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Abstract

Robot control software packages require a configuration step prior to use. The configuration
requires that robot parameters such as the dimensions of the robot, the radius of its wheels,
and the location of sensors in body coordinates be provided to the system. Typically, this is
accomplished through manual measurement. This thesis describes a method for automating
the configuration of essential robot parameters - specifically the size of the wheel radii, the
dimensions of the chassis, and the location of the wheelbase with respect to the body frame
- and compares the results of a preliminary configuration system for the CARMEN robot
navigation toolkit to the parameters determined via user measurement. The method is able
to estimate the parameters of morphologically analogous robots, for which the shape and
sensor types are given, through the use of a physical test harness. The targeted family of
robots consists of rectangular, two-wheeled, differential drive robots that are equipped with
quadrature phase encoders and current-sensing capabilities.

Parameters are discovered by placing the robot in a known physical environment and
moving it throughout the enclosed area, performing experiments from which each of the
parameters can be calculated. The resulting self-configured parameters are then compared
quantitatively to user-measured parameters through several methods including a complete
system comparison using the University of Michigan Benchmark (UMBmark) as the stan-
dard for comparison. The results demonstrate that while the self-configured parameters
do not match user-measured values perfectly, the proposed method remains an adequate
technique for automating the configuration of microbot-class robots for use with robotics
toolkits.
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Chapter 1

Introduction

Providing accurate measurements of robot parameters is typically the first task required in

the use of a robot control package. Whether the purpose of the toolkit is localization and

navigation or the actuation of a manipulator, the configuration of the target robot must be

provided in order to provide high-level control over the underlying low-level aspects.

In general, the information that is required must be provided by the robot's user agent.

This poses a problem because humans are error prone, and the configuration step is tedious.

If the system is dependent on human input, the user will eventually make a mistake. Also,

because the task is manual, it can degrade the user experience.

This thesis presents a method for implementing a self-configuration system for morpho-

logically analogous robots. An example from this class of robots is shown in Figure 1-1.

Configuration is achieved by performing experiments in a simple controlled environment

called a physical test harness.

Figure 1-1: The type of robot that is used in both Robotics: Science and Systems and this
thesis is the microbot. These photographs show an example microbot equipped with sonar
sensors, a bump sensor, a laptop, an ORCBoard, a crossbar, wheels, and a battery.
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1.1 Motivation for Self-Configuration

One of the primary reasons for developing a self-configuration system is so that it can

be used with a multitude of robots with similar morphology. This scenario can be found

whether experimenting with a variety of approaches for solving a particular problem, or

simply over the course of a class in robotics.

Robotics: Science and Systems I (RSS), is the first of a pair of laboratory courses at the

Massachusetts Institute of Technology (MIT) which teach the basics of autonomous mobile

robotics. The course is targeted towards undergraduate students in their third and fourth

years of study. RSS begins with the construction of a microbot, such as the one depicted

in Figure 1-1, and covers robotics, ranging from basic dead reckoning to more advanced

topics, including visually guided movement using a camera and grasping of objects using a

manipulator. The course culminates in an event called the "RSS Grand Challenge", where

the students are charged with a difficult robotics task, e.g., building a shelter from items

that are located throughout an unknown region. At this point in the course, the students

are allowed to modify the design of the original microbot so that it can perform the task

better. This scenario, provided by RSS, is a prime example of a practical application for

an automated robot configuration system.

More importantly, each step taken towards solving the self-configuration problem leads

to incrementally better layers of abstraction. Better abstraction results in software that

is portable across different robot platforms. This portability results in an increase in the

amount of code that can be reused and the rate at which research can proceed.

1.2 A Method for Self-Configuration

The method presented in this thesis provides a mechanism for automating the configuration

step that is required by robot control packages. The parameters which this method focuses

upon are the size of the wheel radii, the dimensions of the chassis, and the location of the

wheelbase with respect to the body frame.

Discovery of these four parameters provides basic information which can be utilized in

the discovery of other robot parameters. Once the size of the wheels is known, the robot

is able to translate at commanded velocities, allowing the robot to have some control over

its location and movement. Determining the chassis dimensions is the first step towards

18



defining a coordinate system within which sensor locations can be mapped. The second

step, determining the origin, is accomplished by finding the wheelbase location in body

coordinates. In addition to defining the coordinate system, knowing the chassis dimensions

allows motion planning algorithms to choose collision-free paths.

The test harness method for self-configuration works under a set of assumptions which

pertain to the test harness, the toolkit being configured, and the robot itself. These re-

quirements are described in detail in Chapter 4. To summarize these requirements, the

shape and dimensions of the test harness are assumed to be known ahead of time; the robot

control kit is assumed to possess basic navigation subroutines; and the morphology and

available sensors of the robot are known.

The targeted robot morphology is derived from the microbot used in RSS, consisting of

rectangular robots with two-wheeled, coaxial, differential drive and the ability to provide

odometry information through quadrature phase encoders and current draw.

The test harness should have a length that differs from its width, and it should be sturdy

enough to sustain collisions from the robot being configured.

Self-configuration begins by placing the robot within the confines of the test harness.

The front of the robot must be placed as close to the center of the test harness area as

possible. It should be oriented so that the direction of travel is along the length of the test

harness. Once the robot has been placed in a suitable pose and the configuration process

has been started, the robot moves within the test area in an attempt to experimentally

determine the value of each parameter that is being configured. This is accomplished by

executing predefined behaviors and calculating values from the observed events.

Acquiring the dimensions of the test harness still requires user-measured parameters,

but there is an added benefit of using the configuration system rather than performing

measurements by hand. Multiple robots are able to configure their own parameters at

the cost of a small, one-time measurement. This is advantageous if many robots are being

configured, or if one robot will be modified frequently, with each change leading to a similarly

structured robot with differing configuration parameters.
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1.3 Conventions and Coordinate Frames

Many different conventions are used throughout the field of robotics.This section describes

them.

The family of robots targeted by this particular configuration method have a rectangu-

lar frame, and have a differential drive which consists of two coaxial wheels. References to

"body coordinates" and "robot-centric coordinates" correspond to a right-handed coordi-

nate frame, as depicted in Figure 1-2. The positive x-axis points to the right of the robot,

the y-axis points to the front, the z-axis points upward and the coordinate origin is the

midpoint of the rear wheelbase.

While the morphology of robots is that depicted in Figure 1-3a, the rendering in Figure

1-3b will be used in sketches in order to clearly denote which end is the 'front' of the robot.

In this thesis, all distances are measured in meters, time in seconds, and angles in

radians.

ZA

Y

Figure 1-2: The origin of the robot-centric coordinate system is located at the center of the
wheelbase. The right-handed coordinate system has the x-axis pointing forward, the y-axis
pointing left, and the z-axis pointing upward.

1.4 Document Overview

Chapter 2 includes an overview of some popular robotics toolkits, focusing on the abstrac-

tion that they provide and the parameters they require. The chapter also provides an

introduction to developmental robotics which serves to show the place where the proposed

self-configuration method fits in the scope of the field.

Chapter 3 describes the self-configuration method in detail. It describes the assumptions

we make, the specifications of the test harness, and a description of the parameter discovery

process for wheel size, chassis dimensions, and wheelbase location.
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Front Front

Anterior _ Anterior_
Distance Distance

Posterior Posterior
Distance _ Distance

Back Back

Wheelbase Wheelbase

(a) Exemplar Morphology (b) Clarified Morphology

Figure 1-3: The sketch in Figure 1-3a is an outline of an example member from the target

family of robots. The image in Figure 1-3b is not a member of the supported set of robots,
however it will be used in figures throughout in order to facilitate the differentiation between

the front and back of the robot.

Chapter 4 provides a description of the procedure for implementing a preliminary system

which uses the self-configuration method. The toolkit implements the method described in

Chapter 3 for CARMEN, using an RSS II microbot as the test subject. The chapter also in-

cludes details necessary for modifying CARMEN for use with the configuration procedures.

The results from the attempted self-configuration of the microbot are reported and

analyzed in Chapter 5. The chapter includes an outline of the difficulties encountered

during the implementation of the self-configuration system. It also shows that the method

for discovering the basic parameters of a microbot-class robot is successful by comparing

the results of the configuration routine to the real world, user-measured values.

Chapter 6 reflects on the results of the system implementation, focusing on the strengths

and weaknesses of the method. This includes suggestions for future work as well as closing

remarks.
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Chapter 2

Background Information

The design of a self-configuration system is strongly motivated by the current state of

robotics control packages. The popular toolkits represent the state of the art with respect

to code reuse for robots. An automated configuration system for robots would facilitate the

use of toolkits and support the sharing of prepackaged robot tasks. Section 2.1 provides

a brief look at CARMEN, Orocos, and PADI, three robot toolkits that are in widespread

use. The section focuses on their intent, level of abstraction, and required configuration

parameters.

The self-configuration method falls under a category of robotics called developmental

robotics. An introduction to developmental robotics is given in Section 2.2. State of the

art techniques in self-discovery are described in order to show the potential for extension

of the method presented in Chapter 3. Finally, this chapter's discussion concludes with a

description of a widely used method for comparing odometric performance across different

techniques and systems.

2.1 Robotics Toolkits

Robotics toolkits are one of the major motivators for the design of this self-configuration

method. Each toolkit, regardless of its primary purpose, requires that a description of the

underlying robot be provided through a set of configurable parameters. The intent is that

the robots can then be controlled at a more abstract level, which results in software that

can be ported across different robot platforms.

The study of different levels of abstraction for robot control architectures is not new.
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Rodney Brooks of MIT's Artificial Intelligence laboratory addressed the issues of designing

software control packages for mobile robots as early as 1986 [5]. Essentially, the ideas are

the same as the standard paradigms used throughout traditional software design: try to

make the interface to the lowest levels uniform across all instances so that each low-level

unit can be seamlessly exchanged while not modifying the high-level entity.

Using a high level of abstraction results in the ability to use the same software across

different robots. CARMEN, Orocos, and PADI are examples of toolkits which are in

widespread use and employ abstraction to promote code sharing and reuse among robotics

researchers and hobbyists alike.

2.1.1 Carnegie Mellon Robot Navigation Toolkit (CARMEN)

CARMEN was created in 2002 for the purpose of facilitating the sharing of implemented

navigation algorithms between research groups [111. Most importantly, the aim was to

have this shared code run on multiple platforms; platforms includes robot morphologies as

well as the operating systems and hardware architectures that CARMEN executes within.

CARMEN is widely used today and is the library that interfaces with the low level oper-

ations that are provided by the ORCBoard in the self configuration method presented in

this paper.

CARMEN is divided into modules that reside in three different levels: base level, nav-

igation level, and the user level. The different applications, which comprise CARMEN,

communicate via the inter-process communication (IPC) system [14]. Since the upper

reaches of the toolkit involve configuration of the robot, only the base level is used for

this configuration system.

Each CARMEN module can have its own set of parameters. Some of the parameters

listed on the CARMEN websitel include the diameter of the wheels, the location and

orientation of sonar sensors, the length and width of the robot's bounding box, odometry

errors, and laser offsets. There are many other parameters, but these are the most pertinent

to the goals of the self-configuration method being discussed.

'A partial list of parameters can be found http: //carmen.sourceforge.net/config-param.html.
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2.1.2 Open Robot Control Software (Orocos)

Orocos is an open-source robot control system intended to be reusable and available across

both robot and computer platforms, and to define a public and widespread application

programming interface (API), with abstract programming capabilities [6]. The software

system is modular in design so that code reuse is strongly encouraged. The developers

claim that software reuse among roboticists is not common primarily because it is not easy

to do [6]. Each robotics group uses its own API and data representations. As a result,

porting software across robot systems remains a difficult task.

The middleware components that Orocos provides are a step towards being able to easily

share commonly used algorithms for kinematics, motion planning, and more, in a manner

very similar to the application modules that CARMEN provides. These components of

Orocos are designed to be programming language oblivious by following a specification

that is closely related to CORBA 2 , a solution that uses mediators to interface a variety of

applications across different networking medium [17]. In other words, the components can

be written in any language as long as the CORBA interface specification is followed.

Orocos has five primitives which are used to create different contexts. These primitives

are Event, Property, Command, Method, and Data Port [15]. The different tasks of Oro-

cos run in separate threads which are called periodically. This same structural behavior

is implemented by CARMEN's message handlers, the difference is that each module in

CARMEN runs in its own process space.

This robot control package is fully customizable and is divided into a number of useful

primitives. The device interface of Orocos is divided into two parts: logical and physi-

cal interfaces. It proposes that the physical interface is device dependent and hence, not

portable, whereas the logical interface is portable. As a result of being so customizable, the

device interfaces can include any information desired. In effect, Orocos can provide at least

as much information as CARMEN.

2.1.3 Player Abstract Device Interface (PADI)

PADI is a successful abstraction of algorithm from the physical aspects of the underlying

robot [16]. PADI is another open-source project which strives to define a set of interfaces

2CORBA stands for Common Object Request Broker Architecture.
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which can be used to write portable and reusable robot code. The system was originally

implemented in two different parts. They consist of the Player, which acts as the interface

to all of the low-level hardware of the robot, and the Stage, the simulation environment.

The Player provides the abstract interface to the robot. The robot can be either simulated

or real. The robot can then be controlled either in reality, or in the Stage. There is now a

third component of the project, a three dimensional simulation environment called Gazebo.

Player is prepackaged with generic drivers that include support for a number of sensors

as well as robot platforms. The robot platforms include the iRobot Roomba and the Nomad

robot. Among the sensor interfaces are support for sonar sensors, bump sensors, and laser

range finders. The robot platforms have configurable parameters that include the length

and width of the robot's bounding box and the location of the robot's center of rotation.

Odometry information is available for robot devices that support it.

2.2 Developmental Robotics

Developmental robotics is an umbrella term that encompasses the on-line development of a

robot control system. Robots which exhibit this post-startup learning phase are classified

as developmental robots [18]. Research in developmental robotics has yielded results which

range from robots which learn to walk with their legs, to systems which can sustain damage

and then gracefully recover and continue to function [19 [2].

2.2.1 Basics of Developmental Robotics

Two programming paradigms are prevalent in developmental robotics. They are autonomous

development and manual development [18]. The differences between the two are defined by

the interactions between the user agent and the robot agent. The user agent is the end user

of the robot system. This can be either the robot programmer or a person interacting with

the robot. The robot agent is the program which controls a robot. It is essentially the brain

of the robot.

Autonomous development is a mode of learning which consists of two phases. The first

phase consists of the programmer creating a developmental program; a program that is task-

nonspecific. This program is necessary because the system developer does not know the

types of tasks that the robot agent will need to learn while on its journey to self-discovery.
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The second phase occurs when the program is started. At this point, the programmer no

longer modifies the developmental program that was implemented in the first phase. All

that can be done is allow the robot to discover its sensors and actuators much like a human

baby would do just after birth. The robot agent can either be taught (or told) by humans

or other robots, or learn on its own.

Manual development also consists of two phases, but differs from autonomous develop-

ment in that the programmer knows, during the design phase, the nature of the tasks that

the robot will encounter. He can then implement the robot agent, as necessary, for the

specific task.

As a result of the tasks being known during the programming phase, it is typical for

robot agents created in this mode to be entirely autonomous after the program has been

started. The agent may still employ machine learning techniques once the program has

started, the difference is that the architecture of the robot agent is task-specific.

The self-configuration method, which is presented in this thesis, is of this second genre

of development. The tasks are known ahead of time, as they are specified by the parame-

ters described within the CARMEN initialization file, and the robot carries out the tasks

autonomously, learning its configuration parameters as the process is executed.

2.2.2 Examples

Self-configuration is a subset of the general problem of self-discovery. The self-discovery

problem involves having a robot discover itself and the world around it much in the way

that a newborn baby must do after birth. More explicitly, a robot agent is initiated without

knowledge of its morphology, which sensors it has, where it is, or any knowledge of how to

perform even the most basic tasks of locomotion or collision detection. Drivers are given,

but the robot must discover which control vectors allow the actuator to achieve a particular

goal.

One way for a robot to discover its sensors and actuators is to apply random control

vectors to its actuators, and then observe the results with the sensors [123. The underlying

assumption is that if an actuator can affect the environment, then the sensors will be able

to detect this change. From this information, it is possible to build sensoritopic maps which

show the "informational relationship" [12] between sensors. This information can help in

the bootstrapping process of a robot, where it can learn about how its sensors and motors
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relate, and can eventually learn to follow paths and localize itself on a map.

A framework for self-discovery is proposed in [8]. Through the use of mutual information,

a robot learns how to control its hand after 5 minutes of human interaction. The framework

is an iterative process which consists of three steps. The first is exploring the space of motor

control vectors. This step is similar to the method described in [12]. Once the space has

been observed, the robot agent creates categories in which the results of the first phase can

be placed; this is the discovery phase. The discovery which occurs in the second step can

then be used in the third step to adapt its sensors to the learned events. The framework is

then demonstrated by applying it to the discovery of a robot's hand and fingers.

2.3 The University of Michigan Benchmark: UMBmark

The goal of the self-configuration method is to determine the values of a target robot-

system's configuration parameters. In order to gauge the level to which this has been

achieved, it is necessary to have a systematic method for comparing the performance of the

self-configured values to those of a manually configured system.

In the harness method presented in this paper, the most important information is odom-

etry. Since only quadrature phase encoders and motor current-sensors are available, it makes

sense that the primary comparison be dead-reckoning.

One method for comparing odometric performance between systems is the University of

Michigan Benchmark (UMBmark). It has been used in numerous papers as a metric used

to compare different methods for performing the same task [7], [9], [1], [4].

The UMBmark is a test which attempts to measure the amount of systematic error that

is inherent in a robot's odometric system. These are errors which are predictable and can

be modeled [3]. Examples of this type of error include the unequal acceleration from the

left and right motors, having wheels of different sizes, the resolution of encoders, etc.

The benchmark is performed by driving the robot in a 4 meter square. This task is per-

formed in both the clockwise and counterclockwise directions to eliminate any asymmetric

properties of the robot system. Once a lap has been completed, the final internal position

is then compared to the final real-world (absolute) position, giving a resulting value which

is referred to as the error on return.

The trials are repeated a number of times in order to create two groupings of the
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error on return values. The groupings represent the results of performing the UMBmark

in the clockwise and counterclockwise directions. The average value of each grouping is

then calculated and used to represent the maximum systematic error of the robot when

traveling in the given direction. The maximum of the two error values is then taken to be

the maximum systematic error for the robot. The more closely clustered that the elements

of the respective groupings are, the easier it is to model and compensate for the systematic

error inherent in the system.
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Chapter 3

A Method for Self-Configuration

In order to design a solution for the self-configuration problem, one must first decide which

parameters can be solved for, which parameters any given parameter is dependent upon,

and which assumptions can and cannot be made. Once these preliminary issues have been

decided, the proposed solution for self-configuration must be demonstrated to be valid.

The method works as follows. The user agent tells the configuration system which

sensors are available to the robot. The choice of sensor is limited only by the set of discovery

procedures that have been implemented for the particular robot control package. Next, the

front of the robot is placed at a predetermined location, in such a way that the translational

motion is parallel to the long sides of the physical test harness. Figure 3-1 illustrates the

presumed starting position. Finally, the system is started and the specified parameters are

discovered.

The remainder of this chapter begins by discussing both the assumptions that were made

and avoided in the development of the self-configuration method. Then, the nature of the

requirements necessitated by the physical test harness are itemized. The chapter concludes

with a discussion of test harness properties and a description of the configuration routine.

3.1 Assumptions

Automated configuration of a robot's parameters is a subset of the general self-discovery

problem. Assumptions are made in order to have a starting point for configuration. Once

a basic implementation has been tested and proven correct, the assumptions can be re-

laxed in order to create a more general configuration technique. By designing the initial
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Figure 3-1: The self-configuration routine begins by placing the front of the robot as closeto the center of the test harness as possible with its wheelbase perpendicular to the longaxis of the harness. The test harness is represented by the solid rectangle surrounding themicrobot. In this figure, the front of the robot is placed exactly over the optimal startingposition.

configuration method with appropriate assumptions, a generalized process can be achieved.
The configuration requirements are presented here so that it can be demonstrated that the
assumptions made about the robot, the control package being configured, and test harness
are reasonable.

The morphology of the targeted robot family is derived from the robot used in RSS:
the microbot. These robots are rectangular in shape and have two, coaxial motors that
are arranged in a differential drive configuration. The two, motored wheels of the robot
must have the same radius. If the wheels are of two different sizes, then the control toolkit
would not be able to drive in a straight line without knowing the sizes of the wheels, or
at least the ratio between them, before the configuration sequence. Even so, the presented
configuration method is not designed to solve for this case and would likely give a value
which works but does not physically represent either wheel. Rather than deal with this
complication, the assumption that the two wheels are approximately the same size is made.

It is necessary to make assumptions about the robot control toolkit that is being con-
figured. The most basic assumption is that the toolkit can execute specified translational
and rotational velocities. Additionally, the ability to drive in a straight line is also taken
as a given capability of the robot application programmer's interface (API). Even if these
properties are not provided by the default toolkit, these types of commands are simple
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enough to implement given some form of feedback from the motors. In the case of the

microbot, feedback is provided to CARMEN in the form of both the amount of current that

the motors are drawing, and the number of ticks that have been observed by the quadrature

phase encoders.

The dimensions of the test harness must be known. In the system implementation

presented in Chapter 4, a wooden test harness, which is 1 m wide, 1.22 m long, and 0.39 m

tall, is used by the robot to configure its parameters. The test harness ground surface should

have enough friction so that a robot can detect a collision through odometric information.

The test space is assumed to be clear of obstacles.

A number of robot agents have the ability to discover their sensor array without prior

knowledge [10] [12] [13]. Instead, these systems discover the types of available sensors by

applying different vectors to their actuator ports and then creating sensorimotor maps based

on the resulting sensor feedback. A sensorimotor map is a way of visualizing the informa-

tional relationships between sensors and actuators. Based on this work, it is reasonable for

this self-configuration method to take the available sensor types as given. The types can

either be provided by the user agent, or through one of these discovery mechanisms.

3.2 Physical Test Harness

The physical test harness is necessary because it provides a reference point which serves

to ground the estimated values in relation to something. The method was designed for

RSS students to use on their morphologically analogous robots. Successful configuration by

means of the presented routine is dependent on the fact that the parameters of the operating

environment are known ahead of time.

3.2.1 Description of Physical Test Harness

The test harness is simple to construct. It is necessary only to have barriers which can stop

robot movement and can be detected by the available sensors. There should be enough

room for the robot to execute its configuration routine. Motions which the method depends

on are harness traversal and in-place rotation. Materials for the implemented system's test

harness consist of existing wooden boards as shown in Figure 3-2. Each of the four pieces

is 1.22 m long; they are overlapped in order to achieve a rectangular region of the following
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Figure 3-2: The pieces used in the assembly of the physical test harness are taken directly

from the RSS class. Originally, they served as maze segments in the RSS Grand Challenge.

interior dimensions: 1.000 m in width, 1.220 m in length, and 0.386 m in height. Depicted

in Figure 3-3 is the assembled test harness used in this study.

A rectilinear test harness was chosen because construction is simple, the length and

width are two different known values, and corners are a natural feature with a distinct

signature. While the width and corners are not utilized in this particular method, these

features can be utilized in future extensions of the system which attempt to localize sensors

on the robot frame.

Using a rectangular, but not square, bounding box also has the advantage that iter-

ations of the configuration sequence can be repeated using two different, known values.

Additionally, width is a local minima when measuring distance from the robot to a given

side of the test harness. This information is useful for determining the location of sensors

such as sonar sensors and laser range-finders.

3.3 Attaining Motion Control and Estimating Coordinate

Space

We chose to focus on one feature at a time, then incrementally add other unknowns, in

discovering the configuration parameters of the robot. Properties of the robot's sensors

would be difficult to discover if the robot could not move in a controlled manner to perform

configuration experiments. It is by knowing the radius of its wheels and the width of its

wheelbase that a coaxial differential drive robot can accurately execute translational and
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Figure 3-3: Photograph which illustrates the physical test harness that is used

rotational velocities. The remainder of this section presents a method which can determine

these two parameters and will additionally provide the location of the wheelbase in body

coordinates.

3.3.1 Wheel Radius Discovery Routine

Knowing the length of the robot's wheel radius is essential for controlling translational

velocity when movement is based solely on odometry data. It is possible to experimentally

determine the velocity of the robot by using a suitable robot control package and the known

parameters of the test harness. Experimentally determining the velocity makes it possible to

compute the wheel radius because these two values are directly proportional to one another

through a fixed constant. Once the wheel radius is known, it becomes possible to learn the

values of other configuration parameters.

Understanding the Relation Between Wheel Radius and Velocity

A motor controller can calculate the amount of distance traveled by counting the number

of odometry clicks that have been reported by quadrature phase encoders. A given motor

equipped with quadrature phase encoders has a resolution that depends on the number of

clicks per revolution of the motor axle. This resolution is the smallest number of radians

that the encoder can measure and is given by the equation

k 2 ir
C,
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where C is the number of clicks per revolution of the motor axle, and k is the encoder

resolution.

For small angles, such as the ones spanned by odometry clicks, the distance along the

arc is approximately

darc rO, (3.2)

where darc is the distance along the arc, r is the radius of the circle, and 0 is the size of

the angle which determines the arc. In the case of motors equipped with quadrature phase

encoders, 0 is given by

0 = k {# of clicks} . (3.3)

The relationship between the wheel radius and the distance traveled per click can be seen

through equations 3.2 and 3.3.

Robot toolkits implement commanded velocities by ensuring that a specified number of

odometry clicks occur from sample to sample. This means that velocity, as implemented

by robot toolkits, can be written as

darc {# of clicks}
At=(3.4)

where darc is the distance traveled by each encoder tick. By plugging Equation 3.2 into

Equation 3.4, it becomes apparent that r is directly proportional to v through known

constants.

A click-dependent constant, a, can be named such that

{# of clicks} 27 (3.5)
At C

and accordingly,

- a. (3.6)
r

Equation 3.6 describes the relationship, for a given number of odometry clicks, between a

velocity, v, and its associated radius, r. Knowing this, the robot toolkit can be utilized

to determine the actual radius. This can be accomplished by guessing a radius, r', and

attempting to traverse a known distance at a commanded velocity, v'. Measuring the

36



resulting actual velocity allows the true radius, r, to be determined through the relation

V - (3.7)

The relationship in Equation 3.7 is possible, because a is the same for both radius-velocity

pairs. The wheel radius discovery utilizes this information to determine the robot's wheel

radius.

Method for Wheel Radius Configuration

The routine begins by placing the robot at a known distance from a chosen harness wall

such that there is enough room on either side of the robot for a complete rotation. The

distance from the chosen wall is referred to as d. Next, a guess of the actual wheel radius

is made. The guessed wheel radius will be referred to as r'.

Next, a starting time, tstart, is recorded and the robot is commanded to translate at a

velocity of v'. The actual velocity at which the robot translates is dependent on the length

of the actual radius, r, and can be expressed by manipulating Equation 3.7 to give

V'
V = r-. (3.8)

The robot should continue to move at v, until a collision occurs. The time of the collision

is recorded as time t,,11 . Now, all of the information required in calculating v is known, and

it can be calculated by

V d (3.9)
tcoll - tstart

This actual velocity can now be used to calculate the actual radius size, r, by

r = r'V (3.10)

The success of this configuration routine is dependent on several variables. First, since

the user agent is responsible for placing the robot on the starting position, it is possible that

the distance the robot actually travels will not match the assumed distance d. Second, the

source for the start time and the collision time is important. There cannot be a large delay

between the recorded start time and the actual time where the robot begins to move. The
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same applies to the time of collision. It is important that the time recorded when a collision

occurs, is close to the actual time of collision. In order to gather a robust measurement, it

is possible to repeat the experiment, and gather more data, by manually resetting the robot

to the starting position.

The primary weakness of the wheel radius configuration routine is that it is not au-

tonomously repeatable without modification of the test harness. The reason for not being

autonomously repeatable is that, initially, the distance from the front of the robot to the

wall of the test harness is known - the user agent puts the robot down to the best of his abil-

ity. However, once the routine has completed one iteration, the robot is at the boundary of

the test harness. It is now not possible to return to the starting position without incurring

some amount of error. If the original guess (r') is used and the robot travels in the reverse

direction for a duration of tstart - tco1j, then error results from inaccurate measurement of

time, and perhaps an asymmetry in the acceleration of the forward direction versus that

of the backward direction. Likewise, if the newly calculated r' is used and the amount of

time traveled at a commanded velocity is used to approximate position, error is incurred

due to the fact that the guess of wheel size will be reinforced by the result of the second

trial reaffirming the means used for its setup.

One solution to this weakness is to start the robot at the edge of the test harness rather

than the center. While this ensures that the wheel radius configuration routine is repeatable,

it comes at the cost of needing to measure the distance, d. This cost is both the same as

measuring the chassis length of the robot manually, and must be repeated whenever a robot

of a different chassis length is used. It was decided to start the robot in the center of the

test harness so that the cost of measuring d will occur only once, given that the chassis

length of the robot used with the test harness is less than the test harness length minus d.

A second solution is as follows: once the robot has been placed at the specified starting

position, place a sturdy structure behind the robot. This idea eliminates the need for know-

ing the length of the robot's chassis by limiting the travel distance to d in both the forward

and backward direction. Figure 3-4 contains sketches which illustrate this second idea. This

choice was not used in this thesis for the sake of favoring a completely autonomous solu-

tion requiring no human interaction beyond the initial setup and starting the configuration

sequence.
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(a) Position before starting forward iteration (b) Position before starting backward iteration

Figure 3-4: The wheel radius configuration routine, as it is implemented in this thesis is
not autonomously repeatable by the robot. A proposed solution to this issue is to place an
obstructing block behind the robot after the robot has been placed at the starting location.
Implementing this solution would allow the robot to repeat this configuration experiment
until a satisfying value is achieved. Figures 3-4a and 3-4b show the initial position for
the forward and backward direction, respectively. In the solution's simplest incarnation,
the human operator can place (and remove) the block. Alternatively, upgrades to the test
harness could potentially provide an automated method for placing the block.

3.3.2 Chassis Length Discovery

The chassis length discovery routine is a simple, repeatable experiment which determines

the value of I. This value is determined by measuring the amount of distance that the

robot is able to travel across the test harness without observing a collision. The ability to

translate at a specified velocity is important in determining the amount of distance that

has been traveled.

Determining 1 begins with the robot starting flush with a wall of the test harness. Next,

it is commanded to move towards the opposite test harness wall, at a velocity, v, until a

collision is observed. The robot should measure the amount of time taken from starting the

traverse, tstart, to the point in time where a collision is observed, t,1u. Given tstart, tco11,
and the span of the test harness that is being traversed, call it d, the length of the chassis

can be calculated as

I = d - (V * (teoll - tstart) (3.11)

This method for determining the chassis length depends on being able to translate at

a commanded velocity v, and that the length of d is known. These properties make this

procedure ideal for following the completion of the wheel radius configuration routine that

is described in Section 3.3.1. After the wheel radius has been configured, the robot is left

in a suitable position for this chassis length configuration procedure.
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The chassis configuration method is repeatable. This allows for a mean and variance to

be established over the calculated chassis length values. These two values can be used to

determine when the chassis configuration step is complete, for example, by repeating until

the reaches a specified threshold.

Theoretically, the method will yield an accurate measurement of the robot chassis. In

practice, sources of error for this configuration routine can start as early as during the

configuration of the wheel radius. If the wheel radius is incorrect, then the commanded

velocity will not be accurate and the resulting distance traveled will also be inaccurate. Also,

as mentioned previously in the wheel configuration routine, the accuracy of the recorded

tstart and te0u values can affect the resulting calculation of 1. As will be demonstrated in

the results chapter, these issues do not have an large impact on the resulting chassis length.

3.3.3 Wheelbase Discovery

The goal of this method is to configure the width of the robot's wheelbase. The way in

which this is accomplished simultaneously approximates the position of the wheelbase in

body coordinates, i.e., the distances from the wheelbase to the front and back of the robot

along the y-axis of the robot-centric coordinate system. This section describes how the

robot can experimentally measure df and dr, as defined in Figure 3-5, and how these values

can be used to determine the wheelbase, b, and its location in body coordinates, given by

if and ir.

Discovering the width of the robot's wheelbase requires that the wheel radius and chassis

length have already been discovered. The wheel radius must be known so that the robot

can move a specified distance. The chassis length is needed to calculate the unknown values

of If, lr, and b.

Solving for the Wheelbase Width and Position

The wheelbase discovery routine depends on being able to find two values, df and dr. These

two values are the amount by which the radii, rf and rr, exceed the body frame. Figure

3-5 shows the triangle of interest.
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Figure 3-5: A number of distances on the robot chassis are referenced throughout this paper.

The length and width of the robot chassis are denoted by the values 1 and b, respectively.

The distances from the wheelbase to the front and rear of the robot frame are given by if

and l. The distance from the origin of the robot coordinate system to the front and rear

corners of the robot are radii denoted by rf and r,. The difference between rf and If gives

the value df, where df is the distance that is measured by the wheelbase discovery routine.

The same is true for dr, only with respect to the rear of the robot chassis.

Pythagoras' Theorem states that the values of rf and r, can be expressed as

(3.12)

(3.13)

2 = 12 + ( b) 2

r = + (-)2

The radius rf exceeds the chassis length, if, by a distance df. An analogous situation

is true for rr, with its corresponding values. The distances df and d, are experimentally

determined by the wheelbase discovery method described in Section 3.3.3. The relationship

between these values can be expressed as

rf If + df

r = lr + dr.

(3.14)

(3.15)

The locations of the variables in equations 3.14 and 3.15 are shown in Figure 3-5.

The fifth equation of the system is given by the fact that the sum of ff and f, is
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constrained to the total length of the chassis. This relationship is expressed by

I = If + lr. (3.16)

The unknown variables if, ir, rf, rr, and b, can be expressed in terms of one another

through manipulation of the above equations. The following is a derivation focused on

finding an expression for If in terms of the known values: 1, df, and dr.

Substituting the expression for rf, given by Equation 3.14, into 3.12 gives

(if + df) 2 = l + (b)2. (3.17)f 2

The quantity ( )2 can be expressed in terms of rr and ir by using Equation 3.12. This

allows Equation 3.17 to be rewritten as

(i + df)2 = l +r - . (3.18)

Applying Equation 3.16 to Equation 3.18 allows the expression to become

(3.19)

Next, rr can be expressed in terms of 1r by manipulating Equation 3.13. Substituting

into Equation 3.19 results in

(If + df ) 2 =i + (ir + dr) 2 _ (I _ i)2. (3.20)

The expression is reduced to one unknown by using Equation 3.16 to substitute for Ir,

resulting in

(if + df) 2 = 1 + (1 - i + dr)2 (1 _ 1)2. (3.21)

Now, it is possible to solve for If. First, expand the equation by distributing the terms

f + 2ifdf + df = V (12 lf + idr) + (-iIf + 1 - If dr) +

(idr - ifdr + d ) - (12 - 211f + 12).
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Next, remove all terms which sum to zero, giving

2 lfdf + d = -2lfdr + 2ldr + d . (3.23)

Finally, move all terms containing if to the same side, and divide to solve the system

with
2ld, + d2 - d2

if= r f (3.24)
2(d + dr)

Or, equivalently, solving for ir instead of if gives

2ldf+d2 d
ir = + . (3.25)

S2(d + dr)

These two values, if and Ir, give the location of the wheelbase with respect to the robot

frame. The width of the wheelbase is then given by Equation 3.12 or 3.13.

Method for Determining the Wheelbase

The previous section describes how to derive b, if, and 1r when the values of 1, df, and dr

are known. It has also been previously stated that 1 and r, are assumed known in order to

carry out this configuration routine. It is reasonable to assume that these values are known

because if they have not been configured, then the corresponding configuration process can

be carried out.

It remains to be shown how df and dr can be determined. For the sake of clarity, only

the measurement of df will be described in detail because the procedure for d, is analogous.

The configuration routine begins by assuming that the front of the robot is flush with

one of the harness walls. Next, the robot control package is configured with a guess of

the wheelbase width, b'. This allows the robot to rotate, regardless of the fact that the

rotational velocity commanded will not necessarily be equivalent to the observed rotational

velocity.

Starting from this setup, make a guess for df and call it d' . Next, move the robot away

from the harness wall a distance of d' and stop. Then, commence a rotation until either

a collision is observed by a collision detector, or a timeout is reached. If the timeout is

reached, then either d' is too large and the corner completed the rotation, or the timeout

occurred too soon for a collision to occur.
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In the event of either failure scenario, the recovery strategy is the same. Return the

robot to its initial orientation, where the direction of translation is perpendicular to the

targeted collision wall. Next, decrease the value of d' by an incremental amount, Ad' , and

move so that the robot is a total distance of d' from the wall. Now, repeat the test of d'.

This recovery step can be repeated until a collision occurs. At this point, an upper bound

on df has been determined, and the robot can proceed to place an upper bound on dr by

traversing to the opposite side of the test harness and repeating this test sequence.

If a collision occurs during the first d' test phase, then return the robot to the starting

orientation and increase d' by Ad' . Move the robot to the new distance of d, from the

test harness wall, and repeat the test. Repetition continues until a timeout instead of a

collision. At this point, an upper bound on the value of df has been determined and the

robot can repeat an analogous procedure for dr on the opposite end of the test harness.

Once upper bounds on df and d, have been determined, the values of b, 1f, and . can

be obtained through equations 3.24, 3.16, and 3.12.

In the proposed wheelbase method, there is not an angle, analogous to d in the other

configuration routines, which the robot can use as a reference for measuring angular veloc-

ity. As a result, the wheelbase configuration routine is more involved than the proposed

wheel radius and chassis length routines. In the first two methods, the unknown being

measured was a time interval; in the wheelbase configuration, the unknown being observed

is a distance. Despite the increased number of steps involved, Chapter 5 demonstrates that

the proposed wheelbase configuration method adequately allows the robot to measure its

width and location of its wheelbase.
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Chapter 4

Experimental Setup and Execution

The system described and tested in this chapter demonstrates that the method presented

in Chapter 3 is a practical approach to solving the self-configuration problem for microbot-

class robots; that the system configures the wheel size, chassis dimensions, and wheelbase

offset parameters of CARMEN each to an acceptable degree. The level of acceptability is

measured by a direct comparison of self-configured results to user-measured values, as well

as through a standardized method of comparing odometric error.

The following sections describe the steps taken to implement the three components of

the configuration system and the tests performed in order to demonstrate the system's

functionality. The chapter begins with an overview of the materials and preparation that

are required. Following the setup is a description of the functionality experiments that must

be conducted on each configuration component. The chapter concludes with the description

of an end-to-end test which demonstrates the results of the configuration system being used

in the execution of a simple robot task.

4.1 Materials

Not many materials are needed to implement the self-configuration method. A microbot, a

computer with a serial port and an installation of CARMEN, an ORCBoard, and enough

material to construct a four sided rectangular test harness are the necessary materials.
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Figure 4-1: The RSS Microbot. Visible components are the sonar sensors, bump sensor,laptop, ORCBoard, crossbar, wheels, and battery.

4.1.1 Assembly of Test Harness

The method described in Chapter 3 makes the assumption that the parameters of the
configuration environment are known and provided to the system before configuration takes
place. Without the presence of the known physical test harness, the automated configuration
process is much more difficult to solve. The physical test harness, as described in Section
3.2, can be constructed from any even surfaces which can be arranged in a way that bounds
a rectangular region on the floor. This system's harness is constructed using available pieces
of wood from the RSS laboratory course. By overlapping wooden pieces that are 1.22 m
long by 0.39 m high, it is possible to assemble a 1.22 m by 1.00 m by 0.39 m test harness.

4.1.2 Self-Configuring Entity: RSS Microbot

The microbot, depicted in Figure 4-1, is a simple robot with a 2-wheel, coaxial, differential
drive and 2 fixed-point wheels. The main chassis is made of a peg board that is approx-
imately 0.38 m square. The body is surrounded by 4 beams of 8020 and it also has a
crossbar that rises 0.15 m over the main body of the microbot. There is enough room on
the main body for an ORCBoard, a laptop, and the types of sensors that are available to
the RSS students. The only limitations on sensors are determined by the weight that the
robot can support, the sensors that the ORCBoard can support, and the ports available on
the laptop. Only quadrature phase encoders and the on-board current-sense functionality
that is provided by the ORCBoard are used in this implementation.
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Figure 4-2: The wheels used are rubber, with a radius of 6.2 cm and a thickness of 2 cm.

Single point rotation is possible due to two fixed-point wheels. This rotational capability

makes locomotion easier because translation and rotation are separated into two distinct

processes. The two wheels are driven by controllable motors and are 0.0625 m in radius,

allowing for dependable movement on level ground.

4.1.3 Controlling the Robot

ORCBoards are used to interface with the actuators and sensors of the microbots. The

ORCBoard provides low-level control over the I/O devices and communicates with a higher-

level entity, such as a robot control package. In this case, CARMEN is used to interface

with the ORCBoard to allow for a higher level of abstraction and more complex controls.

Our Robot Controller Board (ORCBoard)

The ORCBoard is a robot controller that was designed and implemented by Edwin Olson,

an MIT doctoral candidate at MIT, and was intended for use as the robot controller for the

Mobile Autonomous Systems Laboratory (MASLab) at MIT. The board consists of FPGAs

and PALs which provide control over four motor ports, several servo ports, and have the

ability to interface with a variety of sensors (e.g. laser range finders, sonar sensors, bump

sensors, photosensors). This self-configuration system, uses motor drivers, quadrature phase

encoder ports, and the ORCBoard motor current measurement capability.

One of the limiting factors of the ORCBoard is that it sends information to a requesting

entity at approximately 10 Hz. This means that updates are slow, and sample intensive
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Figure 4-3: A revision 4 ORCBoard.

statistics may not produce results fast enough for the robot to issue a reaction.

CARMEN

CARMEN is the control package of choice for RSS, and already has support for the version

4 ORCBoard that is being used. The fact that the configuration system is easily integrated

into the framework of RSS could allow for extensions of the system which are useful to the

course.

This robot navigation toolkit is an open source, cross-robot set of applications which

each run in their own process space. The CARMEN modules can share information across

process space and networks through a message passing protocol, called IPC [14].

Given the test harness, robot, robot control tools, and the CARMEN Java interface, a

system consisting of the methods presented in Chapter 3 can be implemented according to

the description outlined in Section 4.2.

4.2 Preliminary Tasks

Before discovery of wheel radii can take place, there needs to be a mechanism through which

collision detection can take place. This is a logical prerequisite because the technique for

wheel discovery is based on the assumption that a collision will occur and will be detected.

But, the self-configuration problem consists of pinpointing the locations of sensors and

configuring the parameters of a robot control package. Therefore, it is not reasonable to
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require that a particular sensor be attached in a prescribed location or orientation. However,

since it is possible for the robot to be moved in a controlled manner, then there must be

some form of feedback related to the movement that has occurred.

Taking notice of this, it should be possible to create a collision detector by filtering data

from the odometric proprioceptive sensors. Examples of sensors within this category that

are readily available on the microbot are quadrature phase encoders and the ability to sense

the amount of current being drawn by the motors.

4.2.1 Implementation of a Current-based Bump Sensor

Accessing current information through CARMEN is a multi-step process. ORCBoards are

equipped with current-sense capabilities on their motor ports. The values measured by these

sensors are available through the ORCBoard's slave packet request API. But CARMEN

must be modified to support this functionality, because its base level ORCBoard interface

does not provide a mechanism for requesting this information. This modification requires:

modifying the lowest level ORC library to supply access to the most recent information on

current, creating a new message that will provide this information, changing the base-main

application to retrieve the information using the ORC library and package it into the new

message type, and finally adding the message to CARMEN's Java interface.

Once information regarding current is available, the remaining issues are characterizing

the behavior of current samples, and implementing a filter that utilizes this information in

order to detect a collision.

Modification of CARMEN

CARMEN's architecture consists of numerous processes, residing in three layers, which

communicate through a message passing protocol called IPC [14]. The self-configuration

system only needs access to the base layer. The base layer consists of the lowest level

controller, base-main - which can interface with a number of different hardware types, and

the interfaces to those hardware types. The interface to the ORCBoard is a driver library

called orc-lib.

The ORCBoard is implemented by two microcontrollers, a master and slave, which

communicate using an ORCBoard-specific packet communication protocol. Each microcon-

troller is responsible for a number of tasks, one of which is monitoring inputs. It is the
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slave microcontroller which monitors the amount of current that a motor is drawing. The

data for each motor consumes two bytes located at bytes 27 and 31 of the slave device's

status packet. Since orc-lib already requests for a status update from the ORCBoard's

slave device, the modification necessary consists of providing a function for retrieving the

most recent current-measurement sample from orclib.

Next, an IPC message needs to be created so that base.-main has a mechanism for

publishing the new motor information. This can be done by adding a message definition to

base-message.h. After the new message has been defined, base-main can be modified to

publish messages containing the most recent measurement of current.

Characterization of Current

Designing an FSM which can detect collisions based on current measurements requires

characterizing the sensor readings under a variety of situations. The hypothesis is that the

error between a given current sample and the instantaneous mean will be small enough that

an outlier will be well above the signal quality. Characterizing the current samples will give

insight regarding a robust value for thresholding incoming samples.

Measurements will be taken under the following conditions: constant velocity, accelera-

tion from a full stop, acceleration and deceleration while movie, and collision with the test

harness. The velocity values used in each scenario are low, medium and high: 0.00 m/s,

0.03 m/s, 0.06 m/s, 0.09 m/s. These velocities, which range between 0.00 m/s and 0.10

m/s cover the range of velocities considered for use in the self-configuration sequence.

It is useful to create a custom graphing utility which can display and manipulate data

before performing this experiment because the best method for processing the data samples,

in order to detect a collision, is unknown. The functionality needed is merely the ability

to plot data, display the mean and standard deviation of the data, and perform different

signal processing algorithms over the sample set.

Collision Detection

The results of current-sense characterization will provide a threshold value, as well as the

necessary data processing method for implementing the current-based bump sensor (CBS).

Assuming that the hypothesis stated in 4.2.1 is correct, the following FSM will implement a

collision detector that is based on the given sample data. The idea is that a sample received
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Figure 4-4: Depicted here is a state transition diagram for the current-based bump sensor.

at time t from the current sensor will be within two standard deviations of the mean that

has been observed up to that point, pt_1. A collision can be viewed as an acceleration,

therefore it is assumed that, under the given collision criteria, a commanded acceleration

will generate a false positive.

Based on these observations, an FSM similar to the one depicted in Figure 4-4 will be

able to detect collisions with a reasonable amount of precision. Every time a current sample

is received, the CBS updates the values for mean and variance of the sample data, denoted

by y and a2 respectively, and updates its state appropriately. If a given current sample

is greater than a predetermined threshold value then the FSM will report a collision and

publish a message through CARMEN's IPC which reflects this observation.

The states of the FSM are as follows. On RESET, the FSM clears its state by setting

y and a2 to zero so that a new history may be collected. The machine then moves to

WAIT-VELOCITY-CHANGING, where it waits until a peak is detected. The assumption is that

this peak signifies an acceleration and not a collision. Once a peak is detected, the FSM

transitions to VELOCITYCHANGING, where it waits until the signal settles. This is taken to

mean that the acceleration is complete. When the collision detector sees that the current

data has returned to a steady state, it assumes that the next peak that is detected represents

a collision. The transition from VELOCITYCHANGING to CHECK-FORCOLLISION denotes that

the FSM is ready to detect a collision. The only difference between CHECK-FORCOLLISION

and WAITVELOCITY-CHANGING is that the former publishes a message which reports a col-

lision.

Verification that the CBS functions properly will result from the following test. The

robot will back up. Upon detection of a collision, it will stop. Then the robot will translate

forward until it collides with the barrier in front of it, where it will stop again.
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4.3 Implementation of Configuration Components

The set of procedures for parameter configuration are implemented as Finite State Ma-

chines (FSMs). The FSMs can be implemented in any order, but make the most sense

when implemented in the order presented. The recommended order of implementation is

wheel radius configuration, followed by chassis length, and ending with the simultaneous

calculation of the wheelbase width and location. This ordering allows each test to utilize

the results from previously executed configuration sequences.

4.3.1 Radius Configuration

Configuration of the wheel radius must be performed correctly because the subsequent

experiments rely on this value - the chassis length computation depends on being able to

travel at a specified translational velocity, and the wheelbase procedure involves moving a

specified distance away from the test harness boundary.

The wheel radius configuration routine is implemented as a five state FSM, as shown in

Figure 4-5. The system starts in RESET, where all of the parameters are set to their initial

values. When the system has been started, state transitions are triggered by CARMEN

messages. From the RESET state, the configuration routine makes a guess of the wheel

radius, r',, and sets the wheel diameter parameter of CARMEN to be the appropriate value

(2r' ). Once this radius guess has been made, the robot is commanded to translate across

the known distance, d, at the commanded velocity v', until a collision occurs. This exper-

iment phase occurs during the DETERMINE-WHEEL-RADIUS state. After a collision is

observed, the system updates the r', parameter with the newly calculated radius value, and

sets the appropriate CARMEN parameter to this value. A sketch of the robot performing

the DETERMINE-WHEEL-RADIUS state is shown in Figure 4-6. More detail regarding

the radius configuration routine can be found in Section 3.3.1.

Theoretically, the parameters used for d, the initial r' , and v' do not matter. Experi-

ments which test this theory and show the limitations of the system are described in Section

4.4.1, and the results are presented in Chapter 5.
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Figure 4-5: The wheel radius configuration experiment is implemented as a five state FSM. A

guess of the radius length is made during the MAKE-WHEEL-RADIUS-GUESS state, and

movement from the pre-specified location takes place during the DETERMINE-WHEEL-

RADIUS state. The actual radius value is calculated by the amount of time that elapses

between starting translation, from this point, and colliding with the harness wall. When the

collision occurs, the FSM enters the SET-WHEEL-RADIUS state and calculates the wheel

radius. Following this, the state machine enters the DONE state. At any time, the system

can be sent to the RESET state, and transitions occur whenever a CARMEN message is

received.

tt

(a) (b) (c)

Figure 4-6: The wheel radius configuration routine is the first sequence that is executed by

the self-configuration system. This configuration step yields a measurement of the wheel

radius, which in turn allows the robot to translate at specified velocities. The robot, as it

begins the DETERMINE-WHEEL-RADIUS step of the FSM, is shown in (a). The robot,

as it waits for a collision is shown in (b). Finally, the robot collides with the test harness

and can calculate the wheel radius. This last step is shown in (c).
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4.3.2 Chassis Length Configuration

The chassis length configuration routine consists of one crucial step: translate across a

known distance until a collision occurs. The other four states merely provide a nice package

so that higher-level entities can easily interface with this FSM. These five states are shown

in Figure 4-7.

collision

RESETDETERMINE SET DNRESET CHASSIS LENGTH CHASSIS LENGTH DN

fcomsion

Figure 4-7: The chassis length is determined by traversing the test harness at a known
velocity, and measuring the amount of time it takes to get from one side to the other.
This is implemented by a four state FSM which starts in RESET. The state machine then
proceeds to the DETERMINE-CHASSIS-LENGTH state, where it measures the amount
of time necessary to cross the test harness at the commanded velocity v. On collision, the
FSM enters the SET-CHASSIS-LENGTH state, where the chassis length is calculated. The
procedure is then complete, and the state machine translates to the DONE state.

This configuration routine can be repeated as many times as necessary, but the low-level

FSM will only execute one trial. If a repetition is desired, simply change the direction of

the commanded velocity, v, reset the FSM, and let it execute until a collision occurs on the

opposite wall.

The FSM starts in RESET and transitions whenever a new CARMEN message is re-

ceived. Message subscriptions include CBS messages and odometry messages. When the

configuration routine enters the DETERMINE-CHASSIS-LENGTH state, the robot is com-

manded to translate at velocity v until a collision occurs. On observing a collision, the FSM

stops the robot and calculates the length of the robot chassis. The chassis length calculation

occurs during the SET-CHASSIS-LENGTH state. At this point, the procedure is done and

the FSM waits in the DONE state, doing nothing, unless it is reset. An illustration of the

robot carrying out these actions can be found in Figure 4-8.
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Figure 4-8: The chassis length configuration routine takes place after the wheel radius has

been configured. Starting from the position where the wheel radius configuration ended,

as shown in (a), the robot begins to move across the test harness. The robot continues to

translate until it collides with the test harness. The translation and collision are depicted

in (b) and (c), respectively. Once the collision has been detected, the robot can assess the

length of its chassis, and is in position to either exit, or repeat the configuration sequence.

This end state is shown in (d).

4.3.3 Wheelbase Configuration

Determining the wheelbase characteristics depends on knowing the length of the chassis,

as well as being able to translate a specified distance. These values can be obtained by

running the chassis length and wheel radius configuration sequences, which are discussed in

sections 4.3.1 and 4.3.2 respectively.

The wheelbase width is a calculation that is based on the values of df and dr, as defined

in Chapter 3. A twenty three state FSM carries out this task. A high-level diagram

depicting the five primary states of the FSM is depicted in Figure 4-9. The details of the

two macro-states, DETERMINE-dr and DETERMINE-dj, are described in further detail

after the high-level description of the implementation. A descriptive diagram of these two

states is provided in Figure 4-10, with a sequence of illustrations corresponding to the

DETERMINE-dr state can be found in Figure 4-11.

The wheelbase configuration routine can begin by discovering either df or dr, and obtain

the same result. The following description assumes that dr is configured first.

When the system is started, it is in the RESET state. An assumption is made that the

rear of the robot is currently against one of the harness walls. From the RESET state, the

configuration routine enters a set of states which determine the length of dr. These states

are represented by the DETERMINE-dr state in Figure 4-9, and are drawn explicitly in
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Figure 4-9: This is a simplified state transition diagram for the wheelbase configuration

FSM. The two states, DETERMINE-dr and DETERMINE-df, are macro states which
consist of eight minor states. The FSM starts in RESET and then proceeds to approximate

dr by incrementally moving away from the wall. The configuration routine remains in the

DETERMINE-dr state until dr has been determined. The FSM then traverses the harness

and repeats the process for df. Once df has been determined, the configuration sequence

is complete, and the FSM transitions to the DONE state.

Figure 4-10.

The ten states within DETERMINE-d, are shown in Figure 4-10, as well as illustrated

in Figure 4-11. An initial guess of d, is made before entering this macro state. The sequence

is straight forward, but requires multiple states to implement. The idea is to increasingly

move farther away from the wall of the harness on each iteration. During each iteration,

rotate to see if a collision occurs. If so, then d'. is too small, and the sequence is repeated

with a larger d'. Repetition continues until a time out occurs. The timeout denotes when

the robot is far enough away from the wall of the test harness to complete a ninety degree

rotation.

The first state after reset is the MOVE-FORWARD-INCREMENTALLY state. This and

MOVE-FORWARD-INCREMENTALLY-2 implement the parts of the algorithm where the

robot moves away from the wall by a distance of d'r. MOVE-FORWARD-INCREMENTALLY

is depicted in figures 4-11a and 4-11b.

Once the FSM has moved the robot d' away from the wall, it enters the ROTATE-

TO-COLLIDE state. Here the robot is commanded to rotate until it either experiences a

collision, or times out. The ROTATE-TO-COLLIDE state is depicted in Figure 4-11c.

If the state machine times out during this first rotation, then a recovery strategy is

employed. The rotation is undone by rotating in the opposite direction for the same amount

of time as the ROTATE-TO-COLLIDE state lasted, and the value of d' is decremented

instead of incremented.
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Figure 4-10: This is the state transition diagram that is encompassed by the macro state,
DETERMINE-dr. The FSM implements a procedure which experimentally determines a

value for dr by incrementally moving away from the wall and testing whether or not the

robot can rotate without collision.

The recovery rotation is performed during the UNDO-ROTATION state. Next, rather

than just moving backward by the amount that d was decremented by, the implementation

causes the robot to move all the way back to the harness wall. This translation is performed

during the BACKWARD-TO-RESET state and is an attempt to decrease the amount of

translation error that has been incurred. Once the robot has been returned to its starting

position, the FSM reenters the MOVE-FORWARD-INCREMENTALLY state and repeats

the test sequence. The first test of d' and the recovery strategy are represented by the

leftmost loop of states in Figure 4-10.

If, however, the ROTATE-TO-COLLIDE state does not time out and a collision is

detected, as is the case in Figure 4-11d, then the configuration sequence proceeds to the next

iteration of the algorithm. The wheelbase configuration algorithm continues by reversing

the rotation that it just executed.

In order to minimize any errors due to asymmetry in the motors, the process of returning

the robot to its original orientation requires two states. During the first state, UNDO-

UNTIL-COLLISION, the FSM rotates the robot in the opposite direction until another

collision is experienced. The assumption is that this collision is the other rear corner of

the robot chassis colliding with the harness wall. Figures 4-11e and 4-11f illustrate this
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Figure 4-11: This figure illustrates the robot's actions as the DETERMINE-dr state of

the FSM is executed. Figures (a)-(d) show the robot moving forward a distance equal to

the rear wheelbase offset guess, d'. The robot then proceeds to rotate until a collision is

detected. Figures (e)-(j) illustrate the steps taken to return the robot to its initial position.

Once the robot has reset itself, it can check to see whether the incremented value, d, + dic,

is an adequate guess for dr. Figures (k)-(p) depict this second trial. The result is a timeout

and the robot resets itself to travel across the test harness to determine df.

(e)
(g)

(i)

dr'

(h)

(j)

Figure 4-11: Sketch of the Execution of DETERMINE-dr (continued)
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Figure 4-11: Sketch of the Execution of DETERMINE-dr (continued)

operation.

Next, the robot rotates in the same direction as during the ROTATE-TO-COLLIDE

state. This second rotation is shown in Figure 4-11g. The FSM remains in this state

until the average of the reset time required for each the ROTATE-TO-COLLIDE and the

UNDO-UNTIL-COLLISION states to execute, has transpired. This time interval is the

average between half of the duration of the UNDO-UNTIL-COLLISION state and all of the

duration of the ROTATE-TO-COLLIDE state. By using the average time, it is more likely

that the robot will reset itself to the orientation it had before any rotation began, as is the
case in Figure 4-11h. This second step for resetting the robot's orientation, which utilizes

the average time to collision, occurs during the UNDO-ROTATION-2 state.

After the robot has returned to its starting orientation, it is commanded to back up
until it collides with the test harness wall. This action occurs during the BACKWARD-

TO-RESET-2 state, and is intended to reduce the amount of translation error that has
been incurred. The illustrations corresponding to this action can be found in Figures 4-11i
and 4-11j. When this state is completed, the value of d', is incremented and the procedure

transitions to the MOVE-FORWARD-INCREMENTALLY-2 state.

At this point in the procedure, the incremental testing sequence is repeated. Now, the
goal is to find the next occasion for the state to time out. The illustrative figure shows this
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second sequence in figures 4-11k-4-11n.

If a collision is observed, the process for updating d' repeats by entering the UNDO-

UNTIL-COLLISION state. On the other hand, if a collision is not observed before the

timeout, then it is assumed that the robot was able to rotate past the point where its chassis

would collide with the test harness boundary. This timeout is the situation illustrated by

Figure 4-11n.

Following this second case, the configuration routine enters the ROTATE-TO-TRAVEL

state, where it undoes the rotation that was performed in ROTATE-TO-COLLIDE-2. This

resetting rotation is shown in Figure 4-11o. When the robot has returned to its original

orientation, then the macro state is complete and the FSM can proceed to travel across the

test harness. Figure 4-11p depicts the robot as it begins to travel across the test harness.

Referring back to Figure 4-9, traveling across the test harness to measure df is im-

plemented by the TRAVEL-TO-OTHER-SIDE state. Once the robot collides with the

opposing wall, the wheelbase configuration process enters the DETERMINE-df state. This

state only differs from DETERMINE-d, in that all of the translation and rotation directions

are reversed.

Once the configuration routine has completed the DETERMINE-df macro state, the

FSM has determined the values of d. and df, and it enters the DONE state, signalling that

the configuration sequence is complete.

4.4 Configuration Experiments

Once the different configuration components have been implemented, it is possible to per-

form tests which demonstrate the limits of the system. In the case of each parameter,

the following tests show the operating region of the different configuration routines. While

these results are specific to the microbot used in testing, the results can be used as a

guideline for choosing appropriate initial values for future or similar configuration system

implementations.

4.4.1 Wheel Radius Configuration

The experiments presented in this subsection involve varying the initial radius guess, the

commanded translational velocity, and the distance that is being traveled and observing the
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resulting value of the wheel radius configuration routine. The graphs resulting from these

experiments will show the range of initial values for which the configuration routine gives

optimal results.

Varying the Initial Radius Guess

One of the parameters which can potentially affect the outcome of this configuration routine

is the initial radius guess, r' . The outcome of this experiment will demonstrate that the

initial guess of the radius does not matter. The only anticipated situations where the radius

parameter could affect the outcome is where the chosen value pushes the physical limits of

the underlying robot hardware.

In this experiment, the robot is started at a distance d from the boundary of the test

harness with a variety of initial wheel radius guesses. The value of the commanded velocity,

v', is set to 0.03 m/s and the travel distance d is 0.61 m for the duration of the experiment.

The value of the initial r' is varied from 0.02 m to 0.25 m at 0.01 m intervals. The actual

wheel radius, 0.0625 m, does not fall into this set of values, so it is analyzed in addition to

the other values. Each radius experiment is performed three times to create a local average

value. Between each trial, the robot is manually returned to the starting location and setup

for the next experiment.

Varying the Starting Location

In order to show the importance of the initial robot placement, trials using a manual restart

are performed using a variety of values for d. The results of this experiment should show

that the computed value is larger if the robot is started closer to the wall, than if it is

started farther away from the wall.

The value of v' is set to 0.03 m/s and the initial value of r' is one eighth of the test

harness length: 0.1525 m. The values of d will range from 0.05 m to 0.80 m at 0.05 m

intervals, and three trials will be run at each value of d.

Varying the Commanded Translational Velocity

The initial parameter representing the commanded velocity, v', does not matter except

for physical limitations. These limitations will be shown to be negligible. In order to

demonstrate that the chosen v' can be arbitrary, trials are executed at different velocities
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while holding all other variables constant. Specifically, these other variables are the values

r', and d.

For this experiment, the initial r' is 0.1525 m, and d is 0.61 m. Three trials will be

performed at each velocity setting, and the values of v' will range from 0.01 m/s to 0.1 m/s

at intervals of 0.01 m/s.

4.4.2 Chassis Length Configuration

The parameters used for chassis length configuration are wheel radius and translational

velocity. Values which can be used for each of these two parameters can be determined by

performing the following experiments. Results will show that given that the wheel radius

configuration routine works, the chassis length configuration will yield values close to the

user-measured value when carried out in the specified velocity range. Furthermore, the

configuration yields better chassis length results through repetition.

Dependence on Wheel Radius

The success of the chassis length configuration routine depends on the accuracy of the

configured wheel radius. In order to demonstrate this relationship, the chassis length con-

figuration process can be performed using different wheel estimates. The results will most

likely show a linear dependence of the configured chassis length on the configured wheel

radius.

This experiment is conducted by placing the robot in the starting position for chassis

length configuration. Next, trials are conducted with different values for r". The values

range from 0.055 m to 0.075 m at 0.0025 m intervals. The commanded velocity, v, is 0.03

m/s throughout the experiment. Each trial lasts for four traversals of the test harness.

Independence of Velocity

The result of the chassis length configuration is independent of the chosen translational

velocity, v. This has practical limitations, such as robot movement may become jerky if v

is too small or may become dangerous if v is too large; but it should be possible to show

that the velocity has a minimal effect on the resulting chassis calculation.

This experiment begins by placing the robot in the starting position for chassis length

configuration. The velocity, v, will range from 0.01 m/s to 0.10 m/s at 0.01 m/s intervals.
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Three trials are run at each value of v, and the wheel radius parameter is set to the user-

measured value: 0.0625 m.

Repetition for Convergence

Since the chassis length configuration routine is repeatable, it can be shown to converge on a

chassis length after several iterations. In order to demonstrate this, two sets of experiments

will be performed. One set will use the user-measured wheel radius, and the other set will

use a self-configured wheel radius. Each set of experiments consists of running three sets of

the chassis length configuration routine, consisting of 21 repetitions each.

4.4.3 Wheelbase Configuration

The wheelbase configuration routine is dependent on the results of both the wheel radius

and chassis length configurations. The results of the experiments under their respective

sections will show that the wheel radius and chassis length will consistently be close to the

user-measured values. Therefore, it is not necessary to vary those values in order to show

the appropriate values to use for the wheelbase configuration routine.

However, the wheelbase configuration still depends on two parameters which depend on

the system implementation. These are the initial wheelbase guess and the commanded rota-

tional velocity. Appropriate implementation values for these parameters will be determined

by running the experiments described below.

Varying the Initial Wheelbase Guess

While the theory of the wheelbase configuration routine works under all conditions, the

practical realization may not. Parameters that are either too large or too small with respect

to the actual wheelbase may cause inaccurate measurements.

One of the parameters which may affect the resulting wheelbase configuration is the

initial guess for the wheelbase width, b'. If b' is too large with respect to the actual wheelbase

width, b, then it is possible that the resulting rotation will be at a velocity that is much

greater than intended. A similar issue exists for when b' is too small - rotation becomes

spasmodic. Under these assumptions, the result of varying the initial b' will be poor results

for large values and small values, but reasonable results within a midrange of values.
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In order to test this property, the experiment is setup with the user-measured wheel

radius and chassis length, leaving the initial value of b' free to vary from 0.50 m to 0.02 m

at intervals of 0.02 m. Each experiment will consist of three trials in order to build up a

local average at each point.

Varying the Commanded Rotational Velocity

Using different commanded velocities should be equivalent to changing the initial wheel-

base guess. An experiment which can test the effect of different rotational velocities on

the resulting self-configured wheelbase measurement can be performed by using different

velocities over a set of initial wheelbase guesses.

The effects of the commanded rotational velocity on the resulting wheelbase measure-

ment are demonstrated as follows. Wheelbase measurements that result from the wheelbase

configuration method will be recorded. The configuration routine will be executed using an

initial b' that ranges from 0.195 m to 0.780 m at intervals of 0.0975 m, and a commanded

rotational velocity that ranges from 0.01 m/s to 0.09 m/s at intervals of 0.02 m/s.

4.4.4 End-to-End Test

In order to evaluate the utility of the self-configuration method, it is necessary to use a

satisfactory method for comparing results. Since the sensors that are being configured are

odometric in nature, it follows that the UMBmark, described in Section 2.3, is a suitable

method for comparing the performance of the self-configured parameters with to the per-

formance of the user-measured parameters.

The UMBmark measures the maximum amount of systematic error incurred under typ-

ical robot movement using a given set of configuration parameters. Systematic error is

measured by the UMBmark by commanding the robot to translate in a 4 meter by 4 meter

square in both the clockwise and counterclockwise directions. During the test, the robot

keeps track of its position internally. When the robot has completed a given circuit, the

distance between the starting point and the final location is measured. Once all trials have

been completed, the error between the final internal and actual locations is calculated for

both the clockwise and counterclockwise sets of data. Two centers of gravity are then cal-

culated using the two data sets. The center of gravity that is geometrically farthest from

the origin is used as the maximum systematic error for the robot.
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In the UMBmark paper [3], the goal is to determine corrections that can be made to

the parameters which a given robot system is currently using. These corrections are easier

to make if the points are clustered closely together than if the points are scattered.

Overview of Software Implementation

The UMBmark can be implemented as a six state finite state machine that uses counters

to keep track of the number of rotations and translations that have occurred. A state

transition diagram for such an FSM is shown in Figure 4-12.

If square has
been traversed

RESET TRANSLATE RSTTO DONE

T1NSLON ROTATE

Figure 4-12: The UMBmark can be implemented as a six state FSM as shown here. Counters

are used to keep track of the number of translations and rotations that have occurred. When
the test is complete, the FSM exits.

The RESET state initializes the benchmark FSM by storing the starting location. Once

this has occurred, the test can continue by entering the TRANSLATE state. During each

step of the TRANSLATE state, the change in x and y of the CARMEN messages is calcu-

lated and added to a vector representing the total distance traveled. Once the magnitude

of the travel vector reaches 4 meters, as required by the UMBmark, the FSM increments

the number of translations that have been performed, and then transitions to the STOP-

TRANSLATION state. If the total distance traveled is not 4 meters, the FSM remains in

the TRANSLATE state.

The FSM remains in the STOP-TRANSLATION state until the robot comes to a stop.

At this point, the FSM enters the ROTATE state. In this state, the robot is commanded to

rotate in the specified direction until the summation of the change in theta between CAR-

MEN messages sums to 2 radians. At this point, the FSM enters the STOP-ROTATION2
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(a) (b)

Figure 4-13: The UMBmark FSM, depicted in Figure 4-12, has an intended and actual

effect. The ideal case is shown in (a). In this instance, all of the lengths are four meters,

and the turns are ninety degrees. In the real world case, shown in (b), the translated

distances are not straight lines that are four meters in length, and the angles are not of the

prescribed magnitude.

state, where rotation stops. If enough translations and rotations have been executed to

complete the 4 meter circuit, then the FSM enters the DONE state, signaling that the

UMBmark is complete and that the operator may now measure the distance from the start-

ing location to the final position of the robot. If the test is not yet complete, then the

FSM returns to the TRANSLATE state to complete another leg of the square. Figure 4-13

shows the result of running the UMBmark in an ideal world (Figure 4-13a) and a realistic

world (Figure 4-13b). Essentially, having the robot stop where it started is preferred, but

in general, this is not the case.

Executing the UMBmnark

One trial of the UMBmark consists of having the robot complete one circuit around the 4

meter square. Completing the UMBmark requires performing a total of ten trials consisting

of five clockwise and counterclockwise trials.

In order to ensure accurate measurements, It is important to minimize the amount of

human error that occurs during each trial. These errors include the ability to place the
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robot in the same starting location on each trial, as well as accurately measuring the x,

y distance between the starting and final locations of the robot. In order to make the

measurements as accurate as possible, two perpendicular walls as well as tile lines are used

as reference points.

The point of reference on the robot frame is the center of the wheelbase. In order to

be consistent between measurements, a systematic method is used to mark this reference

point on the ground. The method consists of marking the ground next to the robot's wheels

with tape, moving the robot out of the way, and then marking the halfway point between

the two tape-markers. The halfway point is then also marked with two pieces of tape: one

piece is along the wheel axis, and the other piece is perpendicular. Figure 4-14 illustrates

the taping scheme used for marking the location of a wheel's axle. The method for marking

the point of rotation is shown in Figure 4-15.

Figure 4-14: The location of the axle of the microbot is marked on the ground as shown in

this image. Two strips of tape are used next to each wheel. One piece is inline with the

wheel axis and the second piece is placed perpendicular to this orientation, forming a 'T'.

The four pieces of tape that comprise the two wheelbase markers serve a second purpose.

By using this taping strategy to mark the starting location of the UMBmark trials, it

becomes easier to consistently align the robot on each trial. The robot must be placed so

that the wheels are along the tape that is parallel to them, and so that the axles are aligned

with the tape that is perpendicular to the direction of translation.

Before the start of each trial, the bolts of the robot are tightened in order to ensure that

results remain consistent between trials.

67



Figure 4-15: The point of rotation is marked using the first two markers. This is accom-

plished by placing a measuring stick between the two wheelbase markers, and marking the

halfway point with a piece of tape that is perpendicular to the wheelbase. A second piece

of tape is then placed along the direction of the wheelbase. It is from this midpoint marker

that error measurements are made.

After the starting location has been marked with tape, two lines of tape, one leading

in the direction that the robot is to travel and the other in the direction that the robot is

to return from, are laid out to serve as a reference point for measurements. This taping

scheme can be seen in Figure 4-16. The idea is that once the UMBmark trial has completed

and the location of the robot has been marked, the distance from the starting location can

be measured in terms of x and y.

Once these initial preparations have been made, the UMBmark software can be run.

When the benchmark has completed, the internal measurement, as reported by the program,

is recorded and tape is laid out to mark the final location of the robot. This tape is placed

in the same manner as the markers that denote the starting location of the robot.

When the reference point of the robot has been marked on the ground, the distance

between this point and the starting location is carefully measured. The distance between

the start and final locations is recorded in terms of x and y. First, the distance from the

final location of the robot to the taped reference line is measured, giving the value of y.

Next, the value of x is determined by measuring the distance from this point of intersection

to the starting location.

Using the notation from the Bornstein paper [3], the return position errors can be

described as
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Figure 4-16: In order to reduce the human error that is incurred on each trial, a taping

strategy is used to mark the starting locations for the UMBmark, as well as to serve as a

reference point in measuring the absolute final position of the robot. When placing the robot

for each trial, the wheels are aligned with the two outermost tape marks. As a secondary

precaution, the front of the robot, when viewed from above, is aligned with a tape as well.

Reference lines of tape are marked out from each starting location so that the final error

measurement is more accurate. The clockwise and counterclockwise sets of starting tape,

as well as the reference tape, can be seen in this figure.

Ex Xabs - Xcalc

Ey= Yabs - Ycalc

where {E, ey} represent the return position error in the x and y direction, respectively;

{abs, Yabs} represents the human measured displacement of the robot from the origin when

a given trial has been completed; and {Xcalc, ycalc} denote the calculated internal position

of the robot, for the same given trial. This concept is also shown in Figure 4-17.

The UMBmark is run a total of ten times. Five of the trials are carried out with the robot

traveling in the clockwise direction, and the other five are performed in the counterclockwise

direction. When all trials have been completed, the center of gravity for each of the two

data sets is calculated. The center of gravity which has the greatest euclidean distance from

the origin is taken to be the maximum odometric error due to systematic errors.

Graphically plotting the results of the user- and self-configured points will allow for a

quick evaluation of the results for each set of configuration parameters. The expectation is
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(caic, cald

(abs, abs )

Figure 4-17: The UMBmark paper defines the error on return to be the difference between

the absolute robot position and the calculated, internal robot position. This concept is

shown in this figure with the calculated value being where the robot thinks it is, and the

absolute value being the real-world, final position of the robot, given by the distance from

the black "x"' to the red "x". The black "x" marks the start position of the benchmark,

and the red "x" marks the end position.

that running the UMBmark with the self-configured parameters will yield results that are

comparable to, if not better than, the results of using the user-measured parameters.
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Chapter 5

Results

This chapter presents the results of the self-configuration system. Beginning with the setup,

the outcome of each experiment is described in detail, focusing primarily on the results and

then an analysis of what the results mean and how they can be utilized.

5.1 Preliminaries

Before being able to implement the self-configuration system, it was necessary to perform the

tasks that were outlined in Section 4.2. These tasks essentially consisted of the construction

of the physical test harness and the implementation of the current-based bump sensor.

5.1.1 Measurement of Microbot Parameters

The alternative to using a self-configuration process is to have the robot's user manually

measure the parameters of the robot. Table 5.1 contains the user-measured values of the

microbot. Measurements were made using a meter stick with millimeter precision.

Table 5.1 contains some values which have been mentioned in other sections as well as

two new ones. As before, r, represents the radius of the microbot's wheels; 1 represents the

chassis length; b represents the wheelbase width; if and 1r represent the distance from the

wheelbase to the front and rear of the robot, respectively; df and dr denote the distance by

which the front and rear radii, of the robot chassis, exceed the values If and 1r. The two

new values are bl and br, which represent the distance by which the left and right wheel,

respectively, jut out from the robot chassis. Since the wheelbase configuration routine does

71



Table 5.1: User-measured Configuration Parameters for Microbot

Parameter Value

rw 0.0615 m

1 0.3815 m

b 0.3795 m

If 0.1168 m

ir 0.2647 m
df 0.1060 m

dr 0.061 m

bi 0.0280 m

br 0.0255 m

Figure 5-1: The physical test harness is easy to assemble from existing class materials.

Dimensions of the harness are 1.22 m by 1.00 m and give enough room for the microbot

to discover its configuration parameters while still providing enough difference between the

length and width to be discernible.

not provide a mechanism for measuring these values, they are taken as given for microbot-

class robots. These two values are used in both the user- and self-configured setups.

5.1.2 Construction of Physical Test Harness

Assembly of the test harness, using the maze pieces from the RSS grand challenge, resulted

in the test harness that is depicted in Figure 5-1. This test harness is quick to construct

and disassemble because the pieces are merely placed next to each other.
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5.1.3 Implementation of Plotting Utility

The plotting utility proved to be an essential tool as it allowed for rapid prototyping of

filters as well as real-time calculation of mean and variance of data signals. It is constructed

using Java's Swing library and useful for live visualization of data points. Interfacing with

the plotting tool is simple. The instantiating module merely provides a vector containing

elements of type double, and the plot is updated and scaled in order to display all data

points.

Two screen shots of the utility, as it displays sonar data, can be seen in Figure 5-2. The

sonar samples are being generated by two co-linear sonars, that are mounted on opposite

sides of the microbot, as the robot is rotating within the test harness. Implemented filters

consist of identity filter, mean filter, and difference filter. The filter over the data can be

changed during use. Additionally, the number of neighbors affected by the mean filter can

be modified from 0 to 10, for a maximum of 21 points included in the computation of each

point. A line representing the mean, as well as plus or minus one or two standard deviations,

can be toggled on and off during use. This feature is helpful for determining an effective

threshold for sample points.

5.1.4 Current-Based Bump Sensor

Once the current-sense functionality of the ORCBoard was completely integrated into CAR-

MEN, it became possible to display the samples using the plotting utility described in

Section 5.1.3. As predicted, both a collision and a commanded acceleration yielded similar

current data. The surprise was that simple thresholding, coupled with the state machine im-

plementation, yielded a robust result. A plot which shows a collision at 0.03 m/s compared

to a commanded acceleration from 0.03 m/s to 0.06 m/s is shown in Figure 5-3. Based on

the results of the characterization experiments, the current-based collision detection FSM

was implemented by reporting when sample points exceeded a threshold of p t 3.5a.

5.2 Self-Configuration

After completing the preliminary steps, the different configuration components of the system

were implemented in the order of wheel radius, chassis length, wheelbase. Once a given

segment had been implemented, the associated parameter experiments from Section 4.4
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Figure 5-2: These two plots consist of readings from left and right sonar sensors, which have

been passed through a mean filter that includes the 2 nearest neighbors, versus time (given

in samples of approximately 10 Hz) taken while the microbot was rotating clockwise in the

test harness at a rotational velocity of 0.05 radians per second. The black line across the

middle represents the mean over all values within the viewing window, and the red lines are

p + o and p - o- respectively, where p represents the mean and - represents the standard

deviation.

were carried out. This enabled each component of the system to be configured optimally

for the subsequent configuration routine.

This section concludes with a summary of results from running the full system configu-

ration, and the outcome of the results from the UMBmark.

5.2.1 Results of Wheel Radius Configuration

The wheel radius configuration component consists of a simple FSM which drives the robot

forward until a collision is detected. The implementation of this component was successful

once some initial issues were resolved. The rest of this section covers the implementation

issues and their resolution, and the outcome of the experiments which were conducted on

this component.

Implementation Issues

During the implementation of the wheel radius configuration component, it was discovered

that CARMEN does not support on-line modification of some configuration parameters.

Furthermore, the wheel size was hardcoded into the low-level hardware integration feature
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Comparison of an Acceleration from 0.03 m/s
to 0.06 m/s with a Collision at 0.03 m/s

Acceleration from
0.03 m/s to 0.06 m/s
Collision at 0.03 m/s

--

40 50 60 70

Time (10Hz)
80 90 100

Figure 5-3: Both graphs were generated with the robot moving at 0.03 m/s. The solid blue
line is a graph of an acceleration to 0.06 m/s and the solid red line marks a collision with a
wall of the test harness. Both events can be seen on their respective graphs as a step. The
acceleration happens around 7.5 seconds, and the collision occurs around 5.8 seconds.
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of the ORCBoard driver.

It turns out that if the hardware integration feature is enabled, which is the default for

RSS-CARMEN, then the wheel size that is specified through the typical parameter setting

channels, either via the initialization file or by param-daemon messages, is ignored. This

issue was resolved by putting the radius and wheelbase scaling values in the appropriate

locations of the base-main module.

Once these changes were made to base-main, updates to the wheel size parameter were

still not taking effect. The cause of this is that, by default, CARMEN's base module only

sets values for parameters such as wheel size during the initialization sequence. In order to

allow for on-line updates of the wheel size to take effect, it is necessary to alter base-main

so that it updates the wheel size and wheelbase parameters whenever messages, indicating

that the value has changed, are received.

These changes to the CARMEN modules make it possible to modify CARMEN system

parameters, such as the wheel radius and wheelbase width, after system initialization has

occurred and the CARMEN-based application is running.

Varying the Initial Radius Guess

The results of varying the initial radius size are shown in Figure 5-4. Each data point is the

average over three trials that were performed using the corresponding initial radius value.

The initial radius values range from 0.02 m to 0.25 m at 0.01 m intervals. Every trial is

performed using a velocity of 0.03 m/s and starting from a distance of 0.61 m away from

the targeted harness boundary.

The user-measured value of the microbot's wheel radius was 0.0615 m. When the initial

radius guess of the configuration system is much smaller than the actual radius, the resulting

radius measurements have more error than when the radius guess is much larger than the

actual radius length. This behavior can be seen in Figure 5-4 by noting that the configured

values which result from initial radius guesses closer to zero meters are farther away from

the user-measured value than the data points that are closer to 0.250 m. Even so, radius

guesses that are much larger than the actual radius length also have larger error than the

middle-range values. This is most likely due to the jerky, and thus imprecise, movement

that results from using large radius values. Overall, the resulting radius values have a linear

shape that starts below the actual wheel radius and slopes upwards to values that are larger
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Resulting Radius
Using Different Initial Radius Values

Resulting Radius Values
-- User-Measured Radius

0.05 0.1 0.15
Initial Radius Guess (meters)

0.2 0.25

Figure 5-4: The graph shows the effect of varying the initial radius guess on the resulting
radius measurement. The resulting radius values have a large amount of error when the
initial wheel radius guess is much smaller than the actual wheel radius. The magnitude of
the error from the user-measured value decreases as the initial radius guess is increased.
The horizontal line at 0.0615 m is the user-measured radius.
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than the actual wheel radius.

The maximum error of a self-configured radius value from the user-measured radius was

0.0032 m, and this occurred when using an initial radius of 0.02 m. The average error,

taken over all data values was less than 0.0006 m. This means that the self-configured value

is safely within 3 mm of the value that would have been measured by a human, and often

within 1 mm. The average accuracy of the self-configured radius value, when compared to

the user-measured value is 0.9908. Judging from these results, it seems that choosing any

initial value that is between 32% and 400% of the actual wheel radius should be sufficient

for a self-configuration system.

Varying the Starting Location

As the distance from the starting location to the collision wall increases from 0.05 m to 0.80

m, so does the accuracy of the resulting radius measurement. This relationship can be seen

in the graph contained in Figure 5-5. The graph shows the value of d, that was used, on

the x-axis and the resulting radius measurement on the y-axis. Each of the data points is

the average of running three trials at the specified value of d with a commanded velocity of

0.03 m/s and an initial wheel radius of 0.1525 m.

The maximum error of a self-configured radius value, during this experiment, was 0.0106

m. This peak error occurred when running the trial that started with d = 0.05 m. The

average error, overall, was 0.0017 m. The average accuracy of the radius values, when

compared to the user-measured radius was 0.9726. Just as in the case of varying the initial

radius guesses, the resulting error is small enough that a human could just as easily make

the same mistake.

Additionally, the importance of the initial placement of the microbot is shown in Figure

5-6. It can be seen that there is a linear dependence on the initial user-placement of the

robot. This is not a surprising result and, furthermore, shows that the configuration system

functions as expected.

Varying the Commanded Translational Velocity

Corresponding to the results of varying the initial radius guess, varying the commanded

translational velocity resulted in a linear graph with more error in the region with higher

velocities. The results of the experiment are plotted in a graph shown in Figure 5-7. The
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Radius Resulting From Different Initial Distances
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Figure 5-5: The reported wheel radius value becomes more accurate as the agreed distance,
d, from the target wall is increased. The maximum error of the self-configured wheel radius
from the user-measured wheel radius is 0.0106 m and occurs when d is 0.05 m. This graph
shows how the resulting wheel radius value changes as d is varied from 0.05 m to 0.80 m,
and compares the data to the user-measured wheel radius of 0.0615 m.
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Resulting Radius Starting From Distances
Different From the Agreed Starting Location
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Figure 5-6: The radius measurement that results from the self-configuration routine is

linearly dependent on the robot's initial placement for the configuration routine. The farther
the robot is placed from from the agreed starting location, the more error is observed in
the resulting wheel radius value.

data points represent the average measurement over three trials performed using the given

commanded velocity. Each trial began at 0.61 m from the test harness wall and used an

initial radius guess of 0.1525 m. The velocities range from 0.02 m/s to 0.10 m/s at intervals

of 0.01 m/s. The translational velocity of 0.01 m/s failed to perform as the number of false

collisions detected by the CBS were too numerous.

When the velocity is very low, the robot moves in a jerky manner, equivalent to having a

very large radius, which can cause false collisions to be detected by the CBS. If the trial was

executed to completion, however, the resulting radius measurement was very close to the

user-measured value. As the commanded velocity was increased, the radius measurement

remained consistent, but caused the wheel radius configuration component to report a radius

that is too small in the trials involving a greater velocity.

The maximum error over all the trials occurred when the translational velocity was 0.10

m/s. This error value was 0.0014 m. The mean error value was less than 0.0005 m. The

corresponding average accuracy of the radius values, when compared to the user-measured

value was 0.9921. In conclusion, any translational velocity, that does not cause the robot
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Resulting Radius
Using Different Commanded Translational Velocities

0.065 -

E

a)
a)
U)

0.06

cc

0)

-- Resulting Radius Valuesa)
C ----. .User-Measured Radius

0.055
0.02 0.04 0.06 0.08 0.1

Commanded Translational Velocity (meters/second)

Figure 5-7: The error of the resulting radius measurement increases as the commanded

translational velocity is increased. The maximum error is 0.0014 m and occurs during the

trial conducted at a velocity of 0.10 m/s. The average error over all of the trials is less
than 1 mm from the user-measured radius value. This graph compares the self-configured
radius values that result from using a commanded translational velocity between 0.02 and
0.10 m/s to the user-measured radius value.
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to exhibit spasmodic behavior, can be used to run the radius configuration step.

5.2.2 Results of Chassis Length Configuration

There were no problems encountered in implementing the chassis configuration component.

The following experiments provided bounds on the operating region of the chassis length

configuration component. First, it is shown how the measured wheel radius affects the

resulting chassis length value. Then, the effects of using different commanded velocities

are shown to have a minimal effect on the resulting chassis length measurement. Finally,

the fact that this component consists of a repeatable experiment is used to converge on a

chassis length over the course of multiple repetitions of the configuration routine.

Dependence on Wheel Radius

The wheel radius is varied from 0.055 m to 0.075 m at 0.0025 m intervals to demonstrate that

the wheel radius that is provided to this component has a linear effect on the resulting chassis

length calculation. The results of the experiment are shown in Figure 5-8. The horizontal

and vertical lines are the user-measured chassis length and wheel radius, respectively. The

line with negative slope is the set of chassis lengths which resulted from the corresponding

wheel radius.

The graph in Figure 5-8 also shows the error that is inherent in the system. When the

wheel radius used is equivalent to the user-measured wheel radius, there is a small, visible

error. This error can be seen as the distance between the two points of intersection on the

vertical line.

Independence of Velocity

The chassis length that is measured by the configuration component is largely independent

of the velocity used for the configuration routine. Figure 5-9 shows the results of the ex-

periment which varies the commanded translational velocity while using the user-measured

wheel radius of 0.0615 m for each trial. The user-measured chassis length is 0.3815 m, and

corresponds to the horizontal line in the figure.

Four trials were performed at each commanded translational velocity in order to create

a local average. The error between the configuration result and the user-measured chassis

length varies, but increases linearly with the magnitude of the velocity. As a result, the

82



Resulting Chassis Length
Using Various Incorrect Wheel Radius Measurements

0.5 -
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Figure 5-8: The resulting chassis length measurement is directly proportional to the previ-

ously configured wheel radius. The plot shows wheel radius values on the x-axis and the

resulting chassis length calculations on the y-axis. As the wheel radius used in this exper-

iment strays from the user-measured value, the resulting chassis length exhibits an inverse

linear relation. This shows the dependence of the chassis length configuration routine on the

value of the wheel radius that is being used, and shows that the configuration component

is working as desired.
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Resulting Chassis Length
Using Different Translational Velocities
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Figure 5-9: The length of the chassis is largely independent of the velocity at which the

experiment is performed. Data points represent the average result of three trials that were

conducted at the specified velocity using the actual wheel radius of 0.0625 m.

maximum error, 0.0547 m, occurs at the maximum tested velocity. The average error over

all of the data samples is 0.0176 m. While in general the error is greater than that exhibited

by the wheel radius configuration experiments, the average accuracy is 0.9540.

Repetition for Convergence

The chassis length configuration routine can be repeated in order to build up an average

measurement value. Figure 5-10 consists of two graphs which each show the results of three

experiments. A given trial consists of twenty one repetitions of the configuration routine.

Neither the user-measured radius nor the self-configured radius measurement yielded

a chassis length calculation that matched the user-measured value. The average error

of the running averages is 0.0130 m for the user-measured values and 0.0117 m for the

self-configured data set. Using the cumulative values, the average accuracy of the user-

measured results is 0.9659, and the average accuracy of the self-configured results is 0.9694.

The accuracy values were calculated using user-measured chassis length of 0.3815 m as the

accepted true value.

From this experiment, it seems that using a self-configured wheel radius gives a chassis
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Resulting Chassis Length
Over 21 Iterations Using a User-Measured Wheel Radius
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Resulting Chassis Length
Over 21 Iterations Using a Self-Configured Wheel Radius
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Figure 5-10: The graph depicts the average at each iteration of the chassis length config-

uration routine over the course of 21 harness-laps. As the number of traversals increases,

the average measured chassis length approaches the user-measured value. The average ac-

curacy, with respect to the user-measured chassis length, using the user-measured wheel

radius is 0.9659, and the average accuracy using the self-configured wheel radius is 0.9694.

Thus the performance under both situations is comparable.
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length that is comparable to the result calculated using a user-measured wheel radius. This

is not a surprising result, given that the self-configured wheel radius was very close to the

user-measured value.

5.2.3 Results of Wheelbase Configuration

Wheelbase configuration gives two, coupled parts by experimentally determining the dis-

tances df and dr. Together, df and dr are used to calculate both the width of the wheelbase

and its location with respect to the front and back of the robot chassis.

The wheelbase configuration routine consistently gives wheelbase values that are larger

than the actual wheelbase. This is most likely due to the resolution of the incremental

steps, given as di, = 0.01 m in Table 5.2, used in the configuration algorithm.

Varying the Initial Wheelbase Guess

The resulting wheelbase measurements for each of the different initial wheelbase values are

shown in Figure 5-11. Each data point of the graph is the result of an average over three

trials.

From the graph, the initial wheelbase guess seems to be independent of the resulting

wheelbase width and body location. The wheelbase width which results from the configu-

ration sequence tends to be larger than the user-measured wheelbase width. The average

accuracy of the wheelbase width with respect to the user-measured value is 0.9255 with the

maximum error being 0.0573 m.

The accuracy for the self-configured value of If is lower than that observed in the wheel-

base value. The mean accuracy for this experiment is 0.8814. The maximum error was

0.0410 m. However, the mean accuracy for the self-configured 1, value is 0.9477, also with

a maximum error of 0.0410 m.

In fact, on closer inspection the error for If from the user-measured value was the

opposite of the error observed on 1r. This result is not surprising because If and 1, need

to add up to the chassis length, and for the case of these experiments, the user-measured

chassis length of 0.3815 m was used. In order for the two pieces to add up to the whole,

any error observed on If must also be observed on Ir, but in the opposite direction.
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The Effect of Varying
the Initial Wheelbase Guess
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Figure 5-11: The effect of the initial wheelbase guess is similar to that of the initial wheel

radius guess in Section 5.2.1.

The Effect of Varying the Initial Wheelbase
on the Resulting If

____ Mean If Value Calculated from q and dr
User-measured If Value

N~' n

0.15 0.2 0.25 0.3 0.35
Initial Wheelbase (meters)

0.4 0.45

Figure 5-12: Varying the initial wheelbase guess does not have an observable effect on the
resulting value of If. The raw data set has a mean value of 0.1274 m with a standard
deviation of 0.0147. The mean accuracy, with respect to the user-measured value of 0.1168
m is 0.8814.
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The Effect of Varying the Initial Wheelbase
on the Resulting Ir
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Figure 5-13: Varying the initial wheelbase guess does not have an observable effect on the

resulting value of 1r. The raw data set has a mean value of 0.2541 m with a standard

deviation of 0.0147. The mean accuracy, with respect to the user-measured value of 0.2647

m is 0.9477.

Varying the Commanded Rotational Velocity

The commanded rotational velocity that was used for the wheelbase configuration routine

was varied from 0.02 rad/s to 0.10 rad/s at 0.02 rad/s intervals, and each set of experiments

was repeated for different initial wheelbase guesses that ranged from 0.2925 m to 0.7800 m

at 0.0975 m intervals, giving a total of five wheelbase values. When looking at the resulting

values for a given rotational velocity, across all wheelbase values, the maximum standard

deviation is 0.0148 m. Given that each data set contains values that are within 0.015 m

of each other, the average across the results of a given rotational velocity can be used to

produce a single point. Figures 5-14, 5-15, and 5-16 contain plots of the data resulting from

this experiment.

The resulting values of the three parameters, b, if, and 1, are close to the corresponding

user-measured values. The accuracy for the parameters, with respect to their user-measured

counterparts are 0.9575, 0.8430, and 0.9307 respectively, with a standard deviation of less

than 0.0040 m between samples. The substantially lower accuracy of the location values, if

and 1r, is due to the resolution of the step used during the wheelbase configuration routine

- given by di,,. The values that result from the configuration sequence are independent
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The Effect of Varying
the Commanded Rotational Velocity
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Figure 5-14: Changing the rotational velocity had no effect on the resulting wheelbase

value. Each data point is calculated by averaging the wheelbase width that results from

using several different initial wheelbase widths at the given commanded rotational velocity.

of the commanded rotational velocity which is used, as is apparent from the figures which

contain plots of the data.

5.2.4 A Fully Self-Configured system

Although some of the results of the previous sections use self-configured parameters as

their starting point, the entire configuration sequence was never explicitly carried out to

completion. This subsection describes the results of running the self-configuration sequence

all the way through.

The self-configuration sequence was executed using the values shown in Table 5.2. The

first two variables in the table are the harness length and width, given by 1harness and

Wharness. The value, r' is the initial radius guess, and is j1harness. The initial guess for the

chassis length, i', is half of the harness length. The guess for wheelbase width, b', is half the

harness width. The commanded translational and rotational velocities are given by v' and

r' respectively. Finally, the incremental distance that the wheelbase configuration routine

uses is given by di,,.

In running the complete self-configuration sequence, three iterations of the chassis length
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The Effect of Varying
the Commanded Rotational Velocity on the Resulting
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Figure 5-15: The lf value that results from varying the commanded rotational velocity
tends to be greater than the user-measured 1f value. The mean accuracy for the data used
to calculate these points is 0.8430, with the standard deviation of the data set being 0.0036
m.
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The Effect of Varying
the Commanded Rotational Velocity on the Resulting Ir
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Figure 5-16:
sistently less
for if in that

Varying the commanded rotational velocity results in 1, values that are con-
than the user-measured Ir. The mean accuracy is higher than that achieved
it is 0.9307, but the standard deviation over the data set remains 0.0036 m.
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Table 5.2: Initial Values of Self-Configuration System

Parameter Value
1harness 1.2200 m

Wharness 1.0000 m

r'/ 0.1525 m
1' 0.6100 m
b' 0.5000 m

v' 0.03 m/s
r' 0.06 rad/s

dine 0.01 m

Table 5.3: Summary

in meters)

of Self-Configuration Results (All values, excluding accuracy, are given

Trial rw 1 b df dr if Ir
1 0.0612 0.3845 0.4012 0.0994 0.0747 0.1528 0.2320
2 0.0615 0.3826 0.4002 0.0994 0.0747 0.1518 0.2307
3 0.0612 0.3820 0.3999 0.0994 0.0747 0.1516 0.2304
4 0.0610 0.3789 0.3986 0.0994 0.0747 0.1502 0.2286
5 0.0615 0.3829 0.4044 0.0994 0.0747 0.1520 0.2309

mean accuracy 0.9964 0.9955 0.9437 0.9377 0.7754 0.7014 0.8709

configuration step are used to determine the chassis length. Each trial consists of running

the entire self-configuration routine is executed to completion without human intervention.

Results of the configuration sequence are given in Table 5.3. The average accuracy of each

parameter, with respect to the user-measured values is given in the last row of the table.

The accuracy of the wheel radius, chassis length, and wheelbase width configuration

sequences with respect to the user-measured values is high. The accuracy of the wheelbase

location is notably lower. The lesser degree of accuracy in wheelbase location is most likely

due to the chosen resolution of dine.

The degree to which the inaccuracy of the self-configured wheelbase location affects

performance is explored by the UMBmark. The results of the UMBmark are presented in

Section 5.2.5.

5.2.5 Results of End-to-End Test

Running the UMBmark as the end-to-end test yielded the results which are summarized in

tables 5.4 and 5.5. Following the analysis techniques outlined in the UMBmark paper [3],

resulted in an Emax,sys = 1.0519 m for the user-measured parameters and Emax,sys = 0.9031
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Table 5.4: Final UMBmark Positions Using User-Measured Parameters

Table 5.5:

Trial Internal Position Absolute Position
cw x y x y

1 0.355 0.286 -0.018 0.046
2 0.210 0.218 -0.175 -0.163
3 0.389 0.371 -0.096 0.175
4 0.344 0.349 0.049 -0.161
5 0.284 0.222 0.003 -0.005

ccw - - -

1 0.141 -0.177 1.307 -0.357
2 0.174 -0.134 1.106 -0.739
3 0.139 -0.151 1.111 -0.740
4 0.209 -0.210 1.010 -0.695
5 0.146 -0.227 0.976 -0.727

Final UMBmark Positions Using Self-Configured
Trial Internal Position Absolute Position

cw x y x y
1 1.039 0.678 0.917 0.702
2 0.922 0.614 0.833 0.632
3 1.056 0.774 0.926 0.766
4 1.134 0.765 0.982 0.733
5 1.034 0.702 0.978 0.731

ccw - - - -

1 0.834 -0.621 1.669 -0.891
2 0.862 -0.569 1.735 -0.838
3 0.833 -0.637 1.691 -0.906
4 0.668 -0.529 1.478 -0.846
5 0.922 -0.712 1.838 -0.990

Parameters

m for the self-configured parameters.

The UMBmark paper [3} summarizes the results in terms of error on return. Error on

return is defined to be the difference between the measured, real world position, and the

internal position which is calculated by the controller under test.

The resulting error on return values for the user-measured parameters, calculated from

the values listed in Table 5.4, are plotted in Figure 5-17a. Similarly, the error on return

for the the self-configured parameters are shown in Figure 5-17b and are calculated from

the values in Table 5.5. The clockwise and counterclockwise data points, in the figures, are

different colors and their centers of gravity are depicted as '+' and 'x' respectively.
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Return Position Errors for User-Measured UMBmark
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* Counterclockwise Error on Return
+ Average Clockwise Error
X Average Counterclockwise Error

0-

-0.1-

-0.2*

-0.3-

-0.4-

-0.5 -

-0.6-

-0.5

0
S

0*

0 0.5
Meters in the X Direction

1

(a) UMBmark results using user-configured parameters
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(b) UMBmark results using self-configured parameters

Figure 5-17: These graphs show the results of running the UMBmark using the user-
configured and self-configured parameters. Each graph shows the return position errors
from both the clockwise and counterclockwise trials of the benchmark. The average result
of each test group is also shown. The maximum systematic error for the user-configured
system is Emax,sys = 1.0519 m and the equivalent calculation for the self-configured system
is Emax,sys = 0.9031 m
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Analysis of UMBmark Performance

The UMBmark gives a good metric for the maximum amount of systematic error that is

inherent in an odometric system. It does this by focusing on the performance of a system

executing a task which allows for the measurement of the error on return in both the

clockwise and counterclockwise directions.

The user-measured parameters performed very well in terms of returning to the starting

location with a high amount of accuracy. The maximum of the mean physical error is

1.2926 m. This error is in the counterclockwise direction. Comparing this to the equivalent

maximum mean physical error of the self-configured parameters, which is 1.9056 m - also

in the counterclockwise direction.

But when analyzing the results of the UMBmark using error on return, the self-configured

parameters yield a much higher precision than the user-measured parameters. This is ap-

parent from the close clustering of the points in Figure 5-17b, as compared to the dispersed

nature of the points in Figure 5-17a.

The error on return metric shows that the self-configured results differed from the cor-

responding internal measurement in a manner which is very consistent. The consistency of

these results makes it easier to correct the systematic error that results from typical robot

movement.
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Chapter 6

Conclusion

This thesis investigates a possible solution for the self-configuration of a set of morphologi-

cally analogous robots using a known test environment. The proposed solution is presented

alongside a software implementation of the techniques. This software system targets the

discovery of parameters for the CARMEN robotics toolkit and is intended for use with

microbots from Robotics: Science and Systems laboratory course at MIT. A series of exper-

iments are performed on an implementation of the presented techniques in order to show

that the method is a functional solution to the self-configuration problem as it relates to

CARMEN and microbots.

6.1 Summary of Results

The results from Chapter 5 show that the proposed self-configuration technique works.

The resulting system is a testament to this fact. The most difficult part of implementing

the system was implementing the CBS. If an analogous sensor is provided by the targeted

toolkit, then implementation of a self-configuration system which uses the self-configuration

technique is straightforward.

The method for configuring the wheel radius yields results that are typically have 99%

accuracy with respect to the value that a human operator would measure with a meter stick.

The method is robust across initial wheel radius guesses that are from 32% to 400% of the

actual wheel radius. The commanded translational velocity does not have an effect on the

wheel radius value that results from the configuration routine. An important observation

is that the longer the robot must travel before a collision, the more accurate the resulting
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radius length tends to be. The robot should be placed as close to the starting position as

possible to ensure a more accurate configuration.

The configuration method is able to build from the result of the self-configured wheel

radius to execute the chassis length configuration with high accuracy. As the experiments in

Section 5.2.2 show, middle range translational velocities tend to give more accurate results

than higher velocities. The results show that the method has some inherent error. This

error manifests itself in that even if the wheel radius is perfectly configured during the

first phase of the configuration method, the chassis length that results is about 0.02 m too

large. By repeating the experiment over a number of trials, it is possible to have the chassis

length measurements converge to a value that is about 96% accurate, with respect to the

user-measured value.

Using the chassis length and wheel radius which were configured in other parts of the

configuration method, it is possible to run the wheelbase configuration routine to discover

the width and location of the robot's wheelbase. The initial wheelbase guess and com-

manded rotational velocity that were used for testing this configuration component do not

affect the values of the resulting wheelbase parameters. The accuracies of b, 1f, and 1, are

respectively 93%, 88%, and 95%. These are the parameters which are configured with the

least amount of accuracy. The cause of this is most likely the resolution that is used for the

the incremental step of the configuration algorithm. In the case of this system, dinc was set

to 0.01 m.

When the robot parameters were configured entirely by the system, the results were

fairly accurate with respect to the user-measured values. The accuracy of the wheel radius

and chassis length were about 99%, and the accuracy of the wheelbase width and distance

from the front and rear of the chassis were approximately 94%, 70%, and 87%.

The University of Michigan Benchmark was used as the basis for comparison of the

self- and user-configured parameters. The expectation was that the self-configured param-

eters would perform as well as the user-configured parameters. Instead, the self-configured

parameters gave more consistent results, as can be seen by the close clustering of the error-

on-return points shown in Figure 5-17.
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6.2 Suggestions for Future Work

The self-configuration techniques described are a starting point for many extensions and

applications. The results of the self-configuration method, in its current manifestation, are

that the robot's coordinate frame is known, and that the robot can translate at a specified

velocity.

In the current version, each configuration technique is applied successively in order

to determine each parameter value. The fact of the matter is that each control vector

results in an action which is observed, in some manner, on the subsequent measurement

of each sensor. A future implementation of the configuration techniques could apply this

observation to its method so that parameter values are constantly updated, rather than

only during a particular procedure. For example, while the robot is determining its wheel

radius, it can be observing measurements on its sonar sensors. Depending on the sonar

data samples, it is possible that the orientation is discovered before commencing a sonar

discovery routine.

By attempting to use the sensors, and locate them in terms of body coordinates, the

idea of fusing the data from all of the sensors, in order to gain more, overall information

about the system becomes more of a possibility.

6.3 Closing Remarks

A method for robot self-configuration using a physical test harness has been described

and implemented. The method was implemented for microbot-class robots that use the

CARMEN navigation toolkit. The system carries out the method as described in Chapter

3 and successfully determines, the robot's wheel radii, chassis dimensions, and the distance

from the wheelbase to the front of the robot and to the rear of the robot. The results

successfully allow the robot to translate at a commanded velocity, and define the bounds of

the x- and y-axis of the robot-centric coordinate system. Being able to execute a commanded

translational velocity allows the robot to be controlled by client programs of the robot

control toolkit. The discovery of the robot's coordinate frame provides a starting point for

locating other robot sensors in terms of body coordinates. Both of these results simplify the

robot toolkit configuration process, and allow an increase in the level of abstraction utilized

by robotics toolkit API's.
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