?" These features are combined into a feature vector, (.



I implemented two versions of the feature-based system (both of which are

entirely distinct from the translation-like system described in Chapter 4). I refer to the

first as the "one-stage" system, and the second as the "two-stage" system. The one-stage

system tries to directly match each sentence with exactly one event, or with the "null

event" (meaning that the sentence does not describe any events). The two-stage system

includes most of the features of the one-stage system, but has two stages. The first stage

predicts whether or not a sentence is matched to any event, and the second stage predicts

which sentence describes which event, for every sentence predicted to describe any event.

Both systems are described in the next two sections.

3.1 One-Stage System

Recall from Chapter 1 that there are two data for each game - the sentences (

S =(s ,s2,...,s,)) and the events (E = (e,,e 2 ,...,e,,,)) and that our goal is to determine

which sentence discusses which event. The first step is to make a feature vector for every

possible pairing between sentences and events (including the null event, 0). Each of

these feature vectors will be referred to as cDs,e. This can be put in mathematical terms -

3E.,eVs E S,e E (E +0). There are ISI * (IEI + 1) features vectors for each game3 (S, E

pair). Features are split into two types - the "simple" features, and the "generated"

features. Simple features are features that are explicitly defined, whereas generated

features are generated from a template. Table 4 and Table 5 below show the simple

features and generated feature templates respectively.

Feature I Description Possible Values

For our purposes, a "game" can be described as a set of game events and a summary. Put another way, a
game is an (S, E) pair.



Batter Mentioned True if any part of the name of the batter (first, {0,1}
last, or both, as described by e) is mentioned in s

Pitcher Mentioned True if the name of the pitcher (as described by {0,1 }
e) is mentioned in s

Other Players The number of other players mentioned in e that {0,1,2,... }
are in s

Common Word Looks for phrases and words that appear in s and {0,1,2,...}
Sequences e, and assigns a score based on the similarities.

For every common sequence u between s and e,
the score increases by u2 . This means that
longer common sequences have a much larger
effect than many smaller common sequences

Same Inning Based on the current and previous innings, the {0,1 }
system takes a guess at the inning to which s
refers. This feature is true if the guessed inning
of s matches the inning of e

Is Quotation True if the sentence either is part of a multi- {0,1 }
sentence quotation, or has a quotation in it

Sentence Length The number of characters in a sentence {0,1,2,... }
Is Hit True if e describes an event where the batter hit {0,1 }

the ball
Is Score True if e describes an event in which any player {0,1 }

scored
Is At Bat True if e is an at bat, as opposed to an action, {0,1}

such as a pitcher replacement
Table 4 - One-Stage Simple Features

Note that Table 5 shows the feature templates, with which many (hundreds) features are

automatically generated.

Feature Template Description Possible Values
Common Words This feature template generates features that are {0,1 }

true if a specified word(s) appear(s) in both s
and the description of e

Words Before and This feature template generates features that are {0,1 }
After Names true if a specified word(s) appear(s) before the

name of any players mentioned in s
Table 5 - One-Stage Generated Feature Templates

The generated feature templates shown in table 5 come in two varieties each -

unigram and bigram versions. The unigram version deals with only one word, whereas

the bigram version looks at two words. For example, take the sentence "Billy hit the



ball". The "words before and after names" feature template would generate the following

features:

Feature Template Description Possible Values
UWBNO True if no word comes before any given name {0,1}
(Unigram Words
Before Names)
BWBN, 0  True if no two words come before any given {0,1}
(Bigram Words name
Before Names)
UWANhit True if "hit" comes after any given name {0,1 }
(Unigram Words
After Names)
BWANhit,the True if "hit the" comes after any given name {0,1}
(Bigram Words
After Names)
Table 6 - Features Generated by the Words Before and After Name Feature Template with the

sentence "Billy hit the ball"

The generated features, when combined with a plethora of training data, allow us

to generate a very descriptive feature vector for every sentence-event pair. The next step

is to train the system to learn how strongly each feature tends to correlate with e E

DISCUSSED (s).

For training, I use the Weka Data Mining Software [7] from the University of

Waikato. In particular, I used the C4.5 algorithm [8] (named J48 in Weka) to build a

decision tree. The system is then trained with examples of (s, e) pairs, by specifying

whether or not e E DISCUSSED(s) with a 1 if it is, and 0 otherwise. The tree is

generated by taking a subset of the trained pairs and repeatedly training on this subset,

while testing on the rest of the trained examples. The result is a tree-based classifier

capable of taking a feature vector, Ps,e, and intelligently guessing if e E

DISCUSSED(s). One sample tree is shown in Figure 7 below.



Figure 7 - Sample Weka Classifier Tree

:,,I lo.:"z,5 l- 51%



The overall system is diagrammed in Figure 8 below.

Figure 8 - One-Stage Diagram

The main problem with this system is that e o DISCUSSED(s) is the case for the

vast majority of all possible (s, e) pairs. Out of thousands of (s, e) pairs,

e E DISCUSSED(s) holds in only about 20 pairs. Thus, the classifier often gets its best

result by building a tree which guesses e 0 DISCUSSED(s) for the vast majority of (s, e)

pairs, missing the few times that e E DISCUSSED(s). This problem necessitated the

creation of the two-stage system described in the next section.

3.2 Two-Stage System

One way to alleviate the sparse data problem of the one-stage system is to reduce the

number of (s, e) pairs where e o DISCUSSED(s) in the training and testing data. We can

do this by reducing the number of (s, e) pairs that we train on, automatically eliminating

pairs where we know e 0 DISCUSSED(s).

Thus, for the two-stage system, every (s, e) pair where it seems that

DISCUSSED(s) = { } is discarded. In other words, any sentence that is assumed to not

talk about any specific event in the document is thrown out. After this, the remaining

I - __ " - - - _11%,

..................... .......



sentences go through the same process as the one-stage system described in the previous

section. Figure 9 below diagrams the two-stage system.

Figure 9 - Two-Stage Diagram

Now, rather than thousands of (s, e) pairs, there are hundreds, alleviating the

major problem with the one-stage system. However, the results were still not where I

wanted them to be. This led to the creation of the system outlined in the next chapter.

Chapter 4 - Translation-Like Model

The shortcomings of the one and two-stage feature-based models led me to search for a

new way to classify sentences. I decided to look at the problem in different ways, and

realized that it shared some similarities with the problem of machine translation (MT).

The goal of MT is to translate from one natural language to another - an example of an

MT system is one that is able to take sentences from French and translate them to

English. The goal of this project can be thought of as translating from a natural language

to a different, structured language.



When looking at the problem from this perspective, other similarities to MT

appeared. Take the following MT problem: you are translating a French sentence to

English, and are trying to find the probability that French word wftranslates to English

word we, which is written as P(w, I wj). If you already have a model of translation the

opposite way (from English to French) and a decent model of English word usage

frequencies, which is sometimes the case, it would be helpful to use Bayes' Rule and

model the probability as:

P(W,)P(wf Iwe)
P(w, I wf) = = P(w,)P(w I w,)

P(w1 )

Equation I - MT Word Probabilities

Similarly, when looking at the problem of finding the events that correlate with a

particular sentence, we can relate the problem in terms of MT. The summary, S, is

analogous to the French sentence we are trying to translate. Each sentence, s, is

analogous to a particular French word, wf. Each event, e, is analogous to an English word,

we. It follows that if we want to find the probability P (e E DISCUSSED(s)), which can

be written as P(e I s), we could instead find:

P(e)P(s I e)

Equation 2 - Translation-Like System Sentence Probability

That is, we can model the probability of a sentence s discussing a given event e as the

probability of e being discussed, P(e), multiplied by the probability of s being mentioned

if e is discussed, P(s I e).4

4 With an infinite number of ways to describe e with sentences, it might initially appear that P(s I e) = 0.
However, we are looking at each sentence s as part of a whole summary, S, limiting the number of possible
sentences to IS[, which allows the possibility of P(s I e) being greater than zero.
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Equation 2 is crucial - it is the basis for the "translation-like" system described in

the following sections. Figure 10 below diagrams the structure of the translation-like

system.

Figure 10 - Translation-Like Model Diagram

As shown in Figure 10, there are three main components that must be created. The

"Element Probability Model" will find P(e)Ve e E. The "Sentence for Element

Probability Model" will find P(s I e)V(s,e) e S x E. By multiplying these two results for

any (s, e) pair, we get P(e Is) for every sentence. Next, we can sort P(e Is)Ve e E from

highest to lowest probability. Finally, the third component will decide how many events s

is discussing, and take that many elements from the front of the sorted list. Unlike most

translation systems, in which most words in French are mapped to an English word, and

vice-versa, most sentences are not mapped to any events. This is what necessitates this

component. All three of these components are described fully in the following three

sections. The last section of this chapter will briefly describe the interconnection between

these components.



4.1 Element Probability Model

The element probability model is the most straightforward of the three main components

in the translation model. At its root, it finds P (e) using a simple count with a few

improvements. First, event types are split up by characteristics. Each unique set of

characteristics is denoted as a type of event, or type(e). Then, for each type of event, a

probability is roughly generated as:

count(type(e) where (3s s.t. eCDISCUSSED(s)))

count(type(e))

Equation 3 - Approximate Typed Event Probability

That is, the total amount of events which are in DISCUSSED for any sentence over the

total amount of sentences of that types.5 This is not the complete equation - there are

more factors, as discussed in the "Add-One Smoothing" section below. But first, the

methodology for splitting events into types based on features is discussed.

4.1.1 Event Features

In order to be able to split events into types, we must first find features of events which

distinguish it from other events. However, we don't want too many event types - as the

number of types of events increases, we approach a system which would predict that

P(e) = 0 for nearly any e it hasn't yet encountered, or which has not been discussed yet.

We also don't want too few types of events, or it will reduce the effectiveness of this

count(type(e) where (Bs s.t. eeDISCUSSED(s)))
An alternative (and problematic) way to define P(e) is as count(e where (3s s.t. eEDISCUSSED(s))).That is,

count(e where (3s s.t. eEDISCUSSED(s)))

by dividing by the total number of discussed events of any type, rather than the total number of that type.
The problem with this definition is that there are some events which are rare, but always discussed when
they happen - for instance, a grand slam (when 4 runs are scored at the same time). If a grand slam, which
happens very infrequently, is discussed every time one happens, we want P(e) to be near I if e is a grand

slam. This is why we set P(e) = count(type(e) where (3s s.t. eEDISCUSSED(s)))
count(type(e))
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method. For instance, if we placed each event into a single type, we would end up with

P(e) = s st. e FDISUSSED(s)) for every e, giving a uniform distribution of
count(e)

probabilities. This is not what we want - a home run, for instance, is much more likely to

be discussed than a regular hit.

Thus, part of the challenge of devising good features by which to split events is

finding the right number of features to distinguish events. In my system, having limited

my feature-types to binary features, if [/ is the number of features, the number of event

types is 2 If .6 I chose to have five features to describe each event. They are described in

Table 7 below.

Feature Description
Score? True if there was a score during the event, false otherwise
Hit? True if the ball was hit during the event, false otherwise
Out? True if an out was recorded during the event, false otherwise
At Bat? Only some events are at-bats. Others are "actions", such as a pitcher

change, manager ejection, etc. This feature distinguishes between at-
bats and actions

Pitcher Change? True if a pitcher was changed during the event. False otherwise.
Table 7 - Binary Event Categorization Features

Although I have five features, which theoretically allows 32 event classifications, only

approximately 10 of these actually show up in baseball play, due to the rules and nature

of baseball. Now, given an event e, I can find the feature vector for that event, give it a

type, and a probability. However, there is a minor revision to Equation 3 discussed in the

next section.

6 This is only always true if the features are independent. In my system, the features are not independent,
but this equation still roughly holds.



4.1.2 Add-One Smoothing

There are many factors which control the number of features which is good to use. The

foremost in my mind when deciding to use five features was the number of training

examples I provided. The more training examples, the more types of features one is

allowed to have, because for any given type of feature, it is more likely that it will have

appeared at least once in the training data.

Still, no matter how many training data there are, there is always the possibility of

an event whose type was never discussed in training, being discussed on the test data. If

we stick to Equation 3, P(e) = 0 in this case, which would make P(sle) = 0, which we

don't want in the vast majority of cases. Instead, it would be better to have P(sle) be

some small number. To solve this, I use add-one smoothing.

Add-One smoothing is common in NLP, due to the "sparse data" problem.7 One

example of the sparse data problem in NLP is as follows. Suppose you are searching for

the probability of a word, wb, following another word, wa. If you have a corpus, or a set

# of times w b follows w aof texts, the simplest way to do this is by setting the probability to
# of times wa appears

However, if wb never follows Wa in the corpus (there are, after all, many possible two-

word combinations), this probability will be 0, which we don't want. A simple way of

correcting this is to simply add 1 to the numerator of each probability. In order to

maintain a proper probability (where everything adds to 1) a factor must also be added

onto the denominator. After add-one smoothing, the resulting equation for P(e) is:

7 This is distinct from the problem with sparse data that the feature-based model had.
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1 + count(type(e) where (3s s.t. eEDISCUSSED(s)))

P(e) = count(type) + count(type(e))

Equation 4 - P(e)

Where count(type) is the number of theoretically possible event types, 25. Thus, add-one

smoothing is a simple way to smooth out the probabilities and be prepared for new event

types outside of the training data. It should be noted, however, that for the particular

example in NLP used above, better alternatives exist [9]. However, the sparse data

problem is much less of an issue in our system than it is in NLP, so add-one smoothing is

enough.

4.2 Sentence for Element Probability Model

The system which determines P(sle) is discussed in this section. It is much more

complex than the P (e) system discussed in the previous section, out of necessity -

natural language work is much harder than work with structured elements. There are

many components in the P(sle) model. Each component returns a score. The sum of all

of these scores is taken, then divided to form a proper probability. Each of these

components are described in the sections below, after which, their interconnection is

discussed.

4.2.1 Word Stemming

There are many words which are very telling in linking sentences and events. Take the

following example of a possible event-sentence pair:

Event Description Sentence
David Ortiz doubles (1) on a line drive to It was no surprise that it was David Ortiz --
right fielder Gary Sheffield. the certified Yankee destroyer -- who got

things rolling with a leadoff double to
right.



Table 8 - Possible Event-Sentence Pair

To us, it is apparent that e E DISCUSSED(s). There are many clues - the batter's name

is the same, and both mention hitting doubles to right field. However, the event

description uses the active voice ("David Ortiz doubles") while the sentence uses the

passive voice ("got things rolling with a leadoff double"). Although the root word

("double") is the same in both cases, they are used in very different senses.

This is often the case in matching summaries and events. Thus, we need a general

way to stem words. For this, I used the Porter Stemmer [10] provided with the Python

Natural Language Toolkit. When provided with the words "double", "doubles", or

"doubled", the Porter stemmer produces the stem "doubl". Although an in depth

definition of the stemmer is outside of the scope of this paper, the original paper

describing the algorithm can be found in the references.

4.2.2 Stem similarities

With the Porter stemmer, we can find the stem of every word in the sentences and event

descriptions. We can see from Table 8 that some common stems seem to be significant,

like "doubl" or "right" (as in "right field"). However, other shared stems are insignificant.

For example, "a" and "to" are also shared stems, but don't contribute much. How can we

automatically measure the significance of stems that are shared by event descriptions and

sentences?

First, we have to look at the common words in the set of training examples. For

each common stem, cs, we assign a "co-occurrence probability" of

count(c s in e and cs in s and e EDISCUSSED(s))
count(cs in e where is st. e DISCUSSED(s)) Now, given any potential (s, e) pair, the sum of
count(cs in e where as s.t. e EDISCUSSED(s))



the co-occurrence probability of every stem is added for every common stem.8 In

addition, for every stem in e, but not in s, the co-occurrence is subtracted from the score.

Because we are searching for P(s e), the co-occurrence score is found for every potential

s. This means that the lowest score is usually negative. If we call 1 the lowest score, then

(1+1) is added to each score to ensure that all resulting scores are positive.

4.2.3 Named Entity Recognition

In the introduction, I mentioned that one of the benefits of working with baseball is that it

is a domain which doesn't require too much context. To contrast, look at any given

newspaper article. It will likely mention named entities such as corporations, people, or

places without giving much context. By contrast, the vast majority of named entities

mentioned in a baseball game are players, teams, or locations which are mentioned in the

XML document.

Player Player Player Location
" Q K Iand teach drove in runs against 4 who balked in 1s fourth run."
r Pyer Player Team

'JJM struck out 4 -- the first hitter to swing at strike three -- for his fifth K of the night."

Figure 11 - Named Entity Recognition

Recognizing mentioned players is very useful. One of the most telling features of events

is the names of the pitcher and batter. For each event, the pitcher and batter are

mentioned. Often, sentences which discuss specific events will mention the pitcher or

batter. Thus, whenever reading a baseball XML document (like the one shown in

Appendix A), the player names are stored. This way, when reading a summary, player

8 The probabilities are added, to form a score, rather than multiplied for various reasons. First of all, there
is almost guaranteed to be a 0 co-occurrence probability for every potential pair, which would always
render the result as zero. Secondly, this component is meant to output a score, rather than a real probability,
at first. The scores will later be mapped into probabilities.

33



names can be easily identified. This is done for each player, by searching for and tagging

any times where the full name (first and last) is mentioned, after which the players list is

traversed again, and the summary is tagged by the last name.

Unlike the players, cities and teams (of which there are 30 in the MLB) were

simply entered manually. They only come into play as a factor when tagging sentences,

which is discussed in the "Result Size Predictors" section.

4.2.4 Inning Matches

One potentially very telling feature of any potential (s, e) pair is whether or not s seems to

be discussing the inning which e is in. Thus, the system has a mechanism to deduce

which innings any particular sentence might be discussing. This can be thought of as one

way of increasing the context-awareness of the system. One consistent pattern across

summaries which can be exploited is the tendency to use phrases like "in the first", or "in

the bottom of the second".

This system takes advantage of this pattern by searching for manually entered

phrases such as "the first", and "the second" as part of the sentence. Sometimes, however,

the phrase "the first", or similar phrases are mentioned in sentences well before any

specific game event is discussed. Take the summary in Figure 12 - the first sentence

("Johnson came out dealing in the first inning, ...") lets us know that the rest of the

paragraph is discussing something that happened in the first inning.

Johnson came out dealin .in the first inning, the crow d cheerin his every offering. Johnny Daon
swung through the Big Unit's first pitch in pinstripes, causing an eruption in the stands at 8: 11 p.m.
ET. A 1-2-3 inning kicked off his memorable night, as he caught both Edgar Renteria and Manny
Ramirez looking at strike three, retiring the side in order.

Figure 12 - Inning Inference



Thus, in order to deduce which inning a particular sentence is discussing, it is not

enough to simply search for phrases like "the first", etc. It is also necessary to look back

at previous sentences. Put another way, in addition to searching for these phrases in

sentence si E S, we also have to search through si_-, si- 2 , etc. until we find a clue as to

which inning is being discussed (if any).

4.2.5 Final Scoring

The final score of a potential (s,e) pair is a linear combination of several other scores.

These scores are listed in Table 9 below.

Name Description Possible Values
Vpitcher 1 if s mentions the pitcher of e, 0 otherwise {0,1}
vbatter 1 if s mentions the batter of e, 0 otherwise { 0,1 }
Votherplayers The number of players mentioned in e that {0,1,2,...}

are also mentioned in s
Vstems The score from stem similarities, as {0,1,2,...}

described in 4.2.2
vinning match 1 ifs seems to be discussing the same {0,1}

inning that e is in, 0 otherwise
Table 9 - Scoring for P(sle)

Thus, the final score for each potential (s, e) pair is:

scores,e = (Ppitcher * Vpitcher) + (Pbatter * Vbatter) + (Potherplayers* Vother_players)

+ (Pstems * Vstems) + (Pinning match * 1 inning_match)

Equation 5 - Final Score for P(sle)

Where each p represents a multiplier correlating with the significance of that particular

score. If, for example, vbatter is found to be particularly significant in predicting if

e E DISCUSSED (s), then Pbatter will be a large number. These multipliers are optimized

automatically, as described in 4.4.1. Finally, for each event e, P(s e) is defined as:



P(sle) =
, s' cores',e

Equation 6 - P(sle)

4.3 Result Size Predictors

Now that we have models to find P(e) and P(sle) for any potential (s, e) pair, we can

measure P(els) and accurately rank the potential of every event to be discussed in any

particular sentence. The next step is to decide where to cut this list off and decide exactly

which events are discussed by a sentence.

4.3.1 Probable Contexts

Although there are multiple authors in each summary, when reading a few of the

summaries, a pattern seems to appear. The first and last parts of the summary almost

invariably discuss things outside of the context of the events of the game. As a result, an

estimate of the probability of any sentence discussing a particular event can be improved

by taking into account where that sentence is in the summary.

This idea can be generalized by thinking in terms of contexts. In any natural

language document, contexts often shift throughout the document. In some cases, patterns

might emerge. A function capable of estimating this pattern is very useful in estimating

the number of events which are in DISCUSSED(s) for any sentence s.

For this system, there are only two contexts we care about - "pertaining to game

events" and "not pertaining to game events". Thus, one way to generate a function

describing the probability of a sentence describing any particular event is, for every

training summary S, for each sentence, s, in that summary, measure where s is as a



fraction of SI and assign that to x (for example, the first sentence will have := I , the

second P) f, the last X , and so on). Now, for each s, set y to [OISCu . All

of these data points are combined for each training example. The result is shown in

Figure 13.
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Figure 13 - Context Data Points (Sentence Location vs. IDISCUSSEDI)

The next step is to find a function to fit these data points. This is done with linear

regression. When choosing the number of factors to use with linear regression, it is

important to not choose too many, which would over fit the data, or to few, which would

not be very descriptive of the data. I chose to use five factors. The results are shown in

Figure 14 below.
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ents

Figure 14 - Probable Context Graph (by Sentence Location)

As Figure 14 shows, a summary is most likely to discuss specific game events

about 65% of the way through the summary, and rarely discusses specific events in the

beginning or end of the summary.

4.3.2 Part of Speech Tagging

It is often very useful to figure out the subjects, verbs, and objects of a particular sentence

to reason about how many events it is discussing. In order to do this, we have to figure

out and tag the part of speech in every word of the summary.

As mentioned in the "Named Entity Recognition" section, players, teams, and

cities are already recognized, which takes care of tagging for most proper nouns that

appear in the summary. For the rest, I used a bigram tagger, with a unigram tagging back

off, trained on the Brown Corpus (from the Python NLTK). Some examples of tagged

sentences are shown in Figure 159.

Note that there are still some inaccurate labels, in part due to the style with which baseball terminology is
used. For example, "left" is labeled as a verb in the first sentence of Figure 15 while it should be an
adjective.

dddd !ddd d! d d0 dd O W 0dd
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With two outs. Jay Payton produced an RBI single to left it his first at-bat wi thhe Red Saox"
IN CD NN PLAYER VBN N AI \N All O IN PP OD) NN IN AT TEIIAM

VBN

"Garry Sheffield smacked a one-out RBI double to left-center"
PLAYER VBD AT1 NN NN JJ T'O NN

Figure 15 - Tagged Sentences

When training the classifier, the stem of each verb is then mapped to the average

size of DISCUSSED(s) for every training sentence s which has a player as either the

subject or object of that verb.

4.3.3 Final Result Size Estimation

Just like the result for P(s I e), the final estimation for the size of DISCUSSED(s) is the

result of a linear combination of the two systems defined above:

IDISCUSSED(s)I = (Pc * c) + (p, * v)

Equation 7 - IDISCUSSED(s)

Where c is the value of the function shown in Figure 14 and v is the average mapped to

the stem of the verb in s, as mentioned in 4.3.2 above. In addition, the value of Equation

7 is rounded to the nearest non-negative integer to give an unambiguous value as the

result.

4.4 Putting it Together

Now, we have the system roughly described in Figure 10. As is shown in Figure 10,

when a sentence, s, and a set of events, E, are fed into the system, P(els)Ve E E is

deduced by taking P(e) * P(sle). Each event is then sorted by P(e s) from highest to

lowest. Then, the system described in 4.3 which estimates the size of IDISCUSSED(s)I is

run, and the first IDISCUSSED(s) I elements from the sorted events are returned.

However, there are a few more steps.



4.4.1 Parameter Optimization

First, recall that in the preceding section, there were several p values which were

unspecified multipliers. The method by which these parameters are set is described in the

following section.

Each parameter, p, of the system is optimized individually. First, the parameter is

set arbitrarily to 0. Next, the following algorithm is run:

for i=0, 1,2,3:
1

inc =
l0

best offset = 0

for offset = -10*inc,-9*inc,...,9*inc,10*inc:

if score(p+offset) > score(p+best offset):
best offset = offset

p= p+best offset

Figure 16 - Parameter Optimization Algorithm

Where score is the function we are trying to maximize (in this case, the accuracy of the

predictor). This algorithm is run repeatedly parameter by parameter, and repeated to find

the optimal value for each p to within three decimal places.

4.4.2 Performance Optimizations

To maximize the performance and usability of the system, the events mapped to each

sentence are predicted ahead of time. There are also various other optimizations to the

algorithm shown in Figure 16 to allow the parameters to be optimized quickly, such as

breaking out of the loop when it appears a particular p is at its optimal value.

Chapter 5 - Results

In order to test my system, I completed event-matching for 20 summaries. I then test by

cross-validating my training examples, meaning I train my classifier on about 20 games,



and then test the results on the remaining 10 (although cross-validation is done

automatically in the Feature-Based system by Weka). The precision and recall of the

system are then measured for positive and negative examples. For example, with positive

training data in the one-stage system, precision is the fraction of guessed events, e'that

are actually in DISCUSSED(s). The recall is the fraction of DISCUSSED(s) which is in

the set of guessed events. From the precision and recall, an F-score[ 11] is generated. The

F-score is defined as:

2 * precision * recall

precision + recall

Equation 8 - F-Score

An F-Score is generated for the positive and negative examples, and these two F-Scores

are weighted according to the number of examples. The accuracy of the system is

measured from the composite F-Score it generates. In addition, it is the score mentioned

in Figure 16 for which the parameters are optimized.

5.1 Feature-Based System

One Stage:

The one stage system, as mentioned before suffers from the problem that the vast

majority of the training data are negative examples. This results in the classifier rarely

classifying potential (s,e) pairs as positive. As a result, the precision and recall of this

system on negative examples (e 1 DISCUSSED(s)) are fairly high - on the rare occasion

when it does guess a positive (s, e) pair, it is usually right. However, the recall is poor on

positive examples (e V DISCUSSED(s)) because most positive (s,e) pairs are missed.

These are reflected in the results below.



Type Count Precision Recall F-Score
e 4 DISCUSSED(s) 9,302 0.994 0.997 0.996

e E DISCUSSED(s) 124 0.716 0.548 0.621
Total 9,426 0.990 0.991 0.990
Table 10 - One-Stage System Results

Two Stage:

Recall the two parts of the two stage system. The first stage determines, for each s,

whether or not s discusses any game events (whether or not DISCUSSED(s) = f}). The

precisions, recalls, and F-Scores of that stage are shown in Table 11.

Type Count Precision Recall F-Score
DISCUSSED(s) = 0 455 0.932 0.884 0.932
DISCUSSED(s) *: (} 91 0.689 0.560 0.618
Total 546 0.892 0.884 0.888
Table 11 - Two-Stage System Results - Stage One

After the sentences which don't discuss any events are ruled out, a system almost

identical to the one-stage system is run. Because this system is not trained on as many

negative examples as the one-stage system, however, the precision and recall for negative

examples (e 0 DISCUSSED(s)) are improved, although positive results decrease.

Type Count Precision Recall F-Score

e i DISCUSSED(s) 7,799 0.992 0.995 0.993
e E DISCUSSED(s) 135 0.725 0.612 0.688
Total 7,934 0.988 0.988 0.988
Table 12 - Two-Stage System Results - Stage Two

Finally, the two stages are put together to form a single system. The final results

of the two-stage system are shown in Table 13. As the data shows, although the score is

roughly equivalent to the one-stage results, the performance on positive examples, where

e C DISCUSSED(s), is greatly improved.

Type Count Precision Recall F-Score
e 0 DISCUSSED(s) 9,436 0.993 0.996 0.994
e DISCUSSED(s) 135 0.725 0.612 0.688
Total 9,571 0.989 0.991 0.990



Table 13 - Two-Stage System Results - Aggregate

5.2 Translation-Like System

The translation-like system, discussed in chapter 4, is more versatile and accurate than

the feature-based system. Its results are shown in Table 14 below. Due to limitations of

the initial implementation of the feature-based system, the translation-like system had to

be trained and tested on different training data than the two feature-based systems. Still, it

was trained and tested on the same number of games and in the same way as the previous

two systems.

Type Count Precision Recall F-Score
8,783 0.997 0.998 0.997
118 0.780 0.701 0.738

Total 8,901 0.994 0.994 0.994
Table 14 - Translation-Like System Results

The "bottleneck" of this system's performance is the estimation of the number of events

discussed (iD v, V) ).

4

2

-1

-2

-3

-4

-5

0 50 100 150 200 250 300 350 400 450

Figure 17 - Error in Estimating Number of Events Discussed (x Axis is actual - estimated, y Axis is

count)



Improving this portion of the system would be the first step in improving the system

performance as a whole.

Chapter 6 - Conclusions

There were several limitations of strictly feature-based systems which made the

translation-like system necessary. First, it can be the difficult to give the feature-based

system the ability to compare and rank different possible events - most learning

algorithms and trees are only capable of giving a classification, rather than a probability.

In addition, it is very difficult to create features which are interdependent with other

features or classifications, without exponentially increasing the number of features used,

which can be problematic.

The translation-like model helps alleviate some of these problems, but some parts

require somewhat problem-specific and specialized solutions, such as the factor added

whenever an inning of a particular sentence seems to match that of an event. However, as

mentioned in the Future Work chapter, there are many components can be generalized so

that they may be generated automatically for any problem type.

Chapter 7 - Future Work

This thesis addresses what I feel is a very interesting problem which warrants future

research. One thing that would likely be very helpful in improving the accuracy of the

system is to improve the component which estimates the size of results. There are many

ways to do this. For example, the sentence structure could be analyzed on a deeper level



with chunking, allowing the core elements of any sentence to be reasoned about. In

addition, sentences could be further simplified by finding synonyms for words using

simple dictionary services like WordNet. [12] This would be the most immediate way of

improving the performance of the system, as shown in the "Results" chapter. In addition,

if we could give the system more context awareness in the summary, its performance

might be improved.

Another interesting potential project is to generalize some of the elements which

were coded in. For example, features (for translation and feature-based models) which

could be automatically generated would make the system more applicable to many more

domains. The context graphs could also be generalized to improve performance and

versatility.

Another interesting direction to take this research would be to extend it beyond

XML documents and into other kinds of structured documents and elements, similar what

Chickenfoot [4] and a few other projects have done for allowing programming languages

to become more natural.
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Appendix A - Sample Training Data

Below is a sample training game, with most elements cut out to save space.

<test data>
<teams>

<away abbrev="BOS" code="bos" losses="I" name="Boston" wins="-"!>
<home abbrev="NYY" code="nya" losses="O" name="NY Yankees" wins=""/:>

</teams'>
<players>

<away>
<player box name="Machado" first_name="Alejandro" id="425472" last_name="Machado"!>
<player box name="Nixon" first_name="Trot" id="119811" last_name="Nixon"/>
<player box name="Damon" firstname="Johnny" id="I13028" last_name="Damon"/>
<!-Other Players cut to save space-->

</away>
<home>

<player box name="Williams" first name="Bernie" id="124288" last_name="Williams"/>
<player boxname="Rodriguez, A" first name="Aiex" id="121347" last_name="Rodriguez"/>
<!-Other Players cut to save space-->

</home>
</players>

<game day="3" location_city="New York" location_state="NY" month="4" stadium="Yankee Stadium" time="08:05 PM"
year="2005">

<stats>

<away errors="2" hits="6" runs="2"/>
<home errors="1" hits="15" runs="9"/>

</stats>

<innings count="9">
<inning num="i" /> <!-- ;CUT) -->
<inning num="2">

<top runs="1"> <!-Most Plays cut to save space-->
<at bat balls="l" batter="120074" des="David Ortiz doubles (1) on a line drive to

right fielder Gary Sheffield." outs="0" pitcher="116615" strikes="0">
<pitches>

<pitch des="Ball"/>
<pitch des="In play, no out recorded "/>

</pitches>
<hit des="Double" type="H"/>

</at bat>
<at bat balls="l" batter="132788" des="Kevin Millar flies out to left fielder

Hideki Matsui." outs="l" pitcher="116615" strikes="l">
<pitches>

<pitch des="Foul"/>
<pitch des="Bail"/>
<pitch des="In play, out (s) recorded"/>

</pitches>
<hit des="Fly Out" type="O"/>

</at bat>
<at bat balls="l" batter="123660" des="Jason Varitek grounds out, shortstop Derek

Jeter to first baseman Jason Giambi. David Ortiz to 3rd." outs="2" pitcher="116615" strikes="l">
<pitches>

<pitch des="Called Strike"/>
<pitch des="Blocked Ball in Dirt"/>
<pitch des="in play, out(s) recorded"/>

</pitches>
<hit des="Ground Out" type="O"/>

</at bat>
<at bat balls="l" batter="134341" des="Jay Payton singles on a line drive to left

fielder Hideki Matsui. David Ortiz scores." outs="2" pitcher="1!6615" strikes="2">
<pitches>

<pitch des="Ball"/>
<pitch des="Foul"/>
<pitch des="Foul"/>
<pitch des="in play, run-scoring play"/>

</pitches>
<hit des="Single" type="H"/>
<score away score="i" home score="0" points="l"/>

</at bat> <!-Most Plays cut to save space-->
<at bat balls="l" batter="li1040" des="Mark Bellhorn called out on strikes."

outs="3" pitcher="116615" strikes="3">
<pitches>

<pitch des="Swinging Str ke"/ >
<pitch des="Ball"/>
<pitch des="Ca.led Strike"/>
<pitch des="Caled Strike"i>



</pitches>
<.at bat>

</top>
<bottom runs="l ">

<at bat balls="3" batter="425686" des="Hiideki Matsui si-ngles on a fly ball to
left fielder Manny Ramirez." outs="O" pitcher="124071" strikes="2">

<pitches>
<pitch des="Swinging Strike"/>
<pitch des="Ca.led Strike"/>

<pitch des="Bail"/>
<pitch des="Bail"/>
<pitch des="Foul"/>
<pitch des="Ball"/>
<pitch des="in play, no out recorded "/>

</pitches>
<hit des="Single" type="H"/>

</at bat>
<at bat balls="0" batter="120691" des="Jorge Posada flies out to right fielder

Jay Payton." outs="l" pitcher="-24071" strikes="l">
<pitches>

<pitch des="Called Strike"/>
<pitch des="in play, out(s) recorded"/>

</pitches>
<hit des="Fly Out" type="O"/>

</at bat>
<at bat balls="" batter="114739" des="Jason Giambi singles on a ground ball to

right fielder Jay Payton. Hideki Matsui to 3rd." outs="1." pitcher="124071" strikes="i">
<pitches>

<pitch des="Bal"/>
<pitch des="Foul"/>
<pitch des="In play, no out recorded "/>

</pitches>
<hit des="Single" type="H"/>

</at bat>
<at bat balls="l" batter="124288" des="Bernie Williams out on a sacrifice fly to

left fielder Manny Ramirez. Hideki Matsui scores." outs="2" pitcher="124071" strikes="2">
<pitches>

<pitch des="Called Strike"/>
<pitch des="Ball"/>
<pitch des="Foul Tip"/>
<pitch des="In play, run-scoring play"/>

</pitches>
<hit des="Fiy Out" type="O"/>
<score away score="i" home score="1" points="i"!>

</at bat>
<at bat balls="O" batter="124523" des="Tony Womack grounds into a force out,

shortstop Edgar Renteria to second baseman Mark Bellihorn. Jason Giambi out at 2nd." outs="3" pitcher="124071
' '
"

strikes
= '
-">

<pitches>
<pitch des="Called Strike"/>
<pitch des="In play, out(s) recorded"/!>

</pitches>
<hit des="Ground Out" type="O"/>

</at bat>
</bottom>

</inning>
<inning num="9" /> <!-- (CUT) -- >

</innings>
</game>
<sentences summary name="MLB BOS"><!-Most Sentences cut to save space-->

<sentence contents="For weeks, perhaps months, Red Sox manager Terry Francona had been telling anyone
who would listen that the historic magic of last year won't win a single game for the 2005 Red Sox." state="complete"/>

<sentence contents="He now has a perfect case in point, as the defending World Series champions opened
their title defense by being soundly beaten, 9-2, by the Yankees in Sunday's Opening Night came at Yankee Stadium."
state="complete"/>

<sentence contents="The Yankees had no trouble shaking away the bad mem.ories from last October, when the
Red Sox became the first team in baseball history to overcome a 3-0 deficit in a postseason series." state="complete"/>

<sentence contents="Both of the rivals have added new faces that will give this year an identity of its
own." state="complete"/>

<sentence contents="By no means are we deflated." state="complete"/>
<sentence contents="&quot; The Sox temporarily derailed the momentum of Johnson's Big Apple unveiling by

rallying for- a run in the second." state="complete">
<match xpath="/test data/game/innings/inning@num='2'J./top/* [4l"/>

</sentence>
<sentence contents="It was no surprise that it was David Ortiz -- the certified Yankee destroyer -- who

got things rolling with a leadoff double to right." state="complete">
<match xpath="/test data/game/innings/inning [@num=' 2']/top/i). "/>

</sentence>
<sentence contents="It looked as if the Sex were about to take a 2-0 lead when the next batter, Kevin

Millar, ripped a deep drive to left." state="complete">
<match xpath="/test data/game/innings/inning [@num= ' 2' ] /top/ [2] "/>

</sentence>
</test data>


